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ABSTRACT OF DISSERATION 

BAYESIAN ANALYSIS OF AGE-AT-HARVEST DATA WITH FOCUS ON 

WILDLIFE MONITORING PROGRAMS

State and federal agencies often collect hunter harvest data at check 

stations. When age- and sex-classes can be determined at the time of harvest, such 

data provide information about population structure. For instance, such 

summaries are used extensively in quantitative fisheries stock assessment.

However, statistically defensible approaches for using age-at-harvest data to 

monitor terrestrial wildlife populations have not appeared until recently, and are 

deficient in several respects.

The primary focus of this dissertation is on developing better methods for 

analyzing wildlife age-at-harvest data, and on applying these methods to real and 

hypothetical populations. Chapter one starts by developing statistical methods 

necessary for fitting population dynamics models to age-at-harvest data. As an 

example, I analyze marking and harvest records from female black bears ( Ursus 

americanus) in Pennsylvania.

In chapter two, I describe numerical implementation issues, as well as 

results from several extensive rounds of simulation testing. I show that Markov 

chains will typically need to be quite long to accurately summarize the posterior 

distribution of model parameters. Nonetheless, estimators are shown to display
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little bias, to have satisfactory credible interval coverage, and to have a high 

degree of precision. I show that abundance estimators are quite robust to aging 

errors, although using data from marked animals twice may lead to overstated 

measures of precision.

In chapter three, I conduct a power analysis to determine if it would be 

feasible to monitor black bear in Colorado with age-at-harvest and radio telemetry 

data. My focus in this chapter is on detecting and estimating population trend for 

varying levels of effort. I show that five year studies are typically too short for all 

anticipated levels of marking effort, but that ten year studies can yield meaningful 

estimates of population trend.

In chapter four, I address methods that can be used to correct 

age-at-harvest data for misclassification errors. When the aging criterion is 

inexact, it is possible to correct for errors if additional information is available on 

error rates. I illustrate proposed methodology with a black bear dataset from 

Pennsylvania.

Paul B. Conn
Department of Fish, Wildlife, and Conservation Biology

Colorado State University 
Fort Collins, CO 80523 

Spring 2007
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C hapter 1

Bayesian analysis of wildlife 

age-at-harvest data

1.1 In troduction

The age- and sex-class of harvested animals are often recorded at hunter check 

stations as part of wildlife monitoring programs. Such data are relatively easy and 

cost effective to collect and thus are frequently used to inform management decisions. 

In most cases, harvest numbers are often taken at face value, with trends in harvest 

samples thought to mirror trends in the population. Unfortunately, this assumption 

may lead to flawed inferences about population status if trends in harvest data are 

related to trends in harvest or reporting rates rather than to abundance trends. For 

instance, even with a standardized reporting system, hunter reporting rates have 

changed over time for deer in Pennsylvania (Rosenberry et al., 2004).

These considerations have led several researchers to propose more rigorous

1
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approaches to modeling age-at-harvest data for terrestrial species. For instance, 

assuming that immigration and emigration are negligible, several authors have con­

ceptualized annual harvest counts of a cohort of animals (i.e., animals that entered 

the population at the same time) as realizations of a multinomial process, with ini­

tial cohort abundance as an index, and success probabilities determined by functions 

of annual survival and harvest rates (Dupont, 1983; Laake, 1992; Gove et al., 2002). 

Not all parameters could be identified when using the age-at-harvest likelihood alone; 

however, joint analyses using auxiliary data sources such as radio-telemetry enabled 

estimation of abundance, survival, and harvest parameters (Gove et al., 2002).

While the work of Laake (1992), Gove et al. (2002), and related authors (cf. 

Skalski et al., 2005) has proven useful for wildlife practitioners, I see several areas for 

improvement. First, the product multinomial formulation requires the assumption 

that the true age of a harvested animal can be determined definitively. For many 

species, only the first few stages of life can be distinguished. For others, a finer 

resolution is possible but the reliability of the aging criterion diminishes with the 

age of the animal (e.g., Harshyne et al., 1998; Hewison et al., 1999). In these cases, 

one possibility is to group individuals greater or equal to some threshold age into a 

‘+ ’ age class, and use the E-M algorithm to perform maximum likelihood inference 

(Laake, 1992). Alternatively, one may consider a hierarchical model with additional 

abundance variables and conduct a Bayesian analysis (e.g., Link et al., 2003).

Another issue with the product multinomial formulation for age-at-harvest 

data is that the initial size of a cohort has been assumed to be independent of 

past levels of abundance. As such, the capacity to relate recruitment to previous

2
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population size is missing. Clearly the capacity for relating recruitment to previous 

levels of abundance is desirable; not only could one incorporate biological knowledge 

in the form of prior distributions for recruitment process parameters, but one could 

also consider models with a reduced number of effective parameters.

In this chapter, I describe a general model for the analysis of age-at-harvest 

data. This model is composed of two parts: an observation model and a population 

dynamics model. My approach thus falls into a class of models that some authors 

have described as “hidden process” (Newman et al., 2006). After constructing an 

appropriate likelihood, I use Markov Chain Monte Carlo (MCMC) for parameter 

estimation. This framework allows one to properly model stochasticity in abun­

dance classes, to easily summarize marginal posterior distributions for parameters 

commonly of interest to biologists, to consider a wide variety of random effects mod­

els, and to compare the parsimony of alternative models of population dynamics. I 

illustrate the application of my model with a demographic analysis of black bears 

( Ursus americanus) in Pennsylvania from 1986-1999; data from a mark-recovery 

study during the same time period were used to inform the estimation of survival 

and harvest parameters.

3
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1.2 M odel D evelopm ent

1.2.1 D ata Requirements

The fundamental data needed for age-at-harvest analysis is an age-at-harvest matrix, 

C, which summarizes annual harvests by sex and age class. I assume that there is no 

error associated with aging techniques up to some threshold age, A. Upon reaching 

this threshold age, individuals are grouped into a “+ ’ category. For the purposes of 

this chapter, I further assume that C only includes data from the female portion of 

the population, although extensions to model males are relatively straightforward. 

I also assume that the investigator has additional information with which to help 

model the processes of survival and harvest, either through expert knowledge or an 

auxiliary dataset.

1.2.2 Population Process M odels

In order to characterize a general class of wildlife population dynamics models, I first 

condition on N i., the vector of age-specific population sizes in year one immediately 

prior to harvest. Letting [G\H] denote the conditional distribution of G given H,  I 

write the joint probability mass function (pmf) of abundance in year two as

[Na.|N 1.,f1.,S 1.] =  [N22\N11, S 11] - - - [N2tA+1\N1A, S 1A] x  (1.1)

[N2 ilN L.fj.].

4
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Here, Si. denotes a vector of age-specific survival probabilities in year 1, fi. denotes a 

vector of age-specific recruitment parameters in year one, and remaining notation is 

defined in Table 1.1. Note that this formulation assumes that there is no immigration 

to or emigration from the harvestable population. Note also that I explicitly include 

N 2,a+i allow for the possibility that survival of age class A  individuals differs from 

preceding age classes. Using the current notation, if A = 5, then one would treat 

N 2,a+i as ^ 2 ,6+, or the number of individuals in year two that are age 6 or older.

Joint pmfs for subsequent years are similar, but an additional allowance is 

made for N^a+i when i > 1:

As such, age-specific population structure is modeled as a first-order Markov pro­

cess. Conditional on the vector of abundances in the first year and parameters 

for survival and recruitment processes, the probability of all future age- and time- 

specific abundances may be written as

In the preceding formulation, population size in year i + 1 consists of indi­

viduals who have survived from year i as well as new recruits to the population.

[■Ni+i.A+iliViyi +  N itA+i, Sm ] x

[A W lN m fi-].

5
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Table 1.1: Definitions of parameters, latent variables, and statistics used in the joint 
age-at-harvest, mark-recovery likelihood___________________________________

Parameters and Variables
Sij Probability that an age j  individual survives to

time *+1 given it was alive at time i 
hij Probability that an age j  individual is harvested

and reported to wildlife personnel in [z,i+l], given 
that it was alive at time i 

fij Per breeder recruitment rate over [i, i+1], with
reference to the number of age j  breeders in the 
population at time i and the number of new re­
cruits at time i+ 1

Nij Number of age j ,  unmarked individuals in the pop­
ulation in year i immediately prior to harvest. 
The Nij are parameters while the remaining Nkj 
(k > 1) are treated as latent variables

Statistics
Cij Number of age j  unmarked individuals that are

harvested and reported to wildlife personnel in 
year i

M  Total number of individuals marked and released
over the course of the experiment 

Hk Encounter history for individual k
tki Year in which animal k is first captured, marked,

and released
tk2 Year in which animal k is harvested and reported,

if encountered again 
I k Indicator variable equal to 1 if animal harvested

and reported at some time, 0 otherwise 
aki Age of animal k at time i
A  Age at which an individual’s age cannot be reliably

distinguished from older age classes 
Y  Duration of the study (e.g., years)

6
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As written, the number of new recruits depends on abundance in the previous 

year; however, in some cases, individuals may not enter the harvestable population 

for several years after they are born. If this is the case, we may simply condi­

tion on the augmented vector [Ni., AT2i, • • • , A/’,ir+i>i], replacing [./Vj+i^lNj., fj.] with 

[iVi+_4 j,+1)1|Ni.,f;.]. Here, A r gives the age at which animals are recruited to the 

population at risk of harvest. Choices of probability mass functions for survival and 

recruitment will depend on the population in question, but I suspect that binomial 

and Poisson models will commonly be appropriate for each process, with possible 

overdispersion incorporated via random effects.

1.2.3 The Sampling M odel

I assume that age-at-harvest counts are realizations of stochastic processes, so that 

we may write

Y

[C|N, h] =  +
i=2

Y  A - 1

n n w wi=i j=i

This formulation assumes that individuals of common age class have the same prob­

ability of being harvested; however, extensions allowing for individual heterogeneity 

(as with a beta-binomial model) would be fairly straightforward. I suspect that bi­

nomial models for each component of the harvest process will suffice in most cases.

7
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1.2.4 Likelihood

I suggest that inference be based on the likelihood

Za = [C,N|N1.,S,h,f] =  [ClN.hHNlN^S.f]. (1.3)

Following Link et al. (2003), I retain the latent variables N 2 ., N 3.,- • • ,NY. in the 

likelihood, in part because of the computational difficulty in integrating them out, 

and in part because they may be of considerable interest to biologists. Indeed, 

predictions of total female population size in year i may be made with the quantity
A -\-1

^2 Nij. However, because of the complexity of the model, a Bayesian approach to
3 = 1

estimation is required.

1.2.5 Auxiliary data

The likelihood in (3) is over parameterized. In order to generate sensible estimates of 

model parameters, additional information and/or simplifications to the model struc­

ture are needed. Gove et al. (2002) suggested basing inference on a joint likelihood

where L2 gives the likelihood for an auxiliary dataset pertaining to survival and 

harvest parameters, such as from a radio telemetry study. Informative prior dis­

tributions on survival and harvest parameters are another alternative for making

similar to

L — L i L2, (1.4)

8
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Table 1.2: Number of female black bears harvested in Pennsylvania by year and age. 
Also reported are the total number marked (nx) and number of marked recoveries 
(ra2) each year.

Year Age at previous winter
0 1 2 3 4 5+ ni m 2

1986 152 172 83 60 39 128 170 29
1987 169 197 95 90 38 125 113 17
1988 160 222 108 114 66 149 120 14
1989 274 313 149 136 68 206 96 20
1990 147 149 62 70 39 135 102 15
1991 176 245 85 93 55 147 35 3
1992 192 181 99 107 57 185 104 20
1993 161 312 104 111 51 154 105 18
1994 148 165 89 72 45 156 114 14
1995 208 316 100 124 44 200 134 33
1996 169 261 107 103 54 178 107 21
1997 252 234 115 130 60 245 172 35
1998 241 477 150 127 83 201 135 32
1999 171 256 92 107 39 201 112 15

abundance identifiable, the usual caveats about using informative priors notwith­

standing.

1.3 E xam ple

I collected statewide marking and harvest records for black bears in Pennsylvania for 

the period 1986-1999 from the Pennsylvania Game Commission (Table 1.2). During 

this time period, PGC personnel captured bears throughout their range, determined 

their sex and age, and released them with individually identifiable metal ear tags. 

Following a 3-day hunting season in November, hunters were required to present all 

harvested bears to PGC check stations, where age and sex information was collected 

and the identity of marked bears was recorded.

9
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Several unique features of the bear data motivated me to elaborate on the gen­

eral model for age-at-harvest data presented in section 1.2. First, I set recruitment 

parameters for cubs and yearlings to 0, as Pennsylvania black bear typically do not 

become pregnant before age 2 (Kordek and Lindzey, 1980; Alt, 1989). Second, I re­

placed the recruitment terms [iVi+1)1|Ni., fi.] in (1) and (2) with [7Vi+1)1|Ni. — Ci., f|.]. 

In the case of black bears in Pennsylvania, the probability that a hunter reports a 

harvested bear to wildlife officials is thought to be near 1.0. As such, subtracting the 

observed harvest from population size the previous year represents the population 

size immediately after harvest. Conditioning on this quantity should remove one po­

tentially time-varying component from the recruitment process; formulating prior 

distributions for fi. should also be simplified in this case, although this consideration 

is beyond the scope of the chapter.

I assumed binomial models for survival and harvest processes, and a Poisson 

model for the recruitment process. As such, the age-at-harvest likelihood may be

10
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written as

1 = 1  J  =

'N w 
N 27 

y- 1

13

s p i i  -  s , 6)d “  n  -  s * )d“
7= 2 v ^ + 1.7

e x p ( - A i) A f i+1’1x

X

n
i=i jv‘+i 'i!
14  5nn
= 1 .

n 16

Ni.l i  i U C i , j ,
1 = 1  j = l

Wy-Ĉ -

c 16

Here,

and

Dij — <
-  Ni + W , j  <  6  or i -  1,

N e  +  Ni7 -  iVi+1)7, otherwise,

Ny — Cij, j  < 6  or z =  1 ,

■/Vj6 +  -/Vj7 — Ci6 , otherwise

\  ^  ] f i jNij .

3=3

In order to address concerns that the Poisson distribution may not be a good

11
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choice for the recruitment process, I employed Monte Carlo simulation to compare 

expected distributions of recruitment under a) biologically realistic levels of varia­

tion, and b) a Poisson recruitment model. In the first case, I assumed that there 

were 1000 breeding age females, approximately half of which (500) would be breed­

ing in any given year. Of those 500, I assumed that on average of 48% would give 

birth to 3 cubs, 23% would give birth to 4 cubs, 21% would give birth to 2 cubs, 5% 

would give birth to 1 cub, and 3% would give birth to 5 cubs (Alt, 1989). For each 

breeding female, I drew a random variate from this distribution to determine the 

total number of cubs for that female. Conditional on this number, I assumed that 

the number of female cubs was a binomial draw with the total number of cubs as an 

index and a success probability of 0.5 (i.e., a 50/50 sex ratio). Of these female cubs, 

I assumed the number surviving to the start of the harvest season could be drawn 

from a binomial distribution with success probability 0.8. This process was repeated 

for every breeding female in a given population for a total of 10,000 populations to 

yield a Monte Carlo distribution for the number of female cubs that could be ex­

pected the following year (Figure 1.1 A). Taking the mean number of female cubs 

per breeding age female to be 0.596 (the mean of this Monte Carlo sample), I also 

generated a sample of 10,000 from a Poisson distribution with mean and variance 

equal to 596 (Figure 1.1B). The resulting distributions were almost identical, and I 

concluded that a Poisson model for recruitment would be satisfactory in this case.

In addition to age-at-harvest data, I also compiled mark-recovery histories 

for all females marked over the course of the study. A likelihood for these data 

was formulated along the lines of Brownie et al. (1985); however, I directly mod-

12
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A. Biological Model

</>c
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B. Poisson Model
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Figure 1.1: Distribution of female cubs that could be expected from a hypothetical 
population of 1,000 breeding age females, incorporating A) a biologically based 
model for the recruitment process, and B) a Poisson model for the recruitment 
process.
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eled encounter histories instead of using minimum sufficient statistics. I write this

likelihood as

where

M

L2 o c Y [ P r ( H k),
k=1

h
*fc2 — 1

Pr(H k) = i = t k  l

h  — lj

2 / - 1  i

1 ~  htki,ak,tkl ~  S ( n  Sjtakj)hi+it<lk'i+1, Ik =  0,
i = t k i  j = t k i

and definitions of statistics and parameters are given in Table 1.1. Formulating L 2 

in terms of encounter histories provides flexibility; in this form, parameters may 

easily be expressed as functions of individual covariates such as age (Pollock, 2002).

I made all the common assumptions typical for mark-recovery studies (Williams 

et al., 2002): animals behave independently, marks are not lost or overlooked, and 

there is no individual heterogeneity (at least that cannot be explained by age class). 

Further, I assumed that there was no mortality between the time a bear is marked 

and the harvest season. Several of these assumptions may be violated to some 

degree; for instance, sampling effort to mark black bears was distributed between 

March and November, although mortality was thought to be low during this period 

for individuals greater than one year of age. Nevertheless, the recovery rates of cubs 

were likely underestimated, ostensibly causing a positive bias in the number of new 

recruits each year. Cubs’ fates were also certainly not independent from those of 

their litter mates or those of their mothers, which would tend to cause negative bias

14
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in variance estimates. Tag loss occurred, but was of small magnitude for females 

(Diefenbach and Alt, 1998). I further assumed that the population was closed to im­

migration and emigration, which is a reasonable assumption given the sheer size of 

the geographic area being considered. As suggested in section 2 ,1 based inference on 

(1.4), which assumes that mark-recovery and age-at-harvest data are independent. 

Nevertheless, I included data from marked individuals in the age-at-harvest matrix 

so that total population abundance could be estimated. In some settings, this as­

sumption may result in measures of uncertainty that are too precise (see Chapter 

2 )-

My goal was to estimate abundance, survival, recovery rate, and recruitment 

for female black bears. However, the model as formulated was overparameterized. 

In the field of fisheries stock assessment, this problem is often remedied by assuming 

an additive model for sampling parameters (the “separability assumption”; Megrey, 

1989). Similarly, additive and/or random effects models have been proposed for 

survival and recruitment parameters in age-structured models for whooping cranes 

(Link et al., 2003), and for the analysis of data from marked individuals in general 

(Lebreton et al., 1992; Barry et al., 2003).

I adopted aspects of each of these approaches, fitting a total of 4 models to the 

data which varied by the number of fixed and random effects on the logits of survival 

and recovery rate, and on the log of recruitment rate (Table 1.3). Preliminary 

analysis indicated substantial differences in observed and expected harvest data 

when a model such as

Logit (hij) = v t + 4>3 

15
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Table 1.3: Models fit to age-at-harvest and mark-recovery data sorted by estimated 
deviance information criterion (DIC), where ADIC gives the difference in DIC from 
the highest ranked model. Age is modeled as a fixed effect, while time is modeled 
as a random effect (when included). Also presented are Bayesian p-values (pB) for 
each model._______________________________________________________

Model Name Logit (Sij) Logit ( j) Log(fa) ADIC P b

S(a -I- t)h{a +  t)f ( t ) 7j +  oti <t>j +  Vi +  €ij /3 + Ki 0.0 0.67
S(a + t)h(a +  t)f(-) l j  +  Oii (j>j +  Vi +  Cij p 6.0 0.58
S(a)h(a)f ( t) 7j (f>j + €ij P + Ki 28.9 0.5
S(a)h(a)f(-) 7j 4>j T eij P 34.1 0.49

was fit to the data. These differences likely resulted from annual changes in the tem­

poral distribution of denning dates as well as the percentage of a given cohort that 

was pregnant. Pregnant females typically den prior to the rest of the population, 

and thus are more likely to be unavailable for harvest during the hunting season. It 

was difficult to model these biological processes directly, so I followed the approach 

of Barry et al. (2003) and included overdispersion terms, e^, in the formulation for 

harvest rates. These were modeled as random effects on the logit scale and were 

assumed to have a normal distribution with mean zero and precision parameter r 6. 

Similarly, when included in the model structure, year effects (i.e., a,-, v i} and ac») 

were modeled as normally distributed random effects on the logit scale with mean 

zero and precision parameters r£, r^, and r£, respectively. Remaining parameters 

were all modeled as fixed effects.

Conducting a Bayesian analysis required that I specify prior distributions for 

model parameters. In particular, I assigned the following diffuse priors:

[Nij]  oc c,

16
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[7j], [<f>j] ~  Normal(0,3),

[(3\ ~  Normal(0.25,1), and

[Ta], [r„], [rK], [r£] ~  Gamma(0.1,0.1).

I used Gibbs sampling to sequentially update each parameter and latent variable.

The full conditionals for precision parameters were available in closed form, and 

were simulated directly as

All remaining parameters and variables were updated with Metropolis-Hastings 

steps. Proposals in a given iteration were normally distributed with a mean at 

the previous iteration’s parameter value, and a standard deviation was chosen so as 

to achieve a 35-40% acceptance rate.

For each model, I ran two independent Markov Chains of length 1 million with 

overdispersed starting values. If after 500,000 iterations Gelman-Rubin statistics 

(Gelman et al., 2004) indicated convergence, I combined the second halves of each 

chain to generate a sample of one million from the posterior distribution. In order

[rQ|a] Gamma

Gamma

[ac|k | Gamma

\̂~6 | rS”1Gamma + 0.1

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to save disk space, this sample was thinned to 200,000 by recording every fifth 

iteration. Marginal posterior distributions were then summarized by calculating 

moments and 90% HPD Bayesian credible intervals. Deviance information criterion 

(DIC; Spiegelhalter et ah, 2002) was also calculated for purposes of model selection.

I implemented a goodness-of-fit test based on a Bayesian p-value (Gelman 

et ah, 2004) for the age-at-harvest portion of the likelihood. For a given sample % 

from the posterior distribution, I simulated harvest data, C£ep, given 0j, the set of 

parameter values at iteration i. Next, deviance for the age-at-harvest portion of the 

likelihood was calculated for observed, Dj(C,0j), and for simulated, Di(C-ep,0;), 

data. The Bayesian p-value was then obtained as

1 K
t».~) [Di(C"p, 0() -  Dj(C, 0,).]

2— 1

where K  denotes the total number of samples in which age-at-harvest data is sim­

ulated, and and Iq(x ) denotes an indicator function for the set f2. For purposes of 

this chapter, I set K  =  200, spacing samples evenly across Markov chain iterations.

When fit to the data, models including time- and age- varying survival and 

recovery rate were heavily favored by DIC (Table 1.3). There also appeared to be 

some evidence for time-varying recruitment. I chose to base inference on S(a +  

t)h(a + t )f ( t )  for two reasons. First, it was the highest-ranked model according to 

DIC; second, it included the most complexity. For instance, there is a tendency for 

overstating precision when data from marked animals are used in both portions of 

the likelihood, particularly when model complexity is low (see Chapter 2).

18
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Figure 1.2: Estimated abundance for female black bears in Pennsylvania from 1986 
to 1998 as estimated from A) the joint age-at-harvest and mark-recovery estima­
tor, and B)the bias corrected Lincoln-Petersen estimator. Posterior means and 
90% Bayesian credible intervals are presented from the highest ranked DIC model, 
while point estimates and 90% asymptotic confidence intervals are presented for the 
Lincoln-Petersen estimator.
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Posterior summaries indicated that female black bear abundance declined 

slightly in Pennsylvania from 1986 to 1999 (Figure 1.2). In order to contrast our es­

timator with another commonly used abundance estimator, I computed year-specific 

bias-corrected Lincoln-Petersen (LP) estimates of abundance, together with accom­

panying variances (see Seber, 1982). Point estimates from the LP estimator were 

considerably more variable, and had substantially higher standard errors (Figure 

1.2). Further, consecutive point estimates using the LP approach were often out 

of the realm of biological possibility. Diefenbach et al. (2004) noted this tendency, 

suggesting that annual changes in the availability of pregnant females for harvest 

could lead to a high degree of variability in single season estimators of abundance. 

In addition to abundance, I was also able to summarize posterior distributions for 

survival probability (Figure 1.3), recovery probability (Figure 1.4), and recruitment 

rate (Figure 1.5), three quantities of fundamental interest to population biologists 

and managers. These estimates reconfirm that the black bear population in Penn­

sylvania is one of the most productive in the United States (Alt, 1989).

Despite positive advances in methodology, I am hesitant to make any defi­

nite conclusions about population trend toward the end of the study. For instance, 

the trend indicated by age-at-harvest abundance estimates was different than that 

from LP estimates, and also from previously published estimates generated from a 

Horvitz-Thompson (HT) type estimator (Diefenbach et al., 2004). Both of these 

estimators indicated an increase in abundance over the same time period. One 

possible explanation for differences in estimated abundance is temporary emigra­

tion from the harvestable population, which can cause negative biases in survival

20
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Figure 1.3: Female black bear survival in Pennsylvania from 1986 to 1998 as es­
timated from age-at-harvest and mark-recovery data. Posterior means and 90% 
Bayesian credible intervals are presented from the highest ranked DIC model.
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Figure 1.4: Recovery rates for female black bears in Pennsylvania from 1986 to 
1998 as estimated from a joint analysis of age-at-harvest and mark-recovery data. 
Posterior means and 90% Bayesian credible intervals are presented from the highest 
ranked DIC model.
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Figure 1.5: Estimated recruitment rate (number of female cubs immediately prior 
to hunting season the following year per breeding age female that survived the 
current hunting season) for Pennsylvania black bear from 1987 to 1999. Presented 
are posterior means and 90% Bayesian credible intervals from the highest ranked 
DIC model.
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probability toward the end of mark-recovery time series (W. L. Kendall, personal 

communication). Pregnant females typically enter dens at earlier dates than other 

bears, and thus in some sense have temporarily emigrated. Assumption violations 

such as preharvest mortality, tag loss, and nonrandom selection of bears for mark­

ing may also have contributed to a biased picture of temporal trend in abundance. 

These considerations are a focus of current research.

1.4 Discussion

In this chapter, I was able to extract a wealth of information on population demog­

raphy by jointly modeling the age structure of harvests and mark-recovery data. 

Parameter estimates were required to be internally consistent with other population 

parameters, leading to higher precision and less temporal variation in point esti­

mates than the Lincoln-Petersen estimator. Posterior summaries were also available 

for other demographic parameters such as survival and recruitment. By adopting 

a Bayesian approach to the problem, I was able to conduct analysis using a like­

lihood that would be intractable for traditional maximum likelihood techniques. 

This allowed for improvements upon previously proposed models for analyzing age- 

at-harvest data. In particular, I have permitted population models with a self-loop 

for older age classes as well as an explicit recruitment process. Expert opinion 

concerning biologically plausible values for demographic parameters can also be in­

corporated in the form of informative prior distributions.

With regard to Pennsylvania black bear, future work should explore the ten-
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ability of several key model assumptions, as with the assumption of no preharvest 

mortality following marking. This assumption will be violated to some degree, par­

ticularly for cubs that are marked in dens during March, and may induce positive 

bias in abundance estimates. Tag loss could also induce bias when multiple years 

are analyzed within the mark-recovery framework. A number of other assumptions 

are also likely to be violated. For instance cubs fates are dependent on those of their 

mothers, which may serve to introduce unmodeled overdispersion.

Finally, I note that the modeling framework developed here can easily be 

extended to incorporate additional data sources. For instance, if recaptures are 

available in addition to recoveries, one may simply replace L2 with a likelihood 

similar to that attributed to Burnham (1993). Likewise, information from radio­

telemetry studies could be incorporated (e.g., Gove et al., 2 0 0 2 , also see Chapter 3). 

I believe this flexibility is essential for biologists, who are often confronted with a 

diverse array of sampling challenges.

25
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Chapter 2

Estim ating demographic 

parameters w ith mark-recovery 

and age-at-harvest data

2.1 Introduction

Chapter one outlined one possible strategy for estimating population parameters 

from age-at-harvest and mark-recovery data. However, other parameterizations and 

posterior simulation strategies may be more efficient in terms of the number of 

iterations required to generate an accurate summary of the joint posterior distribu­

tion. Further, even if a good sampler can be developed, there is no guarantee that 

posterior moment estimators will perform well, especially if model assumptions are 

violated.

In this chapter, I explore the problem of estimating demographic parame-
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ters from age-at-harvest and mark-recovery data in further depth. In particular, I 

describe alternate parameterizations for model structure, summarize Bayesian ap­

proaches for calculating posterior summaries and measures of model fit, and use 

simulation to explore the performance of different posterior samplers, as well as 

the performance of population parameter estimators under a number of biologically 

meaningful scenarios. In addition to employment of a response surface design to ex­

plore general estimator performance, I also use simulation to assess the ability of a 

posterior predictive check to diagnose lack of fit from overdispersion, and to examine 

the robustness of several key model assumptions, such as when aging errors occur or 

when mark-recovery and age-at-harvest likelihoods are dependent. The latter case 

can arise, for instance, when data from marked animals are included as part of the 

age-at-harvest matrix.

2.2 M odel Development

2.2.1 An alternative likelihood

Chapter 1 described a general modeling framework for age-at-harvest data. However, 

the observation model was intentionally selected to fit in nicely with the mark- 

recovery parameterization used by Brownie et al. (1985). An alternative formulation 

of the mark-recovery likelihood was given by Seber (1982), which can be written in
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terms of individual encounter histories as follows:

M

L2 o c i i p rm
k= 1

where

Pr (Hk) =

tk'-i
(1 — Stk>!atk,)l'tk',atk, n  Ik ~

i=tk

1  —  S  (  n  —  ‘S ' i + l , a i + l ) r i + l , a i +  l ,  I k  =  0 -
i=tk - 1 j=tk

Definitions of statistics and parameters are given in Table 2.1. Use of Seber’s pa­

rameterization in conjunction with age-at-harvest data requires reformulation of the 

age-at-harvest model so that parameters can be shared between L\ and L 2. This 

can be accomplished by letting

L x =  L(S ,r , f ,N ,D |C )
Y  A

= n n  Bin(Db; Mu,1 - Sn)
i = i  j = i

y- 1

x Pois(iV;+i;i; f i l N a  +  f i l N f t  +  • • • +  f i A ^ i A  +  f i A N i , A + l )
i = 1 

y A

x n  IIBin(Cb; Aj, rt])
i = l  j = l

Here, the notation Bin(:r; N,p)  indicates that x  is binomially distributed with index 

N  and success probability p. Similarly, Pois(a:; 6) denotes that the variable x  follows 

a Poisson distribution with parameter 9. Bold face characters represent year- and
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age-specific parameter vectors. The relationship between latent variables Nij and 

Dij can be summarized as follows:

2.2.2 Estim ation

Estimation via traditional maximum likelihood techniques is prohibitively difficult

to be integrated out of the likelihood to make this feasible. As Link et al. (2003) 

pointed out, there may be considerable interest in these parameters. For instance, 

calculating annual abundance, iVj. =  Nij requires knowledge of all of the N,t] 

parameters. For these reasons, as well as for the ease with which hierarchical ex­

tensions to model structure can be implemented, Bayesian estimation using Markov 

Chain Monte Carlo (MCMC) is preferable for estimating model parameters.

2.2.3 Prior distributions

Bayesian implementation requires the formulation of prior distributions for a number 

of model parameters. For instance, for the Seber parameterization we require prior 

distributions for the following sets of parameters: S, r, N x., and f. Here, N x. denotes 

the set of abundance parameters in year 1. Typically, Bayesian analysts select priors 

that lead to conjugate posterior distributions (where the posterior has the same form

N{:a- i  +  N iA — D i ^ i  — DiA, j  — A,
V

in this case, due to the large number of (latent) abundance parameters that need
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Table 2.1: Definitions of parameters, latent variables, and statistics used in the joint 
age-at-harvest, mark-recovery likelihood___________________________________

Parameters and Variables
Sij Probability that an age j  individual survives to

time «+l given it was alive at time i 
Tij Probability that an age j  individual is reported,

given that it died in [i, i+ 1 ] 
hij Probability that an age j  individual is harvested

and reported in [?, i + 1], given that it was alive at 
time i

fij Per breeder recruitment rate over [*, i+1], with
reference to the number of age j  breeders in the 
population at time i and the number of new re­
cruits at time « + 1

Nij Number of age j , individuals in the population at
time i. The Nij are parameters while the remain­
ing Nkj (k > 1 ) are treated as latent variables 

Dij A latent variable giving the number of age j  indi­
viduals at time i that die in the interval [i, i+ 1 ]

Statistics
Cij Number of age j  individuals that are harvested and

reported in year i
M  Total number of individuals marked and released

over the course of the experiment 
Hk Encounter history for individual k
tk Year in which animal k is first captured, marked,

and released
t k' Year in which animal k is harvested and reported,

if encountered again 
Ik Indicator variable equal to 1 if animal k harvested

and reported at some time, 0  otherwise 
atk Age of animal k at time t
A  Age at which an individuals age cannot be reliably

distinguished from older age classes 
Y  Duration of the study (e.g., years)
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as the prior). Owing to the complicated form of the likelihood, this is not possible 

with either parameterization of the combined mark-recovery age-at-harvest model. 

Nevertheless, the following prior specification strategies may be useful in practice.

Several prior distributions have been used for abundance in a mark-recapture 

context. For instance, Link et al. (2003) used a constant, improper prior on abun­

dance; that is, Pr(ATj) oc c. This is equivalent to specifying a Uniform(0, x) prior on 

abundance, where x  is an arbitrarily large constant selected so that the probability of 

reaching this value in the course of MCMC simulation is effectively 0. Another stan­

dard improper but uninformative prior on Nij  can be specified as Pr(Nij) oc 1 /AT, 

(Madigan and York, 1997). In univariate models for abundance estimation, this 

selection corresponds to a transformation invariant (i.e., Jeffreys’) prior (Jeffreys, 

1961).

If information other than harvest data and mark-recovery data are available 

on initial population sizes, one may incorporate this information by specifying an 

informative prior. A typical choice is the Poisson distribution, which in this case 

would amount to specifying Nij ~  Pois(x; A^), where Aij could be subject to hi­

erarchical extension if prior information is imprecise (see, e.g., Madigan and York, 

1997; Smith, 1991).

It is convenient to consider models for Sij, rij, and hij that occur on the logit 

scale, so that one can entertain model extensions incorporating covariates and ran­

dom effects ( being recovery rate if the parameterization of the previous chapter 

is adopted) . As such, priors for these parameters should be selected such that they 

are approximately uninformative when transformed to (0 ,1 ) space (unless, of course,
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there are auxiliary data available). As an approximately uninformative prior, the 

Normal(0,3) distribution on the logit scale is a convenient selection, as it leads to 

back transformed random deviates that are approximately uniformly distributed on 

(0,1). This is not the case when additive models are used, however, as the inverse 

logit transformation of the sum of two Normal(0, 3) random variables has a slightly 

parabolic shape.

The recruitment parameters must be nonnegative, so it is natural to con­

sider a log link for these parameters. Appropriate priors will likely be somewhat 

informative, and should ultimately rest on the biology of the species being ana­

lyzed. For example, if the taxa in question averages five or less young per year, an 

informative but diffuse prior could be specified as

log(Ajj) ~  Normal(0.25,1),

which has substantial support on all likely parameter values. In cases where informa­

tive prior distributions such as this one are utilized, prior sensitivity analyses are a 

natural way of checking to see how strongly posterior inference relies on specification 

of the prior (Gelman et al., 2004).

2.2.4 M odel extensions: Random effects

Random effects models are useful for describing variation in parameters that are 

modeled as randomly distributed across time, space, or other factors, while keeping 

the overall number of parameters low. For instance, if survival varies over time in a
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“random” manner, the model

logit(Si) =  A, +  ei,

where e; ~  Normal(0, a2) can represent this variation with fewer parameters than if 

a separate Si were estimated at each time period (Royle and Link, 2002). Of course, 

this assumes that the number of observations are distributed sufficiently over time 

or space; for example, there would be little use in implementing a random effects 

model for a 3-occasion mark-recovery study. Random effects have also been used to 

accommodate lack of fit in the Bayesian implementation of mark-recovery models 

(Barry et al., 2003).

A possible extension for including random effects on survival and reporting 

rate is to model

logit(Sij) = fis +  efj, and logit (ry,) =  fir +  er{j, where

efj ~  Normal(0,1 / t s ) ,  and eL ~  Normal(0, l / r r ).

Similarly to fixed effects models, priors of fis ~  Normal(0, 3), and fir ~  Normal(0, 3), 

are approximately uninformative on the real scale. Informative priors of ts ~  

Gamma(ai, Pi) and rr ~  Gamma(«2 , f t )  for the precision of random effects terms 

are natural to consider, where /3 denotes a rate (rather than a scale) parameter. 

The priors on ts and r r are conjugate; that is, the marginal conditional posterior 

is available in closed form and thus it is possible to simulate from these directly
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without a Metropolis-Hastings step. In particular,

'n
ts ~  Gamma [ — +  a, 1 +  /3 

£ &

Royle and Link (2002) suggest specifying a diffuse prior on precisions by letting 

a  =  0 .1  and /3=0.1.

2.2.5 Posterior summaries

One advantage of Bayesian inference is the ability to obtain marginal posterior dis­

tributions that completely summarize the current state of knowledge about a given 

model parameter (Gelman et al., 2004). Researchers can use these distributions di­

rectly to predict future system states, as with a posterior predictive distribution, or 

as a basis for formulating management decisions according to a pre-specified utility 

function. However, in certain cases, one may also wish to provide a point estimate 

together with an analog to a frequentist confidence interval, as with a Bayesian 

credible interval. Since most researchers are familiar with these types of summaries, 

their use may better communicate results. Further, typical estimator performance 

statistics, such as mean squared error, percent relative bias, and interval coverage 

rely on point and quantile estimates.

Selection of a Bayesian point estimator is often made based on quantitative 

consideration of the ramifications of choosing a given estimator 0 as articulated 

through a loss function. Acknowledging uncertainty about tru th  (that is, about the 

“true” value of 0), one minimizes the loss function by choosing an estimator that
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m inim izes

f  1(0, 0)p(0\x)d0,
Je

where 1(0, 0) gives the specified loss function and p(0 |x) gives the posterior distribu­

tion of 0 given data x  (Bernardo and Juarez, 2003). In general, the posterior mean 

satisfies squared error loss, the posterior median satisfies absolute error loss, and the 

posterior mode satisfies zero-one loss (Bernardo and Juarez, 2003). Zero-one loss 

results when
r

0 0  =  0
1( 0 , 0) =

1 otherwise

Describing alternative point estimates in this manner may help to explain why 

many authors in the Bayesian literature have chosen to use the posterior mean as 

a point estimator. However, when a simulation study is undertaken with respect to 

a “true” parameter vector 0, there is no uncertainty about i t ’s value and thus we 

would desire a point estimator that minimizes

l(0,0)p(0\x) = c x  1(0,0),

where c is a constant. For each of the loss functions described above, this quantity 

is minimized when 0 = 0. In the case where noninformative priors are chosen, 

choosing 0 to be the posterior mode is approximately equivalent to choosing the 

maximum likelihood estimator for 0. Since maximum likelihood estimators are 

consistent (Casella and Berger, 1990), it follows (heuristically) that the posterior
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mode is the appropriate estimator for calculating simulation performance statistics.

Estimating a posterior mode using a sample from the posterior distribution 

is not as straightforward a task as estimation of a posterior mean or median. The 

approach that I implemented was to use a kernel density (KD) estimator for the 

posterior distribution (Silverman, 1986), and then to find the mode of this estimator. 

For situations where parameters are estimated away from boundaries (e.g., 0 or 1 

for survival), a KD approach may be preferable over spline-based estimators (K. 

P. Burnham, personal communication) . Implementation of KD involves selecting a 

kernel, k as well as a bandwidth h that controls the degree of smoothing. I chose 

to use a normal distribution for the kernel, and selected a bandwidth that would 

be asymptotically optimal if the posterior was normally distributed, namely h =  

1.06 x min(/Qi?/1.34, a) x n -1/5, where IQ R  and a give the estimated interquartile 

range and standard deviation of the posterior, respectively, and n  gives the number 

of independent samples from the posterior distribution (Silverman, 1986). Adaptive 

bandwidth selections may result in a better approximation of the posterior than 

this default choice, but these approaches typically require computer-intensive cross- 

validation procedures (Silverman, 1986).

Bayesian credible intervals can be used to give the probability that a parameter 

falls into a given interval given the current state of knowledge for that parameter 

(as summarized by the marginal posterior distribution). Despite a slightly different 

interpretation, credible intervals are roughly analogous to frequentist confidence 

intervals. One approach to obtaining a credible interval for parameter 9 is simply 

to sort marginal samples from lowest to highest, and then to use order statistics
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(^(na) 0 (n(i-a))) ag iower anc[ Upper bounds for a lOO(l-a) interval (Chen et al., 

2000). However, as Chen et al. (2000) note, highest probability density (HPD) 

intervals are preferable because they are typically shorter (at least if the target 

distribution is non-symmetric). In the case of a unimodal distribution, finding an 

HPD interval amounts to finding all 9^  and 9 ^  such that (U — L ) =  n( 1 — a) and 

then taking the values for L and U that minimize 9 ^  — 9^  (Chen et al., 2000).

2.2.6 M odel selection

Several options exist for comparing the relative parsimony of different model parame- 

terizations. In particular, a Bayesian analog of AIC called the deviance information 

criterion (DIC; Spiegelhalter et al., 2002) has been developed, as has a criterion 

based on asymptotic approximation of Bayes factors called the Bayesian informa­

tion criterion (BIC; Schwarz, 1978). While model averaging approaches based on 

reversible jump MCMC (Green, 1995) also appear promising, requisite computing 

time is dauntingly large even for simpler model structures than considered here (e.g., 

Barry et al., 2003), and thus were omitted from consideration.

For purposes of this dissertation, I opted to use DIC for model selection. 

Current scientific literature employing Bayesian inference often uses DIC, which 

makes no assumption about the “true” model being in the model set (as is the case 

with BIC). One nuance with DIC, however, is that one must specify a point estimate 

with which to calculate deviance. In their original derivation of DIC, Spiegelhalter et 

al. (2002) used the posterior mean as the point estimate to calculate DIC; however,
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one could also contemplate use of the posterior mode (see Section 3.3).

2.3 Efficient MCMC Candidate Generation

With the exception of random effects precision terms, the full conditional poste­

rior distributions for model parameters do not belong to recognizable families of 

probability density functions (e.g., normal, gamma, etc.). Therefore, it is not pos­

sible to simulate parameter values directly as in traditional Gibbs sampling. One 

possibility for simulating these parameters is to use the so called Metropolis-within- 

Gibbs hybrid update (e.g., Brooks, 1999; Gelman et al., 2004). A typical approach 

is to cyclically update model parameters one at a time, with a single iteration’s 

proposed parameter value determined by generating a random variate from a sym­

metric probability density function centered at the previous iteration’s value, and 

a scale parameter chosen so as to achieve a desired acceptance rate. This is often 

referred to as a “random walk” chain or simply a “Metropolis” proposal scheme 

(Gelman et al., 2004). A proposal for parameter i, 9*, at iteration t is accepted 

with probability dependent on the Metropolis ratio, i.e.,

. „  P{0‘ |Y ,0 ‘_,) ( 
min(l, —r-r-r,------ r -r)

Here, P(9* |Y, 0G) denotes the conditional posterior distribution of 9, given data (Y) 

and the remaining parameters of the model (&*_,) evaluated at the proposed parame­

ter value 9*. Typically, the vector 0G will consist of [91,9*2, • • • , 9\_x, 9\^\, • • • , 9tp 1] ,
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where P  denotes the total number of parameters in the model. One may also con­

sider randomly changing the order that parameters are updated at each iteration, 

but I did not implement that here.

While the Metropolis proposal has been shown to work well in Bayesian anal­

ysis of mark-recovery and mark-recapture data alone (Brooks, 1999), the addition 

of age-at-harvest data into the likelihood presents additional challenges. Abundance 

is an integer value, subject to a number of constraints; thus, proposals must also be 

integers and the Metropolis ratio must be corrected for asymmetries resulting from 

these constraints. One possibility for generating univariate proposals for abundance, 

which I adopt throughout, involves the following algorithm:

1. Generate

N o r m a l^ ,  af)
~  r 8Yi a x +  0.5^ U Q (t)i eLin_0.5 Normal(6b ’ ,o()

for (6™m — 0.5) < 6* < [01̂iax +  0.5) by rejection sampling.

2. Round 6* to the nearest integer

3. Calculate Metropolis-Hastings ratio as

m  |Y, e ‘_.) I T ,’*0,5 Normal(«t, <r?) 

m ' - '  IY, 0V)) j ™  N o rm al^ , o f ) '
I

Here, 6™in and 6™ax give the minimum and maximum values that are permissable 

given the constraints (with d™ax — oo if there is no upper constraint).

Addition of abundance into the likelihood has large ramifications for the con­

vergence of Markov chains, as well as the amount of iterations required to reasonably
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represent features of the posterior distribution. In particular, when the quantity of 

mark-recovery data is limited, or when one considers models for survival or recovery 

rate that are sufficiently complex, the Metropolis-within-Gibbs updating procedure 

requires a large number of iterations to accurately represent the posterior distribu­

tion (e.g., 1 to 2  million), making large scale simulation experiments difficult.

In this section, I consider the efficacy of several candidate proposal schemes 

which may help with the “mixing” ability of Markov chains, and thus for faster 

exploration of the posterior distribution. Because there is a high degree of sam­

pling covariance between parameters, autocorrelation between successive values of 

the Markov chain is quite high. I hoped to reduce the degree of autocorrelation 

by devising proposal schemes that accounted for sampling covariance. In addition 

to comparing the Seber and Brownie model parameterizations, I thus explored the 

effects of generating multivariate Metropolis-Hastings proposals for vectors of pa­

rameters.

Joint proposals

The abundance of a cohort at discrete points in time are considered individ­

ual parameters in the joint age-at-harvest mark-recovery model. However, they are 

inextricably linked by the process of survival. Thus, in addition to the numerous 

constraints that rule out certain combinations of parameter values (such as abun­

dance of 2 -year-olds being higher in year 2  than the number of 1-year-olds in year 

1 , for instance), we also expect an underlying symmetry; for example, if abundance 

in year 1 is “high,” abundance is also likely to be “high” in later years.

One possibility for accelerating convergence in this case is to use a nondiagonal
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proposal covariance matrix for abundance parameters that are in the same cohort 

to better “mimic the posterior surface” (Carlin and Louis, 2000, pg. 157). In order 

to get a proposal covariance matrix that fulfills this purpose, one can first obtain an 

estimate of the posterior correlation structure by estimating posterior covariances 

from a traditional Metropolis-within-Gibbs updating scheme. A multivariate normal 

distribution can then be used to generate proposals, where

9*
/ 0*-1 012 ■• 01 k \

o*2
~  M VNorm al

o -̂1 021 o\ . ■ &2k

01 \ .  ^ .
0Jfcl 0fc2 ■ /

Gelman et al. (2004) suggest setting proposal variances such that they yield 

acceptance rates of 0.4 when parameters are altered one at a time, and 0.2 when 

updating vectors of parameters. We thus may perturb the proposal variances (the 

a 2) to achieve this goal, while setting

(Tij — Pij (Ĵ CTj

to preserve the correlation structure (here, gives the estimated posterior cor­

relation between parameters i and j  from the standard Metropolis-within-Gibbs 

update).
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2.3.1 Adaptive algorithms

As mentioned, Gelman et al. (2004) recommend that proposal acceptance rates be 

near 0.4 for univariate updates, and 0.2 for multivariate updates. It is possible 

to obtain these rates via trial and error (that is, sequential iteration of proposal 

standard deviations), but ultimately this strategy is not time efficient. Instead, 

Gelman et al. (2004) recommend implementing some sort of tuning algorithm to 

adjust proposal standard deviations to yield appropriate acceptance rates before the 

final phase of MCMC estimation.

A natural way to construct such an algorithm is to monitor the number or 

proposal acceptances that are made over a certain window, and then to adjust the 

proposal standard deviation upward if too many are accepted, and downward if too 

many are rejected. In practice, I found that a large window was necessary to prop­

erly tune model parameters, as too short of a window could lead to some proposal 

standard deviations tending towards 0, and thus a “stuck” Markov Chain. This was 

likely due to the nature of the dynamic, highly correlated system that was under 

consideration. Using a downward multiplier of 0.95, an upward multiplier of 1.0526 

(1/0.95), and a window of 1000 iterations seemed sufficient, with perhaps 30 such 

windows being required to reach targeted acceptance rates for all parameters using 

the standard Metropolis within Gibbs update. For multivariate normal proposals, I 

simply multiplied the entire proposal variance covariance matrix E by a downward 

or upward multiplier; this procedure preserved correlation structure while allowing 

acceptance rates to be adjusted to somewhere near 0 .2 .
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2.3.2 M ixing properties of different proposal schemes

The surface of the posterior distribution may differ markedly depending on model 

parameterization. For instance, a model with survival and reporting rate varying by 

the same factor (e.g., age or time) will generally result in higher posterior correlation 

between these parameters than a model in which S  and r vary by different factors 

(e.g., survival varies by age but reporting rate varies by time). We thus might 

expect that the efficiency of different proposal schemes will vary by estimation model. 

Rather than conduct an exhaustive study of a large number of estimation models, 

I selected two estimation models that might be “useful” in practice. In particular, 

5(-)r(-)/(-) denotes the model where survival, reporting rate, and recruitment rate 

are constant over time. While of limited biological plausibility (survival will almost 

certainly vary by age, for instance), this model may be all that some data sets can 

support, at least given uninformative priors. Similarly, S(a + t)r(a)f(-)  specifies a 

model with additive time and age effects on survival (i.e., logit(Sij) — + f3j), age

effects on reporting rate, and constant recruitment rate. In contrast to the “dot” 

model, this model may represent a level of complexity realistic for rich data sets.

In order to best compare different proposal schemes, it was instructive to 

conduct analyses on the same data set, varying only the proposal scheme. However, 

I considered different data sets for each estimation model in order to represent sparse 

and rich data sets for models <S'(-)r(-)/(-) and S(a + t ) r (a ) f (•), respectively. In both 

cases, I assumed 5 distinguishable age classes, 5 years of data, a survival rate of 0.6, 

and a reporting rate of 0.2. I used expected (rather than simulated) data, rounding
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harvest numbers to the nearest integer while keeping the frequencies of observed 

mark-recovery histories as rational numbers. Each population was assumed to be 

stationary (A=1.0) and to have a stable stage distribution (Caswell, 2001).

For the simple model S(-)r(-)f(-) I used an initial population size of 1000 

individuals, and assumed that 2 0  individuals were captured, marked, and released 

per year, partitioned into the 5 age classes depending on the proportion of individuals 

that were of a given age. For model S(a+t)r(a)f(-),  I used an initial population size 

of 5000 and assumed that 300 individuals were released per year. For both models, a 

constant, improper prior was specified for abundance parameters (i.e., P(Nij)  oc c), 

and priors for S, r, and f were specified as in section 2.2.3.

Construction of an efficient proposal scheme may ultimately rely on knowledge 

about the shape of the posterior distribution. Examination of the posterior surface 

often revealed large correlations between certain model parameters, suggesting a par­

ticular reparameterization or multivariate proposal scheme. For instance, one sam­

ple from the posterior (summarized from 200,000 iterations) for model S(-)r(•)/(•) 

exhibited correlations of 0.94 - 0.97 for consecutive abundance parameters (e.g., N u  

and 7V22), with correlations between logit(r) and abundance reaching -0.9 for age 

0 cohorts, decreasing to the -0.4 to -0.7 range as age class increased. This was 

likely due to there being more mark-recovery data for earlier ages since the number 

released per age class in a given year was proportional to the abundance of that 

age class. Correlation between logit (S') and other parameters was comparably low 

(0 . 0  to 0 .6 ), including a correlation between logit(S) and logit(r) of 0.26. This last 

relationship was surprising given that high posterior correlation between survival
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and reporting rate have been reported in the context of mark-recovery models (e.g., 

Barry et al., 2003). Ostensibly, the correlation between these parameters has been 

reduced because of the even higher dependence between abundance and reporting 

rate.

In contrast, the posterior surface associated with model S(a + t)r(a)f(-)  re­

vealed only small correlations between consecutive cohort abundances (0 < p < 0.3). 

However, correlations were high between same-age cohorts across time. For exam­

ple, the posterior correlation between N n  and JV21 was substantial (0.88). This 

relationship likely results from the specified model for reporting rate, which varies 

by age in this case. In addition to correlations between abundances, there were also 

substantial correlations between age-specific beta parameters for reporting rate and 

survival. The linear model for survival was formulated as
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'  logit(Sii) ‘ '  1 1 0 0 0 1 0 0 0  '

logit (S12) 1 1 0 0 0 0 1 0 0

logit (S13) 1 1 0 0 0 0 0 1 0

logit(Si4) 1 1 0 0 0 0 0 0 1

logit (£15) 1 1 0 0 0 0 0 0 0

logit(S2i) 1 0 1 0 0 1 0 0 0

logit (S22) 1 0 1 0 0 0 1 0 0

logit(S23) 1 0 1 0 0 0 0 1 0

logit(S24) 1 0 1 0 0 0 0 0 1

logit ( ^ 5 ) 1 0 1 0 0 0 0 0 0

logit(53i) 1 0 0 1 0 1 0 0 0

logit (S32) 1 0 0 1 0 0 1 0 0

logit(S33) - 1 0 0 1 0 0 0 1 0

logit(S34) 1 0 0 1 0 0 0 0 1

logit(S35) 1 0 0 1 0 0 0 0 0

logit(S41) 1 0 0 0 1 1 0 0 0

logit(S42) 1 0 0 0 1 0 1 0 0

logit (543) 1 0 0 0 1 0 0 1 0

logit(S44) 1 0 0 0 1 0 0 0 1

logit (S45) 1 0 0 0 1 0 0 0 0

logit^Ssi) 1 0 0 0 0 1 0 0 0

logit(5'52) 1 0 0 0 0 0 1 0 0

logit(S53) 1 0 0 0 0 0 0 1 0

logit(S'54) 1 0 0 0 0 0 0 0 1

_ logit(555) . .  1 0 0 0 0 0 0 0 0

X

P S
Pi
Pi
Pis
P t .

0*
0 sr̂ ai

while the linear model for reporting rate was formulated as
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‘ logit (rn ) ' ‘  1 1 0 0 0 '

logit(ri2) 1 0 1 0 0
logit(ri3) 1 0 0 1 0
logit (r 14) 1 0 0 0 1
logit(ris) 1 0 0 0 0
logit (r2i) 1 1 0 0 0
logit(r22) 1 0 1 0 0
logit (r23) 1 0 0 1 0
logit (r24) 1 0 0 0 1
logit (r25) 1 0 0 0 0
logit (r3i) 1 1 0 0 0
logit (r32) 1 0 1 0 0
logit (r33) — 1 0 0 1 0
logit (r34) 1 0 0 0 1
logit (r35) 1 0 0 0 0
logit (r41) 1 1 0 0 0
logit (r42) 1 0 1 0 0
logit (r43) 1 0 0 1 0
logit (r44) 1 0 0 0 1
logit(r45) 1 0 0 0 0
logit(r51) 1 1 0 0 0
logit (r52) 1 0 1 0 0
logit (r53) 1 0 0 1 0
logit(r54) 1 0 0 0 1

_ logit (r55) _ _ 1 0 0 0 0 _

X

Pr0
F ar

Pk
or

^ 0 3

Br

Large correlations existed between parameters /?£ and fiTai (0.80), /3% and (}r 

(0.86), /?f3 and Pl3 (0.87), and /3f4 and /?£4 (0.90), ostensibly because survival and 

reporting rate both varied by a shared factor (age) in these models. There were 

also reasonably large correlations between time effects for survival, all of which were 

between 0.82 and 0.94.

I considered the following proposal schemes for model S(-)r(-)f(-):

• Independent updates using the Seber parameterization for recoveries (IUS)

• Independent updates using the Brownie parameterization for recoveries (IUB)

• Multivariate normal updates on cohort-specific abundance (MVN1)
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This selection was made primarily to compare the traditional independent update 

(IUS) with the multivariate update that seeks to exploit information about the 

shape of the posterior distribution (MVN1). This proposal scheme involved jointly 

updating 12 parameter groups:

[IV11, N22, -/V33, -A/44, -A/55]

[iVi2, .A/23, /V34, .A/45, -/V56]

[N13, N 24, /V35, A^4 g] 

[N14, N25, N 36] 

[N15, N 2e]

[-A/21, -A/32, /V43, -A/54]

[■A/31, A /4 2 ,  -A/53]

[A/41, AT52]

[A /5 1 ]

[logit(S')]

[logit (r)]

[log(/)].

I did not expect much difference in performance between the (IUS) and (IUB) 

updates because of the low correlation between logit (S’) and logit (r), but included 

(IUB) to afford contrasts between the efficiency of proposal schemes for different 

models (e.g., to S(a + t)r(a)f(-)).

The following proposal schemes were considered for model S(a +  t)r(a)f(-):

• Independent updates using the Seber parameterization for recoveries (IUS)
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• Independent updates using the Brownie parameterization for recoveries (IUB)

• Multivariate normal updates on age-specific abundance using the Brownie pa­

rameterization for recoveries (MVN2)

• Multivariate normal updates on age-specific abundance using the Brownie pa­

rameterization for recoveries with a multvariate normal update on beta pa­

rameters for year effects on survival (MVN3)

In this case, I guessed the Brownie parameterization would result in better mixing 

because of the large posterior correlations between age effects of the logits of survival 

and reporting rate. However, it is important to note that the models S(a+t)r(a)f (-)  

and S(a + t)h(a)f(-)  do not provide the same inference since recovery rate h should 

actually be a function of both age and time if the substitution h = (1 — S)r  were 

directly made. Nevertheless, choices like these may sometimes be necessary.

The MVN2 and MVN3 proposal schemes required multivariate updates with 

respect to the following blocks of parameters:

[Nu, N 21, -/V31, N41, N51]

[N12, N22,  N32, N42,  Â 52]

[iV13, N 23, N33, 7V43, N 53]

[iVi4, N24,  -N34, N44, N54]

[-N15, N 25, N 35, ./V45, ./V55]

[Nie, N2g, N 36, N4 6 , AT56].

The remaining parameters associated with survival, reporting rate, and recruitment 

were updated independently in the case of MVN2, while for MVN3, parameters
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Table 2.2: Mean lag-200 autocorrelations for total abundance in year i (iVj.) and 
accompanying standard errors for different proposal schemes and likelihood param- 
eterizations ( “Est Type”). Table 2.2A gives results for model 5(-)r(-)/(-), while 
Table 2.2B. gives results for model S(a + t)r(a)f(-).  Data sets were different for the 
two models; details are provided in the text.____________________________

Lag-200 Autocorrelation
Est Type N l to CT n 5.

A.
IUS 0.91 (0 .0 1 ) 0.94 (0 .0 1 ) 0.95 (0 .0 1 ) 0.94 (0 .0 1 ) 0.90 (0 .0 1 )
IUB 0.90 (0 .0 1 ) 0.93 (0 .0 1 ) 0.95 (0 .0 1 ) 0.94 (0 .0 1 ) 0.91 (0 .0 1 )

MVN1
R

0.91 (0 .0 1 ) 0.93 (0 .0 1 ) 0.93 (0 .0 1 ) 0.93 (0 .0 1 ) 0.90 (0 .0 1 )
D •

IUS 0.79 (0 .0 1 ) 0.81 (0 .0 1 ) 0.82 (0 .0 1 ) 0 . 8 6 (0 .0 1 ) 0.87 (0 .0 1 )
IUB 0.64 (0 .0 1 ) 0.76 (0 .0 1 ) 0.78 (0 .0 1 ) 0.78 (0 .0 1 ) 0.73 (0 .0 1 )

MVN2 0.71 (0 .0 1 ) 0.80 (0 .0 1 ) 0.81 (0 .0 1 ) 0.80 (0 .0 1 ) 0.74 (0 .0 1 )
MVN3 0.73 (0 .0 1 ) 0.81 (0 .0 1 ) 0.83 (0 .0 1 ) 0.81 (0 .0 1 ) 0.74 (0 .0 1 )

\p i pi pi m
were updated as a group.

I compared the performance of each proposal scheme by monitoring autocor­

relation of total annual abundance in year i (Nl ), and by examining typical sample 

paths. For each proposal scheme, I conducted 10 separate MCMC data analyses, 

using 2 0 0 , 0 0 0  iterations for each, starting each chain off at true initial values, and 

using a burn-in of 20,000 iterations to perturb Markov Chains from their starting 

values. I then computed the mean lag-200 autocorrelation across analyses for each 

year’s abundance and accompanying standard errors (Table 2.2).

For model S(-)r(•)/(•), samplers produced roughly the same autocorrela­

tion in annual abundances. This suggested that an investigator should base their 

selection of samplers on which parameterization is most pragmatic for their pur­

poses, or perhaps on which sampler takes the least computing time. Computing
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time is most directly related to the number of log likelihood evaluations that are 

made; when multiple parameters are updated at once (as with MVN1), the number 

of such evaluations are reduced. However, this procedure also requires extra time 

to summarize posterior correlations and adjust acceptance rates prior to initializa­

tion of the final estimation run. Thus a choice based on computing time ultimately 

relies on the number of iterations it takes to satisfactorily summarize the posterior 

distribution, a topic covered in the next section.

In contrast to the dot model, better sampler performance was obtained when 

the Brownie parameterization was employed for model S(a + t)r (a) /(■). This was 

likely because age effects were included on both survival and reporting rate. Inclu­

sion of multivariate normal proposals appeared to negatively affect chain mixing, 

however, so that the IUB sampler seems the most efficient in this case.

Contrary to my prior expectations, at no time did multivariate normal pro­

posals substantially help the mixing of Markov chains. Further, there appeared to 

be a tendency for some samplers to work better than others depending upon the 

estimation model considered. These considerations highlight the sometimes coun­

terintuitive nature of the challenges that a Bayesian analyst faces when seeking to 

analyze highly dynamic, correlated systems such as this one.

2.3.3 Approximating the posterior: number of iterations

The small experiment in the previous section provides guidelines on the relative 

efficiency of various sampling strategies, but does not provide any direct guide-
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lines concerning the number of iterations required to accurately summarize features 

of the posterior distribution. In this section, I summarize the variation between 

multiple Markov Chains at different landmarks of simulation time for a number 

of design points, considering the standard Metropolis-within-Gibbs update (IUS) 

for model S(-)r(-)f(-),  and the standard Metropolis-within-Gibbs update (IUB) for 

model S(a + t)h(a)f(-).

To start, I generated expected value data for a number of design points, round­

ing harvest numbers to the nearest integer. Data were simulated for 18 different de­

sign points for model S(-)r (•)/(•) and for 1 2  design points for model S(a+t)h(a)f (-) .  

Possible configurations depended on the model; for model -S'(-)r(•)/(•) configurations 

included

• True abundance, number of releases/year =  (1000,100), (1000,20), or (200,20)

• Reporting rate (r) =  0.2 or 0.5

• Number of years (F), cohorts (A)= (3,3), (5,3), or (5,5) 

while for model S(a +  t)h(a)f(-)  they included

• True abundance, number of releases/year =  (5000,150), (5000,300)

• Recovery rate (h) =  0.08 or 0.2

• Number of years (F), cohorts (A)= (3,3), (5,3), or (5,5)

All expected value data sets assumed a time- and cohort-constant survival 

probability of 0.6, a stable stage distribution (Caswell, 2001) and a stable population
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(A=1.0). For each design point and candidate proposal scheme, I employed 10 sets of 

Markov chains to approximate features of the posterior distribution. I was interested 

in the similarity of posterior distributions approximated by independent Markov 

chains of a specified length; that is, how repeatable results were as a function of chain 

length. I quantified “similarity” by calculating a) the average standard deviation of 

the posterior mean of total abundance (where the standard deviation is calculated 

across Markov chains for each year of the study and then averaged across years), 

b) the average standard deviation of the posterior mode of total abundance, c) the 

standard deviation of the deviance information criterion (DIC) when the posterior 

mean is used to calculate DIC, and d) the standard deviation of DIC as calculated 

with the posterior mode. Each chain was run for 2.1 million iterations, with the 

first 1 0 0 , 0 0 0  iterations discarded as a burn-in and the chain thinned by recording 

only 1 in 10 observations to reduce memory requirements. Markov chains were then 

summarized at 1.0 x 105, 5.0 x 105, 1.0 x 106, 1.5 x 106 and 2.0 x 106 iterations.

Several observations may be made based on results of this experiment (Table 

2.3). First, the number of iterations required to reliably summarize the posterior 

distribution decreases as the quantity of mark-recovery data increases. This could 

occur either through inclusion of additional years of data, increased reporting rates, 

or increased numbers of initial releases. Number of age classes did not appear to 

have much of an effect on convergence rates, at least with the range of experimental 

inputs considered here.

A second issue that arose had to do with sparse mark-recovery data. In partic­

ular, when numbers of releases and reporting rates were low (e.g., R=20 and r=0.2),

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the variance in posterior estimates of abundance from different Markov chains was 

extremely high even after 2 .1  million iterations. Apparently, more data are required 

to get sensible estimates in these cases, or perhaps stronger priors.

In general, posterior estimates of abundance tended to vary less when using 

the posterior mean instead of the posterior mode, and this was also the case with 

computation of DIC. This computational feature is likely to be a general one given 

the extra error involved in approximating posterior modes from KD estimates. For 

example, even after 2 .1  million iterations with relatively high sample sizes and sam­

pling rates it would not be surprising to have an estimated posterior mode about 

1 % different from i t ’s true value, even if expected value data were analyzed.
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Table 2.3: Performance of Markov Chains in summarizing marginal posterior distri­
butions for animal abundance at different landmarks of simulation time for models 
S(-)r(-)f(-) and S(a + t)h(a)f(-).  Tables 2.3A and 2.3B give the average between 
chain standard deviation of annual abundance as determined by the posterior mean 
and mode, respectively. Tables 2.3C and 2 .3D give DIC values for cases where 
the DIC is computed relative to the posterior mean and mode, respectively. N  
gives initial population abundance, R  gives the number of releases of marked ani­
mals per year, and “Model” specifies whether results pertained to estimation model 
S(-)r(-)f(-) ( “Model”= 1 ), or S(a + t)h(a)f(-) (“Model” =2). Remaining notation is 
defined Table 2.1.

MCMC Iterations (xlO 6)
A Y N R r Model 1 5 1 0 15 2 0

A.
3 3 1 0 0 0 1 0 0 0 .2 1 29.2 9.4 6 .8 5.2 4.4
3 3 1 0 0 0 1 0 0 0.5 1 1 1 .2 4.7 3.0 2 . 8 2 .2

3 3 1 0 0 0 2 0 0 . 2 1 870.0 272.0 111.3 8 6 . 6 73.2
3 3 1 0 0 0 2 0 0.5 1 51.1 18.5 16.5 15.9 14.9
3 3 2 0 0 2 0 0 .2 1 51.4 27.0 2 1 .1 31.3 23.4
3 3 2 0 0 2 0 0.5 1 7.1 3.0 1.7 1.4 1 .0

3 5 1 0 0 0 1 0 0 0 .2 1 13.7 8 .0 6.9 4.6 3.6
3 5 1 0 0 0 1 0 0 0.5 1 5.5 2.5 1 .6 1 .1 1 .2

3 5 1 0 0 0 2 0 0 .2 1 87.0 38.1 2 2 . 8 24.1 18.8
3 5 1 0 0 0 2 0 0.5 1 24.4 1 0 .2 7.0 7.5 5.3
3 5 2 0 0 2 0 0 . 2 1 7.9 5.1 2.7 2 . 2 2 .0

3 5 2 0 0 2 0 0.5 1 2 .6 1 .2 0.76 0.61 0.4
5 5 1 0 0 0 1 0 0 0 . 2 1 14.6 7.8 4.6 3.9 3.5
5 5 1 0 0 0 1 0 0 0.5 1 5.2 2.4 1 .1 1 .2 1.3
5 5 1 0 0 0 2 0 0 .2 1 141.8 72.8 52.9 49.5 44.1
5 5 1 0 0 0 2 0 0.5 1 27.1 1 1 .2 6.5 8 .1 6.4
5 5 2 0 0 2 0 0 .2 1 2 1 . 0 8.7 3.0 3.1 3.0
5 5 2 0 0 2 0 0.5 1 3.3 1 .2 0.9 0 . 8 0.5
3 3 5000 150 0 .2 2 210.9 71.1 34.2 32.7 44.8
3 3 5000 150 0.5 2 25.2 1 2 .8 10.7 1 0 .1 9.4
3 3 5000 300 0 .2 2 81.7 28.1 29.3 25.8 18.9
3 3 5000 300 0.5 2 27.7 1 1 .8 8 .8 5.7 4.9
3 5 5000 150 0 .2 2 115.0 69.9 45.2 34.5 27.0
3 5 5000 150 0.5 2 19.5 12.9 13.6 9.0 7.6
3 5 5000 300 0 .2 2 39.8 13.2 15.9 10.3 8 . 0

3 5 5000 300 0.5 2 11.5 7.9 5.1 3.8 3.5
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MCMC Iterations (xlO 6)
A Y N R r Model 1 5 1 0 15 2 0

5 5 5000 150 0 .2 2 111.7 39.7 45.3 2 2 .1 17.9
5 5 5000 150 0.5 2 22.4 14.1 10.9 5.5 2 .2

5 5 5000 300 0 .2 2 67.7 20.4 12.9 14.1 9.5
5 5 5000 300 0.5 2 1 0 .0 5.5 2.9 3.1 2 .1

B.
3 3 1 0 0 0 1 0 0 0 . 2 1 40.1 18.8 16.8 13.2 13.4
3 3 1 0 0 0 1 0 0 0.5 1 14.0 9.9 9.0 6.4 5.8
3 3 1 0 0 0 2 0 0 .2 1 187.1 90.0 6 6 . 8 61.1 49.4
3 3 1 0 0 0 2 0 0.5 1 51.2 28.8 22.9 13.8 13.7
3 3 2 0 0 2 0 0 .2 1 39.5 2 1 . 2 14.7 1 2 .2 9.9
3 3 2 0 0 2 0 0.5 1 8 .1 5.0 4.6 4.8 4.1
3 5 1 0 0 0 1 0 0 0 .2 1 25.2 1 1 .6 9.2 7.6 7.2
3 5 1 0 0 0 1 0 0 0.5 1 8 . 6 4.7 4.4 4.5 3.9
3 5 1 0 0 0 2 0 0 . 2 1 57.5 44.3 42.0 42.3 37.9
3 5 1 0 0 0 2 0 0.5 1 31.7 13.5 10.4 1 0 .1 1 0 .0

3 5 2 0 0 2 0 0 .2 1 16.6 9.0 7.2 4.7 4.7
3 5 2 0 0 2 0 0.5 1 4.6 3.3 2.9 2 . 8 3.0
5 5 1 0 0 0 1 0 0 0 .2 1 2 2 . 0 13.8 10.3 9.2 7.8
5 5 1 0 0 0 1 0 0 0.5 1 1 0 .2 5.1 4.0 4.0 4.1
5 5 1 0 0 0 2 0 0 .2 1 96.0 47.0 51.1 59.4 59.5
5 5 1 0 0 0 2 0 0.5 1 33.3 20.3 15.0 13.7 14.1
5 5 2 0 0 2 0 0 .2 1 18.2 1 0 .2 6 . 8 6.7 5.3
5 5 2 0 0 2 0 0.5 1 5.3 3.0 2.4 2 . 6 1.7
3 3 5000 150 0 . 2 2 312.8 113.4 75.9 56.1 54.2
3 3 5000 150 0.5 2 48.3 30.4 19.0 23.7 16.1
3 3 5000 300 0 .2 2 122.5 58.9 45.9 39.9 32.0
3 3 5000 300 0.5 2 53.9 23.5 21.5 15.0 16.0
3 5 5000 150 0 .2 2 191.6 73.2 43.3 39.8 34.7
3 5 5000 150 0.5 2 40.1 25.8 23.6 2 2 .1 17.6
3 5 5000 300 0 .2 2 84.5 37.8 30.4 26.2 24.4
3 5 5000 300 0.5 2 27.4 17.1 18.3 15.7 17.9
5 5 5000 150 0 .2 2 132.8 97.7 80.7 36.7 42.7
5 5 5000 150 0.5 2 50.4 27.9 28.7 2 2 . 8 19.5
5 5 5000 300 0 .2 2 85.4 41.2 33.7 30.4 25.3
5 5 5000 300 0.5 2 30.4 19.9 16.3 15.9 16.0
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MCMC Iterations (xlO 6)
A Y  N  R r Model ~  5 10 15 W

c .
3 3 1 0 0 0 1 0 0 0 .2 1 0.3 0 .1 0 .1 0 .1 0 . 0

3 3 1 0 0 0 1 0 0 0.5 1 0.3 0 .1 0 .1 0 .1 0 .1

3 3 1 0 0 0 2 0 0 .2 1 19.5 8 . 0 4.4 3.0 2.3
3 3 1 0 0 0 2 0 0.5 1 0 . 6 0.4 0.3 0 . 2 0 . 2

3 3 2 0 0 2 0 0 .2 1 2 . 6 1.3 1.4 1.5 0.7
3 3 2 0 0 2 0 0.5 1 0.4 0 . 2 0.3 0.3 0 . 2

3 5 1 0 0 0 1 0 0 0 .2 1 0.3 0 .1 0 .1 0 .1 0 .1

3 5 1 0 0 0 1 0 0 0.5 1 0.3 0 . 2 0 .1 0 . 0 0 .1

3 5 1 0 0 0 2 0 0 .2 1 0 .6 0 .2 0 .2 0 . 2 0 .2

3 5 1 0 0 0 2 0 0.5 1 0.4 0 . 2 0 .2 0 .1 0 .1

3 5 2 0 0 2 0 0 .2 1 0.3 0 .2 0 .1 0 .1 0 .1

3 5 2 0 0 2 0 0.5 1 0.3 0 . 2 0 .2 0 .1 0 .1

5 5 1 0 0 0 1 0 0 0 .2 1 0.4 0.3 0 .2 0 . 2 0 .1

5 5 1 0 0 0 1 0 0 0.5 1 0.3 0 . 2 0 .1 0 . 0 0 .1

5 5 1 0 0 0 2 0 0 .2 1 1.5 0 . 6 0.4 0.4 0.3
5 5 1 0 0 0 2 0 0.5 1 0.7 0.4 0 .2 0 .2 0 . 2

5 5 2 0 0 2 0 0 .2 1 0.9 0.4 0 .2 0.3 0 . 2

5 5 2 0 0 2 0 0.5 1 0.3 0.3 0 .2 0 .1 0 . 2

3 3 5000 150 0 .2 2 6.5 2 .6 1.7 1 .8 1 .8

3 3 5000 150 0.5 2 0.4 0 . 2 0 .1 0 .1 0 .1

3 3 5000 300 0 .2 2 3.3 1 .8 0.9 0 . 6 0 . 6

3 3 5000 300 0.5 2 0.5 0 .2 0 .1 0 .1 0 .1

3 5 5000 150 0 .2 2 16.4 4.6 3.8 2.7 1 .6

3 5 5000 150 0.5 2 0.4 0.3 0 .2 0 . 2 0 . 2

3 5 5000 300 0 .2 2 4.3 1 .0 0.7 0.4 0.5
3 5 5000 300 0.5 2 0 .2 0 .2 0 .1 0 .1 0 .1

5 5 5000 150 0 .2 2 8 .1 5.5 4.4 3.5 3.2
5 5 5000 150 0.5 2 0 . 6 0 . 2 0 .2 0 . 2 0 .1

5 5 5000 300 0 .2 2 4.5 1.5 1.3 1 .1 1.4
5 5 5000 300 0.5 2 0.4 0 . 2 0 .2 0 .1 0 .1
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MCMC Iterations (xlO6)
A Y N R r Model 1 5 1 0 15 2 0

D.
3 3 1 0 0 0 1 0 0 0 .2 1 2 . 8 3.2 3.5 2.4 2.5
3 3 1 0 0 0 1 0 0 0.5 1 1 .6 1.3 0.5 0.5 0.5
3 3 1 0 0 0 2 0 0 .2 1 195.8 28.8 8.3 8.5 9.3
3 3 1 0 0 0 2 0 0.5 1 16.3 5.5 3.9 3.7 2.5
3 3 2 0 0 2 0 0 .2 1 13.1 13.2 1 2 .1 9.1 2 .8

3 3 2 0 0 2 0 0.5 1 3.5 4.0 2 .1 1 .8 2.3
3 5 1 0 0 0 1 0 0 0 .2 1 3.1 2 . 0 1 .1 1.3 1 .2

3 5 1 0 0 0 1 0 0 0.5 1 1.9 0.9 0.4 0.5 0.5
3 5 1 0 0 0 2 0 0 .2 1 13.5 6.5 5.4 7.8 5.2
3 5 1 0 0 0 2 0 0.5 1 16.6 2 . 0 2 .2 2.5 1.5
3 5 2 0 0 2 0 0 .2 1 10.5 8.7 3.0 4.2 3.4
3 5 2 0 0 2 0 0.5 1 4.4 3.8 1.9 3.4 1.7
5 5 1 0 0 0 1 0 0 0 .2 1 5.1 3.3 2 .1 2 . 0 2.3
5 5 1 0 0 0 1 0 0 0.5 1 2.9 1 .8 1 .8 2 .1 1.9
5 5 1 0 0 0 2 0 0 .2 1 21.3 9.3 1 1 . 8 10.7 9.5
5 5 1 0 0 0 2 0 0.5 1 3.2 3.8 2 .1 3.7 2.5
5 5 2 0 0 2 0 0 .2 1 7.4 7.4 4.9 5.0 4.0
5 5 2 0 0 2 0 0.5 1 2.7 3.1 2 .2 2 . 0 1 .8

3 3 5000 150 0 .2 2 541.0 8 8 . 2 61.9 42.5 30.4
3 3 5000 150 0.5 2 86.9 16.3 8 . 0 5.5 3.8
3 3 5000 300 0 .2 2 150.1 19.0 17.2 18.7 21.3
3 3 5000 300 0.5 2 30.3 10.3 3.7 4.7 2.7
3 5 5000 150 0 .2 2 322.3 36.4 24.1 28.6 23.6
3 5 5000 150 0.5 2 29.3 13.0 1 0 . 0 6.3 4.1
3 5 5000 300 0 .2 2 80.3 56.0 2 0 .1 21.9 16.3
3 5 5000 300 0.5 2 11.4 5.2 3.7 3.4 3.4
5 5 5000 150 0 .2 2 239.1 132.2 49.9 36.6 39.1
5 5 5000 150 0.5 2 60.3 1 0 .8 2 2 .1 18.1 6 . 8

5 5 5000 300 0 .2 2 134.2 39.6 18.1 17.1 17.2
5 5 5000 300 0.5 2 24.3 5.1 6.7 7.3 3.9

2.4 Computing

I developed a C + +  program, AGEHARV, to perform analyses. This program re­

quires the use of three files: 1 file for encounter history data, 1 file for age-at-harvest 

data, and an input file which provides user specifications regarding MCMC, as well
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as the particular formulation of model structure. Upon completion, AGEHARV 

outputs specific posterior summaries according to specifications in the input file. A 

simple user’s manual is provided in Appendix B; the executable and source code are 

available from the author.

2.5 Parameter Identification

The likelihood presented in section 2 is over-parameterized. In practice, several sug­

gestions may help to solve this problem. For instance, in the field of fisheries stock 

assessment, an additive model has often been assumed for sampling parameters 

(the “separability assumption” ; Megrey, 1989). Similarly, additive and/or random 

effects models have been proposed for survival and recruitment parameters in age- 

structured models for whooping cranes (Link et al., 2003). Nonetheless, even if 

model simplifications are made, it is still desirable to identify parameter redundan­

cies or situations in which there are not enough data to estimate a given parameter. 

In the context of analyzing data from marked individuals, the issue of parameter 

identification has been previously explored using a combination of analytical tools 

and numerical methods.

For product multinomial models, Catchpole and Morgan (1997) identified a 

procedure for determining which parameters are identifiable. This approach in­

volves calculating a partial derivative matrix of the log of non-zero multinomial cell 

probabilities. The symbolic rank of this matrix (as calculated in MAPLE for ex­

ample) gives the number of identifiable parameters. If the matrix is rank deficient,
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this indicates the level of parameter redundancy (see also Giminez et al., 2004). 

Using this approach, it is possible to determine whether survival and reporting pa­

rameters are theoretically identifiable. The addition of the “+ ” age group makes 

determining parameter identification from the age-at-harvest portion of the likeli­

hood analytically intractable, although it is possible if this class is omitted (Gove, 

1997). However, if survival and reporting rate are identifiable, it should be possible 

to estimate abundance and recruitment parameters, since the distribution of abun­

dances are unimodal given survival and reporting rate in the age-at-harvest portion 

of the likelihood.

Just because a parameter is theoretically identifiable does not guarantee that 

one can practically estimate it, even if there are a plethora of data. Thus, in ad­

dition to aforementioned analytic tools, numerical methods have been developed 

to identify singularities in the estimated variance-covariance matrix via a singu­

lar value decomposition (e.g., Cooch and White, 2005). In the case of multi-state 

mark-recapture models, this approach has been successfully applied to detect cases 

where parameters associated with unobservable states may be estimated (Kendall 

and Nichols, 2002).

At first glance, adopting a Bayesian perspective might seem to alleviate some 

problems related to parameter identification; after all, specification of proper prior 

distributions on model parameters leads to proper posterior distributions and thus 

to some form of an “answer.” However, in the end arguments of this type fail because 

the only information about certain parameters may come from the prior distribu­

tion. Indeed, in a Bayesian context, a parameter can be said to be non-identifiable
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if the marginal posterior distribution for a given parameter is equal to the prior 

distribution (Gustafson, 2005). In practice, we might expect a slightly less rigid 

definition to suffice, as when there are some data to inform the estimation of a given 

parameter, but not enough to overcome the prior, or when functions of 2  or more 

parameters are identifiable.

K. P. Burnham (Personal Communication) has suggested an interesting ap­

proach, which would involve comparing posterior distributions resulting from suc­

cessively larger and larger datasets. For cases in which functions of 2 or more non- 

identifiable parameters are estimable, posterior distributions may differ markedly 

from prior distributions. However, the posterior for these parameters should be 

relatively insensitive to sample size. Doubling or even quadrupling a dataset and 

comparing marginal posterior distributions may provide a way to diagnose noniden- 

tifiable parameters in this case.

2.6 Goodness-of-Fit

In any statistical analysis, care should be taken that the model(s) under consider­

ation actually fit the data. Under the Bayesian paradigm, such checks often take 

the form of a Bayesian p-value (ps] Gelman et al., 2004), in which a test statistic 

is defined and compared between actual data and samples from the posterior pre­

dictive distribution of replicated data. It differs from the traditional p-value in that 

test statistics depend on the posterior distribution of parameters rather than a fixed 

vector of estimated parameters (as with MLE’s). In practice, the following steps
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may be used to approximate a Bayesian p-value for a given model (Gelman et al., 

2004):

1. Obtain i =  1 to L  samples of 0 from their posterior distribution

2. For each such sample,

(a) Simulate a new data set, y[ep using the current values of 0*

(b) Compute T(?/[ep, 0*), the test statistic for the ith simulated dataset

(c) Compute T( y , 0j), the test statistic for the real dataset

3. Calculate p g  as the proportion of samples for which the the simulated data 

produce a test statistic value more extreme than the observed data.

Values of p g  that approach either zero or one indicate some lack of fit.

Defining a reasonable, omnibus test statistic to use for goodness-of-fit has 

proven to be one of the more vexing challenges in the analysis of mark-recapture 

and mark-recovery data, and is not necessarily alleviated by adopting a Bayesian 

perspective. For instance, expected multinomial cell frequencies associated with 

many mark-recapture histories are often quite low, which tends to inflate deviance 

and chi-squared based test statistics whenever an unlikely observation is obtained. 

Pooling data may be one solution to this issue, but how exactly this is done is 

quite subjective and likely to affect interpretation. Alternatively, some authors 

have employed the Freeman-Tukey statistic (cf. Brooks et al., 2000),

D ( y \ « )  =  ' £ ( v ' n - V ^ ) 2 ,
3
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where yj and ej denote observed and expected cell frequencies. However, while this 

discrepancy measure does not include small terms in it’s denominator, it has not 

as of yet (to my knowledge) been evaluated rigorously as a measure for examining 

goodness-of-fit in mark-recapture or recovery models.

In contrast to mark-recovery data, age-at-harvest data may yield higher ex­

pected (and observed) cell frequencies, making goodness-of-fit testing more fool­

proof. For the purposes of this dissertation, then, I only consider goodness-of-fit 

with regard to posterior predictive simulation of age-at-harvest data. To this end I 

use deviance as a test statistic whenever goodness-of-fit is assessed with a Bayesian 

p-value. The utility of this approach is examined more in Simulation Module 3, 

described in section 7 below.

2.7 Sim ulation S tudy

While estimators of abundance appear to converge if Markov chains are run for long 

enough, this does not preclude bias or guarantee estimators with good properties. 

Thus, I used simulation to investigate estimator performance under a variety of 

hypothetical scenarios. In total, I considered 4 simulation modules to summarize 

estimator performance and diagnostics. In the first module, I evaluated bias, coef­

ficient of variation (CV) and 90% Bayesian credible interval coverage (BCOV) for 

a variety of models, parameter combinations, number of age classes, years of data, 

and number of individuals marked per year. In the second module, I examined 

the performance of several estimators when there were errors in age determination.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the third module, I examined the efficacy of Bayesian p-values for diagnosing 

overdispersion. Finally, in the fourth module, I examine consequences of using data 

from marked animals in both portions (age-at-harvest and mark-recovery) of the 

likelihood. I discuss each of these modules in further detail below.

2.7.1 Simulation M odule I: Large Sample Performance

In the first simulation module, my goal was to quantify estimator performance when 

model assumptions were perfectly satisfied and when enough data were available to 

avoid issues with parameter estimability. I thus assumed combinations of initial 

population sizes, number of marked individuals, and estimation models such that 

estimation models included a reasonable level of complexity for the given values 

of population size and number of marked animals. I further assumed that marked 

individuals were not part of the population being estimated (that is, they were 

effectively from a similar but different population). An additional consideration was 

to minimize computing time, as with input configurations that would not require a 

great number of iterations to run. For instance, if only 20 individuals are marked per 

year, it is unlikely that parameters will be well estimated no m atter how simple the 

model structure is (Table 2.3). A complete representation forof each combination 

of initial population size, number of individuals marked per year, and estimation 

model are presented in Table 2.4. For simplicity, and also for potential reduction in 

computing time, the IUB update was used for all estimation models. I generated 

data with values for A of 0.9 and 1.0, values for S  of 0.6 or 0.8, and values for r of
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Table 2.4: Combinations of initial population size, number of individuals marked and 
released per year, and estimation model that are considered in simulation module I

Initial Number of Estimation
N Releases Model

1 0 0 0 50/year s ( - ) h m - )
1 0 0 0 1 0 0 /year s m - ) i ( - )
1 0 0 0 1 0 0 /year S(a)h( t ) f (  •)
2 0 0 0 1 0 0 /year S(a)h(t)f(-)
2 0 0 0 300/year S(a)h(t)f(-)
2 0 0 0 300/year S(a +  t )h(a) f ( t )
5000 300/year S(a +  t )h(a)f(t)

0.2 or 0.5. Thus, I considered 8  possible combinations of initial parameter values, 

with a possibility of 3, 5, or 7 years of data, and 2, 3, or 6  age classes.

I used different population models to simulate data depending on the number 

of age classes. In each case, I used specified values of S,  A, and population size to 

solve for recruitment and to specify a stable stage distribution (all simulations were 

started with a stable stage distribution). In particular, recruitment was determined 

by setting det |A — AI| =  0 and solving for /  in terms of A and S.  The stable stage 

distribution was determined by solving the system of equations [A — Al] N T =  0, 

subject to the constraint N  =  N n  + N\ 2 + . . .  +  N i a , where N  =  [Nn, N \2, iVi^] 

(Caswell, 2001). Possible population models, presented here as matrices (cf. Caswell, 

2 0 0 1 ), included

A 1 =

0 0 / / / f
S 0 0 0 0 0
0 s 0 0 0 0
0 0 s 0 0 0
0 0 0 s 0 0
0 0 0 0 s s

A o —

0 0 f '

s 0 0 , and
0 s s
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Here, the matrix model format is used only to represent structural features 

of the population models; actual simulations assumed stochasticity in all processes. 

Model A i describes a model with 6  age classes and a pre-breeding census; the last 

4 age classes can produce young. Individuals older than five years old cannot be 

differentiated, a feature incorporated with a self-loop. This scenario corresponds 

roughly to the population biology and age identification criterion of black bear in 

Pennsylvania (see Chapter 1 ). Model A 2 describes a model for a population with 3 

age classes, as when juveniles, yearlings, and subadults/adults may be differentiated, 

but finer scale resolution is not possible. In this case, only the subadult/adult 

category contributes to recruitment in the following year. Note that this model is 

structurally equivalent to A i if one were to pool individuals in age classes 3-6 into a 

single age class. Finally, model A 3 describes a population where only 2 age classes 

are recognizable, as with many waterfowl species.

Values for recruitment and stable stage distribution for the 3 models were as 

follows:

MODEL A x

A

MODEL A 2
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MODEL A 3

/  -  A Â ^  N n  — N  -  SXN  N h2+ = SXN
O

Limiting the number of simulation inputs was not enough to decrease comput­

ing time to the level that would allow a “normal” number of Monte Carlo simulations 

to be run per input configuration (i.e., 1,000-10,000). The number of possible simu­

lation input combinations was 504, and computing time for each combination ranged 

from around 30 minutes to several days, depending upon the problem’s dimension­

ality. I thus conceptualized the problem as one of estimating a response surface 

(e.g., Box and Draper, 1987), where the number of simulation runs per input con­

figuration was low (n =  3), but where strength could be borrowed from the entire 

ensemble of simulations to summarize estimator performance in different regions of 

the input parameter space.

Although certain performance measures such as bias, CV, and BCOV are fairly 

standard, how to summarize estimator performance was perhaps the most difficult 

decision that needed to be made in this section. There were a large number of ini­

tial parameter combinations and estimation models, and for each estimation model 

there were a large number of estimated parameters. To condense the number of
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estimator performance variables to a manageable number, I thus calculated a mean 

performance value for each parameter type (S , h , / ,  and N ) in a given simulation. 

If there were 10 estimates of survival (time- or age- specific, for instance) at a given 

level of simulation inputs, response variables would be calculated for a given sim­

ulation as the average value across all 10 estimates. An exception was for BCOV, 

in which the the number of estimates in a given simulation run were taken to be 

binomial trials, and the number of successes (i.e., the true value of a parameter was 

within the 90% credible interval) was recorded. Further, mean performance of abun­

dance estimators is taken with respect to annual estimates of total population size 

(that is, the sum of cohort-specific abundance in a given year) instead of age-specific 

abundance. For each parameter type, I calculated estimator performance statistics 

with respect to the posterior mode, mean, and median. Response variables were 

only recorded for a given simulation if the estimation model converged. If a simu­

lation did not converge, simulations were repeated until a response variable could 

be obtained. The percent of non-converging simulations per input configuration 

(%Conv) was also recorded as a potentially confounding factor.

I determined convergence by running 2 Markov chains per simulation and 

monitoring whether Gelman-Rubin statistics were less than 1.2 immediately after 

the burn-in period (Gelman et al., 2004). Starting abundance values for the first 

Markov chain were set equal to the lowest possible values with positive support 

given the data, and overestimates of survival, recovery rate, and recruitment rate 

were provided. For the second chain, initial values were automated to produce over­

estimates of abundance and underestimates of other parameters. Ostensibly, if the
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ratio of between-chain to within-chain variance (as measured by the Gelman-Rubin 

statistic) declined sufficiently, this would be evidence that the effects of opposite 

types of overdispersed starting values had been overcome.

My approach to summarizing posterior distributions involved running each 

Markov chain for 1,000,000 iterations. If convergence was determined to have oc­

curred after 500,000 iterations, I combined the second halves of each Markov chain 

together to produce a sample from the posterior distribution. However, in order 

to conserve memory, I thinned each chain by only recording every fifth iteration 

throughout the estimation process, thus yielding a sample of 2 0 0 , 0 0 0  from the pos­

terior. Over the course of the study, only 2 out of approximately 1500 simulations 

did not converge according to the Gelman-Rubin convergence diagnostic.

Bayesian credible interval coverage (BCOV)

Because each simulation produced multiple estimates for each type of parameter 

(except in case of a (•) model), I treated the problem of estimating the effects 

of dependent variables on estimator coverage as one of estimating the regression 

coefficients of a generalized linear model with binomial error (cf. Fox, 2002). Under 

this approach, success probability for the ith  simulation, Pi, is determined according 

to relationship

logit(pi) = 0o +  PiVn H 1- PkVik,

for k dependent variables and regression coefficients. The number of times that a 

specific type of parameter overlaps it’s posterior interval in simulation i, X t, is then
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modeled as

r\j Binomial(a;|F;,p;),

where Yi is the number of real parameters of a given type estimated in simulation

i. For instance, if there are 7 years of data, there are 7 Bayesian credible intervals 

for abundance (one for each year). Using this approach, I assumed that particular 

simulations were more or less prone to failure of coverage, depending upon the 

predictors.

One advantage of using this approach is the ease to which one can incorporate 

extrabinomial variation. For instance, in the preceding scenario there will typi­

cally be posterior correlations among model parameters. It might also be the case 

that abundance estimators systematically differ in coverage based on the year of 

the study, or that undetected problems with Markov chain convergence lead some 

simulations to produce excessive coverage failures. In these cases, modeling extra­

binomial variation becomes important, and can be accomplished by estimating an 

overdisperion parameter (cf. McCullagh and Nelder, 1989).

Potential dependent variables affecting BCOV included A, Y,  R, N,  A, S, 

r, and the estimation model (EstMod).  Since I did not have any a priori beliefs 

about which factors were important determinants of BCOV, I considered all possible 

combinations of main effects. I fit all models using the function “glm” in the sta­

tistical programming language R, as described in Fox (2002). However, only AIC is 

available in this package, which is not suited for overdispersed data (Burnham and 

Anderson, 2002). In order to perform model selection, I thus used “glm” to estimate
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Table 2.5: Summary of model selection results for factors affecting Bayesian credible 
interval coverage on annual abundance parameters. Reported are K,  the number of 
parameters in each generalized linear model, and AQAICc, the difference in QAICc 
score from the top model. Overdispersion was estimated as c =  2.57 from the most 
general model and was applied to each Q A IC c calculation. The effective sample size 
was 1512, the total number of simulations. Reported are models within 2.0 AQAICc 
units of the top-ranked model.

Model K AQAICc
A + R  + S 3 0.0
A + R  + S  + r 4 0.6
A + R + S + Y 4 1.8
A + R  + S  + X 4 2.0

an overdispersion parameter, c, from the most general model, and calculated QAICc 

for each model as suggested by Burnham and Anderson (2002).

Using this approach, it appeared that survival probability, the number of age 

classes, and the number of newly released marked animals were the most consistent 

predictors of BCOV for annual abundance (Table 2.5). All other predictors ap­

pearing in the top ranked QAICc models had confidence intervals overlapping zero. 

Parameter estimates from the QAICc favored model indicated that credible interval 

coverage increased with R,  but decreased with S  and A  (Figure 2.1). Only simula­

tions which included 300 newly marked animals per year, a survival probability of 

0.6 and 2 age classes were predicted to approach a “nominal” 90% Bayesian interval 

coverage on annual abundance; predicted coverage in this case was 0.94. In contrast, 

simulations with R  =  50, S  =  0.8, and A = 6 were predicted to have a coverage of 

0.82; thus, it would appear that the uncertainty about annual abundance estimators 

is routinely underestimated, particularly when sample sizes are small. However, for 

larger studies with more marked animals, coverage was satisfactory.
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Figure 2.1: 90% Bayesian credible interval coverage for abundance at different levels 
of number of released animals per year (R ) and number of age classes. Panel A gives 
performance for the case where 5=0.6, while panel B is for 5=0.8.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.6: Summary of model selection results for factors affecting Bayesian credible 
interval coverage on year- and age- specific survival parameters. Reported are K,  the 
number of parameters in each generalized linear model, and A Q A IC c, the difference 
in Q AICc score from the top model. Overdispersion was estimated as c =  2.23 from 
the most general model and was applied to each Q AICc calculation. The effective 
sample size was 1512, the total number of simulations. Reported are models within 
2.0 A Q A IC c units of the top-ranked model.

Model K AQAICc
A + r 2 0.0
A + r +  N 3 0.0
A + r + Y 3 0.8
A + r + Y  + N 4 1.2
A + r + S 3 1.2
A + r + S + N 4 1.2
A + r + A 3 1.6
Y  + r + N  + X 4 1.7
A + r + R 3 2.0

For survival parameters, QAICc favored models that included number of age 

classes and reporting probability (Table 2.6). Other effects appearing in top models, 

such as population size or number of years of the study had 90% confidence intervals 

strongly overlapping 0. In general, confidence interval coverage increased with r and 

A  (Figure 2.2). Estimated coverage was between 0.86 and 0.92 depending on input 

configuration.

For recovery rate parameters (hij), QAICc clearly favored models that included 

survival probability, A, and estimation model (Table 2.7). Other effects appearing 

in top models included reporting rate, number of age classes, and population size; 

however, these had 90% confidence intervals overlapping 0. For simplicity, I thus 

used the 6th ranked model, EstM od  +  A + S  to portray differences in coverage 

when there are variations in these parameters (Figure 2.3). Differences in coverage
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Figure 2.2: 90% Bayesian credible interval coverage for survival at different age 
classes and reporting rates as estimated from the highest ranked QAICc model.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.7: Summary of model selection results for factors affecting Bayesian credible 
interval coverage on year- and age- specific recovery rate parameters. Reported are 
K , the number of parameters in each generalized linear model, and AQAICc, the 
difference in QAICc score from the top model. Overdispersion was estimated as 
c =  2.57 from the most general model and was applied to each Q A IC c calculation. 
The effective sample size was 1512, the total number of simulations. Reported are 
models within 2 . 0  AQAICc units of the top-ranked model.

Model K AQAICc
A  -)- EstMod  -F A T S  -F r 6 0 . 0

A  ~F EstMod  ~F A -F S 5 0 .2

A  +  EstMod + X + S + r + N 7 0.4
A  +  EstMod + A -F S  + N 5 0.4
EstMod + A +  S  + r 5 0 . 6

EstMod  -F A -F S 4 0.7
A  +  EstMod  + A + S  + r + R 7 0 . 8

EstMod  +  A +  S +  r +  N 6 0.9
EstMod  -F A +  S -F N 5 0.9
A  -F EstMod  ~F A -F S  -F R 6 1 .0

X + S  + r 3 1 .1

A +  S 2 1 .2

EstMod  -F A -F S -F r  -F R 6 1.4
A + A + S + r 4 1.5
EstMod  -F A -F S  -F R 6 1.5
A + X + S 3 1.7
A  +  EstMod  +  A +  5  +  r  +  F 7 2 . 0

were only reported for estimation model S(a)h(t)f(-)  in relation to the other two 

models; models S(-)h(-)f(-) and S(a + t)h(a)f(t)  had only a minuscule difference in 

coverage. Since more complex models were employed when there were more data, 

these differences were likely a function of the quantity of data in addition to the 

complexity of the model. In general, credible interval coverage increased with A 

and decreased as survival increased, and was between 0.77 and 0.93 depending upon 

input configuration (Figure 2.3).

For recruitment rates, there were a total of 32 predictive models for coverage
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 X- 1.0, EstMod = S(a)h(t)f()
 A, = 0.9, EstMod = S(a)h(t)f()
 A, = 1.0, EstMod*  S(a)h(t)f()
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Figure 2.3: 90% Bayesian credible interval coverage for recovery rate, differing by 
estimation model, level of survival, and finite rate of population change.
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within 2.0 QAICc units of the top-ranked model; model selection results were thus 

suppressed. The most consistent predictors of BCOV were A, S, and EstM od , with 

other variables such as A, r, and N  receiving less support. I thus summarized 

performance by using a generalized linear model with the first 3 predictors only 

(Figure 2.4). In general, coverage was positively correlated with A, but negatively 

correlated with survival and model complexity. Estimated coverage was between 

0.82 and 0.96 (Figure 2.4).

Percent R elative Bias

Disregarding input simulation parameter specifications, average percent relative 

bias for estimated abundance was 7.6% (SE=0.9%), 1.8% (SE=0.4%), and 5.8% 

(SE=0.7%) for posterior mean, mode, and median moment estimators, respectively 

(Figure 2.5). As a moment estimator for abundance, the mode thus appeared to have 

the least bias, which is expected given the manner in which data were simulated.

In order to investigate which factors affected the bias of the posterior mode 

estimator for abundance, I compared the parsimony of alternative linear models that 

expressed the response variable, |%BIAS|, which here is defined as average percent 

absolute relative bias for a given design point (n =  3), as a function all possible com­

binations of predictor variables (A, Y ,  R, N,  A, S, r, and the EstM od ). Inspection 

of quantile plots in the statistical programming language R  indicated that residuals 

from the most general model were not normally distributed, and that there were 3 

major outliers. All outliers were associated with the case when R  =  50, S  =  0.8, 

and r =  0.2. I removed these outliers and systematically considered different power
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Figure 2.4: 90% Bayesian credible interval coverage for recruitment rate for different 
estimation models, levels of survival, and finite rate of population change. Panel A. 
gives coverage estimates for A =  1.0, whereas Panel B. gives results from A =  0.9.
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Table 2.8: Summary of model selection results for factors affecting average % ab­
solute relative bias for annual abundance parameters. Reported are K,  the number 
of parameters in each linear model, and AAICc, the difference in AICc score from 
the top model. The effective sample size was 501, the total number of design points 
minus three outliers. Reported are models within 2.0 AAICc units of the top-ranked 
model.___________________________________

Model K AAICc
A  +  Y  +  r +  EstMod 5 0 . 0

A +  Y  + r + EstMod  +  S 6 0.5
A +  Y  +  r + EstMod + N 6 0 .8

A +  Y  + r +  EstMod +  A 6 0 . 8

A +  Y  + r +  EstMod +  S  +  N 7 1.3
M +  F  + r +  EstMod +  S  +  A 7 1.4
M +  F  + r +  EstMod  +  N  +  A 7 1 .6

transformations for |%BIAS| until quantile plots indicated that residuals were nor­

mally distributed. A power transformation of 0.3 seemed sufficient for this purpose, 

and a plot of studentized residuals against fitted values further indicated that the 

residual variance was largely constant under this approach.

Inspection of parameter estimates and standard errors from top-ranked AICc 

models (Table 2.8) indicated that A, Y,  r, and EstMod  were the most important 

variables for predicting |%BIAS| for abundance. I thus based inferences on the 

highest ranked AICc model. In general, |%BIAS| increased with A, and decreased 

with Y  and r, although an asymptotic 95% confidence interval for the regression 

coefficient of A  overlapped zero (-0.0004,0.0116). Absolute bias was also negatively 

associated with estimation model complexity (Figure 2.6).

As a whole, simulations revealed a negative bias in moment estimators for sur­

vival (Figure 2.7). Average percent relative bias for the posterior mean, median, and 

mode was -3.6% (SE=0.2%), -3.3% (SE=0.2%), and -2.4% (SE=0.2%), respectively.
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Figure 2.5: The distribution of average percent relative bias for abundance over all 
simulations, as determined by (a) the posterior mean, (b) the posterior mode, and 
(c) the posterior median. One value is included for every simulation; thus both 
sampling variation and bias are represented.
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Figure 2.6: Estimated relationship between absolute average % relative bias for 
abundance and Y, r, and EstMod.  All predictions are given for the case where 
A — 3. Panel (A) gives results for r  =  0.2 and panel (B) depicts the case when r  =  
0.5.
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Table 2.9: Summary of model selection results for factors affecting average % abso­
lute relative bias for survival. Reported are K ,  the number of parameters in each 
linear model, and AAICc, the difference in AICc score from the top model. The ef­
fective sample size was 504, the total number of simulation design points. Reported 
are models within 2 . 0  AAICc units of the top-ranked model.

Model K AAICc
A + R  + N  + r 4 0 .0

A + R + N + r + Y 5 0.7
A + R  + N  + r + A 5 1.3
A + R  + N 3 1 .8

A + r 2 1 .8

The same suite of linear models was fit to simulation data, with |%BIAS| 0 2 5  for 

survival as the response variable. The 0.25 power transformation resulted in better 

conformation of residuals to linear model assumptions. Inspection of parameter es­

timates and standard errors from highly ranked AICc models (Table 2.9) indicated 

that the predictors A , r, N,  and R  were important determinants of |%BIAS|025, 

but that an asymptotic 95% confidence interval for the r  effect overlapped zero 

(-0.235,0.004) when all 4 variables were included in model structure. I thus used 

the fourth ranked AICc model to describe factors affecting absolute mean percent 

relative bias |%BIAS| (Figure 2.8). In general, |%BIAS| was predicted to increase 

with the number of age classes and abundance, and to decrease with the number of 

releases.

As with survival, simulations pointed to a negative bias in moment estimators 

for recovery probability (Figure 2.9). Average percent relative bias for the posterior 

mean, mode, and median were -1.5% (SE=0.3%), -3.9% (SE=0.3%), and -2.3% 

(SE=0.3%), respectively. The same suite of linear models were fit to simulated
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Figure 2.7: The distribution of average percent relative bias for survival over all 
simulations, as determined by (a) the posterior mean, (b) the posterior mode, and 
(c) the posterior median. One value is included for every simulation; thus both 
sampling variation and bias are represented.
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the case when N  =  2000 and panel (C) gives predictions when N  =  5000.
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Table 2.10: Summary of model selection results for factors affecting average % abso­
lute relative bias for recovery rate (h). Reported are K,  the number of parameters 
in each linear model, and AAICc, the difference in AICc score from the top model. 
The effective sample size was 1512, the total number of simulations. Reported are 
models within 2.0 AAICc units of the top-ranked model.

Model K AAICc
A Y  + R  + S  + EstMod  -F v -t- A 8 0 . 0

A -\-Y + R  + S  + EstMod  +  v +  A +  N 9 1.9

data, instead using |%BIAS | 0 -4 of the posterior mode of recovery probability as the 

response variable. In this case, a 0.4 power transformation satisfied linear model 

assumptions. All highly ranked AICc models included every predictor except N  and 

interaction terms (Table 2.10). Unfortunately, there were too many highly influential 

predictors to produce an economical set of displays. However, predictions could be 

made from the equation

|%BIAS |0 -4 -  0.594 -  .00038i? -  .018T -  .213A +  .2415 -  .277r

- M 9 M O D 1  -  M 5M O D 2.

Here, M O D I  =  1 if the estimation model is S(-)h(-)r(-), and 0 otherwise. Similarly, 

MOD2  =  1 if the estimation model is S(a)h(t)r(-), and 0 otherwise.

Simulations revealed a positive bias in moment estimators for recruitment 

(Figure 2.10); average percent relative bias for the posterior mean, median, and 

mode were 9.7% (SE=0.8%), 7.8% (SE=0.7%), and 4.2% (SE=0.6%), respectively. 

Again, I employed linear models with all combinations of explanatory variables to 

examine the relationship between |%BIAS| and simulation inputs. This time, a 0.35
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Figure 2.9: The distribution of average percent relative bias for recovery rate over 
all simulations, as determined by (a) the posterior mean, (b) the posterior mode, 
and (c) the posterior median. One value is included for every simulation; thus both 
sampling variation and bias are represented.
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Table 2.11: Summary of model selection results for factors affecting average % 
absolute relative bias for recruitment. Reported are K,  the number of parameters 
in each linear model, and AAICc, the difference in AICc score from the top model. 
The effective sample size was 1512, the total number of simulations. Reported are 
models within 2 . 0  AAICc units of the top-ranked model.____________________

Model K AAICc
Y  +  R  T S  +  EstMod  +  r  +  N  -f- A -F EstMod  * R  +  N  * R 1 0 0 .0

Y  +  R  + S  +  EstMod  +  r  +  Af +  A +  A +  EstMod * R  + N  * R 1 1 0.9
Y  +  S  +  EstMod + r + N  + A 7 1 .8

power transformation seemed appropriate to make residuals normally distributed 

with a relatively constant variance. The exercise in model selection indicated that 

most explanatory variables were important predictors (Table 2.10). As with recov­

ery rate, it was thus difficult to make economical graphical displays; nevertheless, 

predictions could be made with coefficients from the highest ranked AICc model 

from the following equation:

|%BIAS | 0 -35 =  0.668 -  .00015# -  .015F -  .435A +  .692# -  ,308r

- .190MOD1 -  .158MOD2.

Coefficient o f Variation

Conducting preliminary explorations of the data, it appeared that there were a 

number of outliers associated with CV for abundance, all of which were associated 

with the case of 50 releases per year, 3 years of data, and survival and reporting 

rates of 0.8 and 0.2, respectively. In this scenario, the number of expected recoveries 

of marked animals is quite small (2.0, 3.6, and 4.9 for years 1,2, and 3, respectively)
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Figure 2.10: The distribution of average percent relative bias for recruitment over 
all simulations, as determined by (a) the posterior mean, (b) the posterior mode, 
and (c) the posterior median. One value is included for every simulation; thus both 
sampling variation and bias are represented.
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and can lead to unstable estimates. Interestingly, other than one outlier removed 

from the analysis of bias in abundance, this combination of simulation inputs did not 

seem to produce unduly extreme outliers for other measures of model performance. 

Nevertheless, removing these points was essential for analysis of CV.

Analysis of CV was performed for abundance only, as a coding error resulted 

in incorrect calculations of this performance measure for other parameters. A power 

transformation of -0.4 on the response variable proved adequate for meeting linear 

model assumptions, and the same suite of models were fit to the data. The top 

AICc model in this case was the most general model, with the second closest model 

> 3 AAICc units behind. As with the analysis of recruitment bias, there were too 

many important predictors in this case to visually portray cumulative effects of all 

simulation inputs; nevertheless, approximate predictions for mean CV can be made 

using estimated regression coefficients as

CV(iV) - ° 4 =  1.31 +  0.000402V +  0.00202# +  0.00324A +  0.111F 

+0.427A -  1.517# +  1.844r -  0.150MOD1 -  0.0234MOD2 

+0.00285(# x M O D I)  +  4.93 x 1(T8(V x R ).

Because the response variable is taken to a negative power, the interpretation of the 

sign of regression coefficients is reversed; for instance, a positive coefficient leads to 

a decrease in CV. As with any regression analysis, it is important not to extrap­

olate predictions from the linear model past the particular input configurations of 

the response surface analysis, especially given that the design was not a complete
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factorial. Over the support of simulation inputs, mean CV(iV) was predicted to be 

lowest (=  0.016) when N  =  5000, R  - 300, A = 6, Y  =  7, A =  1, 5  =  0.6, and 

r  =  0.5. Note that the only estimation model employed for this configuration was 

S(a + t)h(a)f{t)\ a lower coefficient of variation could be expected if a simpler es­

timation model were used here. The highest prediction for CV(iV) was 0.24, which 

corresponded to the situation where N  — 1000, R  =  100, A  =  2, Y  =  3, A =  0.9, 

S  =  0.8, r  =  0.2, and EstMod  =  S(a)h( t) f  (■).

2.7.2 Simulation M odule II: Effects of Aging Error

Misclassification of an individual’s age might be expected to produce bias in param­

eter estimates, particularly if error rates vary systematically by age. For instance, 

small magnitude positive biases are typically observed in age estimates of young 

black bears, while larger negative biases are observed for older bears (e.g., Beck, 

1991; Costello et al., 2004; Harshyne et al., 1998). Even if there are no systematic 

age-mediated changes in the direction and magnitude of bias, age misclassification 

will still tend to result in misrepresentation of “strong” age classes (Fournier and 

Archibald, 1982). In effect, the power to discriminate cohorts with large abun­

dances will be somewhat obscured, and process error in recruitment will be un­

derestimated. In the context of fisheries stock assessment models, it has also been 

shown that aging error can lead to negative bias in estimates of harvest mortality 

and measures of abundance, possibly leading to management advice which would 

favor over-harvesting (Reeves, 2003).
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Published levels of aging error rates differ dramatically between taxa and even 

among populations of the same taxa. For instance, aging estimates for black bears in 

west-central Colorado were shown to be both inaccurate and imprecise (Beck, 1991), 

while estimates from known-age bears were markedly better for studies occurring 

in California (Keay, 1995), Pennsylvania (Harshyne et al., 1998), and New Mexico 

(Costello et al., 2004). Discrepancies may be due to differences in diet and variability 

in food availability in different areas affecting cementum deposition (Costello et al., 

2004), but also may be due to standardization of techniques in the latter three studies 

to conform with subsequently published work (cf. Coy and Garshelis, 1992). The 

latter three studies also used the same commercial laboratory (Matson’s Laboratory) 

to perform aging assignments.

In this module, I examined the effect of several magnitudes and types of aging 

error on estimates of abundance and other parameters under a number of hypothet­

ical scenarios. In each case, I consider a model for aging errors whereby assigned 

age A'  is related to true age A  by the relationship

A' =  round(>l +  ej,)

where tj denotes a random effect associated with age j . Variation in error type and 

magnitude are produced by considering different models for €j. In total, five a priori 

models for aging error were considered:

• Model 1: No aging error (i.e., ej — 0)
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• Model 2:

• Model 3:

Laplace(0,aj)I[0.5-j,oo)(£j) _  n . .
6  j  ~  j----------------------------------  < 7 j  —  L). 1  7

1 -  /  ^  Laplace(0, aj)

Laplace (0, 0 j)I[O.5-j,oo)(ej)
~  =  U.Z7

1 ~  /-oo Laplace(0 , Oj)

• Model 4:

^  Lap]acefa,ffj)I[0.5- )-,„)(tj) =  =  _

1 ~  Laplace(/tj,0 -j)

Model 5:

Laplace(//j, crj)I[o.5_j,oo)(e?) n o - a o-
C ~    -f o.5--Tt— ,---- :------- C ^  =  °-2^ H  =  A ~  ■2J

1 ~ J - oo Laplace

Here, I[n]() gives an indicator function for the set and the Laplace (also known 

as the double exponential) distribution is the probability density function

M x )  = iexp ( X — fi\

a

The Laplace distribution has fatter tails than a normal distribution, and may be 

more useful for describing aging error in natural populations (see, for instance, 

Chapter 4). Models 2 and 4 specify a relatively high precision on age estimates, while 

models 3 and 5 are relatively imprecise, particular at older ages. Models 2 and 3 

assume no bias in age estimation (other than induced from a nonnegative support for
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the true age), while models 4 and 5 assume a positive aging bias for yearlings and a 

negative one for individuals greater than 2 years of age. In particular, the magnitude 

of bias increases with age. For all models, I assumed that age 0 individuals were 

aged definitively, as is typically the case with black bear cubs.

For simplicity, I only considered two biological scenarios for which to quantify 

possible effects of aging error on estimator performance, both of which corresponded 

roughly to the demography, harvest numbers, and sampling effort associated with 

female black bears in Pennsylvania. For each scenario, I set initial population size 

at 5000, and assumed that 400 new individuals were marked and released per year, 

the ages of which were in proportion to their relative abundance in the population. 

I treated the population as if it consisted of 3 demographically relevant age classes: 

cubs (0 - 1  year old), yearlings (1 - 2  years old), and adults (ages 2 +), with associ­

ated survival rates (S) of 0.4, 0.55, and 0.7, and harvest rates (h ) of 0.1, 0.3, and 

0 .2 , respectively. The two different biological scenarios were described by different 

parameterizations for recruitment ( /) . Scenario A  assumed that recruitment was a 

Poisson process with a mean of 1.364 female cubs per adult female, a number approx­

imately necessary for a stationary population. Scenario B  assumed the same mean, 

but with a hyperprior on A, such that / 2 ~  Poisson(A), where A ~  Gamma(10,7.33). 

Thus the 2 scenarios embodied quite different assumptions about the nature of pro­

cess error in recruitment (Figure 2.11). I considered this potentially relevant since 

aging error will typically serve to obscure the detection of high abundance cohorts, 

and thus may lead to underestimates of recruitment process error.

Instead of pooling virtual animals into a ‘+ ’ category to start with, I allowed
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Figure 2.11: Histograms representing the relative likelihood of obtaining different 
values of recruitment under Scenarios A and B in simulation module II when pop­
ulations are started at a stable stage distribution and an initial population size of 
5000. In particular, Scenario A dictates a relatively fixed number of recruits, while 
Scenario B allows recruitment to differ drastically from year to year.
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them to advance to a possible age of 2 0 , at which time they were automatically 

removed from the population. In this manner, aging error could be appropriately 

applied to an animal’s real age, and data could be pooled to a pre-specified level 

for analysis. If aging error increases with the age of an animal, there may be some 

‘optimal’ way in which to pool older age classes in terms of estimator performance, 

at least for a given hypothetical scenario. For each simulated set of “complete” data, 

I thus considered two possible levels of pooling: 3 age classes and 7 age classes. In 

either case, only adults (2 -year-olds and older) were assumed to reproduce, and 

populations were started at a stable stage distribution, as in Simulation Module I.

I ran a total of 50 simulations for each combination of the 5 aging error models 

and 2 biological scenarios. For each simulation and pooling option, I ran 2 chains of 

length 1,000,000 starting at overdispersed values. If after 500,000 iterations Gelman- 

Rubin statistics confirmed that the chains had approximately the same within- and 

between- chain variance, I combined the final 500,000 samples of each chain to ar­

rive at a sample of 1 ,0 0 0 , 0 0 0  from the posterior distribution, which was thinned 

to 200,000 to save memory. I calculated the same statistics as in Simulation Mod­

ule I  to quantify estimator performance; model S(a)h(a)f(-)  was used to estimate 

parameters for all Scenario A simulations, while model S(a)h(a)f(t)  was used for 

all Scenario B simulations. Here, an a denotes the case where 3 parameters are 

estimated, corresponding to cubs, yearlings, and adults.

To quantify effects of aging error on estimator performance, I once again com­

pared the relative parsimony of different models where estimator performance was 

related to all possible subsets of predictor variables. Here, I considered average ab-
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solute percent relative bias and 90% credible interval coverage for each parameter 

type (i.e., N , S, h , f) as possible response variables; predictor variables were fi (2 

levels), a  (3 levels), and recruitment variance scenario (2 levels). To start, I only 

analyzed 7-age class data because more errors could be expected at older age classes, 

and thus it was more likely to see effects on estimator performance. Also, 3-age class 

data were obtained by pooling data from 7-age-classes, and so these data were not 

independent (a mixed model approach may have been used here to limit the number 

of degrees of freedom for pairwise blocking, but this seemed excessive). I entertained 

the possibility of including two way interaction terms whenever the variables com­

prising the interaction were included in the list of predictor variables. However, one 

of the interactions between a and /j, was not estimable because simulations did not 

include the design point where jij =  0.4 — 0.2.) and aj =  0.

A total of 36 models were fit for each response variable. When bias was 

modeled, my strategy was to find a transformation of the response variable which 

approximately satisfied linear model assumptions for the most general model, as 

indicated by quantile plots and plots of studentized residuals versus fitted values. 

In this case, I used AICc for model selection. When coverage was of interest, I once 

again considered a binomial model for the response variable within a generalized 

linear model framework where success probability was related to predictors. In this 

case, I used a logit link, estimated an overdispersion parameter, c, and used QAICc 

for model selection.

For bias on estimators of annual abundance, a power transformation of 0.1 

seemed adequate for meeting linear model assumptions. An intercept model, in
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which bias was constant across simulation inputs, was ranked second with AAICc =  

0.3. Parameter estimates from other top ranked models actually predicted that 

bias would decrease with the amount of aging error (for both a and //), although 

confidence intervals overlapped zero. I thus concluded that there was no simulation- 

based evidence that aging error increased bias in annual abundance estimators (see 

also Figure 2.12).

Models selected for 90% Bayesian credible interval coverage on annual abun­

dance tended to include /i and a  effects on coverage, as well as interactions with 

these terms and the level of recruitment variance. Investigation of parameter es­

timates and confidence intervals from top ranked models indicated that coverage 

decreased slightly when a  > 0  and when recruitment variance was high. Strangely, 

coverage was predicted to increase when /i was different than the true age class in 

this case (Figure 2.13).

For survival, I used a power transformation of 0.4 to relate bias to predictor 

variables. Top models tended to include fj,, predicting that bias would increase 

when the expected mode of aging error was different from zero. However, confidence 

intervals for this effect overlapped zero, and the intercept-only model was only 1 .8  

AAICc units behind the top model, indicating that the levels of aging error used 

here did not greatly affect bias in survival estimators (see also Figure 2.12).

The number of age-specific survival parameters that were covered in a given 

simulation suffered from substantial overdispersion (c =  4.3). Even so, recruit­

ment variance appeared in all top models, with point estimates predicting that 

credible interval coverage would decrease slightly under high recruitment variance
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0  = —0.41, S E 0 )  = 0.22). However, given the high value of c, it is perhaps 

not surprising that the intercept-only model was ranked close to the top, with a 

AQAICc =  2 .1 .

For recovery rate, no transformation of the response variable was needed when 

modeling bias. Recruitment variance, a, and /i all appeared in top models; bias was 

predicted to increase with a  and recruitment variance, but was predicted to decline 

when n ^  0. The latter effect was once again counterintuitive, but somewhat borne 

out by observed data (Figure 2.12). Observed coverage again appeared overinflated 

given the simulation run; overdispersion was estimated as c =  3.7. This lack of fit 

obscured my ability to discern any effect of predictors on recovery rate coverage, 

the intercept only model was ranked second with AQAICc =  0.1; no explanatory 

variables consistently appeared in top-ranked models.

As with recovery rate, transformation was not required when modeling recruit­

ment bias as a response variable. Top models all included a  and process variance 

in recruitment as predictor variables, with higher biases predicted when standard 

deviations of aging errors increased and when recruitment variance increased. For 

recruitment credible interval coverage, overdispersion was estimated as c — 2.9. 

Again, there were no clearly important predictors, as the intercept model was highly 

ranked (AQAICc =  1 .2 ). The model of highest rank, for instance, included only an 

effect of high variance in the aging process (<7j = 0 .2 j),  indicating a slight decrease 

in coverage under this scenario 0  =  —0.49, SE(/3) = 0.28).
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Figure 2.12: Average absolute relative bias and approximate 90% confidence in­
tervals (±  2 SE) for different parameters, aging error models, and number of age 
classes. Panels (A), (B), (C), and (D) give results for abundance, survival, recov­
ery rate, and recruitment, respectively. Circles give results for 3 age classes and 
low process variance in recruitment; squares give results for 3 age classes and high 
process variance in recruitment; triangles denote 7 age classes and low recruitment 
variance; stars denote 7 age classes and high recruitment variance. The five models 
for aging error are defined in the text.
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Figure 2.13: Estimates of 90% Bayesian credible interval coverage, together with 
approximate 95% confidence intervals (±  2 SE) for different parameters, aging error 
models, and number of age classes. Panels (A), (B), (C), and (D) give results 
for abundance, survival, recovery rate, and recruitment, respectively. Circles give 
results for 3 age classes and low process variance in recruitment; squares give results 
for 3 age classes and high process variance in recruitment; triangles denote 7 age 
classes and low recruitment variance; stars denote 7 age classes and high recruitment 
variance. The five models for aging error are defined in the text.
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2.7.3 Simulation M odule III: D etecting overdispersion

In this module, I assessed the efficacy of Bayesian p-values for diagnosing lack of 

fit. While there are many causes for lack-of-fit, I focused on scenarios in which the 

fates of individuals were not independent. The independence assumption is one of 

the most difficult to relax, and violation of this assumption will generally lead to 

credible intervals for model parameters that are too short.

Following an approach developed by G. C. White (personal communication), I 

considered several levels of overdispersion corresponding to different levels of depen­

dence among individuals. These levels are summarized by a single overdispersion 

parameter, c, which relates the effective sample size to perceived sample size. For 

instance, when all animals’ fates are independent c =  1 and perceived sample size 

equals effective sample size. In contrast, when the fate of every individual in the 

population is the same as exactly one other individual in the population (as with 

a pair bond), c = 2 , and perceived sample size is twice the effective sample size. 

Simulated data for different levels of c may be produced by duplicating fates of 

individuals. For instance, if there are 120 individuals released, and c =  2, the fates 

of 60 individuals would be simulated and each recorded twice.

Detection of lack-of-fit should be influenced by the value of c as well as sample 

sizes, the complexity of model structure, and number of age classes that can be 

reliably determined. For this reason, I examined scenarios that had different levels 

of overdispersion (c=  1 or 2 ), and varied by the number of individuals newly captured 

and released per year (200 or 400), population size of unmarked animals (1000 or
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5000), and the number of age classes (3 or 5). For simplicity, I considered age- 

and time-constant survival, recovery (/i), and recruitment rates of 0.6, 0.2, and 0.4, 

respectively, assuming that individuals in all age classes could reproduce. I employed 

the fixed effect model S(a +  t)h(a)f(-)  to estimate parameters in each case; thus 

the Bayesian p-value applies to this model only. Detection of overdispersion may 

also be influenced by the number of years of data. However, for simplicity, I only 

considered the case where there were 5 years of data. I ran a total of 20 simulations 

for each combination of input factors, using the same MCMC configurations as in 

simulation module II.

In order to explore the relationship between simulation inputs and Bayesian 

p-values, I used the logit of the Bayesian p-value as a response variable and fit 

a series of linear models to the data. This series included all possible subsets of 

predictor variables and first order interactions; AICc was used for model selection. 

No other transformation of the response variable was needed to meet linear model 

assumptions, although I mapped the interval [0,1] to [0.025, 0.975] before applying 

the logit transformation in order to avoid numerical problems.

Top models fit to the data all included number of age classes, the overdispersion 

parameter used to generate the data, and their interaction as predictors. In general, 

Bayesian p-values were predicted to be near 0.5 when an overdispersion value of 

c = 1 .0  was used to generate the data, and to be in the 0 .1  to 0 . 2  range when c= 2 .0  

(Figure 2.14). Power to detect lack-of-fit increased markedly when using a higher 

number of age classes. However, even for the case where A — 5 and c =  2 , observed 

power to detect lack of fit was 0.36 when using a critical p-value of 0.05 (a =  0.0).

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.8
-  " c=1
—  c=20.7

0.6
o>

15 0.5

CO
w
& 0.3

CD

0.2

Age classes

Figure 2.14: Expected Bayesian p-value as predicted by the number of age classes 
(A) and the underlying overdispersion parameter (c) used to generate the data.

When using a critical p-value of 0.20, observed power was 0.74, with a  =  0.08. Here, 

a  gives the estimated probability of a type 1 error. A visual depiction of the null 

distribution when A  =  5 and c =  1 is also provided (Figure 2.15).

2.7.4 Simulation M odule IV: Using marked individuals twice

Up to this point, all evaluations of model performance have assumed that mark- 

recovery data come from a similar, but different population from the one being
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Bayesian p-value when c =  1 and A = 5. The histogram summarizes results from 
80 simulations.
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estimated. In practical applications, however, auxiliary data from marked individ­

uals will often come from the same population for which abundance is of interest. 

One option for getting an estimate of the total number alive is to include data 

from marked individuals in both portions of the likelihood (i.e., in both L\ and 

L 2). Technically, this invalidates the independence assumption needed for a coher­

ent joint likelihood. For instance, sample sizes will be inflated under this approach 

and thus we might expect an artificially high level of precision. However, the im­

portance of this assumption for obtaining estimators with good properties has not 

been previously explored, and it is not clear how much overlap there is between the 

two data sets as far as the amount of information contained about each parameter.

In this module, I used simulation to compare the performance of estimators 

with and without data from marked individuals included in the age-at-harvest por­

tion of the likelihood. I surmised that performance would likely be influenced by i) 

the number of animals marked each year, and ii) the complexity of the model fit to 

the data. For instance, if the number of marked animals is low in comparison to 

unmarked animals, then most of the data informing inference about population size 

comes from unmarked animals, which is independent of the mark-recovery portion 

of the likelihood. Similarly, if fewer parameters are used to describe the survival, 

harvest, and recruitment processes, there is more information in the age-at-harvest 

likelihood about them. I thus expected to see a greater degree of bias in coverage 

and CV when employing simpler models.

I considered a total of 6  scenarios to evaluate estimator performance, which 

differed by the number of marked animals released each year and by the estimation
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model considered. The number of marked animals newly released each year was set 

to either 200 or 400, with the number released in each age category proportional 

to the number of animals in that age class. Three possible estimation models were 

considered in order to compare results across different levels of model complexity: 

/(')> S(a)h(t)f(-),  and S(a + t)h(a)f(t).

For each scenario, I generated data for cases where marked animals were either 

included or ignored in the age-at-harvest matrix. Fifty replicate data sets were 

simulated in each case. I used age- and time-constant population parameters, with 

survival probability set to 0 .6 , a recovery rate or 0 .2 , and a recruitment probability 

of 0.4, with 5 age classes, an initial population size of 5000, and 5 years of data. 

When data from marked individuals were included in the age-at-harvest likelihood, 

population size included both marked and unmarked individuals; when only data 

from unmarked individuals were utilized, it included unmarked individuals only.

To quantify effects of non-independence on estimator performance, I once again 

compared the relative parsimony of different models where estimator performance 

was related to all possible subsets of predictor variables. In this case, I did not 

expect any changes with respect to bias, but I did expect that precision would be 

overestimated. Thus, I treated 90% BCOV for each parameter type (i.e., N , S, 

h, f) as possible response variables; predictor variables were the number of releases 

each year (200 or 400), the generating model EstMod  (3 levels), and an indicator 

for whether or not data in each part of the likelihood were completely independent 

(Ind), which equaled 1 if all data were independent and 0 otherwise. In addition, 

whenever main effects terms were included in the model, I considered additional
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models with all possible combinations of two way interactions. If all two way inter­

actions were present, I also considered the possibility of a three way interaction.

When 90% BCOV for abundance was the response variable, overdispersion 

was estimated as c =  2.5. Nevertheless, model selection using QAICc favored highly 

parameterized models. I chose to base inference on the most general model, which 

was ranked second AQAICc =  0 .6 , because it was the only model that included a 

highly influential interaction effect. In particular, when data from marked animals 

were also included in the age-at-harvest matrix, coverage was predicted to be much 

worse for the simple estimation model S(-)h(-)f(-) (0.42) than for the other, more 

complex estimation models («  0.7) (Figure 2.16).

The story was similar for coverage of survival and recruitment parameters. 

For survival, a value of c was estimated as 1 .6 . The top QAICc model included all 

effects except for the three way interaction and the two way interaction Mod  x Rel, 

and was used for inference because the second ranked model was 1.7 AQAICc units 

higher. Interval coverage was substantially lower than “nominal” when data from 

marked animals was included in the age-at-harvest matrix, especially when the 

simple estimation model S(-)h(-)f(-) was used, and when the number of releases per 

year was high (Figure 2.17). For recruitment, c =  1.1, so AICc was used for model 

selection. In this case, the highest ranked model included all explanatory variables 

except for the three way interaction. Once again, coverage was particularly poor 

when Li  and L 2 were dependent and S(-)h(-)f(-) was used as the estimation model 

(Figure 2.18).

Surprisingly, coverage for recovery rates was not affected to the same degree

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.9

0.8
O)

O 0.7

o05
0.6

 R=200, lnd=1
 R=400, lnd=1
 R=200, lnd=0
 R=400, lnd=00.5

0.4

Model

Figure 2.16: 90% Bayesian credible interval coverage on abundance (iV)for different 
model configurations, number of releases (R), and depending on whether marked 
individuals were included in the age-at-harvest matrix {Ind =  0) or not (Ind  =  1). 
Models “1,” “2,” and “3” were S(-)h(-)f(-), S(a)h(t)f(-),  and S(a +  t)h(a)f(t),  
respectively. Other notation is defined in the text.
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by assumption violations. The top AICc model in this case included only R  and Ind  

as explanatory variables. When Ind — 0 and R — 400, coverage was predicted to be 

0.84; when Ind  =  0 and R = 200, coverage was predicted to be 0.90; when Ind  =  1 

and R  = 400, coverage was predicted to be 0.89; when Ind  — 1 and R  =  200, 

coverage was predicted to be 0.93.

2.8 Discussion

Sampling the Posterior Distribution

None of the samplers I considered were able to explore from the posterior 

distribution very efficiently, but the Brownie parameterization for recoveries seemed 

to result in better mixing for at least some of the estimation models. In general, 

long Markov chains (along the order of 1.0 x 106 iterations) were needed to generate 

consistent estimators of model parameters. Using marginal posterior means for 

calculation of DIC and point estimators usually resulted in a greater degree of 

repeatability.

Estimator Performance

For the scenarios considered, Bayesian analysis of age-at-harvest and mark- 

recovery data generally resulted in estimators of population parameters with a low 

degree of bias and high degree of precision. Overall, bias was positive for abundance 

and recruitment, and negative for survival and recovery rate. As expected, bias 

decreased and precision increased with sample size, either through longer studies, a 

higher number of individuals marked each year, or increased harvest rates. Credible
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Figure 2.17: 90% Bayesian credible interval coverage on survival (S ) for different 
model configurations, number of releases (R), and depending on whether marked 
individuals were included in the age-at-harvest matrix (Ind =  0) or not (Ind  =  1 ). 
Models “1 ,” “2 ,” and “3” were S(-)h(-)f(-), S (a)h( t ) f (•), and S(a +  t)h(a)f(t),  
respectively. Other notation is defined in the text.
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Figure 2.18: 90% Bayesian credible interval coverage on recruitment ( /)  for different 
model configurations, number of releases (R), and depending on whether marked 
individuals were included in the age-at-harvest matrix (Ind  — 0 ) or not (Ind — 1 ). 
Models “1 ,” “2,” and “3” were S(-)h(-)f(-), S(a)h(t)f(-),  and S(a  4- t)h(a)f(t),  
respectively. Other notation is defined in the text.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



interval coverage was predicted to be close to “nominal” when all assumptions were 

met and when sample sizes were high.

Estimator Robustness

Bias and coverage were quite robust to aging errors, at least with the range of 

models considered here. However, when data from marked animals were included 

in the age-at-harvest matrix, the potential for understatement of uncertainty was 

substantial. While use of estimation models with a sufficient degree of complex­

ity helped, coverage was still poor when a large proportion of the population was 

marked each year. Ostensibly, including marked animals in both Li and L 2 artifi­

cially inflated sample sizes, resulting in inaccurate inferences about precision. When 

overdispersion was present, the goodness-of-fit test developed here showed good po­

tential for diagnosing lack of fit in age-at-harvest data, especially when sample sizes 

were high.

Given that most applications of this methodology will involve estimating pa­

rameters for which marked animals are a part, an important consideration is how 

many animals to mark each year. In particular, it is important that enough animals 

be marked to reduce bias and to generate CV’s that are acceptable for management 

purposes, but not enough to result in poor coverage (as in Simulation Module 4)- 

This may prove to be quite a challenge for small populations. One ad hoc approach 

that may be useful in practice is to conduct simulations with input values relevant 

to the study population, artificially increasing the length of credible intervals until 

coverage is close to nominal.
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Chapter 3

Potential for using age-at-harvest 

and radio telem etry data to  

m onitor black bear populations in 

Colorado

3.1 Introduction

Results from Chapters 1 and 2 suggested that joint modeling with age-at-harvest 

data and data from marked individuals could be a viable monitoring strategy for 

wildlife. However, the sample sizes of marked individuals that were considered were 

larger than could be reasonably expected for many populations, including those of 

black bear in Colorado. There may be a multitude of factors that could contribute 

to limited sample sizes. For instance, habitat heterogeneity or nonuniform harvest
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pressure could lead to substantial heterogeneity in survival and recovery rates, and 

perhaps to misleading inferences about abundance using this methodology. In this 

case, one solution is to perform stratification, but this tends to increase the number 

of parameters that need to be estimated, and thus increases requisite sample sizes. 

As another example, the effort required to mark individuals can vary substantially 

between taxa and/or the population in question. Pennsylvania black bears are highly 

productive in terms of recruitment and exhibit high population densities (Alt, 1989), 

while black bears in Colorado are considerably less fecund and sparsely distributed 

(Beck, 1991). Pennsylvania researchers also typically pool tagging data from re­

search and management activities because they repeatedly fail to detect differences 

in demographic parameters between the two groups. In contrast, management bears 

in Colorado are subject to a “three strikes” rule and thus may be expected to have 

lower survival than the population as a whole. Thus, considerably more effort will 

be required to obtain a “representative” sample of marked individuals.

The purpose of this chapter is to determine whether joint analysis of age-at- 

harvest and radio telemetry data is a feasible method for monitoring black bear 

populations in Colorado. I concentrate on radio telemetry because telemetry stud­

ies typically provide more information on survival than mark-recovery studies for 

a set level of trapping effort. In describing feasibility, I present estimator perfor­

mance for a number of scenarios, including those with varying study area size, levels 

of marking effort, number of years of data, and depending upon whether or not 

there is a covariance between marking probability and subsequent probability of 

harvest. In contrast to previous chapters, my focus here is on making inferences
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about population trend rather than absolute abundance. Recasting the problem in 

this manner required reformulation of model structure, a topic which I discuss first. 

Second, I describe the methods I used to simulate data. In particular, including 

the possibility of a covariance between initial marking probability and subsequent 

harvest probability required that I employ an individual-based simulation model. 

Next, I describe the population model fit to the data, and explore estimator per­

formance and robustness. Finally, I offer my own opinions on the viability of using 

this approach for monitoring black bear populations in Colorado.

3.2 M odel Development

In Chapter 1, I advocated basing inference on the likelihood L  =  L\ x l 2, where L\ 

gave a likelihood for age-at-harvest data, and L2 specified a likelihood for auxiliary 

data. In this section, I describe changes to both portions of the likelihood. In 

particular, L\ must be modified to incorporate population trend, and alternative 

versions of L 2 must be specified to acknowledge that radio telemetry data are used.

3.2.1 Incorporating Population Trend into L\

As written in Chapter 1, the population process conditions on the abundance vec­

tor [Nio, N n ,  ■ ■ ■, N ia], while future age-specific abundances are treated as latent 

variables. Thus, total annual abundance (across cohorts) does not enter into the 

likelihood function, although posterior samples of this quantity for year i can still 

be generated by computing Ylf=i ^ i j  across Markov chains (setting =  0
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since it is not a parameter). To introduce total abundance from year i, iV*., into 

the likelihood, I suggest replacing Ni0 with the quantity N{. — Y lf=2 Using 

this approach, it is possible to incorporate population trend into the model. In this 

Chapter, I focus on a linear trend for simplicity, letting Ni. — Po + j3\i, although it is 

certainly possible to specify nonlinear trends as well. In addition, all applications in 

this example use the alternative Seber parameterization for L 2 presented in Chapter 

2  because it is the most compatible with known fate (telemetry) data.

3.2.2 Likelihood for Telemetry D ata

Telemetry data typically consist of known fates of individuals (i.e., live or dead 

is known) at discrete sampling occasions. In the case where no censoring occurs, 

likelihoods are simple to write down. For instance, if we utilize the same notation 

as in Table 2.1, but redefine tk to be the time interval in which an animal dies (if 

it dies), and Jk to be an indicator function for whether animal k dies within the 

course of the study, we may write L2 as

M

L2 ^Y[Pv(Hk),
k=1
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where

i k ' ~  1
(1 ~  S t k ' , a t k i ) r t k ' , a t k i II & i,a. i i h  — 1,

i=tk

Pr (Hk) =
t k ' - i

(1 S t k',atk, ) {  1 f t k',atk, ) I~I S i ta,i, Ik — 0 & Jfc — 1,
i=tk

Y - 1

n  ^i,ai
i - t k

Jk =  0.

When censoring occurs at random, other approaches typical of survival analyses 

(e.g., Cox and Oakes, 1984) are appropriate. However, for simplicity, I do not 

explicitly consider this type of censoring. At times in this chapter, I make use of 

a deterministic censoring model where animals are removed from the study after 

being marked for 3 years. In this case, the probability of the given history is only 

calculated for the first three time intervals after marking.

3.3 Analysis M ethods

3.3.1 Simulating Data

As shown in Appendix A, there is substantial potential for bias in the Lincoln- 

Petersen estimator (Seber, 1982) of abundance when there is a relationship between 

initial marking probability and subsequent recovery probability. A positive covari­

ance between these quantities might exist, for instance, when trapping occurs near 

roads and hunters depend on the same roads to try to find bears. In this case, hunters 

may be more likely to “sample” a tagged individual than an untagged individual. 

To explore consequences of such a scenario, it was necessary to simulate data
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at the individual level. To do this, I followed the template of White, Gill, and 

Beck ( Unpublished manuscript), who conceptualized the female segment of a bear 

population as consisting of a number of individuals, each of which is assigned a 

vector of variables which describe the current state of the individual. This list of 

individuals is updated every year to account for mortality and recruitment to the 

population, and each individual’s state vector is also updated to account for changes 

in age, reproductive status, etc.

At the beginning of each simulation run, each population was started at i t’s 

stable stage distribution conditional on pre-specified levels of abundance, survival, 

and recruitment (see section 3.3.2). State vectors were compiled for each animal 

in the population at the beginning of each simulation run, as well as for bears re­

cruiting into the population at future time steps. State vectors included current 

age, whether the bear had been marked or not, time at first capture, age at first 

capture, reproductive status (whether the bear currently has cubs, had cubs the 

previous year, or neither), as well as individual random effects for marking proba­

bility and harvest probability. To start simulations, I randomly assigned one cub to 

each breeding age (5 years or older) female until the number of females with cubs 

equalled the number of cubs in the stable stage distribution.

Assuming that harvest rate equaled recovery rate (i.e., that all harvested bears 

were reported to wildlife personnel), I partitioned total annual survival (Sij) into 

harvest mortality (fi^) and natural mortality (My) for simulation purposes. The 

population census date was immediately prior to harvest, so harvest mortality was 

simulated first, and natural mortality second. If an animal died, it was removed from
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the population. If it was previously marked, i t ’s encounter history was appended to 

an encounter history list. If i t ’s death was because of harvest, it contributed to the 

age-at-harvest summary.

For breeding age females that survived the year and did not have cubs the 

previous year, it was assumed that they had cubs in the current year. However, the 

number of female cubs could be 0, 1, 2, or 3, depending upon the total number of 

cubs as well as the sex ratio of the litter. For the total number of cubs, I assumed 

that females would have 1 cub 25% of the time, 2 cubs 50% of the time, and 3 cubs 

25% of the time. These are biologically reasonable values given results of previous 

studies of black bear in Colorado (Beck, 1991). I then assumed that the sex of 

an individual cub was female with probability 0.5 in order to determine the total 

number of female cubs per breeding female. Young of year survival (i.e., from birth 

until just prior to the hunting season) was assumed to be 0.793 regardless of other 

simulation inputs. This number was chosen so as to achieve zero average population 

growth for the case where populations were stable.

3.3.2 Simulation Design  

Study Areas

Bear habitat in Colorado is highly heterogeneous, and different locations face dif­

ferent amounts of harvest pressure (Gill and Beck, 1990). I thus concentrated on 

conducting power analyses that reflected populations that could be expected in 

several smaller, more homogeneous areas of the state. In particular, two possible
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“study areas” were selected: Colorado Division of Wildlife Game Management Unit 

(GMU) 62, which encompasses the Uncompahgre Plateau, and black bear Data 

Analysis Unit (DAU) B-5, which encompasses GMUs 40, 60-62, 64-65, and 70 (all 

in west-central Colorado). To calculate the approximate number of bears I expected 

to be in GMU 62, I used habitat composition statistics (Anderson et al., 1992) to 

subjectively stratify GMU 62 into a 2000 km2 block of “good quality” habitat and 

a 1 0 0 0  km2 block of low quality habitat. Applying density estimates of 1 bear per 5 

km2 to high quality habitats and 1 bear per 13 km2 on the low quality habitats (see 

e.g., Gill and Beck, 1990), I arrived at an approximate figure of 477 bears. Given 

that sex ratios typically favor females in exploited populations, I conservatively es­

timated there to be around 250 female black bears in GMU 62. This quantity was 

used as a potential input into simulations. For DAU B-5, I simply doubled this 

figure (i.e., 500 females) as a simulation input.

Population Trajectory

In this chapter, I focused on the ability of proposed methodology for diagnosing 

population declines. As such, I considered several scenarios. First, I considered a 

stable population; assuming a cub survival rate (August-August) of 0.6, as well as 

the implied recruitment rate, I set survival at 0.85 for yearlings and 2-year-olds, 

and 0 . 8 8  for older age classes to obtain a roughly constant population (eigenvalue 

based A =  0.998). Following educated guesses by Gill and Beck (1990), I assumed 

that recovery rates were 0.0 for cubs, 0.06 for yearlings and 2-year-olds, and 0.05 

for remaining age classes. These values implied that survival in absence of hunting
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(assuming an additive harvest model) would have been 0.904 for yearlings and 2- 

year-olds, and 0.926 for older individuals. These values are slightly less than reported 

by Beck (1991), but were chosen so as to achieve a stable population.

In order to simulate decreasing populations, I assumed an additive harvest 

model and simply manipulated recovery rates. Two scenarios were considered for 

decreasing populations. In the first, I increased recovery rates for yearlings and 2- 

year-olds to 0.08 and recovery rates for older ages to 0.07. In the second, I increased 

recovery rates for yearlings and 2-year-olds to 0.104 and recovery rates for older 

ages to 0.095. These yielded decreasing population projections, with an eigenvalue 

based A =  0.981 in the first case, and A =  0.958 in the second. W ith a value of 

A =  0.981, deterministic populations will decline by about 10.4% in 5 years, and by 

about 17.5% in 10 years. With a value of A =  0.958, the same population would 

decline by about 19% over a 5 year periods and by about 35% over a 10 year period. 

Actual simulations were stochastic, however, so realized population trend should on 

average be slightly less than for deterministic projections.

Covariance in Encounter Probabilities

Given the potential for bias of abundance estimators when marking and harvest 

probabilities covary (Appendix A), I wanted to consider such covariance as a design 

factor. For simulation runs that included covariance, I generated

/ \
e?

~  /
0 0 . 1 0 0.05

V
0 0.05 0 . 1 0

/I
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were /( )  denotes the bivariate normal distribution. For designs where covariance 

was not a factor, I generated

/ \

4 0 0 . 1 0 0

~  /

V
0 0 0 . 1 0

/
%

Marking probability and recovery rate for animal % were then generated as pt] =  

expit (logit (pj) + ef) and hij — expit (logit (hj) +  ef), where j  indicates an age effect, 

and pj and hj denote expectations of marking probability and recovery rate. In­

dividual random effects were set to zero for cubs since harvest rates were zero by 

definition. However, for older age classes, this formulation produced correlations 

between marking probability and recovery rate of 0.5 when covariance terms were 

equal to 0.05 and variance terms equal to 0.10.

M arking Effort, Study D uration, and Censoring

In any power analysis, focus is on the relationship between sample size and estimator 

performance. There are several possibilities for manipulating the sample size of 

marked individuals in telemetry studies. First, one can simply mark more or less 

“new” animals per year. Second, one can change the duration of the study, either 

increasing or decreasing the total number of marked animals when a fixed number 

of marks are put out per year. Lastly, one can choose to be more or less vigilant 

about the effort put forth to change radio collars. The batteries of radio collars put 

on black bears typically do not last for more than 4 or 5 years, so that locating 

bears in their dens during the winter lethargy period to replace collars can increase
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effective sample size.

R esponse Surface Study Designs

I employed two response surface designs to quantify estimator performance. In the 

first (R S D i), it was assumed that no censoring occurred. In the second (R S D 2), I 

assumed that a collar would provide useful information for three years after marking. 

I assumed that these animals would not be caught during marking operations again, 

as black bears are notoriously intelligent and many learn to avoid traps after one 

such negative experience.

In RSDi ,  I performed a complete factorial simulation design, varying each of 

the following factors:

• Starting abundance (Ni.) =  250 or 500

• Expected number of new females marked/year (E R )— 10, 20, or 30

• Duration of study (Y)=  5 years or 10 years

• Correlation between p and h , (p) =  0 or 0.5

• A =  0.998, 0.981, or 0.958

The result was a complete factorial design with 72 design points; at each of these 

points I simulated 5 different datasets.

For R S D 2, my main focus was on the 10 year study, where I felt that having no 

form of censoring would be somewhat unrealistic. I also thought that R SD i would
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suffice for exploring issues associated with correlation between encounter proba­

bilities. Thus, I focused on the relationship between sample size and the ability 

to detect population trends. Accordingly, I performed a complete factorial design 

varying the following factors:

• AT =  250 or 500

• E R  = 10, 20, or 30

• A =  0.998, 0.981, or 0.958

The result here was a complete factorial design with 18 design points; at each of 

these points I simulated 5 different data sets.

3.3.3 Estim ation

While the model for simulating data took on a degree of biological realism, I specified 

a relatively simple population model (Figure 3.1) for estimation purposes. When 

sample sizes are low, I did not expect that models with time- or age-varying com­

ponents would be estimable. Similarly, one harvest rate was estimated for all indi­

viduals that were yearlings or older (the harvest rate of cubs was constrained to be 

0). A simple linear trend on annual abundance was specified, such that

Ak- = Po + Â -

Estimation proceeded as in other chapters; MCMC was implemented according to 

the Metropolis-within-Gibbs hybrid update, with proposal standard errors chosen
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Figure 3.1: A pictoral depiction of the population process model for female black 
bears in Colorado.

so as to achieve a 35%-40% acceptance rate. Two chains with overdispersed start­

ing values were run for 1,000,000 iterations each. If the Gelman-Rubin diagnostic 

(Gelman et al., 2004) indicated convergence, the second halves of each chain were 

combined to yield a sample of 1,000,000 from the posterior. If convergence was not 

indicated, the particular simulation was not included in response surface analyses. 

This sample was thinned to 200,000 by recording every fifth observation to save 

memory.
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3.4 Estimator Performance

3.4.1 M easures of Estim ator Performance

Since I was concerned with the ability to detect population trends, I focused on 

quantifying the performance of the linear population trend estimator /A. In par­

ticular, I was interested in bias, coefficient of variation (CV), and 90% credible 

interval coverage (BCOV). The latter was quantified by calculating whether or not 

the true value for f3\ was within i t’s estimated 90% credible interval, where the 

“true” value for f3\ was determined by simple linear regression of the true values 

Ni. on year. Thus, the “true” value for varied from simulation to simulation 

due to stochasticity in realized population trajectories. As I was also interested in 

statistical power, I determined whether the 90% credible interval for /3i included 

zero. The probability of a type I error could also be assessed in this manner. The 

number of simulations that resulted in converging Markov chains was also recorded. 

Since an improper prior was assumed for abundance, nonconverging chains may be 

indicative of one or more inestimable parameters.

3.4.2 Predictors of Markov Chain Convergence

If Markov chains did not converge after 500,000 iterations, it was a good sign that 

there were not enough data to estimate model parameters. Thus, predictions of 

whether or not chains would converge based on design factors provide a good indi­

cation of the utility of different levels of sampling effort. It is one thing to have an 

imprecise estimate, but another entirely to get no sort of “answer” at all.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1: Summary of convergence rates (proportion of simulations converging 
within 500,000 iterations) by response surface design, duration of study (years), and 
expected number of marked releases per year. Response surface design 1 (RSDi),  
had a sample size of 60 per cell, while R S D 2 had a sample size of 30 per cell.

Years Design Expected Releases
1 0  2 0 30

5 R SD i 0.55 0.87 0.97
1 0 R SD i 1.00 0.98 1 .0 0

1 0 r s d 2 0.90 1.00 1 .0 0

Simple tabulations of convergence rates for different combinations of years of 

data and number of expected markings per year are presented in Table 3.1. For 

RSDi ,  convergence failures mainly occurred when there were five years of data and 

either 10 or 20 individuals marked per year. For R S D 2, there were some convergence 

failures, mainly associated with 1 0  releases per year.

3.4.3 Statistical Power for D etecting Population Declines

Conditional on Markov chain convergence, I examined statistical power for detecting 

population declines. I considered a population decline to be “detected” if the upper 

limit of the 90% Bayesian credible interval for the linear trend on abundance was 

less than zero. I conducted two analyses; one for R SD i and one for R S D 2. In each 

case, I fit all combinations of predictor variables, including the possibility of two way 

interactions if comprising main effects were also included in the model structure. I 

also allowed for the possibility of the three way interaction A x E R  x Y . Model 

comparisons were made with AICc, and I selected one model within 2 . 0  units of 

the highest ranked AICc model for inference. This selection was made somewhat 

subjectively, and I typically selected a model that included highly visible effects,
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but was simple enough to allow visual depictions of predictions.

For RSDi ,  I selected the fifth ranked model (AAICc =  0.50), which included 

main effects for all predictor variables, as well as interactions A x Y,  A x ER,  and 

A x N.  This model included variables consistently appearing in all highly ranked 

models. Predictions of power to detect population trend could be made with the 

equation

logit (Power) =  61.40 -  70.12A +  10.578T +  .0U 6ER  -  .1973iVi.

+26.02Ip -  10.59AF +  0.210AiVi. -  26.17A/„,

where Ip is an indicator variable that takes on the value 1 if p > 0  and 0  otherwise.

While there are too many predictor variables to visually portray power easily, 

predictions were heavily dependent upon the length of the study and the strength 

of population decline. When A «  0.998, predicted power was typically less than 

0.14, no m atter what other input variables were considered. However, because 

A was so close to one, this may be more indicative of type I error. When A 

0.981, 5 year studies typically were predicted to have less than 20% power to detect 

population trends, while 10 year studies ranged from 5% to 44% depending upon 

input configuration. When A ~  0.958, power was predicted to be between 10% and 

47% for 5 year studies, and between 56% and 91% for 10 year studies. Power was 

predicted to be higher for higher initial abundance, and for the case where there 

was correlation between encounter probabilities. Interestingly, expected releases per 

year appeared to be least important in detecting population trends in this design.
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This was possibly due to the accumulation of radio collars over the course of the 

study when no censoring was employed.

For R S D 2, which included a more realistic approach to censoring for 10 year 

studies (but which did not include p as a design factor or allow for 5 year studies), 

I selected the 2nd highest ranked model (AAICc =  0.49) for inference. This model 

included effects for A, E R , and the interaction A x ER . In general, power predic­

tions increased with decreasing values of A, and increased when number of expected 

releases increased (Figure 3.2).

3.4.4 Credible Interval Coverage

In order to investigate factors influencing 90% credible interval coverage for S i , I de­

termined whether or not Si fell within i t ’s 90% credible interval for each simulation. 

The true value of S i  was determined by regressing true abundance on time for each 

simulation (which could differ from simulation to simulation because of demographic 

stochasticity). As in the previous section, I compared the relative parsimony of a 

number of logistic regression models in order to investigate which factors had the 

greatest influence on 90% credible interval coverage.

For RSDi ,  I selected the 6 th ranked model (AAICc =  1.4) for inference, which 

included Y  and N±., the most consistent predictors with asymptotic 95% confidence 

intervals not including zero. Predictions indicated that coverage would be close to 

nominal (Figure 3.3). For R S D 2, I selected the highest ranked AICc model, which 

included the main effect N\. as i t ’s only predictor. According to this model, coverage
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Figure 3.2: Power to detect population trends as predicted by response surface 
design 2. Important predictors included the finite rate of population increase (A), 
as well as the expected number of marked releases per year (ER).  Predictions of 
power at A =  0.998 are indicative of type I error rates, which should nominally be 
0.10 at A =  1.0.
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Figure 3.3: 90% Bayesian credible interval coverage on population trend as predicted 
by different levels of Y, N\., and Ip for response surface design 1.

was predicted to be 0.92 for an initial population size of N\. =  250, and 0.91 for an 

initial population size of Ni. — 500. Thus it would seem that some of the variation 

in predicted coverage apparent in Figure 3.3 is due to sampling error, at least for 

the case where there is 1 0  years of data.
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3.4 .5  B ias

Percent relative bias is undefined for Pi when a population is stable (A =  1), so 

bias and absolute bias were quantified. However, in all cases I divided bias by N i t. 

to put it on a relative scale similar to that of population trend (A). Ostensibly, 

an average change in abundance of 1 0  individuals per year would mean much more 

for a population of size 100 than for a population of size 10,000. Using this ap­

proach, BIAS(^i)/Arli. was estimated to be approximately -0.008 (SE =  0.002) over 

all simulation inputs for R SD i  . For R S D 2, there was a more pronounced negative 

bias; BIAS(/3i)/A^ii. was estimated to be -0.016 (SE =  0.002). Thus it would seem 

that there is an overall tendency to underestimate population trend, at least for the 

range of simulation inputs considered here.

To further examine factors affecting bias of population trend, I compared the 

relative parsimony of models expressing the response variable |BIAS(/?i)/Ari i.| as 

a function of predictor variables. Here, BIAS(/3i) was determined for each design 

point by averaging across results of all simulations at a given design point (maximum 

n =  5). Models could include all combinations of simulation inputs as main effects, 

as well as all two way interactions and the three way interaction A x E R  x Y  

(provided that the main effects of these interactions were also included in the model). 

For RSDi,  a 0.3 power transformation of the predictor variable and removal of 1 

outliers was necessary to meet model assumptions according to plots of quantiles 

and fitted values versus residuals (Fox, 2002). The top AICc model included effects 

for E R  and Y,  which were also included in all models within 2.0 AAICc units of
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Figure 3.4: Average absolute percent relative bias for Pi/N\. as predicted by different 
values of expected releases (ER) and length of study for response surface design 1 .

the top model. I thus used this model for inference, which predicted absolute bias 

to decrease as sample size (i.e., either E R  or Y ) increased (Figure 3.4).

A power transformation of the response variable did not appear necessary 

for R S D 2. In this case, the top AICc model included effects for ER, N,  and the 

interaction N  x ER,  predicting that absolute scaled bias would decrease with the 

number of expected releases at lower initial abundances, but would be increasingly 

similar at higher abundances (Figure 3.5).
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Figure 3.5: Average absolute percent relative bias for ^ / N \ .  as predicted by dif­
ferent values of expected releases (ER)  and initial abundance for response surface 
design 2 .
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3.4.6 Coefficient of Variation

As was the case for percent relative bias, the CV of /?i is undefined for values of 

/?i approaching zero. However, converting it to the same scale as A is one option;

rate of the population over the course of the study (however, note that this is not 

rigorously justified; see section 3.5). An estimate of CV for this quantity is just

I calculated this quantity for each simulation, and sought to identify factors explain­

ing i t ’s variation.

As par for the course, I compared AICc for a variety of linear models relating

were considered as candidate predictor variables, as were all two way interactions 

and the three way interaction A x Y  x ER.  For RSDi,  a power transformation of 

-0.4 on the response variable seemed sufficient to meet linear model assumptions. 

The highest ranked AICc model included all main effects except for Ip, as well as 

the interactions N\. x E R  and F x A x  ER.  Using estimated regression coefficients 

from this model, CV could be predicted as

for instance, (N\. +  Pi)/N\. is an estimate of the average annual per capita growth

Ni. + Pi

the response variable CV(A) to predictor variables. All variable simulation inputs

(CV(A) ) - 0 '4 =  8.36 -  9.35A +  0.4467V -  0.00108AV +  0.057ER

+0.000037AV x E R -  0.00447A x V x ER.
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For 5-year studies, CV was predicted to range from 0.03 to 0.18, decreasing with 

the number of marked releases and to a lesser extent A. For 10 year studies, CV 

was predicted to range from 0.014 to 0.031.

For R S D 2, I removed six outliers for analysis; all but one of these was associ­

ated with 10 releases per year, and all had a CV several orders of magnitude greater 

than other simulation runs. Following their removal, a -0.5 power transformation 

of the response variable was necessary to better meet linear model assumptions. 

Model selection favored models incorporating all main effects and the interaction 

E R  x N\. (the highest ranked AICc model included no other effects). Conditional 

on this model, predictions were that CV would decrease as the number of expected 

releases increased (Figure 3.6).

3.5 Discussion

Simulation-based performance of population trend estimators indicate that joint 

age-at-harvest and radio telemetry analysis may be a viable strategy for monitoring 

black bear in Colorado. However, ten-year studies are clearly preferable, as five- 

year studies had more bias, less precision, and scant power to detect population 

trends. Further, for many five-year datasets, Markov chains did not even converge, 

implying that there were too little data to estimate parameters. In contrast, ten- 

year studies had reasonable power to detect population trends, especially when the 

expected number of bears that were annually tagged was high. As quantified by 

CV, simulations also indicated that A could be estimated with a reasonable degree
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Figure 3.6: Predicted coefficient of variation (CV) associated with an estimator of 
population growth rate (A) for different levels of A, expected number of releases 
(ER),  and initial population size. Panel A. gives predictions for Ni. =  250, while 
B. gives predictions for Ni. =  500.
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of precision for ten-year studies.

Contrary to my expectations, it appeared that covariance between initial mark­

ing probability and subsequent harvest probability only served to enhance estimator 

performance. While it likely biased estimators of abundance, inference about pop­

ulation trend was seemingly unaffected. There was, however, an overall negative 

bias in estimators of A that is somewhat worrisome. While this bias was small, 

and decreased with the number of marked releases each year, it could tend to lead 

to overly conservative management decisions. Whether this bias was due to mis- 

specification of the estimation model relative to the model used to simulate data, to 

unmodeled heterogeneity, or to other factors is unknown. However, because these 

factors are likely operable in Colorado as well, there will likely be similar biases in 

field applications.

The estimation model employed in all simulations did not include time effects 

on demographic or harvest parameters. As such, it was assumed that survival, 

recruitment, and recovery rates remained constant over the course of the study. 

In practice, this is unlikely to be the case. For instance, the number of females 

recovered in Bear DAU 5 has varied considerably over the years (J. Apker, Colorado 

Division of Wildlife, Unpublished data). However, simple estimation models will 

likely be required to be able to estimate model parameters due to data sparseness. 

It may actually be possible to consider a time-varying survival model, but the model 

for recovery rates will likely need to be time-constant or at most to incorporate a 

linear trend effect.

Finally, I suggest several possible improvements to the model structure and
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simulation design used here. First, the linear trend model used in simulations as­

sumes that population trends are linear on the real scale. A more realistic expecta­

tion is that trends are linear on the log scale, although the difference between these 

two models is small over the range of population size and trends considered in this 

chapter. Still, from a demographic standpoint, a model such as log(Arj.) =  /30 +  P\i 

would be a more coherent choice. Second, I note that scaling the trend estimator by 

abundance is a rather ad hoc way of arriving at A. In theory, it should be possible to 

enter A as a parameter in these models in a similar fashion to Pradel (1996). How­

ever, recruitment rate parameters would likely need to be removed from the model 

in this case. Another approach would simply be to keep track of Aj =  Ni./N.j_1;. 

throughout MCMC simulations to generate marginal posterior predictive distribu­

tions for these quantities.
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Chapter 4

A djusting Age and Stage 

D istributions for M isclassification  

Errors

4.1 Introduction

Ecologists often use data from the standing age- or stage-structure of a population 

to make inferences about population level processes. For instance, such data may 

be used to calculate survivorship and other demographic parameters using life table 

approaches (Caughley, 1977; Gotelli, 2001; Skalski et al., 2005), to estimate fertilities 

and stage-transition frequencies using stable stage distribution methods or inverse 

methods for time series (Caswell, 2001), and to model the status of fish stocks using 

quantitative stock assessment methods (cf. Fournier and Archibald, 1982; Megrey, 

1989; Meyer and Millar, 1999). Even epidemiological force-of-infection models may

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



be fit with such data (Heisey et ah, 2006).

When conducting analyses with age- or stage-structure data, several assump­

tions are typically required. For instance, an assumption of a stable age- or stage- 

distribution is often needed (Caswell, 2001). Another condition that frequently 

arises is when detection of animals is less than perfect, which may serve to bias es­

timators when detectability is related to age or stage class. Some assumptions may 

be relaxed to varying degrees by collecting ancillary data. For example, data from 

marked animals may be used to relax the assumption that detection probabilities 

do not vary by age- or stage-class.

One assumption common to most analyses involving age- or stage-structure 

data is that age- and stage-classes are determined without error. Otherwise, infer­

ences based on analysis of such data can be compromised. For instance, an aging 

error probability of 0 . 2  for a single age class can bias survival estimators based on 

age ratios (cf. Ricklefs, 1997) by up to 20% (Conn et al., 2005). For many animal 

populations, positive biases in age determination are often observed for young indi­

viduals, while negative biases are observed for older animals (e.g., Coy and Garshelis, 

1992; Harshyne et al., 1998; Hewison et al., 1999). If the standing age distribution is 

used for analysis in this case, one would typically arrive at overestimates of survival 

or stage-transition probabilities at younger ages, and underestimates at older ages. 

In a population modeling or population viability analysis context, these errors may 

lead to overly pessimistic projections of population trend for many populations since 

population growth rate is often heavily influenced by adult survival. In a disease 

context, ignoring errors in age-determination may serve to bias the shape of infection
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hazard profiles (e.g., Heisey et al., 2006).

Ecologists have realized possible problems with interpreting raw age- and 

stage- distributions, and have sometimes focused energy on quantifying measure­

ment error. For instance, in passerines, plumage characteristics may overlap be­

tween age classes, resulting in aging error (Green et al., 2001). In many mammal 

species, including black bear ( Ursus americanus) and white-tailed deer (Odocoileus 

virginianus), characteristics of cementum annuli from teeth have been used to age 

individuals. However, investigations using data from known-age individuals have 

found that use of cementum annuli to age individuals is not error-free (e.g., Coy 

and Garshelis, 1992; Harshyne et al., 1998; Hewison et al., 1999). Similarly, in fish­

eries studies, otolith rings often are used to age fish, but concern has been raised 

about the possible accuracy of such data and implications of age-reading errors (cf. 

Beamish and McFarlane, 1983; Fournier and Archibald, 1982; Reeves, 2003).

Given the widespread use of age- and stage-based methods in ecology, and the 

effort that ecologists have sometimes dedicated to estimating error rates in age- and 

stage-determination, it is perhaps surprising that little attention has been paid to 

incorporating such errors. For the most part, the tendency has been for researchers 

to a) discard data that have been shown to contain a large amount of measurement 

error, or b) ignore measurement error, particularly if error rates are low. Several 

exceptions exist; for instance, Green (2004) corrected for aging misclassification in 

corncrakes ( Crex crex) with a normal mixture model. However, his method was 

specific to two age classes. Similarly, Pella and Robertson (1979) and Richards et 

al. (1992) advocated use of an inverse classification matrix for estimating age distri-
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butions. This latter approach acknowledges uncertainty about classification matrix 

values as estimated from auxiliary data on aging error (i.e., the Tjj described below), 

but ignores the additional stochasticity that should be associated with the observa­

tion of ages in the particular sample of interest. For example, even if classification 

probabilities were known exactly, we would still expect variation among samples 

with regard to the number of animals correctly or incorrectly classified. Thus, al­

though this approach is reasonable when there are large sample sizes (as with many 

fisheries applications), there may be substantial negative bias in variance estimators 

in other situations.

The current paucity in available methods for correcting age- and stage- based 

data for measurement error suggests a need for a general statistical framework with 

which to address such problems. My current objective is to present a methodology 

for estimating the age- or stage-structure (hereafter, AS) of a sample by incorporat­

ing measurement error. My approach includes two conceptually distinct likelihood 

components, Li  and L2. The first component, L\, relates observed AS data to clas­

sification probabilities and the true AS structure and should be generally applicable 

to a wide class of problems. The second component, L2, consists of a model relating 

observed measurement errors to classification probabilities, and will likely require 

tailoring to the specific problem at hand. This component also requires that the in­

vestigator has auxiliary data that can be used to estimate measurement error rates, 

as with data from known AS class. After describing an underlying statistical frame­

work, including description of Li, I apply this approach to age-structured data from 

harvests of black bears in Pennsylvania. In this example I formulate models for L2
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that are specifically tailored to our focal study species. Nevertheless, I anticipate 

that this description will help to serve as a template for how one might formulate 

models for other taxa and types of misclassification.

4.2 Statistical M ethods

To begin, assume that there are m  AS classes, and that there are n  samples (e.g., 

years) from which we wish to estimate an AS distribution. Further, let CT be the 

number of individuals that are (perhaps erroneously) classified into AS class j  in 

sample i, be the number of individuals that are truly of AS class j  in sample i, 

and Tkj be the probability of classifying an individual into AS class j  given that it 

is truly of AS class k (note that J2j Tkj =  1)- For purposes of this chapter, I assume 

that the the misclassification probabilities are constant across samples, although 

extensions to relax this assumption are relatively straightforward.

Conditioning on the total number of individuals caught in sample i, Ci., it is 

possible to formulate a product multinomial likelihood for the observed data, given 

the true AS distribution and associated misclassification rates. In particular,

L(C |C ', r )  =  J J  ^T/T ~'~C r \ !r^ 1 ̂  ^
^ z l  2771

Here, bold symbols denote collections (vectors) of parameters, and 7 is the uncon­

ditional probability that an individual in sample z, picked at random, is classified 

as a member of AS class j .  This probability can be expressed as a function of the
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true AS distribution and the number of individuals sampled:

  C'ilT\j + Ci2T2j “b  • • • “b  C i m T m j

Even if misclassification rates are known, this model contains one too many param­

eters for each sample; a possible solution is to replace Cn with C*. — Cir

If misclassification rates are known, maximum likelihood inference may be 

used to estimate the true AS distribution and it’s standard error directly from (1 ). 

Typically, however, the investigator will not know misclassification rates and must 

estimate them using auxiliary data, such as when a sample of known-age individuals 

can be used to estimate the Tkj. In this case, a solution is to perform maximum 

likelihood on the product

L = L\  x L 2,

where L\  is given by (1), and L 2 is a likelihood for the auxiliary data set. This 

product likelihood requires an assumption of independence between L\  and L2, so 

that data from known age individuals, for instance, should not be included directly 

into the sample for which AS distribution is to be estimated. In practice, a rea­

sonable solution is to estimate AS distribution for those individuals whose true AS 

class is not known, and then to add in animals of known age as a posthoc correction. 

Despite this nuance, considerable flexibility is afforded by our formulation, because 

L 2 can be specifically tailored to the focal study species and the type of auxiliary 

data available. In addition, issues of model complexity and fit may be explored by
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comparing different non-parametric and parametric models for the Tkj. A specific 

example is provided below.

4.3 Black Bear Example

The Pennsylvania Game Commission (PGC) collects harvest data for black bears at 

mandatory hunter check stations as part of its annual monitoring program (Diefen- 

bach et al. (2004)). During this process, premolars are removed from dead black 

bears for age determination (Harshyne et al. (1998)). I used data from 1983-2004 

to assemble an age-structured harvest matrix for females that was, ostensibly, sub­

ject to measurement error. I also compiled records from known-age females for this 

same time period, noting any errors made in age determination at the time of har­

vest (Table 4.1). Although interest focused on the number of bears harvested in 

each of six age classes (0-4 or 5+), I initially classified bears into one of 13 age 

classes (0 - 1 1  or 1 2 +) for analysis to increase precision on parameters describing the 

aging error process. Known-age bears were those initially live captured as a cub or 

as a yearling still with its mother; blind cementum annuli analyses with recovered 

or recaptured known-age bears provided auxiliary information on aging error (for 

details, see Harshyne et al. 1998).

My goal was to estimate the age distribution of annual harvest samples, ad­

justed for misclassification rates. To do this, I needed to formulate models relating 

observed aging errors to misclassification probabilities (i.e., the Tkj). My strategy 

was to compare the relative parsimony of several such models that represented dif-
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Table 4.1: Aging errors by age class for known-age female black bears in Pennsyl­
vania from 1983-2004.

True age Classified age
1 2 3 4 5 6 7 8 9 1 0 11 1 2 +

1 257 1 1 1 1 0 0 0 0 0 0 0 0

2 2 58 4 1 0 1 0 1 0 0 0 0

3 2 4 38 1 1 1 0 0 0 0 0 0

4 1 1 0 27 0 0 0 0 0 0 0 0

5 0 0 0 2 30 0 0 0 0 0 0 0

6 0 0 0 0 1 6 0 0 0 0 0 0

7 0 0 0 0 1 1 6 1 0 0 0 0

8 0 0 0 0 0 0 0 7 0 0 0 0

9 0 0 0 0 0 0 1 2 3 1 0 0

1 0 0 0 0 0 1 0 0 1 1 3 0 0

1 1 0 0 0 0 0 0 0 0 0 2 2 0

1 2 + 0 0 1 0 0 0 0 0 0 0 1 1 0

ferent working hypotheses about how error rates changed with age. Because of 

the relative sparseness of known-age data (Table 4.1), I only considered parametric 

models for aging error. A non-parametric model based on aging error proportions, 

for instance, would in this case result in a positive probability of incorrectly aging 

a four-year-old as a one-year-old, but a zero probability of aging a four-year-old as 

a three-year-old. Following Richards et al. (1992), I considered models for aging 

error based on the normal density, but also included Laplace models that allowed 

for a more leptokurtic (i.e., fat-tailed) distribution for error rates. The Laplace (or 

double exponential) model is specified by the probability density function

Since atypical or broken teeth may result in larger errors than “normal” teeth
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(Harshyne et al., 1998), I anticipated that the distribution for aging errors would 

have heavier tails than specified by the normal density.

In total, I compared the relative parsimony of six models for aging error (Ta­

ble 4.2). Models could vary by parametric form (Normal or Laplace), and by the 

parameterizations for the mean and standard error of aging error distributions. I 

considered two paramaterizations for mean error. In the first, the mode of the clas­

sified age was set to the true age (model //(a)); in the second, the mode of classified 

age was allowed to change as a function of age, such that fi — a + /3a (model //(A)). 

I included the second parameterization because negative biases in age determina­

tion are often observed for older age classes. Similarly, I allowed standard error to 

remain constant across age classes (model a(-)) or to be a linear function of age 

class (model a(A)). I introduced the latter specification for standard error because I 

expected that the variance of aging error distributions would increase with age since 

older individuals have more cementum annuli than younger individuals, and thus 

more opportunity for irregularities in cementum deposition. Further, the premo­

lars of older individuals are more susceptible to breaking during tooth extraction, a 

factor which can contribute to errors in age determination (Harshyne et al. 1998). 

Regardless of the specified model, a separate a  was always estimated for individuals 

in the 1 2 +  age class since some individuals in the 1 2 +  age category could be much 

greater than age 1 2 , and thus have relatively small misclassification probabilities. 

For instance, an 18-year-old individual would have a small probability of being mis- 

classified than an 11-year-old. The aging error model for this category could then 

be interpreted as applying to an individual from this group chosen at random.
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Although the underlying, unconditional models for aging error were contin­

uous, observed error rates were discrete as well as being right- and left-truncated.

cubs can be identified without error by the presence of milk teeth. In this case, 

errors could only be positive. In order to accommodate restrictions of this type, 

it was necessary to condition on permissable values for error rates. Rather than 

integrating over the relevant continuous probability distribution, I again followed 

Richards et al. (1992) and set discrete aging error probabilities based on values of 

the continuous probability density evaluated at discrete points, normalized to ob­

tain a true probability mass function given the constraints. In addition, because 

the age 1 2 +  category represents a pooling of age classes greater or equal to twelve, 

the probability of classifying an individual less than age twelve into this class could 

be given by summing probabilities of incorrectly aging an animal as age twelve or 

higher. Thus, the probability of classifying an individual into age class j  given that 

it is of true age k, k < 1 2 , can be obtained as

where Y  gives a “large” age, f (x \a ,  /?) gives a continuous probability density function 

(e.g., Normal or Laplacian) with location parameter a  and scale parameter (3, and

For instance, it is virtually impossible for a 2-year-old to be aged as a cub because

1

/(*!*, 0 *)
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In practice, it suffices to take Y  sufficiently large so that Y1T=y a k) is close to

zero for k < 12. The aging error model for individuals that are truly of age category 

1 2 +  was similar, but here I simply considered the categorical model

f ( j \ k  =  1 2 , 0 1 2 ) n  ̂ ^  1 0
T 12 j  =      0  < 7 < 12.

J E “ i/(i|* = 12,aia)

Following this parameterization, one still needs to formulate a likelihood for the 

auxiliary aging error data. Given a finite number of possible classes for aging error, 

it is once again natural to consider a multinomial form:

T -  T T  ^  Xj l r Xk2 Xk,12+
L2 “  1 1  X kl\Xk2\ . . .  X kyl2+' kl Tfe2 ' •' T*’12+ ’

Here, Mk gives the total number of individuals that were of known age k when 

aged at the time of harvest and X kj  gives the total number of individuals that were 

classified into age category j  given they were of true age category k.

All model fitting was performed via maximum likelihood in SAS/IML (SAS 

Institute Inc, 2004); requisite code is available from the author. My approach was to 

first compare the parsimony of different models for aging error data (i.e., L 2),  and 

then to use the highest ranked model to estimate the age distribution of harvest 

samples. For the second step, I used a log link on all Cij parameters to ensure 

positive values for all estimates.

Comparing the relative parsimony of aging error models using AICc (Burn­

ham and Anderson, 2002) provided convincing evidence that aging error was better
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Table 4.2: Summary of model selection results for aging error models. Reported are 

K,  the number of parameters in each model, AAICc, the difference in AICc score 

from the top model, and logL, the log likelihood. The effective sample size was 496, 

the total number of known-age bears.

Model K AAICc logL
Laplace //(a) cr(A) 3 0 . 0 -251.7
Laplace /i(A) cr(A) 4 0.67 -251.0
Laplace /i{a) cr(-) 2 1 2 .0 -258.7
Normal fi(A) cr(A) 4 255.5 -380.4
Normal //(a) cr(A) 3 262.2 -383.8
Normal /i(a) a(-) 2 319.7 -412.6

modeled using the leptokurtic Laplace distribution and strong evidence that the 

standard error of the underlying distribution for aging errors increased with age. 

However, there was no substantial evidence that the mode of aging error distri­

butions changed with age (Figure 4.1, Table 4.2). The highest ranked model did 

not fit the aging error data according to a chi-square goodness-of-fit test (x|=15.8, 

p=0.05). However, when one outlier (a 12+ individual incorrectly aged as a three 

year old) was removed the fit improved (x7=T2 .0 , p=0.10). In calculating the test 

statistic, I pooled cells with expectations less than 5.0 until the sum of expectations 

was greater than 5.0 to avoid problems caused by cells with small frequencies (cf. 

Steel, Torrie, and Dickey, 1997).

Using the AICc favored model, I estimated the age structure of harvest sam­

ples. While estimates were available for all 13 age classes (0-11 and 12+), interest 

has typically focused on 6  age classes (0-4 and 5+) for management purposes. Thus, 

I applied the delta method (Seber 1982) to get estimates of the numbers of individ-
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Figure 4.1: A selection of observed and fitted distributions for aging error as esti­
mated with data from known-age females. Histogram bars represent the observed 
relative frequency of aging classifications by age, while the solid line represents the 
estimated underlying, continuous Laplacian model for aging error.
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uals in age class 5+ and accompanying standard errors (Figure 4.2).

In general, the estimated age structure was similar to the observed data, but 

there were several differences. In particular, age classes 1, 3, and 5+ appeared to 

be under-represented in observed samples, whereas age classes 2 and 4 were over­

represented. Further, the standard error for age classes 2-4 was often quite high 

(CV up to 33%), demonstrating considerable uncertainty about the age structure of 

the sample even under moderate levels of aging error, at least with the quantity of 

aging error data that were available. Uncertainty was even higher when all 13 age 

classes were estimated, with CV > 0.5 for most older age classes.

4.4 Discussion

The process of assigning individuals into a given AS class is often subject to 

measurement error. As I have shown, the raw data (ignoring misclassification error) 

can include consistent biases in the number of individuals in each AS class, even 

when error rates are relatively low. In such situations, use of auxiliary data on error 

rates can be used to better estimate the AS structure of a sample and reflect uncer­

tainty about this distribution. This is particularly relevant given the prevalence of 

age- and stage- based methods in ecology, where errors associated with AS distribu­

tions are often ignored. Methods for estimating population parameters 0  (especially 

population size) from AS data often are based on probability models which specify 

the likelihood of 9 given the data, P (0 |C ) (e.g., Gove et al., 2002; Skalski et al., 

2005; Udevitz and Ballachey, 1998). A natural adjustment to acknowledge (and
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Figure 4.2: Number of female black bears harvested in Pennsylvania from 1983-2004 
classified by age category. Dotted lines represent raw harvest numbers (i.e., the Cb), 
while solid lines represent estimated harvest numbers accounting for aging errors 
(Cij). Also pictured are vertical bars representing 1 SE for estimated abundance. 
Note that the scale of the y-axis changes between panels to highlight differences 
between the observed and estimated age distribution. Not displayed here is the 
number of harvested cubs each year, which could be determined without error. 
Estimates of the number of age 5+ individuals are pooled from age classes 5-12+ of 
the original model, with standard error obtained via the delta method.
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model) aging error is to reformulate the model as P(0|C)P(C|C', r).

In some cases, the performance of estimators for 0 (as measured by mean 

squared error for example) could improve when uncertainty associated with AS 

determination is ignored. This would be the case when the additional variance 

imposed on an estimator outweighs improvements to bias (or, more specifically, 

bias squared). Researchers thus have reason to desire estimators of population 

parameters robust to errors in AS classification. Whatever estimation approach is 

adopted, it is important to quantify the effects of errors in AS determination on 

estimator performance. In this regard, Monte Carlo simulations may be used as a 

tool to explore the pros and cons of either ignoring or explicitly recognizing this 

type of uncertainty.

If the investigator chooses to use auxiliary data on aging error to help estimate 

the age structure of a sample, I recommend initially partitioning the data into a large 

number of age classes. Because the group is an amalgamation of multiple age 

groups, model parameterizations that allow the mean or standard error to change 

as a function of age classes do not use data from the ’+ ’ group to inform these 

relationships. In my experience, precision on age structure estimates will tend to 

increase when using a large number of age classes because sample sizes are higher. 

If desired, older age classes may then be pooled back to a biologically meaningful 

’+ ’ group, using the delta method to estimate an accompanying standard error.

My approach in this chapter was to use data from known age individuals 

to estimate misclassification rates. Although these data are preferable, logistical 

constraints may sometimes prevent the investigator from resampling known age in-
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dividuals. Further, because known-age individuals are often followed from a young 

age, long studies may be needed to get data on error rates associated with older age 

classes. In these situations, it may be necessary to use the approaches of Richards 

et al. (1992) or Clark (2004), who proposed flexible methodologies for estimating 

misclassification probabilities (r2J) when there are multiple age readings for individ­

ual animals but none of known age. In this case, the investigator will be required to 

make more restrictive assumptions, such as the expected mode of raw age readings 

equalling the true age with the probability distribution for errors being symmetric 

about this mode. These assumptions may be unrealistic in some scenarios as the 

aging criterion may be biased towards younger or older ages depending on species 

and the true age of the individual (e.g., Beamish and McFarlane, 1983; Harshyne 

et al., 1998). In contrast, with sufficient known age data it is possible to entertain 

models in which measures of central tendency are permitted to change as a function 

of age class, as I have done here.

Demographic analyses using population models often depend critically on pa­

rameters such as survival, recruitment, and stage-transition probabilities. If AS 

data are used to estimate these parameters, persistent inferential biases may result 

when there are errors in AS determination and these errors go unnoticed or are ig­

nored. Using auxiliary data on error rates, I have shown how to derive model-based 

estimates of AS distributions, together with a measure of precision. Under perfect 

detection of individuals, these estimates may be taken at face value and traditional 

life table approaches may be used to estimate population parameters. In other cases, 

more rigorous methods may be needed, such as those described at the beginning of
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this section.
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Appendix A

Bias of the Lincoln-Petersen  

Estim ator Under Encounter 

Covariance

Seber(1982) described the 2-sample Lincoln-Petersen estimator of abundance. Ig­

noring a small sample size correction, the Lincoln-Petersen estimator is given as

m 2

where N  denotes an estimator of population size, n i denotes the number of individ­

uals initially captured and marked during a first sample occasion, n2 denotes the
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total number of individuals caught on a second sampling occasion, and m 2 is the 

number of previously marked individuals caught in the second sample.

A first order Taylor series approximation for the expectation of the estimator 

may be written as

/ yv E( n i ) E( n i )  E (zn + z10) E (ar0i + in)
= ------------- W i I)-------------’

where J n  gives the number of individuals caught in both samples, Xio gives the 

number caught in the first sample but not the second sample, and rr0i gives the 

number caught in the second sample only. If pn denotes the probability individual 

i is caught in sample 1 , and pt2 denotes the probability they are caught in sample 

2, then the probability they are caught in both samples is p n P i 2 . Similarly, the 

probability that they are caught in the first sample but not the second is pn(  1 — 

P i 2 ) , and the probability they are caught in the second sample but not the first is 

(1 — pn)pi2. Thus we equivalently have

E  i E  [P«iPa] + E  [pii (1 -  p i 2 ) ] }  Y ^ = A E  \ P n P i 2 ] +  E  [(1 -  p a )  p i 2 } }

K '  E ,= i E  \pilPi2]

Making the assumption that

Pil
~  /

/
Ml

5
(J\2

\

Pi2 M2 0"12 Gl /
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and using the well known property E X Y  — Cov(X,  Y) + E X E Y ,  we may write

E  [PilPi2] = 012 +  P1P2

E  \pn (1 -  Pi2)\ =  E  \pn] -  E  \pnPi2} =  Pi -  0-12 -  P1P2,

and

E  [(1 ~  P i l )  Pi2] =  P2 ~  012 ~  P l ^ 2 -

We thus have

E N  p i  p,2

012 +  PlP2

and

012 +  P1P2

PlP2

This approximation works reasonably well when encounter probabilities are bounded 

away from 0 or 1, and confirms negative bias in the LP estimator whenever the co- 

variance of encounter probabilities is positive. For a similar derivation in the context 

of mark-recapture distance sampling, see Borchers et al. (2006). For derivation of 

bias under individual heterogeneity, see Carothers (1973) and Gilbert (1973).
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Appendix B

A U ser’s Guide to Program  

AGEHARV

B .l Introduction

The incarnation of AGEHARV described here pertains to the example analysis in 

Chapter 1. Focus is thus on the case where a) the auxiliary dataset is one of mark- 

recovery, and b) the Brownie et al. (1985) parameterization is chosen for recoveries. 

Adaptations for other auxiliary datasets are relatively straightforward and typically 

only involve reprogramming functions for data input and log likelihood calculations. 

The current executable, as well as C + +  source code are available from the author.
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Program AGEHARV relies on a minimum of three user-created ASCII text 

files to provide data and model specification for analysis. The first is “inpfile.txt,” 

which gives AGEHARV information about the dimension of the problem, Markov 

Chain Monte Carlo (MCMC) options, and input values. The file “harvfile.txt” 

should contain the age-at-harvest matrix for the population to be analyzed. The 

file “histfile.txt” should include all mark-recovery encounter histories. Finally, the 

optional file “DMfile.txt” may be included if one wishes to use a design matrix to 

specify a user defined model. Below, I provide information on each of these com­

ponents, together with implementation instructions and a description of program 

output.

B.2 User Defined Files

B.2.1 The Input File

The input file specifies information about problem dimensions, MCMC options, 

and initial values (Figure B .l). The first block of input (i.e., NYR to OVERD) are 

exchangeable as far as relative position. Where defaults are provided, specific entries 

may also be omitted. The second block of the input file (NAME to FPRIORS) must 

be included in the exact order specified, although WATCH, SPRIORS, HPRIORS, 

and FPRIORS may be omitted. The following is a more complete description of 

what these values mean:

N Y R -  Number of years of the study. This should be equal to the number of
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NYR 3 
NCOH 3
NITER lOOOOOO 
NHIST 1000 
NOBREED 2 
NWATCH 2 
ADAPT 1 
NADAPT 50000 
EVERY 5 
USERDM 0 
SPRIORS 1 
HPRIORS 1 
FPRIORS 1 
GOF 1
REPSGOF 100 
OVERD 0

NAME StdHddFdd 
INIT 10000 8000 20000

10000 8000 6400 14000 
10000 8000 6400 14000 
.4 .4 -2 .4 

INIT 3000 1500 2000
3000 1500 1200 1400 
3000 1500 1200 1400 
.4 .4 -2 .4 

SIGMA 100 70 60
90 45 50 60 
95 45 50 60 

.06 .06 .06 .05 
WATCH 1 12
SPRIORS N 0 1.75 N .4 1 
HPRIORS N -2 .5 
FPRIORS N .3 .5

Figure B.l: Example input file for program AGEHARV, which would be saved as 
“inpfile.txt.”
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rows in the age-at-harvest matrix. The current version of AGEHARV was compiled 

to allow a maximum of 15 years of data.

N C O H -  Number of cohorts. It is assumed that the last distinguishable cohort 

is a ’+ ’ category (e.g., age A  and older). The current version of AGEHARV allows 

a maximum of 8  cohorts.

N I T E R -  Number of Markov chain iterations per chain. Typically this will 

need to be quite large for inference to be reliable (see Chapter 2). However, the 

maximum number of values that can be stored is 2 0 0 , 0 0 0  so if a value greater 

than 2 0 0 , 0 0 0  is used, the user must “thin” the chain (see the subsequent entry for 

E V E R Y ) .

N H I S T -  Total number of mark-recovery histories contained in encounter his­

tory file. The maximum is currently set to 10,000.

N O B R E E D -  The number of age classes which do not contribute to recruit­

ment the following year. For instance, in Pennsylvania, cubs and yearling black 

bears typically do not become pregnant, so this value is set to 2 .

N W A T C H -  The number of beta parameters (transformed scale) to monitor 

throughout MCMC simulation. Note that the default is zero, so this entry can be 

omitted from the input file if desired.

A D A P T -  If set to 1, AGEHARV uses an algorithm described in Chapter 2 

to adjust proposal standard deviations to achieve “optimal” acceptance rates. The 

default is 1 .

N  AD  A P T -  If A D A P T  =  1, this value specifies how many iterations the adapt 

algorithm should continue for. Since a window of 1000 is used before an adjustment
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is made, this value should often be in the 30,000-60,000 range. The default is 30,000.

E V E R Y -  This value allows one to “thin” Markov chains by only recording 

“every” x  iterations. This is useful for long chains that would otherwise exceed the 

program image’s maximum dimensions. The default is one.

U S E R D M -  If set to zero (the default), AGEHARV will use the prespecified 

model named later in the input file. If set to 1, AGEHARV will look for the file 

“DMfile.txt” which contains a user defined model structure (see section B.2.4).

S P R I O R S ,  H P R I O R S ,  and F P R I O R S -  If set to zero, AGEHARV uses 

default prior distributions for these fixed effect parameters. Default priors are Nor- 

mal(0,3) on the logit scale for survival and recovery rates, and Normal(.25, 1) on 

the log scale for recruitment. If set to one, these options allow the user to specify 

their own prior distributions later in the input file. Note that this only makes sense 

for fixed effect models. The default is zero.

G O F -  If set to one, AGEHARV employs a Bayesian goodness-of-fit test as 

described in Chapter 2. The default is zero.

R E P S G O F -  If GOF = 1, the number of iterations for which to calculate 

a test statistic. These are spread evenly across the Markov chain after the burnin 

period is passed. The default is 100.

O V E R D -  If O V E R D  =  1, overdispersion random effects are included on all 

recovery rates as described in Chapter 1. The default is 0.

N A M E -  This gives one of a number of models that AGEHARV can build on 

i t ’s own. This is always in the form of SxaUybFzc, where x  denotes a submodel 

for survival, y denotes a submodel for recovery rate, and z denotes a submodel for
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recruitment rate. One of the following codes should be substituted for each:

• d -  time- and age-constant

• t -  time-specific fixed effects

• T -  time-specific random effects

•  a -  fixed effects for each age class, time constant

• +  -  time- and age-specific additive fixed effects

• P -  age-specific fixed effects with additive time-specific random effects

Additionally, it is possible to specify a linear trend on each of these submodels by 

specifying a ’T ’ for a, b, or c (however don’t try it with the ’+ ’ or ’t ’ submodels 

because these aren’t identifiable!). Even if U S E R D M  =  1, a model still needs to 

be specified here for consistency even though it will be meaningless.

I  N I T -  User defined initial values for the start of simulation. Two sets of values 

are needed since two Markov chains are run for every invocation of AGEHARV. It 

is paramount that the correct number of values be entered here, and that values 

for abundance are chosen so that they are internally consistent (e.g., the size of a 

cohort in one year is less than or equal to the size the previous year minus harvest). 

The order in which they are entered is also important. Here are some guidelines:

•  Cohort specific abundance is entered first, with rows representing time and 

columns representing age class. There are N C O H  age classes in the first year, 

and N C O H + 1 age classes in remaining years, for a total of N Y R  x (N C O H +  

1) — 1 entries
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•  Survival parameters are entered after abundance. Fixed effects on the logit 

of survival are entered first, and random effects second. For instance, with 

submodel specification ’T ’ there would be one fixed effect parameter and Y  — l 

random effects terms (recall that for the Brownie parameterization there are 

Y  — l  possible time periods for survival).

•  Recovery rate parameters are entered after survival, with the order following 

the same pattern. However, in this case there are Y  possible time periods. 

Also, if O V E R D  — 1, one must also include N Y R  x N C O H  overdispersion 

random effect terms at the end. As with survival, all effects are on the logit 

scale.

• Recruitment rate parameters are entered after recovery rate. As with survival 

there are a Y  — 1 possible time periods. Also, if an age effect is desired (this 

will frequently be inestimable), there will be A — N O B R E E D  fixed effects.

•  Initial values for the precision parameters of random effects models are entered 

last. If they occur at all, they occur in the following order: 1) precision for 

survival random effects, 2 ) precision for time-specific recovery rate random 

effects, 3) precision for overdispersion random effects on recovery rate, and 4) 

precision of random effects on recruitment rate.

S I G M A  -  With the exception of random effect precision terms, an initial 

proposal standard deviation must be specified for each parameter. They are specified 

in the same order as for initial values.
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W A T C H  -  If N W A T C H  > 0 in the preamble, this is where you would specify 

which beta parameters you want to follow throughout the estimation procedure. For 

instance, in Figure B .l, parameters 1 and 12 are followed. These correspond to cub 

abundance in year 1 and year 1 survival. Current limitations allow you to “watch” a 

maximum of 20 parameters per run. Note that the W A T C H  line should be omitted 

if you do not desire to watch any parameters. See section B.3.2 for information about 

output related to watched parameters.

S P R IO R S ,  H P R I O R S ,  and F P R I O R S  -  If you allowed user defined priors 

in the preamble, this is where you would specify them (otherwise omit these lines). 

Choices for distributions of fixed effects on the transformed scale are limited to 

normal and gamma, where an ’N’ specifies a normal distribution and a ’G’ specifies 

a gamma distribution. For the normal distribution you must specify a mean and 

variance, and for the gamma you must specify a shape and scale parameter.

B.2.2 The Encounter History File

The encounter history file must always be saved as “histfile.txt.” Each line should 

contain an encounter history, analogous to the format for live-dead encounter his­

tories in Program MARK (White and Burnham, 1999), the age of the animal or 

group of animals in question, and a frequency. Unlike MARK, AGEHARV does not 

calculate frequencies before estimation, so tabulating frequencies beforehand can 

substantially improve on computing time. Figure B.2 gives an example encounter 

history file for the case of two age groups and a three year study.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 0 0 0 0 0 0 65
1 0 0 0 0 1 0 3
1 1 0 0 0 0 0 8

1 0 0 1 0 0 0 8

1 0 0 0 0 0 1 171
1 1 0 0 0 0 1 18
1 0 0 0 0 1 1 1 0

1 0 0 1 0 0 1 17
0 0 1 0 0 0 0 72
0 0 1 0 0 1 0 4
0 0 1 1 0 0 0 8

0 0 1 0 0 1 1 17
0 0 1 0 0 0 1 176
0 0 1 1 0 0 1 23
0 0 0 0 1 0 0 71
0 0 0 0 1 1 0 13
0 0 0 0 1 0 1 192
0 0 0 0 1 1 1 24

Figure B.2 : An example encounter history file, which would be saved as “hist- 
file.txt.”

B .2 .3 The Age-at-harvest File

The age-at-harvest file contains a summary of age-specific harvest mortality by year. 

Rows delineate years, while age is delineated by column. This file should be saved 

as “harvfile.txt.” An example for six age classes and 14 years of data is provided in 

Figure B.3.

B .2.4 The Design M atrix File

If one wishes to fit a particular model that is not one of the pre-specified models, 

one must include a design matrix (DM) file (“DMfile.txt”) in the same directory as 

the other input files. Figure B.4 shows an example DM file for a case where there 

are 3 years of data and 3 age classes. For survival and recovery rate there are fixed
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144 165 76 56 34 124 
164 189 89 85 34 128
156 216 105 111 63 146 
269 303 146 130 63 202 
144 145 53 67 34 125 
176 235 82 89 53 147 
191 175 94 102 55 171
157 306 103 98 49 148 
148 157 82 67 42 148 
200 301 93 111 41 184 
166 249 101 97 51 175 
247 227 110 124 49 221 
234 454 143 118 77 191 
168 251 87 101 35 176

Figure B.3: An example age-at-harvest file.

effects for each age class, but for survival there are also random effects for year (note 

that random effects are of limited utility when there are so few years so this is for 

illustrative purposes only).

The first line of the preamble tells AGEHARV that the design matrix is 18 

rows by 10 columns. The number of rows should always be the number of real 

parameters for survival, recovery rate, and recruitment (abundance parameters are 

omitted because they are all treated as fixed effects in this version of AGEHARV), 

plus one extra row for each parameter type that requires a random effect. The total 

number of such real parameters is (Y  — 1) * A  +  Y  * A  +  (Y  — 1) * (A — N O B R E E D ), 

where Y  gives the number of years of data, A  gives the number of age classes.

The second row of the preamble tells AGEHARV that the first column having 

to do with recovery rates (h) is the sixth, and the first column having to do with 

recruitment rate ( /)  is the ninth. By process of elimination, AGEHARV can deduce 

that columns 1-5 apply to survival (S ), columns 6 - 8  apply to h, and column 9
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NROW 18 NCOL 10
firsth (5 firstf 9
RES 1 REH 0 REO 0 r:
1 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

Figure B.4: An example design matrix file.
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applies to / ,  with the final column associated with the random effects for survival 

(see below).

The 3rd line of the preamble tells AGEHARV how many parameter types 

require random effects. For instance, in the above file ’RES 1’ occurs in the 3rd 

line of the preamble, indicating that there are to be random effects for survival. 

By default, random effect terms always occur at the end of a given parameter’s 

columns; one must always insert enough random effect columns for the parameter 

type in question. For instance, in a dataset that includes Y  years of data, there are 

Y  — 1 years that survival is estimated for, Y  years that recovery rate is estimated 

for, and Y —l years that recruitment rate is estimated for. Additionally, if there are 

overdispersion random effects on recovery rate (the REO entry is set to one), there 

must by A  x Y  random effects. Finally, whenever including random effects, one 

must add an additional row and column to the end of the design matrix in order to 

allocate an additional parameter corresponding to the precision of the random effects 

model. In the above file, the entry in the 18th row and 10th column corresponds 

to the precision of survival’s random effects. Note that if O V E R D  =  1 in the main 

input file (i.e., there are overdispersion random effects on recovery rate), then the 

entry for REO in the DMfile should also be 1.

Let’s consider an example of the models specified by the preceding design 

matrix. First, isolating the components of the design matrix having to do with 

survival, we have

1 0  0 1 0
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Table B.l: The survival submodel as formulated in Figrure B.4 in terms of model 
components.

Real Fixed Effects Random Effects Model 
Parameter

01 02 02 Cl £2
S n 1 0 0 1 0 01 +Cl
S u 0 1 0 1 0 02 +  Cl

S u + 0 0 1 1 0 03 + el
*$21 1 0 0 0 1 01 +  £2
S 22 0 1 0 0 1 02 +  £2
523+ 0 0 1 0 1 03 + e2

0 1 0  1 0  
0  0  1 1 0  

1 0 0 0 1 
0 1 0  0 1 
0 0 1 0  1

Here, there are 3 columns for fixed effects and two columns for random effects, 

with each row corresponding to a real parameter. Rows proceed by first advancing 

in age class, and then in time, so that we might consider the schematic presented in 

Table B.l.

B.3 Implementation

B.3.1 Command Line Instructions

After formatting user defined files, one invokes AGEHARV by opening a DOS win­

dow, navigating to the directory and folder that AGEHARV.exe is stored, typing 

AGEHARV path name at the prompt. Here, path name tells AGEHARV the directory 

in which user defined input files are stored. If no warning message occurs, every-
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thing appears to be in good shape. If there are errors associated with input values 

or proposal standard deviations, it is likely that an incorrect number of entries have 

been provided in the master input file. If a message appears saying that initial val­

ues are internally inconsistent, then the initial abundance values and harvest data 

are not compatible. In either case, one must correct the problem or you will obtain 

nonsensical results!

B.3.2 Output

There are two default pieces of output that one gets after successful completion of 

AGEHARV. The file “outfile.txt” gives model selection results (DIC for the mode 

and mean, respectively), a Bayesian p-value, estimates of beta parameters, real pa­

rameters, total abundance, and Gelman-Rubin statistics. Second, the ASCII text 

file “nfile.txt” provides marginal posterior samples of total abundance by year. Sam­

ples are in sequential order with breaks indicated by carriage returns. In practice, 

I find it useful to pull these results into a statistical programming language for vi­

sualization. For example, sample paths for the first 2 annual abundance values can 

be plotted in R  via code similar to the following:

npar=14
niter=200000
file="c:/conn/bear/PennsylvaniaBBdata/Nfile.txt" 
efile=scan(file,what="double",sep=’\n’) 
datamat=matrix(0,nrow=npar,ncol=niter)

curline=l
for(ipar in l:npar){

datamat[ipar,]=as.double(efile[curline:(curline+niter-1)])
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curline=curline+niter
>

par(mfrow=c(2,2)) 
for(ipar in 1:2){

plot(datamat[ipar,2:niter],type="l")
>

If the W A T C H  option has been specified in the master input file, posterior 

samples for these parameters will be output in the same manner to the file “mat- 

file.txt.”
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