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ABSTRACT 
 
 
 

THE IMPACT OF TROPICAL INTRASEASONAL VARIABILITY ON   

SUBSEASONAL-TO-SEASONAL PREDICTABILITY 
 
 

 
Subseasonal-to-seasonal (S2S) timescales have been identified as a gap in weather forecast 

skill at 2 weeks to 2 months lead times. This timescale is set by midlatitude synoptic predictability 

limits, and sits between the typical weather timescale and the longer annual to interannual periods 

that may have skill due to knowledge of low-frequency phenomena such as El Niño-Southern 

Oscillation (ENSO). Previous studies have shown that tropical intraseasonal variability serves as 

an important source of S2S predictability in the midlatitudes based on a linear Rossby wave theory. 

The theory suggests that consistent weather patterns are excited by tropical divergence and 

associated teleconnections to the extratropics on S2S timescales that influence predictability. 

However, those physical processes that provide sources of S2S forecast skill have yet to be fully 

characterized. This thesis examines aspects of tropical intraseasonal variability that are important 

for S2S prediction, including how tropical intraseasonal variability has changed with warming 

over the last century and how the misrepresentation of such variability in a weather forecast model 

leads to errors in midlatitude precipitation S2S forecasts.  

In the first part of this thesis, three reanalyses datasets (ERA5, MERRA-2, and ERA 20-C) 

are examined to quantify the amplitude changes in a dominant mode of intraseasonal tropical 

variability, the Madden-Julian oscillation (MJO), over the last century. MJO-associated 

precipitation and vertical velocity amplitude are found to exhibit a complex evolution over the 

observational record, where the precipitation has larger increases than the vertical velocity. A 
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decrease in the ratio of MJO circulation to precipitation anomaly amplitude is detected over the 

observational period. Tropical weak temperature gradient theory is used to show that this decrease 

is consistent with the change in tropical dry static stability that has occurred under climate warming. 

The weakening MJO circulation per unit precipitation over the past century may have modified 

associated teleconnections and has implications for S2S prediction in the tropics and midlatitudes. 

In the second part of the thesis, emphasis is placed on understanding S2S precipitation 

forecast errors for the western United States (U.S.) in an operational weather model. A set of 

hindcasts during boreal winter, where the tropics are nudged toward reanalysis, is compared to 

hindcasts without nudging. The western U.S. precipitation forecasts are found to improve with 

nudging at 3-4 week lead times. Using a multivariate k-means clustering method, hindcasts are 

grouped by their initial states and one cluster that exhibits an initially strong Aleutian Low is found 

to provide better forecast improvement. The improvement originates from the poor representation 

in the non-nudged hindcasts of the destructive interference between (1) the anomalous Aleutian 

Low and (2) the teleconnection pattern generated by certain phases of the MJO during non-cold 

ENSO conditions. These results suggest that improving the simulation of tropical intraseasonal 

precipitation during the early MJO phases under non-cold ENSO may lead to better 3-4 week 

precipitation forecasts in the western U.S. 
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CHAPTER 1 
 
 

Introduction 
 
 
 

Accurate weather prediction is beneficial to human society. For example, the cost related 

to weather and climate disasters was over 47 billion U.S. dollars annually on average between 

1981-2020 (National Centers for Environmental Information; accessed in August 2021), and 

having accurate weather prediction may allow humans to better prepare for such disasters and 

reduce the loss to property and human life. Weather forecasts on shorter timescales within a week 

have relatively good skill based on the chaotic nature of the atmosphere and the good 

understanding of atmospheric physical processes (Bauer et al. 2015). The forecast skill on longer 

timescales of more than 30 days is also attainable because it depends on well-understood slowly-

varying lower boundary conditions such as sea surface temperature (Chen et al. 2010; Doblas-

Reyes et al. 2013) and processes related to them such as El Niño-Southern Oscillation (ENSO). 

However, current weather forecast systems have difficulty providing good forecasts on timescales 

of about 10 to 30 days (Hudson et al. 2011), and the processes regulating predictability on these 

timescales are not well understood. These so-called subseasonal-to-seasonal (S2S) timescales have 

long been identified as a gap zone of weather forecast skill even though skillful forecasts at these 

ranges are highly desired by society (White et al. 2017).  

Tropical intraseasonal variability is thought to be an important source of S2S predictability 

(e.g. Vitart et al. 2012). In the tropics, regions of precipitation are commonly associated with 

vertical air motion and divergence at the upper troposphere. Based on a linear Rossby wave theory, 

when such divergence occurs and a divergent flow impinges on a strong positive meridional 

absolute vorticity gradient (for example, in the subtropical jets), vortex stretching and vorticity 
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advection can generate a Rossby wave source (RWS), exciting stationary Rossby wave trains to 

the extratropics (Hoskins and Karoly 1981; Sardeshmukh and Hoskins 1988; Hoskins and 

Ambrizzi 1993). Tropical variability that evolves slowly on S2S timescales, such as the Madden-

Julian oscillation (MJO; Madden and Julian 1971, 1972), causes tropical convection to be in a 

similar state for a week or longer which excites associated RWS and consistent midlatitude 

teleconnections (Tseng et al. 2019). These teleconnections propagate into the midlatitudes 1-2 

weeks after tropical RWS appears (Branstator 2014) and generate consistent weather patterns. 

Based on the physical process discussed, tropical intraseasonal variability could be seen as a source 

of S2S predictability. 

As discussed, tropical convection is able to excite consistent weather patterns in the 

extratropics (Tseng et al. 2019). Hence, how tropical intraseasonal variability is affected by a 

changing climate can have important implications for tropical-extratropical interaction, S2S 

predictability, and future weather forecasts. A dominant mode of tropical intraseasonal variability 

that affects S2S predictions, the MJO (Madden and Julian 1971, 1972), is thought to be strongly 

impacted by a warming climate (Maloney et al. 2019). In Chapter 2, we investigate changes in the 

MJO over the observational record using three reanalysis datasets. The ratio of MJO circulation to 

precipitation amplitude is found to have decreased over the past few decades, and such a trend can 

be explained by the increase in tropical dry static stability in the troposphere as the climate warms. 

In isolation, this result implies that the MJO has become increasingly inefficient at exciting the 

teleconnection patterns bridging the tropics and the extratropics. If changes to the basic state 

vorticity gradients that affect generation of the RWS and teleconnection pathways are not 

considered, this may decrease S2S predictability in the extratropics. This work is published in 

Geophysical Research Letters as:  



 

 3 
 

 

 

¨ Hsiao, W.-T., Maloney, E. D., & Barnes, E. A. (2020). Investigating Recent Changes in 

MJO Precipitation and Circulation in Multiple Reanalyses. Geophysical Research Letters, 

47(22), e2020GL090139. 

 

Since tropical-extratropical interactions excited by tropical intraseasonal variability is a 

source of prediction skill on S2S timescales (Vitart et al. 2012), it is possible that misrepresentation 

of the tropics in models could lead to forecast errors in the extratropics. To improve current 

weather forecasts on S2S timescales in operational weather models, one way is to determine how 

and why tropical forecast errors can lead to large degradation in extratropical S2S forecast skill. 

In Chapter 3, hindcasts with the tropics nudged toward the observational fields (Dias et al. 2021) 

are analyzed to identify the tropical origins of forecast errors, particularly those in the western 

United States (U.S.) precipitation. Conditional forecast improvements are identified by subsetting 

the hindcasts using a multivariate k-means clustering method. One subset of hindcasts with the 

greatest forecast improvements suggests a particular physical process that is not simulated well 

due to a poor model simulation of the MJO. This work will be submitted to Geophysical Research 

Letters as: 

¨ Hsiao, W.-T., Barnes, E. A., Maloney, E. D., Tulich, S. N., Dias, J., and Kiladis G. N. 

(2021). Role of the tropics and its extratropical teleconnections in state-dependent 

improvements of UFS precipitation forecasts. To be submitted. 

 

Finally, a summary of this thesis and future perspectives are provided in Chapter 4. 
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CHAPTER 2 
 
 

Investigating Recent Changes in MJO Precipitation and Circulation in Multiple Reanalyses1 
 
 
 

2.1 Introduction 

The Madden-Julian oscillation (MJO; Madden and Julian 1971, 1972) is the dominant 

mode of large-scale tropical precipitation variability on intraseasonal timescales. MJO activity 

impacts the occurrence of extreme weather events not only in tropics but also at higher latitudes 

due to its remote teleconnections (Zhang 2013). Because of its ability to modulate weather across 

the globe, with clear implications for lives and property, extensive research is being conducted 

about the MJO, with increasing attention given to the evolution of the MJO under anthropogenic 

warming (Maloney et al. 2019). As global temperatures rise, MJO activity is expected to be 

impacted by competing effects, making the projections of the MJO difficult. For example, an 

increased basic state vertical moisture gradient in the lower troposphere increases the efficiency 

with which vertical motion moistens the atmosphere, leading to a strengthening of MJO-associated 

convection (Arnold et al. 2013; Holloway and Neelin 2009). In contrast, an increased dry static 

stability decreases the efficiency by which diabatic heating induces vertical motion (Knutson and 

Manabe 1995; Sherwood and Nishant 2015; Sobel and Bretherton 2000), which would tend to 

weaken MJO-associated convection (e.g. Chikira 2014). Future projections from most global 

climate models (GCMs) suggest an increase in the amplitude of MJO precipitation under 

anthropogenic warming, although MJO circulation anomalies weaken, or at least increase less than 

                                                
1 This section contains material that is published in Geophysical Research Letters as:  
Hsiao, W.-T., Maloney, E. D., & Barnes, E. A. (2020). Investigating Recent Changes in MJO Precipitation and 
Circulation in Multiple Reanalyses. Geophysical Research Letters, 47(22), e2020GL090139. 
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precipitation (Maloney et al. 2019). Analysis of the reconstructed historical record from 

instrumental observations and reanalysis shows positive trends of MJO amplitude over the 20th 

century in surface pressure and precipitation (Oliver and Thompson 2012) and in the late 20th 

century in zonal winds (Jones and Carvalho 2006; Slingo et al. 1999). However, other studies have 

found no trend in boreal wintertime MJO amplitude from the 1980s to the 2000s when using an 

outgoing longwave radiation-related metric (Tao et al. 2015). 

Recent evidence suggests that the MJO may undergo structural changes with warming and 

differences in intensification rate in its associated precipitation and circulation components. Such 

changes would be important because teleconnections generated by upper level divergence 

associated with MJO convection have a large impact on extratropical weather and its predictability 

(Ferranti et al. 1990; Zhang 2013). Instead of examining the amplitude of the MJO with a single 

variable, Maloney and Xie (2013) and Wolding and Maloney (2015) suggest that in the deep 

tropics where the weak temperature gradient (WTG) approximation holds (Sobel and Bretherton 

2000), the amplitude ratio of vertical velocity to precipitation associated with the MJO is 

constrained by dry static stability. Since the temperature profile in the free tropical troposphere 

roughly follows a moist adiabat determined by convective adjustment in tropical convecting 

regions (Knutson and Manabe 1995), the dry static stability profile may be constrained by future 

sea-surface temperature (SST) warming, thus providing a constraint on future MJO behavior. 

 A recent study found that the ratio of MJO-associated circulation to precipitation amplitude 

follows WTG balance in anthropogenic warming simulations (Bui and Maloney 2019). The WTG 

approximation can be applied to the thermodynamic equation to produce the following 

approximate balance in the tropical free troposphere, where horizontal temperature gradients are 

small (Sobel and Bretherton 2000), 
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𝜔
𝜕𝑠
𝜕𝑝

≈ 𝑄'	 (2.1) 

where 𝜔 is the vertical pressure velocity, 𝑠 the dry static energy (DSE), and 𝑄' the apparent heat 

source (Yanai et al. 1973). Note that all variables represent the large-scale area average. If it is 

further assumed that precipitation is proportional to 𝑄' in MJO convective regions, and that the 

vertical structure of 𝑄' is not changed (Maloney and Xie 2013), it follows that at a given level, 

Δ/
𝜔
𝑃1 ∝ Δ3

𝜕𝑠
𝜕𝑝

4'

5 (2.2) 

where 𝑃 is the surface precipitation rate and Δ denotes the relative change from a reference state 

to a new state. Bui and Maloney (2019) examined GCM simulations forced by Representative 

Concentration Pathway 8.5 (RCP8.5) in a subset of models participating in the Coupled Model 

Intercomparison Project 5 (CMIP5) that simulated realistic MJOs. While the amplitude changes 

of MJO precipitation and vertical velocity were individually not detectable until 2080, the ratio of 

MJO vertical velocity to precipitation amplitude showed detectable decreases as early as 2021–

2040. Consistent with WTG balance and the proportionality of precipitation to 𝑄', the ratio of 

MJO vertical velocity to precipitation amplitude matches the change in dry static stability in the 

simulations, implying that this theory could explain and predict the evolution of the MJO, even in 

the observational record that has exhibited warming. 

 Following this work, we investigate the temporal evolution of MJO-related precipitation 

and circulation amplitude and their ratio in two reanalyses (ERA5 and MERRA-2) to assess 

whether changes to the MJO can be detected in recent decades. A similar analysis is also applied 

on a century-long reanalysis (ERA-20C) to further support findings over the past few decades and 

to assess recent changes to the MJO in the context of low-frequency variability. Our purpose is to 
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determine whether WTG balance can explain changes in MJO activity in the real world, which 

could help support projections of MJO under continued anthropogenic warming. 

 

2.2 Data and Methodology 

 Two reanalysis data sets spanning 1981–2018 are employed to assess changes in MJO 

amplitude and the background environment in recent decades. The Modern-Era Retrospective 

analysis for Research and Applications version 2 (MERRA-2; Gelaro et al. 2017) and the European 

Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5; Hersbach et al. 2020) 

are the main data sets used to investigate MJO activity in recent decades. The ECMWF 20th 

century reanalysis (ERA-20C; Poli et al. 2016) is used to evaluate long-term changes in MJO 

behavior over 1901–2009. The MERRA-2, ERA5, and ERA-20C data sets have spatial (temporal) 

resolutions of 0.5° ´ 0.625° (3 hours), 0.25° ´ 0.25° (1 hour), and spectral truncation of T159 (1 

hour), respectively. For the purpose of investigating large-scale dynamics, all variables are 

regridded to have a common horizontal spatial resolution of 2.5° ´ 2.5°. Vertical pressure velocity 

and precipitation are averaged into daily means, and temperature and DSE are originally obtained 

as monthly means. Wolding and Maloney (2015) imply that for good approximation, the slowly 

varying background DSE gradient is appropriate to use in Equation 2.1 for determining the 

dominant WTG MJO balance. While the precipitation data in both reanalyses is model-generated 

and comes with substantial caveats, inhomogeneities in satellite-observed precipitation over the 

tropics make it difficult to use to detect climate trends (e.g. Yin et al. 2004). Furthermore, the 

moisture budget in the reanalyses products is more internally consistent, and thus, we focus on 

reanalysis precipitation for this work. 
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 For ERA5 and MERRA-2, MJO activity is assessed by its associated precipitation and 

vertical pressure velocity amplitudes, with vertical pressure velocity at 400 hPa (𝜔677) used given 

the top-heavy nature of convection in the MJO (Kiladis et al. 2005). Specifically, the occurrence 

of an MJO event is defined as when the magnitude of the outgoing longwave radiation-based MJO 

index (OMI; downloaded from NOAA PSL website; see Kiladis et al. 2014, for definition) exceeds 

1.0. Note that we split our analysis into 19-year periods, and so OMI is normalized within each 

time period (as in Bui and Maloney 2019) to reflect possible changes in variance of outgoing 

longwave radiation fields. Boreal winter (November to April) MJO composites for each of its eight 

phases are then generated for 30- to 90-day bandpass filtered variables as is commonly done in the 

MJO literature (e.g. Kiladis et al. 2014). Amplitudes of MJO precipitation and 𝜔677  for each 

location are calculated as the root mean square values across the composites of the eight MJO 

phases. 

 Since OMI is defined by satellite OLR fields that are not available prior to 1979, MJO 

activity in ERA-20C is assessed using the standard deviations of precipitation and 𝜔677 in the MJO 

band. The MJO band is defined by bandpass filtering fields to frequencies of 30–90 days and zonal 

wavenumbers of 1–5. 

 Boreal winter averages derived from monthly means of temperature and DSE are used to 

assess the background environment changes that could impact MJO activity. Dry static stability at 

400 hPa is computed using the vertical gradient of DSE between 350 and 450 hPa. 

 Our focus is on the time evolution of the amplitudes of MJO precipitation and 𝜔677 in the 

Indo-Pacific warm pool region (the IPWP region; 15°S to 15°N, 60°E to 180°) where the MJO is 

most active, as shown in the boxed region in Figure 2.1. Area-averaged MJO precipitation and 

𝜔677 amplitudes over the IPWP region are used as metrics to quantify overall MJO activity. 
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Figure 2.1. The boreal winter composite amplitudes of (a, b) MJO precipitation and (c, d) MJO 
𝜔677 during the early period (1981–1999) and (e–h) their difference from the late period (2000–
2018), from (left column) ERA5 and (right column) MERRA-2. The black rectangle encloses the 
Indo-Pacific warm pool region, and the percentage values shown in the upper right corners of (e–
h) are the area-averaged relative changes over the region. 
 

 Composites obtained from 19-year running windows are extensively used in this study, 

similar to the averaging window length of 20 years used in Bui and Maloney (2019). This window 

length is chosen to reduce noise from decadal variations, but also to retain enough data points to 

show the time evolution of MJO activity. Since the entire time period analyzed is 38 years in ERA5 

and MERRA-2, the first and the last 19 years of the record are the only two periods that are truly 

independent, and we refer to these as the early period (1981–1999) and the late period (2000–

2018). The conclusions in this study are not sensitive to the choice of window length used between 

15 and 25 years (Figure A2.1). 

 Relative change (Δ) in percent is the main metric used to define changes in this study. 

Specifically, for any quantity 𝑋, the relative change compared to its reference state (𝑋9:; ) is 

defined by  
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Δ(𝑋) =
𝑋 − 𝑋9:;
𝑋9:;

⋅ 100% (2.3) 

where 𝑋9:; denotes the quantity over the early period (1981–1999). 

 

2.3 Results 

First, we explore the spatial structure of MJO activity in the two reanalyses. The amplitude 

of MJO precipitation and 𝜔677  maximize in the IPWP region (Figures 2.1a–2.1d) in both 

reanalyses during the early period. The changes in MJO precipitation and 𝜔677 amplitude between 

the late period and the early period have rich spatial structures, which are similar between the 

reanalyses (Figures 2.1e–2.1h). Increases in both amplitudes occur to the south of India, at the 

southern edge of the Pacific warm pool, and near the Philippines. Decreases in both amplitudes 

occur near 5°S over the Maritime Continent. The regions of large amplitude of the MJO do not 

change substantially between the early and late period, allowing us to assess the temporal change 

in MJO activity within the IPWP region. The area-averaged amplitude of MJO precipitation and 

𝜔677 in the IPWP region both show increases in the late period relative to the early period with 

precipitation intensifying by 5.6% in ERA5 and 7.6% in MERRA-2 and 𝜔677 intensifying by 1.2% 

in ERA5 and 2.1% in MERRA-2. Most important for this study, MJO precipitation amplitude 

intensifies more than MJO 𝜔677 amplitude in both reanalyses, although MJO activity in MERRA-

2 is strengthened slightly more than in ERA5. 

 The 19-year running area-averaged MJO precipitation and 𝜔677 amplitude in the IPWP 

region increase between the early and the late periods of the record, while the amplitudes in 

MERRA-2 exhibit larger changes than those in ERA5. However, both reanalyses demonstrate 

qualitatively similar fluctuations in between: in the early 1990s, both of the amplitudes rise quickly, 

followed by a plateau and then a slight decrease afterward (Figures 2.2a and 2.2b). The 
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strengthening of the boreal wintertime MJO activity during the late 20th century is consistent with 

previous studies examining observed zonal wind changes at 200 and 850 hPa (Jones and Carvalho 

2006). Moreover, both reanalyses agree that throughout most of the record, MJO precipitation 

amplitude shows larger positive changes than MJO 𝜔677 amplitude. 

 

 
Figure 2.2. Relative change in 19-year wintertime running composites of (a) MJO precipitation 
amplitude, (b) MJO 𝜔677 amplitude, and (c) dry static stability at 400 hPa with respect to the early 
period. The x axis denotes the central years of the associated time window, for example, 2000 
denotes the period of 1991–2009. The y axis denotes the relative change to the early period. 
 

 While we attempted to explain the fluctuating pattern in MJO precipitation and 𝜔677 

amplitude, we could find no obvious connections between them and interannual to decadal 

variability in surface air temperature. The evolution of surface air temperature in the IPWP region 

(Figure A2.2b) and its evolution relative to the whole tropics (Figure A2.2c) do not resemble the 

variability in the MJO amplitude time series, which have different trends from the early 1990s 

onward (Figures 2.2a and 2.2b). Commonly used Pacific SST indices that capture interannual to 
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decadal variability also do not show similar variability to the MJO amplitude time series (cf. 

Figures 2.2a and 2.2b with Figure A2.3 SST indices). 

 To sum up, both MJO precipitation and 𝜔677 amplitude increase from the early period to 

the late period in the IPWP region in both reanalyses, although the time evolution is non-monotonic 

and the amplitude of the change varies between the reanalyses. The time series of the amplitudes 

are not easily explained by tropical SST variability. However, a robust result common among 

different time periods and reanalyses is that the increase in MJO precipitation amplitude is always 

stronger than in MJO 𝜔677 amplitude, consistent with what WTG balance would predict based on 

the increasing tropical static stability with SST warming observed in recent decades (Figure 2.2c; 

see also e.g. Sherwood and Nishant 2015). We explore this contention more below. 

 Given a change in dry static stability, the theoretical change in the ratio of MJO 𝜔677 to 

precipitation amplitude can be computed if one assumes that WTG balance holds (Equation 2.1) 

and that the vertical structure of 𝑄'  associated with the MJO is not changed (Equation 2.2). 

Previous modeling studies have shown good agreement between static stability changes and this 

ratio when applied to MJO-associated wind and precipitation variance (Bui and Maloney 2018; 

Maloney and Xie 2013; Wolding et al. 2016; Wolding and Maloney 2015). As the climate system 

warms, tropical dry static stability increases in the troposphere because the atmospheric profile in 

the deep tropics roughly follows a moist adiabat set by the surface temperature in convecting 

regions (Knutson and Manabe 1995). Consistently, increasing dry static stability has been 

observed in recent years as surface temperature has increased (Allen and Sherwood 2008). Because 

surface temperature has increased since 1981 (Figure A2.2a), Equation 2.2 would argue for a 

greater change in MJO precipitation amplitude compared to MJO 𝜔677 amplitude. 
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 Figures 2.3a and 2.3b display the temporal evolution of the inverse of dry static stability 

and the ratio of MJO 𝜔677 to precipitation amplitude (MJO 𝜔677/𝑃; see Equation 2.2) in ERA5 

and MERRA-2. The gray diagonal line denotes the predicted theoretical relationship between MJO 

𝜔677/𝑃 and inverse static stability assuming WTG theory holds and the vertical structure of the 

MJO remains unchanged. Between the late period and the early period (the two outlined endpoints), 

the decrease of the inverse of dry static stability is 2.8% in ERA5 and 4.0% in MERRA-2, and the 

decrease of MJO 𝜔677/𝑃 is 4.2% in ERA5 and 4.9% in MERRA-2. Consistent with WTG theory, 

MJO 𝜔677/𝑃 and the inverse of dry static stability show comparable decreases between the early 

period (1981–1999) and the late period (2000–2018). Agreement is also good in ERA5 for interim 

periods, especially until about 2000 (Figure 2.3a). Considering the complicated temporal 

evolution of MJO precipitation and 𝜔677  amplitude (Figure 2.2), WTG balance provides a 

reasonable explanation for the evolution of MJO 𝜔677/𝑃 over the past 38 years, especially when 

considering the start and end of the record. 

 As many MJO studies use zonal wind amplitude as a metric of MJO activity (e.g. Jones 

and Carvalho 2006; Slingo et al. 1999), we also examine the amplitude of MJO 850-hPa zonal 

wind (𝑢DE7) for reference. The evolution of the ratio of MJO circulation to precipitation amplitude 

is defined here using 𝑢DE7 (MJO 𝑢DE7/𝑃). Although using 𝑢DE7 is not a direct application of WTG 

balance in Equation 2.2, the amplitude of horizontal velocity should scale with vertical velocity 

through divergence if the vertical structure doesn't change (Maloney and Xie 2013). Under such 

conditions, we would expect a qualitatively similar decrease in the ratio of MJO 𝑢DE7  to 

precipitation amplitude. Figure A2.4 shows that 𝑢DE7  amplitude relative to precipitation does 

decrease in a qualitatively similar way, although with stronger decreases relative to 𝑃 than for 

𝜔677. 
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Figure 2.3. Relative change in (x axis) the reciprocal of dry static stability at 400 hPa and (y axis) 
the ratio of MJO 𝜔677 to precipitation amplitude over the IPWP region between 19-year running 
windows and the early period. Colors indicate the central year of the running window. The gray 
diagonal line denotes the change in the ratio predicted by WTG balance assuming vertical heating 
structure is unchanged (Equation 2.2). Root mean square errors (RMSEs) of MJO 𝜔677/𝑃 relative 
to theoretical predictions are provided in each panel. Correlation coefficients (r) between the two 
variables are also provided to show how coherent they change. Note that the MJO-associated 
quantities are defined using OMI for (a) ERA5 and (b) MERRA-2, whereas standard deviations in 
the MJO wavenumber-frequency band are used for (c) ERA-20C. 
 

 Although MJO 𝜔677/𝑃 generally follows the change in the inverse of dry static stability, 

there exist deviations from theoretical predictions, with maximum differences of about 1.5% in 

ERA5 and 4% in MERRA-2. To place these values in a larger-scale context, we compare Figures 

2.3a and 2.3b to Figure 2.3c that shows results from ERA-20C spanning 1901–2009. The 

theoretical estimate works well in ERA-20C over the whole century, with about 7–8% decreases 

in both MJO 𝜔677/𝑃 and inverse static stability over the century. The maximum deviation of MJO 

𝜔677/𝑃 change in ERA-20C is about 2% from theoretical values predicted by the inverse of dry 

static stability. Deviations of ERA5 from theoretical values are even smaller than this, while 

deviations in MERRA-2 are larger. As described below, deviations of MERRA-2 from the 

theoretical estimate may occur due to the imperfect assumption of proportionality of 𝑄' at 400 hPa 

and 𝑃. 
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 In MERRA-2, Equation 2.2 overestimates the decrease in MJO 𝜔677/𝑃 in the intervening 

periods but works well for the two endpoints. MJO 𝜔677/𝑃  in MERRA-2 shows stronger 

decreases than ERA5 during the interim period largely because it has a larger 𝑃 amplitude change 

than ERA5. The exact reasons for differences between the two analyses are unclear, although they 

may depend on the different behavior of tropical convection simulated by the two reanalysis 

models. The differing DSE profile changes between ERA5 and MERRA-2 for the IPWP region 

(Figure A2.5) not only indicate differing static stability changes but also circumstantially suggest 

different changes to the convective heating structure between data sets given the regulation of 

tropical tropospheric temperature by convective heating. Such structure changes would affect how 

well the balance in Equation 2.2 reflects Equation 2.1, considering the assumption about the 

proportionality of 𝑃 to 𝑄' at 400 hPa. MERRA-2 exhibits more warming in the lower troposphere 

than ERA5, presumably associated with increased condensational heating and precipitation 

generation there, which would produce greater decreases in MJO 𝜔677/𝑃 than that expected by 

looking at the 400 hPa level in isolation. The rate of increase in low-level warming in MERRA-2 

is particularly strong until the 19-year period centered on 1997, possibly consistent with the greater 

MJO precipitation amplitude increase in MERRA-2 during that time than ERA5 (Figure 2.2), 

although translating mean state convective structure changes to those on subseasonal timescales 

should be done with care. 

 An examination of MJO anomaly amplitudes of 𝑄' at 400 hPa and precipitation suggests 

a weaker consistency between the two quantities in MERRA-2 (Figure A2.6), consistent with 

possible vertical structure changes. However, while the change in the ratio of 𝜔677 to 𝑄' amplitude 

at 400 hPa generally follows dry static stability in ERA5, the agreement is not as good as in 
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MERRA-2 (Figure A2.7), which might also explain some of the differing behavior in Figure 2.3. 

The reasons for this discrepancy are unclear. 

 

2.4 Summary 

The changes to MJO precipitation and 𝜔677 amplitude from 1981 to 2018 are examined in 

three reanalysis data sets: ERA5, MERRA-2, and ERA-20C. Both amplitudes in ERA5 and 

MERRA-2 individually increased from the early period (1981–1999) to the late period (2000–

2018) (Figure 2.1). However, their temporal behavior is non-monotonic in that both amplitudes 

intensify from 1981 to 1997 and slowly weaken or remain constant thereafter (Figures 2.2a and 

2.2b). Interannual-to-decadal surface temperature variability (Figures A2.2 and A2.3) shows no 

simple relationship with this non-monotonic behavior in MJO activity changes. 

When viewed together, amplitude changes of MJO precipitation are larger than MJO 𝜔677 

throughout the past four decades relative to the early period (1981–1999). A preferential 

strengthening of MJO precipitation amplitude relative to MJO 𝜔677  amplitude is predicted by 

WTG balance with a warming climate, in that increasing dry static stability in response to SST 

warming in recent decades makes vertical motion more efficient at compensating latent heat 

release in deep convective regions. The fractional amplitude changes in the ratio of MJO 𝜔677 to 

precipitation between 1981–1999 and 2000–2018 approximately match inverse dry static stability 

changes with climate warming, consistent with WTG balance (Figures 2.3a and 2.3b). A similar 

result is shown in ERA-20C between 1901–1919 and 1991–2009 (Figure 2.3c). 

While trends in these reanalyses appear to generally follow WTG balance, differences exist 

in the behavior of the three reanalyses. MJO precipitation and 𝜔677 amplitude increases are larger 

in MERRA-2 than in ERA5, especially in intermediate periods between the beginning and end of 
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the record, although they show qualitatively similar time series variability (Figure 2.2). Decreases 

in MJO 𝜔677/𝑃 also fit the theoretical prediction based on the inverse of dry static stability better 

in ERA5 and ERA-20C than in MERRA-2 across all 19-year periods examined in terms of RMSE, 

and these differences may be associated with differences in the simulated structure of tropical deep 

convection, which remains a topic for further investigation. 

The present paper provides a preliminary assessment of MJO activity changes in 

precipitation and vertical velocity over the past four decades that include both anthropogenic 

forcing and natural variability and uses a century-long data set to assess recent changes in the 

context of natural variability over the longer record. Our results based on observations support 

those previously derived from climate models (e.g. Bui and Maloney 2019) suggesting that 

decreases in MJO 𝜔677/𝑃  occur as surface temperatures warm due to anthropogenic forcing. 

Nevertheless, discrepancies between results from ERA5 and MERRA-2 leave lingering questions 

about the degree to which changes to the MJO can be explained by WTG theory, including the 

assumption that 𝑄' has no vertical structural changes in response to climate warming. Further 

work using a broader set of observational data including tropical sounding and other in situ records 

is needed to affirm the validity of Equation 2.2 for explaining MJO behavior. 
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CHAPTER 3 
 
 

Role of the Tropics and its Extratropical Teleconnections in State-Dependent Improvements of  
UFS Precipitation Forecasts2 

 
 
 

3.1 Introduction 

Extended-range (11-30 day) and subseasonal-to-seasonal (S2S) predictability in the 

extratropics has been shown to partially originate in the tropics (Robertson et al. 2015). One source 

of predictability is provided by tropical-extratropical teleconnections that can emerge 

approximately one week after being excited by a Rossby wave source in the subtropics, which is 

ultimately generated by upper-tropospheric tropical divergence associated with convection 

(Branstator 2014; Hoskins and Ambrizzi 1993). This mechanism has been established theoretically 

using linear Rossby wave theory (Hoskins and Karoly 1981; Sardeshmukh and Hoskins 1988), 

and its implications for S2S predictability have been investigated largely using conditional analysis 

from observations (e.g. Hendon et al. 2000; Matthews et al. 2004) and from weather model output 

(e.g. Ferranti et al. 1990; Vitart and Molteni 2010). Exploring tropical sources of S2S predictability 

in operational weather forecast models may not only further provide insights into the mechanisms 

underlying this predictability, but may also provide model developers and forecast agencies 

information on when forecasts are more or less reliable, and which parts of the model to improve 

to engender further forecast gains. 

To investigate the tropical origins of global extended-range forecast skill during boreal 

winter and associated errors that can degrade forecast skill in the operational forecast system, a set 

                                                
2 This section contains material that is to be submitted to Geophysical Research Letters as:  
Hsiao, W.-T., Barnes, E. A., Maloney, E. D., Dias, J., Tulich, S. N., & Kiladis, G. N. (2021). Role of the tropics and 
its extratropical teleconnections in state-dependent improvements of UFS precipitation forecasts. To be submitted. 
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of hindcasts were performed by Dias et al. (2021). Hindcasts over a twenty-year period were run 

with the tropics nudged toward reanalysis in an operational weather forecast model from the 

Unified Forecast System (UFS) developed by the National Oceanic and Atmospheric 

Administration (NOAA). Their results showed that with corrected representations of tropical 

winds, mass, temperature, and humidity fields, forecasts of precipitation and 500 hPa geopotential 

height (z500) are significantly improved in the Northern Hemisphere extratropics at 2-4 week lead 

times. Notably, they also showed that forecast improvements due to tropical nudging are dependent 

on the initial state. For example, hindcasts are improved relatively more at four-week leads in the 

Northern Hemisphere extratropics with nudging when the Madden-Julian oscillation (MJO; 

Madden and Julian 1971, 1972) is active at initialization.  

Since tropical heating, such as that generated by the MJO, is capable of exciting detectable 

and consistent teleconnection patterns in the extratropics (e.g. Ferranti et al. 1990; Matthews et al. 

2004; Tseng et al. 2019), it is likely that extratropical forecasts in certain regions will be improved 

by correcting errors in the forecasted tropical heating, as has been suggested by previous studies 

(Ferranti et al. 1990; Bielli et al. 2010; Jung et al. 2010). Here, we investigate the specific initial 

states that lead to extratropical forecast improvements in the tropical nudging experiments 

described by Dias et al. (2021). Specifically, we condition forecast improvements of precipitation 

in Western United States (U.S.) by their initial states using a multivariate clustering procedure, 

which will be shown to capture the underlying physical mechanism more cleanly when compared 

to conditioning on conventional climate indices. This approach allows us to investigate the initial 

states associated with better forecast improvement due to the tropical nudging without a priori 

assumptions of the exact physical phenomena associated with the improvements. We demonstrate 

that one cluster of hindcasts with a particular initial state shows greater forecast improvement than 



 

 20 
 

 

 

the others, and we scrutinize the mechanisms associated with this improvement due to tropical 

nudging. 

 

3.2 Methodology 

3.2.1 Model and Experimental Setup 

Here, we utilize the hindcasts conducted by Dias et al. (2021) using a leading U.S. forecast 

model, specifically, version 15.1.1 of the NOAA/ National Centers for Environmental Prediction 

Global Forecast System (NOAA/NCEP GFS v15.1.1). Three sets of simulations are conducted and 

are described below. For details of the model configuration, see Appendix A and Dias et al. (2021). 

In the first set of hindcasts, REPLAY, a good approximation of the observed state is 

produced. The incremental analysis update (IAU; Bloom et al. 1996) scheme is utilized to nudge 

zonal and meridional winds, mass, temperature, and specific humidity over the whole globe toward 

the observed states (represented by ERA-Interim reanalysis; Dee et al. 2011) during November 

1999 to April 2018 for the extended boreal winter (November to April).  

A second set of hindcasts, FREE, are performed to evaluate the forecast performance of 

the model in free-running mode (i.e. with no nudging). In this setting, the model is run freely out 

to 30 days in each hindcast, where hindcasts are initialized every five days from the states in 

REPLAY.  

A third set of hindcasts, NUDGE, are performed to assess the effect on S2S forecast 

performance in the extratropics when the tropics are represented accurately. The design of 

NUDGE is the same as FREE, except that the nudging method used in REPLAY is applied within 

30°S-30°N using a weighting function that is unity between 10°S-10°N and is reduced to zero 

toward 30°N and 30°S (the same form of nudging is used in Jung et al. 2010; and Dias et al. 2021). 
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3.2.2 Quantifying forecast performance of the western U.S. precipitation 

The present study puts emphasis on the forecast performance of precipitation along the U.S. 

West Coast, which is assessed by its grid-wise area-averaged mean absolute error (MAE) over the 

region 30°N-50°N, 120°W-140°W (referred to as the western U.S.; the box in the Figure 3.1 map) 

in FREE or NUDGE compared to REPLAY. The improvement produced by NUDGE is quantified 

by the difference between the MAE of FREE and NUDGE. The precise bounds of the western U.S. 

spatial averaging domain do not affect our conclusions (not shown). 

A multivariate k-means clustering analysis is performed to subset the hindcasts by their 

initial states. After assigning the number of desired clusters, k-means clustering partitions the data 

in a feature space by minimizing the within-cluster variance (Lloyd 1982). This k-means clustering 

approach allows us to investigate the initial states associated with better forecast improvement due 

to tropical nudging, without a priori assumption of the exact physical phenomena associated with 

the improvement. The data are processed in the following way before being input into the cluster 

analysis: (1) anomalies are calculated by subtracting daily climatologies from the fields of interest, 

where lead-dependent climatologies are used for the hindcasts; (2) empirical orthogonal functions 

(EOFs; Lorenz 1956) of 20°S-90°N and 60°E-90°W precipitation and 200 hPa zonal wind (u200) 

anomalies are computed based on the uncentered covariance matrices of each variable; (3) the 

dimensionless principal components (PCs) of all of the EOFs are weighted by their variance 

explained; (4) the weighted PCs from the two variables are stacked to form a feature vector which 

is used as input to the k-means clustering algorithm. The choice of using u200 and precipitation to 

define unique characteristics of the initial states is motivated by their importance for representing 

the tropical forcing pattern (i.e. precipitation) and the basic state winds that can impact tropical-

extratropical teleconnections (i.e. u200). We implement the k-means clustering algorithm by 
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scikit-learn v0.23.2 (Pedregosa et al. 2011) with the default settings except for K = 8 (i.e. 8 clusters) 

and setting the initialization seed to 0. We note, however, that similar conclusions hold for K = 8 

to 10 and with four random initialization seeds (0, 1, 2, and 3 as integers) for each K (not shown). 

Values of K below 8 did not identify clusters with robust improvement in forecast performance, 

while K larger than 10 identified similar forecast improvements, but the small sample sizes of the 

clusters was not as desirable. 

To associate the clusters with known modes of climate variability, we also use metrics that 

represent the states of the MJO and El Niño-Southern Oscillation (ENSO). The outgoing longwave 

radiation MJO index (OMI; Kiladis et al. 2014) is used to assess the intensity of the MJO and its 

phases, where an MJO event is defined as when the magnitude of OMI ³ 1. The multivariate ENSO 

Index Version 2 (MEIv2; Zhang et al. 2019) is used to quantify ENSO states. 

 

3.3 Results 

Nudging in the tropics generally improves the Week 3-4 (days 15-28) precipitation forecast 

performance in the western U.S. with the distribution of the MAE shifted toward zero in NUDGE 

compared to FREE (Figure 3.1). The peak of the MAE distribution is reduced by about 1 mm day-

1 in NUDGE, while the average and the median are reduced by 0.67 and 0.68 mm day-1, 

respectively. Improvements in NUDGE relative to FREE emerge primarily during Week 3, shown 

by the right tails of the weekly distribution of MAE reduction (Figure A3.1), suggesting that S2S 

timescale processes are relevant for the improvement. Overall, nudging improves the forecast 

performance in the western U.S., particularly for cases in FREE that are relatively poor in the 

Week 3-4 range (Figure A3.2), as also discussed by Dias et al. (2021). 
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Figure 3.1. The distribution of the western U.S. precipitation MAE averaged over Weeks 3-4 from 
FREE (blue line) and from NUDGE (red line). MAE is averaged over the area shown in the map 
(see main text). 

 

Next, we subdivide the forecast improvements by cluster to investigate whether there are 

state-dependent improvements with nudging (see Figure A3.3 for the composite initial states of 

all the clusters). Cluster #4 exhibits larger improvements compared to the other seven clusters 

(Figure 3.2b), and has a significantly larger number of hindcasts with large MAE reductions 

compared to reductions composited over all clusters (Figure 3.2a). The initial states of Cluster #4 

are associated with non-cold ENSO conditions and are primarily associated with MJO phases 8, 1, 

and 2, with the presence of an enhanced Aleutian Low (Figure 3.3a) and anomalous positive 

precipitation anomalies in the western U.S. (Figure A3.3).  
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Figure 3.2. (a) The distribution of the Week 3-4 western U.S. precipitation MAE reduction 
associated with tropical nudging from all cases (ALL; bold gray line) and from Cluster #4 (solid 
black line). (b) The fraction of hindcasts having an MAE reduction greater than the thresholds as 
defined by the vertical lines in (a) for the ALL curve (horizontal dashed lines) and from the curve 
for each of the clusters (symbols). For clarity, only the distribution for Cluster #4 is shown in (a) 
as the solid black curve. The symbols marked as crosses are significantly different (p < 0.05) from 
the baseline fractions (horizontal dashed lines) using a two-tailed bootstrapping test with 10000 
realizations. 
 

 

Figure 3.3. (a) the row shows the composite Day-1 states in REPLAY: z500 (left; m), u200 
(middle; m s-1), and precipitation (right; mm day-1) anomalies from Cluster #4. The lower rows are 
the composites of weekly precipitation (shading; mm day-1) and z500 (contours; 10-m spacing 
with zero omitted) anomalies for Cluster #4 in (b) FREE, (c) NUDGE, and (d) REPLAY as 
columns. The red box indicates where the western U.S. precipitation errors are assessed. The bar 
charts attached to (d) show the fraction of dates within Cluster #4 that fall in each MJO phase (non-
MJO days are indicated by X) and ENSO index (MEIv2; with interval 0.5 centered at 0) for each 
range of lead times, where the black dots indicate the underlying fractions for all the extended 
boreal wintertime dates, and the gray horizontal reference lines are spaced by 10%. 
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To understand why Cluster #4 exhibits large improvements with nudging, it is helpful to 

explore how the forecast composites evolve differently in the three sets of simulations. Over the 

first two weeks of the forecast, FREE, NUDGE, and REPLAY all exhibit an enhanced Aleutian 

Low in the North Pacific and enhanced precipitation in the western U.S. (top two rows of Figures 

3.3b-d). Over Weeks 1-2, the primary state of the MJO progresses from phases 8 to 2 in REPLAY 

(top two rows of Figure 3.3d). During Week 3, the anomalous Aleutian Low and the western U.S. 

precipitation are weakened in REPLAY and NUDGE (third row of Figures 3.3c-d). However, 

those weakened anomalies are not present to the same extent in the FREE simulations (third row 

of Figure 3.3b). During Week 4, anomalous 500 hPa low pressure is present over the North Pacific 

and the Southern U.S. but with different spatial patterns in each set of simulations. Furthermore, 

the western U.S. precipitation anomalies are also quite different across the three simulations in 

Week 4 (bottom row of Figures 3.3b-d), with FREE exhibiting a strong positive precipitation 

anomaly in the Southwest U.S. that is not present in the other two runs.  

We hypothesize that the correction of intraseasonal tropical precipitation and its associated 

teleconnection pattern under the presence of non-cold ENSO-like states is the source of the robust 

forecast improvement in Week 3 for Cluster #4. In REPLAY, the initial states exhibit an enhanced 

Aleutian Low. This is similar to that associated with El Niño events and also is consistent with the 

constructive interference between non-cold ENSO and the time-lagged response to MJO phases 6-

7 (Henderson and Maloney 2018). Over Weeks 1-2, similar anomalies as shown at the initial state 

persist with the enhanced precipitation in the western U.S. (top two rows in Figure 3.3d). In Week 

2, a high frequency of MJO phase 2 is present (second row in Figure 3.3d), which is expected to 

excite a negative Pacific-North America (PNA) teleconnection pattern associated with positive 

geopotential anomalies in the Aleutian Low region in Week 3 (Tseng et al. 2019). Combined with 
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a non-cold ENSO-like state that is associated with a positive PNA pattern and anomalous Aleutian 

Low, destructive interference occurs that weakens the Low as shown in (Henderson and Maloney 

2018). This further decreases the western U.S. precipitation by the reduction of moisture transport 

associated with the anomalous Aleutian Low (Xiong et al. 2019) in REPLAY and NUDGE (third 

row in Figures 3.3c-d). However, this is much less robust in FREE (third row in Figure 3.3b), 

which we hypothesize is caused by an incorrect simulation of precipitation in the tropics and their 

teleconnections. Figure 3.4a shows that large precipitation errors exist in the deep tropics 

(contours) in FREE after Day 7. In particular, the model produces precipitation anomalies of 

excessive magnitude that resemble those anomalies associated with non-cold ENSO events, and 

fails to simulate the reduction after Day 7 when MJO precipitation begins to move across the 

Maritime Continent (shown in Figure 3.3d with the most frequent MJO phases transitioning from 

phases 8-2 in Week 1 to phases 2-4 in Week 2). Since precipitation anomalies in the deep tropics 

are associated with upper troposphere divergent wind anomalies that can generate stationary 

Rossby waves in the presence of a background vorticity gradient (Sardeshmukh and Hoskins 1988), 

it is likely that this precipitation error in FREE leads to failure in simulating the correct Rossby 

wave pattern over the North Pacific. Subsequently, it leads to incorrect simulation of the Aleutian 

Low and results in precipitation errors in the western U.S. that are corrected with nudging. 
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Figure 3.4. Hovmöller plots of the daily composite anomalies of 10°S-10°N precipitation (shading; 
mm day-1) for Cluster #4 in (a) FREE, (b) NUDGE, and (c) REPLAY. The contours in (a) and (b) 
show the precipitation anomaly differences between the hindcasts and REPLAY with 1 mm day-1 
spacing. The zero line is omitted. 
 

Although the mechanism described above appears to explain Week 3, during Week 4, the 

states in REPLAY start to become diverse within Cluster #4 as demonstrated by an increasingly 

large spread in the MJO distribution in Figure 3.3d. Furthermore, phases 4-6 of the MJO become 

more common in Week 3, which were shown by (Tseng et al. 2019) to produce inconsistent 

teleconnections to the North Pacific. Hence, a strongly forced signal with consistent sign from the 

extratropics is less likely to be reflected in the composite mean, and the consistency between the 

composites likely no longer serves as an indicator of forecast performance. Instead, a hindcast-by-

hindcast comparison is needed to evaluate the performance. Spatial correlation coefficients of 

Week-4 z500 anomalies over the North Pacific (20°N-70°N, 150°E-120°W) between FREE and 

REPLAY and between NUDGE and REPLAY are calculated to assess the midlatitude z500 

forecast improvement due to tropical nudging (Figure A3.4). The average correlation among 

hindcasts is +0.17 between FREE and REPLAY and +0.41 between NUDGE and REPLAY, 

meaning that nudging improves the overall spatial representation of midlatitude z500 over Week 
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4, even though there may not be a consistently-signed signal from the tropics that forces the 

composite mean. However, when subsetting the hindcasts to isolate only those with the largest 

forecast improvements in Cluster #4, the enhanced Aleutian Low as well as the increased 

precipitation anomaly in the western U.S. are shown robustly to persist over Week 4 in a composite 

analysis in FREE but not in NUDGE and REPLAY (Figure A3.5), suggesting that the hypothesis 

of destructive interference may still be applicable to those cases in Week 4 where NUDGE 

performs particularly well relative to FREE. 

These results strongly point to the importance of correctly representing the tropics for 

extratropical forecasts of precipitation three to four weeks in advance. While we have proposed a 

physical mechanism to explain the enhanced improvements in Cluster #4 with tropical nudging, 

we still have not addressed why Cluster #4 alone provides larger forecast improvements relative 

to other clusters. We propose some possible reasons here. First, there is greater opportunity for 

forecast errors and improvement when the precipitation magnitudes in REPLAY are already large. 

This is the case for Clusters #3, #4 and #5, as seen in Figure A3.3. Second, precipitation over the 

Indo-Pacific warm pool region (10°S-10°N, 60°E-170°E) has been shown to generate 

teleconnection patterns that strongly affect the weather in the western U.S. on S2S timescales 

(Tseng et al. 2019), with MJO phases 2 and 3 providing particularly strong forcing 7-10 days later. 

In Weeks 1-2 during MJO phases 2-4, this region is poorly represented in FREE but is improved 

more after the nudging (Figure A3.6). Only the MJO in Cluster #2 and Cluster #4 in Weeks 1-2 

has higher frequencies in phases 2-4 (Figure A3.7). Third, the background states of different 

clusters provide different waveguide properties for stationary Rossby waves. Thus, it is possible 

that the western U.S. is less modulated by the teleconnection in other clusters compared to Cluster 

#4, while other locations might show a stronger modulation. 
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The multivariate k-means clustering method is capable of capturing features in the initial 

states important for the forecast improvement, which includes a strong anomalous Aleutian Low. 

Conditioning the forecasts on ENSO index and MJO phase (e.g. MEIv2 ³ 0 and MJO phases 1, 4, 

and 8; Figure A3.8), rather than using k-means clustering, also yields statistically significant 

forecast improvement, however. This is perhaps not surprising, as it is well known that ENSO and 

MJO teleconnections can also modulate the Aleutian Low (e.g. Henderson and Maloney 2018). 

Even so, the composites of all hindcasts with non-cold ENSO that are initially in MJO phases 8 

and 1 do not show an enhanced Aleutian Low as strong as in Cluster #4 (Figure A3.9). This is 

possibly because not all MJO and ENSO events in these phases strongly modulate the Aleutian 

Low. For example, the strength of the MJO teleconnection to the extratropics is also modulated by 

other factors such as the strength of the tropical quasi-biennial oscillation (Toms et al. 2020). The 

k-means clustering approach thus allows us to focus on initial states that feature an enhanced 

anomalous Aleutian Low, whether or not those days map onto specific climate indices (see the 

relatively wide spread of MJO and ENSO indices in the bar chart of Figure 3.3a). We leverage 

the advantage of clustering that it provides and propose an underlying mechanism that would have 

been more difficult to isolate using MJO and ENSO metrics alone. 

 

3.4 Summary 

 Extended-range precipitation forecast improvements along the U.S. West Coast in 

NOAA/NCEP GFS v15.1.1 are examined in hindcasts where tropical fields of horizontal wind, 

mass, temperature, and humidity are nudged toward observations. With nudging, the forecast mean 

absolute error of the western U.S. precipitation is reduced over Weeks 3-4 (Figure 3.1 and Figure 
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A3.1), with larger reductions during forecast periods that were particularly poorly simulated in the 

FREE (i.e. un-nudged) simulations (Figure A3.2), consistent with the findings in Dias et al. (2021). 

 A conditional forecast improvement analysis is performed based on a multivariate 

clustering method. One specific cluster (Cluster #4), characterized by initial states with a strong 

Aleutian Low and weighted toward non-cold ENSO conditions and MJO phases 8-2 (Figure 3.3a), 

is shown to provide significantly larger forecast improvements in western U.S. precipitation 

(Figure 3.2). The robust improvements can be explained by an interaction that is not simulated 

well in the free running simulations (FREE), but is well-represented in the nudged simulations 

(NUDGE): a strong Aleutian Low is subsequently weakened after two weeks by the destructive 

interference associated with the MJO phases 8-2 teleconnection pattern (Figures 3.3b-d) under 

non-cold ENSO conditions. The poor representation of tropical intraseasonal precipitation 

variability in the FREE simulations (Figure 3.4a) is suggested to produce an unrealistic interaction 

between the Aleutian Low and the MJO teleconnection pattern, leading to errors in the z500 and 

precipitation pattern near the western U.S. These errors are corrected in the nudged simulations 

(Figures 3.3b-d and Figure 3.4b). 

We did not perform an exhaustive evaluation of the model improvements for every cluster, 

choosing instead to concentrate on Cluster #4 since it exhibits substantially greater improvements 

for the western U.S. precipitation in Weeks 3-4. It is possible that other clusters provide better 

forecast improvements with nudging at other locations, which could be examined in a future study. 

More sets of tropical nudging experiments, including those with nudging only being applied for a 

narrower latitudinal band, and over shorter time periods including over only the first week or two 

of the hindcasts, were also conducted by Dias et al. (2021). These experiments might also be useful 

for examining some of the proposed mechanisms above. 
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Note that the clustering method provides an alternative to using conventional ENSO and 

MJO metrics to analyze conditional forecast improvement. The clustering method shows that 

forecast improvements for the western U.S. precipitation are largest when an anomalously strong 

Aleutian Low is present in the initial condition, which subsequently gets perturbed by the evolution 

of the tropics. A major implication of this study is that improving forecasts of intraseasonal 

precipitation evolution in the tropics, especially that during MJO phases 8 and 1-4 under non-cold 

ENSO states, might be a key to producing better S2S precipitation forecasts in the western U.S. 
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CHAPTER 4 
 
 

Summary 
 
 
 

 In this thesis, we try to answer two questions that are crucial for understanding and 

improving S2S weather forecast skill: (1) How and why has the MJO evolved with climate 

warming over the observational record? (2) What initial states are associated with forecast errors 

on S2S timescales in an operational weather model? These two questions have been addressed in 

this thesis in Chapter 2 and Chapter 3, and our findings are summarized below in Subsections 4.1 

and 4.2. 

 

4.1 Recent changes in the MJO and their underlying mechanisms 

 In recent work analyzing climate projections under a warming scenario, a decrease in the 

ratio of MJO circulation to precipitation anomaly amplitude is found to be detectable as early as 

2021–2040 (Bui and Maloney 2019), consistent with an increase in dry static stability as predicted 

by tropical weak temperature gradient balance (Knutson and Manabe 1995). In Chapter 2, we 

examined MJO activity in multiple reanalyses (ERA5, MERRA-2, and ERA-20C) and find that 

while MJO wind and precipitation anomaly amplitudes have a complicated time evolution over 

the observational record, a decrease in the ratio of MJO circulation to precipitation anomaly 

amplitude is detectable over the observational period. This change is consistent with that 

theoretically predicted given the increase in tropical dry static stability that has occurred with 

climate warming. These results suggest that weak temperature gradient theory may be able to help 

explain changes in MJO activity in recent decades. Since the upper-tropospheric MJO divergence 

is weakened per unit MJO precipitation, the efficiency with which MJO precipitation can excite 
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stationary Rossby wave trains over the extratropics may have also decreased with climate warming, 

although this interpretation is complicated by potential changes in the basic state vorticity gradients 

that were not examined. Our analysis suggests that the sources of S2S predictability from the MJO 

might be modified in a warming climate. 

 

4.2 State-dependent S2S forecast skill over the western United States 

 In Chapter 3, boreal-wintertime hindcasts in the Unified Forecast System with the tropics 

nudged toward reanalysis is found to improve western United States precipitation forecasts at 3-4 

week lead times when compared to those without nudging. To diagnose the origin of these 

improvements, a multivariate k-means clustering method is used to group hindcasts into subsets 

by their initial conditions. One cluster characterized by an initially strong Aleutian Low 

demonstrates larger improvements at 3-4 weeks compared to other clusters. The greater 

improvement with nudging for this cluster originates from the incorrect simulation of destructive 

interference between (1) the anomalous Aleutian Low and (2) the teleconnection pattern excited 

by certain phases of the MJO during non-cold ENSO conditions in the non-nudged hindcasts. The 

results suggest that improving forecasts of tropical intraseasonal precipitation, especially that 

during the early MJO phases under non-cold ENSO, might be important in producing better 3-4 

week precipitation forecasts in the western United States.  

 

4.3 Future Perspectives 

 To better characterize recent changes to the MJO with climate warming, further work using 

observational data with longer time spans and from different models and instruments would be 

useful to validate the findings in Chapter 2. For example, in situ and satellite observations could 
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provide more accurate precipitation estimates since the precipitation used in this thesis is 

calculated by parameterization methods in the reanalyses. Wind data from radiosonde that covers 

the time back to the beginning of the 20th century could also be used to validate our findings (e.g. 

Durre et al. 2018). 

As described in Subsection 3.4, more sets of tropical nudging experiments, including those 

with nudging only being applied for a narrower latitudinal band, and over shorter time periods (e.g. 

the first week or two of the hindcasts), were also conducted by Dias et al. (2021). Those 

experiments could be analyzed to further validate the mechanism of destructive interference of the 

anomalous Aleutian Low. For example, we expect similar 3-4 week forecasts improvements to be 

presented in Cluster #4 in the experiment with only the first two week being nudged in the tropics, 

since we hypothesized that the improvement originates from the corrected simulation in the tropics 

over the second week. 

In Chapter 3, a multivariate k-means clustering method is used to identify conditional 

forecast improvement with few a priori assumptions being imposed. The findings suggest the great 

potential of unsupervised machine learning techniques in the field of atmospheric science. Those 

methods provide a way to reveal unrecognized properties of certain climate states that are 

important for the quantities of interest (e.g. forecast skill). 

Based on the changing nature of the MJO over the last century found in Chapter 2, the 

physical pathway that leads to the state-dependent improvements due to the nudging identified in 

Chapter 3 may be modified with a warming climate. To investigate such a potential modification 

on the teleconnection, not only the change in the MJO but also the evolution of the basic state 

under the warming climate are needed to be examined. For example, the change in background 
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subtropical jets could lead to different RWS patterns at certain MJO phases and different paths of 

which the stationary Rossby waves propagate (e.g. Bui 2020). 
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APPENDIX A 
 
 

Model and Experimental Setup Used in Chapter 3  
 
 
 

 In this study, we utilize the nudging simulations of Dias et al. (2021) conducted using a 

leading U.S. forecast model. Specifically, version 15.1.1 of the NOAA/ National Centers for 

Environmental Prediction Global Forecast System (NOAA/NCEP GFS v15.1.1) is used with C128 

horizontal resolution and 64 vertical levels from the surface to 1 hPa. Other operational settings 

such as the lower boundary condition and physical parameterizations used are provided in detail 

here: 

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/implementations.ph

p. As described in more detail below, three sets of simulations are conducted: REPLAY, where the 

whole globe is nudged toward the observed state represented by ERA-Interim reanalysis (Dee et 

al. 2011) at all lead times; FREE, where the model freely evolves after initialization to produce 

forecasts (one can think of this as the default forecast behavior), and NUDGE, where only the 

tropics are nudged at all lead times toward the reanalysis. Differences in forecast errors between 

FREE and NUDGE relative to REPLAY thus indicate how representation of the tropics can affect 

forecast performance.  

 The incremental analysis update (IAU; Bloom et al. 1996) scheme is utilized to nudge the 

model toward the observed state to create the REPLAY simulation. Briefly, the IAU is 

implemented with 6-hour cycles using the following procedure: the differences in the observations 

and the forecasted fields are computed at the end of a 3-hour free forecast as a forcing tendency, 

and the forecast is run again for 6 hours with the forcing applied (see Figure 1 in Dias et al. 2021). 

The fields of zonal and meridional winds, mass, temperature, and specific humidity are nudged. 
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When the whole globe is nudged, a good approximation of the observed state is produced, here 

referred to as REPLAY.  

 A second set of hindcasts, FREE, are performed to evaluate the forecast performance of 

the model in free-running mode (i.e. with no nudging). In this setting, the model is run freely out 

to 30 days from the restart points provided by REPLAY. A third set of hindcasts, NUDGE, are 

performed to assess the effect on S2S forecast performance in the extratropics when the tropics are 

represented accurately. The design of NUDGE is the same as FREE, except that the nudging 

method used in REPLAY is applied within 30°S-30°N using a weighting function that is unity 

between 10°S-10°N and is reduced to zero toward 30°N and 30°S following a hyperbolic tangent 

curve. Note that the same form of tropical nudging was used in Jung et al. (2010) and Dias et al. 

(2021). 

 All three sets of simulations are run during November 1999 to April 2018 for the extended 

boreal winter (November to April). At the beginning of each season, the model is initialized with 

the ensemble mean fields from Global Ensemble Forecast System version 12 (GEFSv12) on 

November 1st. The hindcast runs (FREE and NUDGE) are initialized every 5 days afterward using 

the restart files output from REPLAY until the end of March in the following year. Thus, 31 

hindcasts are performed for each extended boreal winter with 620 hindcasts in total. The 3-hourly 

output from the model is regridded to 1° by 1° horizontal grid spacing and averaged to daily means 

prior to the subsequent analysis.  

  



 

 44 
 

 

 

APPENDIX B 
 
 

Supplementary Figures 
 
 
 

 

Figure A2.1. As Figure 2.3, but using 15, 17, 19, 21, 23, and 25-year running composites. Note 
that the reference years used in ERA5, MERRA-2, and ERA-20C are 2000, 2000, and 1990 as 
central years to make the colors consistent among different lengths of running windows. 
 

 

Figure A2.2. The boreal-wintertime changes of the 19-years running means of (a) surface air 
temperature within the tropics (15◦S-15◦N), (b) surface air temperature in the IPWP region, and 
(c) the change in the IPWP region relative to the tropics, equivalent to (b) minus (a). Solid lines 
are from ERA5 and dashed lines are from MERRA-2. 
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Figure A2.3. The boreal-wintertime changes of the 19-years running means of (a) the Niño 3.4 
SST (Trenberth and Stepaniak 2001), (b) the unfiltered Pacific Decadal Oscillation (PDO) index 
(Mantua et al. 1997), and (c) the unfiltered Interdecadal-Pacific-Oscillation (IPO) tripole SST 
index (TPI; Henley et al. 2015). 
 

 

Figure A2.4. As Figure 2.3a-b, but the y-axis is the ratio of MJO 𝑢DE7 to precipitation amplitude. 
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Figure A2.5. The changes of boreal-wintertime composite DSE between the 19-years running 
windows and the early period in ERA5 and MERRA-2. The color indicates the central year of the 
running windows. 
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Figure A2.6. As Figure 2.3a-b, but the relative change in boreal-wintertime MJO anomaly 
amplitudes of (x-axis) precipitation and (y-axis) apparent heat source at 400 hPa (𝑄',677). The grey 
diagonal line is one-to-one, indicating that MJO precipitation has the same percentage change as 
MJO 𝑄',677. 𝑄',677 was derived as a residual in the thermodynamic energy budget. 

 

 

Figure A2.7. As Figure 2.3a-b, but shows the relative change in MJO 𝜔677/𝑄',677 instead of 
MJO 𝜔677/𝑃 on the y-axis. 
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Figure A3.1. The weekly-averaged MAE reduction in the western U.S. precipitation comparing 
NUDGE to FREE. The Week-1 line is not fully shown as it has a high peak near zero. Notice the 
heavy tails of Week-3 and Week-4 lines on the right. 
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Figure A3.2. A histogram of the western U.S. precipitation MAE (mm day-1) averaged over Weeks 
3-4 in (a) FREE and in (b) NUDGE, and (c) a scatter plot of the two MAEs on individual days. 
For the histograms, the top and the bottom terciles in each run are shaded, and the arrows annotated 
with numbers indicate the improvements of each tercile between FREE and NUDGE. For the 
scatter plot, a linear regression of the data points is shown (red line; mathematical expression at 
the upper left corner) along with a reference one-to-one line (black), where the lengths of the cyan 
arrows demonstrate that the magnitudes of improvement are larger when the MAE in FREE is 
larger. 
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Figure A3.3. The composite anomaly from each cluster at Day 1: (a) z500 (m), (b) u200 (m s-1), 
(c) precipitation (mm day-1), and the distribution of (d) MJO phases, and (e) MEIv2. Each row 
represents a cluster. (d) and (e) are as constructed in a similar manner to Figure 3.3c. In (a), (b), 
and (c), the red boxes represent the western U.S. averaging region, and the black contours are the 
mean u200 from the extended boreal winter, with levels 30, 40, 50, 60, and 70 m s-1.  
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Figure A3.4. Histograms of North Pacific (20°N-70°N, 150°E-120°W) Week-4 z500 spatial 
correlation coefficients between REPLAY and (a) FREE and (b) NUDGE binned with interval 0.1. 

 

 

Figure A3.5. As Figure 3.3, but of the subset of hindcasts with the improvement greater than or 
equal to 1 mm day-1 from Cluster #4.  
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Figure A3.6. As Figure 3.2b, but showing the MAE reduction of Indo-Pacific warm pool region 
(10°S-10°N, 60°E-170°E) precipitation during weeks 1-2 as a function of MJO phase, where X 
indicates the non-MJO conditions. 

 

 

Figure A3.7. As the MJO panels in Figure 3.3, but showing the weekly distributions from all the 
clusters (columns). 
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Figure A3.8. As in Figure 3.2b, but subsetting by MJO phases while (a) MEIv2 < 0, and while 
(b) MEIv2 ³ 0, where X indicates the non-MJO conditions. 

 

 

Figure A3.9. As Figure 3.3 without showing the index distributions, but of the subset of hindcasts 
with MEIv2 ³ 0 and MJO phases 1 and 8. The sample number of this subset is 42. 

 

 


