
DISSERTATION

CHARACTERIZING THE SELF-MOTION MANIFOLDS OF REDUNDANT ROBOTS OF

ARBITRARY KINEMATIC STRUCTURES

Submitted by

Ahmad A Almarkhi

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2022

Doctoral Committee:

Advisor: Anthony A Maciejewski

Edwin Chong

Juliana Oprea

Jianguo Zhao

Copyright by Ahmad A Almarkhi 2022

All Rights Reserved

ABSTRACT

CHARACTERIZING THE SELF-MOTION MANIFOLDS OF REDUNDANT ROBOTS OF

ARBITRARY KINEMATIC STRUCTURES

Robot fault tolerance measures can be classified into two categories: 1) Local measures that are

based on the singular value decomposition (SVD) of the robot Jacobian, and 2) Global measures

that are suitable to quantify the fault tolerance more effectively in pick-and-place applications. One

can use the size of the self-motion manifold of a robot as a global fault-tolerance measure. The size

of the self-motion manifold at a certain end-effector location can be simply the sum of the range of

the joint angles of a robot at that location. This work employs the fact that the largest self-motion

manifolds occur due to merging two (or more) previously disjoint manifolds. The connection of

previously disjoint manifolds occur in special configurations in the joint space called singularities.

Singularities (singular configurations) occur when two or more of the robot joint axes become

aligned and are linearly dependent. A significant amount of research has been performed on identi-

fying the robot singularities but was all based on symbolically solving for when the robot Jacobian

is not of full rank. In this work, an algorithm was proposed that is based on the gradient of the

singular values of the robot Jacobian. This algorithm is not limited to any Degree of Freedom

(DoF) nor any specific robot kinematic structure and any rank of singularity.

Based on the robot singularities, one can search for the largest self-motion manifold near robot

singularities. The measure of the size of the self-motion manifold was chosen to eliminate the

effect of the self-motion manifold’s topology and dimension. Because the SVD at singularities is

indistinct, one can employ Givens rotations to define the physically meaningful singular directi-

ons, i.e., the directions where the robot is not able to move. This approach has been extensively

implemented on a 4-DoF robot, different 7-DoF robot, and an 8-DoF robot.

ii

The global fault-tolerance measure might be further optimized by changing the kinematic struc-

ture of a robot. This may allow one to determine a globally fault-tolerant robot, i.e., a robot with

2π range for all of its joint angles at certain end-effector location, i.e., a location that is the most

suitable for pick-and-place tasks.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude for my advisor, Prof. Anthony A.

Maciejewski, and express my deep thanks for his ultimate help and support. This would not have

happened without your great, persistent guidance and support. I would like, also, to express my

thanks to my Ph.D. committee members - Prof. Edwin Chong, Prof. Iuliana Oprea, and Prof.

Jianguo Zhao for the effort they put in my research and the support they provided.

I would like to express my spacial appreciation for Prof. Maciejewski and Prof. Chong who

made an exceptional effort to help my late friend, Fateh ElSherif.

I thank the Libyan Ministry of Higher Education for funding my study in partial.

I also would like to acknowledge the ECE department staff, and especially, Katya and Alauna.

Thank you both for you great support.

Lastly, I would like to express my highest appreciation to my family, My late Mother who

wanted to see me a doctor; To my Father, who was the best friend and supporter in this journey;

To my Brothers and my only Sister for their unconditional support. To my beloved wife, Eman,

thanks for your support, patience, and positivity all the way.

iv

DEDICATION

To my wife, Eman and my kids - Balsam, Yahya, and Elias

v

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 Introduction . 1

Chapter 2 TWO . 3

2.1 INTRODUCTION . 3

2.2 SINGULARITY ANALYSIS . 5

2.2.1 Background . 5

2.2.2 Identifying Robot Singularities . 5

2.2.3 Identifying Singular Directions . 12

2.3 CASE STUDIES . 14

2.3.1 Introduction . 14

2.3.2 4-DoF Regional Robot . 14

2.3.3 Mitsubishi PA-10 Robot . 16

2.4 CONCLUSIONS . 21

Chapter 3 THREE . 22

3.1 INTRODUCTION . 22

3.2 BACKGROUND . 24

3.2.1 Self-Motion Manifolds . 24

3.2.2 Size of Self-Motion Manifolds . 25

3.3 IDENTIFYING LARGER SELF-MOTION MANIFOLDS 27

3.4 PA-10 ROBOT CASE STUDY . 33

3.4.1 PA-10 background . 33

3.4.2 The largest self-motion manifold . 35

3.4.3 Evaluation . 39

3.4.4 Example Use Case . 41

3.5 CONCLUSIONS . 43

Chapter 4 FOUR . 44

4.1 INTRODUCTION . 44

4.2 BACKGROUND ON SELF-MOTION MANIFOLDS 46

4.2.1 Preliminaries . 46

4.2.2 Size of Self-motion Manifolds . 50

4.3 GENERATING OPTIMALLY FAULT TOLERANT ROBOT DESIGNS . 51

4.4 RESULTS . 55

4.4.1 Four-DoF Robots . 55

vi

4.4.2 Seven-DoF Robots . 58

4.4.3 Eight-DoF Robots . 60

4.4.4 Discussion . 63

4.5 CONCLUSIONS AND FUTURE WORK 64

Chapter 5 Conclusions and Future Works . 65

5.1 CONCLUSIONS: . 65

5.2 FUTURE PLAN: . 66

Bibliography . 67

vii

LIST OF TABLES

2.1 DH parameters of an example 4-DoF manipulator . 15

17

2.2 DH parameters of the PA-10 robot . 17

2.4 PA-10 robot’s rank-2 singular configurations . 19

2.5 PA-10 robot’s rank-3 singular configurations . 20

3.1 The DH Parameters of the PA-10 Robot . 34

3.2 Efficiency Comparison between the Proposed Algorithms and the Random Approach . 39

3.3 Robot’s Home and Task Configurations . 42

4.1 DH Parameters of the Baseline 4-DoF Robot . 55

4.2 The DH Parameters of an Example Optimal 4-DoF Robot 56

4.3 The DH Parameters of the PA-10 Robot in Maximal Configurations 58

4.4 The DH Parameters of an Example Optimal 7-DoF Robot 60

4.5 The DH Parameters of the Baseline 8-DoF Robot . 61

4.6 The DH Parameters of the Optimal 8-DoF Robot . 63

viii

LIST OF FIGURES

2.1 The behavior of two nearly-equal singular valuers. 8

2.2 The behavior of three nearly-equal singular values. 10

2.3 Singular value behavior after applying the proposed algorithm. 12

2.4 A 7-DoF robot in the same rank-3 singularity. 13

2.5 The rank-1 singualrities of the 4-DoF robot. 15

2.6 The 4-DoF robot in different rank-1 singualrities. 16

2.7 The PA-10 robot in rank-1 singularities. 18

2.8 The PA-10 robot in rank-2 singularities. 19

2.9 The PA-10 robot in rank-3 singularities. 20

3.1 Sketches for different self-motion manifolds. 26

3.2 Sketch for rank-1 and rank-2 singualrities that occure of previosuly-disjointed manifolds. 32

3.3 3-D projections of various PA-10 self-motions manifolds. 35

3.4 Various 3-D projections of different PA-10 self-motions manifolds charactrized by θ4. . 37

3.5 The optimal self-motion manifold of the PA-10 robot. 38

3.6 Comparison between self-motion manifold sizes found by using a random approach

and approaches based on the local dexiterity measures. 40

3.7 The PA-10 robot in different configurations. 41

3.8 A joint-six faliure simulation of the PA-10 robot. 42

4.1 The topology of one-dimensional self-motion manifold. 49

4.2 The baseline 4-DoF robot and its largest self-motion manifold. 56

4.3 Kinematically optimal fault-tolerant 4-DoF robot. 57

4.4 The lraget self-motion manifold of the baseline 7-DoF robot. 59

4.5 Kinematically optimal fault-tolerant 7-DoF robot. 61

4.6 The baseline 8-DoF robot and its largest self-motion manifold. 62

4.7 kinematically optimal fault-tolerant 8-DoF robot. 63

ix

Chapter 1

Introduction

The design of fault-tolerant robots has been increasingly important, especially for critical appli-

cations. Such critical applications are commonly employed where maintenance is too costly or the

robots are inaccessible, e.g., search and rescue [1] and disaster recovery [2]. One typical approach

for insuring high-availability, and thus fault tolerance, is redundancy. Redundancy has many cate-

gories/levels including, structural redundancy, e.g., duplicating parts that most commonly fail [3],

functional redundancy, i.e., a human intervention is required to correct a fault situation, and ki-

nematic redundancy, where a robot is designed with more degrees of freedom (DoFs) than the

minimum required for a certain task.

Many aspects of fault tolerance have been extensively studied, for example, how to quantify

fault tolerance, resulting in two different categories, i.e., local and global fault tolerance measures.

Local fault tolerance measures are generally based on the singular value decomposition of the

instantaneous Jacobian of the robot. These local measures include the minimum singular value

[4], the condition number [5], and the robot manipulability [6]. On the other hand, global fault-

tolerance measures are useful for pick-and-place tasks where there is a need to identify a fault-

tolerant location in the robot’s workspace. In this study, we suggest the size of the robot’s self-

motion manifold at certain end-effector location to be the global measure for the robot at that

workspace location.

The rest of this dissertation is organized as follows:

Chapter 2 proposes an algorithm to identify the singular configurations of any rank for any

kinematic-structure robots. The algorithm employs the gradient of the singular values of the robot’s

Jacobian. It also, deals with the not-uncommon cases when the singular value values are indistinct.

In this chapter, we also suggest a way to define the singular directions.

Chapter 3 uses the algorithm for identifying robot singularities to search for the largest self-

motion manifold by employing the fact that the largest self-motion manifolds occur near singu-

1

larities. In this chapter, we also suggest a measure of the "size" of the self-motion manifold that

is based on the sum of the joint angle ranges of a robot. This measure quantifies the global fault

tolerance of a robot regardless of the topology of that self-motion manifold and the number and

the rank of the singularities that occur on the self-motion manifold.

Chapter 4 presents the conclusions of this work and a direction for the future works.

2

Chapter 2

Singularity Analysis for Redundant Manipulators of

Arbitrary Kinematic Structure1

2.1 INTRODUCTION

A robot singular configuration is a configuration in which the robot’s end effector loses the ability

to move in one (or more) direction(s), i.e., singular direction(s). Such singular configurations are

usually called singularities [8]. Robot singularities are also called critical points [9] or special

configurations [10]. At a singularity, there is no joint velocity that can result in an end-effector

velocity in a singular direction(s). Singularities result from having the corresponding Jacobian

(J) columns be linearly dependent. The singular value decomposition (SVD) of J can reveal

immediate information about singularities. At a singularity, one (or more) singular value(s) of the

robot Jacobian are zero. Robot singularities can offer mechanical advantages [11], however, they

require more sophisticated inverse kinematics solutions [12].

Identifying robot singularities has been extensively studied. For non-redundant manipulators,

where J is square, singularities can be found by symbolically solving for conditions when the

determinant of J equals zero (|J | = 0) [13]. For redundant manipulators, where |J | does not

exist, the conditions that make |JJ⊤| = 0 can be computed, but this is usually difficult to solve.

In this case, one viable approach is to solve for conditions that make all the 6 × 6 sub-Jacobians

singular, i.e., the determinants of all sub-Jacobians equal zero [14], but this also becomes infeasible

for robots with a large number of degrees of freedom (DoF). For example, an 8-DoF manipulator

requires computing the determinants of 28 sub-Jacobians. In addition, these techniques typically

lack the ability to provide information about the singular vector(s) associated with a singularity.

1This chapter was published in [7]

3

To more easily identify singularities and find singular directions, [15] suggested using the fact

that at a singularity, there must be a screw reciprocal to all screws that represent the columns of the

robot Jacobian. This technique has been used to identify the rank-1 singularity conditions and the

singular directions for 7-DoF manipulators [16]. The reciprocity-based methodology has also been

used to find the rank-1 singularities of an 8-DoF manipulator [17]. In addition, it was extended

to identify the rank-2 singularities of a 7-DoF manipulator [18]. This technique shows its merit

of being relatively easy and extendable, but it is highly dependent on selecting a reference frame

that simplifies the computation of J . Building on the reciprocity-based approach, researchers have

suggested further simplifications of the Jacobian by performing elementary transformations on the

Jacobian before solving for the singularity conditions as in [19]. This approach has been further

employed in performing singularity avoidance for manipulators with non-spherical wrists [20].

All these techniques work well for simple classes of kinematically redundant manipulators and for

rank-1 singularities. Such manipulators have their successive joint axes either perpendicular or

parallel, which makes computing J relatively easy.

In this paper we suggest a technique to find the singularities of a manipulator with an arbitrary

degree of redundancy and arbitrary kinematic structure. This can be achieved by driving a certain

singular value, σi, of J to zero by following the gradient descent of that singular value, i.e., −∇σi.

The complexity of this technique is independent of the rank of the singularity. In addition, we

present an algorithm to identify the singular directions at high-rank singularities.

The rest of this paper is organized as follows. Methodologies to identify robot singularities

and their corresponding singular directions are presented in section 2.2. In section 2.3, the results

of applying the methodologies to a 4-DoF robot and a 7-DoF robot are discussed. Finally, the

conclusions of this work are presented in section 2.4.

4

2.2 SINGULARITY ANALYSIS

2.2.1 Background

The forward kinematics of an n-DoF robot that is acting in an m-dimensional workspace can be

written as

ẋ = Jθ̇ (2.1)

where ẋ is an m× 1 vector representing the end-effector velocity, J is the m× n robot Jacobian,

and θ̇ is an n× 1 vector that represents the joint angle rates. For redundant robots, n > m, where

n−m is the degree of redundancy. For a redundant manipulator, J is not a square matrix, and thus

not invertible, however, an inverse kinematics solution can be found using

θ̇ = J+ẋ+ nJ (2.2)

where J+ is the pseudoinverse of J and nJ is an arbitrary vector in the null space of the Jacobian.

The singular value decomposition of J can be represented as

J =
r

∑

i=1

σiuiv
⊤

i (2.3)

where r is the rank of J , the σi’s are the ordered singular values, i.e., σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0,

the unit vectors ui represent the output singular vectors, and vi are the input singular vectors. For a

robot at a rank-n singularity, there are n singular values, σi’s, that become zero. Thus, employing a

technique that minimizes singular values of J can be used to identify robot singular configurations.

2.2.2 Identifying Robot Singularities

In this section, we explain how to employ the gradient descent of a singular value of J to drive

a robot of an arbitrary kinematic structure to a singularity. This technique is not limited by the rank

of the singularity. The singular value σi in (4.4) can be expressed as

5

σi = u⊤

i Jvi. (2.4)

Differentiating (4.9) with respect to time results in

σ̇i = u̇⊤

i Jvi + u⊤

i J̇vi + u⊤

i Jv̇i. (2.5)

One can note that u⊤
i uj and v⊤

i vj are zero for i 6= j and that the derivative of a unit vector is

orthogonal to that vector. So, (4.10) can be further simplified to [21]

σ̇i = u⊤

i J̇vi. (2.6)

The partial derivative of σi with respect to some θk can be expressed as

∂σi

∂θk
= u⊤

i

∂J

∂θk
vi (2.7)

where

∂J

∂θk
=

[

∂j1
∂θk

,
∂j2
∂θk

, · · · , ∂jn
∂θk

]

. (2.8)

The partial derivative of the ith column of the Jacobian is given by [22], [23]

∂ji
∂θk

=

























































(z⊤
k pi)zi − (z⊤

k zi)pk

zk × zi






, k < i







(z⊤
i pk)zk − (z⊤

k zi)pk

0






, k ≥ i

(2.9)

Then, the gradient of σi for any J can be simply computed from (4.12), (4.13), and (4.14), as

∇σi =

[

∂σi

∂θ1
,
∂σi

∂θ2
, · · · , ∂σi

∂θn

]

. (2.10)

6

Now that one can compute ∇σi, it is possible to employ the gradient descent technique to locate

a minima for any singular value σi. In the following, we explain an algorithm to find rank-1 and

higher rank singularities.

Identifying Rank-1 Singularities

For rank-1 singularities, one can employ the general equation

θ(k+1) = θ(k) − αk∇σ
(k)
i (2.11)

where, θ(k+1) is a vector that represents the new joint angles of a robot, the vector θ(k) is the

current joint angles, αk is an adaptive step size, and ∇σ
(k)
i is the gradient of σi (σi = σm for

rank-1 singularities). In order to identify all rank-1 robot singular configurations, one can start

by generating random configurations that span the robot joint space. Then, from each random

configuration, one can move the robot along the gradient descent of σm as in (2.11). For faster

convergence to a singularity, one can use the steepest descent method, in which αk needs to be

adaptive, i.e., it is chosen at each iteration to achieve a maximum decrease in σm. This can be done

by conducting a one-dimensional search along the −∇σ
(k)
m direction until a minimizer, θ(k+1), is

found.

Identifying Rank-2 Singularities

A robot is said to be in a rank-2 singularity if ǫ > σm−1 ≥ σm, where ǫ is a small threshold

(virtually zero). To identify rank-2 singularities, one can start with a population of random joint

configurations and employ (2.11) by moving along the −∇σ
(k)
m−1 direction until the σm−1 < ǫ

condition is satisfied. However, it is not uncommon for an undesirable behavior to occur, that

results from having the two singular values σm−1 and σm become nearly equal before they reach

zero, i.e., σm−1 ≈ σm > ǫ. In this case, the two singular values are not distinct, which means that

their corresponding singular vectors are ill-defined. In other words, any singular vectors (u and v)

in the {um−1,um} and {vm−1,vm} subspaces are valid for solving (4.11). Figure 2.1, shows the

7

behavior of the algorithm when the two smaller singular values become nearly equal through the

process of driving a robot into a rank-2 singularity. In this case, σ5 ≈ σ6 (at around iteration 600),

which makes them indistinct and their corresponding singular vectors ill-defined. The direction

of ∇σ5 can completely change direction from one iteration to another, which affects the rate of

convergence.

Figure 2.1: In subplot (a), the evolution of σ5 and σ6 is shown as the standard gradient descent algorithm

is employed. The singular value σ5 is minimized until σ5 ≈ σ6 at around iteration 600. When they become

nearly equal, the angle between the gradients in successive iterations becomes large. These angles are

plotted in (b), where the change in the angles reaches 180◦. It is clear that the convergence requires a long

time (about 3000 iterations) due to the large change in the gradient direction. In this case, the convergence

time is approximately 40 seconds. The threshold, ǫ = 10−6, is indicated with a red horizontal line.

To overcome this unwanted effect, one can start with moving the robot along the −∇σ
(k)
m−1 di-

rection until σ5 and σ6 become very close in value. Then, a combination between the two gradients

is computed. Because the singular value decomposition is not unique in these cases, any singular

vectors u and v in the subspace associated with the equal singular values are valid. One can rotate

the singular subspace such that the angle between ∇σ
(k)
5 and ∇σ

(k)
6 is minimized, i.e.,

8

u5(new) = u5 cosφ+ u6 sinφ

u6(new) = u6 cosφ− u5 sinφ

v5(new) = v5 cosφ+ v6 sinφ

v6(new) = v6 cosφ− v5 sinφ

(2.12)

where φ is the angle of rotation. It should be noted that the angle between the gradients of σ5 and

σ6 can vary from 0 to π based on the angle of rotation φ. A suitable selection of the rotation angle

for the singular subspaces is crucial in minimizing the change in the gradient direction from one

iteration to another. Once the ∇σ
(k)
5 and ∇σ

(k)
6 that have the minimum angle between them are

computed, a combination that minimizes σ5 can be found

∇σ(k) = γ∇σ
(k)
5 + (1− γ)∇σ

(k)
6 (2.13)

where ∇σ(k) is the desired gradient and γ is a positive scalar where 0 ≤ γ ≤ 1. This linear search

will minimize the change in the gradient direction from one iteration to another. After ∇σ(k) is

computed, the steepest descent method is applied to find an optimal value of αk in (2.11) that

minimizes σ5. An analogous process can be employed for identifying higher rank singularities.

Identifying High-rank Singularities

To identify high-rank singularities, i.e., where three or more singular values become zero, one can

employ a similar approach to that applied for identifying rank-2 singularities. For a robot in a

singular configuration, J is of rank r if σi = 0 for i > r, which also means the robot is in a rank-

(m− r) singularity. To find high-rank singularities, one can move the robot by iteratively solving

(2.11) until a desired σi reaches zero. While moving along the −∇σi direction, it is possible that

σi and σi+1 become nearly equal. In this case, the procedure in the previous section can be applied.

In some cases, more than two singular values become nearly equal but larger than the threshold,

i.e., σi ≈ σi+1 ≈ · · · ≈ σm > ǫ. For the purpose of illustration, we will consider the case where

a robot is being driven to a rank-3 singularity when the situation σ4 ≈ σ5 ≈ σ6 > ǫ occurs, as

9

illustrated in Figure 2.2. One can note that around iteration 186 in Figure 2.2 all three singular

values became very close in value.

Figure 2.2: In (a), the singular value σ4 is minimized until iteration 106, where (σ4 ≈ σ5). At iterations

135 and 186 the singular values σ4, σ5, and σ6 become nearly equal. Subfigure (b) shows the change in

the angle between the gradients in successive iterations. The change of angle reaches 170◦ when the three

singular values become nearly equal. In this case, the singular values σ4, σ5, and σ6 never converge to zero.

The threshold, ǫ = 10−6, is indicated with a red horizontal line.

At this point, the angle between the gradient of σ4 in successive iterations (the angles between

∇σ
(k−1)
4 and ∇σ

(k)
4) became 170◦, which resulted from having the singular values indistinct and

their corresponding singular vectors ill-defined. This also contributed to an unwanted increase

in σ4 because the gradients switched direction. In this case, one can rotate their corresponding

singular subspaces to find a suitable rotation that minimizes the sum of the angles between the

three gradients. The solution is to minimize an objective function H , where

H =
m
∑

(i=r+1)

m
∑

(j=i+1)

θi,j (2.14)

10

and θi,j is the angle between ∇σi and ∇σj . The rotation of the singular subspaces can be done

by iteratively employing (2.12). That is, because the singular subspaces are three-dimensional (or

higher), one can iteratively rotate one plane at a time, i.e., in this case, {u4,u5} and {v4,v5}, then

{u5,u6} and {v5,v6}, and so on. This iterative rotation should be done until the sum of the angles

between all gradients is minimized. After finding the gradients of the singular values, one can

use (2.13) to compute a combination between the first two gradients,∇σ4 and ∇σ5, that minimize

σ4. Then, using (2.13) again to compute a combination between the resulting gradient and ∇σ6

that minimizes σ4. This approach guarantees achieving a minimum amount of gradient direction

change and thus a shorter convergence time.

This process can continue until the algorithm cannot converge to any higher rank singularities.

This algorithm, along with an adaptive step size, was applied to the same robot that resulted in

Figure 2.2 and the results are shown in Figure 2.3. It is clear that the convergence is faster and

the change in the gradient angle is smaller. The average convergence time was improved from 40

seconds to less than 2 seconds when the proposed technique is employed.

11

Figure 2.3: This figure shows the behavior of the singular values when the proposed algorithm is applied to

a robot to find a rank-3 singularity. This is the same robot as shown in Figure 2.2. Subfigure (a) shows the

values of the three smaller singular values, σ4, σ5, and σ6, while applying the algorithm with an adaptive

step size αk. In subfigure (b), the angles between the gradients in successive iterations are shown. The

angles average around 120◦. The algorithm converges in 16 iterations. The convergence time in this case is

less than two seconds. The threshold, ǫ = 10−6, is indicated with a red horizontal line.

If one applies the above algorithm to an initial population of random configurations then one

can identify all the singular configurations of various ranks. It is then possible to analyze the

resulting singularities to determine the singularity conditions for the robot. Some singularity con-

ditions depend on the values of a few joints while other joints can take any value. One may observe

that a singularity can be satisfied by an infinite number of joint configurations. In the next section,

we discuss a mathematical approach to identify singular directions associated with the singularities

that are physically meaningful.

2.2.3 Identifying Singular Directions

For a robot Jacobian J with rank r, the last m − r output singular vectors, i.e., ui’s, span

the directions of lost end-effector motion. For spatial manipulators, these singular vectors are

12

6-dimensional and represent a simultaneous translational and rotational velocity. For rank-1 sin-

gularities, there is only one unique singular direction, um, and it is easy to visualize. At higher

rank singularities, the singular value decomposition is not unique. Thus, the singular vectors cor-

responding to the zero singular values (σr+1, σr+2, · · · , σm) are ill defined and will likely not be

well aligned with the world (or task) frame of the robot. However, one can apply Givens rotations

to these vectors in order to identify an intuitive representation for the lost end effector motion.

Consider Figure 2.4, that shows a 7-DoF robot in a rank-3 singularity, where both subfigures

correspond to the same robot in the same singular configuration.

Figure 2.4: A 7-DoF robot in the same rank-3 singularity is presented.2In subfigure (a), the three SVD-

generated singular directions are indicated. In subfigure (b), the singular directions are plotted after they are

properly rotated. The singular directions, u4, u5, and u6 are represented by green, red, and blue respectively.

Dotted arrows represent rotational velocity and solid arrows represent translational velocity.

The original singular vectors, identified by employing the singular value decomposition, can

be rotated to a more intuitive set that is aligned with the world coordinate frame as follows:

2Figure 4, 6, 7, 8, and 9 are produced using the Robotics Toolbox [24].

13

[u4u5u6]=































0 0 0

−0.27 0.62 −0.61

0.74 −0.17 −0.50

−0.50 −0.71 −0.50

−0.33 0.08 0.23

−0.12 0.28 −0.27































⇒































0 0 0

0 −0.91 0

0 0 0.91

−1 0 0

0 0 −0.41

0 −0.41 0































Using the rotated subspace above (shown in Figure 2.4(b)), one can easily determine that there

is no joint velocity that can generate any rotational velocity around the −X direction (green). In

addition, the robot cannot have a simultaneous velocity with the illustrated components of −Y

translational motion with −Z rotational motion (red). Likewise, there are no joint rates that can

generate a simultaneous velocity with the illustrated components of Y translational motion with

−Z rotational motion (blue). In the next section, we illustrate the results of applying the proposed

algorithms to robots of different kinematic structures.

2.3 CASE STUDIES

2.3.1 Introduction

Our algorithm to identify robot singularities is neither limited by the kinematic structure of the

robot, nor by the rank of the singularity. We employed it on several 4-DoF regional and 7-DoF

spatial robots and present the results of one 4-DoF and one 7-DoF robot here. For each robot

we start with 10, 000 random configurations in the joint space. From each point, we apply the

gradient-based algorithm to find rank-1 and all higher rank singularities. The resulting singular

vectors are then rotated to the most intuitive representation of the lost directions of motion.

2.3.2 4-DoF Regional Robot

We study a locally optimal fault-tolerant 4-DoF robot presented in [25] with the DH parameters

given in Table 4.1. This robot is a spatial positioning (regional) manipulator, i.e., it has a 3-

dimensional workspace. Our focus is on identifying the singular configurations of this manipulator.

14

Table 2.1: DH parameters of an example 4-DoF manipulator

Linki αi [radians] ai [m] di [m] θi [radians]

1 π/2
√
2 0 θ1

2 -π/2
√
2 1 θ2

3 π/2
√
2 -1 θ3

4 0
√

3/2 1/2 θ4

It was found that this robot has only rank-1 singularities as presented in Figure 2.5. These

singularities are arranged along continuous manifolds in the joint space. This means that the robot

can continuously move while staying in a singular configuration. Note that these are not the same

as the self-motion manifolds.

Figure 2.5: This figure illustrates the 4-DoF robot rank-1 singularities. In (a) the singular configurations

are shown using a 2-D projection in [θ2, θ3]. In (b) a 3-D projection in [θ2, θ3, θ4] is shown.

Because the robot does not have any high-rank singularities, the presentation of the singular

directions is straightforward. The singular direction, u3, gives the actual direction of the loss of

the end-effector velocity. Figure 2.6 shows the 4-DoF robot in two different rank-1 singularities

along with the singular directions with respect to the world frame.

15

Figure 2.6: This figure shows the 4-DoF robot in two different rank-1 singular configurations. In (a) the

robot is shown in the configuration θ = [−3.11, 3.02,−1.53, 0.15] rad. The singular direction correspon-

ding to the singularity is u3 = [0, 1, 0]⊤, which indicates that the singular direction is aligned with the Y
direction. In (b) the robot is shown in the configuration θ = [−1.76,−1.85,−1.39, 0.02] rad. The singular

direction is u3 = [−1, 0, 0]⊤, which indicates that the singular direction is aligned with the −X direction.

2.3.3 Mitsubishi PA-10 Robot

Introduction

The Mitsubishi PA-10 is a 7-DoF manipulator with a 6-dimensional work space. Its kinema-

tic structure is similar to the human arm with three spherical joints in the shoulder, one joint in

the elbow, and three spherical joints in the wrist. The DH parameters of the PA-10 are listed in

Table 4.3.

16

Table 2.3: PA-10 robot’s rank-1 singular configurations3

i θ1 θ2 θ3 θ4 θ5 θ6 θ7
1 x ±π, 0 ±π/2 x x x x
2 x ±π, 0 x x x ±π, 0 x
3 x x x ±π, 0 x x x
4 x x x x ±π/2 ±π, 0 x

Table 2.2: DH parameters of the PA-10 robot

Linki αi [radians] ai [m] di [m] θi [radians]

1 -π/2 0 0 θ1

2 π/2 0 0 θ2

3 -π/2 0 0.45 θ3

4 π/2 0 0 θ4

5 -π/2 0 0 θ5

6 π/2 0 0.45 θ6

7 0 0 0 θ7

The singularity analysis on the PA-10 resulted in rank-1, rank-2, and rank-3 singularities being

identified. We were able to find singularity conditions for each singularity rank. The singular

directions, ui’s, were also identified and appropriately rotated. In all figures, loss of directional

velocity is indicated with a solid arrow, while the loss of rotational velocity is indicated with a

dotted arrow. Blue arrows indicate u6, red arrows indicate u5, and green arrows indicate u4.

Rank-1 Singularities

All rank-1 singularities are summarized in Table 2.3. Joint 4 is critical in that the robot will be

singular if θ4 is equal to ±π or 0. One can observe that joint 4 is the only joint that can change the

distance between the shoulder and the wrist.

3In all tables, “x” means the angle value does not matter.

17

The robot singular directions that indicate the loss of the end-effector velocity are all shown in

Figure 2.7. Because these are rank-1 singularities, their corresponding singular directions are well

defined.

Figure 2.7: The PA-10 robot is shown in rank-1 singular configurations. The singular direction, u6, is also

plotted for each singularity. The singularity conditions, 1, 2, 3, and 4, in Table 2.3 are satisfied in subfigures

(a), (b), (c), and (d), respectively.

Rank-2 Singularities

The PA-10’s rank-2 singularity conditions are shown in Table 2.4. The common feature bet-

ween these conditions is that they do not depend on the value of θ1 or θ7.

We employed Givens rotation to make sure that the two singular vectors, u5 and u6, are rotated

to represent the most intuitive set of singular directions.

18

Table 2.4: PA-10 robot’s rank-2 singular configurations

i θ1 θ2 θ3 θ4 θ5 θ6 θ7

1 x ±π, 0 ±π, 0 ±π, 0 x x x

2 x ±π, 0 x ±π, 0 x ±π, 0 x

3 x x x ±π, 0 ±π, 0 ±π, 0 x

4 x ±π, 0 ±π/2 x ±π/2 ±π, 0 x

Figure 2.8 shows the four singular conditions listed in Table 2.4.

Figure 2.8: The PA-10 robot is shown in rank-2 singular configurations. The singular directions u5 and

u6 are plotted for each singularity condition. The singularity conditions, 1, 2, 3, and 4, in Table 2.4 are

represented in the subfigues (a), (b), (c), and (d), respectively.

Rank-3 Singularities

It was found that the PA-10 robot can have rank-3 singularities by aligning the axes of joints 1,

3, 5, and 7 so that their columns of the Jacobian are linearly dependent. The conditions for these

rank-3 singularity configurations are listed in Table 2.5.

19

Table 2.5: PA-10 robot’s rank-3 singular configurations

i θ1 θ2 θ3 θ4 θ5 θ6 θ7

1 x ±π, 0 ±π, 0 ±π, 0 ±π, 0 ±π, 0 x

As before, we have used Givens rotations to make the singular vectors, u4, u5, u6 as intuitive

as possible. Figure 2.9 shows the manipulator in two different rank-3 singular configurations.

Figure 2.9: The PA-10 robot is shown in rank-3 singular configurations. The singular directions, u4, u5, and

u6 are indicted in green, red, and blue respectively. In (a), the robot is in configuration θ = [0, 0, 0, 0, 0, 0, 0]
and in (b) the robot is in θ = [π, 0, π, π, π, π, π].

One can observe that the rank-3 singularities occur for the PA-10 when it is completely stret-

ched out (workspace boundary singularity) or when it is folded back on itself.

In general, our approach for identifying robot singularities does not consider physical joint

limits. One can employ our technique to find any robot singular configuration but one must exclude

infeasible angles due to mechanical limits.

20

2.4 CONCLUSIONS

This work has proposed a procedure based on computing the gradient of a singular value to drive

a robot into a singular configuration. This algorithm is able to: (1) identify the singularities of any

rank for any robot and (2) deal with ill-defined singular vectors when their corresponding singular

values are equal. A second algorithm was presented to obtain the most intuitive representation of

the singular vectors associated with configurations that correspond to high-rank singularities. Both

algorithms are applicable to robots with an arbitrary number of degrees of freedom and of arbitrary

kinematic structure These algorithms were illustrated on a 4-DoF redundant positioning robot and

on a 7-DoF redundant PA-10 robot.

21

Chapter 3

Maximizing the Size of Self-Motion Manifolds to

Improve Robot Fault Tolerance4

3.1 INTRODUCTION

Fault tolerance has been a critical factor in the design and operation of robotic systems that

are meant to operate in harsh environments. Due to the mission-critical nature of some robotic

applications, failure could result in catastrophic loss of life and/or property. Robots used in search

and rescue operations launched after disasters are good examples of when reliability is important

[1]. Previous work has shown that the availability of robots in such harsh environments is as low

as 50% [27]. Because certain failures can put the entire mission in jeopardy [2], work has been

done to redesign rescue robots to make them fault tolerant [28].

Many different aspects of fault tolerance have been considered, such as fault detection, identi-

fication, and analysis, as surveyed in [29]. Researchers have also looked at fault-tolerant control

of actuators, for example, in automated underwater vehicles [30] [31]. Fault-tolerant control for

multirobot systems with undetected failures is discussed in [32]. In all cases, fault tolerance re-

quires redundancy at some level. Categories of redundancy include: structural redundancy, e.g.,

duplicating parts that are most susceptible to failures [3]; functional redundancy, i.e., a human

operator intervenes to assess faults and implement a work-around; analytical redundancy, e.g.,

when a tachometer signal is integrated to recover from a failed position sensor [29]; and kinematic

redundancy, i.e., a robot is designed to have more degrees of freedom (DoFs) than the minimum

required to complete a task in order to compensate for the lost joint(s). The work presented here

focuses on the study of kinematic redundancy.

4This chapter was published in [26]

22

To quantify the impact of incorporating kinematic redundancy, researchers have classified the

measures of fault tolerance into two categories, i.e., local and global. Quantitative local fault

tolerance measures are typically based on the singular value decomposition of the robot’s Jacobian

matrix. Such measures include the minimum singular value [4], the condition number [5], and

the robot manipulability [6]. The kinematic redundancy is used to configure the robot so that it

optimizes the fault tolerance measure. Techniques for doing so frequently involve the gradient of

the minimum singular value [23].

Global fault-tolerance measures, that typically define reachable workspaces, are useful for

pick-and-place tasks. One such measure [4] can be used to identify the best fault-tolerant loca-

tion for these types of tasks. It quantifies the size of the workspace where the robot can operate

before a failure and still return to the desired location after a failure. This can be guaranteed if the

robot is operated within specific joint limits determined from the range of the robot’s self-motion

manifold. The problem becomes more challenging if the aim is to design a fault-tolerant workspace

that is reachable for any trajectory both before and after a failure. A technique for computing the

boundaries of such a workspace is presented in [33]. One can use these global measures to eva-

luate and select the optimal kinematic parameters when designing redundant robots with the same

number of DoFs [34].

This work focuses on improving the global fault tolerance of a robot by maximizing the size of

a pre-failure workspace while guaranteeing the reachability of a critical task location. This is done

by identifying “large” self-motion manifolds, where the metric for the size depends on the ranges

of each of the joints, i.e., their bounding box. It is shown that such large self-motion manifolds

can be found by searching near high-rank singular configurations because these configurations

represent connections of two or more previously disjoint manifolds.

The rest of this paper is organized as follows. An overview of the terminology and background

concepts used is presented in section II. In section III, the approach used to analyze a robot design

in order to identify its best fault tolerant location(s) is explained. This approach is then illustrated

23

on a common existing redundant robot design in section IV. Finally, the conclusions of this work

are presented in section V.

3.2 BACKGROUND

3.2.1 Self-Motion Manifolds

The forward kinematics of a robot is represented as

x = f(θ) (3.1)

where x is an m-dimensional vector representing the end-effector location (position and orienta-

tion) and θ is an n-dimensional vector representing the joint angles. For redundant robots, n > m,

where n−m is the degree of redundancy. In this case, the self-motion manifold(s) is (are) the set

of all solutions that result from solving the inverse-kinematic problem represented by

θ = f−1(x). (3.2)

The upper limit on the number of self-motion manifolds for redundant spherical, positional, and

spatial manipulators is 2, 4, and 16, respectively [35]. The relationship between the robot’s joint

velocity and its end-effector velocity is represented by

ẋ = Jθ̇ (3.3)

where J is the m× n Jacobian. At the velocity level, self motion corresponds to:

Jθ̇ = 0. (3.4)

For the case where n−m = 1 and the robot is in a non-singular configuration, the null space is one

dimensional. In this case, the null space will be represented by the unit vector n̂J , which is tangent

24

to a self-motion manifold associated with this location. One can use n̂J to map out the self-motion

manifold(s) by integrating how it evolves under the constraint of maintaining a fixed desired end-

effector location, xd. Numerically, this can be done by identifying an initial configuration θ0 where

xd = f(θ0), and repeatedly solving

∆θ = γn̂J + J+∆xe (3.5)

where ∆θ is the change in the joint angles, γ is a real positive scalar that represents the step size

along the manifold, and J+∆xe is an error correction term where J+ is the pseudoinverse of the

Jacobian matrix and ∆xe is the end-effector error, i.e., the difference between f(θ+∆θ) and xd.5

If there are multiple self-motion manifolds, this procedure must be performed on each of them

with an appropriate initial θ0. The characteristics of the individual manifolds can be significantly

different in terms of their shape and size.

3.2.2 Size of Self-Motion Manifolds

To determine the length of a one-dimensional self-motion manifold, one only needs to sum up

the number of times that (4.6) is solved to traverse the entire manifold. To identify when one has

returned to the initial configuration, one must be careful to consider the case when one or more of

the joints has rotated by 2π. More so than length, the range through which each joint angle moves

is a useful measure of the robot’s fault tolerance at the location associated with this manifold.

These ranges define a bounding box, the volume of which has been used as one measure of fault

tolerance [4]. Unfortunately, many common 7-DoF robot designs that are like a human arm, have

self-motion manifolds that have a zero range for a particular joint, i.e., the elbow joint. Therefore,

throughout this work we always use the sum of all joint angle ranges for all self-motion manifolds

associated with a location as a measure of fault tolerance.

5The case where θ results in a singular configuration and null space is multi-dimensional will be discussed in

Section 3.3

25

Figure 3.1: An illustrative example of commonly occurring self-motion manifolds for high-dimensional

manipulators is shown projected into the two-dimensional space for joints θi and θj . The single one-

dimensional manifold shown in red is the connection of two previously disjoint manifolds. At the center of

the figure, the intersection is a singular configuration where the null space is two-dimensional. Note that

this is a true intersection and not simply due to the projection onto the θi - θj plane. If one perturbs the

end-effector location from the one associated with the red manifold, the resulting manifolds can be quite

different depending on the direction of the perturbation. In blue, the one red manifold splits into two open

manifolds and in green into two closed manifolds, where open refers to the fact that θi can take on any value.

Fortunately, for higher degrees of redundancy (where n − m > 1) that result in higher di-

mensional self-motion manifolds, computing an estimate of a bounding box is more tractable than

computing areas, volumes, or hypervolumes of manifolds. For these cases, a bounding box on the

joint angle ranges can be computed by modifying (4.6) to

∆θ = γNJ êi + J+∆xe (3.6)

where NJ is a projection onto the (n−m)-dimensional null space of the Jacobian and êi is a unit

vector along the ith joint angle, where 1 ≤ i ≤ n [4]. By repeatedly solving (4.7), for i = 1

to n, one can find an approximation of joint-angle ranges that can be used to compute the self-

26

motion manifold size6. The iteration defined by (4.7) should be terminated when either joint angle

i traverses 2π or the projection of êi onto the null space becomes zero. In the latter case, this may

be a local minimum so that this measure is a lower bound on the range of joint i.

As illustrated in Fig. 3.1, singularities play a critical role in the size and shape of self-motion

manifolds. At singularities, two (or more) self-motion manifolds can touch and become one mani-

fold, or one manifold can tear apart. This means that larger manifolds tend to include one or more

singularities and so it is natural to search for large manifolds near singularities.

3.3 IDENTIFYING LARGER SELF-MOTION MANIFOLDS

As discussed above, the larger (thus the more fault-tolerant) self-motion manifolds exist near

singularities, so that one should employ a technique for identifying singular configurations. There

are many techniques for doing so, e.g., symbolically solving for when the determinant of J beco-

mes zero [13] or using reciprocity-based resolution [36]. However, here we employ a technique

based on the gradients of the singular values [23] because of its ability to identify high-rank singu-

larities. The singular value decomposition of J can be defined as

J = UDV ⊤ (3.7)

where U is an m×m orthogonal matrix of the output singular vectors, V is an n× n orthogonal

matrix of the input singular vectors, and D is an m×n diagonal matrix where its diagonal elements

are the ordered singular values, i.e., σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0. It can be rewritten as a summation

in terms of the singular vectors

J =
r

∑

i=1

σiûiv̂
⊤

i (3.8)

where the vectors ûi and v̂i represent the output and input singular vectors, respectively. For

nonsingular J , the value of σm represents the distance to a singularity. The rank of J , denoted r,

is less than m if the robot is singular (i.e, σi = 0 for i > r). In this case, the value of σr is the

6This paper will focus only on the 7-DoF case, but future work will expand to higher DoF robots.

27

distance to the next higher-rank singularity. One can drive the robot towards the nearest singularity

by moving the robot along the gradient of σm until it reaches zero. From (4.4), it is easy to see that

any singular value σi can be written as

σi = û⊤

i Jv̂i. (3.9)

By differentiating (4.9) with respect to time, one obtains

σ̇i = ˙̂u⊤

i Jv̂i + û⊤

i J̇ v̂i + û⊤

i J
˙̂vi (3.10)

that can be simplified to

σ̇i = û⊤

i J̇ v̂i. (3.11)

The partial derivative of σi with respect to θk can be written as

∂σi

∂θk
= û⊤

i

∂J

∂θk
v̂i (3.12)

where

∂J

∂θk
=

[

∂j1
∂θk

,
∂j2
∂θk

, · · · , ∂jn
∂θk

]

. (3.13)

The partial derivative of the ith column of the Jacobian is given by [23], [22]

∂ji
∂θk

=

























































(z⊤
k pi)zi − (z⊤

k zi)pk

zk × zi






, k < i







(z⊤
i pk)zk − (z⊤

k zi)pk

0






, k ≥ i

(3.14)

Utilizing (4.12), (4.13), and (4.14), one can easily compute the gradient of any singular value of J

as

28

∇σi =

[

∂σi

∂θ1
,
∂σi

∂θ2
, · · · , ∂σi

∂θn

]

. (3.15)

Moving along this gradient allows one to increase or decrease any desired singular value.

Finding the largest self-motion manifold(s) of any robot is a two-step process. The first step

is to find all singular configurations, including high-rank singularities. In this step, we employ the

gradient descent technique to minimize a desired singular value

θ(k+1) = θ(k) − α∇σi (3.16)

where θ(k) is the current joint configuration, θ(k+1) is the next joint configuration, and α is a

positive scalar, often referred to as the step size. To identify rank-1 singularities, we start with

generating random configurations in the joint space. Then, starting from each random configura-

tion, we move the robot along the negative direction of the gradient of σm until the value of σm

approaches zero. The set of final configurations that satisfy the condition of σm ≤ ǫ are the rank-1

singularities of the robot, where ǫ is a user-defined threshold.

To identify the rank-2 singularities, we start from the same random configurations used to

identify rank-1 singularities, but the robot is first moved along the negative direction of ∇σm−1

until the value of σm−1 approaches zero, i.e, σm ≤ σm−1 ≤ ǫ. In some cases σm−1 and σm become

nearly equal before σm−1 approaches zero. This means that the singular vectors ûm−1 and ûm

(as well as v̂m−1 and v̂m) are ill-defined. That is, any vectors in the subspaces {ûm−1, ûm} and

{v̂m−1, v̂m} are valid singular vectors for the gradient computation in (4.11) and (4.12). In such

cases, we rotate the {ûm−1, ûm} and {v̂m−1, v̂m} subspaces so that the angle between ∇σm and

∇σm−1 is minimized. (The angle between the gradients of σm and σm−1 may vary from 0 to π.) We

then reduce σm−1 by moving along a negative direction of a linear combination of the gradients

of σm and σm−1. We optimize the linear combination by doing two one-dimensional searches.

The first search is along β∇σm + (1 − β)∇σm−1 to determine the optimal value of β, where

0 ≤ β ≤ 1, that minimizes σm−1. The second, is to determine the optimal value of the adaptive

step size α along the negative direction of the computed combination. Those configurations that

29

converge to where σm ≤ σm−1 ≤ ǫ are rank-2 singularities. If the process does not converge,

then a rank-2 singularity does not exist near this configuration. An analogous procedure is used

to find rank-3 (and higher-rank) singularities. There are two cases where the singular vectors

are ill-defined, i.e., when σm−2 and σm−1 are nearly equal or if the three singular values σm−2,

σm−1, and σm are all nearly equal. In the first case, the optimization described above can be

performed for σm−2 and σm−1 to minimize σm−2. In the second case, one needs to search for a

suitable rotation for the {ûm−2, ûm−1, ûm} and {v̂m−2, v̂m−1, v̂m} subspaces to minimize the sum

of the angles between the gradients of the three singular values. Then, one must find a suitable

combination of the gradients and a step size that minimize σm−2. An analogous process is repeated

for higher-rank singularities until there is no possible joint motion that will reduce σr while keeping

σm ≤ σm−1 ≤ · · · ≤ σr+1 ≤ ǫ, i.e., there are no rank-(m − r) singularities. The pseudocode for

performing this procedure is given in Algorithm 1.

The second step is to compute all the self-motion manifolds that include these singular con-

figurations. However, one would like to reduce the number of these configurations, in order to

reduce the amount of computations that result in very similar manifolds. Therefore, if two singular

configurations are close to each other, then only one of them will have its self-motion manifold

computed. Finding the self-motion manifolds for each singularity configuration can be done by

starting the robot in that singular configuration and then repeatedly solving (4.6) until an entire

self-motion manifold is computed.

Before applying (4.6), one must first compute the end-effector location associated with this

singular configuration. Then, from the singular configuration, the robot is moved in each of the

(n− r) directions of the null space. Mathematically,

∆θ = γv̂i + J+∆xe (3.17)

7The value of N should be large enough to sufficiently span the joint space. An analysis of this user-defined

parameter is provided in subsection IV(c) below.

30

Algorithm 1 Identify all-rank singular configurations

1: select N random joint-space configurations7

2: for i = 6 to 1 do {for each workspace dimension}

3: for j = 1 to N do {for each random configuration}

4: select jth joint-space configuration θ

5: compute σi {robot Jacobian’s ith singular value}

6: while σi ≥ ǫ do

7: if (i = 6) then {for rank-one singularities}

8: ∇σ = ∇σ6

9: else {for high-rank singularities}

10: for all σk where σi ≈ σk do {where k < i}
11: rotate U and V subspace associated with σi and σk’s {to minimize the angles

between ∇σi,∇σi+1, · · · ,∇σk}

12: compute ∇σ {optimal linear combination of the gradients of the singular values}

13: end for

14: end if

15: compute α {adaptive linear search along ∇σ}

16: update θ {θ(k+1) = θ(k) − α∇σ}

17: if (σi did not decrease) then

18: go to 23 {local minimum of σi}

19: end if

20: end while

21: save θ and singularity rank

22: end for

23: end for

for i = r to n, where these v̂i are the singular vectors that span the (n − r)-dimensional null

space of the Jacobian at the singular configuration. This guarantees that all of the one-dimensional

self-motion manifolds that touch at this configuration can be computed (see Fig. 3.1), because

away from the singular configuration the null space becomes one dimensional and well defined.

Therefore one can repeatedly solve (4.6) until the robot returns to the initial starting configuration.

However, it is common for self-motion manifolds to include multiple singular configurations

(see Fig. 3.2). If while solving (4.6) the null space becomes multi-dimensional, i.e., another

singularity is encountered, then one should be careful to select a null-space vector from this hig-

her dimensional subspace that is as close as possible to the one used to enter the singularity. For

computational efficiency, one should check any new starting configuration with all previously com-

31

puted manifolds to prevent redundant computations. The pseudocode for performing the second

step is given in Algorithm 2.

Figure 3.2: This sketch illustrates the case where three previously disjointed manifolds (red, green, and

blue) touch and become one manifold, i.e., a rank-2 singularity. Also, two of these manifolds (green and

blue) touch elsewhere creating a rank-1 singularity. Many variations of different-rank singularities can exist

on a single manifold.

In general, an end-effector location will have multiple disjoint self-motion manifolds, i.e., the

robot cannot move from one manifold to another without changing the end-effector location. To

compute the “fault tolerance” of the end-effector location associated with a singular configuration,

one needs to compute the “bounding box” of all the self-motion manifolds, i.e., the ranges for

each of the joints while staying at this end-effector location. Because of multiple disjoint self-

motion manifolds one needs to decide if it is important to reconfigure the arm from one manifold

to another without moving the end effector. If it is not, then one can simply take the union of all

the joint-angle ranges for each manifold. If it is, one can only take the union for those manifolds

that touch. One measure of the size of the bounding box is simply the summation of all these joint-

angle ranges. The above procedure for identifying the largest self-motion manifold is illustrated

for the well-known 7-DoF Mitsubishi PA-10 robot in the next section.

32

Algorithm 2 Compute all self-motion manifolds with singularities

1: import N singular configurations and their ranks {from algorithm 1}

{remove duplicate singularities}

2: ∀i, j ≤ N, i 6= j
3: if θ(i) ≈ θ(j) then

4: delete θ(j)
5: end if

{compute all self-motion manifolds SMMs}

6: for each singularity rank do

7: for all singular configurations θ do {of each rank}

8: if θ does not exist on a previously computed manifold then

9: compute xe {the end-effector location}

10: find the n− r configurations near θ that satisfy the n− r singular directions at xe

11: for k = 1 to n− r do

12: if kth configuration does not exists on a computed manifold then

13: start at the kth configuration

14: while not back to starting configuration do

15: compute the robot Jacobian (J)

16: compute the null vector (n̂J)

17: compute ∆θ {∆θ = γn̂J + J+∆xe}

18: update joint angles {θnew = θold +∆θ}

19: end while

20: end if

21: end for

22: end if

23: end for

24: end for

3.4 PA-10 ROBOT CASE STUDY

3.4.1 PA-10 background

The Mitsubishi PA-10 is used as an illustrative example because it has a well-known, com-

monly occurring 7-DoF kinematic structure. We first explain the behavior of the self-motion ma-

nifolds of the PA-10 when the end-effector location is changed. Then, the algorithms described in

the previous section are used to identify the largest self-motion manifolds and how they relate to

fault tolerance. The original DH parameters for the PA-10 are given in Table 4.3 [37], with the end

effector positioned so that the last link’s displacement, d7, is equal to d3.

33

Table 3.1: The DH Parameters of the PA-10 Robot

Linki αi[rad] ai[m] di[m] θi[rad]

1 −π/2 0 0 θ1

2 π/2 0 0 θ2

3 −π/2 0 0.45 θ3

4 π/2 0 0 θ4

5 −π/2 0 0.50 θ5

6 π/2 0 0 θ6

7 0 0 0.45 θ7

Because the elbow joint, i.e., θ4, is the only one that can change the distance between the

shoulder and the wrist, there can be no component of θ4 during self motion. Therefore, it is

possible to categorize self-motion manifolds based on the value of θ4. This is illustrated in Fig 3.3

where a single manifold for each end-effector location is shown with θ4 ranging from −π to π. All

of the singularities shown in this figure are rank-1 singularities.

34

Figure 3.3: This figure shows 3-D projections of the PA-10 self-motion manifolds generated by changing

θ4 from −π to +π, where the value of θ4 is indicated using color. Subfigure (a) is a projection in [θ2, θ3, θ4]

and (b) is a projection in [θ6, θ5, θ4]. Singularities occur at (A) where θ2 = 0, θ3 = ±π/2, (B) where θ2 =
±π, θ3 = ±π/2, (C) where θ4 = 0, (D) where θ6 = 0, θ5 = ±π/2, and (E) where θ6 = ±π, θ3 = ±π/2.

The self-motion manifolds in Fig. 3.3 exhibit all of the properties shown in Fig. 3.1, i.e., there

are both open and closed manifolds with manifolds connecting/separating at singularities. It is also

clear that the largest manifolds are those that include singularities.

The singularities of the PA-10 have been well studied [36], [18]. However, it is important to

note that Algorithm 1 above can be applied to any arbitrary robot structure and its computational

complexity does not change for high-rank singularities, which are important for identifying the

largest self-motion manifold.

3.4.2 The largest self-motion manifold

Once all the singularities are identified, Algorithm 2 is able to compute the size of self-motion

manifolds that include these singularities. It identified the largest self-motion manifold to be 35.90

35

rad8, where the ranges of θ1, θ2, θ3, θ5, and θ7 are 2π rad, the range of θ6 is 4.48 rad (±2.24 rad)9,

and the range of θ4 is zero, where its value is either +2.69 or −2.69 rad. To help understand why

Algorithm 2 identified this as the optimal solution, consider Fig. 3.4 that shows several self-motion

manifolds and their associated singularities characterized by varying θ4 from −π to π, analogous

to Fig. 3.3. The black manifolds, where θ4 = ±2.69 rad, are clearly the largest self-motion

manifolds. The nearby manifolds shown in green and red, where θ4 = −3.00 rad and θ4 = 3.00

rad, respectively, are shown to illustrate the behavior at these singularities. The subfigures (a)-

(d) are all different projections of the same manifolds, i.e., any color corresponds to only a single

manifold. These projections have been selected to illustrate which joint angles have an unrestricted

range, i.e., θ1, θ2, θ3, θ5, and θ7, whereas θ6 has a range of ±2.24 rad, which is clearly shown in (c)

and (d).

8This is the theoretical maximum size where the actual value would include any joint limits on θ2 and θ6 that are

due to self collision.

9If one wanted to modify the link offsets of the PA-10 to make d3 = d5, then the size of the largest self-motion

manifold could be increased so that θ6 would also have a range of 2π. This would also change the optimal value of θ4
to 0.

36

Figure 3.4: The subfigures (a)-(d) show different 3-D projections of the PA-10 self-motion manifolds cha-

racterized by θ4, where any color corresponds to only a single manifold. The optimal self-motion manifolds

identified by Algorithm 2 are shown in black where θ4 = ±2.69 rad. The dotted lines are used to better

show parts of the manifold that did not exist on nearby manifolds. The red and green manifolds where

θ4 = 3.00 rad and θ4 = −3.00 rad, respectively, are shown to illustrate the behavior at a singularity.

One should note that the two black manifolds correspond to the same end-effector location,

however, the robot cannot move from one manifold to the other without changing this location.

The rank of the various singularities on the black manifold is not clear from Fig. 3.4 because they

all appear to be of rank 1 due to the projections used. If one looks at the projection in θ3, θ5, and θ6

space, as in Fig. 3.5(a), then it becomes clear that the black manifold contains four rank-1 and four

rank-2 singularities, shown in blue and red respectively. (The four blue dots, rank-1 singularities,

at the lower part of Fig. 3.5(a) only represent two singularities, i.e., the dots at θ5 = π are the same

as those at θ5 = −π).

37

Figure 3.5: In (a) the largest optimal self-motion manifold is shown projected into the θ3, θ5, and θ6 sub-

space. From this projection one can see that this manifold contains four rank-1 and four rank-2 singulari-

ties, shown in blue and red respectively. Note that the two blue singularities at the bottom of the figure,

i.e., where θ6 = −2.24 rad, are shown twice at both θ5 = ±π. The rank-2 singularities occur when

θ = [0, 0, ±π
2 , θ4,

±π
2 , 0, 0], where in this case θ4 = 2.69 rad. The ranges of each of the joints is shown in

(b) where θ1, θ2, θ3, θ5, and θ7 are 2π, the range of θ6 is 4.48 rad (±2.24), and the value of θ4 is 2.69 rad,

where its range is zero.

Fig. 3.5(b) shows the ranges of the seven joint angles of the PA-10 while operating on the

largest self-motion manifold. There are two separate, equal-sized manifolds at this location. The

other manifold has identical joint-angle ranges, except that θ4 = −2.69 rad. The configurations

with θ4 = ±2.69 rad are special because they make the axis between the shoulder and the wrist

horizontal, and the rotation around this axis can configure the robot into four rank-1 singularities

and four rank-2 singularities. Operating the robot slightly away from these special values of θ4

will not allow it to reach all the rank-1 singularities. This will not dramatically change the size of

the self-motion manifold, however the robot will lose some ability to reconfigure that is offered by

the rank-1 singularities.

38

3.4.3 Evaluation

We first compare the proposed approach for identifying the largest self-motion manifold with a

straightforward evaluation of self-motion manifolds generated at random configurations. Table 3.2

shows a comparison of the largest self-motion manifold identified by both techniques as a function

of the number of random configurations N .

Table 3.2: Efficiency Comparison between the Proposed Algorithms and the Random Approach

No. of Random

Configurations

Size of the Largest Self-Motion Manifold (Radians)

Random Approach Proposed Algorithms

10 27.89 28.36

20 33.78 34.09

100 34.33 34.43

200 33.95 34.78

1,000 34.82 35.80

2,000 35.09 35.90

10,000 35.52 35.90

The data shows that the proposed approach converges to the maximum self-motion manifold

size of 35.90 rad at N = 2000. This was verified using ten different populations of random confi-

gurations. It should also be noted that our proposed approach outperformed the random approach

for any value of N .

Next, we compared our proposed algorithm to an approach that attempts to identify large self-

motion manifolds using classical local dexterity [38] and fault-tolerance measures [6]. Fig. 3.6

shows the distribution of 1, 000 self-motion manifold sizes computed from joint space configurati-

ons selected in three different ways. The left distribution is from the N = 1, 000 entry in Table 3.2,

which is generated randomly. The middle and the right distributions are for the 1, 000 configura-

39

Figure 3.6: This figure shows a comparison of the distributions of self-motion manifold sizes computed

for 1, 000 random configurations (left) with those found for 1, 000 configurations with the best local dex-

terity measure (middle) and fault-tolerant measure (right). The best 1000 manipulability and fault-tolerant

manipulability configurations were selected from 10, 000 random configurations. The minimum and the

maximum sizes in each distribution are indicated with black horizontal lines and the red line is the median.

The largest (35.90 rad) and smallest (12.57 rad) self-motion manifold sizes for this robot are also indicated.

tions with the best manipulability [38] and fault-tolerant manipulability [6], respectively, selected

from 10, 000 random configurations. Note that the distribution of the self-motion manifold sizes

generated from traditional local measures of dexterity and fault tolerance are outperformed by the

random approach. This indicates that there is no correlation between classical local measures and

self-motion manifold size. In addition, none of these techniques is able to identify the largest self-

motion manifold of the robot. However, it is possible to use our proposed approach to optimize

both global fault tolerance, i.e., largest self-motion manifold size, and any desired local measure

of dexterity or fault tolerance. For example, Fig. 3.7 (d) shows the PA-10 robot in one configura-

tion on the largest self-motion manifold that minimizes the condition number of the Jacobian, i.e.,

σ1/σ6 = 13.86. This illustrates that one does not have to operate near a singular configuration in

order to obtain the benefits of a fault-tolerant location with a large self-motion manifold.

40

Figure 3.7: The PA-10 robot (with an arc-welding tool attached) is shown operating at multiple locations.

Footnotemark[6] Subfigure (a) shows it in the home location, (b) in the best robot manipulability, (c) in

the best fault-tolerant manipulability, and (d) in a location with the largest self-motion manifold. The self-

motion manifold size associated with the best manipulability configuration is 23.67 rad, and for the fault-

tolerant manipulability is 22.45 rad.

3.4.4 Example Use Case

We now present a simple example use case where the performance of the proposed technique

is compared to existing approaches [38] [6]. Assume that a robot will be employed in a remote

environment where repair is not feasible and one is designing the workspace to determine where

a critical task should be placed. The home configuration of the robot is where all tasks start, and

one would like to be able to reach the goal location even after any single locked-joint failure. The

start location is shown in Fig. 3.7(a). We select the goal location using the technique presented

here, i.e., the location with the largest self-motion manifold, Fig. 3.7(d), and compare it to goal

6Fig. 3.7 and Fig. 3.8 were generated by using the Workspace 5 software package from WAT Solutions,

(www.watsolutions.com).

41

Table 3.3: Robot’s Home and Task Configurations

Start and Optimal Goals Joint Configurations [rad]

Task Starting Location [0, 0, π
2
, π
2
, π
2
, 0, 0]

Manipulability [0,−1.8,−2.8,−1.3,−2.3, 1.5, 0]
Fault-Tolerant Manipulability [0,−0.8, 3.0, 1.2,−2.9, 1.6, 0]
Largest Self-motion Manifold [0,−π

2
, π
2
,−2.69, 1.14, π

2
, 0]

locations with globally optimal local measures, i.e., manipulability, Fig. 3.7(b), and fault-tolerant

manipulability, Fig. 3.7(c). The joint values for all these configurations are given in Table 3.3.

Figure 3.8: The PA-10 robot is shown with joint six (in red) failed at θ6 = 0 while trying to perform a

task where the goal location is either optimal manipulability in (a) or fault-tolerant manipulability in (b).

An arc-welding tool is shown in the desired location to show the difference in position from the closest

possible location for the damaged robots. The position errors in (a) and (b) are [−0.66,−0.44, 0.02]m and

[−0.56,−0.14,−0.79]m, respectively.

We then simulate a joint failure in each of the joints and perform inverse kinematics on the

remaining six working joints and attempt to reach the goal locations. In all cases, the robot is able

to reach location Fig. 3.7(d), however, there are several joint failures that prevent the robot from

reaching the goal locations shown in Fig. 3.7(b) and (c). One example is shown in Fig. 3.8, where

6Fig. 3.7 and Fig. 3.8 were generated by using the Workspace 5 software package from WAT Solutions,

(www.watsolutions.com).

42

the robot is not able to reach the desired goal location due to a failure of joint six at θ6 = 0 that

occurred at the start location. In both cases, this joint failure results in the desired goal location

being outside the workspace of the damaged robots. Therefore, the best they can do is get to the

closest location that is at the boundary of their new workspace. In Fig. 3.8 we select the “closest”

configuration by minimizing the orientation error, so that all error is in the position of the tool. This

illustrates the merit of operating a robot on the largest self-motion manifold for mission-critical

tasks.

3.5 CONCLUSIONS

This work uses a measure of fault tolerance that is based on the size of self-motion manifolds.

Because singularities occur at the connection of self-motion manifolds, they can be used to identify

where larger manifolds exist. We developed algorithms that use this fact to; (1) first identify all

ranks of singularities and then, (2) search in the proximity of these singularities to identify large

self-motion manifolds. A unique feature of Algorithm 1 is that it can efficiently identify high-rank

singularities for arbitrary robot structures. To do this it must track multiple singular values that are

nearly equal, where their gradients are not well defined. Algorithm 2 also must deal with the ill-

conditioned nature of singular vectors that occur at singular configurations. The efficacy of these

algorithms is illustrated on a commonly occurring 7 DoF kinematic structure (Mistubishi PA-10).

In addition to identifying the largest self-motion manifold, it provided information that allows one

to modify the kinematics to obtain an even larger manifold. It was also able to identify joints that

are fault intolerant, so that one could explore alternate designs.

43

Chapter 4

An Algorithm to Design Redundant Manipulators of

Optimally Fault-Tolerant Kinematic Structure10

One measure of the global fault tolerance of a redundant robot is the size of its self-motion

manifold. If this size is defined as the range of its joint angles, then the optimal self-motion

manifold size for an n-degree-of-freedom (DoF) robot is n× 2π, which is not typical for existing

robot designs. This paper presents a novel two-step algorithm to optimize the kinematic structure

of a redundant manipulator to have an optimal self-motion manifold size. The algorithm exploits

the fact that singularities occur on large self-motion manifolds by optimizing the robots kinematic

parameters around a singularity. Because a gradient for the self-motion manifold size does not

exist, the kinematic parameter optimization uses a coordinate-ascent procedure. The algorithm

was used to design 4-DoF, 7-DoF, and 8-DoF manipulators to illustrate its efficacy at generating

optimally fault-tolerant robots of any kinematic structure.

4.1 INTRODUCTION

Fault tolerance has been very important to the design and operation of manipulators for mission

critical applications, where maintenance and repair are not feasible and a failure could result in a

catastrophe. Failures are less likely for robots used in controlled environments where maintenance

is relatively easy. However, reliability is critical for robots used in search and rescue operations [1].

Previous work has shown that the robot failure rates in severe environments are high [40] [41] and

robot availability is as low as 50% [27]. To address some of these issues, researchers have studied

the fault-tolerant control of actuators, e.g., in automated underwater vehicles [30] [31]. Also, Fault-

tolerant control for multirobot systems with undetected failures was discussed in [32]. Because an

10This chapter was published in [39]

44

entire critical mission can be jeopardized due to an unrepairable failure [2], redesigning robots to

make them more fault tolerant is an important area of research [28].

Several aspects of robot fault-tolerance have been considered, such as fault detection, identi-

fication, and analysis, as surveyed in [29]. The most commonly occurring failures modes are the

locked-joint failure [42], which will be considered in this work, and the free-swinging joint fai-

lure [43]. The latter mode is often transformed into the locked-joint mode by activation of fail-safe

brakes [44]. Failure tolerance, necessarily, requires some level of redundancy. It can be achieved

by duplicating parts that are more likely to fail (structural redundancy) [3], by human intervention

to assess and overcome faults (functional redundancy), by analyzing working sensors to recover

lost sensor information, e.g., integrating a tachometer signal to recover position (analytical re-

dundancy) [29], or by designing a robot with more degree of freedom (DoFs) than the minimum

needed to execute a certain task (kinematic redundancy). In this paper we focus on kinematic

redundancy.

Quantifying measures of fault-tolerance for kinematically redundant robots has been exten-

sively studied, focusing on two types, i.e., local and global measures. The local fault-tolerance

measures are commonly based on the singular value decomposition (SVD) of the Jacobian matrix

of a failed robot. These measures include the minimum singular value [4], the robot manipulabi-

lity [6], and the condition number [5]. These local properties can be optimized by utilizing the

kinematic redundancy. For example, the gradient of a singular value can be used to reconfigure

a robot to satisfy a desired local fault-tolerance measure [23]. In addition, the local measures are

widely used to design and control kinematically redundant fault-tolerant robots [45–47].

Global fault-tolerance measures typically quantify the fault-tolerant workspace. This makes

these measures more suitable for pick-and-place tasks. For these types of tasks, a global measure

can be used to identify the optimal fault-tolerant workspace locations [4], i.e., locations that are

reachable both before and after a failure occurs. This is assured by limiting the robot to operate

within software-imposed joint limits that are determined from the boundaries of the robot’s self-

motion manifold.

45

Designing a fault-tolerant workspace that is reachable for any trajectory both pre- and post-

failure is more difficult. A procedure for computing the boundaries of the fault-tolerant workspace

was presented in [33]. The fault-tolerant workspace can be maximized by determining the optimal

artificial joint limits for a robot. This has been done by employing the gradient of the fault-tolerant

workspace size as a function of the joint limits [48]. These global properties can be used to as-

sess and optimize kinematic parameters of a robot by modifying its structure to improve its fault

tolerance [34].

In our previous work [26], it was shown how one can determine the most fault-tolerant location

for a given robot by identifying its largest self-motion manifold, where the manifold size depends

on the ranges of all joint angles. In this work, we suggest a systematic procedure to generate robots

of optimal kinematic structure by maximizing their self-motion manifold size. Because the largest

self-motion manifold of a given manipulator is usually not optimal, i.e., not all joints span a 2π

range on the manifold, we present an efficient algorithm to optimize the kinematic structure of a

robot to achieve the theoretically optimal self-motion manifold size.

The rest of the paper is organized in the following manner. A definition of a global fault

tolerance suitable for a wide range of robotic applications is described in Section II. In Section III,

we present a new optimization algorithm that can design an optimal kinematically fault-tolerant

robot from any given baseline robot. In the following section, we illustrate the results of applying

our algorithm on a 4-DoF, a 7-DoF, and an 8-DoF robot. Finally, we present our conclusions in

Section V.

4.2 BACKGROUND ON SELF-MOTION MANIFOLDS

11

4.2.1 Preliminaries

Generally, the forward kinematics of a robot is a function of its joint angles

11Much of the material in this section is adapted from [26] and is included here for completeness.

46

x = f(θ) (4.1)

where x is an m-dimensional vector representing the end-effector location and θ is an n-dimensional

vector representing the joint angles. The inverse kinematics of a robot can be represented as

θ = f−1(x). (4.2)

For non-redundant manipulators, the inverse-kinematic solution is a limited number of dis-

tinct solutions, but for redundant robots, i.e., n > m, where n − m is the degree of redundancy,

the inverse-kinematic solution for a certain desired end-effector location xd can be a number of

continuous sets of solutions in the joint space. Each continuous set of solutions is a self-motion

manifold. The upper bound on the number of the self-motion manifolds for redundant spherical,

positional, and spatial manipulators is 2, 4, and 16, respectively [35]. At the velocity level, the

forward kinematics of a robot can be rewritten as

ẋ = Jθ̇ (4.3)

where ẋ is the end-effector velocity, J is the m × n robot Jacobian matrix, and θ̇ represents the

joint velocities.

The singular value decomposition (SVD) of J can be written as

J =
r

∑

i=1

σiûiv̂
⊤

i (4.4)

where σi’s are the ordered singular values, i.e., σ1 ≥ σ2 ≥ · · · ≥ σr−1 ≥ σr ≥ · · · ≥ σm ≥ 0, the

vectors ûi and v̂i represent the output and input singular vectors, respectively, and r denotes the

rank of J , where r < m for a singular robot (σi = 0 for i > r). The self-motion manifold(s) of a

robot can be computed by solving

Jθ̇ = 0 (4.5)

47

for all possible θ̇ values. We are not interested in the trivial solution θ̇ = 0.

Typically, redundant manipulators have (n − m)-dimensional self-motion manifolds.12 At

singular configurations where self-motion manifolds connect, the number of manifolds that are

connecting is one greater than the rank of the singularity. In the case that n − m = 1, the one-

dimensional self-motion manifolds associated with a desired end-effector location xd can be com-

puted by solving

∆θ = γv̂n + J+∆xe (4.6)

where ∆θ is the change in the joint angles, γ is a real positive scalar that represents the step size

along the manifold, v̂n is the nth input singular vector that represents the one-dimensional null

vector of the robot’s Jacobian, and J+∆xe is an error correction term where J+ is the pseudoin-

verse of the Jacobian matrix13 and ∆xe is the end-effector error, i.e., the difference between f(θ)

and the desired location, xd.

The topology of self-motion manifolds of high-DoF redundant robots can be very complicated.

That is not only because visualizing all dimensions of the manifold(s) on one plot is infeasible, but

also because it is common for a self-motion manifold to contain multiple singularities of different

ranks. In Fig. 4.1, we show an abstract sketch of an actual one-dimensional self-motion manifold

for a 7-DoF robot. This is considered one manifold because it is one set of continuous joint-space

solutions for a specific workspace location. One can note that singularities (indicated in black and

red for rank-1 and rank-2 singularities, respectively) are where the one-dimensional self-motion

manifold branches out in one or more additional directions. The topology is more complicated for

multi-dimensional self-motion manifolds. For instance, one can observe that for an 8-DoF robot,

the self-motion manifold of a typical end-effector location is two-dimensional. This means that a

12At singular configurations (singularities) associated with workspace boundaries, a self-motion manifold may be

of a lower dimension.

13Rather than exactly computing J+, we employ the Damped Least Squares (DLS) technique to efficiently compute

the inverse kinematics in a numerically stable manner. DLS is able to deal with singular configurations as well as the

ill-conditioned transition between singular and non-singular configurations [?].

48

rank one singularity is now a line, not a point. The topology is even more complicated for higher

degree-of-redundancy manipulators.

Figure 4.1: This sketch illustrates the topology of a one-dimensional self-motion manifold comprised of

multiple previously disjoint manifolds (for the Mitsubishi PA-10 7-DoF robot). The connection points

between the previously disjoint manifolds are the singular configurations. One can observe that rank-1

singularities (in black) occur when two one-dimensional manifolds touch, while Rank-2 singularities (in red)

occur when three one-dimensional manifolds touch. Note that visualizing the actual self-motion manifolds

is challenging because there is typically no one projection that can show all self-motion manifolds distinctly.

For redundant manipulators where n−m > 1, a self-motion manifold associated with a typical

end-effector location is (n − m)-dimensional, likewise, the null space of the Jacobian matrix is

(n−m)-dimensional. In these cases, computing a self-motion manifold is challenging. Fortunately,

one can efficiently find an estimate of a bounding box on the ranges of all joint angles. This

estimate can be found by modifying (4.6) to

∆θ = γNJ êi + J+∆xe (4.7)

49

where NJ is a projection operator onto the (n−m)-dimensional null space of the Jacobian matrix

and êi is a basis vector along the ith joint angle, where 1 ≤ i ≤ n [4]. The null space projection is

given by

NJ =
n

∑

i=r+1

v̂iv̂
⊤

i . (4.8)

One can approximate the joint-angle ranges at a specific task location by iteratively solving

(4.7) for i = 1 to n with ±êi. These joint ranges can be used to compute the size of the self-

motion manifold. One can terminate the iterations while solving (4.7) when either a joint i spans

a 2π range or the projection of êi onto the null space becomes zero. In this case, this could be a

local minimum so that this measure is a lower bound on the range of joint i.

4.2.2 Size of Self-motion Manifolds

The size of a self-motion manifold can be measured differently for different applications. To

distinguish between self-motion manifolds of different shapes and sizes, [?] suggested plotting the

angular distance along a self-motion manifold versus the angular distance from the origin of the

manifold. However, this is not practical for manifolds with complicated topologies as well as for

multi-dimensional self-motion manifolds. By iteratively solving either (4.6) or (4.7) for a specific

task location, one can determine the ranges of all joint angles over the manifolds. These ranges

represent a bounding box, where its volume can be used as a global fault-tolerance measure [4]

for that location. Because it is not uncommon for some robot joints to have a zero range over a

self-motion manifold, we compute the self-motion manifold size by summing up the ranges of all

joint angles over that manifold. In general, a redundant robot has multiple self-motion manifolds

associated with a workspace location. Therefore, one needs to consider the union of all angle

ranges on these manifolds. At an optimally fault tolerant task location the self-motion manifold

size for an n-DoF robot must be n2π, i.e., each joint spans a 2π range.

50

4.3 GENERATING OPTIMALLY FAULT TOLERANT RO-

BOT DESIGNS

As described above, large self-motion manifolds occur at singular configurations because pre-

viously disjoint manifolds are combined.14 We exploit this observation to develop a procedure

for identifying robot kinematic designs that have optimally fault tolerant self-motion manifolds.

Generally, this is an iterative procedure where we first drive the robot to a singularity, evaluate it’s

self motion manifold, and then adjust the kinematic parameters, i.e., Denavit and Hartenberg (DH)

parameters, to increase the size of the manifold.

At a singularity, one or more singular values of the robot’s Jacobian matrix, J , are zero. There-

fore, to drive a robot into a singularity we employ a gradient-descent technique on a singular value

to find the robot’s singular joint configuration. From (??), one can express any σi as

σi = û⊤

i Jv̂i. (4.9)

By differentiating (4.9) with respect to time, one obtains

σ̇i = ˙̂u⊤

i Jv̂i + û⊤

i J̇ v̂i + û⊤

i J
˙̂vi (4.10)

where the first and the third terms vanish due to the fact that the first order change in a singular

vector is orthogonal to the vector itself. Thus, (4.10) can be further simplified to

σ̇i = û⊤

i J̇ v̂i. (4.11)

The partial derivative of σi with respect to any joint angle θk can be written as

∂σi

∂θk
= û⊤

i

∂J

∂θk
v̂i (4.12)

14Typically, self-motion manifolds with internal singular configurations will be larger than average. Manifolds that

include reach singularities will be smaller than average

51

where

∂J

∂θk
=

[

∂j1
∂θk

,
∂j2
∂θk

, · · · , ∂jn
∂θk

]

. (4.13)

The partial derivative of the ith column of the Jacobian matrix is given by [23], [22]

∂ji
∂θk

=

























































(z⊤
k pi)zi − (z⊤

k zi)pk

zk × zi






, k < i







(z⊤
i pk)zk − (z⊤

k zi)pk

0






, k ≥ i

(4.14)

where zi is the axis of rotation of the ith robot joint and pi is the position vector from the joint

origin to the end-effector. Using (4.12), (4.13), and (4.14) one can compute the gradient of any σi

of the Jacobian matrix as

∇σi =

[

∂σi

∂θ1
,
∂σi

∂θ2
, · · · , ∂σi

∂θn

]

. (4.15)

Moving in the negative direction of this gradient allows one to decrease any desired singular value.

Maximizing a self-motion manifold’s size of a robot can be done by employing a two-step

iterative procedure. The first step is to drive the robot to a singular configuration from a random

starting configuration θ(0). In this step, one can use the gradient descent of a singular value σi until

it reaches zero, i.e.,

θ(k+1) = θ(k) − δk∇σi (4.16)

where θ(k) is the current joint configuration, θ(k+1) is the next joint configuration, and δk is an

adaptive step size. One can iteratively solve (4.16) to guarantee that the robot converges to a

desired singularity. Once the robot is at a singularity, we compute the size of the self-motion

manifolds for the current end-effector location.

The second step is to optimize the robot’s kinematic structure so that the self-motion manifold

size is maximized to an optimal value. A gradient for the self-motion manifold size does not exist,

52

however, one can employ a gradient-free optimization technique. The optimization in this step can

be formulated as

p∗ = argmax
p∈Rl

f(p) (4.17)

where p is an l-dimensional vector of the robot’s DH parameters, except for the joint angles,

namely the link lengths (a), the link displacements (d), and the link twists (α), where p = [a⊤ :

d⊤ : α⊤]⊤ and l = 3n, where n is the number of DoF. The function f(p) is a nonlinear function

representing the self-motion manifold size. In this step, one can perform a coordinate-ascent

procedure along all the DH parameters that are subject to optimization.

The coordinate ascent can be done by sequentially changing (increasing or decreasing) a DH

parameter, pi. Once a pi value is slightly changed, the robot needs to be driven back to a singularity

using (4.16) and then the change in the self-motion manifold size is evaluated. If the size increases,

one can keep updating the same pi. If the size decreases or does not change, one should step back

by retrieving the last good pi value and start changing the next DH parameter, pi+1. This process

can be formulated as

p
(k+1)
i = p

(k)
i + βkp

(k)
i (4.18)

where p
(k+1)
i is the next value of a DH parameter, p

(k)
i is the current value of the DH parameter,

and β(k) is a user-defined step size, where βk can be positive or negative. These two steps should

be performed alternately on all DH parameters until one either obtains an optimal robot, or a sweep

of all elements of p results in no improvement of f(p). One should be aware that there could be

a local maxima where there is no change to any DH parameter that will improve the self-motion

manifold size. The pseudocode to implement this procedure is given in Algorithm 3.

There are several comments that should be pointed out about the behavior of this algorithm.

First, it is important to note that the rank of the singularity being used can affect the kinematic

structure of the resulting optimal robot. This means that optimizing around a rank-1 singularity

could generate completely different optimal robots from the ones generated by optimizing around

53

Algorithm 3 Generate Kinematically Fault-tolerant Robots

1: start with DH parameters of a baseline n-joint redundant robot. {p = [a : d : α] }

2: initialize θ(0) {random joint-space configuration}

3: find θ(sing) {drive the robot to a singularity}

4: compute Sinit {initial self-motion manifold size}

5: Slarge = Sinit {save initial self-motion manifold size}

6: for i = 1 to n× 3 do {for DH parameters:[a : d : α]}
7: Sbegin = Slarge {save Slarge beginning of sweep}

8: dhorg = pi {save pi in dhorg}

9: p
(k+1)
i = p

(k)
i + βkp

(k)
i {perturb DH parameter pi}

10: find θ(sing) {drive the robot to a singularity}

11: compute Snew {the new self-motion manifold size}

12: while Snew > Slarge do

13: Slarge = Snew {update Slarge with new value}

14: dhorg = pi {save pi in dhorg}

15: p
(k+1)
i = p

(k)
i + βkp

(k)
i {perturb parameter pi}

16: find θsing {drive the robot to a singularity}

17: compute Snew

18: if (Snew ≈ n× 2π) then {robot is optimal}

19: save the optimal robot {[a : d : α : θ(sing)]}
20: end if

21: end while

22: pi = dhorg {reset to the last good DH parameters}

23: end for

24: if (Snew ≤ Sbegin) then {sweep didn’t improve Sbegin}

25: go to 2 {select different starting joint configurations}

26: else {do another sweep}

27: go to 6
28: end if

a singularity of higher rank.15 Obviously, different starting joint configurations, θ(0)s, may result

in different optimal robots. Furthermore, using the same starting configuration, singularity rank,

and step size may have drastically different results for a positive step size versus a negative step

size. Finally, the algorithm may converge to an optimal robot from the first coordinate-ascent

sweep through the DH parameters, however, in some cases, it may take several sweeps through the

15Using the gradient descent of a singular value to drive a robot to a high-rank singularity may result in unwanted

behavior when two or more singular values become nearly equal. In this case, a special procedure should be employed

to guarantee efficient convergence [7].

54

DH parameters to converge. The results of applying the above procedure for generating optimal

redundant robots are illustrated for 4-DoF, 7-DoF, and 8-DoF robots in the next section.

4.4 RESULTS

4.4.1 Four-DoF Robots

The algorithm is first used to generate optimally fault-tolerant 4-DoF spatial positioning robots.

We start with a baseline robot that was designed to be globally optimal with respect to a local fault-

tolerance measure [25]. The DH parameters of this robot are listed in Table 4.1.

Table 4.1: DH Parameters of the Baseline 4-DoF Robot

Linki αi [degrees] ai [meters] di [meters] θi [degrees]

1 90 1.41 0 0

2 −90 1.41 1 180

3 90 1.41 −1 180

4 0 1.22 0.50 145

We first evaluated the global fault-tolerance of this robot, i.e., its largest self-motion manifold size.

Fig. 4.2(a) shows the maximal self-motion manifold in θ2, θ3, and θ4 projection, where the singular

configuration on the manifold is indicated in red. In subfigure (b), we show the angle ranges of the

robot’s joints on this self-motion manifold. It is clear that only θ4 has an optimal range of 2π. The

rest of the joints θ1, θ2, and θ3 are not optimal.

By employing the optimization procedure explained in Section III, we were able to modify the

kinematics of the baseline robot to generate many robots that have an optimal self-motion manifold

at a particular workspace location. Because this is a 4-DoF robot, an optimal self-motion manifold

size is 25.13 radians, i.e., 4 × 2π. The DH parameters of an example optimal robot are listed in

Table 4.2.

55

Figure 4.2: In this figure, the maximal self-motion manifold of the baseline 4-DoF robot is illustrated. In

(a) this manifold is shown projected into the θ2, θ3, and θ4 subspace. From this projection one can see that

this manifold contains only one rank-1 singularity, shown in red. Note that this robot has one continuous

self-motion manifold where the dotted blue lines show the continuity of θ4. The ranges of each of the joints

is shown in (b) where only θ4 has a range of 2π. Joints 1, 2, and 3 have ranges of 3.99, 5.17, and 5.01
radians, respectively, as indicated in red. The total size of this self-motion manifold is 20.45 radians.

Table 4.2: The DH Parameters of an Example Optimal 4-DoF Robot

Linki αi [degrees] ai [meters] di [meters] θi [degrees]

1 130.52 1.41 0 0

2 −90 1.77 1 25.87

3 90 1.84 −1 159.78

4 0 1.52 0.55 −111.90

Comparing the optimal robot in Table 4.2 with the baseline robot in Table 4.1, one can observe

that the algorithm has changed the first twist angle, α1 from 90◦ to 130.52◦. The other notable

change was in the link lengths a2, a3, and a4 as well as the last link displacement, d4. Note that

there are multiple possible values for θ, i.e., any joint configuration on the self-motion manifold

associated with this workspace location. The value shown in the table corresponds to the singula-

56

rity on this manifold that was identified by the algorithm. The robot at this workspace location has

only one self-motion manifold, as shown in Fig. 4.3.

Figure 4.3: In this figure, the optimal 4-DoF robot and its optimal self-motion manifold are illustrated.

Subfigures (a) and (b) show projections in θ1, θ2 and θ3, θ4, respectively, where the manifold is continuous

and all joints span a 2π range. Thus, it is easy to see that the total size of the optimal self-motion manifold

is 25.13 radians. In (c), the optimal self-motion manifold is presented in the same θ2, θ3, and θ4 projection

as Fig. 2(a). In (d), the robot is shown in a configuration on the self-motion manifold where a local dexterity

measure, i.e., the condition number, is best (σ1/σ3 = 2.35). The rank-1 singularity on the manifold is

marked with a red circle in (a), (b), and (c).

It is easy to see from subfigures (a) and (b) that the range of all joints is 2π. A rank-1 singularity

that occurs on this self-motion manifold is indicated with a red circle. Subfigure (c) shows the same

configuration-space projection as in Fig. 2(a) to illustrate how different the self-motion manifolds

are for these two robots. Note that on this optimal self-motion manifold, one can elect to operate

the manipulator in a configuration that optimizes an additional preferred dexterity measure, e.g.,

57

the condition number (σmax/σmin). In subfigure (d), we show the robot in a configuration with the

best condition number on this self-motion manifold, where σmax/σmin = 2.35.

4.4.2 Seven-DoF Robots

To redundantly operate in a six-dimensional workspace consisting of both position and orien-

tation, one needs a manipulator of at least 7 DoFs. A common 7-DoF redundant robot is the

Mitsubishi PA-10, which has a kinematic design that is similar to the human arm. Unfortunately,

because the arm has a three-joint spherical shoulder and a three-joint spherical wrist that are con-

nected by a single rotational elbow joint, the PA-10 is fault intolerant with respect to the elbow,

i.e., joint 4. Therefore, joint 4 has a zero range on the self-motion manifold(s) of any workspace

location. We show that this kinematically fault-intolerant structure can be used as a baseline to

generate optimal 7-DoF robots.

The DH parameters of the PA-10 robot are given in Table 4.3, with the last link displacement,

d7 set equal to d3. The robot at the joint configurations that are given in Table 4.4 has a maximal

Table 4.3: The DH Parameters of the PA-10 Robot in Maximal Configurations

Linki αi [degrees] ai [meters] di [meters] θi [degrees]

1 −90 0 0 0
2 90 0 0 0
3 −90 0 0.45 ±90
4 90 0 0 154.16
5 −90 0 0.5 ±90
6 90 0 0 0
7 0 0 0.45 0

self-motion manifold with size of 35.90 radians. The angles θ3 and θ5 can be ±90 for the same end-

effector location.16 At this workspace location, the PA-10 has two large self-motion manifolds that

are identical in terms of their joint ranges. Joint 4 has a range of zero on both self-motion manifolds

with a constant value of ±154.16◦ for up-elbow and down-elbow configurations, respectively. A

16For this workspace location, there are up-elbow and down-elbow configurations where the robot cannot move

from one configuration to the other without changing the end-effector location.

58

Figure 4.4: The maximal self-motion manifold of the PA-10 robot is shown in this figure. In (a) the ranges

of each of the joints is shown where θ1, θ2, θ3, θ5, and θ7 are 2π, the range of θ6 is 4.48 radians (±2.24),

and the range of of θ4 is zero. In (b) the one dimensional self-motion manifold is shown projected into the

θ3, θ5, and θ6 subspace. From this projection one can see that this manifold contains four rank-1 and four

rank-2 singularities, shown in blue and red respectively. Note that the two blue singularities at the bottom

of the figure, i.e., where θ6 = −2.24 radians, are shown twice at both θ5 = ±π. The rank-2 singularities

occur when θ = [0, 0, ±π
2 , θ4,

±π
2 , 0, 0], where in this case θ4 = 2.69 radians, (154.16◦).

bar plot of the joint ranges is presented in Fig. 4.4(a).17 A projection of one of the manifolds in

θ3, θ5, and θ6 space is presented in Fig. 4.4(b). It is clear from the figure that θ4 and θ6 have

non-optimal ranges.

We employed our algorithm on this fault-intolerant baseline 7-DoF manipulator to generate

robots with optimal kinematic structures that have self-motion manifolds of optimal size, i.e.,

7 × 2π = 43.98 radians. In Table 4.4, we present the DH parameters of an example optimal

7-DoF robot. By comparing Table 4.3 and Table 4.4, one can observe that the algorithm has

significantly changed the DH parameters to generate an optimal robot. The algorithm has modified

all link lengths except a2 and a3, displacements, d3, d4, d6, and d7, and twists α1, α4, α6, and α7.

17Fig. 4.4 appears in our previous work [26] where we identified the largest self-motion manifold of the PA-10

robot.

59

Table 4.4: The DH Parameters of an Example Optimal 7-DoF Robot

Linki αi [degrees] ai [meters] di [meters] θi [degrees]

1 −99.24 0.43 0 0
2 90 0 0 −72.25
3 −90 0 0.54 36.81
4 117 0.26 0.32 81.10
5 −90 0.54 0.50 −21.11
6 118.14 0.18 0.16 71.50
7 7.22 0.16 0.50 1.01

In addition, the algorithm automatically generates singular joint configurations. In Fig. 4.5, we

present the optimal self-motion manifold of this robot.

The fault-tolerant 7-DoF robot presented in Table 4.4 has only one continuous self-motion

manifold at the optimal end-effector location. From Fig 4.5, one can note that all robot joints have

a range of 2π. This manifold only contains one singularity, marked with a red circle, that is of rank

1, while all other intersections that appear in the figure are due to the projections.

4.4.3 Eight-DoF Robots

To show the merit of using our algorithm to optimize the kinematic structure of high-DoF

robots, we illustrate its efficacy on an 8-DoF manipulator. We arbitrarily used an 8-DoF robot that

has a 3-joint shoulder, a 2-joint elbow, and a 3-joint wrist. The DH parameters of this baseline

robot are given in Table 4.5.

60

Figure 4.5: The optimal self-motion manifold of the fault-tolerant 7-DoF robot is shown in this figure. A

projection in θ2, θ3 is shown in (a), θ3, θ4 in (b), and θ6, θ7 in (c). The only singularity (which is of rank 1)

on this manifold is indicated with a red circle. In (d) the optimal 7-DoF robot is presented in a configuration

where its condition number is minimal, i.e., 5.35.

Table 4.5: The DH Parameters of the Baseline 8-DoF Robot

Linki αi [degrees] ai [meters] di [meters] θi [degrees]

1 −90 0 0 85.34

2 90 0 0 0

3 −90 0 0.54 −90

4 90 0 0 −134.50

5 −90 0 0 134.78

6 90 0 0.50 −44.78

7 −90 0 0 0

8 0 0 0.45 −12.86

61

This eight DoF robot at this joint configuration has the maximal self-motion manifold size of 40.80

radians. The robot and its largest self-motion manifold are both shown in Fig. 4.6.

Figure 4.6: In (a) the 8-DoF robot is illustrated in a configuration where θ = [0, 0, 0, π2 , 0, 0, 0, 0] to show

its structure. The joint ranges on the largest self-motion manifold are shown as a bar plot in (b) where

θ1, θ3, θ5, θ6, and θ8 have a 2π range. The range of θ2 is 5.20 radians (±2.60), the range of θ7 is 4.20
radians (±2.10), while θ4 has a zero range with a fixed value at θ4 = −2.35 radians.

One should note that in this case, the self-motion manifolds are typically two dimensional, but are

of a higher dimension at singularities. In this case, computing a self-motion manifold is challen-

ging, but one can employ (4.7) to determine an estimate of the ranges of all joints. The optimal

self-motion manifold size is 8 × 2π = 50.27 radians. In Table 4.6, we list an example 8-DoF

optimal robot that was generated by employing Algorithm 3. This robot is shown in Fig. 4.7 in

the zero configuration and in a relatively dexterous configuration where the condition number is

7.18. One can immediately observe that the algorithm has introduced a single change in link twist

parameters by changing α6 from 90 to 105.30 degrees. Also, two link lengths, a1 and a5 were

introduced as well as other minor changes in the link displacement parameters.

62

Table 4.6: The DH Parameters of the Optimal 8-DoF Robot

Linki αi [degrees] ai [meters] di [meters] θi [degrees]

1 −90 0.45 0 0
2 90 0 0 −83.60
3 −90 0 0.45 180
4 90 0 0 90
5 −90 0.43 0 −168
6 105.30 0 0.52 −90
7 −90 0 0.17 0
8 0 0 0.45 −29.05

Figure 4.7: The kinematic design of an optimally fault-tolerant 8-DoF robot is shown in this figure. The

robot is presented in the zero configuration to illustrate how various joints are connected (left). The robot is

shown in a dexterous configuration where the condition number of the Jacobian matrix is 7.18 (right).

4.4.4 Discussion

Now that we have robots of different DoFs that are optimal in terms of their global fault-

tolerance measure, i.e., their self-motion manifold size, we evaluate the quality of these self-motion

manifolds with respect to a local dexterity measure. This is done by evaluating the condition

number (σmax/σmin) of the Jacobian matrix for configurations on the self-motion manifold and

estimating how much of the manifold can meet a certain threshold. For example, for the 4-DoF

robot in Fig. 4.3, over 90% of the self-motion manifolds have condition numbers less than 10, and

63

for the 7-DoF robot in Fig. 4.5 it is over 20%. This illustrates that robot designers have significant

flexibility in satisfying multiple criteria, i.e., having a robot that is both optimally fault tolerant and

meets pre-failure dexterity design specifications.

4.5 CONCLUSIONS AND FUTURE WORK

The goal of the work described here is to identify redundant robot kinematic designs that pos-

sess optimally fault tolerant locations of operation within their workspace. If the definition of fault

tolerance is reachability of a task location after any arbitrary locked-joint failure occurs, then this

corresponds to identifying robots that possess self-motion manifolds that span 2π in every joint an-

gle for that task location. We exploit the fact that such large self-motion manifolds are more likely

when they contain singular configurations, because singularities occur when previously disjoint

manifolds are connected. Our novel algorithm for identifying optimal kinematic designs alternates

between driving the robot to a singular configuration and modifying the kinematic parameters by

using a coordinate-ascent algorithm to increase the self-motion manifold size.

The premise in this work is that a robot designer already has a baseline robot kinematics in

mind, and one would like to improve the fault tolerance of that design, without changing it radi-

cally. Remarkably, the algorithm was able to find multiple optimal designs from 4-DoF, 7-DoF, and

8-DoF baseline robots. In our future work, we will be investigating ways to evaluate and characte-

rize all of these optimally fault-tolerant robots and determine whether they can also be optimized

for additional desirable objectives. In addition, it is important to point out that the proposed algo-

rithm results in an optimal fault tolerant configuration, which is appropriate for critical workspace

locations involved in pick-and-place tasks. For other types of tasks, one may want to guarantee a

specified high-level of fault tolerance over a given workspace volume.

64

Chapter 5

Conclusions and Future Works

5.1 CONCLUSIONS:

This work has presented a systematic approach to identify the largest self-motion manifold

of a robot of any arbitrary kinematic structure. In part, the work suggested a new algorithm to

identify the singularities of the a robot then find the optimal self-motion manifold. This algorithm

is distinguished from previous research by its ability to identify singular configurations of a robot

regardless of its kinematic structure, while previous works highly depend on the simplicity of the

robot kinematics and fail to extend to higher DoF robots of general structure. Also, the presented

algorithm, unlike other approaches, does not fail to identify high-rank singular configurations,

where singularity conditions become very complicated. In this work, we use the sum of the range

of the joint angles of a robot as a measure of the fault tolerance. Furthermore, this work employs

Givens rotation to identify the physically meaningful singular directions that are not necessarily

obvious due to the SVD being indistinct at singular configurations.

The second part of this work focuses on optimizing the kinematic structure of a given robot

to maximize the largest self-motion manifold. In this part, we employed the coordinate-ascent

technique to minimally change a given baseline robot to maximize its largest self-motion manifold

size. The motivation behind using the coordinate-ascent technique is that the self-motion manifold

size is not a differentiable function of the DH parameters. This technique allows changing one

DH parameters at a time and observe the effect of such change on the size of the largest self-

motion manifold. This optimization has been performed near a singular configuration where large

self-motion manifolds are most likely to be found. Using this algorithm, we were able to identify

several optimal robots of different degree of freedoms, i.e., 4-DoF, 7-DoF, and 8-DoF.

65

5.2 FUTURE PLAN:

After being able to find the largest self-motion manifold of a robot, designing an algorithm to

design optimally fault-tolerant robots, and being able to find multiple optimal robots, we think that

the natural questions needs to be addressed in future are:

1. Among all optimal robots from the same DoFs, is there a way to classify these robots into

subsets/groups that share the same kinematic properties even if they are slightly different in

terms of their structure? We think, it would be really interesting to know if such classes of

optimal robots can be found.

2. Optimal robots of higher degree of redundancy, where their self-motion manifolds are or

two (or more) dimensional, offer the ability to optimize other local fault-tolerance measures

(like the condition number). We think of developing an algorithm that can have the ability to

design optimal robots with respect to their global fault-tolerance measure, i.e., self-motion

manifold size, and their local measure, i.e., the condition number on such manifold. In this

case, we are also interested in visualizing these high-dimensional self-motion manifolds.

66

Bibliography

[1] Fumitoshi Matsuno and Satoshi Tadokoro. Rescue robots and systems in Japan. In IEEE Int.

Conf. on Robotics and Biomimetics, pages 12–20, 2004.

[2] Keiji Nagatani, Seiga Kiribayashi, Yoshito Okada, Kazuki Otake, Kazuya Yoshida, Satoshi

Tadokoro, Takeshi Nishimura, Tomoaki Yoshida, Eiji Koyanagi, Mineo Fukushima, and

Shinji Kawatsuma. Emergency response to the nuclear accident at the Fukushima Daiichi

nuclear power plants using mobile rescue robots. Journal of Field Robotics, 30(1):44–63,

2013.

[3] Vittorio Monteverde and Sabri Tosunoglu. Effect of kinematic structure and dual actuation

on fault tolerance of robot manipulators. In IEEE Int. Conf. on Robotics and Automation,

pages 2902–2907, 1997.

[4] Christopher L Lewis and Anthony A Maciejewski. Fault tolerant operation of kinematically

redundant manipulators for locked joint failures. IEEE Trans. on Robotics and Automation,

13(4):622–629, 1997.

[5] Hamid Abdi and Saeid Nahavandi. Minimum reconfiguration for fault tolerant manipulators.

In Proceedings of the 34th Annual Mechanisms and Robotics Conference, Parts A and B,

pages 1345–1350, 2010.

[6] Rodney G Roberts and Anthony A Maciejewski. A local measure of fault tolerance for

kinematically redundant manipulators. IEEE Trans. on Robotics and Automation, 12(4):543–

552, 1996.

[7] Ahmad Almarkhi and Anthony Maciejewski. Singularity analysis for redundant manipulators

of arbitrary kinematic structures. In International Conference on Informatics in Control,

Automation and Robotics (ICINCO), pages 42–49, 2019.

67

[8] Daniel R Baker and Charles W Wampler. On the inverse kinematics of redundant manipula-

tors. The International Journal of Robotics Research, 7(2):3–21, 1988.

[9] Joel W Burdick. On the inverse kinematics of redundant manipulators: Characterization of

the self-motion manifolds. International Conference on Robotics and Automation, 1(2):264–

270, 1989.

[10] Kenneth H Hunt. Special configurations of robot-arms via screw theory. Robotica, 4(3):171–

179, 1986.

[11] J Kieffer and J Lenarcic. On the exploitation of mechanical advantage near robot singularities.

Informatica, 18(3):315–323, 1994.

[12] Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematic solutions with singularity ro-

bustness for robot manipulator control. Journal of Dynamic Systems, Measurement, and

Control, 108(3):163–171, 1986.

[13] KJ Waldron, Shih-Liang Wang, and SJ Bolin. A study of the Jacobian matrix of serial ma-

nipulators. Journal of Mechanisms, Transmissions, and Automation in Design, 107(2):230–

237, 1985.

[14] FL Litvin, Zhang Yi, V Parenti Castelli, and C Innocenti. Singularities, configurations, and

displacement functions for manipulators. The International Journal of Robotics Research,

5(2):52–65, 1986.

[15] K Sugimoto, J Duffy, and KH Hunt. Special configurations of spatial mechanisms and robot

arms. Mechanism and Machine Theory, 17(2):119–132, 1982.

[16] Roger Boudreau and Ron P Podhorodeski. Singularity analysis of a kinematically simple

class of 7-jointed revolute manipulators. Transactions of the Canadian Society for Mechani-

cal Engineering, 34(1):105–117, 2010.

68

[17] Scott B Nokleby and Ron P Podhorodeski. Identifying the 1-DOF-loss velocity-degenerate

(singular) configurations of an 8-joint manipulator. Transactions of the Canadian Society for

Mechanical Engineering, 28(2A):109–124, 2004.

[18] Scott B Nokleby and Ron P Podhorodeski. Identifying multi-DOF-loss velocity degeneracies

in kinematically-redundant manipulators. Mechanism and Machine Theory, 39(2):201–213,

2004.

[19] Wenfu Xu, Jintao Zhang, Huihuan Qian, Yongquan Chen, and Yangsheng Xu. Identifying

the singularity conditions of Canadarm2 based on elementary Jacobian transformation. 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 795–800, 2013.

[20] Wenfu Xu, Jintao Zhang, Bin Liang, and Bing Li. Singularity analysis and avoidance for

robot manipulators with nonspherical wrists. IEEE Transactions on Industrial Electronics,

63(1):277–290, 2016.

[21] Anthony Alexander Maciejewski. The analysis and control of robotic manipulators operating

at or near kinematically singular configurations. PhD thesis, The Ohio State University,

1988.

[22] Charles A Klein and Li-Chung Chu. Comparison of extended Jacobian and Lagrange mul-

tiplier based methods for resolving kinematic redundancy. Journal of Intelligent & Robotic

Systems, 19(1):39–54, 1997.

[23] Kenneth N Groom, Anthony A Maciejewski, and Venkataramanan Balakrishnan. Real-time

failure-tolerant control of kinematically redundant manipulators. IEEE Trans. on Robotics

and Automation, 15(6):1109–1115, 1999.

[24] Peter Corke. Robotics, vision and control: Fundamental algorithms in MATLAB R©, volume

118. Springer, 2017.

69

[25] Khaled M Ben-Gharbia, Anthony A Maciejewski, and Rodney G Roberts. Kinematic design

of redundant robotic manipulators for spatial positioning that are optimally fault tolerant.

IEEE Transactions on Robotics, 29(5):1300–1307, 2013.

[26] Ahmad A Almarkhi and Anthony A Maciejewski. Maximizing the size of self-motion ma-

nifolds to improve robot fault tolerance. IEEE Robotics and Automation Letters, 4(3):2653–

2660, 2019.

[27] Jennifer Carlson and Robin R Murphy. How UGVs physically fail in the field. IEEE Trans.

on Robotics, 21(3):423–437, 2005.

[28] Keiji Nagatani, Seiga Kiribayashi, Yoshito Okada, Satoshi Tadokoro, Takeshi Nishimura,

Tomoaki Yoshida, Eiji Koyanagi, and Yasushi Hada. Redesign of rescue mobile robot Quince.

In IEEE Int. Symposium on Safety, Security, and Rescue Robotics, pages 13–18, 2011.

[29] Monica L Visinsky, Joseph R Cavallaro, and Ian D Walker. Robotic fault detection and fault

tolerance: A survey. Reliability Engineering & System Safety, 46(2):139–158, 1994.

[30] Tarun Kanti Podder, Gianluca Antonelli, and Nilanjan Sarkar. Fault tolerant control of an

autonomous underwater vehicle under thruster redundancy: Simulations and experiments. In

IEEE Int. Conf. on Robotics and Automation, pages 1251–1256, 2000.

[31] N Ranganathan, Minesh I Patel, and R Sathyamurthy. An intelligent system for failure de-

tection and control in an autonomous underwater vehicle. IEEE Trans. on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 31(6):762–767, 2001.

[32] Hyongju Park and Seth A Hutchinson. Fault-tolerant rendezvous of multirobot systems. IEEE

Trans. on Robotics, 33(3):565–582, 2017.

[33] Randy C Hoover, Rodney G Roberts, Anthony A Maciejewski, Priya S Naik, and Khaled M

Ben-Gharbia. Designing a failure-tolerant workspace for kinematically redundant robots.

IEEE Trans. on Automation Science and Engineering, 12(4):1421–1432, 2015.

70

[34] Khaled M Ben-Gharbia, Anthony A Maciejewski, and Rodney G Roberts. Modifying the

kinematic structure of an anthropomorphic arm to improve fault tolerance. In IEEE Int. Conf.

on Robotics and Automation, pages 1455–1460, 2015.

[35] Joel Wakeman Burdick. Kinematic analysis and design of redundant robot manipulators.

PhD thesis, Department of Computer Science, Stanford University, 1988.

[36] Scott B Nokleby and Ron P Podhorodeski. Reciprocity-based resolution of velocity degenera-

cies (singularities) for redundant manipulators. Mechanism and Machine Theory, 36(3):397–

409, 2001.

[37] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on

matrices. ASME Journal of Applied Mechanics, 22(4):215–221, 1955.

[38] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The Int. Journal of Robotics

Research, 4(2):3–9, 1985.

[39] A. A. Almarkhi, A. A. Maciejewski, and E. K. P. Chong. An algorithm to design redundant

manipulators of optimally fault-tolerant kinematic structure. IEEE Robotics and Automation

Letters, 5(3):4727–4734, 2020.

[40] Shen Cheng and BS Dhillon. Reliability and availability analysis of a robot-safety system.

Journal of Quality in Maintenance Engineering, 2011.

[41] David Mahar, William Fields, John Reade, Peter Zarubin, and Scott McCombie. Nonelectro-

nic parts reliability data. Reliability Information Analysis Center, 2011.

[42] Yung Ting, Sabri Tosunoglu, and Benito Fernandez. Control algorithms for fault-tolerant

robots. In Proceedings of the 1994 IEEE International Conference on Robotics and Automa-

tion, pages 910–915. IEEE, 1994.

71

[43] James D English and Anthony A Maciejewski. Fault tolerance for kinematically redundant

manipulators: Anticipating free-swinging joint failures. IEEE Transactions on Robotics and

Automation, 14(4):566–575, 1998.

[44] Peetu Nieminen, Salvador Esque, Ali Muhammad, Jouni Mattila, Jukka Väyrynen, Mikko

Siuko, and Matti Vilenius. Water hydraulic manipulator for fail safe and fault tolerant remote

handling operations at iter. Fusion Engineering and Design, 84(7-11):1420–1424, 2009.

[45] FL Hammond. Synthesis of k th order fault-tolerant kinematically redundant manipulator

designs using relative kinematic isotropy. International Journal of Adaptive and Innovative

Systems, 2(1):73–96, 2014.

[46] Chinmay S Ukidve, John E McInroy, and Farhad Jafari. Using redundancy to optimize mani-

pulability of stewart platforms. IEEE/ASME Transactions on Mechatronics, 13(4):475–479,

2008.

[47] Yu She, Wenfu Xu, Haijun Su, Bin Liang, and Hongliang Shi. Fault-tolerant analysis and

control of ssrms-type manipulators with single-joint failure. Acta Astronautica, 120:270–

286, 2016.

[48] Ashraf M Bader and Anthony A Maciejewski. Maximizing the failure-tolerant workspace

area for planar redundant robots. Mechanism and Machine Theory, 143:103635, 2020.

72

