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Abstract.  The objective of this study was to develop a methodology to generate high accuracy soil 
salinity maps with the minimum number of soil salinity samples. Variograms are used in this study 
to estimate the number of soil salinity samples that need to be collected. A modified residual krig-
ing model was used to evaluate the relationship between soil salinity and a number of satellite im-
ages. Two datasets, one representing corn fields where Aster, Landsat 7, and Ikonos images were 
used, and the other representing alfalfa fields where the Landsat 5 and Ikonos images were used. 
The satellite images were acquired from different sources to check the correlation between meas-
ured soil salinity and remote sensing data. Two strategies were applied to the datasets to produce 
subset samples. For the corn fields dataset, nine subsets of the data ranging from 10% to 90% of 
the data in 10% increments were produced. For the alfalfa fields dataset, three subsets of the data 
75 %, 50%, and 25% of the data were produced. A modified residual kriging model was applied to 
the reduced datasets for each image. For each combination of satellite image and subset of the data, 
a variogram was generated and the correlation between soil salinity and the remote sensing data 
was evaluated. The results show that the variograms can be used to significantly reduce the number 
of soil salinity samples that need to be collected. 
 
1. Introduction 

Soil salinity is a severe environmental hazard that increasingly impacts crop yields and 
agricultural production. Soil salinity refers to the presence in soil and water of various 
electrolytic mineral solutes in concentrations that are harmful to many agricultural crops 
(Hillel, 2000). Natural salinization or primary salinization results from the long-term influ-
ence of natural processes. In contrast, human-induced salinization or secondary salinization 
is the result of salt stored in the soil profile being mobilized by extra water provided by 
human activities such as irrigation (Szabolcs, 1989). In 1999, Postel (1999) stated that 
worldwide, one in five hectares of irrigated land suffers from a build-up of salts in the soil, 
and vast areas in China, India, Pakistan, Central Asia, and the United States are losing pro-
ductivity. Postel (1999) estimates that soil salinization costs the world’s farmers $11 bil-
lion a year in reduced income and warns that the figure is growing. The spread of saliniza-
tion, at a rate of up to 2 million hectares a year, is offsetting a good portion of the increased 
productivity achieved by expanding irrigation. It has been estimated (Ghassemi et al., 
1995) that close to 1 billion hectares (about 7% of the earth's landscape) are affected by 
primary salinity, while about 77 million hectares have been salinized as a consequence of 
human activities, with 58% of these concentrated in irrigated areas. On average, 20% of 
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the world's irrigated lands are affected by salts, but this figure increases to more than 30% 
in countries such as Egypt, Iran and Argentina. The development of saline soils is a dy-
namic phenomenon that needs to be monitored regularly in order to secure up-to-date 
knowledge of their extent, spatial distribution, nature and magnitude (Ghassemi et al., 
1995). 

Remote sensing of surface features using aerial photography, videography, infrared 
thermometry and multispectral scanners has been used intensively to identify and map salt-
affected areas (Robbins and Wiegand, 1990). Multispectral data acquired from platforms 
such as Landsat, SPOT, and the Indian Remote Sensing (IRS) series of satellites have been 
found to be useful in detecting, mapping and monitoring salt affected soils (Dwivedi and 
Rao, 1992).  Procedures for using soil salinity, plant information, and digitized color infra-
red aerial photography and videography have been developed to help with determining soil 
salinity (Wiegand et al., 1994). Other related approaches such as using spectral brightness 
coefficients and image photodensities for areas known to have specific characteristics have 
also been developed (Golovina et al., 1992).  For mapping surface land salinity, color and 
thermal infrared aerial photography, spectral image interpretation techniques, such as satel-
lite imagery (Landsat TM, or SPOT), and other airborne remote sensing techniques are 
used (Spies and Woodgate, 2004). Other techniques, such as gamma radiometrics (Wilford 
et al., 2001), are useful for mapping soils and shallow sub-soil materials that can assist 
with interpretation of likely recharge and discharge areas. 

 Geostatistical methods provide a means to study the heterogeneous nature of the spa-
tial distribution of soil salinity. The results of a study by Pozdnyakova and Zhang (1999) 
suggest that sampling costs can be dramatically reduced and estimation can be signifi-
cantly improved by using cokriging. Sample variograms of soil electrical conductivity can 
be a useful tool in selecting the distance between soil sampling points for laboratory elec-
trical conductivity determination (Utset et al., 1998). In geostatistical theory, the range of 
the variogram is the maximum distance between correlated measurements (Journel and 
Huijbregts, 1978; Webster, 1985; Warrick et al., 1986). This means that samples separated 
at smaller distances are generally not needed (Nielsen et al., 1983). Therefore, the range of 
soil salinity variograms can be an effective criterion for the selection of a sampling design 
in mapping soil salinity. Sampling incorporates concepts of survey intensity, spatial vari-
ability, and mapping scale, and is usually the most costly aspect of a survey (Webster and 
Oliver 1990). In a conventional soil survey, sampling sites are selected subjectively by 
surveyors to support their mental predictive model of soil occurrence, a so-called free sur-
vey (White 1997). Such design are purposive and non-random, and do not provide statisti-
cal estimates. By contrast, a pedometric soil survey (McBratney et al., 2000) aims at statis-
tical modeling of soil cover, including uncertainty about the predictions using objective 
techniques. 

Geostatistical methods such as kriging are becoming commonly used estimation tech-
niques to generate soil maps. Kriging has been applied to quantify spatial variability of a 
number of parameters in soil science. Tabor et al. (1984, and 1985) used variograms and 
kriging to determine the spatial variability of nitrates in cotton petioles and analyzed spa-
tial variability of soil nitrate and correlated variables. Istok and Cooper (1988) and Cooper 
and Istok (1988a, b) applied kriging to study groundwater contamination. Yates et al. 
(1993) used geostatistics in the description of salt-affected soils. Samra and Gill (1993) 
used kriging results to assess the variation of pH and sodium adsorption ratios associated 
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with tree growth on a sodium-contaminated soil. Yates et al. (1986 a, b) used disjunctive 
kriging to present spatial distributions and corresponding conditional probability maps of 
soil electrical conductivity.  

The approach presented in this paper involve integrating remotely sensed data, GIS, 
and field observations of soil salinity to evaluate the most appropriate spatial interpolation 
techniques to use to develop high quality soil salinity maps. The approach was tested on 
soil salinity data observed in the Lower Arkansas River Valley near the Kansas border in 
Colorado. The correlation between soil salinity data and the satellite images was based on 
the crop cover reflection as an indicator of soil salinity. For the corn fields dataset the 
methodology was applied to nine subsets of the data ranging from 10% to 90 % of the data 
in 10% increments that were randomly sampled to evaluate the influence of sample size on 
the ability to spatially interpolate soil salinity data. For the alfalfa fields dataset, three sub-
sets of the data 75 %, 50%, and 25% of the data were produced. The range of each vari-
ogram was used to evaluate the distance between the collected soils salinity samples. 

 
2. Site Description 

This research is part of Colorado State University's Arkansas River Basin Salinity 
Mapping Project, a project which began in 1999. The study area for this project is shown 
in figure 1 and is located in southeastern Colorado. Fields in this area are cultivated with 
alfalfa, corn, wheat, onions, cantaloupe and other vegetables and are irrigated by a variety 
of systems including a mixture of border and basin, center pivot, and furrow. Salinity lev-
els in the canal systems along the river, which provide much of the region’s irrigation wa-
ter, increase from 300 ppm total dissolved solids (TDS) near Pueblo to over 4,000 ppm at 
the Colorado-Kansas border (Gates et al. 2002). 

For the particular research dealing with remote sensing of salinity in corn and alfalfa 
fields described in this paper, the study area consists of a number of fields located in an 
area of about 20 miles in length and 10 miles in width. Soil salinity was measured in these 
fields at the beginning and at the end of the irrigation season. The location of the corn and 
alfalfa fields is shown in Figure 1. 

 
3. Methodology 
3.1. Using an EM-38 for Soil Salinity Readings 

Soil salinity was measured in the fields using an EM-38 electromagnetic probe. The 
EM-38 takes vertical and horizontal readings that can be converted to soil salinity esti-
mates. When collecting geo-referenced soil salinity data, the EM-38 probe was used in 
conjunction with handheld GPS units (with 95% accuracy of approximately 2 meters) to 
obtain geographic coordinates of the observed soil salinity data points. The EM-38 can 
cover large areas in a fairly short amount of time without the need for ground electrodes 
and provides depths of exploration of 1.5 meters and 0.75 meters in the vertical and hori-
zontal dipole modes respectively. 

EM-38 readings are affected by soil moisture and soil temperature. Therefore, the EM-
38 readings must be calibrated. For the calibration, soil moisture, soil temperature, and 
EM-38 readings were taken in a number of fields in the study area. The following equation 
was developed for use in the study area for the calibration of the EM-38 taking into con-
sideration both soil moisture content and soil temperature (Wittler et al., 2006).  The verti-
cal reading of the EM-38, EM-38v, was corrected as follows: 
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              (1) 
where  is the temperature correction factor and obtained by using the following equa-
tion: 
   (2) 
where T is the corrected soil temperature and equals to (Tmeasured -25)/10.  Tmeasured is the 
soil temperature (oC) measured in the field in oC,  (Richards, 1954).    

 
Figure 1. The location of the corn and alfalfa fields. 

Finally, soil salinity (SSa in dS/m) is obtained by adjusting the EM-38vc as follows: 



Eldeiry and Garcia 

 24 

         (3) 

where GMC, is the gravimetric moisture content of the soil sample. 
 
3.2. Satellite Imagery 

Four satellite image types were evaluated for their ability to estimate soil salinity. 
The ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) (Ya-
maguchi et al. 1998) sensor is an imaging instrument flown on the Terra satellite launched 
in December 1999. ASTER is a cooperative effort between NASA and Japan's Ministry of 
Economy and has been designed to acquire land surface temperature, emissivity, reflec-
tance, and elevation data. An ASTER scene covers an area of approximately 60 km by 60 
km and consists of 14 bands of data, three bands in the visible and near infrared (VNIR) 
with a 15m resolution, six bands in the short wave (SWIR) with a 30m resolution, and five 
thermal bands (TIR) with a 90m resolution. The Aster image was acquired on August 16th, 
2001 and all bands were resampled to 30 meter resolution. Landsat 7 images have three 
visible bands (blue, green, and red), 1 near infrared band (NIR), and 2 shortwave infrared 
bands (MIR-1, MIR-2) at 30m resolution; a thermal infrared band (TIR) at 60m resolution; 
and a panchromatic (PAN) band with 15m resolution. The Landsat 7 image was acquired 
on July 8th, 2001 and was also resampled to 30 meter resolution. Ikonos images have three 
bands in the visible and one in the near infrared with a resolution of 4m, and a panchro-
matic band with 1m resolution. The Ikonos image was acquired on July 11th, 2001. The 
Landsat 5 images contain seven bands including three visible bands (band1, band2, and 
band 3) with 30 meter resolution, two NIR bands (band4 and band5) with 30 meter resolu-
tion, one thermal band (band6 with 120 meter resolution), and a Mid IR (band7 with 30 
meter resolution). The Landsat 5 image was obtained on August 9th, 2004. An additional 
Ikonos image was acquired on August 1st, 2004.  

The four types of satellite images are highly variable in spectral and spatial resolution, 
with a range of four to fourteen spectral bands and 1m to 90m spatial resolution.  This 
variability provides the opportunity to explore the use of spatial and spectral resolution for 
predicting soil salinity. 

Spatial distortion of the images was corrected using a geometric correction in ERDAS 
Imagine 8.7 (ERDAS, 2006), to guarantee that the points on the image match with the 
same points on the ground. A dark object correction was used to compensate for the effect 
of atmospheric scattering (Song 2001). The IKONOS images were mosaicked because 
each individual image covers a small portion of the study area, while the portion of the 
Landsat 7 image that covers the study area was subset. The Normalized Difference Vegeta-
tion Index (NDVI) was added to the bands of the three images.  The NDVI uses the con-
trast between red and infrared reflectance as an indicator of vegetation cover and vigor. 
The Normalized Difference Vegetation Index (NDVI) was developed to provide an indica-
tor of the amount of vegetation in each of the fields (Wiegand et al., 1994; Hill and Don-
ald, 2003). 
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3.3. Using Variograms With the Different Datasets 
For each dataset the variogram was generated to evaluate the distance between corre-

lated soil salinity samples. Depending on how well the variogram fits, it can be used to in-
dicate how important it is to keep a given sample or remove it. The observed datasets were 
tested first with the OLS model and the derived equation was applied to the combination of 
bands to generate the predicted surface using the OLS model. Then from the whole dataset 
nine subsets were generated and the OLS model was applied to these subsets.  For each 
subset, an equation was derived for the OLS model using only the subset points and then 
this equation was applied to the combination of bands. The kriged residual surface was 
generated for each subset and then combined with the OLS surface. 

For each set of data a variogram was produced. This variogram was used to evaluate 
the distance between the correlated soil salinity samples. For corn each time the dataset 
was reduced by 10%, the range of the variogram and how well it fit provided an indication 
if the sample points that were removed were needed given the distance between these 
points and the range of the variogram.  The same thing was done to produce viriogram for 
alfalfa and at each time the dataset was reduced by 25%.  

 
3.4.  Modeling Approach 

Multiple regression analysis was used to explore the coarse-scale variability in the soil 
salinity as a function of the Satellite images bands. 

                  (4) 

where  is the predicted soil salinity at spatial location, s0, are estimated regression 
coefficients and are the independent variables at spatial location, s0. A stepwise procedure 
was used to identify the best subset of satellite bands to include in the regression models that 
minimized the AICC (Akaike, 1997; Brockwell and Davis, 1991). 

The spatial structure of the residuals from the ordinary least squares (OLS) multiple re-
gression models were analyzed using a geostatistical method, the variogram, which has 
been widely used to analyze spatial structures in ecology (Phillips 1985, Robertson 1987). 
The sample variogram,  is estimated using the following equation: 

           (5) 

where  and  are the estimated residuals from the multiple regression models 
at locations  and , a location separated by distance h, N(h) is the total number of 
pairs of samples separated by distance h.  The empirical variogram, which is a plot of the 
values of  as a function of h, gives information on the spatial dependency of the vari-
able.  Exponential, Gaussian and Spherical models were fitted to the sample variograms 
using a weighted least squares method (Robertson 1987) as shown in figure 3.  The vari-
ogram model with the smallest AICC was selected to describe the spatial dependencies in 
the salinity data. 

If the residuals were spatially correlated, ordinary kriging was used to model the spatial 
distribution of salinity in the fields. At every location where a soil salinity sample was not 
taken, estimates of the true unknown residuals,  at spatial location, so, were obtained 
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using a weighted linear combination of the available soil salinity samples at spatial loca-
tions, si: 

               (6) 

where the set of weights, takes into consideration the distances between soil salinity 
sample locations and spatial continuity, or clustering between the soil salinity samples. The 
best fitting variogram model was used to describe the spatial continuity in estimating the 
kriging weights. 

 
4. Results And Analysis 

The stepwise procedure was used to identify the best combinations bands of each im-
age that correlates with soil salinity. In most instances the residuals from the OLS multiple 
regression models were spatially correlated. Kriging the residuals generally improved the 
predictive performance of the models.   

 
4.1.  Variograms and Number of Collected Samples 

Figure 2 is an example of the different variograms used in the kriged residuals of the 
2001 corn fields with the Landsat 7 image for all datasets. The figure shows that vari-
ograms can fit well with all datasets but it cannot be fitted for the datasets of 30%, 20%, 
and 10% which prevents the use of kriging for these three datasets. This means that the 
whole dataset through 40% of the data produce reasonable variograms. These results show 
that there is a significant number of points collected that can be removed without having a 
large impact on the accuracy of the interpolation technique. Figure 2 also shows that there 
is no significant difference among the three variogram models. 

 
Figure 1: Variogram models for the Landsat7 image with different sets of data. 
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Table 1: The variogram models parameters using 2001 corn datasets with the Aster, Landsat7 and 
Ikonos images. 

 Aster Ikonos Landsat 7 
All data 

 Range AICC Range AICC Range AICC 
Gaussian 235.3 33.5 73.1 26.2 132.9 27.8 
Spherical 280.7 27.4 124.1 24.7 174.2 21.9 

Exponential 181.6 26.2 40.8 24.0 71.1 18.2 
90% of data 

Gaussian 236.6 35.7 62.3 27.5 123.7 28.1 
Spherical 298.8 29.2 96.1 26.9 166.0 22.1 

Exponential 167.0 26.4 35.2 26.3 66.2 18.9 
80% of data 

Gaussian 184.1 36.4 61.7 22.9 116.7 26.4 
Spherical 262.2 31.0 93.6 22.2 166.0 20.1 

Exponential 119.6 26.1 61.7 45.3 66.5 14.7 
70% of data 

Gaussian 143.1 36.8 61.8 27.7 84.2 27.5 
Spherical 198.5 32.3 94.9 27.2 132.0 24.1 

Exponential 91.3 25.0 36.3 26.3 53.9 17.4 
60% of data 

Gaussian 194.9 40.7 106 25.7 135.9 28.4 
Spherical 281.4 36.9 142.4 22.0 170.7 25.9 

Exponential 114.5 31.7 49.2 21.5 78.4 27.9 
50% of data 

Gaussian 278 32.1 88.3 29.3 63.0 33.1 
Spherical 371.7 26.4 133 26.6 107.5 31.6 

Exponential 388.5 26.1 42.2 26.2 43.7 28.3 
40% of data 

Gaussian 231.7 39.3 91.2 27.8 73.5 31.4 
Spherical 300.8 33.0 134.4 23.7 116.5 29.0 

Exponential 181.1 30.5 47.1 21.2 44.2 25.9 
30% of data 

Gaussian 456.1 46.5 137.6 33.2 12.3 39.3 
Spherical 379 45.4 164.8 30.9 33.3 39.3 

Exponential 310.2 45.3 70.7 32.0 0 39.3 
20% of data 

Gaussian 150 56.5 33 41.8 11.0 48.2 
Spherical 150 56.5 115.2 42.8 0 48.2 

Exponential 150 56.5 24.4 41.6 0.4 48.2 
10% of data 

Gaussian 18315 57.3 67.1 57.7 91.1 72.5 
Spherical 17.9 55.1 78.0 57.8 108.0 72.6 

Exponential 59279 57.9 33.7 58.3 52.8 73.1 
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Table 2: Variogram models parameters using the Ikonos and Landsat 5 images for 2004 alfalfa 
field datasets. 

 Ikonos Landsat 5 
 Range AICC Range AICC 

All data 
Gaussian 248.4 48.6 130.9 48.9 
Spherical 315.6 46.0 151.9 48.1 

Exponential 269.8 45.8 84.6 47.6 
75% of data 

Gaussian 300.4 49.6 171.7 55.5 
Spherical 428.4 48.2 164.1 55.3 

Exponential 699.3 48.3 122.0 54.1 
50% of data 

Gaussian 298.2 56.0 169.6 61.2 
Spherical 391.8 55.5 160.3 61.1 

Exponential 658.6 55.6 153.0 59.9 
25% of data 

Gaussian 141.6 76.4 297.2 63.1 
Spherical 168.3 75.7 347.4 63.2 

Exponential 681.6 75.6 681.3 63.4 
  

Table 1 shows the parameters (range, and AICC) of the Gaussian, Spherical, and Ex-
ponential models for the 2001 corn datasets (Aster, Landsat 7 and the Ikonos) for the dif-
ferent sample sizes. Table 2 show the same parameters for the 2004 alfalfa datasets (Land-
sat 5 and Ikonos). The most important parameter in selecting the model is the AICC (Aka-
kie Information Corrected Criteria) value. The AICC of the exponential model has the 
smallest value among the three variograms, in most cases, which makes it the best choice. 
The AICC values of the three models increase as the datasets decreases. The values of the 
AICC of the 2001 corn datasets are generally less than those of the 2004 alfalfa datasets. 
The Ikonos images for both the 2001 corn datasets and the 2004 alfalfa datasets are less 
than those of the other images. In most of the datasets, the values of AICC and range in-
crease as the sample size decreases. 

From figure 2 and tables 1 and 2, the Exponential model is the closest to the points 
while the Gaussian and the Spherical models deviate more from the data. In most of the 
cases, the Exponential model performed the best. 

 
4.2. Comparison Among the Predicted Data from the Five Images 

Table 3 and 4 show the MAE for the 2001 cron data (Aster, Landsat 7, and Ikonos) and 
the 2004 alfalfa data (Landsat 5 and Ikonos) of the predicted soil salinity for all datasets. 
There is no data for field US10 with Ikonos image since it was not covered by that image. 
The tables show that both the MAE values are smaller when using larger datasets and in-
crease when using smaller datasets. For fields with a low range of soil salinity the MAE 
values are small, regardless of the size of the datasets such as US09 while it getting higher 
for fields with high range of soil salinity such as US04. 
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Table 3: Mean absolute error (MAE) values (dS/m) of the predicted soil salinity from the 2001 
corn fields using Aster, Landsat 7, and the Ikonos images for the different sets of data.  

 All 90% 80% 70% 60% 50% 40% 30% 20% 10% 
Aster 

US09 0.79 0.52 0.38 0.39 0.39 0.78 0.41 1.33 1.07 1.79 
US10 1.45 1.41 1.39 1.34 1.38 1.85 1.52 2.16 2.50 3.10 
US40 1.01 1.07 1.00 0.94 1.02 1.37 0.98 1.44 1.50 1.96 
US80 0.74 0.78 0.67 0.68 0.76 1.09 0.70 1.29 1.69 1.96 

All 0.98 0.90 0.81 0.79 0.83 1.22 0.85 1.53 1.61 2.15 
Landsat 7 

US09 0.28 0.26 0.27 0.33 0.43 0.44 0.42 0.53 0.71 1.70 
US10 1.21 1.22 1.21 1.21 1.28 1.40 1.57 1.69 1.92 2.14 
US40 0.89 0.87 0.88 0.92 0.89 1.12 1.18 1.45 1.46 2.20 
US80 0.79 0.77 0.77 0.93 0.90 1.05 1.18 1.55 2.17 2.77 

All 0.73 0.73 0.73 0.79 0.82 0.94 1.01 1.22 1.46 2.14 
Ikonos 

US09 0.52 0.53 0.53 0.57 0.68 0.68 1.13 0.74 0.66 1.14 
US10           
US40 0.61 0.65 0.72 0.79 0.96 1.07 2.94 1.32 1.33 2.03 
US80 0.37 0.43 0.44 0.47 0.62 0.73 3.28 0.83 0.95 1.48 

All 0.51 0.54 0.57 0.62 0.75 0.81 2.27 0.95 0.94 1.50 
 
Table 4: Mean absolute error (MAE) values (dS/m) of the predicted soil salinity from the 2004 al-
falfa fields using Landsat 5, and Ikonos images for the different sets of data.  

 All 75% 50% 25% 
Landsat 5 

US04 1.94 2.70 3.45 4.73 
US09 0.38 0.49 0.61 0.88 
US10 1.65 1.75 1.85 2.91 
US14 0.69 0.76 0.95 1.33 

All 1.16 1.43 1.71 2.46 
Ikonos 

US04 1.76 2.61 2.73 4.54 
US09 0.30 0.34 0.46 0.67 
US10 1.08 1.37 1.36 1.74 
US14 0.49 0.63 0.77 1.86 

All 0.91 1.24 1.33 2.20 
 

4.3. Example of Predicted Maps 
Figures 3 show examples of the observed and predicted surfaces of soil salinity (dS/m) 

for field US40 using the Aster image for the corn fields in 2001 for the observed data and 
all datasets predicted from Aster image. The number of points collected in this field is 79, 
the area is 8.2 hectares and the range of soil salinity is 3.0 – 12.2 dS/m. The generated of 
the predicted surface using all the observed points captured the range of variability. The 
predicted soil salinity surfaces captured less variability as the number of dataset points de-
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creases. The predicted generated surfaces are acceptable until it reached the dataset of the 
30% of data. 
 

 
Figure 3: Observed and predicted surfaces of soil salinity (dS/m) of field US40 from 
the Aster 2001image using all the observed data and subsets. 
 

4.4. Cross Validation 
Table 5 shows the statistics of the observed dataset of the five images compared with 

the estimated data for corn and alfalfa fields. For the dataset of the corn fields for the year 
2001, the datasets for the Aster and Landsat 7 have 326 points while the dataset has 257 
points for the Ikonos image since field US10 was not covered by that image. Therefore, the 
statistics for the observed data are different and that is why they are separated. The stan-
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dard deviation values of the observed and predicted data are very close for all datasets ex-
cept the value of the Landsat 5 (2004) which is slightly higher than that of the observed 
data. The values of the coefficient of variation are 1.00 or less for all datasets which means 
that the distributions of the above datasets are considered to have low variance. The values 
of the Mean Square Errors (SMSE) for all datasets are 1.00 or less. The values of first 
quartile and third quartile (1st Q and 2nd Q) of the observed and predicted values are close 
to each other except the predicted values using the Landsat 7 (2001) and Ikonos (2001) im-
ages which are smaller than the observed value. The observed values of the mean com-
pared to the predicted values of all datasets are very close to each other except the value of 
the Ikonos 2004 which is slightly higher than the observed data.  

 
Table 5: cross validation parameters of datasets for all images. 
Dataset N Stdev CV% SMSE 1st Q Mean 3rd Q 
Observed for Aster (2001) & 
Landsat 7 (2001) 

326 3.1 0.60 NA 3.1 5.13 6.03 

Predicted Aster (2001) 326 3.12 0.62 0.95 2.86 5.01 6.33 
Predicted Landsat 7 (2001) 326 3.31 0.64 1 1.33 5.17 7.69 
Observed for Ikonos (2001) 257 2.24 0.49 NA 3.00 4.55 5.4 
Predicted Ikonos (2001) 257 2.64 0.56 1.00 0.41 4.69 6.34 
Observed for Landsat 5 (2004) & 
Ikonos (2004) 

256 4.46 0.78 NA 2.7 5.71 6.67 

Predicted Landsat 5 (2004) 256 6.46 1.16 0.99 2.42 5.56 7.5 
Predicted Ikonos (2004) 256 4.02 0.56 1 2.61 7.21 7.69 

 
 

5. Conclusion 
This research has shown that mapping and assessing soil salinity can be done by inte-

grating field data, GIS, remote sensing, and spatial modeling techniques. However, any in-
tegration of field data, GIS, and remote sensing is considered weak unless strong statistical 
measures are introduced. The model that satisfies the assumptions, selection criteria and 
has no autocorrelation in the residuals is not considered the best unless the predicted values 
of soil salinity match up relatively well with the observed values. The results presented in 
this paper show the importance of considering the variability in the samples collected in 
the study field rather than the area of the study field itself. The area of the study field is not 
important when compared to the variability of the soil salinity in considering the number 
of collected points.  This study introduces a methodology to collect and represent soil sa-
linity accurately with less data. 
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