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ABSTRACT 
 
 
 

UNDERSTANDING THE MOLECULAR BASIS OF INSECT PEST RESISTANCE IN 

TRITICUM AESTIVUM USING MASS SPECTROMETRY                                                                                                                             

 

Bread wheat (Triticum aestivum L.) is a global staple crop and controlling for 

environmental stress that impacts grain yield is critical. Recently, Wheat Stem Sawfly (Cephus 

cinctus, hereafter WSS) has emerged as a new pest of wheat and is expanding across the Great 

Plains and southern United States. WSS is difficult to control using chemical, cultural or 

biological pest management methods. Currently, wheat breeders utilize a solid-stem trait to 

inhibit larval feeding and reduce lodging, however this trait only confers partial resistance and is 

thought to reduce grain yield. Models of metabolic-based resistance with demonstrated impact 

on reduction of insect pest fitness have been documented. Here, I investigate the broader 

hypothesis that wheat resistance to WSS is mediated by shifts in metabolism that promote 

avoidance and toxicity towards WSS. Four cultivars with contrasting phenotypes are used in our 

studies: Hatcher (resistant to WSS, hollow-stem, winter wheat); Conan (resistant, semi-solid-

stem, spring); Denali (susceptible, hollow-stem, winter); and Reeder (susceptible, hollow-stem, 

spring). 

The first part of this work involved gas chromatography-mass spectrometry (GC-MS) 

metabolomics methods to provide a comprehensive characterization of the chemical composition 

of wheat cuticular waxes. A total of 263 putative compounds were detected among the four 

abovementioned wheat cultivars and comprised 58 wax compounds including alkanes and fatty 

acids. Many of the detected wax metabolites have known associations to important biological 

functions such as insect pest and drought resistance. Uni- and multivariate statistics were used to 
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evaluate metabolite distribution between tissue types (leaf, stem) and cultivars. Leaves contained 

more primary alcohols than stems such as 6-methylheptacosan-1-ol and octacosan-1-ol. The 

metabolite data were complemented using scanning electron microscopy of epicuticular wax 

crystals which detected wax tubules and platelets. Conan (resistant to WSS) was the only cultivar 

to display alcohol-associated platelet-shaped crystals on its abaxial leaf surface. 

The second part of this study aimed at evaluating a selection of wheat cultivars in a WSS-

infested field. Cultivars with increased yield and reduced WSS infestation values were found. 

The molecular basis of this resistance was evaluated in a greenhouse study that characterized 

proteomic and metabolomic signatures of wheat stems associated with WSS infestation. Stem 

proteins (1832) and metabolites (1823) were detected in the same four wheat cultivars using 

liquid chromatography-mass spectrometry. During infestation with WSS, 62 proteins and 29 

metabolites were differentially regulated in the hollow-stem resistant cultivar Hatcher. Metabolic 

processes that were associated with resistance included enzymatic detoxification, proteinase 

inhibition, and anti-herbivory compound production, specifically the benzoxazinoids, neolignans, 

and phenolics. Compared to the semi-solid and resistant cultivar Conan, hollow-stem Hatcher 

had increased abundance of proteins and metabolites with known roles in plant defense against 

insects. 

These results will be invaluable to plant breeders as they contribute to the understanding 

of wax composition and metabolic regulation associated with important phenotypic traits in a 

major crop, including passive and active defense mechanisms to WSS. 
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CHAPTER 1 – INTRODUCTION 

 
 
 

1.1. Bread Wheat Is an Important Global Food Crop 

Managing pest outbreaks is a critical component of national food security. Bread wheat 

(Triticum aestivum L., Poaceae) is a widely grown staple crop that provides approximately 20% 

of a typical daily caloric intake [1,2]. As of 2017, T. aestivum ranks third among United States 

(US) field crops in planted acreage, production, and gross farm receipts, with annual outputs that 

reach 700 million metric tons [3]. The United States Department of Agriculture (USDA) annual 

statistical bulletin ranked the state of Colorado as the sixth largest winter wheat producer, 

representing nearly 6% of national production [3]. To continue a steady food production in the 

face of projected population growth, it is however critical to understand how to achieve optimal 

grain yield in the presence of biotic and abiotic stresses [4,5]. Wheat is indeed affected by biotic 

and abiotic pressure that reduces grain yield, with insect pest infestations representing up to 20% 

of annual losses [6]. 

1.2. The Wheat Stem Sawfly Is a Major Pest of Triticum aestivum 

1.2.1. Wheat Stem Sawfly Rapid Expansion Is Associated with Severe Wheat Yield Losses 

An important economic insect pest of wheat is the Wheat Stem Sawfly (WSS hereafter), 

Cephus cinctus Norton (Hymenoptera: Cephidae). C. cinctus infestations were first described in 

1872 from specimens of native grass in Colorado [7]. A host jump to spring wheat (i.e., varieties 

that do not need to vernalize, are planted in the spring and harvested in late summer of the same 

year), more than a century ago, resulted in dramatic expansion of the grass feeding insect 

distribution across the Northern Great Plains and South Canada [8,9]. For clarification, the term 

“variety” will be used throughout the manuscript to designate both “cultivars” (also termed 
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cultivated varieties, including the four wheat cultivars evaluated in our studies) and “advanced 

breeding lines”. Vernalization describes the induction of a plant's flowering process by exposure 

to the prolonged cold of winter. Cultivars and advanced breeding lines are obtained using distinct 

breeding techniques that will not be detailed here. Spring wheat is extensively grown in North 

America but remains difficult to produce in dryland areas such as Colorado, where farmers 

typically grow winter varieties (i.e., varieties planted in the autumn, remain in the vegetative 

phase and vernalize during the winter, resume growth in early spring and are harvested in the 

summer of the following year). Benefits of growing winter wheat over spring wheat in Colorado 

include superior management of soil moisture under dry climates, reduced soil erosion, and 

improved out-competition of weed varieties. While WSS exclusively infested spring wheat in 

early periods of expansion, a second episode of host jump, that affected winter wheat this time, 

was reported in the early 1980s. Winter wheat phenology differs from that of spring varieties, 

and it is believed that C. cinctus adaptation to winter wheat was enabled by synchronization of 

emergence patterns to exploit this host. Research indicates rich genetic diversity among 

specimens of WSS from across the world, and distinct haplotypes identified in North America 

suggest phenotypic variation that promotes rapid adaptation to new hosts, and potential signs of 

expansion across the continent [10]. Recent field studies conducted on winter wheat in Colorado 

indicate southward expansion of the WSS habitat and support its ability to colonize both spring 

and winter wheat at an alarming pace, which breeders and growers are poorly prepared for 

(Figure 1A,B) [11]. 

 Most of the WSS life cycle is spent in larval stages, and larval feeding causes major 

tissue damage (Figure 1C). Pupated individuals emerge and mate in the spring, and females 

oviposit (i.e., deposit eggs) shortly thereafter (within 10 days) on wheat stems [12]. Females use 
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their saw-like ovipositor to cut through the stem and insert a single egg. Selection of plant host 

relies upon a number of attributes as suggested by Buteler et al. (2009), that includes stem 

diameter and height, and emission of attracting volatile compounds (i.e., semiochemicals) [13]. 

By the sixth or seventh day after oviposition, larvae break free of their egg sac and enter the stem 

cavity [14]. Over the course of the summer season, hatched WSS larvae chew through inner stem 

tissue, otherwise known as stem-boring activity, downwards to reach soil level [15]. A V-shaped 

notch is sliced inside the stem at crown level and used as protection by the overwintering insect. 

Larvae pupate during the next spring season and adults leave stubs to start a new cycle (Figure 

1C). 

 Stem-cutting and boring activities are responsible for most damage from WSS larvae in 

wheat, causing annual yield losses up to 350 million US dollars in North America [8]. Indeed, 

newly hatched larvae feed upon wheat parenchyma tissue and vascular bundles, causing major 

reduction in photosynthetic capacity and subsequent decrease in kernel weight [16]. Stem cutting 

induces further yield loss as plant lodging hampers mechanical harvesting [17,18]. 

1.2.2. Development of Larvae Inside Stems Limits the Efficacy of Control Strategies 

The life cycle of C. cinctus involves an extended period of up to ten months per year 

spent within the host stem. Early control tactics thus aimed at targeting larvae through 

destruction of wheat stubble (i.e., cut parts left sticking aboveground after the grain is harvested) 

[14]. However, burning of wheat stubble results in little to no WSS larval death, increased soil 

erosion due to removal of residue, and decreased numbers of WSS natural enemies (i.e., 

parasitoids) that are usually housed within aboveground parts of the plant. Tillage through 

ploughing of infested stubble does not offer complete control on WSS adult emergence either, 
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promotes erosion of soils, and threatens the developments of WSS parasitoids Bracon cephi and 

Bracon lissogaster [14,19]. 

Cropping practices have been explored to limit WSS infestations and include the use of 

trap crops in fallow lands. The large variety of suitable hosts for WSS includes rye (Lolium 

perenne), brome (Bromus inermis), and barley (Hordeum vulgare) grasses. Sawfly adults in a 

field of mixed species show little to no preference for a specific host and wheat infestations are 

hence diluted. However, many producers still favor continuous cropping practices and do not 

wish to fallow their fields. Alternatively, trap crops can be sown at field borders to intercept 

WSS, however, success of this strategy remains limited under high sawfly pressure [8]. Wheat 

row spacing and seeding rates also influence WSS numbers. Variation in canopy density 

modifies light penetration and thus alters stem pith expression (a phenotypic trait related to WSS 

resistance that will be discussed further) and moisture levels, yet again, studies report insufficient 

results in the field [20]. Other cultural practices include delayed seeding dates and crop nutrient 

management. While altering sowing dates lowers exposure to WSS due to plants being immature 

and unsuitable hosts at periods of high sawfly pressure, this practice can be detrimental as 

delayed planting correlates with less efficient use of soil moisture, resulting in reduced grain 

yield [21]. Likewise, the stochastic nature of soil-plant fertility dynamics prevents the 

reproducibility of studies on nutrient supplemented wheat to control WSS attacks [22]. 

Success of control management that relies on pesticides and pest parasitism is diminished by the 

extended WSS adult emergence (three to six weeks) and the time larvae spend inside wheat 

stems [8]. Heptachlor is the only chemical that induces consistent death of larvae upon 

application. However, due to an extended persistence in the environment and potential harm to 

ecosystems, this organochlorine-based insecticide was banned from the US more than 30 years 
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ago. As previously mentioned, natural enemies of WSS in wheat include B. cephi and B. 

lissogaster. Although studies have shown significant reduction in yield losses upon parasitic 

activity, other means of control (e.g., cultural practices, pesticides) contribute to great reduction 

of parasitoid numbers [13]. Plant phenology, and environmental conditions that include 

temperature and soil moisture, also contribute to the success of WSS parasitoid development and 

may explain the relative absence of B. cephi and B. lissogaster in Colorado fields. 

1.2.3. The Widely Used Solid-Stem Trait Is Associated with Inconsistent Field Performance 

Mitigation of C. cinctus populations often relies upon host genetic resistance using solid-

stemmed cultivars [23,24]. A great majority of spring and winter wheat cultivars with solid stems 

derive from S-615, the first wheat line to exhibit the qualitative solid-stem trait [25]. 

Comparative studies on hollow- and solid-stem cultivars reveal an anti-herbivory potential for 

this trait [26]. Mechanical pressure induced by pith development as well as excessive moisture 

levels within solid stems increase egg mortality. Moreover, high expression of pith filling 

appears to have a deterring effect as it affects host preference and reduces WSS oviposition [27]. 

The major quantitative trait locus (QTL) for stem solidness (i.e., Qss.msub-3BL) has been 

identified and shown to control most of the variation in stem pith formation [28]. A study 

conducted on a population of recombinant inbred lines (RIL) derived from a solid- by hollow-

stemmed winter wheat cross indicated that Qss.msub-3BL was responsible for 76% of the 

variation in stem pith expression. However, wheat plants that carry the major stem solidness 

locus show relative inconsistency in pith expression and yield performance under fluctuating 

weather conditions [29]. While intense sunlight offers maximum pith expression, cloudy 

conditions or shading elements decrease stem pith development. It is believed that the solid-stem 
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trait itself is accompanied by yield reduction, as a fitness penalty is observed in plants that 

allocate high amounts of energy for pith expression instead of grain filling. 

1.3. Wheat Molecular Resistance to Biotic Stress Is Both Passive and Active 

1.3.1. The Plant Cuticle as a Natural Barrier: Composition, Structure and Function 

In plants, changes in the chemical composition of tissues facilitate stress tolerance. 

Insects and pathogens create physical contact with the plant through organ surfaces (e.g., leaves 

and stems). The outermost layer of leaf and stem cells is known as the cuticle and controls water 

retention during episodes of fluctuating atmospheric humidity, soil moisture, and temperature 

(Figure 2A) [30-32]. The cuticle is an extracellular matrix that contains high levels of the simple 

polymer cutin and a variety of lipids. The lipids are herein referred to as “waxes” and usually 

termed epicuticular waxes in the literature [33]. Waxes result from the metabolism of long-chain 

lipids and include alkanes, fatty acids, primary and secondary alcohols, and ketones (Figure 2B) 

[34]. 

The role of waxes in biotic stress tolerance is critical as they create a natural barrier 

against pest and pathogen penetration through passive resistance (i.e., constitutive presence of 

structural barriers that also includes trichomes, hairs and resins) [33-35]. A deterring potential 

for cuticular alcohols and fatty acids has been observed in the cabbage (Brassica oleracea)/ 

Diamondback Moth (Plutella xylostella) system, and resistance to the pest is facilitated by 

increased biosynthesis of these lipids [36]. Likewise, abiotic stress, including drought episodes, 

is mitigated by the glaucousness levels of the cuticle (i.e., bluish-green appearance on the 

surface). Wax composition (e.g., proportions of ketones and primary alcohols) and content have 

been demonstrated to correlate with glaucousness [37-41]. 
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Scanning electron microscopy (SEM) studies reveal the three-dimensional crystal 

micromorphology of waxes, and the “platelet” and “tubule” types are distributed among all 

major groups of plants, including the Poaceae (Figure 2C) [39,42]. The chemical composition of 

waxes is associated with the type of wax crystal, and platelets are mostly composed of primary 

alcohols [39], whereas tubules are high in content of β-diketones in Triticum species [42,43]. 

1.3.2. Enzymes and Metabolites Are Critical Actors of the Molecular Defense Response 

Genetic and molecular responses that relate to plant–insect interactions have been largely 

explored. Direct defenses aim at reducing host suitability and insect fitness through mechanical 

protection (i.e., passive resistance, with epicuticular waxes as an example) and production of 

toxic and repelling compounds (i.e., active resistance, includes direct and indirect defenses) such 

as alkaloids, phenolics, benzoxazinoids, and volatile organic compounds (VOCs; Figure 3) 

[44,45]. Induced indirect defenses promote parasitism of pest herbivores through release of 

attractants such as VOCs, production of nectar and housing of natural enemies [44,46]. Upon 

selection of a suitable host, herbivorous pests make physical contact with the plant epicuticle and 

often puncture tissue to either feed or deposit eggs. Insect activity is perceived through release of 

damage- and herbivore-associated molecular patterns (DAMPs and HAMPs; Figure 3). 

Triggered immunity is set up once insect effectors have been recognized by plant receptors (e.g., 

NBS-LRR domain-containing proteins), and both direct and indirect defenses may be elicited 

[47,48]. The hypersensitive response has been documented for a variety of plant–insect 

interactions and aims at restricting foreign tissue at the wounding site through local necrosis 

[49,50]. Simultaneous and subsequent events involve signaling cascades and modulation of 

metabolism including increased calcium fluxes, oxidative burst and detoxification activities, and 

up-regulation of wound-induced protein kinases (WIPK), products of specialized metabolism 
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(formerly known as secondary metabolism; e.g., phytohormones, anti-herbivory compounds), 

and proteinase inhibitors, among others [44,51]. In the case of chewing insects that attack 

vascular tissues, the plant’s ability to propagate defense signals beyond the initial wounding site 

(i.e., the oviposition site) is critical to prepare intact areas for potential infestation [52,53]. In 

addition, insect manipulation of host defenses is documented for many plant/pest systems 

including the interaction of wheat and WSS. The role of small non-coding RNA (snRNA) 

sequences in suppressing the wheat response to WSS larval feeding is currently being 

investigated [54]. 

Complex molecular networks that involve protein and small molecule actors of plant 

defense to herbivores have been described. Up-regulation of pathogenesis-related (PR) proteins 

(e.g., proteinase inhibitors), detoxification enzymes (e.g., peroxidases, glutathiones), and other 

defense-related proteins (e.g., lectins, remorins) is observed during the incompatible interaction 

(i.e., unsuccessful infection/infestation by the pathogen/pest; Figure 3) [44,55-57]. However, 

enzymatic shifts are not restricted to defense-related compounds but also impact pathways 

involved in energy production and allocation of assimilates [58]. Hence, enzymes with activities 

related to production of primary and specialized metabolites (e.g., hydroxypyruvate reductases, 

enzymes of the phenylpropanoid pathway), energy production and allocation (e.g., enzymes 

involved in photosynthesis and gluconeogenesis), and protein anabolism/catabolism (e.g., tRNA 

synthetases, ubiquitin-proteasome complexes) are also key factors in the defense response 

[53,58-60]. Likewise, products of metabolism are differentially regulated in defense to 

phytophagous insects. Both primary (e.g., amino acids and carbohydrates) and specialized 

metabolism (e.g., bioactive compounds such as anti-herbivory metabolites) are differentially 

regulated in this context [44,53]. Anti-herbivory compounds include phytotoxins that are 
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classified based on their mode of action. The phytoanticipins are constitutively stored in their 

inactive form in the plant and become toxic upon insect attack through cleavage of a glycosidic 

bond. Example phytoanticipins are the benzoxazinoid glycosides found in the Poaceae and 

down-regulation of their inactive form upon biotic stress correlates with overexpression of their 

toxic variant [61]. Phytoalexins are synthesized de novo upon biotic stress and include a wide 

range of chemical structures (e.g., alkaloids, benzenoids, phenolics) [53]. Other specialized 

metabolites are critical to the deployment of the stress response and include phytohormones (e.g., 

jasmonates, ethylene) and VOCs [47]. 

1.4. Mass Spectrometry-Based Methods Enable the Detection of Defense Compounds 

1.4.1. Detection of Semi-Volatile Waxes Using Gas Chromatography-Mass Spectrometry 

In plants, metabolomics is the comprehensive analysis of small molecules (~50–1200 

Da), typically involved in primary or specialized metabolism. While waxes are in fact end 

products of metabolism (they are exuded from leaf and stem cells), they are amenable to analysis 

by metabolomics methods due to their chemical properties. A common method to evaluate 

primary metabolites in plants is to extract, derivatize via silylation, and detect metabolites using 

gas chromatography coupled to mass spectrometry (GC-MS) [62]. Many plant waxes are small 

and semi-volatile and are also detected using GC-MS [38,40,63-66]. Further, many contain 

hydroxyl groups that allow for derivatization to improve volatility and detection by GC-MS. 

1.4.2. Detection of Proteins and Metabolites Using Liquid Chromatography-Mass Spectrometry 

Compared to cuticular waxes, plant anti-herbivory metabolites and peptide compounds 

usually have a higher mass and are less amenable to volatilization and detection using GC-MS. 

Metabolomics and proteomics methods to detect anti-herbivory metabolites and enzymes rather 

rely upon the use of liquid chromatography coupled to mass spectrometry (LC-MS). LC-MS 
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methods are invaluable for precise determination of metabolite structures and have been applied 

to research on plant defense compounds and related enzymes [60,61,67]. 

1.5. Preliminary Studies 

1.5.1. Wheat Cultivars Assessed in Preliminary Studies and Further Explored in the Present 

Work 

Hard red spring wheat cultivars “Conan” (PI 607549) and “Reeder” (PI 613586), and 

hard red winter wheat cultivars “Hatcher” (PI 638512) [68] and “Denali” (PI 664256) [69] were 

used in both research works described in this manuscript. Spring cultivar Conan displays semi-

solid stems (stem pith is expressed at its maximum during early stages of development and 

regresses as the plant matures) that appear to provide relatively good tolerance to WSS attacks 

[26,27,70]. It is therefore referred to as a resistant semi-solid spring cultivar. 

Genotypic/phenotypic details for all four cultivars of interest are provided in Table 1. Conversely 

to Conan, spring cultivar Reeder has poor stem pith expression throughout the growing season 

and higher host suitability. Reeder is thus defined as a susceptible hollow-stem cultivar. Both 

these spring cultivars are largely grown in the Northern Great Plains but unsuitable for 

production in dryland areas such as Colorado. Hollow-stem winter wheat Hatcher was released 

in Colorado in 2004, is now widely grown in the state, and a 3-year field study described in 

Chapter 3 suggests low WSS infestation rates for this cultivar. Denali, also a hollow-stem winter 

cultivar of wheat, was released in Colorado in 2011 and is susceptible to C. cinctus. 

Selection of these wheat cultivars was based on the following genotypic and phenotypic 

traits: (1) degree of resistance to WSS, (2) degree of stem pith expression (stem solidness), (3) 

growth habit (spring or winter type), and (4) degree of surface glaucousness (bluish-green 

appearance of the plant surface associated with chemical; Table 1). 
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1.5.2. Behavior of WSS on a Resistant Cultivar Suggests Presence of Repelling Cuticular 

Structures and/or Volatile Emissions 

Previous research on WSS behavior in response to volatile attractants from wheat, 

conducted at the Montana State University, indicated oviposition preference on the susceptible 

cultivar Reeder, over resistant Conan (see Table 1 for cultivar phenotype details) [66]. Similar 

test conditions were reproduced in our lab using a Y-tube system, but no significance for 

oviposition preference between the two cultivars was observed. However, a unique grooming 

behavior pattern was noticed when WSS were residing on Conan. Insects were compulsively 

cleaning themselves instead of depositing eggs, possibly indicating the presence of a wax surface 

or volatile irritant. Part one (Chapter 2) of the present study aims at elucidating the chemical 

composition of wheat cuticular waxes. The hypothesis is that WSS resistant Conan has a unique 

blend of surface metabolites that contribute to defense to insect pests and complement the semi-

solid-stem trait. 

1.5.3. Wheat Active Responses to WSS Involve Complex Molecular Networks 

Literature on the molecular aspects of plant pathology for the wheat/WSS system is 

relatively scarce. A recent study on the molecular response of wheat to WSS feeding described 

protein and metabolite variation in the phenylpropanoid and pentose phosphate pathways in 

wheat cultivars with different levels of resistance to the insect [71]. Reallocation of 

carbohydrates may, however, be the downstream result of intense damage in susceptible plants 

rather than an active response that aims at strengthening tissues. In part two (Chapter 3) of the 

present study, particular interest is pointed towards Hatcher, that displays low stem pith levels 

during the WSS flight period, yet shows consistent resistance and high yields under sawfly 

pressure (Table 1). We hypothesize that critical metabolic variation occurs in Hatcher in response 
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to WSS pressure and that it does not rely on the solid-stem trait. Mass spectrometry data supports 

the quantitative nature of wheat genetic resistance to WSS and provides avenues to breed for 

resistant phenotypes that do not depend on stem solidness. We also describe a potential model 

for metabolic resistance in Hatcher. 

1.6. Overview 

In this study, we combine the amenability of GC- and LC-MS for wax and anti-herbivory 

metabolites, and proteins, with non-targeted metabolomics and proteomics data processing 

methods to enable comparisons of four wheat cultivars that differ for resistance to WSS and 

other phenotypic traits. We provide a comprehensive characterization of the wheat metabolome 

and proteome and demonstrate variation among cultivars. The data supports the potential to 

breed for wax traits with demonstrated effects on a variety of biologically relevant phenotypes, 

including resistance to biotic stress. 
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Table 1. Cultivars used in our study. 

Cultivar Stem solidness Response to WSS Growth habit Glaucousness level 

Conan Semi-solid Resistant Spring wheat High 
Reeder Hollow Susceptible Spring wheat Low 
Hatcher Hollow Resistant Winter wheat Low 
Denali Hollow Susceptible Winter wheat Low 
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Figure 1. Cephus cinctus distribution and life cycle. (A) Map of the North American continent 
showing a widespread distribution of WSS across the Northern Great Plains. Light red indicates 
area of WSS distribution as of 2010, bright red indicates the most recent southward expansion. 
(B) Comparative maps of WSS progression in Colorado (2013 and 2017 field surveys). Each 
colored dot represents a different wheat field, and infestation percentages illustrate the 
proportion of infested wheat plants within a field. (C) Diagram of the WSS life cycle that 
includes the major stages of WSS development, and which are responsible for wheat yield losses 
(indicated in red). Figures 1A and 1C are modified versions of diagrams prepared by Phillip 
Glogoza, Jochum Wiersma, and Ian McRae [72]. Figure 1B is a modified version of a map 
created by Darren M. Cockrell, Frank B. Peairs, and Paul J. Ode upon field observations of WSS 
infestation in wheat. Notation: ↘ = reduction. 
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Figure 2. Micromorphology and chemical composition of the plant cuticle. (A) Diagram of a 
leaf cross section. Different compartments and cell types are indicated. This is a modified 
version of the diagram obtained from [73]. (B) Example waxes typically found on plant cuticles. 
(C) Scanning electron micrographs of two types of wax crystals: platelets and tubules. 
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Figure 3. Simplified model for molecular resistance in plants. Resistance is induced upon 
recognition of insect elicitors and relies on both direct and indirect defenses. Molecular 
responses include overexpression of defense enzymes (e.g., detoxicating SOD) and metabolites. 
Abbreviations/Notations: HAMPs = herbivore-associated molecular patterns; DAMPs = damage-
associated molecular patterns; POD = peroxidase; PPO = polyphenol oxidase; PAL = 
phenylalanine ammonia lyase; LOX = lipoxygenase; SOD = superoxide dismutase; APX = 
ascorbate peroxidase; cmps. = compounds. 
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CHAPTER 2 – GC-MS METABOLOMICS TO EVALUATE THE COMPOSITION OF 

PLANT CUTICULAR WAXES FOR FOUR TRITICUM AESTIVUM CULTIVARSa,b,c 

 

 

 

2.1. Summary 

Wheat (Triticum aestivum L.) is an important food crop, and biotic and abiotic stresses 

significantly impact grain yield. Wheat leaf and stem surface waxes are associated with traits of 

biological importance, including stress resistance. Past studies have characterized the 

composition of wheat cuticular waxes, however protocols can be relatively low-throughput and 

narrow in the range of metabolites detected. Here, gas chromatography-mass spectrometry (GC-

MS) metabolomics methods were utilized to provide a comprehensive characterization of the 

chemical composition of cuticular waxes in wheat leaves and stems. Further, waxes from four 

wheat cultivars were assayed to evaluate the potential for GC-MS metabolomics to describe wax 

composition attributed to differences in wheat genotype. A total of 263 putative compounds were 

detected and included 58 wax compounds that can be classified (e.g., alkanes and fatty acids). 

Many of the detected wax metabolites have known associations to important biological 

functions. Principal component analysis and ANOVA were used to evaluate metabolite 

distribution, which was attributed to both tissue type (leaf, stem) and cultivar differences. Leaves 

contained more primary alcohols than stems such as 6-methylheptacosan-1-ol and 
 

 

aThis chapter is adapted from a research article that was published in the International Journal of 
Molecular Sciences on Jan. 23, 2018, with minor modifications. 
bArticle citation: Lavergne, Florent D., et al. "GC-MS Metabolomics to Evaluate the 
Composition of Plant Cuticular Waxes for Four Triticum aestivum Cultivars." International 

journal of molecular sciences 19.2 (2018): 249. 
cAuthors: Florent D. Lavergne, Corey D. Broeckling, Darren M. Cockrell, Scott D. Haley, Frank 
B. Peairs, Courtney E. Jahn, Adam L. Heuberger. 
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octacosan-1-ol. The metabolite data were complemented using scanning electron microscopy of 

epicuticular wax crystals which detected wax tubules and platelets. Conan was the only cultivar 

to display alcohol-associated platelet-shaped crystals on its abaxial leaf surface. Taken together, 

application of GC-MS metabolomics enabled the characterization of cuticular wax content in 

wheat tissues and provided relative quantitative comparisons among sample types, thus 

contributing to the understanding of wax composition associated with important phenotypic traits 

in a major crop. 

2.2. Introduction 

Common wheat (Triticum aestivum L.) is a widely grown staple crop, and is often 

affected by biotic and abiotic pressure that reduces grain yield [1]. In wheat, resistance to stress 

is associated with metabolic responses in various tissues and organs, changing the plant chemical 

composition of tissues that provide stress tolerance. The surface of leaf and stem organs is 

known as the cuticle, which is a primary point of contact with insects and pathogens, and 

regulates water retention during periods of high temperature, low atmospheric humidity, and low 

soil moisture [2-4]. The cuticle is an extracellular matrix of two main components: cutin (a 

simple polymer) and lipids, termed epicuticular waxes (herein referred to as “waxes”) [5]. Waxes 

are considered end products of long-chain lipid metabolism and include alkanes, fatty acids, 

primary and secondary alcohols, ketones, esters, and aldehydes [6]. 

Waxes are important to stress tolerance for their role in forming a physical barrier to 

prevent dust and debris accumulation on hydrophilic surfaces and form a natural obstacle to 

pathogen penetration [5,7]. Cuticular fatty acids and primary alcohols have been demonstrated to 

facilitate resistance of cabbage (Brassica oleracea) to Diamondback Moth larvae (Plutella 

xylostella), specifically through chemical deterrence [8]. Waxes can also act as photoprotectants 



24 
 

for ultraviolet light [9]. Likewise, wax composition (e.g., proportions of ketones and primary 

alcohols) and content correlate with glaucousness, a bluish-green appearance of the plant cuticle 

that is associated with drought tolerance [10-14]. 

Waxes assemble in the cuticle as three-dimensional crystals of 23 types based on 

micromorphology [15]. Scanning electron microscopy (SEM) studies reveal that the “platelet” 

and “tubule” types of epicuticular wax crystals are distributed among all major groups of plants 

[12,15]. Further, the wax composition (lipid class and abundance) is associated with the type of 

wax crystal. In Triticum species, platelets are mostly composed of primary alcohols [12], 

whereas tubules are high in content of β-diketones [15,16]. Here, these associations are used to 

verify the accuracy of a customized biochemical analysis workflow on wax detection. 

Various methods have been developed to evaluate waxes. Leaf or stem samples are 

usually air- or freeze-dried and then immersed in a polar (e.g., methanol) or non-polar (e.g., 

hexane) solvent [17-20]. Rapid dips in hexane can solubilize wax alkanes, primary alcohols, fatty 

acids, ketones, and aldehydes that are often known for their agronomic importance [10,21-23]. 

Further, several studies have compared gas chromatography injection methods (e.g., split ratios) 

and oven temperatures necessary for wax compounds [24-26]. 

In plants, metabolomics is the comprehensive analysis of small molecules (~50–1200 

Da), typically involved in primary or specialized (secondary) metabolism. While waxes are in 

fact end products of metabolism (they are exuded from leaf and stem cells), they are amenable to 

analysis by metabolomics methods due to their chemical properties. A common method to 

evaluate primary metabolites in plants is to extract, derivatize via silylation, and detect 

metabolites using gas chromatography coupled to mass spectrometry (GC-MS) [27]. Many plant 

waxes are small and semi-volatile and are also detected using GC-MS [11,13,24,28-30]. Further, 
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many contain hydroxyl groups that allow for derivatization to improve volatility and detection by 

GC-MS. 

In MS-based non-targeted metabolomics, extracts from different samples are analyzed as 

metabolite “profiles”, determined by a collection of molecular features that include 

chromatographic retention indices (RI, derived from retention times), mass-to-charge ratios (m/z) 

and the relative abundance of each metabolite [31,32]. Non-targeted metabolomics methods 

utilize data processing algorithms that attempt to align large datasets (chromatographic retention 

times can drift over time) and provide information on all detectable m/z. Due to the complexity 

of calculating absolute quantities for thousands of compounds, metabolite quantities are recorded 

as relative abundances [33,34], typically to the total chemical signal or an internal standard. The 

resulting data matrix is unique in that it allows for a comparison of chemical profiles to evaluate 

sources of variation in a biological system. 

In this study, we combine the amenability of GC-MS for waxes with non-targeted 

metabolomics data processing methods to enable comparisons of wax composition on tissues 

(i.e., leaf and stem cuticles) of four wheat cultivars that differ for glaucousness and resistance to 

an insect pest. Further, micro-morphological features are evaluated using SEM to validate the 

relevance of our workflow. Here, we provide a comprehensive characterization of wheat waxes 

and demonstrate variation among tissues and cultivars. The data supports the potential to breed 

for wax traits with demonstrated effects on a variety of biologically relevant phenotypes, 

including stress resistance. Further, this method allows for high-throughput extraction, detection, 

and quantitation of waxes and is applicable to very large sample sets made up of thousands of 

metabolites. 
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2.3. Methodology 

2.3.1. Plant Material 

Hard red winter wheat (Triticum aestivum L., Poaceae) cultivars “Hatcher” (PI 638512) 

[35] and “Denali” (PI 664256) [36], and hard red spring wheat cultivars “Conan” (PI 607549) 

and “Reeder” (PI 613586) were used for comparisons of cuticular wax metabolites and 

epicuticular wax crystals. For metabolomics analyses, winter wheat cultivars were vernalized for 

eight weeks at 3 °C ± 2 °C. Spring wheat cultivars were vernalized for 10 d at 3 °C ± 2 °C to 

facilitate more synchronous development of the winter and spring wheat cultivars. Vernalized 

seedlings were planted in 5-inch circular pots in the following mix: seven parts Fafard 

professional metro mix (45–55% Canadian Sphagnum peat moss, vermiculite, bark, dolomite 

lime, and wetting agent; Sun Gro Horticulture, Agawam, MA, USA), two parts coarse perlite, 

one part Fort Collins loam soil supplemented with aged manure and Osmocote slow release 

fertilizer (Greenhouse Products Pty Ltd., Princess, South Africa) as per the manufacturer’s 

recommendation. All plants were grown at the Colorado State University greenhouse, Fort 

Collins (CO, USA), at 18–24 °C with a photoperiod of 15/9 h light/darkness, bottom watered 

three times per week, and grouped in a randomized complete block design. Photographs of wheat 

plants were taken at approximately Zadoks growth stage 55 (i.e., heading stage) [37]. For 

microscopic observations, winter wheat cultivars were grown in the field (New Raymer, CO, 

USA) under conventional conditions (e.g., precipitation, temperature, photoperiod), and spring 

wheat cultivars were grown in the greenhouse under the same conditions used for GC-MS 

analysis. 
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2.3.2. Leaf Photographs for Glaucousness 

Visual determination of variation in glaucousness on leaf adaxial and abaxial, and stem 

cuticles was done by photographing five individuals from each of the four wheat cultivars at the 

same age (approximately Zadoks stage 55). All pictures of biological replicates for each cultivar 

showed similar glaucousness profiles and one replicate per cultivar was picked at random to 

create Figure 4. All photographs were recorded on the same day using a Canon EOS Rebel T3 

camera (Canon Inc., Ōta, Tokyo, Japan) with identical camera setup, background, and light 

conditions throughout. Pictures were assembled in Figure 4 using Adobe Photoshop v16.0 

(Adobe Systems, San Jose, CA, USA) without any technical adjustment such as manipulation of 

contrast or saturation. 

2.3.3. Metabolite Extraction, Detection by GC-MS, Data Processing and Annotation 

A total of 80 plants was used for cuticular metabolite extraction, including 21 biological 

replicates of Hatcher (11 leaf and 10 stem samples), 19 replicates of Denali (10 leaf and nine 

stem samples), 20 replicates of Conan (10 leaf and 10 stem samples), and 20 replicates of Reeder 

(10 leaf and 10 stem samples). Equivalent positions were probed in all four cultivars to account 

for wax variation between the upper and lower parts of the plants. Stems between the third and 

fourth internodes (starting from the first internode, also termed peduncle), and the fourth leaf of 

each plant (starting from the flag leaf), were collected. Waxes and non-wax metabolites were 

extracted as described by Zhang et al. (2005) [22] with the following modifications. Briefly, 

plain lyophilized leaf pieces (8 mm × 8 mm = area of 64 mm2 on both sides = 128 mm2 total) and 

plain lyophilized stems (1.5 mm radius × 85 mm height = 128 mm2 total) were dipped into glass 

vials containing 1 mL of gas chromatography grade hexane (Sigma-Aldrich, Inc., St Louis, MO, 

USA) [23]. To extract a significant proportion of waxes from the cuticle, samples immersed in 



28 
 

hexane were agitated for 30 s on a rotator at 80 g. Even though samples were gently shaken, this 

short period was enough for the solvent to locally corrode the cuticle membrane and release 

intracuticular compounds along with extracuticular waxes [38], notwithstanding the cut-open 

section of tissue that was immersed in the solvent and potentially released more intracuticular 

metabolites. Waxes were therefore referred to as “cuticular waxes” in the abstract, results, 

discussion and materials and methods sections, while the term “epicuticular wax crystals” was 

employed for microscopy visualization purposes. Solvents were then decanted into new glass 

vials. Vial containers and tissues were given a further 10-s rinse with the same amount of 

hexane, and both solutions were combined in a new vial. Hexane-soluble extracts were then 

evaporated under a continuous gas nitrogen flow. Metabolites were derivatized by adding 60 µL 

of a pyridine: N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) solution (1:1, v:v) and 

incubating for 30 min at 60 °C. Non-targeted metabolite profiling was performed using gas 

chromatography-mass spectrometry (GC-MS) as previously described [33]. Briefly, metabolites 

were detected using a Trace GC Ultra coupled to a Thermo DSQ II mass spectrometer (Thermo 

Scientific, Waltham, MA, USA). Samples were injected in a 1:10 split ratio twice in discrete 

randomized blocks. Injection of a pooled quality control was performed every 10 sample 

injections. High Spearman’s rank correlation coefficients ensured the stability of the instrument 

over time. Separation occurred using a 30 m TG-5MS column with a film thickness of 0.25 µm 

(Thermo Scientific), and a 1.2 mL per min helium gas flow rate. The program consisted of 80 °C 

for 30 s, a ramp of 15 °C per min to 330 °C, and an 8-min hold. Other specifications included 

inlet temperature held at 280 °C and auxiliary line at 300 °C. Masses between 50–650 m/z (i.e., 

mass-to-charge ratio) were scanned at five scans per s after electron impact ionization. 
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Data files from the GC-MS experiment were converted to .cdf format and processed by XCMS 

in R v3.2.4 (R foundation for Statistical Computing, Vienna, Austria) [39] to create a matrix of 

molecular features as defined by retention index (RI, Kovats alkane-based index) and mass (m/z). 

Upon collection of fatty acid (ranging from C18 to C36) retention times using AMDIS v2.71 

(NIST, Gaithersburg, MD, USA), the Golm Metabolome Database [40,41] was used to obtain the 

corresponding RI. Retention indices from other chemical classes were deduced using the Kovats 

RI for temperature ramped columns in AMDIS. Data was deconvoluted into spectral clusters 

using the R package RAMClust [42]. Critical RAMClust parameters included minimum module 

size of 2 (if a feature is clustered in a group with less than two features, it will not be exported as 

a putative compound); “average” linkage (method used to perform fastcluster-based hierarchical 

clustering), hmax = 0.9, st = 4, sr = 5; and features were normalized to total ion current (TIC). The 

relative quantity of each molecular feature was determined by the mean area of the 

chromatographic peak among two replicate injections, and spectral clusters were quantified as a 

weighted abundance of all molecular features in the cluster. Due to TIC normalization and based 

on the assumption that all extracts have equal metabolite quantities, metabolite abundances were 

discussed throughout as “content”. Identification of metabolites was performed by matching 

mass spectra and retention indices to in-house and external databases including NIST 14 [43] and 

the Golm Metabolome Database (gmd20111121_var5_alk). Confidence levels of annotations 

were designated based on classification of metabolite annotation by Sumner et al. (2007) [44]. In 

sum, a confidence level of 1 is achieved when two or more forms of data from a given compound 

match an authentic reference standard, level 2 means a given compound is putatively identified 

when spectral data or spectra from a database is available but no comparison to a reference 
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standard, and level 3 is assigned when only the compound class can be identified. All annotated 

metabolites in this study were assigned a level 2 confidence. 

2.3.4. Scanning Electron Microscopy 

Wheat cultivars Hatcher and Denali were grown in the field (New Raymer, CO, USA), 

and Conan and Reeder were grown at the Colorado State University greenhouse due to 

inconsistent growth of spring wheats in Colorado fields. Leaves and stems from each cultivar 

were collected at heading stage (approximately Zadoks 55). Tissue samples of 15 cm in length 

were cut (as in the metabolite extraction protocol, stems between the third and fourth internodes 

and the fourth leaf of each plant were collected) and placed into 10 mL tubes. Small pieces of 

tissue (8 mm × 8 mm of leaves, and 8 mm × 8 mm of unrolled stems) were then mounted on 

stubs and placed in an air-dryer for desiccation to prevent sample shrinkage after exposure to the 

microscope vacuum chamber. Dried samples were coated with a layer of gold (20 nm) using a 

Hummer VI sputtering system (Anatech Ltd., Springfield, VA, USA). Cuticles were visualized 

using a JEOL JSM-6500F scanning electron microscope (JEOL, Peabody, MA, USA) set at a 

beam accelerating voltage of 15 kV. For each cultivar, three tissue types (adaxial leaf surface, 

abaxial leaf surface, stem) were observed in two plants (n = 2 biological replicates). For each 

tissue type, two structures were observed, and each picture was recorded from five different 

sample areas, for a total of 240 observations. 

The qualitative variation observed using SEM was complemented by quantifying 

epicuticular wax content (percent wax abundance on the cuticle total surface) using image 

processing software. The software ImageJ v1.51d was used to quantify wax surface content on 

low magnification pictures (× 140). Briefly, after conversion of images to red-green-blue (RGB) 

stack, luminosity was manually adjusted to select waxes only (white/greyish pixels). Wax 
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content was then measured and expressed as percentage of wax coverage across the entire tissue 

considered. 

2.3.5. Statistical Analysis 

Metabolite contents were compared using one-way ANOVA for both tissues and 

cultivars, with a p threshold of 0.05. Differences in content among cultivars were further 

compared using Tukey HSD pairwise comparisons. Benjamini–Hochberg correction was 

systematically applied across all t tests and ANOVA metabolomics results to account for falsely 

rejected statistical hypotheses when conducting multiple comparisons, termed “false discovery 

rate” (FDR) [45]. Principal component analysis (PCA) was conducted on the GC-MS data after 

mean-centering and UV-scaling using SIMCA v14.1 (MKS Data Analytics, Umea, Sweden). 

Heat maps were prepared in the R environment v3.2.4 using the heatmap.2 function in the R 

package gplots, and hierarchical clustering was performed using the hclust function in R. Heat 

map z scores were calculated using the mean and standard deviation of metabolite content: z = 

(X - µ)/σ, where X is the relative content of a metabolite, µ is the mean content for the 

metabolite across all samples and σ is the standard deviation among all samples. 

2.4. Results 

2.4.1. Cuticular Waxes Detected on Leaf and Stem Cuticles of Wheat 

We focused on four cultivars for their phenotypic variation in: (1) resistance to the Wheat 

Stem Sawfly (Cephus cinctus Norton, WSS) [30,46]; (2) degree of surface glaucousness (Figure 

4); and (3) growth habit (spring and winter wheat types) among tissues and cultivars. A total of 

263 putative compounds were detected using GC-MS metabolomics. Sixty-nine of the 263 

putative compounds were annotated as plant metabolites using retention index RI (derived from 

retention time as described in the Methodology section) and mass spectral matching, including 
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58 cuticular waxes (Table 2). Compounds were sorted and numbered in Table 2 based on their 

chemical class and RI. Bolded numbers in the results and discussion sections correspond to 

metabolites in Tables 2 and 3. Twenty cuticular wax metabolites were identified as alkanes, 

ranging from C20 (eicosane, 1, RI = 2000) to C42 (dotetracontane, 20, RI = 4200). Eleven were 

straight-chain alkanes and nine were methyl-branched at various positions. Fifteen alkanes varied 

in content between leaf and stem cuticles and 11 varied among the four cultivars (ANOVA, FDR 

adjusted p < 0.05). Twenty-two fatty acids were detected and ranged from C7 (heptanoic acid, 

21, RI = 1044) to C34 (tetratriacontanoic acid, 42, RI = 3037). Nineteen of the fatty acids were 

straight chain, including three compounds with one or more double bonds and three fatty acids 

that were methyl-branched. Fourteen fatty acids varied between tissues and only 

tetratriacontanoic acid had significant variation in content among cultivars (ANOVA, FDR 

adjusted p < 0.05). Six ketones were detected and ranged from C9 (nonane-4,6-dione, 43, RI = 

1124) to C35 (pentatriacontan-2-one, 48, RI = 2881), and included two monoketones and four β-

diketones. Five ketones significantly varied between leaf and stem cuticles, and tritriacontan-3-

one was the only monoketonic structure to vary in content among cultivars (ANOVA, FDR 

adjusted p < 0.05). Ten wax compounds were annotated as primary alcohols and ranged from C22 

(docosan-1-ol, 49, RI = 2044) to C33 (tritriacontan-1-ol, 58, RI = 2855). Eight primary alcohols 

were straight chain metabolites and two were methyl-branched. Out of the ten alcohols, eight 

showed a statistically significant difference in content between tissues and six differed among 

cultivars (ANOVA, FDR adjusted p < 0.05). 

 The remaining 11 cuticular compounds out of the 69 annotated metabolites detected in 

the extract did not represent typical waxes (Table 3). These included three carboxylic acids (59–

61), two carbohydrates (62,63), one primary amine (64), two polycyclic ketones (65,66), one 
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ester (67), one flavonoid (68), and one sterol (69). Their carbon structure ranged from C4 to C29 

and were characterized by retention indices of 1192 to 2885. Between tissues, six of the non-wax 

metabolites varied in content and two showed differences among cultivars. 

Nine of the 58 annotated wax metabolites were identified in the literature as being 

involved in plant–insect interactions, and included alkanes, fatty acids, and primary alcohols 

(Table 2). Further evidence of the biological importance of waxes included antibiotic activity for 

tetradecanoic acid (22) and allelopathic activity for hexacosanoic acid (33) [47,48]. 

Tetracosanoic acid (32) has been described as a major wax precursor and hentriacontane-14,16-

dione (46) is associated with a high degree of glaucousness in wheat [49,50]. Another application 

of the variation in wax composition is the classification of plants based on biochemical 

differences (i.e., chemotaxonomy). A total of seven alkanes (e.g., tricosane, 2; pentacosane, 5) 

detected in our study were previously shown to be functional chemotaxonomy markers [24]. 

2.4.2. Cuticular Wax Composition in Leaves and Stems of Wheat 

 The general appearance of metabolite profiles between leaf and stem samples of wheat 

was displayed using example chromatograms in Figure 5. Chromatograms illustrate the 

distribution in time (retention time) and the total ion current (TIC) intensity of all the putative 

compounds. Further, the content of the 69 annotated metabolites (including the 58 cuticular 

waxes) was z-transformed and displayed using a heat map combined with hierarchical clustering 

(Figure 6). The heat map highlights variation in content for most of the metabolites between 

tissues. Principal component analysis (PCA) also demonstrated significant variation between 

tissues (Figure 7A, left; Principal component 1, or PC 1, 25.1% of the variation) due to fatty 

acids and β-diketones (Figure 7A, right; PC 1 loadings). 
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 As an example, four wax metabolites that contributed to the PCA model were labeled 

(Figure 7A, right), discussed as they appear from left to right and displayed as box plots to 

demonstrate variation between tissues (Figure 7B). Fatty acid 23-triacontenoic acid (38, FDR 

adjusted p = 1.4 × 10-14) and β-diketone hentriacontane-14,16-dione (46, FDR adjusted p = 1.3 × 

10-15) were higher on stems and contributed to the tissue separation for PC 1 (loading scores 

plot). The primary alcohols octacosan-1-ol (53, Student’s t test, FDR adjusted p = 3.9 × 10-16) 

and 6-methylheptacosan-1-ol (54, Student’s t test, FDR adjusted p = 3.3 × 10-19) were higher in 

content on leaf than stem surfaces and highly contributed to the separation of tissues for PC 1 as 

well. 

2.4.3. Wheat Cuticular Wax Composition among Cultivars 

 A further analysis of the heat map (Figure 6) demonstrates metabolite variation of the 

four wheat cultivars Conan, Hatcher, Reeder, and Denali. As an example, several alkanes were 

shown to be lower in content on Reeder stem cuticles compared to other cultivars (tricosane, 2, 

FDR adjusted p = 1.9 × 10-4; 4-methyldocosane, 3, FDR adjusted p = 2.6 × 10-11; 6-

methyldocosane, 4, FDR adjusted p = 9.1 × 10-6). Likewise, Hatcher and Reeder leaf surfaces 

contained less (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid (25, FDR adjusted p = 5.2 × 10-3), 

10-methylheptadecanoic acid (27, FDR adjusted p = 1.6 × 10-10), and nonadecanoic acid (28, 

FDR adjusted p = 5.5 × 10-4) compared to Conan and Denali. 

 The significant variation in wheat cuticular compounds including waxes was further 

supported by PCA that showed separation among cultivars on leaf and stem cuticles (Figure 8). 

A total of 11 PCs were generated in the PCA model explaining 77% of the variation. For leaves, 

the largest separation among cultivars appeared for the combination of PC 2 (that explained 

14.7% of the total variation in the sample set) and PC 7 (5.9% of the variation; Figure 8A, upper 
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left). Twenty (34%) of the annotated waxes were associated with the separation of cultivars 

within leaves (for all 20 metabolites, ANOVA, FDR-adjusted p < 0.05). For stems, the largest 

separation among cultivars was observed for the combination of PC 5 (6.4% of the total 

variation) and PC 6 (6% of the variation; Figure 8A, bottom left). Twenty-three of the annotated 

cuticular waxes (40%) were associated with the separation of cultivars for metabolites within 

stems (for all 23 wax metabolites, ANOVA, FDR-adjusted p < 0.05). 

 Conan, the glaucous cultivar (Figure 4) with resistance to the Wheat Stem Sawfly 

[30,46], had no wax metabolites that were unique, among these detected, on its leaf or stem 

cuticles (i.e., presence/absence). However, several individual metabolites were greater in 

abundance compared to the other three cultivars, such as the primary alcohols docosan-1-ol (49) 

and 6-methylheptacosan-1-ol (54; Figure 8A,B, compounds denoted in the PC loadings plot for 

leaves, from left to right). An ANOVA followed by Tukey HSD pairwise comparisons revealed 

variation for docosan-1-ol (49; FDR adjusted p = 2.2 × 10-3) and 6-methylheptacosan-1-ol (54; 

FDR adjusted p = 1.3 × 10-2) on Conan leaf surface (Figure 8B). 

2.4.4. Association of Epicuticular Wax Content and Crystal Microstructure in Wheat 

 Scanning electron microscopy (SEM) was performed to characterize wax microstructural 

variation. This supplementary procedure aimed at complementing the metabolomics data. Leaf 

and stem cuticle tissue from mature plants was collected, air-dried, and micrographs of the 

adaxial leaf surface (upper side), abaxial leaf surface (lower side), and stem were obtained for 

the four cultivars (Figure 9). It is important to note that our study was limited to growing spring 

wheat cultivars (Conan and Reeder) in a greenhouse and winter wheat cultivars (Denali and 

Hatcher) were sampled from the field. While the growing location (i.e., controlled versus non-

controlled environments) may contribute to variation in wax content and crystal 
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microstructure, no clear trends were observed between the field- and greenhouse-grown plants. 

Based on semi-quantitation of the epicuticular wax content (measure of percent wax 

abundance on the cuticle total surface using image processing software; Figure 10), microscopy 

observations revealed specific composition among adaxial and abaxial leaf surfaces and stems. 

Variation in content among the three tissue types was observed (ANOVA, Tukey HSD post-hoc 

p = 2 × 10-16; Figure 10). When pooling the four cultivars, the mean wax coverages were 44.4 ± 

1.2% for the adaxial leaf surface, 28.8 ± 1.8% for the abaxial leaf surface, and 14.4 ± 0.7% of the 

whole stem. This distribution of wax crystals (adaxial > abaxial > stem) was consistent for each 

cultivar except Conan, whose abaxial leaf surface had increased crystal microstructures 

attributed to platelets. As an example of variation in wax content among tissues, Reeder adaxial 

leaf surface demonstrated the highest amount of epicuticular wax crystals (55.6 ± 2.2% coverage 

of leaf surface), compared to Reeder abaxial leaf surface (37.6 ± 1.5%) and stems (12.9 ± 1.7%). 

This was supported by SEM as Reeder adaxial leaf micrographs displayed more epicuticular wax 

crystals than Reeder abaxial leaf or stem micrographs (Figure 9A–C). In addition, the adaxial 

leaf surface of all cultivars was exclusively covered by platelets, whereas stems had only tubules. 

However, variation among cultivars was observed for the abaxial leaf surface whereby Conan 

had only platelets (Figure 9D) whereas Reeder (Figure 9E), Hatcher, and Denali had tubules. 

2.5. Discussion 

2.5.1. Many of the Detected Cuticular Waxes Have Specialized Biological Functions 

 The work presented herein characterized the chemical composition of cuticular waxes of 

Triticum aestivum on leaf and stem cuticles and among different cultivars. Many of the detected 

waxes have specialized functions related to important phenotypic traits. Antibiotic (tetradecanoic 
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acid, 22) and allelopathic (hexacosanoic acid, 33) activities have been described for plant waxes 

[47,48]. Seven alkanes detected in our study, including tricosane (2) and pentacosane (5), are 

known as functional chemotaxonomy markers [24]. Further, alkane, fatty acid, and primary 

alcohol waxes (e.g., eicosane, 1; hexadecanoic acid; 24, octacosan-1-ol, 53) have been shown to 

stimulate or interfere with insect attachment and oviposition, including the wheat/Hessian Fly 

interaction [10], and the Seven-Spotted Ladybug (Coccinella septempunctata) interaction with 

bioinspired wax surfaces [51]. Moreover, in common wheat, high β-diketone (e.g., 

hentriacontane-14,16-dione, 46) content was associated with glaucousness and drought 

resistance [3,50]. In [52], hentriacontane-14,16-dione (46) was absent in waxless, English Grain 

Aphid (Sitobion avenae) susceptible Triticale (×Triticosecale) cultivars, and present in high 

content in waxy and resistant Triticale cultivars, supporting its role in plant–insect interaction. 

 The heat map (Figure 6), PCA and univariate analyses (Figures 7 and 8) revealed higher 

contents of two primary alcohols on leaves of Conan, namely docosan-1-ol (49) and 6-

methylheptacosan-1-ol (54), compared to Reeder, Denali, and Hatcher. Further, increased 

platelet content on the abaxial leaf surface (Figure 9D) was observed in this cultivar. The 

glaucous appearance of a plant tissue is mostly due to β-diketones and primary alcohols, and wax 

matrices with increased primary alcohols can result in the formation of dense crystal platelets 

that contribute to drought stress resistance [3,12,53]. The genetic regulation of hexaploid wheat 

wax biosynthesis has been partially elucidated, and studies have identified quantitative trait loci 

that contribute to wax phenotypes. Specifically, wax synthesis and glaucousness loci (W1 and 

W2), along with loci coding for their inhibitors (Iw1 and Iw2), were genetically mapped [54]. 

Another locus of interest is the one that contains the W3 gene [50]. W3 facilitates biosynthesis of 

β-diketones, whereas the Iw1 gene codes for an inhibitor of β-diketone synthesis, and regulation 
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of expression of these genes can influence glaucousness and cuticle permeability [14,17,50]. 

Further, the TaFAR gene family (including TaFAR1 to TaFAR4) regulates the accumulation of 

primary alcohols [55]. Recently, a study of transcription factors involved in the regulation of wax 

synthesis genes (TaWXPL1D and TaWXPL2B) demonstrated differential expression in leaves of 

two wheat cultivars that contrasted in drought resistance and glaucousness, consequently to 

water deprivation [56]. The allelic diversity in these genes, and their influence on wax 

composition and glaucousness, is largely unknown and warrants future investigation that will 

help elucidate the molecular mechanisms underlying resistance to water stress. 

2.5.2. Cuticular Waxes Differed between Leaves and Stems 

 The heat map (Figure 6) and PCA (Figure 7) showed variation for most individual 

cuticular wax metabolites. The two waxes that were higher in content on stems were the fatty 

acid 23-triacontenoic acid (38) and β-diketone hentriaconane-14,16-dione (46; Figure 7B). To 

our knowledge, fatty acid 38 has not been previously reported as a cuticular wax. Compound 46 

is known to be associated with glaucousness in common wheat and pest resistance in Triticale 

[50,52]. Tubule-shaped crystals were encountered on stems along with high content in β-

diketones for all cultivars. The high content in β-diketones results in the formation of tubule-

shaped crystals that contribute to both the degree of glaucousness and frost resistance [57-59]. 

 Leaf cuticles were enriched for primary alcohols compared to stems (Figure 7B). High 

content of typical platelet-shaped crystals involved in both biotic and abiotic stress resistance 

(e.g., insect and drought resistance) is due to a primary alcohol-rich content on the plant tissue 

surface [10,12,53,60]. In this study, higher levels in octacosan-1-ol (53) and 6-

methylheptacosan-1-ol (54) were found on leaf cuticles (Figure 7B). Primary alcohol 53 is a 

potential insect repellent for the Hessian Fly and is thus of importance in plant–insect 
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interactions [10], and 54 has not been described in the literature. Further, while the role of high 

fatty acid content on the stem surface of our wheat cultivars remains to be elucidated, the high 

content of primary alcohols on leaves and β-diketones on stems supports a potential role in 

protection of these tissues against biotic and abiotic pressure. 

2.5.3. Cuticular Waxes Varied in Composition among the Four Cultivars 

 The contribution of genetic diversity to variation in cuticular wax composition was 

investigated by comparing four different cultivars, including two spring and two winter wheat 

types (Figure 6). The analysis revealed a relatively low content of alkanes tricosane (2), 4-

methyldocosane (3) and 6-methyldocosane (4) on Reeder stem surface. Reeder is a spring wheat 

cultivar widely grown in the Northern Great Plains and broadly adapted for rainfed (non-

irrigated) production conditions. Drought stress has been shown to increase levels of alkanes on 

the leaf surface of alfalfa [61]. Thus, it is possible that Reeder modifies its wax composition 

upon exposure to drought stress, and potentially increases alkane content for its protective 

effects. 

 Multivariate analysis allowed for partial cultivar discrimination based on wax metabolite 

content (Figure 8A). Wax composition has been shown to vary among plant species, and among 

cultivars within a species. A study showed that foliage wax of onion (Allium cepa) varied among 

four cultivars, resulting in different degrees of resistance to the onion thrips (Thrips tabaci) [62]. 

The growing region of tussock grass species has been shown to correlate with wax content [63]. 

The two Australian wheat cultivars RAC875 and Kukri display unique wax compositions that 

result in different types of epicuticular wax crystals on their abaxial leaf surface [3]. While the 

abaxial leaf surface of RAC875 was made of tubules, the equivalent tissue in Kukri was 

exclusively made of platelets. Further, changes at higher taxonomy levels are also well 
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documented, as is the case for two Rocktrumpet species (genus Mandevilla) that differ in their 

wax profiles [19]. Together, these studies support that genetic diversity in wax composition may 

be common among individual cultivars within a plant species. 

 Conan leaf cuticles displayed high levels of the primary alcohols 6-methylheptacosan-1-

ol (54) and docosan-1-ol (49; Figure 8B). Although these cuticular waxes have not been 

described as involved in defense processes, plant leaves that exhibit high content in primary 

alcohols tend to be covered by epicuticular wax crystals (i.e., platelets) involved in resistance 

[12,53,60]. The increased production of these two alcohol waxes on Conan leaf cuticles is 

potentially responsible for reshaping the surface morphology and influencing interactions with 

the environment and biotic sources. 

2.5.4. Cuticular Wax Composition Was Associated with Epicuticular Wax Crystal 

Microstructure 

 As previously mentioned, wax chemical composition is associated with wax crystal 

formation [3]. Scanning electron microscopy analysis revealed the presence of tubule and 

platelet crystals on the cuticle, and variation among tissues and cultivars was observed (Figure 

9). Platelet-shaped structures have been observed in major plant groups including various 

angiosperms and gymnosperms, where tubules made of a significant proportion of β-diketones, 

as observed in our wax chemical analysis, are commonly found among the Poaceae [12,15]. 

 The wax content of Conan leaf surface was characterized by a higher proportion in 

primary alcohols docosan-1-ol (49) and 6-methylheptacosan-1-ol (54). Waxes made of abundant 

primary alcohols form platelet-shaped crystals on the plant surface [12]. In addition, the primary 

alcohol octacosan-1-ol (53) is associated with plant–insect interactions and leaf glaucousness 
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[10]. Wax composition can influence insect attachment to the plant surface [64], and a study on 

the carnivorous pitcher plant Nepenthes alata revealed that a slippery zone on leaves is made of 

platelet-shaped crystals that detach after the insect touches the tissue, reducing the time of 

interaction between plant and pest [60]. The cultivar Conan shows a high degree of glaucousness 

and resistance to the Wheat Stem Sawfly, and our study supports that this may be due to 

increased wax content, increased content of docosan-1-ol (49) and 6-methylheptacosan-1-ol (54), 

and increased platelet-type crystals on leaf cuticles. This hypothesis is supported by the 

observation of compact layers of platelet-shaped crystals that have been shown to contribute to 

various means of biotic and abiotic resistance (e.g., insect deterrence, drought stress 

management, temperature regulation) [10,12,53,60]. 

 It is of importance to note that, due to difficulty in growing spring wheat cultivars in 

Colorado fields, Conan and Reeder were grown in the greenhouse and this may have had an 

influence on wax variation when compared to winter cultivars (Denali and Hatcher) grown in the 

field. Increased wax content in Conan might be due to a genotype by environment (G × E) 

interaction, however, no clear trend was observed for either wax content (Figure 10) or crystal 

composition for plants grown in the field or greenhouse. 

2.5.5. A GC-MS Metabolomics Workflow Was Applicable to Assess Epicuticular Wax Variation 

in Wheat 

 The metabolomics methods applied to this study included uni- and multivariate statistics 

of quantitative data. Based on these statistics, variation in cuticular wax content between wheat 

tissues and among cultivars was concluded (Figure 6). Using similar observations described in 

the literature, we hypothesized that chemical variation in waxes would result in variation of 

epicuticular wax crystals on the cuticle, and that observing this correlation would help validate 
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the relevance of our metabolomics model. Data presented in this study support the utility of this 

method. 

 The choice of a non-polar solvent for wax extraction shows relevance as hexane yields 

plant waxes of agronomic interest including alkanes, primary alcohols, fatty acids, ketones, 

and aldehydes [10,21-23]. In the present work, the use of hexane enabled the detection of 263 

putative compounds including 58 cuticular waxes. Twenty alkanes, ten primary alcohols, 22 fatty 

acids, and six ketones were identified. When comparing acids, alcohols and ketones to alkanes of 

similar chain length, the former display a relatively higher polarity than the latter. The use of 

hexane thus allowed for the discrimination of metabolites that belong to a broad range of 

polarities. Moreover, the relatively short exposure of tissues to hexane (i.e., 30 s) necessary to 

extract a substantial proportion of waxes makes it an important asset for fast, high-throughput 

protocols with large sample sizes. Still, careful attention must be given to the duration of tissue 

exposure due to a potential local disruption of the cuticle membrane and release of internal 

compounds that are not surface waxes [38]. It is likely that the additional 11 non-wax 

compounds annotated are intracuticular metabolites that result from either the cut-open section of 

tissue that was immersed, or a slightly excessive exposure to the solvent. Further, even with a 

large sample set, little variation was observed among replicates of tissues within cultivars (Figure 

6), supporting the reproducibility of our method. 

 The use of GC-MS instrumentation for low molecular weight, volatile compounds such 

as cuticular waxes is recommended [11,13,24,28-30]. Gas chromatography apparatuses include a 

hot evaporation chamber where samples are injected prior to column separation. A split/splitless 

sample injection mode is selected based on parameters that include peak resolution, column 

capacity and set up complexity and aims at reducing (split mode) or not (splitless mode) the 
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sample quantity before transport to the column. While the analytes may suffer from mass 

discrimination in split mode (high molecular weight compounds do not have enough time to 

vaporize, and their abundances are consequently less representative), its ease to use and 

automate, protection from non-volatile compound contamination, less propensity to thermal 

degradation, and sharper analyte peaks makes it a program of choice for plant wax detection. 

While splitless mode can result in large peaks with plateaus and tails, split mode generates 

metabolite profiles that are better suited for quantitative comparisons. Moreover, the GC oven 

temperature program is critical for separation of wax compounds [24-26]. The relatively short 

temperature ramp used here allowed for quick discrimination of a complex mixture of waxes 

from a wide range of mass-to-charge ratio values (i.e., 50–650 m/z; Tables 2 and 3), and 

provided quick sample-to-sample run times, thus reducing analytical error and improving 

quantitative comparisons among samples. However, it is possible that these technical choices 

prevented the identification of aldehyde, ester or secondary alcohol waxes, given their chemical 

properties (e.g., polarity, boiling point, molecular weight). 

 Further, the R packages XCMS and RAMClust were used to create an accurate matrix of 

molecular features, each representing a putative metabolite [39,42,65]. XCMS data 

preprocessing includes several common procedures aimed at curating raw data from metabolite 

profiling experiments, yet few wax studies incorporate this critical tool. Mass spectrometry 

instruments deliver complex datasets that need thorough preprocessing. XCMS includes 

consistent filtering, detection and alignment of m/z peaks, retention time correction, and peak 

filling that removes zero values from the dataset, as explained by Smith et al. (2006) [39]. 

Further curation of MS datasets is possible using the R package RAMClust, a deconvolution 

algorithm [42]. Where XCMS develops a data set by which molecular features are independent, 
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RAMClust groups features into spectral clusters to represent a single metabolite. The RAMClust 

method can also improve statistical robustness by reducing the number of data points to analyze 

(i.e., reducing false discoveries), and by establishing new quantitative values for each metabolite 

by integrating abundance values from all molecular features within a spectral cluster [42]. 

However, a potential pitfall that rises from spectral matching is the use of non-exhaustive 

databases. Further collective efforts must be made to create more reliable and complete 

directories for GC compounds, including the integration of fragmentation patterns for the most 

common electron impact configurations. 

 Studies on wax variation among tissues and cultivars of various plant systems incorporate 

the use of standardized methods of detection and analysis of metabolites. In wheat, common 

procedures include the use of polar solvents, splitless injection of samples in the GC column, 

and importantly, rarely incorporate advanced preprocessing data algorithms (e.g., [10,28,66,67]). 

Our GC-MS metabolomics methods are well developed and have been applied to a broad range 

of scientific questions and biological systems [22,23,33,34,42]. The methods used in this study 

utilized GC-MS detection of waxes and metabolomics pre- and post-processing tools that 

enabled the detection and relative quantitation of 263 putative metabolites. Future work can 

apply this workflow to evaluate wax variation important to breeding, genetic mapping, and stress 

resistance in wheat and other major crops. 

2.5.6. Preliminary Conclusions 

Our non-targeted GC-MS metabolomics data demonstrate that variation in cuticular wax 

composition and crystal microstructure exists among tissues and cultivars of common wheat. 

Leaf surfaces were characterized by high levels of alcohols and stem surfaces showed higher 

content in β-diketones. While most of the detected compounds were equally distributed among 



45 
 

cultivars, two Conan wax alcohols were higher in content than the other cultivars. Further, SEM 

imaging provided insights in wheat wax microstructural topography and allowed for the 

identification of two types of epicuticular wax crystals in wheat: platelets and tubules. 
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Table 2. Chemical composition of cuticular waxes detected on wheat leaves and stems.a 

#b IUPAC name (synonym) 
Retention 
index 

ANOVA p valuec 
Associationd Reference Tissue Cultivar 

Alkanes 

1 Eicosane 2000 ‡ 0.6 Plant–insect int. [10] 
2 Tricosane 2300 0.13 ‡ Chemotaxonomy [24] 
3 4-Methyldocosane 2334 0.33 ‡   
4 6-Methyldocosane 2336 ‡ ‡   
5 Pentacosane 2500 ‡ 0.77 Chemotaxonomy [24] 
6 Hexacosane 2600 ‡ 0.17 Chemotaxonomy [24] 
7 5-Methylpentacosane 2641 ‡ 0.63   
8 7-Methylpentacosane 2645 ‡ 0.63   
9 Heptacosane 2700 ‡ 0.56 Chemotaxonomy [24] 
10 4-Methylhexacosane 2727 ‡ 0.4   
11 12-Methyloctacosane 2912 ‡ ‡   
12 14-Methyloctacosane 2915 ‡ ‡   
13 Triacontane 3000 ‡ ‡ Chemotaxonomy [24] 
14 Hentriacontane 3100 0.12 0.05 Plant–insect int. [10] 
15 7-Methylhentriacontane 3111 ‡ ‡   
16 13-Methylhentriacontane 3124 ‡ ‡   
17 Tetratriacontane 3400 0.27 ‡ Chemotaxonomy [24] 
18 Pentatriacontane 3500 0.61 0.16 Chemotaxonomy [24] 
19 Tetracontane 4000 ‡ ‡ Plant–insect int. [51] 
20 Dotetracontane 4200 ‡ ‡   

Fatty acids 

21 Heptanoic acid (enanthic acid) 1044 0.25 0.3   
22 Tetradecanoic acid (myristic acid) 1499 ‡ 0.68 Antibiotic [47] 
23 Hexadecenoic acid 1602 0.51 0.57   
24 Hexadecanoic acid (palmitic acid) 1623 ‡ 0.9 Plant–insect int. [10] 

25 
(9Z,12Z,15Z)-Octadeca-9,12,15-
trienoic acid (α-linolenic acid) 

1755 ‡ 0.13 Oil production [68] 

26 Octadecanoic acid (stearic acid) 1765 0.25 0.77 Plant–insect int. [52] 
27 10-Methylheptadecanoic acid 1768 0.12 0.61   
28 Nonadecanoic acid 1825 0.67 0.3 Plant–insect int. [69] 
29 Eicosanoic acid (arachidic acid) 1911 ‡ 0.52   
30 Docosanoic acid (behenic acid) 2103 ‡ 0.05 Oil production [70] 
31 Tricosanoic acid 2166 ‡ 0.77   

32 Tetracosanoic acid (lignoceric acid) 2246 ‡ 0.09 
Major wax 
precursor 

[49] 

33 Hexacosanoic acid (cerotic acid) 2404 ‡ 0.06 Allelopathy [48] 
34 Heptacosanoic acid 2497 0.07 0.17   
35 Octacosanoic acid (montanic acid) 2563 ‡ 0.46   
36 25-Methylheptacosanoic acid 2569 0.07 0.17   
37 Nonacosanoic acid 2647 0.61 0.25   
38 23-Triacontenoic acid 2728 ‡ 0.54   
39 12-Methylnonacosanoic acid 2731 ‡ 0.77   
40 Triacontanoic acid (melissic acid) 2741 ‡ 0.32   
41 Hentriacontanoic acid 2796 ‡ 0.32   
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42 Tetratriacontanoic acid (geddic acid) 3037 ‡ ‡ Plant–insect int. [71] 

Ketones 

43 Nonane-4,6-dione 1124 ‡ 0.33   
44 Nonacosane-12,14-dione 2689 ‡ 0.41 Major leaf wax [50] 
45 Triacontane-12,14-dione 2698 ‡ 0.21   
46 Hentriacontane-14,16-dione 2735 ‡ 0.39 Glaucousness [53] 
47 Tritriacontan-3-one 2839 0.93 ‡   
48 Pentatriacontan-2-one 2881 ‡ 0.54   

Primary alcohols 

49 Docosan-1-ol (behenyl alcohol) 2044 ‡ ‡   
50 Tricosan-1-ol 2112 0.79 ‡   
51 Hexacosan-1-ol 2325 ‡ ‡ Plant–insect int. [10] 
52 Heptacosan-1-ol 2404 0.9 ‡   
53 Octacosan-1-ol 2467 ‡ 0.77 Plant–insect int. [10] 
54 6-Methylheptacosan-1-ol 2498 ‡ ‡   
55 Triacontan-1-ol (melissyl alcohol) 2668 ‡ 0.63   
56 Hentriacontan-1-ol 2703 ‡ 0.25   
57 22-Methylhentriacontan-1-ol 2780 ‡ 0.41   
58 Tritriacontan-1-ol 2855 ‡ ‡   

aCompounds were classified based on their chemical class and RI. # = compound ID; ‡ = p < 
0.05; int. = interaction. 
bBold numbers are used to reference compounds in the Results and Discussion sections. 
cEach p value was calculated using one-way ANOVA (factors of cultivar and tissue) and 
adjusted by a Benjamini–Hochberg correction.  
dThe Association column refers to biological function with which metabolites are associated.  
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Table 3. Chemical composition of non-wax cuticular metabolites from wheat leaves 
and stems.a 

#b Class IUPAC name (Synonym) RI 
ANOVA p valuec 
Tissue Cultivar 

59 
Carboxylic 
acid 

2-Hydroxybutanedioic acid (malic acid) 1192 0.19 ‡ 
60 Tetradecanedioic acid 1471 0.14 0.34 
61 5-(Dioctadecylamino)-5-oxo-pentanoic acid 2589 ‡ 0.3 

62 

Carbohydrate 

(3S,4S,5S,6R)-6-(Hydroxymethyl)oxane-
2,3,4,5-tetrol (D-mannose) 

1602 0.23 ‡ 

63 

(2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-
Dihydroxy-2,5-bis(hydroxymethyl)Oxolan-2-
yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol 
(sucrose) 

2140 0.89 0.3 

64 
Primary 
amine 

Hexadecan-1-amine 854 ‡ 0.61 

65 
Polycyclic 
ketone 

1,2-Diphenyl-2-buten-1-one 2184 0.15 0.57 

66 
3-Acetyl-8-methoxy-2-methyl-1H-naphtho[2,1-
b]pyran-1-one 

2389 ‡ 0.14 

67 FAME 
Methyl-6-(1-hydroxyethyl)phenazine-1-
carboxylate(saphenic acid methyl ester) 

2885 ‡ 0.24 

68 Flavonoid 3,5-Dihydroxy-4′′,7-dimethoxyflavone (pilloin) 2287 ‡ 0.92 

69 Sterol 

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-
Ethyl-6-methylheptan-2-yl]-10,13-dimethyl-
2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-
cyclopenta[a]phenanthren-3-ol (β-sitosterol) 

2801 ‡ 0.4 

aCompounds were classified based on their chemical class and RI. # = compound ID; RI = 
retention index; ‡ = p < 0.05; FAME = fatty acid methyl ester. 
bBold numbers are used to reference compounds in the Results and Discussion sections. 
cEach p value was calculated using one-way ANOVA (factors of cultivar and tissue) and 
adjusted by a Benjamini–Hochberg correction. 
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Figure 4. Glaucousness degree on leaf and stem cuticles of four wheat cultivars. Photographs 
showing a bluish-green appearance (high glaucousness) for the cultivar Conan on both sides of 
its leaves, and stems. Denali, Hatcher, and Reeder cuticular tissue showed lower levels of 
glaucousness. All pictures were taken from plants at approximately Zadoks stage 55. 
Abbreviations: ad. Leaf = adaxial leaf surface; ab. leaf = abaxial leaf surface. 
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Figure 5. Example GC-MS chromatograms for leaf and stem metabolites in the wheat cultivar 
Hatcher. Arrows indicate which class of compounds was the most represented at the respective 
retention times. 
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Figure 6. Metabolite levels in wheat. Heat map showing metabolite levels on leaf and stem 
cuticles of wheat. Composition often was independent of cultivar, and two main clusters were 
identified: metabolites higher in content on leaf cuticles and lower on stem cuticles (top), and 
metabolites lower in content on leaf cuticles and higher on stem cuticles (bottom). The 58 wax 
and 11 non-wax metabolite contents were z-transformed, subjected to hierarchical clustering, and 
displayed as color (blue = high content, yellow = low content). Each cell represents the z 
transformed content of a single biological replicate for a total of n = 9–11 replicates/cells per 
cultivar. Z-transformation was based on the mean abundance and standard deviation of the 
metabolite across all samples. 

  



53 
 

 

Figure 7. Metabolite distribution in leaf and stem cuticles. Multivariate analysis demonstrating 
specific composition in cuticular wax chemistry between leaf and stem surfaces of wheat. (A) 
Principal component analysis (PCA) of the four cultivars showed that most metabolite (wax and 
non-wax) variation was due to differences between leaves and stems (principal component, or 
PC scores, left). Each PC score point represents the metabolite profile for a single biological 
replicate (n = 9–11 replicates per cultivar). Loadings were colored by wax type and include 
primary alcohols, ketones, and fatty acids. Example wax metabolites are indicated by arrows. (B) 
Box plots of example waxes that varied between leaf and stem cuticles. Metabolite values are 
reported as the mean content across all cultivars ± standard error of the mean (n = 40 biological 
replicates per tissue). Asterisks indicate variation between tissues (ANOVA, FDR-adjusted p < 
0.05). Abbreviations/Notations: PC = principal component; AU = arbitrary unit; unknown = 
unknown metabolite, no annotation. 
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Figure 8. Metabolite levels among cultivars within leaf and stem cuticles. Multivariate analysis 
showing cuticular wax variation among different cultivars of wheat. (A) Principal component 
analysis showed cultivar variation within leaf (top) and stem (bottom) surfaces. Loadings 
indicate metabolites involved in the separation of cultivars and are colored based on wax type. 
Metabolites denoted on the PCA loadings plot exhibited increased content in the cultivar Conan. 
(B) Box plots of two wax metabolites that were higher in content on Conan leaf cuticles. 
Metabolite values are reported as the mean content of leaf cuticles for each cultivar ± standard 
error of the mean (n = 9–11 replicates per cultivar). Lowercase letters indicate variation among 
cultivars (ANOVA, Tukey HSD post-hoc FDR adjusted p < 0.05). Abbreviations/Notations: PC 
= principal component; AU = arbitrary unit; unknown = unknown metabolite, no annotation. 
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Figure 9. Epicuticular wax crystal variation on the surface of greenhouse-grown wheat. 
Scanning electron micrographs of wheat epicuticular wax crystals showed that: (A) Reeder 
adaxial leaf surface had the highest content in wax crystals; (B) Reeder abaxial leaf surface 
displayed intermediate wax crystal content; (C) Reeder stem had low wax crystal content; (D) 
Conan abaxial leaf surface was exclusively made of platelet crystals; and (E) Reeder abaxial leaf 
surface consisted of tubules. 
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Figure 10. Epicuticular wax content among cultivars and tissue types. Wax contents are 
expressed as the percentage of the total surface covered and reported as the mean content for 
each cultivar within each tissue (n = 2 biological replicates and n = 5 technical replicates per 
cultivar per tissue). Lower case letters indicate Tukey HSD post-hoc groupings (ANOVA, Tukey 
HSD post-hoc p < 0.05). 
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CHAPTER 3 – WHEAT PROTEOMIC AND METABOLOMIC RESPONSES 

ASSOCIATED WITH RESISTANCE TO THE WHEAT STEM SAWFLY PESTa,b 

 

 

 

3.1. Summary 

 Bread wheat (Triticum aestivum L.) is a global staple crop and wheat insect pests can 

significantly impact grain yield. The Wheat Stem Sawfly (Cephus cinctus, WSS) is a major 

wheat pest and partial resistance has been developed by breeding for solid-stem traits that 

interfere with the WSS life cycle. Here, we evaluated a selection of wheat cultivars in a WSS-

infested field and found some with increased yield and reduced WSS infestation values. The 

molecular basis of this resistance was evaluated in a greenhouse study that characterized 

proteomic and metabolomic signatures of wheat stems associated with WSS infestation. WSS 

herbivory was induced in stems of four wheat cultivars: Hatcher (hollow-stem resistant), Conan 

(semi-solid-stem resistant), and Denali and Reeder (hollow-stem susceptible). Stem proteins 

(1832) and metabolites (1823) were detected using liquid chromatography-mass spectrometry 

methods. The proteome contained proteins involved in five major biological processes including 

metabolic processes and response to stimuli, and the metabolome was comprised of eight main 

chemical classes that included alkaloids, benzenoids, and lipids. During infestation with WSS, 62 

proteins and 29 metabolites were differentially regulated in the hollow-stem resistant cultivar. 

Metabolic processes that were associated with resistance included enzymatic detoxification, 

 

aThis chapter is adapted from a research article that is being prepared for publication in the 
Journal of Proteome Research, with minor modifications. 
bAuthors: Florent D. Lavergne, Corey D. Broeckling, Kitty Brown, Darren M. Cockrell, Scott D. 
Haley, Frank B. Peairs, Stephen Pearce, Lisa M. Wolfe, Courtney E. Jahn, Adam L. Heuberger. 



63 
 

proteinase inhibition, and anti-herbivory compound production, specifically via benzoxazinoids, 

neolignans, and phenolics. Compared to the semi-solid cultivar Conan, hollow-stem and resistant 

Hatcher had increased abundance of proteins and metabolites with known roles in plant defense 

against insects. Taken together, the combined proteomics and metabolomics approach enabled 

the characterization of metabolism in wheat stems that is associated with WSS infestation and 

resistance. These results provide the first evidence of a metabolic basis of resistance to WSS in 

hollow-stem wheat. 

3.2. Introduction 

Bread wheat (Triticum aestivum L., Poaceae) is a global staple crop and grain yield can 

be greatly reduced by biotic stresses. A major pest of wheat is the Wheat Stem Sawfly (Cephus 

cinctus Norton, WSS hereafter), and infestation outbreaks can cause up to US $350 million 

annual losses in North America [1]. Sawfly infestations were first described in 1872 from 

specimens of native grass in Colorado [2]. A host jump to spring wheat, more than a century ago, 

resulted in dramatic expansion of WSS distribution across the Northern Great Plains and South 

Canada [1,3]. Spring wheat is extensively grown in North America but remains difficult to 

produce in dryland areas such as Colorado, where farmers typically grow winter varieties. The 

grass feeding insect exclusively infested spring varieties until the early 1980s and another 

episode of host jump to winter wheat. Research on the genetic diversity of WSS in North 

America indicates the existence of distinct haplotypes, and phenotypic variation is an important 

driving factor of host adaptation [4]. Recent field studies conducted on winter wheat in Colorado 

indicate rapid WSS adaptation to this new host and support that C. cinctus can colonize wheat at 

an alarming pace [5]. 
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 Most of the WSS life cycle is spent in larval stages, and larval feeding causes major 

tissue damage to plant stems. After the larvae pupate, they emerge from stems, mate in the spring 

and females oviposit (i.e., deposit eggs) into wheat stems within approximately ten days [6]. 

Over the course of a season, hatched WSS larvae chew through inner stem tissue downwards to 

reach soil level, cut a V-shaped notch inside the stem and prepare for overwintering [7]. Larvae 

pupate in early spring and adults leave the stem stubs to start a new cycle. Sawfly infestation 

reduces grain yield through two mechanisms: (1) “cutting”, that is larval chewing within the 

stem that causes plants to lodge and affects harvesting efficiency and (2) larval feeding within 

stem vascular tissue that reduces photosynthetic capacity and therefore grain yield per plant [8-

10].  

 No single control measure has been broadly adopted to combat WSS. Chemical and 

biological control is difficult because most of the WSS life cycle resides inside the stem. Partial 

control through plant genetics can be attained by breeding plants to contain a solid stem (i.e., 

degree of pith expression inside the stem), as most wheat stems are hollow [11,12]. The major 

quantitative trait locus (QTL) for stem solidness, Qss.msub-3BL, has been characterized and 

controls most of the variation in stem pith formation [13]. The semi-solid-stem cultivar (i.e., 

cultivated variety) Conan is  resistant to WSS, and this is achieved by having a solid stem in 

early development – which corresponds to the period of WSS peak emergence – and becoming 

hollow only later into maturity [14]. However, the solid-stem trait has low levels of adoption due 

to a fitness penalty (i.e., reduced grain yields when no infestation is present) [1]. Further, wheat 

plants that carry the major stem solidness QTL show relative inconsistency in pith expression 

and the effectiveness of that trait can be influenced by weather conditions [7]. 
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 In addition to mechanical protection against pests (e.g. solid stems, trichomes, hairs), 

plants can achieve resistance through changes in plant metabolism that modify the composition 

of proteins and metabolites. One type of defense against insects is the “direct” defense, whereby 

the plant changes the morphology and chemistry of its tissues in response to physical contact by 

the pest. The recognition is attained through release of damage- and herbivore-associated 

molecular patterns (DAMPs and HAMPs), which bind to plant cell receptors and begin signaling 

cascades that include increased calcium fluxes, oxidative burst and detoxification activities, and 

up-regulation of wound-induced protein kinases (WIPK), products of specialized metabolism 

(e.g., phytoalexins), and proteinase inhibitors [15-17]. Further, protein regulation 

(anabolism/catabolism) via tRNA synthetases and ubiquitin-proteasome complexes changes 

during plant pest infestations [18,19]. Infestation can increase the synthesis of proteinase 

inhibitors, detoxification enzymes (e.g., peroxidases, glutathiones), and toxic proteins (e.g., 

lectins, remorins) [15,20-22]. This plant metabolic response to a pest can be integrated with a 

basal molecular resistance, which can include pre-formed toxins (“phytoanticipins”) such as 

alkaloids, phenolics, and benzoxazinoids (the latter common in the Poaceae plant family, 

including wheat) [23]. Insect manipulation of host defenses has been described in many 

plant/pest systems and the role of small non-coding RNA (snRNA) sequences in suppressing 

wheat defense responses to WSS larval feeding is currently being investigated [24]. 

 Several studies have characterized metabolic changes that occur during plant–pest 

interactions, specifically in areas of central and toxin metabolism. Changes to photosynthesis 

(decrease), gluconeogenesis (decrease), and phenylpropanoid synthesis (increase) commonly 

occur during an herbivore infestation, allowing the plant to shift metabolism to protect against 

oxidative damage, increase specialized metabolite pathways, and fortify tissues. Research on 
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maize (Zea mays) plants infested with caterpillars of Spodoptera exigua revealed decreased 

expression of gluconeogenesis genes that co-occurred with a temporal readjustment of 

photosynthetic capacity, as well as overexpression of phenylpropanoid-related genes [25]. 

Biosynthesis of lignin through the phenylpropanoid pathway promotes structural fortification of 

cell walls, and wound-induced overexpression of lignin biosynthesis-related genes has been 

described in maize [26]. Likewise, increased levels of detoxification enzymes in bread wheat 

exposed to aphids (Sitobion spp.) support the importance of an oxidative burst during response to 

herbivory [27]. Importantly, a recent study on the molecular response of wheat to WSS feeding 

described protein and metabolite variation in the phenylpropanoid and pentose phosphate 

pathways, in wheat cultivars with different levels of resistance to the insect [28]. However, it is 

unclear whether the reallocation of proteins and metabolites is the downstream result of intense 

damage in susceptible plants or an active response that aims at strengthening tissues. 

 In the present study, we compare the proteomic and metabolic response of wheat during 

WSS infestation. A selection of wheat cultivars was evaluated in a field trial, and a subset of two 

cultivars, as well as two other cultivars that were not represented in the trial, were further 

interrogated using omics analysis to associate metabolism with resistance to WSS. The four 

cultivars were selected and compared based on phenotypic variation for (1) degree of resistance 

to WSS, (2) yield performance in the field (reported herein), and (3) growth habit (spring or 

winter type). Two previously characterized cultivars include Conan and Reeder (not represented 

in the field trial), which are both spring wheat cultivars that vary for stem solidness and 

resistance to WSS [29,30]. Particular interest is pointed towards Hatcher, a cultivar with hollow 

stems that shows consistent resistance and high yields under WSS pressure (field trial results). 

We hypothesize that critical metabolic and protein variation occurs in Hatcher in response to 
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WSS pressure and that it does not rely on the solid-stem trait. A unique proteomic and/or 

metabolomic profile of Hatcher (in response to WSS) would support a molecular basis of 

resistance to WSS in wheat, providing the foundation to breed for novel resistance phenotypes 

that do not depend on stem solidness. 

3.3. Methodology 

3.3.1. Plant Material for the Omics Study 

Protein and metabolite profiles were obtained from hard red winter wheat (Triticum 

aestivum L., Poaceae) cultivars “Hatcher” (PI 638512) [31] and “Denali” (PI 664256) [32], and 

hard red spring wheat cultivars “Conan” (PI 607549) and “Reeder” (PI 613586). For proteomics 

and metabolomics, Hatcher and Denali were vernalized for 8 weeks at 3 °C ± 2 °C. Spring wheat 

cultivars were vernalized for 10 d at 3 °C ± 2 °C to facilitate synchronous development with the 

winter wheat cultivars. Wheat seedlings were planted in 5-inch circular pots in the following 

mix: 7 parts Fafard professional metro mix (45–55% Canadian Sphagnum peat moss, 

vermiculite, bark, dolomite lime, and wetting agent; Sun Gro Horticulture, Agawam, MA, USA), 

2 parts coarse perlite, 1 part Fort Collins, CO, USA loam soil supplemented with aged manure 

and Osmocote slow release fertilizer (Greenhouse Products Pty Ltd., Princess, South Africa) as 

per the manufacturer’s instructions. Plants were fertilized weekly with Peters Professional 

Fertilizer (J. R. Peters Inc., Allentown, PA, USA) to promote tillering. The Colorado State 

University insectary facility, Fort Collins (CO, USA), was used to grow all plants. Controlled 

growth conditions included temperature held at 18–24 °C with a photoperiod of 15/9 h 

light/darkness, and bottom watering 3 times per week. Plants were grouped in a randomized 

complete block design. 
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3.3.2. Insect Collection, Handling, and Plant Infestation 

The site for insect collection was located approximately one mile West of New Raymer, 

CO, USA where 2014 infestation levels were found to be > 96%. Wheat stubble from the 

previous year’s crop (from the cultivar ‘Byrd’) was removed and placed in 3.785 L size plastic 

bags. The bags were stored at 3 °C ± 2 °C for 30–90 d (depending on collection date) for the 

insects to complete their mandatory cold diapause period [33]. The stubble was misted weekly to 

prevent the larvae from desiccating. After completion of larval diapause, stubs were stored in a 

greenhouse at 18–24 °C with a photoperiod of 15/9 h light/darkness. Adult WSS emerged within 

4–6 weeks after removal from the refrigerator, and bioassays were conducted within 24 h of 

adult emergence. 

Plants were exposed to female WSS only and were considered infested when WSS 

successfully deposited eggs inside the stem. Wheat stems were enclosed with a WSS container to 

control the location of WSS oviposition (Figure 11). Insect containers were made from a 5 cm 

long × 1.5 cm diameter plastic tube (cut off from a 15 mL Falcon tube) with organza netting on 

either opening to allow airflow. Containers were slipped over stems of interest between the third 

and fourth internodes (starting from the first internode) and held in place using bamboo stakes. 

Clothes pins were used to close either end of the containers by clamping the organza tight, 

without disrupting plant tissue. Female WSS were allowed to oviposit on stems within the 

containers area for 10 d. Control plants had containers clipped in place but were WSS absent. 

Plants were infested with WSS females at approximately Zadoks growth stage 55 [34]. 
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3.3.3. Protein Extraction, Detection, Data Processing, and Annotation 

Protein extractions were performed on 24 wheat plants (6 infestation replicates per each 

of the 4 cultivars). Three biological replicates per cultivar were infested with WSS and 3 other 

replicates were left non-infested as controls. Stems between internodes 3 and 4 were cut, flash 

frozen in liquid nitrogen and lyophilized for 72 h. Dried, frozen stems were then placed in 5 mL 

conical centrifuge tubes and ground to a fine powder using a mix of 3.2 mm and 11 mm diameter 

stainless steel beads and a Buller Blender Storm 5 tissue homogenizer (Next Advance, Troy, NY, 

USA). For each sample, 50 mg of stem powder were transferred to a 2 mL glass vial and 

immersed in a 1 mL tricholoroacetic acid (TCA):acetone solution (TCA 10% w/v, acetone 90%, 

dithiothreitol to 10 mM; Sigma-Aldrich, Inc., St Louis, MO, USA). The solution was vortexed 

for 30 s (4 °C, 2500 g) and centrifuged for 5 min (4 °C, 2850 g), supernatant was discarded, and 

the pellet was reconstituted in 500 µL TCA:acetone. Centrifugation and discarding of 

supernatant were repeated until pellets were white or lightly colored. Clean pellets were further 

resuspended in 750 µL cold acetone:water (1:1, v/v, dithiothreitol to 10 mM), centrifuged for 5 

min (4 °C, 2850 g), and dried under gas nitrogen flow. 

The total protein content of all samples was further quantified twice via Pierce 

bicinchoninic acid (BCA) Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). 

Solid matter from dried protein pellets was loosened by pipette tip and transferred to 

microcentrifuge tubes. A total of 500 µL 8 M urea was added to each tube, and vortexed to 

resuspend the protein pellet, followed by sonication at room temperature for 10 min. Samples 

were then centrifuged at 2850 g for 5 min at 4 °C. A small aliquot of supernatant was diluted 

(1:20) in 2 M urea before being subjected to BCA following manufacturer’s recommendations. 

Fifty µg of total protein content were aliquoted from each sample and processed for in-solution 
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trypsin digestion as previously described [35]. To generate a mixed quality control (QC) sample, 

2 µg of total protein were pooled from each sample for digestion. Briefly, proteins were 

resolubilized in 8 M urea and 0.2% ProteaseMAXtm surfactant trypsin enhancer (Promega, 

Madison, WI, USA). Samples were reduced and alkylated with 5 mM dithiothreitol and 5 mM 

iodoacetamide. Trypsin (Pierce MS-Grade, Thermo Fisher Scientific) was added at an enzyme to 

substrate ratio of 1:50 and incubated at 37 °C for 3 h. Trypsin was deactivated with the addition 

of 5% trifluoroacetic acid and desalted using Pierce C18 spin columns (Thermo Fisher 

Scientific) using manufacturer’s instructions. Peptide eluate was dried in a vacuum evaporator 

and resuspended in 5% acetonitrile/0.1% formic acid. Once resolubilized, absorbance at 205 nm 

was measured on a NanoDrop (Thermo Fisher Scientific) and total peptide concentration was 

subsequently calculated using an extinction coefficient of 31 [36]. 

Mass spectrometry analyses were performed using nano high performance liquid 

chromatography-tandem mass spectrometry (nHPLC-MS/MS). A total of 0.5 µg of peptides was 

purified from each sample and concentrated using an online enrichment column (5 µm, 100 µm 

ID x 2 cm C18 column; Thermo Fisher Scientific). Subsequent chromatographic separation was 

performed on a reverse phase nanospray column (EASYnano-LC, 3 µm, 75 µm ID x 100 mm 

C18 column; Thermo Fisher Scientific) using a 90 min linear gradient from 5% to 30% buffer B 

(100% ACN, 0.1% formic acid) at a flow rate of 400 nL/min. Peptides were eluted directly into 

the mass spectrometer (Orbitrap Velos, Thermo Fisher Scientific) equipped with a Nanospray 

Flex ion source (Thermo Fisher Scientific) and spectra were collected over a m/z range of 400–

2000 in positive mode ionization, with charge states +2 and +3 selected for MS2. Dynamic 

exclusion enforced a limit of 2 MS/MS spectra of a given m/z value for 30 s (exclusion duration 

of 90 s). The instrument was operated in Fourier transform (FT) mode for MS detection 
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(resolution of 60,000) and ion trap mode for MS/MS detection with a normalized collision 

energy set to 35%. Instrument suitability was monitored through analysis of commercially 

purchased BSA standard digest and automated monitoring using Panorama QC v15.0 (LabKey, 

San Diego, CA, USA) [37]. Metrics (e.g., mass accuracy, peak area, retention time) were 

monitored and flagged as outliers should results be outside ± 3 standard deviations of the guide 

set (i.e., optimal operation). Values for all metrics were within normal limits throughout the 

duration of the experiment, indicating instrument stability and data robustness. Quality control 

samples were injected between every 5 samples throughout the course of the experiment. 

Compound lists of the resulting spectra were generated using Xcalibur v3.0 software 

(Thermo Fisher Scientific) with a signal-to-noise (s/n) threshold of 1.5 and one scan per group. 

Tandem mass spectra were extracted, charge state deconvoluted and deisotoped by ProteoWizard 

MsConvert v3.0. Spectra from all samples were searched using Mascot v2.3.01 (Matrix Science, 

London, UK) against the wheat_peptides_rev062716 in-house database (200688 entries) 

assuming the digestion enzyme trypsin. Mascot was searched with a fragment ion mass tolerance 

of 0.8 Da and a parent ion tolerance of 20 ppm. Oxidation of methionine and carboxymethylation 

of cysteine were specified in Mascot as variable modifications. Search results from all samples 

were imported and combined using the probabilistic protein identification algorithms [38] 

implemented in the Scaffold software v4.8.4 (Proteome Software Inc., Portland, OR, USA) [39]. 

Peptide thresholds were set (95%) such that a peptide FDR of 1% was achieved based on hits to 

the reverse database [40]. Protein identifications were accepted if they could be established at 

greater than 99% probability and contained at least two identified peptides. Protein probabilities 

were assigned by the Protein Prophet algorithm [41]. Proteins that contained similar peptides and 

could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles 
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of parsimony. Proteins sharing significant peptide evidence were grouped into clusters. Protein 

accession numbers obtained from the in-house database were further annotated using the Wheat 

Protein Database [42]. A match with a database wheat accession was confirmed for peptide 

sequences with > 80% homology to a T. aestivum peptide sequence and > 90% homology to a 

protein sequence from another model species. Gene ontology (GO) data was retrieved from the 

UniProt database [43]. 

3.3.4. Metabolite Extraction, Detection, Data Processing, and Annotation 

A total of 40 plants were used for metabolite extraction and included 10 biological 

replicates per cultivar. Five biological replicates of each cultivar were infested with WSS as 

described above for proteomics, and 5 replicates were not infested and used as controls. After 

infestation, stems between the third and fourth internodes were excised, flash frozen in liquid 

nitrogen and lyophilized for 72 h. Stems were then placed in 5 mL conical centrifuge tubes and 

ground to a powder as described for protein extraction. Non-volatile metabolites were extracted 

as performed by Broeckling and Prenni (2018) [44] with modifications. Briefly, 50 mg of 

powdered stems were transferred to 2 mL glass vials and immersed in 500 μL of a cold 

methanol:methyl tert-butyl ether (MTBE) solution (2:1, 75% methanol:MTBE; Sigma-Aldrich). 

Samples were vortexed for 1 h at 4 °C and 125 μL of cold liquid chromatography grade water 

(Sigma-Aldrich) were then added to the mixture. Samples were centrifuged for 15 min (4 °C, 

2850 g), and the isolated aqueous layer was transferred to a new glass vial. Water-soluble 

extracts were then evaporated under a continuous gas nitrogen flow and reconstituted in 120 μL 

of methanol:water (1:1, v/v). 

Non-targeted metabolite profiling was performed using UPLC-MS/MS as previously 

described [44]. Briefly, 2 μL of extracts were injected onto an Acquity UPLC system (Waters 
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Corporation, Milford, MA, USA) in discrete, randomized blocks with a pooled QC injection 

after every 10 sample injections, and the coefficient of variance was used to ensure instrument 

stability over the course of the experiment. Compounds were separated using a Waters Acquity 

UPLC CSH phenyl hexyl column (1.7 µm, 1.0 × 100 mm; Waters Corporation), using a gradient 

from solvent A (2 mM ammonium hydroxide, 0.1% formic acid) to solvent B (acetonitrile, 0.1% 

formic acid). Injections were made in 100% A, held for 1 min, ramped to 98% B over 12 min, 

held at 98% B for 3 min, and then returned to starting conditions over 0.05 min and allowed to 

re-equilibrate for 3.95 min, with a 200 µL/min constant flow rate. The column and samples were 

held at 65 °C and 6 °C, respectively. The column eluent was infused into a Xevo G2 Q-TOF 

mass spectrometer (Waters Corporation) with an electrospray source in positive ion mode, 

scanning 50-2000 m/z at a rate of 5 scans per sec, alternating between MS (6 V collision energy) 

and MSE mode (15–30 V ramp). Calibration was performed prior to sample analysis using 

sodium iodide with 1 ppm mass accuracy. The capillary voltage was held at 2200 V, the source 

temperature at 150 °C, and nitrogen desolvation temperature at 350 °C with a gas flow rate of 

800 L/h. 

A matrix of molecular features as defined by retention time and mass (m/z) was created 

from LC-MS data files after conversion to .cdf format and processing by XCMS [45] in R 

software v3.3.1 [46]. The R package RAMClust was used to deconvolute data into spectral 

clusters [47]. Molecular features were normalized to total ion current (TIC), the relative quantity 

of each feature was determined by the mean area of the chromatographic peak among two 

replicate injections (n = 2), and spectral clusters were quantified as a weighted abundance of all 

molecular features in the cluster. Identification of metabolites was performed manually by 

matching mass spectra and retention times to in-house and external databases including METLIN  
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[48,49], the Human Metabolome Database (HMDB) [50], and through the following workflow: 

the R package InterpretMSSpectrum and the MS-FINDER program v2.40 [51,52] were used to 

determine molecular weights, and chemical formulas and structures, respectively. Next, the 

Chemical Translation Service web application program interface (API) was used to retrieve 

chemical names of compounds with available International Chemical Identifiers (InChIKey), and 

the ClassyFire web API was used to assign full chemical ontology [53]. Confidence levels were 

all assigned based upon classification of metabolite annotation as described by Sumner et al. 

(2007) [54]. All annotated metabolites in this study were assigned a level 1 or 2 confidence. 

3.3.5. Plant Material and Measurements for the Field Study 

 Wheat varieties (a mixture of both cultivars, including Hatcher and Denali, and advanced 

breeding lines) were planted in New Raymer fields on Sep. 30, 2013; Sep. 18, 2014; and Sep. 18, 

2015, and harvested on Jul. 23, 2014; Jul. 30, 2015; and Jul. 14, 2016, for 2014, 2015, and 2016 

measurements, respectively. Soil fertility amendments were applied by the cooperating farmer 

based on soil fertility recommendations appropriate for the area. For each variety, plots were 5 

feet wide by 12 feet long and seeded at an approximate density of 700,000 seeds per acre, in 6 

rows per plot with 9-inch spacing between rows. Plots were harvested using a Wintersteiger Elite 

combine with a Grainguage weighing system. An area of 60 square feet was used for yield 

calculations and adjusted to 12% moisture basis according to the moisture value provided by the 

combine. Field infestation levels by WSS were determined by collecting wheat stubble after 

harvest from the middle of plots using a shovel. One hundred tillers were randomly selected for 

each cultivar and bisected in the lab using a scalpel to determine presence/absence of WSS 

larvae. Infestation percentages were calculated as such: % = (infested tillers/total number of 

tillers) × 100. 
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3.3.6. Statistical Analysis 

Metabolite content and total spectral counts of proteins (TSC) were compared using 

Student’s t tests for treatments only (No WSS = Controls vs. WSS = infested plants) and 

treatments within cultivars, and one-way ANOVA was used for comparisons of cultivars, with a 

p threshold of 0.05. Benjamini–Hochberg correction was systematically applied across all t tests 

and ANOVA p values to account for multiple comparisons [55]. For proteomics analyses, fold 

changes were calculated as such: (mean WSS)/(mean No WSS) treatments and centered around 

zero using log2 transformation. “Presence” of detected proteins was determined when at least two 

out of three replicates had non-null TSC values, and “absence” was determined otherwise. A 

residual value of 10-6 was assigned to null TSCs to calculate fold change. For metabolomics 

analyses, fold change was calculated as (mean WSS)/(mean No WSS) treatments. Orthogonal 

projection to latent structures discriminant analyses (OPLS-DA) were conducted on the 

metabolomics data after mean-centering and unit variance (UV)-scaling using SIMCA v14.1 

(MKS Data Analytics, Umea, Sweden) with infested and non-infested as the two classes in the 

model. Variable importance on OPLS projection (VIP) scores were calculated for each variable 

by summing the squares of the OPLS loading weights, weighted by the amount of sum of 

squares explained in each model component. 

3.4. Results 

3.4.1. WSS Resistance Was Identified in Hollow-Stem Wheat 

 Here, a field study was performed to identify hollow-stem cultivars with resistance to 

WSS. Plants were grown in three consecutive years and two cultivars were identified with 

consistent, contrasting trends for both percent WSS infestation and yield: Hatcher and Denali 

(Figure 12). For the years 2014, 2015, and 2016, the mean for WSS infestation across varieties 
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was 41%, 51%, and 76%, Hatcher mean infestation was 35.5%, 53.5%, and 70.5%, and Denali 

had 59.5%, 70.5%, and 78% of stubs infested (Figure 12A). Grain yield mean across the wheat 

selection reached 66 bu/ac, 87 bu/ac, and 64 bu/ac, where Hatcher yielded 71 bu/ac, 81.7 bu/ac, 

and 68.1 bu/ac, and Denali yielded 62 bu/ac, 75 bu/ac, and 70.6 bu/ac in the years 2014, 2015, 

and 2016 respectively (Figure 12B). Given the present data and previous reports of cultivar 

performance, we hereafter refer to Hatcher and Conan as resistant cultivars and refer to Denali 

and Reeder as susceptible. 

3.4.2. Variation Was Observed in the Proteome among the Four Wheat Cultivars 

 Liquid chromatography-mass spectrometry analysis on the four selected cultivars yielded 

a total of 255,401 spectra that were condensed to 1832 peptides. Gene ontology data were used 

to classify peptides based on biological processes. A table that reports information on each 

detected protein (e.g., molecular function, molecular weight, statistical results) is provided in the 

supplementary files (Table S1). Peptides were associated with 1039 low-level (i.e., lower-level 

child entry in the ancestor chart) [56] biological processes (Figure 13A). These low-level 

processes were then grouped under five major biological processes. The total number of major 

process occurrences is higher than the number of processes due to overlap across proteins (e.g., 

glutathione-S-transferases play roles in response to stimuli but are also involved in metabolic and 

cellular processes). Thereby, 498 proteins were associated with metabolic processes, 651 with 

cellular processes, 186 with biological regulation, 105 with localization, 182 with response to 

stimuli, and 215 with other types of processes. Data indicated a relatively steady amount of 

biological processes related to significant proteins between treatments of resistant cultivars 

(Hatcher and Conan), with a noticeable exception for response to stimuli (Figure 13A). Hatcher 

showed differential normalized total spectral counts (TSC) for 60 peptides (Student’s t test FDR 
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adjusted p < 0.05) associated with 185 biological process occurrences. Hatcher plants had 16 and 

25 occurrences of response to stimulus-associated proteins, down and up-regulated after 

infestation with WSS, respectively. Likewise, Hatcher had 22 and 26 occurrences of metabolic 

process, 23 and 25 occurrences of cellular process, eight and 12 occurrences of biological 

regulation, five and five occurrences of localization, and ten and eight occurrences of other 

processes, respectively down and up-regulated after infestation (Figure 13A). Conan, Denali, and 

Reeder had significant TSC between treatments for, respectively, 80 (235 biological processes 

total), 60 (201 biological processes total), and 38 proteins (associated with 107 process 

occurrences; FDR adjusted p < 0.05 for significant TSC; Figure 13A). 

Among the 1039 low-level biological processes associated with detected proteins, 143 

were further explored and grouped within 17 processes known for their importance in the plant 

response to stress (Figure 13B). These represented approximately 18% of the complete set of 

detected GO biological processes (associated with both significant and non-significant proteins) 

and included defense response to biotic stress (3.36% of all detected processes), photosynthesis 

(2.43%), sugar/H2O2 metabolism (1.76%), and hypersensitive response (0.27%). 

3.4.3. Differentially Regulated Proteins among Wheat Cultivars Due to Infestation 

 Further analysis of the proteomics data demonstrated variation among the four wheat 

cultivars due to WSS infestation. Of the 1832 proteins detected among cultivars, 224 had total 

spectral counts (TSC) that differed between infested stems and non-infested control stems (for 

all, Student’s t test FDR adjusted p < 0.05). As described in Figure 13, the 224 proteins were 

classified in five major processes: metabolic process, cellular process, biological regulation, 

localization, response to stimulus, and an additional miscellaneous category. Results are 

displayed as volcano plots using the log2 fold change and -log10 p value proteins for comparisons 
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within a cultivar (Figures 14 and 15). Hatcher had a total of 62 proteins that varied including ten 

down- and 11 up-regulated proteins with molecular process activities (for all, Student’s t test 

FDR adjusted p < 0.05; Figure 14). A detailed description of each protein entry for Hatcher is 

provided in Table 4A. Down-regulated proteins included a cinnamoyl CoA reductase (FDR 

adjusted p = 2.2 × 10-2), and up-regulated proteins included the gluconeogenesis-related enzyme 

fructose-1,6-bisphosphatase (FDR adjusted p = 5 × 10-4). The analysis also revealed five down- 

and 11 up-regulated proteins described as key regulators of response to stimuli. Down-regulated 

response regulators included a heat shock-related peptide, a mannose-binding lectin as well as a 

catalase, where up-regulated proteins included two glutathione-S-transferases, a calmodulin, and 

a thioredoxin (for all, FDR adjusted p < 0.05; Table 4A). Detailed information on differentially 

regulated proteins detected in Conan, Denali, and Reeder is available in Figure 15 and Table 4B–

D. 

Several proteins were conjointly down- or up-regulated or showed opposite patterns 

among cultivars, after infestation (Table 4). These included a ubiquitin-activating enzyme and an 

alanyl-tRNA synthase that were down-regulated in Hatcher and up-regulated in Conan (for all, 

FDR adjusted p < 0.05). Interestingly, three enzymes were conjointly up-regulated in Hatcher 

and Denali infested plants (i.e., vacuolar ATP synthase subunit, aspartate aminotransferase, 

bifunctional enolase; for all, FDR adjusted p < 0.05), and a cinnamoyl CoA reductase was down-

regulated in both cultivars (for both, FDR adjusted p < 0.05). Conversely, no proteins displayed 

identical or opposite expression patterns between Hatcher and Reeder. 
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3.4.4. Overview of Detected Metabolites in Stems of Wheat 

Metabolite profiles were collected using LC-MS metabolomics (Figure 16), and a total of 

1823 putative compounds were detected. Of these 1823 compounds, 1639 (90%) were assigned a 

chemical formula based on hydrogen rearrangement rules using MS-FINDER v2.40 [51,52], and 

607 (33% of total) compounds were tentatively annotated as a distinct metabolite [54]. A 

detailed description of all detected metabolites is provided in the supplementary files (Table S1). 

 Classification of annotated metabolites based on chemical structures yielded ontology 

trees for 489 compounds (Figure 17). Metabolites were sorted within eight chemical superclasses 

(i.e., alkaloids, benzenoids, lignans, lipids, organic acids, organic nitrogen/oxygen compounds, 

phenylpropanoids) and an additional “other” class that contained minor superclasses (e.g., 

organoheterocyclic compounds, nucleosides). For clarification, lignans share, with lignin, 

common biosynthesis via the phenylpropanoid pathway, but have anti-insect activities rather 

than structural roles. Nine ontology levels were used in the classification, from chemical 

kingdom (highest chemical hierarchy, i.e., organic compounds) to parent level 5 (lowest 

hierarchy, e.g., α amino acids). In our metabolomics dataset, the classification analysis revealed 

the presence of eight alkaloids and derivatives, 40 benzenoids (e.g., 12 phenolics), 11 lignans 

(e.g., five lignan glycosides), 112 lipids, 74 organic acids and derivatives including 61 carboxylic 

acids, 16 organic nitrogen compounds including 11 amines, 51 organic oxygen compounds (e.g., 

38 carbohydrates and conjugates, and six alcohols and polyols), 57 phenylpropanoids and 

polyketides including 19 flavonoids and seven coumarins, and 120 compounds classified in the 

“other” category (e.g., 104 organoheterocyclic compounds and 13 nucleosides). 
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3.4.5. Differentially Regulated Metabolites among Wheat Cultivars Due to Infestation 

 Variation in metabolite abundance between treatments and among cultivars was 

demonstrated using both univariate and multivariate statistics. Of the 607 annotated metabolites, 

44 varied between treatments (infested and non-infested plants) regardless of cultivars (for all 

comparisons, Student’s t test FDR adjusted p < 0.05), including two phenolics and two 

flavonoids (Figure 17). Regardless of treatment, 308 metabolites were found significant when 

comparing the four cultivars (for all comparisons, ANOVA FDR adjusted p < 0.05). These 

included five phenolics, four lignan glycosides, 25 terpenoids, 15 flavonoids, and four 

coumarins. When comparing treatments within cultivars (interaction of factors), 62 annotated 

metabolites were found significant within Hatcher plants. Down-regulated metabolites included 

the benzoxazinoid glycoside DIBOA-glucoside (FDR adjusted p = 7.5 × 10-3), and up-regulated 

compounds included a neolignan, a flavonoid glycoside structure, a butanolide, and two 

carbohydrates (for all, FDR adjusted p < 0.05). Other cultivars yielded fewer significant 

compounds: 14 within Conan plants, 11 in Denali, and 11 in Reeder (for all, FDR adjusted p < 

0.05). Conan and Denali (both spring wheat cultivars) shared three down- or up-regulations of 

metabolites, that is the phenylpropanoid integerrimine (down-regulated), the flavonoid 

beilschmieflavonoid B and a non-classified compound (both up-regulated; for all, FDR adjusted 

p < 0.05). The only other metabolite that showed a common pattern between cultivars was a 

pyrimidine ribonucleoside monophosphate structure that was up-regulated in both Hatcher and 

Denali (for both, FDR adjusted p < 0.05). 

 The metabolite content of each sample was further analyzed using orthogonal projection 

to latent structures discriminant analyses (OPLS-DA) to identify compounds that highly 

contribute to the multivariate models, within each cultivar. Hatcher is a semi-solid-stem cultivar 
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that is relatively resistant to WSS and has consistent high yields in the field. The proteomics data 

indicate a unique response of Hatcher to WSS, and metabolomics revealed a much higher degree 

of metabolite changes for this cultivar compared to others. An OPLS-DA model on Hatcher 

revealed separation of infested and non-infested plants based on metabolite distribution (Figure 

18A). The model consisted of one predictive and five orthogonal components with R2Y = 95.1% 

of sample class variance explained by the model and Q2 = 71.3% to indicate a good predictive 

power of the model. Twenty-nine of the annotated metabolites contributed to the separation of 

treatments within Hatcher samples (for all, FDR adjusted p < 0.05). All selected variables had a 

high variable importance for the projection (VIP) score (for all, VIP ≥ 1.45). Areas that 

contained only high VIP scored metabolites were highlighted in light red (down-regulated in the 

WSS treatment) and blue (up-regulated) in the OPLS biplots (Figure 18A). Eight annotated 

metabolites were lower and 21 were greater in abundance after infestation (Figure 18A, red and 

blue areas, respectively). These compounds that contributed to the OPLS-DA model were 

labeled (Figure 18A) and displayed in variable line plots (VLP) to emphasize high content 

variation between treatments and low variation within treatments (Figure 18B). The 29 

metabolites that highly contributed to the OPLS-DA model in Hatcher were further analyzed for 

changes in abundance relative to treatments and compared to other cultivars (Figure 18C). 

Detailed information for important metabolites detected in all cultivars is provided in Tables 5 

and 6. Highly down-regulated metabolites included an organic oxygen compound and the 

benzoxazinoid glycoside DIBOA-glucoside (for both, fold change of WSS/No WSS < 0.5) and a 

highly up-regulated metabolite was the nucleoside pyrimidine ribonucleoside monophosphate 

(fold change > 4). 
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 Multivariate statistics applied to other cultivars revealed interesting changes in several 

key plant–insect interaction metabolites. The OPLS-DA model for Conan was driven by a down-

regulation of the phenylpropanoid integerrimine and an up-regulation of a lipid-like structure (for 

all, FDR adjusted p < 0.05; Figure 18B and Table 5). Denali displayed eight metabolites with 

high model contribution, including down-regulation of the same phenylpropanoid integerrimine 

as in Conan, and up-regulation of two other phenylpropanoid structures (for all, FDR adjusted p 

< 0.05; Figure 18B and Table 5). Multivariate analysis in Reeder yielded four major contributors 

that were all down-regulated (for all, FDR adjusted p < 0.05; Figure 18B and Table 5). Fold 

change analysis of important metabolites in Hatcher revealed two down-regulated metabolites in 

Hatcher that were highly up-regulated in Denali (i.e., indolizidine structure and DIBOA-

glucoside; for both, fold change of WSS/No WSS > 2), and these two cultivars shared higher 

contents in pyrimidine ribonucleoside monophosphate after infestation with WSS (fold change > 

4; Figure 18C). 

3.5. Discussion 

3.5.1. Field Data Supports Wheat Genetic Resistance to WSS That Does Not Rely on the Solid-

Stem Trait 

Previous work on hard red spring wheat cultivars Conan and Reeder has established a 

relationship between degree of stem solidness and pest resistance capacity [14,29,30]. Conan and 

Reeder carry different alleles at the Qss.msub-3BL locus, described as the major solid-stem 

quantitative trait locus (QTL) [11,12]. While hollow-stem Reeder plants show high levels of 

infestation, semi-solid stems from Conan appear to provide relatively good tolerance to WSS 

attacks. Rapid temporal expression of stem pith allows Conan individuals to resist sawfly 

infestations at periods of peak emergence. Increased stem density results in reduced host 
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preference and higher rates of larval mortality, also termed antibiosis [14,30]. Conversely to 

Conan, Reeder has poor stem pith expression throughout the growing season and higher host 

suitability.  

Neither hard red spring wheat cultivars Hatcher and Denali have been assessed for 

correlation between stem solidness and resistance to WSS. Hatcher was released in Colorado in 

2004, is now widely grown in the state and shows susceptibility to important wheat pathogens 

(i.e., bacterial and viral pathogens such as stem rust caused by Puccinia graminis, and streak 

mosaic virus) but resistance to major pests such as the Hessian Fly (M. destructor) and the 

Russian Wheat Aphid (Diuraphis noxia) [57]. Denali was released in Colorado in 2011 and 

shows varying degrees of resistance to pathogens: moderate resistance to stem rust, resistance to 

stripe rust (Puccinia striiformis), and susceptibility to the wheat streak mosaic virus. Denali is 

also resistant to M. destructor but susceptible to D. noxia [57]. Recent reports from Cockrell et 

al. (2017) [5] define Hatcher as a hollow-stem cultivar that is susceptible to C. cinctus. Our 3-

year field data suggests otherwise as it revealed overall high performance of Hatcher for WSS 

infestation and yield (Figure 12). Denali also has low pith expression but conversely showed 

poor field performance for both infestation rates and yield (Figure 12). These data support 

genetic resistance to WSS that relies on plant pathology-based molecular mechanisms that have 

only been explored very recently [24,28,58]. Hatcher has a hollow stem that does not provide 

consistent protection during periods of WSS outbreaks, yet shows high performance in the field 

in the context of high sawfly pressure. Advantageous allelic variants at the solid-stem locus 

provide a certain degree of resistance but are known for inconsistent expression of stem pith 

under varying weather conditions [7]. Molecular studies to understand key actors of WSS 

resistance in wheat cultivars that do not have solid stems are thus warranted. 
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3.5.2. Proteome Analysis Provides Evidence of Unique Response to WSS at the Cultivar Level 

Investigation of the protein content of four wheat cultivars that vary for (1) resistance to 

WSS infestation, (2) field yield performance, and (3) growth habit (spring/winter) indicated 

unique response profiles to WSS exposure (Figures 12 and 13). A total of 1832 proteins were 

identified among samples and a high proportion were involved in metabolic (27%) and cellular 

processes (36%), 10% in biological regulation, 6% in localization, 10% in response to stimuli, 

and 11% in other processes (Figures 13A and S1). Further analysis revealed that the four most 

encountered processes included defense responses to biotic stress (3.36%), photosynthesis 

(2.43%), translation (2.24%), and response to oxidative stress (1.97%). A closer look at the 62 

significant proteins detected in Hatcher showed noticeable down-regulation patterns after WSS 

infestation for three carbohydrate anabolism-related enzymes, including a UDP-glucose 

dehydrogenase that converts UDP-glucose into UDP-glucuronate, a precursor of major cell wall 

polysaccharides (Figure 14 and Table 4A) [59]. Interestingly, a cinnamoyl CoA reductase was 

also down-regulated. Cinnamoyl CoA reductases are key enzymes of the lignin biosynthetic 

pathway and facilitate the fortification of plant cell walls [60]. A calreticulin and a catalase (Ca2+ 

and H2O2 homeostasis) that are known for their importance in the molecular signal cascade that 

leads to the stress response also had low expression levels. Other down-regulated stress-related 

proteins included a heat shock protein and a lectin. Where heat shock proteins are often 

overexpressed to limit plant stress, mannose-binding lectins can recognize specific foreign 

elicitors [61,62]. Lastly, four protein biosynthesis-related enzymes were down-regulated after 

infestation with WSS (i.e., three ribosomal components and an alanyl-tRNA synthetase), as well 

as two photosynthesis-related compounds (i.e., transketolase and ferredoxin:NADP(H) 

oxidoreductase; Figure 14 and Table 4A) and a serine carboxypeptidase-like enzyme involved in 
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proteolysis. On the other hand, WSS exposure led to up-regulation of four detoxification 

enzymes (i.e., NADPH-dependent alkenal/one oxidoreductase, thioredoxin M-type, two 

glutathione S-transferases). Alkenal/one oxidoreductases have been described for their activity in 

reactive carbonyl detoxification [63]. Amino acid biosynthesis was promoted through up-

regulation of two cysteine synthases and an aspartate aminotransferase. Up-regulation of primary 

metabolites such as cysteine increases defenses to biotic stress. Cysteine and other amino acids 

are the building blocks for the biosynthesis of numerous antioxidants and toxic compounds [64]. 

One starch biosynthesis and one glycolysis-related enzymes were also overexpressed (i.e., pfkB-

like carbohydrate kinase and glyceraldehyde-3-phosphate dehydrogenase). Four enzymes 

involved in photosynthesis (including a fructose-1,6-bisphosphatase), six in protein biosynthesis 

(i.e., ribosomal components) and one in proteolysis had increased total spectral counts (TSCs, 

i.e., total number of spectra identified for a protein). The riboflavin synthase 6,7-dimethyl-8-

ribityllumazine synthase also had increased levels yet has mostly been described as priming the 

defense of plants against microbial pathogens [65]. Likewise, up-regulation of a proteinase 

inhibitor, remorin, and calmodulin were observed in all infested plants. Calmodulins are known 

calcium sensor proteins that initiate signaling cascades and promote the defense response [66]. 

Low levels of tissue damage inflicted by sawfly larvae allow plants to keep relatively 

steady levels of enzymes involved in energy production and protein synthesis. Down-regulation 

of enzymes that influence cell wall strengthening is in agreement with a potential anti-herbivory 

compound-based model of defense rather than expression of stem pith that promotes larval death. 

In Hatcher, allocation of energy is redirected to primary and specialized metabolism to increase 

levels of anti-herbivory compounds, and less energy is devoted to fortifying the interior of the 

stem through synthesis of structural carbohydrates and lignins. Low levels of defense-related 
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compounds such as calreticulins, catalases, heat shock proteins and lectins potentially indicate a 

tentative manipulation of host defenses by the insect. In the case of a compatible interaction with 

wheat, the Russian Wheat Aphid (D. noxia) takes advantage of host defenses to increase its 

fitness [67]. Likewise, small non-coding RNA (snRNA) exchanges between wheat and WSS 

larvae have been characterized and suspected to suppress the immune response [24]. A 

successful defense response to stress requires ion fluxes for signal transduction, and the up-

regulation of a calmodulin enzyme supports the ability of Hatcher tissue to propagate Ca2+-based 

signals to trigger defense cascades [18,66]. One consequence of pest recognition by the host 

plant is the establishment of an oxidative burst response. High levels of detoxification enzymes 

were found in Hatcher and demonstrate an effective defense response through active scavenging 

of reactive oxygen species to mitigate oxidative damage [15]. Proteinase inhibitors contribute to 

pest protection through inhibition of digestive proteinases, and consequently increased larval 

mortality through starvation [17]. High levels of the PR-6 proteinase inhibitor in Hatcher wheat 

plants potentially participate in reduction of larval feeding. Likewise, two cysteine synthases had 

increased levels in Hatcher infested plants. Up-regulation of cysteine leads to the synthesis of 

additional antioxidants and anti-herbivory metabolites [64]. A riboflavin synthase with increased 

TSCs after infestation also indicates signal transduction and allocation of energy to priming of 

non-infested tissues through systemic acquired resistance (SAR) [18,65,68]. 

Wheat cultivar Conan has a semi-solid-stem and pith is expressed at its maximum during 

WSS flight periods [14]. An allelic variant at the Qss.msub-3BL confers solidity and increased 

resistance to insect attacks [11,12]. The molecular response of Conan to WSS was characterized 

by down-regulation of a plethora of detoxification enzymes (seven total, e.g., peroxiredoxin, 

peroxidase) and nine proteins related to photosynthesis (Figure 15). Eleven key enzymes of 
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protein biosynthesis and proteolysis had higher levels, along with a couple enzymes involved in 

carbohydrate biosynthesis (e.g., sucrose synthase). No activity related to the pentose phosphate 

pathway was detected in Conan although other studies suggest up-regulation of energy synthesis 

enzymes and compounds involved in mechanical support in cultivars with higher degree of stem 

solidness [28]. The higher carbohydrate synthesis activity observed in Conan nonetheless 

suggests use of energy to activate defenses upon larval damage, however, the pith is already 

thick at times of WSS infestation and the plant might rely on passive resistance rather than 

activating energy-consuming defense pathways. The major down-regulation in detoxification 

activity is in agreement with a model where the solid stem provides mechanical defense, the 

plant thus does not require additional molecular defenses and larval manipulation of host 

response is efficient enough to shut down reactive species scavenging [24]. Reduced 

photosynthesis in Conan infested stems indicates active measures to starve larvae from energy 

and nutrients. Susceptible cultivars Denali and Reeder showed typical reactions of plant that 

undergo massive stress, as both had increases in numerous energy-related proteins such as 

glycolysis and the tricarboxylic acid cycle (Figures 13 and 15, and Table 5). Hollow stems 

increase larval survival and fitness, damage inflicted upon chewing is not manageable and 

reallocation of energy to primary and specialized metabolism (e.g., putrescine and spermine 

biosynthesis in Denali, lignin biosynthesis in Reeder) is rendered inefficient. The balance 

between energy synthesis and usage eventually breaks and grain yield is impacted [69]. In all, 

the protein response was unique to each cultivar and supports that Hatcher relies on alternative 

strategies than stem solidness to resist sawfly damage. 

A recent study on the molecular response of wheat to WSS feeding described protein and 

metabolite variation in the phenylpropanoid and pentose phosphate pathways in wheat cultivars 
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with different levels of resistance to the insect [28]. Reallocation of carbohydrates may, however, 

be the downstream result of intense damage in susceptible plants rather than an active response 

that aims at strengthening tissues. This omics study relied upon molecular techniques such as 

2D-PAGE proteomics and GC-MS targeted metabolomics that did not allow for detection of a 

large set of molecules, especially anti-herbivory compounds. We rather used LC-MS proteomics 

and non-targeted metabolomics to maximize the detection of important proteins and compounds 

in response to WSS infestation. 

Another promising line of research on plant–insect interactions is the study of non-coding 

RNAs such as lncRNAs (long non-coding RNAs) and miRNAs (micro RNAs) using 

transcriptomics methods. Recent literature describes ncRNAs as key actors of mRNA regulation 

with implications in plant–pest communication and the response to herbivory [24]. Thousands of 

lnc/miRNAs from WSS larvae were characterized by Cagirici et al. (2017) and included miR-

277, a short RNA sequence that targets several loci on chromosome 3B (region that contains the 

major stem-solidness QTL Qss.msub-3BL). Predicted targets of miR-277 in wheat showed 

significant similarity to ankyrin-like proteins with known functions in biotic resistance [70]. It is 

hypothesized that sawfly larvae actively express ncRNAs to suppress the defense response in 

wheat. Given the great diversity in small non-coding RNA sequences, their involvement in plant 

direct defenses is also expected. In our study, two ankyrin repeat domain-containing proteins 

were identified among the differentially regulated peptides: one that was down-regulated in 

Hatcher infested plants and an up-regulated ankyrin-like protein in Conan. Although preliminary 

conclusions remain speculative, future work on the response of wheat to WSS infestations 

warrants the integration of transcriptomics tools to elucidate the role of ncRNA cross-talk 

between plants and insects and provide novel targets for wheat breeding. 
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3.5.3. Hatcher Metabolism Was Heavily Impacted in Response to Pest Infestation 

Non-targeted LC-MS analysis resulted in the detection of 1823 putative metabolites, and 

607 metabolites were annotated and included several major plant defense-related structures (e.g., 

lignans, terpenoids, alkaloids; Figures 17 and S1) [15,18]. To clarify, lignans and lignin are 

biosynthesized via the phenylpropanoid pathway, but where the lignans are usually described as 

toxic compounds, lignin rather imparts support and rigidity to the cell wall. Uni- and multivariate 

analyses were conducted on the four cultivars to identify compounds that contributed to variation 

between non-infested and infested plants (Figure 18). Strikingly, t tests revealed that resistant 

and hollow-stem cultivar Hatcher yielded 62 significant shifts in annotated metabolite 

abundances between treatments, compared to 14 in semi-solid-stem and resistant Conan, and 11 

in both hollow-stem and susceptible Denali and Reeder. Further multivariate statistics (i.e., 

OPLS-DA) on all detected metabolites indicated that 29 (that were significant based on t test 

results as well) were high contributors for the separation of samples based on treatment in 

Hatcher, four highly contributed to the Conan multivariate model, and eight and four highly 

contributed to the Denali and Reeder models, respectively. These data indicate important 

changes in enzymatic activity in Hatcher, and up-regulation of a cysteine synthase observed in 

Hatcher infested plants may participate to de novo synthesis of specialized metabolites with 

demonstrated effects on pest fitness reduction [64]. 

Detailed analysis on the 29 high contributors to the Hatcher OPLS-DA model revealed 

down-regulation of metabolites that included one alkaloid (1), one lipid (2), an organic oxygen 

compound (3), three organoheterocyclic structures (4-6), and a benzoxazinoid (8), in infested 

plants (Figure 18, Table 6). None of these structures have been described in wheat except for the 

benzoxazinoid structure. Lower abundance of DIBOA-glucoside (8) suggests active use of this 
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phytochemical in Hatcher. Benzoxazinoid structures act as antifeedant and insecticidal 

metabolites, are largely represented in the Poaceae, and affect both chewing and piercing-

sucking pests [23]. Inactive benzoxazinone glucosides are stored in the plant vacuole, released 

upon insect damage and cleaved to their active and toxic form by β-glucosidases [71]. These 

compounds are therefore classified as phytoanticipins and down-regulation of their glycoside 

form leads to up-regulation of the toxic variant [23]. As opposed to phytoanticipins, the below 

mentioned compounds are rather synthesized de novo and belong to the phytoalexin class. 

Increased abundance in structures including benzenoids, lignans, and organoheterocyclic 

compounds was observed in Hatcher individuals exposed to C. cinctus (Figure 18, Table 6). 

Methoxyphenol benzenoids (9) are known volatile attractants for natural enemies of pests, as 

shown in the interaction of soybean looper (Pseudoplusia includes) with parasitoid Microplitis 

demolitor [72]. Neolignan structures (10) have toxic and deterrent effects on insect herbivores 

and these properties have been demonstrated in Magnolia virginiana resistant plants to the 

Swallowtail Butterfly (Troilus spp.) [73]. The anti-herbivory effect of coumaric acids (17) was 

described in groundnuts (Arachis hypogea) is response to various feeding lepidopterans [74]. 

Several other metabolite structures that were overexpressed in Hatcher infested tissue and with 

demonstrated activities in defense included a pyranocoumarin (19), a butanolide (22), an 

azaphilone (23), and a benzopyran [75-78]. In addition, a > 4-fold increase in pyrimidine 

nucleoside in infested Hatcher and Denali indicated large use of this metabolic precursor to 

produce toxic specialized metabolites [79]. 

The three metabolites with highest abundance compared to controls in Conan included 

two unclassified structures and a lipid-like structure (Table 5). Metabolites that highly 

contributed to the Denali OPLS-DA model for their increased abundance in infested plants 
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included the same pyrimidine nucleoside found in > 4-fold increase in Hatcher. More evidence 

of phytotoxic activity in Denali was illustrated by increase in abundance for a flavonoid-7-O-

glycoside and a 7-O-methylated flavonoid. No metabolites were found higher in abundance in 

Reeder infested plants. In sum, various compounds with described biocidal activities were found 

in high abundance in Hatcher infested plants and corroborate the high content in cysteine 

synthase that is a central precursor of anti-herbivory metabolites [64]. Two metabolites with anti-

herbivory potential were identified in Denali, however, high susceptibility of this cultivar to 

WSS indicates insufficient defense resources to increase larval mortality once established inside 

the stem. Conan also showed very little phytotoxic activity, and this is consistent with its ability 

to express high levels of stem pith and impede larval fitness without the need for additional 

layers of defense that include the biosynthesis of toxic molecules. Reeder plants that were 

exposed to WSS had four metabolites with decrease in abundance, and none that increased. As in 

Denali, Reeder hollow stems undergo rapid and massive tissue damage from larval feeding 

because of a weak defense response upon recognition of insects. 

3.5.4. Proposed Model for Molecular-Based Defense of Wheat Cultivar Hatcher to C. cinctus 

Sawflies respond to emissions of semiochemical compounds from wheat, and detection 

of these chemical cues by females determine the choice of host plant for oviposition [80,81]. 

Once landed on the plant cuticle, oviposition behavior of female WSS mainly relies upon direct 

contact cues [82]. Egg deposition often involves the secretion of oviposition fluids by females 

and this can constitute a first instance of pest recognition by the plant [83]. Recognition of 

foreign tissue and activity through release of damage- and herbivore-associated molecular 

patterns (DAMPs and HAMPs) also triggers plant defense mechanisms (Figure 19) [84,85]. 

While receptors of insect elicitors (e.g., NBS-LRR protein receptors) have not been detected in 
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the proteomics data, it is likely that these are constitutively expressed in Hatcher plants and 

recognize DAMPs and HAMPs such as volicitin-like structures. The fatty-acid–amino-acid 

conjugate volicitin is an example of chemical released through saliva that elicits host responses 

[86]. Volicitin has been described in several interactions including infestations of maize (Z. 

mays) by the Beet Armyworm (S. exigua) and promotes indirect responses through the release of 

volatile organic compounds (VOCs) that attract natural enemies of the pest (i.e., parasitoids; 

Figure 19). A similar response in Hatcher is potentially triggered and volatile methoxyphenol 

benzenoids are then released to attract WSS parasitoids (e.g., Bracon cephi and Bracon 

lissogaster). Upon recognition, triggered immunity involves the establishment of early events, 

including changes in transmembrane potential and intracellular Ca2+ concentrations, kinase 

cascades (e.g., WIPK), jasmonic acid signaling, and the oxidative burst [15-17]. Non-coding 

RNAs are exchanged and participate to the regulation of plant molecular responses [24]. No 

hypersensitive response at the site of oviposition is visible in Hatcher plants, nonetheless, 

evidence of calmodulin-based Ca2+ fluxes and reactive oxygen species scavenging was shown in 

infested plants [18,66]. Gene expression is then modified and Hatcher defense cascades involve 

up-regulation of proteinase inhibitors that reduce larval fitness [17]. Although there was no 

evidence of phytohormone signaling in Hatcher, up-regulation of a riboflavin synthase indicates 

a capacity to prime intact tissue through SAR [65,68]. Production and activation of 

phenylpropanoid pathway-related benzoxazinoids is promoted in infested Hatcher through 

cleavage of the inactive glycoside form and release of the toxic variant. Increased levels of two 

cysteine synthases and pyrimidine nucleoside enhance anti-herbivory compound and antioxidant 

biosynthesis [64,79]. Several defense metabolites are synthesized de novo upon infestation, and 

include neolignan compounds, coumaric acids, and benzopyrans. Hatcher is resistant to other 
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major pests of wheat such as M. destructor and D. noxia. Although insect elicitors are specific to 

pests down to the biotype level, generalist mechanisms of defense are triggered upon infestation 

by all types of phytophagous insects [16]. A general yet efficient wounding response occurs in 

Hatcher plants and contributes to high yield performance. 

3.5.5. Preliminary Conclusions 

Mass spectrometry-based proteomics and metabolomics data demonstrate a unique 

molecular response to insect infestation in the hollow-stem and WSS resistant cultivar Hatcher. 

Hatcher up-regulated proteins upon WSS feeding included detoxification, Ca2+ flux, proteinase 

inhibitor, and systemic signaling activities. Increased metabolites upon infestation included anti-

herbivory structures and associated precursors. Semi-solid-stem and resistant Conan displayed a 

different set of protein and metabolic changes after exposure to WSS, suggesting that pith 

expression is the major means of resistance in this cultivar and Hatcher resistance relies upon 

alternative molecular mechanisms that have been unexplored until then. Recent advances in 

wheat functional genomics, genome editing, and breeding techniques open new avenues for rapid 

identification and introgression of desirable traits [87]. Our data will be invaluable for wheat 

geneticists and breeders that seek to discover alternative candidate genes for resistance to C. 

cinctus. 
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Table 4. Differentially regulated proteins between control and infested plants.a 
(A) Hatcher proteins 

Biological processb 
Predicted IDd FCe p valuef Accession numberg 

Other 
cultivarh MP CP BR L RS Oc 

Down-regulated in the WSS treatment 

● ◦ ◦  ◦ ◦ Cinnamoyl CoA reductase ‡i 2.2 × 10-2 Traes_5DL_D93D4EE55.1 d 
● ◦     Dihydrolipoamide S-acetyltransferase ‡ 6.5 × 10-3 Traes_5BL_BA19E1CE3.1  
● ◦ ◦  ◦  Embryo defective 1473 ‡ 1.6 × 10-3 Traes_3B_62C323792.1  
● ◦     S-adenosyl-L-homocysteine hydrolase 0.72 1.9 × 10-2 Traes_2DL_488816050.2  
● ◦ ◦  ◦ ◦ Serine hydroxymethyltransferase ‡ 8.1 × 10-4 Traes_1AL_8EF2B803D.1  
● ◦   ◦  Transketolase ‡ 1.1 × 10-4 Traes_7AS_CB60FA3AE.1  
● ◦   ◦  Ubiquitin-activating enzyme E1 2 0.27 1.6 × 10-2 Traes_5DL_0BE2B1D42.2 C 
● ◦    ◦ UDP-glucose dehydrogenase 0.45 2.9 × 10-2 Traes_5DL_0A7630D1E.1  
● ◦ ◦ ◦ ◦ ◦ UDP-glucose pyrophosphorylase 2 ‡ 5.3 × 10-4 Traes_4AL_7CC1A63D3.1  
● ◦     UDP-XYL synthase 6 0.56 1.9 × 10-2 Traes_4AS_C839DCF3A.1  
◦ ●   ◦  Alanyl-tRNA synthetase 0.11 3 × 10-3 Traes_4AL_4CF27F6B1.1 C 
◦ ●  ◦ ◦  ATP synthase β-subunit 0.52 4.9 × 10-3 Traes_3AL_964D4D4CF.1  
◦ ● ◦  ◦  Ferredoxin:NADP(H) oxidoreductase ‡ 3.7 × 10-3 Traes_7AS_7BF04E4E6.1  
◦ ●     pfkB-like carbohydrate kinase 0.37 2.6 × 10-2 Traes_7DL_1A847FDCC.1  
◦ ●     Ribosomal L18p/L5e family protein ‡ 1.9 × 10-2 Traes_5BL_FA3E0DB03.1  
◦ ●    ◦ Ribosomal protein L35Ae 0.66 5.4 × 10-4 Traes_7BS_20CBEEF3C.1  
◦ ●    ◦ Ribosomal protein S3Ae ‡ 8.1 × 10-4 Traes_4BL_66E76E6B0.1  
◦ ●     Serine carboxypeptidase-like 49 ‡ 2.7 × 10-4 Traes_6DS_972C7F490.1  

◦ ◦ ◦ ● ◦ ◦ H+ translocating inorganic 
pyrophosphatase 

‡ 5.4 × 10-4 Traes_7BS_55CB27B54.1 
 

   ●   H+-ATPase subunit E isoform 3 0.67 7.1 × 10-3 TRAES3BF081200010CFD_t1  
◦ ◦ ◦ ● ◦ ◦ Sterol carrier protein 2 0.17 9.7 × 10-3 Traes_6DL_5C12D3124.1  

    ●  
Ankyrin repeat domain-containing 
protein 2A 

0.85 2.9 × 10-2 Traes_5BL_B66B801E5.1 
 

 ◦   ●  Calreticulin-1 0.66 2.5 × 10-2 Traes_2AL_070A611F6.2  
◦ ◦   ● ◦ Catalase-1 0.79 4.7 × 10-2 Traes_4DL_4FC0D4B27.1  
◦ ◦ ◦  ● ◦ Heat shock protein 70 ‡ 9 × 10-4 Traes_4BS_15014415A.1  

    ●  
Mannose-binding lectin superfamily 
protein 

‡ 1.1 × 10-3 Traes_2BS_A1F541056.1 
 

Up-regulated in the WSS treatment 

● ◦     6,7-dimethyl-8-ribityllumazine synthase ‡ 8.1 × 10-3 Traes_2DL_868EFCEB6.2  
●      α/β-hydrolase 4.03 6.2 × 10-3 Traes_5BL_885C2757D.2  
● ◦     Aspartate aminotransferase 3 1.31 1.1 × 10-2 Traes_3DL_870617108.1 D 
● ◦   ◦ ◦ Cysteine synthase 1.51 2.1 × 10-3 Traes_5BS_1AC8D3009.2  
● ◦   ◦  Cysteine synthase 1 1.85 1.2 × 10-3 Traes_5DS_581AB88F8.2  
● ◦ ◦    Embryo defective 2171 1.89 4.6 × 10-2 Traes_1AL_D20D648FD.1  
● ◦   ◦  Fructose-1,6-bisphosphatase ‡ 5 × 10-4 Traes_1AL_DA0EE1337.2  

● ◦   ◦  
Glyceraldehyde-3-phosphate 
dehydrogenase 

1.5 3.1 × 10-2 Traes_4DL_F394FF94A.1 
 

●    ◦  
NADPH-dependent alkenal/one 
oxidoreductase 

1.39 5 × 10-2 Traes_6AS_0D08DEFD0.1 
 

● ◦     pfkB-like carbohydrate kinase 1.53 3.6 × 10-2 TRAES3BF078000040CFD_t1  
● ◦   ◦  UBC35/UBC13A 2.61 2.1 × 10-2 TRAES3BF050900020CFD_t1  
◦ ● ◦  ◦ ◦ 40S ribosomal protein S6-2 1.86 1.3 × 10-2 Traes_2AS_C7813CD47.1  
◦ ● ◦    50S ribosomal protein L16 ‡ 2.1 × 10-3 EPlTAEP00000010050  

◦ ● ◦ ◦ ◦ ◦ Acidic protein associated with 40S 
ribosomal subunit 

1.3 3.9 × 10-2 Traes_2AS_3F458D2CF.1 
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◦ ● ◦  ◦  Ferredoxin:NADP(H) oxidoreductase 1.47 4.3 × 10-2 Traes_4AL_B9FA07247.2  
◦ ●   ◦  Photosystem I light harvesting complex 1.51 7.7 × 10-3 Traes_2AS_B86EFFF66.1  

◦ ●   ◦  
Photosystem I reaction center subunit 
VI-2 

1.44 1.8 × 10-2 Traes_1AL_C42DE440F.1 
 

◦ ● ◦  ◦  Ribosomal L28e protein family 2.68 3.4 × 10-2 Traes_1DL_115A0324A.1  
◦ ● ◦   ◦ Ribosomal protein L10 1.5 4.2 × 10-2 Traes_4BL_C336491A71.1  
◦ ● ◦    Ribosomal protein S5 ‡ 10-3 Traes_5BL_E948DCA4A.2  
 ◦ ● ◦  ◦ Profilin 5 1.4 4.7 × 10-2 Traes_7AS_DA1089F6B.2  
   ● ◦  Plasma membrane intrinsic protein 2;8 1.96 3 × 10-2 Traes_2BS_D8EC76A3B.2  
◦ ◦  ● ◦ ◦ Vacuolar ATP synthase subunit 1.19 3.6 × 10-2 Traes_7DL_D4B6FF473.1 D 
    ●  Adenylate kinase 1.22 3 × 10-3 Traes_7AL_B7810831E.1  
◦ ◦ ◦  ●  Bifunctional enolase 2 1.22 4.2 × 10-2 Traes_5AS_116663495.1 D 
    ●  Calmodulin 1.93 1.7 × 10-2 Traes_4AS_E2D1D9E5D.1  
◦ ◦   ●  Glutathione S-transferase ‡ 6.8 × 10-4 Traes_5AL_72929F651.1  
◦ ◦   ●  Glutathione S-transferase Z1 ‡ 6.4 × 10-3 Traes_5DL_9F421ABDC.1  
◦ ◦   ●  Hydroxypyruvate reductase 1.31 2.4 × 10-2 Traes_6AS_27483C00F.1  
      KH domain-containing protein ‡ 1.7 × 10-2 Traes_6AS_8C9DF7D23.1  

 ◦ ◦ ◦ ● ◦ Plasma-membrane associated cation-
binding protein 1 

1.52 3 × 10-2 TRAES3BF114000090CFD_t1 
 

    ●  PR-6 proteinase inhibitor 5.18 2.1 × 10-2 TRAES3BF070600020CFD_t1  
    ●  Remorin 3.85 5 × 10-2 Traes_2AL_47B1A5BF2.1  
    ●  Stress response component 4.99 1.9 × 10-2 Traes_5DL_DC720C4C0.2  
◦  ◦  ●  Thioredoxin M-type 1.64 2.2 × 10-2 Traes_5BS_B72CD04F2.1  
     ● Plastid transcriptionally active 16 1.2 4.5 × 10-2 Traes_3DL_43F4381AA.1  

aProteins were arranged based on their regulation after WSS infestation, major biological 
process, then alphabetical order. 
bThe five major biological processes were selected based on gene ontology data. 
cMP = metabolic process; CP = cellular process; BR = biological regulation; L = localization; RS 
= response to stimulus; O = other biological process; ● = most important GO biological process 
hit; ◦ = GO biological process hit. 
dPredicted IDs correspond to the best found hit using the Wheat Protein Database [42]. 
eFold changes were calculated as (mean WSS)/(mean No WSS) treatments, where WSS 
corresponds to the infested plants, No WSS represents controls. 
fp values were calculated from t tests (factors of treatment) and adjusted by a Benjamini–
Hochberg correction. 
gSpectra were searched and accession numbers obtained using Mascot v2.3.01 against the in-
house wheat peptide database. 
hImportant Hatcher proteins that were also differentially regulated in another cultivar. C = up-
regulated in Conan; d = down-regulated in Denali; D = up-regulated in Denali. 
i‡ = protein detected in only one treatment. 
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(B) Conan proteins 

Biological process 
Predicted ID FC p value Accession number  

MP CP BR L RS O 

Down-regulated in the WSS treatment 

● ◦   ◦  D-ribulose-5-phosphate-3-epimerase 0.5 1.6 × 10-2 Traes_4AS_13C312D8E.1  
● ◦   ◦  Fructose-1,6-bisphosphatase 0.12 8.8 × 10-3 Traes_3AL_392D17B3C.2  
● ◦ ◦  ◦ ◦ Gamma-aminobutyrate transaminase POP3 0.19 1.7 × 10-2 Traes_2AL_0BD6646BA.1  
● ◦   ◦ ◦ Glutamine synthetase 2 0.65 9.6 × 10-3 Traes_2BL_342BDEA35.2  
● ◦ ◦    Glycine cleavage T-protein 0.64 1.8 × 10-2 Traes_2BL_2768AE3B1.1  
● ◦     Glycolate oxidase 0.74 1.1 × 10-2 Traes_5BL_D70B77649.3  
● ◦   ◦  Glyoxalase/Bleomycin resistance protein ‡ 1 × 10-3 Traes_5BL_1D07AA86C.2  
● ◦     NAD-dependent malate dehydrogenase 0.57 1 × 10-2 Traes_5BL_8A99D83A5.1  
● ◦     NDH-dependent cyclic electron flow 1 0.62 3.7 × 10-2 Traes_4AS_DE6DD58CC.1  
● ◦     Ribulose bisphosphate carboxylase 0.73 7.3 × 10-3 EPlTAEP00000010047  
● ◦ ◦  ◦ ◦ Serine transhydroxymethyltransferase 1 0.81 2.4 × 10-2 Traes_4BS_A435E6D76.2  
● ◦   ◦  Triosephosphate isomerase 0.78 4.8 × 10-2 Traes_3DS_9C173AB38.1  
◦ ●   ◦ ◦ Chlorophyll a/b binding protein CP26 0.69 1.8 × 10-2 Traes_4DS_CC9F9317E.2  
 ●     Cyclophilin CYP20-3 ‡ 8.3 × 10-4 TRAES3BF160500010CFD_t1  
◦ ● ◦  ◦  Cytochrome b6-f complex iron-sulfur subunit 0.8 3.6 × 10-2 Traes_2AS_1475F8BDB.1  
◦ ●   ◦  Ferredoxin:NADP(H) oxidoreductase 0.76 1.7 × 10-2 Traes_6DS_7A1EB4B66.1  
◦ ●     Photosystem I P700 chlorophyll a apoprotein 

A1 
0.52 4.5 × 10-2 EPlTAEP00000010026  

◦ ●     Photosystem II CP47 reaction center protein 0.67 5.5 × 10-3 EPlTAEP00000010015  
◦ ●    ◦ Photosystem II reaction center PsbP family 0.11 1.5 × 10-3 Traes_5BS_69F251543.2  
◦ ●     PsbP-like protein 1 0.44 5.3 × 10-3 Traes_4DS_80C6168FE.1  
◦ ●   ◦ ◦ ZKT ‡ 2.7 × 10-2 Traes_2BS_90255A78E.2  
  ●  ◦  Lipoamide dehydrogenase 0.72 2.7 × 10-2 Traes_1BS_15C828137.2  
◦ ◦  ● ◦  ATP synthase subunit beta 0.79 4 × 10-2 Traes_2BS_68A7179D8.2  
◦ ◦  ● ◦  ATP synthase subunit beta 0.79 2.9 × 10-2 Traes_1AS_45DF41500.1  
   ●   GTP-binding protein-related 0.18 2.2 × 10-2 Traes_5DL_64C6A2250.1  
  ◦  ●  2-Cys peroxiredoxin ‡ 3 × 10-5 Traes_2BL_E6F86DAFA.1  
  ◦  ● ◦ Beta carbonic anhydrase 0.74 4.4 × 10-3 TRAES3BF026200060CFD_t1  
◦ ◦ ◦  ●  Calmodulin-binding protein 0.67 3.3 × 10-2 TRAES3BF153400060CFD_t1  
◦ ◦ ◦  ● ◦ Chloroplast RNA binding 0.64 1.6 × 10-3 Traes_5BS_4D44AE9D6.2  
◦ ◦   ● ◦ Chloroplast stem-loop binding protein 0.41 3.8 × 10-3 Traes_6AS_606F61E8B.1  
  ◦  ● ◦ Cystathionine beta-synthase domain-

containing protein 
0.57 8.4 × 10-3 Traes_4DS_4D761086B.1  

◦ ◦   ●  Glycine-rich RNA-binding protein 8 0.8 1.1 × 10-2 Traes_5BS_8ECE54AC4.1  
    ●  Glyoxylate reductase 2 ‡ 5 × 10-5 TRAES3BF042100010CFD_t1  
◦ ◦ ◦  ●  Heat shock protein 70 0.78 2.8 × 10-2 Traes_1AL_51CED3DBF.1  
◦ ◦   ●  Microsomal ascorbate peroxidase APX3 0.59 4.5 × 10-2 Traes_7AS_81327ECA0.1  
◦ ◦ ◦  ●  Oxygen-evolving enhancer protein 2 0.81 3.1 × 10-2 Traes_2AL_0A039E562.1  
◦ ◦   ●  Peroxidase ‡ 1 × 10-2 Traes_6AS_D49C93E84.1  
◦ ◦ ◦  ●  Thylakoid ascorbate peroxidase 0.6 1.3 × 10-2 Traes_6BL_83DE6DC09.1  
      ? 0.06 1 × 10-2 Traes_2DL_9E58CB2D5.1  
     ● Thiosulfate:cyanide sulfurtransferase 0.56 3.3 × 10-2 Traes_5BS_F8604D316.2  

Up-regulated in the WSS treatment 

● ◦   ◦  AICARFT/IMPCHase bienzyme family 1.78 2.6 × 10-2 Traes_1AL_3336F1DFB.1  
● ◦     Alpha-l-arabinofuranosidase/beta-d-

xylosidase 
5.73 9.8 × 10-3 Traes_4AL_351DA9BAE.1  

● ◦     Biotin synthetase ‡ 6.8 × 10-3 Traes_3AL_45EF63187.1  
● ◦     GDP-D-mannose 3',5'-epimerase ‡ 3.5 × 10-3 Traes_1BL_1CCF44ECE.1  
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● ◦     Glutamate decarboxylase 5 1.81 6.7 × 10-3 TRAES3BF050800360CFD_t1  
● ◦   ◦ ◦ Glycyl-tRNA synthetase ‡ 1.5 × 10-2 Traes_7DS_817122161.1  
● ◦   ◦ ◦ NADP-ME2 ‡ 2 × 10-5 Traes_1AS_A53D11A37.1  
● ◦   ◦ ◦ Phosphoenolpyruvate carboxylase 1.88 3.8 × 10-2 Traes_5BL_6642E2A8B.1  
● ◦ ◦  ◦  Sucrose synthase activity 10.53 3.5 × 10-2 Traes_4AL_2BC235062.1  
● ◦   ◦  Ubiquitin-activating enzyme E1 2 7.37 4.1 × 10-2 Traes_5DL_0BE2B1D42.2  
● ◦ ◦    Ubiquitin-like modifier (SUMO) polypeptide 6.71 5.1 × 10-3 TRAES3BF091100230CFD_t1  
◦ ●     20S proteasome beta subunit 1.51 4.5 × 10-2 Traes_4DS_8EF070D72.1  
◦ ●   ◦  20S proteasome beta subunit 1.48 1.2 × 10-2 Traes_4DS_058D6EF22.1  
◦ ●   ◦  Alanyl-tRNA synthetase 3.53 3.1 × 10-2 Traes_4AL_4CF27F6B1.1  
◦ ●     Cytochrome b559 subunit alpha 1.45 4 × 10-2 EPlTAEP00000010041  
◦ ●     NADH-ubiquinone oxidoreductase-related ‡ 3.4 × 10-3 Traes_4BL_3EFFEDE44.1  
◦ ●   ◦  Photosystem II type I chlorophyll a/b-binding 

protein 
4.72 3.8 × 10-2 Traes_1AL_0F39673AF1.3  

◦ ●    ◦ Ribosomal protein L1p/L10e family 2.28 7.2 × 10-3 Traes_4BS_4DB5737A6.1  
◦ ●    ◦ Ribosomal protein L7Ae/L30e/S12e/Gadd45 

family 
16.38 2.3 × 10-4 Traes_5DL_1299E23A4.1  

◦ ● ◦  ◦  Ribosomal protein large subunit 27 2.94 3.6 × 10-2 TRAES3BF146000050CFD_t1  
◦ ● ◦ ◦   Ribosomal protein S4 4.55 2.5 × 10-2 Traes_5AS_9F681D8F1.1  
 ● ◦   ◦ Sec14p-like phosphatidylinositol transfer 

family 
5.14 1.9 × 10-2 TRAES3BF043700170CFD_t1  

 ●     TCP-1/cpn60 chaperonin family 5.96 3.2 × 10-2 Traes_7AL_F3ED3303D.1  
 ●   ◦  TCP-1/cpn60 chaperonin family protein 2.52 3.7 × 10-3 Traes_6DL_30AD166CD.1  
   ●   ARM repeat superfamily ‡ 8.2 × 10-3 Traes_5AS_33A86266A.1  
 ◦  ●  ◦ Clathrin heavy chain 1 ‡ 3.8 × 10-3 Traes_4DS_EB7A5C35C.2  
   ●   Coatomer ‡ 2.9 × 10-3 Traes_5AL_E153CEC65.1  
 ◦ ◦ ● ◦  GDP dissociation inhibitor ‡ 5 × 10-3 Traes_1DL_401D433BE.1  
◦ ◦  ●   Vacuolar ATP synthase subunit B1 1.22 3.4 × 10-2 Traes_7AL_B89A5FB9A.1  
◦ ◦ ◦  ● ◦ 26S proteasome subunit 2.27 3.2 × 10-2 Traes_2AS_DFDA79E58.1  
◦ ◦ ◦ ◦ ●  Ankyrin repeat domain-containing protein 2B 1.61 3 × 10-2 Traes_7AS_860ACFB35.1  
  ◦  ●  Elongation factor 1-beta 1.46 3.8 × 10-2 Traes_2DS_C6B631387.1  
◦ ◦ ◦  ●  General regulatory factor 1.61 4.1 × 10-2 Traes_4BS_342A62CE6.1  
◦ ◦ ◦  ●  General regulatory factor 1.29 1.9 × 10-2 Traes_4AL_6B5C89E7C.1  
◦ ◦   ●  Phi glutathione transferase 1.99 5.7 × 10-3 Traes_4BL_689C6389A.1  
 ◦ ◦  ● ◦ Thioredoxin family 1.2 1.8 × 10-2 Traes_1AS_C0D4CD39A.2  
 ◦ ◦  ◦ ● Actin 1.1 1.5 × 10-2 Traes_1AS_A8AD3BE99.2  
 ◦ ◦  ◦ ● DC1 domain-containing protein 3.55 4.7 × 10-2 Traes_2DL_28DFAC79D.2  
◦ ◦    ● Nucleolin like 1 ‡ 3.5 × 10-3 Traes_7BS_1F4C5C328.1  
      Aluminum induced protein 1.46 4 × 10-2 Traes_5BL_17F1F28B6.1  
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(C) Denali proteins 

Biological 
process Predicted ID FC p value Accession number  
MP CP BR L RS O 

Down-regulated in the WSS treatment 

● ◦   ◦ ◦ Cinnamoyl CoA reductase 0.65 3.5 × 10-2 Traes_5DL_D93D4EE55.1  
● ◦    ◦ Geranylgeranyl reductase ‡ 3.4 × 10-2 Traes_6DL_0FF72D765.1  
● ◦    ◦ Glutamate-1-semialdehyde 2,1-aminomutase 0.62 1.9 × 10-2 Traes_7AS_9C283FE66.1  
● ◦ ◦  ◦  Glycolate oxidase 0.72 4.4 × 10-2 Traes_2AL_C51BB91CC.3  
● ◦   ◦ ◦ NADPH:protochlorophyllide oxidoreductase B 0.37 4.3 × 10-2 Traes_1AL_BB3D071F8.1  
◦ ●   ◦ ◦ 26S proteasome subunit RPN8a 0.58 9.2 × 10-3 Traes_2AL_AA6937D6B.1  
◦ ●     Cytochrome b559 subunit alpha 0.4 4.4 × 10-2 EPlTAEP00000010041  
◦ ●     Ribosomal protein L3 family 0.4 4 × 10-3 Traes_6AS_478618F75.1  
◦ ●     Ribosomal protein L4 0.57 2.6 × 10-2 Traes_4DL_31D6228F5.1  
◦ ● ◦ ◦ ◦ ◦ Thylakoid formation 1 0.57 1.7 × 10-2 Traes_2DS_D106620BE.1  
 ◦  ◦ ● ◦ Chaperone protein htpG family 0.51 4.2 × 10-2 Traes_5AL_1DA3B4631.1  
 ◦ ◦  ● ◦ Chloroplast chaperonin 60 0.65 4.9 × 10-2 Traes_7AS_3247D97E8.2  
◦ ◦   ● ◦ Chloroplast RNA binding protein 0.26 1.4 × 10-2 Traes_2DS_01D518748.1  
◦  ◦  ● ◦ Chloroplastic drought-induced stress protein 0.24 4.3 × 10-2 Traes_6DL_C6E63ED1C.1  
◦ ◦   ●  Glyoxylate aminotransferase 0.65 4.8 × 10-2 Traes_2AL_85FCE950B.1  
  ◦  ● ◦ Rubisco activase 0.61 1.3 × 10-2 Traes_4DS_5C2095EE7.2  

Up-regulated in the WSS treatment 

● ◦ ◦  ◦ ◦ 26S proteasome AAA-ATPase subunit RPT4a 2.38 3.2 × 10-2 Traes_7AL_EA1DE71E6.1  
● ◦     3-keto-acyl-CoA thiolase 2 precursor 1.8 1.9 × 10-2 Traes_6DL_7960654CF.2  
● ◦   ◦ ◦ Aconitase 1.29 1.5 × 10-2 Traes_6AL_28CCA7F5D.1  
● ◦   ◦ ◦ Aconitase 1.25 3.9 × 10-2 Traes_6BL_4704FF2B4.1  
● ◦   ◦  Aconitase 1 1.81 1.5 × 10-2 Traes_4DL_3D374FF4C.1  
● ◦     Aldolase 1.16 1.8 × 10-2 Traes_3AL_441C0AE1B.1  
● ◦ ◦  ◦  Aldolase-type TIM barrel family protein 1.3 4.6 × 10-2 TRAES3BF142600080CFD_t1  
● ◦     Aspartate aminotransferase 3 2.03 1.3 × 10-3 Traes_3DL_870617108.1  
● ◦ ◦    Betaine aldehyde dehydrogenase 1.46 4.9 × 10-2 Traes_6AL_42AEB5299.1  
● ◦    ◦ Dehydroquinate-shikimate dehydrogenase 7.48 6.1 × 10-3 Traes_5AS_908BF5D38.1  
● ◦ ◦  ◦  Enolase 1.31 2 × 10-2 Traes_5AS_116663495.1  
● ◦ ◦  ◦ ◦ Glycosyltransferase ‡ 2.5 × 10-3 Traes_7BL_0E93FBCFF.2  
● ◦ ◦  ◦  Hydroxycinnamoyl-Coenzyme A 

shikimate/quinate 
hydroxycinnamoyltransferase 

4.69 2.5 × 10-2 Traes_6AL_D8A91F983.1  

● ◦   ◦  Lactate/malate dehydrogenase ‡ 4 × 10-5 Traes_6DS_5DBF48560.1  
● ◦   ◦  Mitochrondrion targeted citrate synthase 1.68 4.1 × 10-2 Traes_6BS_682497935.1  
●      NAD(P)-linked oxidoreductase 1.43 1.1 × 10-2 Traes_2BL_2FD539228.2  
● ◦ ◦  ◦  NADP+-isocitrate dehydrogenase 1.61 4.4 × 10-2 Traes_3AL_3D5C860FD.1  
● ◦     N-carbamoylputrescine amidase ‡ 4.8 × 10-4 Traes_5DS_01D241425.1  
● ◦     Nitrilase/cyanide hydratase 5.62 4.7 × 10-2 Traes_4AS_CDEB9D532.2  
● ◦   ◦  Orotate phosphoribosyltransferase/orotidine-5'-

phosphate decarboxylase 
6.56 2.2 × 10-2 TRAES3BF139100030CFD_t1  

● ◦   ◦ ◦ Phosphoenolpyruvate carboxylase 1.71 4.6 × 10-2 Traes_5BL_6642E2A8B.1  
● ◦     Pyrophosphorylase 2 1.45 3.3 × 10-2 Traes_6AL_7E70268F1.2  
● ◦ ◦  ◦  Spermine synthase ‡ 1.7 × 10-2 Traes_1DL_43FED2619.1  
● ◦ ◦    Ubiquitin-like modifier (SUMO) polypeptide 5 3.7 × 10-2 TRAES3BF091100230CFD_t1  
◦ ●     20S proteasome beta subunit PBB2 1.28 2.5 × 10-2 Traes_1BS_548536A26.2  
◦ ● ◦  ◦ ◦ 26S proteasome AAA-ATPase subunit RPT3 9.05 3.2 × 10-2 Traes_2AL_80D15B4FB.1  
◦ ●   ◦  60S acidic ribosomal protein P2 ‡ 4.7 × 10-4 Traes_6AS_D49C93E84.1  
◦ ●   ◦  Cysteine proteinase 1.8 1.7 × 10-2 Traes_5DL_AC7C885A0.1  



99 
 

  ●    F1F0-ATPase inhibitor protein ‡ 8 × 10-5 Traes_7DS_427AD6E51.1  
 ◦ ◦ ● ◦  GDP dissociation inhibitor 8.91 2.1 × 10-2 Traes_1DL_401D433BE.1  
◦ ◦ ◦ ●  ◦ Pleckstrin homology (PH) domain superfamily 2.17 2.8 × 10-2 Traes_1AL_06BC2ED91.1  
   ● ◦  Rab1 GTPase 1.42 4.5 × 10-2 Traes_3DL_4B8AB34A9.1  
◦ ◦  ● ◦ ◦ Vacuolar ATP synthase subunit 1.4 1.3 × 10-2 Traes_7DL_D4B6FF473.1  
   ◦ ●  Annexin 1.54 4.7 × 10-2 Traes_7AS_FFB7CAFC3.1  
◦ ◦   ● ◦ Chitinase ‡ 9.8 × 10-4 Traes_6DS_AA77F7548.1  
 ◦   ● ◦ heat shock protein 90 1.23 2.5 × 10-2 Traes_7DS_CB359539B.1  
    ●  Mitochondrial aldehyde dehydrogenase 1.45 1.3 × 10-2 Traes_7AS_DE1248005.1  
◦ ◦   ●  Peroxidase ‡ 1.3 × 10-2 Traes_2DL_1CB540BCC.3  
◦ ◦   ●  Phi glutathione transferase 1.37 7.5 × 10-3 Traes_1AL_1B8FDA3D4.1  
◦ ◦ ◦ ◦ ● ◦ Phytochelatin synthase 4.23 4.6 × 10-2 Traes_4DL_A6F0CFF85.1  
 ◦ ◦  ● ◦ Protein disulfide-isomerase 1.73 2.9 × 10-2 Traes_4DS_26272902A.1  
◦ ◦ ◦  ● ◦ Sulfite reductase 1.92 2 × 10-2 Traes_1AL_5A7E85C4E.1  
 ◦ ◦  ◦ ● DC1 domain-containing protein 1.94 3.8 × 10-2 Traes_2DL_28DFAC79D.2  
 ◦ ◦  ◦ ● Receptor for activated C kinase 1C 1.81 3.3 × 10-2 TRAES3BF007900030CFD_t1  
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(D) Reeder proteins 

Biological process 
Predicted ID FC p value Accession number  

MP CP BR L RS O 

Down-regulated in the WSS treatment 

●  ◦ ◦ ◦  Chalcone synthase ‡ 5 × 10-5 Traes_2BS_9E10D26DB.1  
● ◦   ◦  Glutamate dehydrogenase 0.15 1.8 × 10-2 Traes_5AL_1DD952467.1  
● ◦   ◦  Phosphofructokinase 0.2 2 × 10-2 Traes_7BS_0BE381F61.1  
● ◦  ◦   Sucrose-phosphate synthase ‡ 4.7 × 10-3 Traes_3AS_6505083E0.1  
● ◦   ◦  Triosephosphate isomerase 0.87 1.9 × 10-4 Traes_3AS_AE3D5013D.1  
◦ ●    ◦ CDC48-interacting UBX-domain protein ‡ 1.6 × 10-3 Traes_2DL_8D23EB0D7.1  
    ●  GTP binding elongation factor Tu family 0.19 1.5 × 10-2 Traes_4AL_766B299B1.1  
 ◦ ◦  ● ◦ Homologous to co-chaperon DNAJ 0.13 1.4 × 10-2 Traes_5BL_CF5A8348D.2  
◦ ◦   ●  Lambda glutathione transferase ‡ 1.1 × 10-3 Traes_4AS_2197EE051.1  
    ●  Late embryogenesis abundant protein 0.61 3.6 × 10-2 Traes_5BL_CE7069050.1  
◦ ◦  ◦ ● ◦ Phytochelatin synthase ‡ 2.9 × 10-3 Traes_4DL_A6F0CFF85.1  

Up-regulated in the WSS treatment 

● ◦   ◦ ◦ Alpha-1,4-glucan-protein synthase family ‡ 2 × 10-2 Traes_2AL_41B176D01.2  
● ◦ ◦  ◦  Aspartate aminotransferase 5 1.47 4.4 × 10-2 Traes_6DL_961B6AFC5.1  
● ◦   ◦  Dehydroascorbate reductase 1 ‡ 4 × 10-5 Traes_7AS_0BB13DD79.1  
● ◦   ◦  D-ribulose-5-phosphate-3-epimerase 1.8 2.6 × 10-2 Traes_4AS_13C312D8E.1  
● ◦   ◦  Fructose-bisphosphate aldolase 1 1.27 9.3 × 10-3 Traes_4BS_D12DBE6D3.1  
● ◦   ◦  Fructose-bisphosphate aldolase 2 1.35 1.2 × 10-2 Traes_5DS_D693664F7.4  
● ◦     Glyceraldehyde 3-phosphate dehydrogenase A 

subunit 2 
1.15 4 × 10-2 Traes_2BL_5D64E8C87.1  

● ◦   ◦  Glyceraldehyde-3-phosphate dehydrogenase 1.52 2.1 × 10-2 Traes_4DL_F394FF94A.1  
● ◦     Pinoresinol reductase ‡ 2.2 × 10-2 Traes_2BS_23E0AC565.2  
● ◦    ◦ Triosephosphate isomerase 1.45 2.9 × 10-2 Traes_5BL_D5F2A5070.1  
◦ ● ◦  ◦  50S ribosomal protein L12-C 2.14 4.9 × 10-2 TRAES3BF028000060CFD_t1  
◦ ●   ◦  Cysteine proteinase 1.54 3 × 10-2 Traes_5DL_AC7C885A0.1  
◦ ●   ◦  Light harvesting complex of photosystem II 1.35 1.8 × 10-2 Traes_2BS_4AE914BE2.1  
◦ ●   ◦  Ribulose bisphosphate carboxylase 1.38 3.5 × 10-2 Traes_5AL_AD0034878.1  
◦ ●   ◦  Rubisco small subunit (RBCS) 1.31 4.6 × 10-2 Traes_2AS_3953901E4.1  
◦ ●     Thylakoid photosystem I subunit 2.47 4.8 × 10-2 Traes_2AS_D26D32A7C.1  
◦ ● ◦  ◦  U2 small nuclear ribonucleoprotein A ‡ 1.1 × 10-2 Traes_4AL_8C7636C36.1  
  ●  ◦ ◦ RNA-binding family 5.88 1.5 × 10-2 Traes_5DL_63AB65800.2  
   ●   Vacuolar ATP synthase subunit D 1.58 4.3 × 10-2 Traes_2AL_2B01693491.2  
   ●   Vacuolar membrane ATPase complex 3.03 3.3 × 10-2 Traes_2AL_152FE9E5F.1  
◦ ◦   ●  Beta-d-xylosidase 1.65 2 × 10-2 Traes_2AL_3E4F9254A.1  
    ●  Disease resistance-responsive family 1.96 3.8 × 10-2 Traes_4DS_234713A1E.1  
    ●  Early endosome antigen 3.33 2.8 × 10-2 Traes_2DL_8A52AFA08.2  
◦ ◦   ● ◦ Fumarate hydratase 1 1.75 8.9 × 10-3 Traes_4AS_2DCA42965.1  
    ● ◦ Methionine sulfoxide reductase 1.7 2.5 × 10-2 Traes_4DS_AFAF2A29E.1  
◦ ◦   ●  Nucleoside diphosphate kinase type 1 1.34 2.3 × 10-2 Traes_1AL_6F2E87864.2  
◦ ◦   ●  Phi glutathione transferase 2.83 3.3 × 10-2 Traes_3DL_B1E3D279A.1  
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Table 5. Differentially regulated metabolites between control and WSS infested wheat.a 

Superclassb Subclassc Chemical name (abbr…)d RTe m/zf p valueg  

Down-regulated in the WSS treatment - Hatcher 

Alkaloid/der. Harmala alkaloid 1-(9H-β-Carbolin-1… 204 422.1744 7.7 × 10-3 ●h 

Lipid/lipid-like cmp. 

Taxane/der. (2aR,4S,4aS,5R,6R,8S,9aS… 309 650.294 2.7 × 10-2  
Saccharolipid 2-[4-({[(2R*,3E,4R*)-3-ethyl… 225 910.3106 4.2 × 10-2  
Diterpenoid 4-[Formyl(methyl)amino]… 340 468.3094 2.7 × 10-2  
1-acyl-sn-glycero-3-
phosphocholine 

LPC(18:3) 452 517.3178 2.4 × 10-2  

Trihydroxy acid - 331 586.2915 3 × 10-2  
Hydroxysteroid - 313 806.3362 1.3 × 10-2 ● 

Organic acid/der. 

Tetracarboxylic acid (1R,3S,4S,5S,6R,7R)-4,7… 267 666.2885 4 × 10-2  
Tetracarboxylic acid Decipinin A 290 600.2207 3.4 × 10-2  
Oligopeptide - 260 372.2118 3.2 × 10-2  
Keto acid/der. - 354 248.1073 4.8 × 10-2  

Organic oxygen cmp. 

Aminocyclitol 
glycoside 

(1R,2S,3S,4S,5S,6R)-2,3,4… 28 355.1485 5.1 × 10-3 ● 

Glucuronic acid der. 2,3,5-trihydroxy-4-methoxy… 335 224.0531 3.5 × 10-2  
Monosaccharide 
phosphate 

2-Deoxy-6-O-phosphono… 46 246.0511 3.5 × 10-2  

Organoheterocyclic 
cmp. 

Indolizidine - 300 434.1245 1.3 × 10-3 ● 
6-aminopurine 9-(β-D-Erythro-pentofuran… 300 265.081 5.9 × 10-3 ● 
Isoindolone (2R,2'R,4'aS,6'R,8'aS)-7-Aceton… 264 441.2505 2.1 × 10-2 ● 

Phenylpropanoid/ 
polyketide 

Cinnamic acid ester {2-[4-(Hydroxymethyl)-2… 288 396.1574 4.8 × 10-2  
Coumarin/der. Scoparon 379 206.0588 4.6 × 10-2  
Flavonoid-7-O-
glycoside 

Veno-V 222 608.1732 3.9 × 10-2  

- 

Benzoxazinoid 
glycoside 

DIBOA-glucoside 106 343.0913 7.5 × 10-3 ● 

Benzodioxole Fagaramide 61 247.1213 4 × 10-2  
- 4-{[(3R,4R)-4-(4-Hydroxy-3… 225 520.1936 7.9 × 10-3 ● 
- (1S,3aS,4R,6aR)-1,4-Bis… 246 536.1899 1.4 × 10-2  
- Propanamide, N… 248 555.2224 4.3 × 10-2  

Up-regulated in the WSS treatment - Hatcher 

Benzenoid 

Tyrosol/der. Propanoic acid 4-hydroxy… 240 194.0946 1.4 × 10-2 ● 
Benzenesulfonyl cmp. 4-(4-isopropoxyphenyl)… 221 292.0779 3 × 10-2  
Benzene 4,4-dimethyl-2-phenyl… 32 175.1005 3.1 × 10-2  
Methoxyphenol - 383 208.0743 8.6 × 10-3 ● 

Lignan 
Neolignan Methyl (2E)-3-(4-{[(1R,2R)-1,3… 285 404.1488 1.6 × 10-3 ● 
Furanoid lignan (1S,2S,1'S,2'S)-2,2'-{(1R,3aS… 359 810.3093 3.1 × 10-2  
 Huazhongilexin 286  6.2 × 10-3  

Lipid/lipid-like cmp. 

Fatty alcohol ester [(2Z,8Z)-10-hydroxydeca-2,8… 337 204.0789 2.1 × 10-2 ● 
Methionine/der. (2S)-2-amino-4-dimethyl… 224 163.0673 4 × 10-2  
Triterpenoid Microtropioside B 370 502.3147 4 × 10-2  
Guaianolide/der. - 277 376.1521 1.9 × 10-2 ● 
Colensane/clerodane 
diterpenoid 

- 322 806.3351 3.8 × 10-2  

Xanthophyll - 417 738.3807 4.8 × 10-2  

Nucleoside 
1-ribosyl-imidazole 
carboxamide 

- 23 380.073 9.9 × 10-5 ● 
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Pyrimidine 
ribonucleoside 
monophosphate 

- 23 542.1261 1.2 × 10-2 ● 

Organic acid/der. Tricarboxylic acid/der. 8-O-Acetyl-pumilin 343 416.1479 6 × 10-3 ● 
Organic nitrogen 
cmp. 

Nitroguanidine Confidor 237 255.0532 2.7 × 10-2  

Organic oxygen cmp. 
O-glycosyl cmp. β-D-Glucopyranose, 6-O-D… 312 372.1274 5.2 × 10-3 ● 
Thioglycoside Isopropyl 4-O-(β-D… 349 400.1404 1.6 × 10-2 ● 

Organoheterocyclic 
cmp. 

Butenolide - 333 208.0744 2 × 10-5 ● 
Azaphilone - 335 416.1479 4.8 × 10-3 ● 
Phenylimidazole 3-Nitroso-2-phenylimidazo… 311 224.0703 6.2 × 10-3 ● 
2-benzopyran 8-Hydroxy-5-(hydroxymethyl… 299 208.0745 7.4 × 10-3 ● 
Bi/oligopyridine Coretec 245 250.0854 4.2 × 10-2  
Indole Didemethylasterriquinone D 632 370.096 2.9 × 10-2  
Pyranone/der. 4-Methoxy-5-methyl-6-oxo… 318 208.0745 1.3 × 10-2 ● 

Phenylpropanoid/ 
polyketide 

Coumaric acid/der. Methyl (2E)-3-(4-hydroxy… 293 208.0745 1.1 × 10-2 ● 
2-arylbenzofuran 
flavonoid 

Egonol acetate 336 368.125 4.7 × 10-2  

Flavonoid O-glycoside [(2S,4S,5R)-2-[(2S)-2-(3,4… 387 568.1588 1.4 × 10-2 ● 
Angular 
pyranocoumarin 

- 322 388.1522 1.8 × 10-2 ● 

- 

Hydropyrimidine - 522 270.1479 3.8 × 10-2  
- (2Z)-4-{2,6-Dihydroxy-3-[(2E)... 337 546.1894 2.6 × 10-3 ● 
- 2-Acetyl-5-methoxyphenyl… 339 622.2111 1.3 × 10-2 ● 
- (4aR,6S,7R,7aR)-4-Formyl-1… 239 522.1747 1.9 × 10-2 ● 
- 4,4'-{(2R,2'S,5R,5'S,6S,6'R)… 353 810.3092 4.9 × 10-2  
- Cicerin 7-(6-malonylglucoside)… 302 578.1276 1.9 × 10-2  
- (2R)-3-Hydroxy-3-methyl… 355 386.1371 3.1 × 10-2  

Down-regulated in the WSS treatment - Conan 

Lignan Lignan glycoside Obtusifoside B 255 892.3011 2.9 × 10-2  
Organoheterocyclic 
cmp. 

Naphthopyranone 3-(9,10-Dihydroxy-7-methoxy… 163 476.1106 4.7 × 10-2  

Phenylpropanoid/ 
polyketide 

7-O-methylated flavonoid Beilschmieflavonoid B 157 600.2352 3.8 × 10-2  
Macrolide Integerrimine 277 335.1733 1.9 × 10-2 ● 

Up-regulated in the WSS treatment - Conan 

Lipid/lipid-like cmp. 
Xanthophyll - 425 738.3865 4.5 × 10-3 ● 
Terpene glycoside - 251 583.2268 3.5 × 10-2  

Organic acid/der. Oligopeptide - 539 480.1098 2.9 × 10-2  

Organoheterocyclic 
cmp. 

8-prenylated xanthone 3,4,8-trihydroxy-2-methoxy… 279 342.1111 1.2 × 10-2  
Dihydropyridinecarboxylic 
acid 

Adalate 232 346.1156 1.6 × 10-2  

- 

- (1S,3aS,4Z,6S,7R,8S,8aS,11R… 247 598.2256 3.1 × 10-2  
- 2-(6a-Hydroxy-8,9-dimethoxy… 253 588.1851 1.3 × 10-2 ● 
- 3-[(5-Acetyl-4,6-dihydroxy… 208 400.1528 5.6 × 10-4 ● 
- 3-Hydroxy-2-{[(2E)-3-(4… 279 252.0642 4.6 × 10-2  
- Alanyl-N-(6-amino-2-pyridinyl)… 264  3.6 × 10-2  

Down-regulated in the WSS treatment - Denali 

Organic acid/der. α amino acid/der. Fosfocreatinine 18 193.026 4.2 × 10-2 ● 
Phenylpropanoid/ 
polyketide 

Macrolide Integerrimine 277 335.1733 1.9 × 10-2 ● 

Up-regulated in the WSS treatment - Denali 

Benzenoid Benzylether 6-[(1S,2R)-1-Hydroxy-2-methoxy… 281 248.1053 4.9 × 10-2 ● 
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Lipid/lipid-like cmp. 
Medium-chain fatty 
acid 

- 280 310.1188 2.9 × 10-2  

Nucleoside 
Pyrimidine 
ribonucleoside 
monophosphate 

- 23 542.1261 2.7 × 10-3 ● 

Organoheterocyclic 
cmp. 

Carbazole (2'S,3'S,4R)-2,2''-Diimino-2'… 418 508.2338 1.8 × 10-2  
Dioxolopyran (2,2,7,7-Tetramethyltetrahydro… 209 353.1146 1.1 × 10-2 ● 

Phenylpropanoid/ 
polyketide 

Flavonoid-7-O-
glycoside 

[(2R,3S,4R,5R,6S)-6-[(2S,3R,4S… 236 708.1907 10-4 ● 

7-O-methylated 
flavonoid 

Beilschmieflavonoid B 157 600.2352 1.2 × 10-3 ● 

- 
- 3-[(5-Acetyl-4,6-dihydroxy… 208 400.1528 5.6 × 10-4  
- Isopropyl 2-methoxyethyl… 269 418.1733 2.4 × 10-3 ● 

Down-regulated in the WSS treatment - Reeder 

Benzenoid Benzenesulfonamide 4-(3-amino-1H-indazol-5-yl)-N… 206 344.1302 2.6 × 10-2  

Organic acid/der. 
α amino acid/der. (3R,6S)-3-Hydroxy-3-(3-hydroxy… 266 424.1388 2.1 × 10-2 ● 
α amino acid amide Tert-butyl (2S)-2-carbamoyl… 66 228.1476 2.7 × 10-2  

Organoheterocyclic 
cmp. 

Porphyrin - 280 648.2717 2.4 × 10-2 ● 
Phtalide Salvianduline C 224 400.1531 3.7 × 10-2  
Hydroxypyrimidine Thymine 5-methyluracil 63 126.0434 4 × 10-2  

Phenylpropanoid/ 
polyketide 

Coumaric acid/der. Prenyl caffeate 256 248.1045 2.3 × 10-2 ● 

- - Methyl {(1R,2R)-2-[(2Z)-5… 339 402.189 4.8 × 10-3 ● 

Up-regulated in the WSS treatment - Reeder 

Organic oxygen cmp. 
Monosaccharide 
phosphate 

- 259 344.1343 4.1 × 10-2  

- 
- (1aR,3aS,5aR,6S,9S,10aS,10bR)… 150 494.2884 4.1 × 10-2  
- Athrombin K 242 308.1043 4.4 × 10-2  

aCompounds were classified based on their regulation in the WSS treatment and superclass. 
Abbr… = abbreviated name, full names are available in Table S1; RT = retention time; m/z = 
mass-to-charge ratio; VIP = variable importance for the projection; der. = derivative; cmp. = 
compound. 
bSuperclasses correspond to the second highest level of ontology based on the ClassyFire 
algorithm. 
cSubclasses correspond to the lowest level of ontology based on the ClassyFire algorithm. 
dCompounds were assigned chemical names using the International Union of Pure and Applied 
Chemistry (IUPAC) nomenclature. 
eCompound retention times were measured based on the time of elution from the 
chromatography column. 
fmass-to-charge ratios were obtained from mass spectrometry output. 
gp values were calculated from t tests (factors of treatment) and adjusted by a Benjamini–Hochberg 
correction. 
hMetabolite with high variable importance of the projection (VIP) score in the OPLS model. 
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Table 6. Metabolites with high contribution to the Hatcher OPLS-DA model.a 

#b Superclassc Sucblassd Chemical name (abbr…)e RTf m/zg p valueh 
VIP 
scorei 

Down-regulated in the WSS treatment 

1 Alkaloid/der. Harmala alkaloid 1-(9H-β-Carbolin-1… 204 422.1744 7.7 × 10-3 1.58 

2 
Lipid/lipid-like 
cmp. 

Hydroxysteroid - 313 806.3362 1.3 × 10-2 1.55 

3 
Organic oxygen 
cmp. 

Aminocyclitol 
glycoside 

(1R,2S,3S,4S,5S,6R)-2,3,4… 28 355.1485 5.1 × 10-3 1.64 

4 
Organoheterocyclic 
cmp. 

Indolizidine - 300 434.1245 1.3 × 10-3 1.74 
5 6-aminopurine 9-(β-D-Erythro-pentofuran… 300 265.081 5.9 × 10-3 1.62 
6 Isoindolone (2R,2'R,4'aS,6'R,8'aS)-7-Aceton… 264 441.2505 2.1 × 10-2 1.5 
7 

- 
- 4-{[(3R,4R)-4-(4-Hydroxy-3… 225 520.1936 7.9 × 10-3 1.6 

8 
Benzoxazinoid 
glycoside 

DIBOA-glucoside 106 343.0913 7.5 × 10-3 1.58 

Up-regulated in the WSS treatment 

9 
Benzenoid 

Methoxyphenol - 383 208.0743 8.6 × 10-3 1.58 
10 Tyrosol/der. Propanoic acid 4-hydroxy… 240 194.0946 1.4 × 10-2 1.55 
11 Lignan Neolignan Methyl (2E)-3-(4-{[(1R,2R)-1,3… 285 404.1488 1.6 × 10-3 1.72 
12 Lipid/lipid-like 

cmp. 
Guaianolide/der. - 277 376.1521 1.9 × 10-2 1.5 

13 Fatty alcohol ester [(2Z,8Z)-10-hydroxydeca-2,8… 337 204.0789 2.1 × 10-2 1.49 
14 Organic acid/der. Tricarboxylic acid/der. 8-O-Acetyl-pumilin 343 416.1479 6 × 10-3 1.64 
15 Organic oxygen 

cmp. 
O-glycosyl cmp. β-D-Glucopyranose, 6-O-D… 312 372.1274 5.2 × 10-3 1.63 

16 Thioglycoside Isopropyl 4-O-(β-D… 349 400.1404 1.6 × 10-2 1.5 
17 

Phenylpropanoid/ 
polyketide 

Coumaric acid/der. Methyl (2E)-3-(4-hydroxy… 293 208.0745 1.1 × 10-2 1.57 
18 Flavonoid O-glycoside [(2S,4S,5R)-2-[(2S)-2-(3,4… 387 568.1588 1.4 × 10-2 1.53 

19 
Angular 
pyranocoumarin 

- 322 388.1522 1.8 × 10-2 1.51 

20 

Nucleoside 

1-ribosyl-imidazole 
carboxamide 

- 23 380.073 9.9 × 10-5 1.86 

21 

Pyrimidine 
ribonucleoside 
monophosphate 

- 23 542.1261 1.2 × 10-2 1.54 

22 

Organoheterocyclic 
cmp. 

Butenolide - 333 208.0744 2 × 10-5 1.89 
23 Azaphilone - 335 416.1479 4.8 × 10-3 1.64 
24 Phenylimidazole 3-Nitroso-2-phenylimidazo… 311 224.0703 6.2 × 10-3 1.63 
25 2-benzopyran 8-Hydroxy-5-(hydroxymethyl… 299 208.0745 7.4 × 10-3 1.62 
26 Pyranone/der. 4-Methoxy-5-methyl-6-oxo… 318 208.0745 1.3 × 10-2 1.55 
27 

- 
- (2Z)-4-{2,6-Dihydroxy-3-[(2E)... 337 546.1894 2.6 × 10-3 1.69 

28 - 2-Acetyl-5-methoxyphenyl… 339 622.2111 1.3 × 10-2 1.56 
29 - (4aR,6S,7R,7aR)-4-Formyl-1… 239 522.1747 1.9 × 10-2 1.47 

aCompounds were classified based on their regulation in the WSS treatment and superclass. 
Abbr… = abbreviated name, full names are available in Table S1; RT = retention time; m/z = 
mass-to-charge ratio; VIP = variable importance for the projection; der. = derivative; cmp. = 
compound. 
bBold numbers are used to reference compounds in the Results and Discussion sections. 
cSuperclasses correspond to the second highest level of ontology based on the ClassyFire 
algorithm. 
dSubclasses correspond to the lowest level of ontology based on the ClassyFire algorithm. 
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eCompounds were assigned chemical names using the International Union of Pure and Applied 
Chemistry (IUPAC) nomenclature. 
fCompound retention times were measured based on the time of elution from the chromatography 
column. 
gmass-to-charge ratios were obtained from mass spectrometry output. 
hp values were calculated from t tests (factors of treatment) and adjusted by a Benjamini–
Hochberg correction. 
iVariable importance of the projection (VIP) scores were calculated by summing the squares of 
the OPLS loading weights and weighted by the amount of sum of squares explained in each 
model component. 
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Figure 11. Insect container setup for the WSS infestation experiment. A 5 cm long × 1.5 cm 

diameter plastic tube with organza netting on both openings was placed around wheat stems to 

contain female WSS and control for oviposition location. Insects were left for egg deposition 

within the container area for ten days. 
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Figure 12. Distribution for WSS infestation and yield for several cultivars of hollow-stem winter 
wheat. A total of 20 cultivars were evaluated in 2014 and 50 in 2015 and 2016. (A) Sawfly 
infestation percentages of 91 cultivars from a three-year trial within an infested field. For each 
cultivar, infestation percentage was calculated as such: % = (infested tillers/total number of 
tillers) × 100. (B) Grain yield from the three-year trial expressed as bushels per acre (one bushel 
= 60 pounds of wheat). Symbols are used to denote the two winter wheat cultivars chosen for 
metabolic analysis due to consistent differences in infestation and yield: Denali (square; poor 
response to infestation), Hatcher (triangle; better response to infestation). Dots denote the mean 
value ± standard error of the mean between two plot replicates of a single cultivar (n = 2). 
Abbreviations/Notations: bu/ac = bushels per acre; % = percentage of wheat stems infested with 
WSS. 
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Figure 13. Overview of the wheat stem proteome. (A) Venn diagram showing major GO 
biological processes represented in the wheat stem proteome and overlap of proteins involved in 
more than one process. Numbers in colored circles represent unique low-level GO biological 
processes (e.g., 498 are related to metabolic processes), and the black circle is the total number 
of low-level GO biological processes from detected proteins. Low-level processes of biological 
relevance in the study and largely represented among detected proteins are indicated. As an 
example, hypersensitive response points towards the area of overlap between cellular process 
and response to stimuli because it is associated with both these biological processes. For 
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significant proteins in each cultivar, the number of occurrences for a given biological process is 
provided (1/1 represents the number of occurrences in controls and infested plants, respectively). 
(B) Pie chart of highly represented GO biological processes. Each slice represents the percentage 
of occurrence for a given process, calculated as such: (# of occurrences of the biological 
process/Total # of occurrences across the dataset) × 100. Among the 1039 unique low-level 
processes identified, 143 were further grouped within 17 important processes, including 
photosynthesis and response to biotic stress. These accounted for 18.33% of occurrences across 
the proteomics dataset. Bold italic and regular italic numbers in the right panel represent 
occurrence within the whole dataset and within the 17 subgroups of processes, respectively. 
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Figure 14. Stem proteins that varied due to infestation within Hatcher. The volcano plot shows 
significant down- (red square, left plot side) and up-regulated (blue square, right side) proteins 
after infestation, at the FDR adjusted p < 0.05 level for comparisons of n = 3 replicates per 
treatment. Circled numbers indicate the total number of down- and up-regulated proteins. 
Changes were calculated as such: (mean WSS)/(mean No WSS) treatments and centered around 
zero using log2 transformation. WSS corresponds to infested plants, No WSS represents controls. 
Dots in extended regions of the graph indicate presence/absence of the detected protein. 
Corresponding significant proteins are described in Table 4A. 
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Figure 15. Stem proteins that varied due to infestation within Conan, Denali, and Reeder. 

Volcano plots show significant down- (red square, left plot side) and up-regulated (blue square, 

right side) proteins after infestation, at the FDR adjusted p < 0.05 level for comparisons of n = 3 

replicates per treatment. Circled numbers indicate the total number of down- and up-regulated 

proteins. Changes were calculated as such: (mean WSS)/(mean No WSS) treatments and 

centered around zero using log2 transformation. WSS corresponds to infested plants, No WSS 

represents controls. Dots in extended regions of the graph indicate presence/absence of the 

detected protein. 
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Figure 16. Example LC-MS chromatograms from the WSS resistant cultivar Hatcher. 
Chromatograms are provided to demonstrate global changes in metabolites observed in Hatcher, 
with and without WSS infestation. Arrows indicate peaks of example compounds that were more 
abundant in the WSS treatment, at the respective retention times. Abbreviations/Notations: cmps. 
= compounds; No WSS = control, no treatment; WSS = treatment, infestation. 
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Figure 17. Overview of the wheat stem metabolome. Pie chart illustrating the distribution of 
metabolites, classified based on chemical ontology (Figure S1). A total of 607 metabolites 
(center of the chart) were annotated in the metabolomics data. Each colored segment represents 
the proportion of a chemical superclass among the 607 annotated compounds, and shades within 
a segment color indicate the proportion of each class/subclass within a superclass. Chemical 
superclasses included the benzenoids (light red segment), lignans (purple segment), and lipids 
(blue segment). Minor superclasses (“other”) and metabolites with no ontology were reported in 
the grey and white segments, respectively. Number of metabolites within each superclass are 
indicated inside colored bubbles. Example classes/subclasses within each superclass are provided 
and their total amount is indicated as bold black numbers. Colored italic numbers indicate how 
many compounds were significant at the p < 0.05 level: red for treatment comparisons (No 
WSS/WSS), blue for cultivars, and green for comparisons of treatment within cultivar. Number 
of biological replicates varied based on the comparison: n = 18–20 for treatment comparisons, n 
= 10 for cultivar comparisons (except Denali for which n = 8), and n = 5 for treatment within 
cultivar (except Denali untreated plants for which n = 3). t tests and one-way ANOVAs were 
conducted between treatments and among cultivars, respectively. Abbreviations/Notations: der. = 
derivative; cmp. = compound; H = Hatcher; C = Conan; D = Denali; R = Reeder; No WSS = 
control, no treatment; WSS = treatment, infestation. 
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Figure 18. Stem metabolites that varied due to infestation within each of the four wheat 
cultivars. (A) OPLS-DA biplot of correlation scaled scores (triangles) and loadings (all other 
shapes). Color shaded regions indicate metabolites that most strongly varied due to the WSS 
treatment: red corresponds to down-regulation, and blue means up-regulation of metabolites 
upon WSS infestation, respectively. (B) Variable trend plots show z scores of metabolite 
abundances within the red and blue shaded regions, and z-transformation was based on the mean 
abundance and standard deviation of the metabolite within each model. (C) Fold change plot of 
metabolite abundances between control and infested plants. X-axis numbers correspond to 
metabolites listed in Table 6, which are strongly varying in the Hatcher model. Fold changes 
were calculated as such: (mean WSS)/(mean No WSS) treatments and centered around zero 
using log2 transformation. WSS corresponds to infested plants, No WSS represents controls. For 
each cultivar, n = 5 replicates per treatment except Denali controls (n = 3 replicates). 
Abbreviations/Notations: No WSS = control, no treatment; WSS = treatment, infestation; der. = 
derivative; cmp. = compound; R2Y = fraction of y (i.e., sample classes) variance explained by 
the model; Q2 = cross-validation estimate for the predictive ability of the model; ↘ = down-
regulated in the WSS treatment; ↗ = up-regulated in the WSS treatment.  
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Figure 19. Putative model for the molecular basis of WSS resistance in Hatcher. Metabolites are 

indicated using their common name in italic pink and structural formula. Proteins are represented 

by their name in italic blue and schematic circles. Red triangles indicate late molecular defense 

mechanisms. Abbreviations: cmp. = compound; VOCs = volatile organic compounds. 
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CHAPTER 4 – CONCLUSION AND FUTURE PERSPECTIVES 

 
 
 

4.1. Conclusion 

 The advanced mass spectrometry-based methods used here enabled the understanding of 

passive and active defense of wheat to a broad range of stresses, including chewing pest 

pressure. Non-targeted GC-MS metabolomics data demonstrated that variation in cuticular wax 

composition and crystal microstructures related to plant defense exists among tissues and 

cultivars of common wheat. Leaf surfaces were characterized by high levels of alcohols and stem 

surfaces showed higher content in β-diketones. While most of the detected compounds were 

equally distributed among cultivars, two Conan wax alcohols were higher in content than the 

other cultivars. Further, SEM imaging provided insights in wheat wax microstructural 

topography and allowed for the identification of two types of epicuticular wax crystals in wheat: 

platelets and tubules. Taken together, these results indicate that Conan epicuticular features 

potentially contribute to stress resistance. 

 Mass spectrometry-based proteomics and metabolomics data demonstrated active defense 

responses to insect infestation in the hollow-stemmed and WSS resistant cultivar Hatcher. 

Hatcher up-regulated proteins upon WSS feeding included detoxification, Ca2+ flux, proteinase 

inhibitor, and systemic signaling activities. Increased metabolites upon infestation included anti-

herbivory compounds and associated precursors. Semi-solid-stemmed and resistant Conan 

displayed a different set of protein and metabolic changes after exposure to WSS, suggesting that 

pith expression is the major means of resistance in this cultivar and Hatcher resistance relies 

upon alternative molecular mechanisms that have been largely unexplored. 
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 Two cultivars that have been shown for high yield performances under abiotic and/or 

biotic pressure, Conan and Hatcher, were assayed in this research and displayed unique 

combinations of proteins and metabolites with demonstrated roles in defense to stress. 

4.2. Limitations 

 Omics datasets described in this manuscript were relatively rich and contained numerous 

proteins and metabolites that varied between cultivars of wheat and that have been described as 

pest resistance facilitators. However, the molecular approaches used here rely upon instruments 

that allow for the detection of a limited set of proteins and metabolites. Compound databases as 

well as annotation algorithms are upgraded on a regular basis, however, none provide complete 

accuracy of annotation. All proteins and metabolites detected in our research were annotated 

with high confidence using advanced software, yet, it is critical to acknowledge the possibility of 

erroneous annotation (e.g., mismatch with a compound or protein with very close structure and 

chemical properties) or important proteins that could not be detected. Likewise, the use of 

upgraded, improved versions of the wheat genome database (IWGSC refSeqv1.0 was released on 

Jul. 17, 2018) will need to be integrated for further interrogation of proteomics datasets [1]. 

Future work is needed to validate our results by way of genomics and transcriptomics, and 

section 4.3.2. describes a potential workflow for model validation using example molecules 

detected in our study. 

4.3. Current and Future Work 

4.3.1. Current Work 

 The present manuscript describes molecular variation in four cultivars of wheat that were 

grown in the greenhouse. Data that is currently being interrogated will assess the quantitative 
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nature of plant defense to WSS through detection of metabolites in a population of wheat 

varieties (cultivars and advanced breeding lines), grown in the field. These include hollow-stem 

cultivars Hatcher and Denali, as well as a variety with high performance in the field and 

constitutive presence of trichomes on its epicuticle, CO11D1397 (data not shown). Plant growth, 

data collection for two consecutive years and three time points per year, and detection of 

metabolites using LC-MS across the population have already been conducted. Preliminary results 

indicate the presence of anti-herbivory metabolites in wheat leaves and stems (e.g., terpenoids, 

glycosides; Appendix 1). Multivariate analyses (PCA) show clear separation of samples based on 

metabolite content for dates of harvesting. This suggests variation in time for defense metabolite 

contents and potential correlation of WSS wheat resistance with growth stage. Further data 

analysis will determine the metabolite content of each variety and comparisons will be made 

between plants with differential levels of resistance to C. cinctus to establish correlations. 

4.3.2. Model Validation Using Genomics and Transcriptomics Approaches 

  Based on our results, novel aspects of wheat molecular and genetic defense could be 

exploited to increase yields and meet the demand of the rapidly growing human population. 

Omics methods allow for the identification and description of complex molecular networks 

underlying plant defense to stress. These data will be invaluable for wheat geneticists and 

breeders, because candidate genes that code for critical actors in passive and active defense 

responses, and that have been detected in our study, can be targeted for crop improvement. 

 Recent advances in wheat functional genomics, genome editing, and breeding techniques 

open new avenues for rapid identification and introgression (i.e., transfer of genetic information 

to another wheat line or cultivar) of desirable traits [2]. Bread wheat (T. aestivum) is a hexaploid 

species and usually has three homoeologous copies of each gene. This drastically reduces the 



126 
 

potential for improvement through genetic mutations because of the complex relationship 

between gene copies [2]. However, tremendous progress in wheat genetics during the last decade 

now enables protocols that circumvent major limitations. First, the most current annotated 

genome assemblies allow for more reliable interpretation of wheat sequencing data and 

identification of candidate genes and their allelic variants [1]. Observing a gene’s function 

usually requires functional genomics techniques and large mutant populations are available to 

observe phenotypes that result from knocked-out genes [3]. Since it is very unlikely to induce 

mutations in the three copies of a gene within the same plant, it is recommended to proceed with 

crossings of different plants that each carry one mutation. Together with the use of Triticum 

durum wheat (tetraploid) instead of T. aestivum plants, speed breeding techniques allow for 

reduced time and effort for plant growth, and phenotypes are available more quickly [4]. Knock-

outs and mutations are achieved through the use of RNAi or CRISPR constructs [5,6]. 

 In the context of wheat resistance to Cephus cinctus, the example of increases in 

proteinase inhibitors in resistant plants may be of major interest for breeders. The introgression 

of allelic variants in elite lines using the abovementioned techniques would increase their 

resistance through antibiosis of feeding larvae. Likewise, wheat specialists would benefit from a 

better understanding of the wax biosynthesis genes (e.g., TaFAR genes), that could be mutated to 

alter the plant epicuticle and reinforce this natural barrier against insect pests [7,8]. A follow-up 

study can integrate transcriptomics to quantify levels of mRNA associated with resistance to 

WSS in wheat, including PR and TaFAR genes. While several FAR genes potentially involved in 

high leaf alcohol content of resistant cultivar Conan have been characterized in wheat, the PR-6 

proteinase inhibitor overexpressed in resistant Hatcher was in fact a protein with very high 

orthology (e value = 8 × 10-8) with a protein from Arabidopsis thaliana. Let us focus on two 
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genes/allelic variants to be introgressed: T. aestivum homolog for AT2G38870 (i.e., encodes a PR 

peptide that belongs to the PR-6 proteinase inhibitor family) and TaFAR2 (i.e., wax biosynthetic 

gene encoding a fatty acyl-coenzyme A reductase that is predominantly responsible for the 

accumulation of C18:0 primary alcohols). 

 In Colorado, spring wheat is largely supplanted by winter varieties, and desirable traits 

from resistant cultivar Conan therefore need to be introgressed into a winter cultivar. Likewise, 

resistant Hatcher shows satisfactory yield rates in the field, but several winter wheat cultivars 

exceed that performance. In the eventuality that the WSS resistance phenotypes observed in 

Conan and Hatcher are validated using transcriptomics, and candidate genes have been 

identified, there is a need to cross these cultivars with another one with superior field 

performance. A well-performing and widely used line that has been developed by the Colorado 

wheat breeding program is Byrd. Byrd is a hollow-stem and WSS susceptible wheat cultivar. As 

mentioned before, the function of candidate genes need to be assessed using functional genomics 

techniques (e.g., use of TILLING mutant populations to observe knocked-out genes and resulting 

phenotypes) before crossing. 

 The next step is to breed for a potentially marketable line. Once genes/allelic variants 

responsible for the trait of interest are validated, they are introgressed in Byrd. Successive back-

crossings (6 to 9) are performed, and at each generation, only the recombinant lines that carry the 

gene(s)/allele(s) of interest are backcrossed with Byrd to progressively eliminate the genetic 

background of the WSS resistant line. Then, an advanced near isogenic line (NIL) with Byrd’s 

genetic background, except for the gene/allele of interest, is obtained. In the greenhouse and with 

novel methods such as speed breeding, three generations per year can be bred, to obtain an 

advanced line within three years. It takes more time if both the AT2G38870 homolog and 
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TaFAR2 are simultaneously introgressed. The advanced line is then grown in the field to assess 

performance in outdoor conditions. Resistance phenotype of the advanced line is assessed in 

field trials and molecular studies are conducted to evaluate stem proteinase inhibitor and leaf 

primary alcohol contents. Wheat breeders ultimately have access to an advanced wheat line with 

superior yield and high resistance to an economically important pest of wheat in Colorado. 

4.3.3. Identification of New Actors in the Wheat/WSS Interaction 

 Another promising line of research on plant–insect interactions is the study of small non-

coding RNA sequences (ncRNAs) such as lncRNAs (long non-coding RNAs) and miRNAs 

(micro RNAs) using transcriptomics methods. Recent literature describes ncRNAs as key actors 

of mRNA regulation with implications in plant–pest communication and the response to 

herbivory [9]. Thousands of lnc/miRNAs from WSS larvae were characterized by Cagirici et al. 

(2017) and included miR-277, a short RNA sequence that targets several loci on chromosome 3B 

(region that contains the major stem-solidness QTL Qss.msub-3BL). Predicted targets of miR-

277 in wheat showed significant similarity to ankyrin-like proteins with known functions in 

biotic resistance [10]. It is hypothesized that sawfly larvae actively express ncRNAs to suppress 

the defense response in wheat. Given the great diversity in small non-coding RNA sequences, 

their involvement in plant resistance is also expected. Future work on the response of wheat to 

WSS infestations warrants the integration of transcriptomics tools to elucidate the role of ncRNA 

cross-talk between plants and insects and provide novel targets for wheat breeding. 
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APPENDIX 1 – FIELD WHEAT EXPERIMENT 
 

 

 

A.1. Summary 

 Increasing incidence and severity of Wheat Stem Sawfly (Cephus cinctus, WSS) 

infestations in Colorado wheat (Triticum aestivum L.) support the need to understand metabolic 

variation related to herbivore defense in field-grown plants. A study was performed that 

evaluated leaf and stem tissue collected from a population of 100 wheat varieties (a mixture of 

both cultivars and advanced breeding lines) in a WSS-infested field. Leaves and stems were 

collected at six time points over the course of two years (2015 and 2016). Metabolites were 

extracted and detected using LC-MS non-targeted metabolomics. A total of 669 metabolites were 

detected between tissues and among varieties, of which 160 were annotated. The LC-MS data 

was associated to measures of plant resistance including yield components (test weight, grain 

yield) and infestation rates per plot (percent infestation, live larvae, dead larvae, frass without 

larvae), using multivariate regression modeling. Preliminary results provide evidence of a 

molecular basis of field resistance to WSS. 

A.2. Methodology 

A.2.1. Plant Material 

Metabolite profiles were obtained from a total of 100 wheat varieties (Triticum aestivum 

L., Poaceae). Wheat plants were grown in the field (New Raymer, CO, USA) under conventional 

conditions (e.g., precipitation, temperature, photoperiod). Data was collected for two consecutive 

years and three harvesting time points per year (Figure 20). The total number of cultivars and 

advanced breeding lines planted in 2015 (n = 100) was assessed, and only those that were 

planted in both years were assessed for the 2016 data (n = 36). The three harvesting dates of each 
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year were relatively close across years to improve reproducibility of the results, and 

corresponded to, respectively, jointing (approximately Zadoks growth stage 30), heading 

(approximately Zadoks 55), and flowering stages (approximately Zadoks 65) [1]. All plants were 

planted the year prior to harvest for obligate vernalization, that is Sep. 18, 2014, for wheat 

harvested in 2015 and Sep. 18, 2015, for wheat harvested in 2016. Wheat varieties were 

harvested on Jul. 30, 2015, and Jul. 14, 2016, for 2015 and 2016 measurements, respectively. 

Plants were grouped in randomized complete block designs. 

A.2.2. Field Measurements 

For each variety, plots were 5 feet wide by 12 feet long and seeded at an approximate 

density of 700,000 seeds per acre, in 6 rows per plot with 9-inch spacing between rows. Plots 

were harvested using a Wintersteiger Elite combine with a Grainguage weighing system. An area 

of 60 square feet was used for yield calculations and adjusted to 12% moisture basis according to 

the moisture value provided by the combine. Test weight was determined from the Grainguage 

weighing system on an uncleaned sample of the grain. Soil fertility amendments were applied by 

the cooperating farmer based on soil fertility recommendations appropriate for the area. 

Wheat Stem Sawfly adult counts in the field were measured for the years 2015 and 2016 

by doing one hundred 180-degree sweeps at 7 different sites (New Raymer, CO, USA) and 

various sampling dates (= 100 sweeps per site per date; Figure 20). Insect sweeps were 

conducted along the field edge bordering the wheat/fallow border. Mean WSS infestation per 

sampling date was calculated as follows: (total WSS adults across all sites × 100 

sweeps)/(number of sampled sites × 100 sweeps). Field infestation indicators (i.e., percent 

infestation, live larvae, dead larvae, frass without larvae) were determined by collecting wheat 

stubble after harvest from the middle of plots using a shovel. One hundred tillers were randomly 
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selected for each variety and bisected in the lab using a scalpel to determine presence/absence 

and state of WSS larvae. Infestation percentages were calculated as such: % = (infested 

tillers/total number of tillers) × 100. 

A.2.3. Tissue Collection from Field Sites and Metabolite Extraction 

For metabolomics analysis, 1091 tissue samples were collected from 624 plants (with 

either one or two biological replicates per plant per harvesting date per year) and used for 

metabolite extraction. One leaf and one stem were collected from three plants within a plot (one 

single variety) and pooled in a single tube, and each variety was planted in either one or two 

plots (50 varieties planted in one plot, 50 varieties planted in two plots). Replicated plots were 

not pooled and thus a total of 50 + 50 × 2 = 150 samples were collected per time point 

(harvesting date). Plants were harvested at three time points per year, during two years (2015 and 

2016) and for both tissues, except 2016 where stems were only collected at two time points 

(Figure 20). Leaves and stems from each sample were then separated for metabolomics analysis. 

In total, 150 samples × 3 times points × 2 years × 2 tissues = 1800 samples collected from 900 

plants in theory, but some were lost in the sample preparation process (e.g., tube cracking during 

tissue grinding) or did not contain enough tissue material for extraction. 

Equivalent positions were probed in all cultivars: the fourth leaf of each plant (starting 

from the flag leaf), and stems at the third and fourth internodes (starting from the first internode, 

also termed peduncle), were collected and separated, flash frozen in liquid nitrogen, temporarily 

stored on dry ice in the field, and transferred to –80 °C for storage (Figure 21). Samples were 

lyophilized for 72 h. Dried, frozen separated leaves and stems were then placed in 5 mL conical 

centrifuge tubes and ground to a fine powder using a mix of 3.2 mm and 11 mm diameter 
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stainless steel beads (Next Advance, Troy, NY, USA) and a Buller Blender Storm 5 tissue 

homogenizer (Next Advance). 

Non-volatile metabolites were extracted as previously described with the following 

modifications [2]. Briefly, 25 mg of powdered leaves and stems were transferred to 2 mL glass 

vials and immersed in 1 mL of a cold methanol:methyl tert-butyl ether (MTBE) solution (2:1, 

75% methanol:MTBE; Sigma-Aldrich). Samples were vortexed for 1 h at 4 °C and 300 μL of 

cold liquid chromatography grade water (Sigma-Aldrich) were then added to the mixture. 

Samples were centrifuged for 15 min (4 °C, 2850 g), and the isolated aqueous layer was 

transferred to a new glass vial. Water-soluble extracts were then evaporated under a continuous 

gas nitrogen flow and reconstituted in 100 μL of methanol:water (1:1, v/v). 

A.2.4. Metabolite Detection by LC-MS 

Non-targeted metabolite profiling was performed using LC-MS as previously described 

[2]. Briefly, 2 μL of extracts were injected onto an Acquity UPLC system (Waters Corporation, 

Milford, MA, USA) in discrete, randomized blocks with a pooled QC injection after every seven 

sample injections. Compounds were separated using an Acquity UPLC CSH phenyl hexyl 

column (1.7 µm, 1.0 × 100 mm; Waters Corporation), using a gradient from solvent A (2 mM 

ammonium hydroxide, 0.1% formic acid) to solvent B (acetonitrile, 0.1% formic acid). Injections 

were made in 100% A, held for 1 min, ramped to 98% B over 12 min, held at 98% B for 3 min, 

and then returned to starting conditions over 0.05 min and allowed to re-equilibrate for 3.95 min, 

with a 200 µL/min constant flow rate. The column and samples were held at 65 °C and 6 °C, 

respectively. The column eluent was infused into a Xevo G2 Q-TOF mass spectrometer (Waters 

Corporation) with an electrospray source in positive ion mode, scanning 50-2000 m/z at a rate of 

five scans per s, alternating between MS (6 V collision energy) and MSE mode (15–30 V ramp). 
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Calibration was performed prior to sample analysis using sodium iodide with 1 ppm mass 

accuracy. The capillary voltage was held at 2200 V, the source temperature at 150 °C, and 

nitrogen desolvation temperature at 350 °C with a gas flow rate of 800 L/h. Experimental data 

was collected using an indiscriminate approach (data independent MS/MS = idMS/MS), and two 

spectral clusters for each detected compound were used – one for low energy MS and one for 

high energy MS/MS. 

A.2.5. Data Processing and Annotation 

A matrix of molecular features as defined by retention time and mass (m/z) was created 

from LC-MS data files after conversion to .cdf format and processing by XCMS [3] in R v3.4.4 

[4]. The R package RAMClust was used to deconvolute data into spectral clusters [5]. Molecular 

features were normalized to total ion current (TIC), the relative quantity of each feature was 

determined by the mean area of the chromatographic peak among two replicate injections (n = 

2), and spectral clusters were quantified as a weighted abundance of all molecular features in the 

cluster. Identification of metabolites was performed manually by matching mass spectra and 

retention times to in-house and external databases including METLIN [6,7] and the Human 

Metabolome Database (HMDB) [8], as well as using custom R scripts. In short, the R package 

InterpretMSSpectrum was used to infer molecular weights, the MS-FINDER program v2.40 

[9,10] allowed for inference of chemical formulas and structures, the Chemical Translation 

Service web application program interface (API) was used to retrieve chemical names of 

compounds with available International Chemical Identifiers (InChIKey), and the ClassyFire 

web API was used to look up full chemical ontology [11]. Confidence levels were all assigned 

based upon classification of metabolite annotation by Sumner et al. (2007) [12]. All annotated 

metabolites in this study were assigned a level 1 or 2 confidence. 
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A.2.6. Statistical Analysis 

Metabolite contents were compared using Student’s t tests and ANOVA with p thresholds 

of 0.05. Differences in content identified using ANOVA were further compared with Tukey 

HSD pairwise comparisons. Benjamini–Hochberg correction was systematically applied across 

all t tests and ANOVA output [12]. Principal component analysis (PCA) modeling was 

conducted on the LC-MS data after log-transforming, mean-centering and unit variance (UV)-

scaling using SIMCA v14.1 (MKS Data Analytics, Umea, Sweden). 

A.3. Results 

A.3.1. Description of Detected Metabolites 

 A total of 669 putative compounds were detected using LC-MS metabolomics. Of these, 

635 (95%) were assigned a chemical formula. One hundred and sixty (24% of total) compounds 

were tentatively annotated and were assigned a level 1 or 2 annotation confidence. Classification 

of annotated metabolites based on chemical structures yielded ontology trees for 128 compounds 

(19% of total; Table S2). Metabolites were sorted within ten chemical superclasses (i.e., 

alkaloids, benzenoids, hydrocarbons, lignans, lipids, nucleosides, organic acids, organic 

nitrogen/oxygen compounds, phenylpropanoids). Nine ontology levels were used in the 

classification, from chemical kingdom (highest chemical hierarchy, i.e., organic compounds) to 

parent level 5 (lowest hierarchy, e.g., α amino acids). In the metabolomics dataset, the 

classification analysis revealed the presence of one alkaloid or derivative, ten benzenoids 

(including a methoxyphenol structure described in Chapter 3 as being potentially involved in 

WSS parasitoid attraction), seven hydrocarbons and derivatives, one lignan, 58 lipids, one 

nucleoside, 11 organic acids and derivatives including seven carboxylic acids, two organic 

nitrogen compounds, 11 organic oxygen compounds (e.g., two carbohydrates and conjugates, 
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and three alcohols and polyols), 15 organoheterocyclic compounds, and ten phenylpropanoids 

and polyketides including three flavonoids and two coumarins. Metabolomics output and data 

from the field were further compiled in a matrix that includes relative abundances of all putative 

compounds, for all samples, as well as measures of plant resistance including yield components 

(test weight, grain yield) and infestation rates per plot (percent infestation, live larvae, dead 

larvae, frass without larvae; Table S3). 

A.3.2. Metabolites Varied between Tissues of Wheat 

 564 putative compounds (84% of total) varied between leaves and stems of wheat based 

on univariate statistics results (t test, FDR adjusted p < 0.05). Multivariate statistics were also 

conducted and revealed separation of leaf and stem samples based on metabolite content (Figure 

22). 

A.3.3. Metabolites Varied among Harvesting Dates 

 303 putative compounds (45% of total) varied between 2015 and 2016 (t test, FDR 

adjusted p < 0.05), 563 compounds (84% of total) varied among harvesting dates of 2015 

(ANOVA, FDR adjusted p < 0.05), and 518 compounds (77% of total) varied among harvesting 

dates of 2016 (ANOVA, FDR adjusted p < 0.05). Multivariate modeling showed separation of 

samples based on date of harvest (Figure 23). Principal component analysis conducted on leaves 

of the 100 wheat varieties revealed grouping of samples with similar harvesting dates between 

years (e.g., samples collected on Mar. 31, 2015 and Mar. 29, 2016 are relatively close in the PCA 

model, denoting similar metabolite contents; Figure 23A). Similar results were obtained when 

comparing stem samples (Figure 23B). 
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A.3.4. Preliminary Conclusions 

 Taken together, preliminary results using multivariate analyses (PCA) show clear 

separation of samples based on metabolite content for dates of harvesting. This suggests 

variation in time for defense metabolite contents and potential correlation of WSS wheat 

resistance with growth stage. Further data analysis will determine the metabolite content of each 

line/cultivar and comparisons will be made between plants with differential levels of resistance 

to C. cinctus to establish correlations. The tremendous efforts made in our lab to decipher the 

molecular basis of wheat resistance to a major insect pest will ultimately contribute to the 

identification of candidate genes and QTLs that will further be assessed and introgressed for their 

role in the defense response to herbivory. 
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Figure 20. Wheat tissue harvesting dates in relationship with WSS infestation periods. Wheat 
leaves and stems were harvested at dates indicated by colored arrows and dashed lines. 
Corresponding wheat Zadoks stage and WSS cycle period and field infestation are also 
illustrated. For both years, each infestation data point was calculated as follows: (total WSS 
adults across all sites × 100 sweeps)/(number of sampled sites × 100 sweeps) ± standard error of 
the mean. 
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Figure 21. Probing position of wheat tissue during field sampling. The fourth leaf of each plant 
(starting from the flag leaf), and stems at the third and fourth internodes (starting from the 
first internode, also termed peduncle), were collected and separated for metabolomics analysis. 
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Figure 22. Metabolite distribution in leaf and stem tissue. Multivariate analysis demonstrating 
specific composition in cuticular wax chemistry between leaves and stems of wheat. Principal 
component analysis (PCA) of the 100 varieties showed that most metabolite variation was due to 
differences between leaves and stems. Each PC score point represents the metabolite profile for a 
single biological replicate (n = 1–12 replicates per variety). Abbreviation: PC = principal 
component. 
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Figure 23. Metabolite levels among dates of harvest within leaves and stems of wheat. Principal 
component analysis showed variation for different dates of harvest (including growth stage and 
year) within leaf (A) and stem (B) tissue. Abbreviation: PC = principal component. 
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