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Abstract

Blending Model Output with satellite-based and in-situ observations to

produce high-resolution estimates of population exposure to wildfire

smoke

In the western US, emissions from wildfires and prescribed fire have been associated with

degradation of regional air quality. Whereas atmospheric aerosol particles with aerodynamic

diameters less than 2.5 µm (PM2.5) have known impacts on human health, there is uncertainty

in how particle composition, concentrations, and exposure duration impact the associated

health response. Due to changes in climate and land-management, wildfires have increased

in frequency and severity, and this trend is expected to continue. Consequently, wildfires

are expected to become an increasingly important source of PM2.5 in the western US.

While composition and source of the aerosol is thought to be an important factor in the

resulting human health-effects, this is currently not well-understood; therefore, there is a

need to develop a quantitative understanding of wildfire-smoke-specific health effects. A

necessary step in this process is to determine who was exposed to wildfire smoke, the

concentration of the smoke during exposure, and the duration of the exposure. Three

different tools are commonly used to assess exposure to wildfire smoke: in-situ measurements,

satellite-based observations, and chemical-transport model (CTM) simulations, and each of

these exposure-estimation tools have associated strengths and weakness.

In this thesis, we investigate the utility of blending these tools together to produce

highly accurate estimates of smoke exposure during the 2012 fire season in Washington

for use in an epidemiological case study. For blending, we use a ridge regression model,

as well as a geographically weighted ridge regression model. We evaluate the performance
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of the three individual exposure-estimate techniques and the two blended techniques using

Leave-One-Out Cross-Validation. Due to the number of in-situ monitors present during this

time period, we find that predictions based on in-situ monitors were more accurate for this

particular fire season than the CTM simulations and satellite-based observations, so blending

provided only marginal improvements above the in-situ observations. However, we show that

in hypothetical cases with fewer surface monitors, the two blending techniques can produce

substantial improvement over any of the individual tools.

iii



Acknowledgements

First, I would like to thank to Dr. Bonne Ford for her mentorship and help throughout

my master’s work.

I’d also like to thank my advisor Dr. Jeff Pierce, as well as my committee: Dr. Emily

Fischer, Dr. Russ Schumacher, Dr. Sheryl Magzamen, and Dr. Gabi Pfister for their

guidance. I’d like to thank the Pierce group members past and present (Anna, Emily, Jack,

Kate, Kim, Landan, and Steve) as well as the Fischer group students (Jake, Jakob, Jared,

Steve, Zitely) for the camaraderie and occasional research discussions. Finally, I’d like to

thank all of my friends, family, and teammates for keeping their support and patience during

this process.

Funding for this research was provided by the NASA Applied Sciences program, number

NNX15AG35G and the Joint Fire Science program, grant number JFSP 13-1-01-4.

This thesis is typset in LATEX using a document class designed by Leif Anderson.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2. Tools and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1. Fires Studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. Exposure-Estimation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4. Model Evaluation Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1. Sample timeseries data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Evaluation of the three individual datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3. Regression Blends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4. Estimate Technique Performance Simulated with Fewer In-Situ Measurements . 37

3.5. “Smoke” vs. PM2.5 Concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 4. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1. Next Steps and Future Tools/Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2. Estimation of other Exposure Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3. Additional Wildfire-Smoke Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendix A. WRF-Chem Sensitivity Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1. Meteorological Initial/Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2. Model Paramaterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.3. Model Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.4. Biomass Burning Emissions Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendix B. Other Blend Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.1. Simple Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.2. Weighted Average with Decaying Kriging Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.3. Weighted Average with Decaying Kriging Influence and FMS Modulation of

WRF-Chem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.4. Weighted Average with Decaying Kriging Influence and WRF-Chem/MODIS

AOD Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.5. Weighted Average with Decaying Kriging Influence and WRF-Chem/MODIS

Pixel-By-Pixel Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Appendix C. Non WRF-Chem Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



List of Tables

3.1 Performance statistics for each exposure estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 GRR Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



List of Figures

1.1 Annual Average PM2.5 concentrations in the USA from 2000-2014. Data taken

from the US EPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 2011 National Emissions Inventory (NEI) showing a breakdown of primary PM2.5

emissions by source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Map of major fire locations (triangles) for (a) the Washington wildfire season

and (b) High Park Fire relative to population centers (green circles). In panel a,

we included 25% of fires that were active 14-21 September 2012, that were large

enough to be included in the FINN biomass burning inventory. This choice was

made to reduce clutter in the figure. This schematic is only to illustrate where the

bulk of the fire activity was located relative to population, a more complete list of

fire activity in this time period can be found the FINN biomass burning emissions

inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 WRF-Chem simulation domain (black) and inner Analysis domain (red). Both

domains use the same 15x15 km grid, but blended surface concentration estimates

were only produced inside the analysis domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Surface sites included in the Kriging analysis. Red sites were inside our domain of

analysis and were also used to evaluate the various prediction schemes that were

used. Blue sites are outside the model domain and were only used as inputs to the

kriging model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Time-series plots from (a) Mt. Vernon, WA with both regression models plotted

alongside observations in the top panel, and the three raw dataseries in the bottom

viii



panel; (b) Map locations of Mt. Vernon and Pullman WA; (c) time-series plot

from Pullman WA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 One-to-one plots of: (a) WRF-Chem, (b) Kriging, (c) MODIS AOD, (d) Global

Ridge Regression, (e) Geo-Weighted Ridge Regression predictions of surface PM2.5

vs. measured concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 A-C, E, and F: R2 values calculated at each surface monitor for: (a) WRF-Chem

simulated surface PM2.5 concentrations, (b) kriged in-situ observations of PM2.5

concentrations, (c) MODIS AOD, (e) Global Ridge Regression estimated surface

PM2.5 concentrations, (f) Geo-Weighted Ridge Regression predicted surface PM2.5.

We excluded all monitors from evaluation for over 60% of days with data missing

from either MODIS or observations, which is reflected in the relatively fewer

monitors in the GRR and GWR figures. (d) contains the mean-bias associated

with WRF-Chem estimates at each in-situ measurement site (and uses a different

color scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 GWR Regression Coefficients (a) intercept, (b) kriged surface PM2.5 concentrations,

(c) WRF-Chem surface PM2.5 concentrations, (d) MODIS AOD) calculated at

each surface monitor, and normalized to sum to 1. The MODIS AOD coefficient

and intercept are in different units (µg m−3/AOD and µg m−3 respectively), and

were changed to the same units as the kriging and WRF-Chem coefficients (as in

Table 3.2) before the normalization was performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 R2, slope, and standard error (top to bottom) of Kriging, Global Ridge Regression,

and Geographically Weighted Regression models as a function of number of sites.

The shaded region represents between the 25th and 75th percentiles, with the line

representing the mean from the random trials. All three models experience an

ix



increase in performance as sites are added; the Global Regression and Kriging

models converge after 100 (or 50%) of the surface monitors are added to the

calculation. GWR performs best with respect to slope and R2 initially, but the

other two models catch up as monitors are added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.1 WRF-Chem 48-hour average simulated PM2.5 concentrations in downtown Fort

Collins, CO during the High Park Fire. Different simulation parameter settings

are plotted in the bars, with the dashed line representing measured concentrations 65

A.2 24-Hour average surface PM2.5 concentration difference between GFS and NAM

(GFS - NAM) meteorology reanalysis datasets for June 9th 2012 . . . . . . . . . . . . . . . . . 66

A.3 24-Hour average surface PM2.5 concentration (left) and AOD (right) difference

between modified parameterization set and base-case parameterization set . . . . . . . . 67

A.4 24-Hour average surface PM2.5 concentration at 1 km resolution (left) and 3 km

resolution (right) for June 11, 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.5 24-Hour average surface PM2.5 concentration difference between FINN/Smartfire

inventory and FINN inventory for June 9th, 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.1 24-Hour average surface PM2.5 concentration predicted by averaging WRF-Chem

and kriging estimates vs. in-situ observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.2 24-Hour average surface PM2.5 concentration predicted by weighting kriging

contribution to the blend by the value of the distance kernel given in Equation 9,

vs in-situ observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.3 24-Hour average surface PM2.5 concentration predicted by weighting kriging

contribution to the blend by the value of the distance kernel given in Equation 9

and modulating WRF-Chem weighting by FMS, vs in-situ observations . . . . . . . . . . 74

x



B.4 Map of correlation coefficient between MODIS AOD and WRF-Chem AOD in our

model domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.5 24-Hour average surface PM2.5 concentration predicted by weighting kriging

contribution to the blend by the value of the distance kernel given in Equation

9 and modulating WRF-Chem weighting by correlation coefficient between

WRF-Chem AOD and MODIS AOD, vs in-situ observations . . . . . . . . . . . . . . . . . . . . . 76

B.6 24-Hour average surface PM2.5 concentration predicted by weighting kriging

contribution to the blend by the value of the distance kernel given in Equation 9

and modulating WRF-Chem by Equation 11, vs in-situ observations . . . . . . . . . . . . . 78

C.1 Non-WRF-Chem estimate of background PM2.5 concentrations . . . . . . . . . . . . . . . . . . . 80

xi



CHAPTER 1

Introduction

Ambient air pollution is one of the leading causes of premature mortality worldwide [1].

Atmospheric aerosols are a major component of air pollution; fine particles with an aerodynamic

diameter less than 2.5 µm (PM2.5), which are small enough to penetrate deep into the human

lung [2], are associated with many of the negative health effects attributed to air pollution.

Exposure to PM2.5 is associated with development of respiratory diseases through the free

radical peroxidation of the lung lining [3] as well as general inflammation injury to the lining

of the lung [4]. Furthermore, PM2.5 has also been linked to cardiovascular disease through

several different disease mechanisms such as systemic inflammation, as well as transport of

particles through the lung into the bloodstream [5].

Atmospheric aerosols have many naturally occurring sources and are an important part of

the earth-climate system. However, during the industrial revolution, anthropogenic sources

of PM2.5, such as sulfate, nitrate, and carbonaceous aerosol from combustion processes,

increased dramatically in many portions of the world [6]. In many parts of the world,

anthropogenic emissions are the dominant source of atmospheric aerosols, and are responsible

for most of the resulting health effects attributable to air pollution [7]. A study by Lelieveld et

al. [7] estimated that of the 3.3 million premature deaths attributable to outdoor air pollution

in 2010, anthropogenic emissions from residential energy, agriculture, power generation,

industry, and land traffic are together responsible for 77%, while natural sources are responsible

for 18% and biomass burning is responsible for the remaining 5%. [7]. This apportionment

of mortality to different sources of air pollution relies on a concentration-response function,

which estimate the association between incident disease and environmental exposure. These
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concentration-response functions were determined based on long-term exposure to bulk

PM2.5 mass. Concentration-response functions can be used to estimate changes in all-cause

mortality, mortality due to a specific disease (e.g. cardiovascular disease), or morbidity.

Figure 1.1. Annual Average PM2.5 concentrations in the USA from
2000-2014. Data taken from the US EPA.

In the United States, PM2.5 is considered a criteria pollutant and is regulated under the

Clean Air Act; consequently, surface concentrations of PM2.5 have declined steadily since the

early 1990s [8] resulting in improved health outcomes [9]. As shown in Figure 1.1, seasonally

weighted annual average surface PM2.5 concentrations have decreased by 30% in the United

States in recent years. However, transboundary (i.e. international) and non-anthropogenic

sources are not subject to the same controls and are more challenging to mitigate. Figure 1.2

shows the relative contributions of anthropogenic and naturally occurring sources of primary

PM2.5 in the United States. One of the largest contributors is wildfires. Presently, 5% of
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global premature mortality due to air quality has been attributed to emissions from biomass

burning, which includes wildfires and prescribed fires [7]). It is important to note that these

mortality estimates are based on concentration-response functions for total PM2.5 mass, and

do not account for different toxicities from different types of aerosol; furthermore, these

estimates do not include morbidity.

Figure 1.2. 2011 National Emissions Inventory (NEI) showing a breakdown
of primary PM2.5 emissions by source. Data taken from the US EPA.

Wildfires are an important component of the earth-biosphere-atmosphere system. In

many ecosystems, fires play an important role in long-term stability of those ecosystems [10].

However, aggressive fire suppression by humans, other land-management practices, and

changes in global and regional climate have altered the fire regime in many parts of the

western United States [11], resulting in an increase in the number, size, and intensity of

wildland fires in the last 60 years. These increases are projected to continue [12], resulting in

3



an increase in the importance of biomass-burning aerosol in the western US. As anthropogenic

emissions of PM2.5 continue to decrease, wildfires are projected to become the largest source

of PM2.5 throughout the western US [13] [14].

Presently, wildfires can produce concentrations of PM2.5 that exceed the National Ambient

Air Quality Standards for this pollutant (NAAQS; greater than 35µg m−3 for 24 hours) [15]

both near [16] and far from the fire [17] [18]. While NAAQS exceedences due to wildfire

smoke are deemed exceptional events and are not considered a violation of the NAAQS,

the health effects of these exceedences remain. During wildfire-smoke events, people have

reported symptoms including irritated eyes, irritated respiratory systems, asthma, and acute

exacerbations of chronic conditions [19] [20]. While the health effects of ambient PM2.5 have

been studied extensively (approximately 17,000 publications in ISI Web of Science Search),

the wildfire-specific health response is not as well studied (approximately 80 publications

in ISI Web of Science). Because wildfire smoke episodes are transient [16], and because

the PM2.5 originating from biomass burning has a different composition than anthropogenic

aerosols [21], the health response to wildfire smoke exposure may be different than to ambient

PM2.5 exposure. The development of wildfire-specific concentration-response functions is in

its infancy. As wildfires become an increasingly important source of PM 2.5 in the western US,

there is a need to develop understanding of health-effects specific to wildfire-smoke PM2.5.

Environmental epidemiology uses many different techniques for determining health effects

of an environmental pollutant and for creating the concentration-response functions described

above. However, most of these study designs require accurate estimates of pollutant exposure,

reliable health data, and a large exposed population to ensure detection of a statistically

significant change in health outcomes between the hazard and non-hazard periods. Because

wildfire smoke events tend to occur in sparsely populated regions, statistical power can
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be challenging; to compensate for this, reducing exposure misclassification by producing

increasingly accurate estimates of spatiotemporal smoke concentrations is necessary for the

epidemiology to be effective. The focus of this study is to produce accurate estimates of

exposure to wildfire smoke across large areas, which can be used in an epidemiology study

such as a case-crossover study design [22].

Previous studies on health effects due to wildfire-smoke exposure have relied on three

different tools to estimate smoke PM2.5 exposure: in-situ monitors (e.g., [20]), satellite

observations (e.g. [23]), and chemical-transport models (CTMs) (e.g., [24]). Each of these

tools has a different set of strengths and weaknesses, and wildfire smoke presents different

challenges for all three of these exposure-estimation techniques.

Ground-based in-situ measurements of PM2.5 are made routinely throughout the US.

The EPA Air Quality System (https://www.epa.gov/aqs) consolidates data from a number

of EPA, state, and local monitors. Many different measurement techniques are used, such as

Tapered Element Oscillating Microbalances (TEOMs) and Beta Attenuator Mass Monitors

(BAMs), which produce hourly measurements, and filter-based measurements, which produce

daily measurements. While there are measurement errors and biases associated with each

measurement technique, the measurements can provide a high degree of accuracy relative

to models and satellites. While in-situ measurements provide accurate information about

PM2.5 concentrations at a single point in space, the spatial density of sites is inconsistent

throughout the western US, and monitors are often insufficient to resolve steep spatial

gradients associated with wildfire smoke. Furthermore, some measurement sites only record

data every third day which can fail to measure changes in smoke concentrations that often

occur on shorter timescales.
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Satellite observations complement in-situ measurements due to their ability to make

observations over large spatial areas. However, most satellite observational techniques produce

estimates of Aerosol Optical Depth (AOD), which is the integrated extinction of light

due to the total column aerosol mass and is not necessarily indicative of surface PM2.5

concentrations. Satellite observations of AOD have been used in numerous studies of air

quality and health (e.g., [23]) and are often combined with models or measurements for

these studies (e.g., [25], [26], and [27]).

To fill the gap between satellite and in-situ observations, modelling tools are used (e.g.

[25]). A wide range of CTMs are used to estimate surface PM2.5 based on information

about emissions, chemical processing of emissions, and transport due to meteorology. CTMs

produce spatially continuous information about many different species, making these tools

attractive for use in health studies [24]. However, CTMs are limited by our understanding

of the underlying physical processes, as well as our ability to represent these processes

in a computationally practical model. Specifically, accurate modelling of wildfire smoke

requires detailed knowledge of fuel loading and moisture, fire behavior, and thermodynamic

structure of the atmosphere to correctly predict emission species and mass, as well as

pollutant injection height, which are all crucial to predicting surface PM2.5 in smoke plumes.

With additional uncertainties in meteorology and subgrid-scale parameterizations affecting

transport, accurate modelling of wildfire smoke is a challenging endeavor.

Given the limitations of these individual tools, several studies have examined the utility

of combining information from each of these tools, as well as other datasets. One study

combines CTM simulation results with AOD products from two satellite platforms, in-situ

monitor data, as well as other land-use data and distance to fire data in a data-adaptive

machine-learning framework consisting of 11 different algorithms [28]. Another study combined
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various remote-sensing products with previous days in-situ measurements as well as a dispersion

model in a regression model to predict surface PM2.5 [29]. An additional study compared

the observed health signal using models, monitors, and satellites separately to determine

exposure and found that the exact technique used to determine exposure can impact the

health response significantly [30]. A review of wildfire-smoke exposure literature noted that

while most studies find a signal for respiratory health effects of wildfire smoke exposure,

more studies on mortality and cardiovascular morbidity are needed, and a limitation of the

studies is the difficulty estimating pollution exposure specific to wildfires [31].

This thesis examines the skill of combining satellite and in-situ observations with CTM

model output to reduce exposure misclassification. In Chapter 2, we describe which fires were

analyzed, what modelling tools and observational platforms were used, how the data sources

were combined, and how the different techniques were evaluated. In Chapter 3, we share

results from the different techniques and discuss how and when each technique is applicable.

Finally, we discuss future work to improve upon the results, presented in Chapter 4.
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CHAPTER 2

Tools and Methods

2.1. Fires Studied

Two different wildfire events were selected to develop the techniques for determining

wildfire-smoke exposure: the Washington State 2012 wildfire season and the High Park Fire

(Fort Collins, Colorado June 2012). The Washington State fires will be the main focus of

this thesis due to the long duration, large exposed population, and while not included here,

our epidemiologist collaborators currently have Washington 2012 health data available. The

High Park Fire is used in this thesis to evaluate WRF-Chem model setup choices. Maps of

fire locations relative to populated areas are shown in Figure 2.1.

Figure 2.1. Map of major fire locations (triangles) for (a) the Washington
wildfire season and (b) High Park Fire relative to population centers (green
circles). In panel a, we included 25% of fires that were active 14-21 September
2012, that were large enough to be included in the FINN biomass burning
inventory. This choice was made to reduce clutter in the figure. This schematic
is only to illustrate where the bulk of the fire activity was located relative to
population, a more complete list of fire activity in this time period can be
found the FINN biomass burning emissions inventory.

The 2012 Washington wildfires were a series of fires ignited by a lightning storm in the

east Cascade mountain range. During September and October, a series of fires burned close
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to 260,000 acres. Smoke from the fires severely impacted visibility and air quality in much

of the central and eastern parts of the state. It is estimated that the cost of fighting several

of the fires exceeded $65 million. During the month of September, there were additional

active surface monitors deployed to augment the EPA AQS monitors, that made hourly

measurements of PM2.5 concentrations. This fire event was selected because the relatively

large number of monitors allowed more opportunities to constrain model simulations, as well

as produce new estimates of surface PM2.5 based on the measured values.

The High Park Fire was ignited by lightning and first detected on June 9th, 2012, and was

100% contained on June 30th 2012. It burned 87,284 acres, becoming the second largest-area

fire in the history of Colorado, and resulted in the destruction of 259 homes and 1 fatality

(from the fire itself). High Park was selected as a fire to simulate because it was a single

isolated fire, which allows us to more easily determine the effect changes in the simulation

parameters have on the smoke plume location and concentrations.

2.2. Exposure-Estimation Tools

2.2.1. Chemical Transport Model: WRF-Chem. Computer models are an increasingly

popular choice for estimating/forecasting air quality and pollution exposure. Models are

able to produce spatially and temporally continuous estimates for many different chemical

species and meteorological variables at high resolution. However, models require simplifying

assumptions and do not represent all of the physics and chemistry present in the real world.

These approximations can compromise the accuracy and usefulness of simulation results.

With any model, it is important to understand how these assumptions affect the simulation

results.
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For our model simulations of wildfires, we use the Weather Research and Forecasting

model with Chemistry (WRF-Chem) [32]. The WRF model is an atmospheric fluid-dynamics

model that solves fluid-mechanics equations with radiative transfer in the atmosphere and is

used in operational weather forecasting as well as for atmospheric research. WRF-Chem uses

the WRF meteorological model with chemistry modules simulating the chemical processes

in the atmosphere including feedbacks on radiative transfer and cloud processes [33].

For this study, our base-case model settings and inputs are: Global Forecast System

(GFS) analysis dataset for meteorological initial/boundary conditions, Model for Ozone And

Related chemical Tracers (MOZART) chemical initial/boundary conditions, and MOZART

chemistry mechanisms [34] with the Goddard Chemistry Aerosol Radiation and Transport

(GOCART) Aerosol model [35], 15 km horizontal resolution, and Yonsei University (YSU)

boundary-layer parameterization [36], and the Thompson microphysics parameterization [37].

We use the EPA National Emissions Inventory (NEI) 2011 [38] for anthropogenic emissions,

the Model for Emissions of Gases and Aerosols from Nature (MEGAN) [39] to model

biogenic emissions, and the Fire Inventory from NCAR (FINN) version 1.5 [40] to model

emissions from biomass burning. FINN is a biomass-burning emissions inventory that

includes observations of fire locations and radiative power derived from remote sensing

tools on a daily timescale, with tabulated information about fuel loading and emission

factors to determine the mass of each species emitted. A major advantage of FINN over

other biomass-burning emissions inventory is that it is updated regularly with recent fire

events, allowing rapid simulation of recent fires. For smoke emissions from biomass burning,

WRF-Chem uses an online 1-D plume-rise parameterization to determine pollutant injection

height [41]. For our Washington simulations, we begin simulations on June 1st 2012 at 00Z,
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and reinitialize our meteorology every twenty four hours, while using the previous day’s

simulation output to initialize all chemistry fields for the next day.

We perform a series of sensitivity simulations of the High Park Fire to determine the

consequences and sensitivity of the model to these choices; we test the sensitivity to the

model resolution, boundary-layer parameterization, cloud-microphysics parameterization,

meteorology-reanalysis dataset, biomass-burning emissions inventory, and biomass-burning

emissions diurnal profile. The details of the sensitivity simulations can be found in Appendix

A. The results of the sensitivity study show that the model simulations are highly sensitive

to the biomass-burning emissions inventory, diurnal profile of the emissions, and model

resolution, and relatively insensitive to the reanalysis dataset and parameterization choices.

Due to the scarcity of available surface measurements of PM2.5 during the High Park Fire,

it was not possible to determine the optimal parameter settings. Furthermore, the choice of

parameters is likely to differ based on region, meteorological conditions, and wildfire. We

therefore use the base-case simulation settings for the Washington 2012 simulation. Figure

2.2 shows the domain used for the Washington 2012 WRF-Chem simulations.

2.2.2. In-Situ Monitors and Ordinary Kriging. In-situ monitor data for the state

of Washington, as well as northern Oregon, and western Idaho and Montana were obtained

from the EPA AQS for the months of July-October of 2012. During smoky periods, the

Washington Department of Ecology deployed additional PM2.5 monitors, which were also

included in our analysis. Additional in-situ measurements from Canada were obtained from

Dr. Sarah Henderson at the University of British Columbia School of Population and Public

Health. All networks of in-situ measurements use a combination of TEOMs and BAMs.

The various surface observations are at different temporal resolutions; temporary monitors

reported hourly PM2.5 readings, while the EPA-network sites provide measurements every
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Figure 2.2. WRF-Chem simulation domain (black) and inner Analysis
domain (red). Both domains use the same 15x15 km grid, but blended surface
concentration estimates were only produced inside the analysis domain.

day, or every 3 days. Hourly data are averaged to produce 24-hour-average concentrations.

Figure 5 shows a map of all surface monitors included in the analysis; red sites are located

inside of our predictive domain where we evaluated model performance, while blue sites were

included as inputs to our predictive model to help reduce boundary effects inside the area

of interest.

While previous studies (e.g. [2]) have relied on nearest monitor readings to determine

exposure, this reduces the sample size of the exposed population, and many health effects

(especially cardiovascular effects) may be obscured by a lack of statistical power [42]. Often,

an interpolation technique is used to produce spatially continuous estimates of the surface

PM2.5 based on in-situ monitors in order to increase sample size for a health study [43] [44].
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Figure 2.3. Surface sites included in the Kriging analysis. Red sites were
inside our domain of analysis and were also used to evaluate the various
prediction schemes that were used. Blue sites are outside the model domain
and were only used as inputs to the kriging model.

Ordinary kriging is a geostatistical interpolation technique that has been used for interpolating

air-quality data [45] [46] [47]. Kriging uses the correlation between measurement sites and

the sites respective distances to estimate the rate of decay of spatial autocorrelation. This

is done by calculating “semivariance” (γ), as defined in Equation 1

(1) γ(h) =
1

2

1

n(h)

n(h)
∑

i=1

(z(xi + h)− z(xi))
2

where h is the distance, n are all data points at that distance, z is the value being interpolated,

x is the point within the domain. Semivariance between each in-situ measurement site is
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calculated, and used to construct a “semivariogram”, which is semivariance as a function of

distance. We then choose an analytical function to model the empirical semivariogram. We

use a spherical semivariogram, shown in Equation 2:

(2) γ(h) = (s− n)

((

3h

2r
−

h3

2r3

)

10,r(h) + 1r,∞

)

+ n10,∞(h)

where h is distance, and s, r, and n are shape parameters to optimize the fit. The ’sill’

parameter (s) determines the semivariogram function value at infinite distance, the ’nugget’

parameter (n) determines the semivariogram function at distance 0, and range parameter r

determines the length scale at which semivariance decays to the sill value [45]. The function

1A(h) is defined such that for 1A(h) = 1 ;h ∈ A and 1A(h) = 0 ;h /∈ A.

In our interpolation, we use sill and nugget parameter values of 3.0 and 0.1, and a

range parameter of 8.0 degrees respectively. Interpolations with ordinary kriging of our data

were very sensitive to the choice of semivariogram shape and parameters. We chose to use

a spherical semivariogram shape because it performed the best of common semivariogram

models, and also because this shape has been shown to perform well in other air-pollution

applications [48]. We selected values for the parameters that produced the best estimates

according to our evaluation procedure (Section 2.4).

An advantage of kriging over many other spatial-interpolation techniques (e.g. Inverse

Distance Weighting) is that kriging accounts for spatial heterogeneity in measurement site

placement, so no declustering is required [49]; in other interpolation techniques, a monitoring

site‘s contribution to the interpolation estimate is calculated based on distance to a point

where the value is known (e.g. an in-situ monitor site). However, if multiple monitors are

close together, they each contribute independently to the interpolated estimate, even though

we know that these observations are not independent; this can bias a spatial interpolation
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towards regions that are more extensively monitored (i.e. urban areas), over the smaller

number of in-situ monitors that are close by. Because kriging uses the spatial autocorrelation

between a given surface site and the interpolated location to calculate the monitor‘s contribution

to the interpolation, this is implicitly taken into account.

To produce spatially continuous surface-PM2.5 estimates, we used the PyKrige module [50]

to produce kriged estimates of PM2.5 concentrations at every point on our analysis grid

domain (Figure 2.2) in the state of Washington. We used 24-hour average PM2.5 concentrations

and kriged between the values in latitude and longitude for each day. On each day, we used

all available measurements; if data were missing at a measurement site on a given day, that

monitor was omitted from the kriging analysis for that day. We evaluated the performance

of our models at the surface sites that were located inside the model domain (red dots in

figure 2.3). The evaluation procedure is described in Section 2.4.

2.2.3. Satellite Observations: MODIS AOD. In this work, we use the MODerate

resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra and Aqua

polar-orbiting satellites. Both satellites provide measurements of the entire globe approximately

once daily, with the Terra and Aqua overpasses occurring at 10:30 AM and 1:30 PM local

time respectively, with a swath width of 2330 km. MODIS instruments consist of radiometer

measurements of the Earth at 36 wavelengths.

MODIS Aerosol Optical Depth (AOD) is a measure of optical extinction in the atmosphere

due to the total amount of particulate matter in an atmospheric column; in many locations,

AOD is often highly correlated with surface PM2.5 concentrations. However, there can

be variability in the strength of the relationship which depends on many other variables

(e.g. [51]).
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We use the Level 2 AOD Dark-Target Collection 6 retrieval at 10 km spatial resolution

for this analysis [52]. The Aqua and Terra overpasses are averaged together to produce a

single AOD observation that is representative of the daytime period. The Level 2 retrieval

includes a cloud mask. However, in the case of wildfires, thick smoke often is mistaken for

cloud by the retrieval and erroneously masked [26]. Changes were made in Collection 6 to

account for this; however some pixels are still flagged as missing when we believe that they

represent dense smoke instead of cloud. When masked pixels are surrounded by elevated

AOD values due to fire smoke, we assumed that the retrieval failed on these pixels, and we

interpolated surrounding pixel values to estimate the AOD in that pixel. If a missing pixel

has three adjacent pixels that are elevated above background, then the pixel is given the

average of all adjacent non-missing pixels. This process is repeated until gaps that appear

to be in the smoke plume are filled. This procedure accounts for approximately 50% of

the missing values from the MODIS AOD dataset, making it nearly continuous in regions

of high-AOD where we believe dense smoke is located. However, pixels missing due to the

presence of real clouds, or other filtering by the algorithm (i.e. not surrounded by high AOD

measurements) are left in the dataset because they usually do not have three neighbors that

are elevated.

A limitation to our procedure is that it likely underestimates the AOD in regions that were

erroneously masked, as surrounding pixels are used to fill these gaps in; if the surrounding

pixels had AOD values as high as the missing pixel, they would likely be masked as well.

Because AOD is not a direct measure of aerosol mass, we apply this procedure to increase

the spatial continuity of the AOD data, though we acknowledge that there are limitations

to the AOD data in dense smoke.
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Additionally, because we are using composite images from 10:30am and 1:30pm (from

Terra and Aqua) as representative of the entire 24-hour time period, we are penalizing

MODIS AOD’s skill as a predictor of surface PM2.5. Given the temporal resolution of our

other data sources, this was a necessary step, but we acknowledge that it may reduce the

predictive skill of these observations.

Finally, the MODIS AOD values were regridded to the WRF-Chem grid in the Analysis

domain (Figure 2.2) using the nearest value.

2.3. Regression Models

2.3.1. Global Regression. We use linear regression for developing a predictive model

from the three different exposure datasets: in-situ measurements, satellite-based measurements,

and the WRF-Chem model. Linear regression posits that the dependent variable, in our case

surface PM2.5 concentrations, can be determined by linearly combining N different predictor

variables as in Equation 3:

(3) ~y =
N
∑

i=0

wixi

where the coefficients wi are chosen to optimize the fit. This is done by minimizing a cost

function; the choice of cost function determines the type of regression being implemented.

For our problem, we have three different mostly spatially continuous datasets: WRF-Chem

model output, interpolated in-situ measurements based on kriging, and MODIS AOD data.
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Thus, the specific form of our linear fit is:

(4) PM2.5,fit = A+B ∗ PM2.5,krige + C ∗ PM2.5,wrf +D ∗ AOD

where A is the fitted intercept and B, C, and D are the fitted slopes for each predictor

variable. We use measured values of PM2.5 as our dependent variable to train the regression

model at points where measurements were made. We then use the derived coefficients to

predict surface concentrations in every grid cell in our domain.

If we reformulated Equation 3 as matrix problem, we arrive at Equation 5

(5) X~w = ~y

A common form of linear regression is “least squares” regression, where the cost function to

be minimized is the sum of squared residuals between measured data and values predicted

by the linear model (Equation 6).

(6) ||X~w − ~y||2

However, when different predictor variables are correlated with each other, least squares

regression can produce coefficients that are sensitive to small errors. In our case, WRF-Chem

PM2.5, kriged PM2.5, and MODIS AOD can all be indicators of smoke, meaning that the

three datasets are likely to be correlated. Therefore, least-squares regression is a poor choice

for our system.
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An alternative to least squares regression is Tikhonov Regularization, or Ridge Regression.

In Ridge Regression, the following expression is used instead:

(7) ||X~w − ~y||2 + ||Γ~w||

Here, Γ is the Tikhonov Matrix, which is defined as Γ = αI, where I is the identify matrix,

and α is a scalar. The result of adding this extra term to the cost function is that it

penalizes the regression for allowing any one coefficient to grow too large, which prevents

the instabilities that arise in Least Square Regression.

We use Leave-One-Out Cross-Validation (Section 2.4) to train our regression coefficients.

An alpha (α) parameter value of 0.2 was chosen because it produced the good performance

in our evaluation statistics, though the regression model was not sensitive to this parameter.

2.3.2. Geographically Weighted Regression. In the regression analysis described

above, one assumption that is implicitly made is that the surface PM2.5 is related to the

predictor variables in the same way at every point in space. However, we expect different

exposure estimates to perform differently in our domain: for example, we expect WRF-Chem

to perform differently in regions where emissions are dominated by urban/anthropogenic

sources as opposed to biogenic and wildfire emissions, based on the accuracy of the emissions

inventories and the representation of relevant processes such as chemistry and deposition.

Likewise, we expect an interpolated estimate (e.g. kriging) to perform better in regions with

a higher spatial density of surface sites or homogeneous emission sources.

In Geographically Weighted Regression (GWR), we can relax this assumption [53]. GWR

is a geostatistical technique that has been used in urban air-quality studies (e.g. [54]) as
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well as national-level studies incorporating remote sensing (e.g. [55], [36]), demonstrating

its applicability at a wide range of spatial scales. In GWR, we calculate a separate set of

regression coefficients at each point in space where a validating dataset can be obtained (in

our case, locations of surface monitors where measurements were made) [56]. The coefficients

are then interpolated in space (between the surface-monitor locations) to produce unique

regression coefficients in every grid cell in our domain, that are tuned to the nearest surface

monitors.

In our study, we use ridge regression (α = 0.2) at each surface monitor location, using

WRF-Chem surface PM2.5, kriged surface PM2.5, and MODIS AOD in the grid box as inputs,

and the in-situ measurements to train a set of unique coefficients for a regression model

for each in-situ monitor location. The coefficients are then interpolated using a Gaussian

kernel [56] as in Equation 8:

(8) G = exp

(

−

(

D

Bw

)2
)

where G is the kernel value of a given surface monitor, D is the distance to that monitor, and

Bw is a bandwidth parameter; we use Bw = 100 km in our study. Using this interpolation

procedure, a set of ”interpolated” coefficients are calculated for each grid box in the analysis

domain (Figure 2.2)

2.4. Model Evaluation Approach

All of our prediction techniques are compared to 24-hour measured PM2.5 concentrations

from the red surface sites in Figure 2.3. In this section, we describe how we specifically

evaluate each of the prediction techniques.
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In order to evaluate our WRF-Chem simulations and the MODIS AOD retrievals, we

compare the model-predicted surface PM2.5 concentrations with PM2.5 concentrations measured

at the surface monitors. We calculate the slope and R2 for the aggregated dataset and each

surface monitor for both WRF-Chem and MODIS. We also estimate mean absolute error

(MAE), and mean bias (MB) for WRF-Chem (we cannot calculate MAE or MB for an

AOD-PM2.5 comparison).

To evaluate the kriged PM2.5 estimates, we use the Leave-One-Out Cross-Validation

(LOOCV) technique [57]; a single in-situ monitor is removed from the interpolation scheme,

and we perform a kriging interpolation of the PM2.5 concentrations measured at the remaining

monitors. We compare the result of the kriging interpolation to the measured value by the

in-situ monitor value that was removed from the interpolation. This process is repeated for

every surface site in the domain. The same sets of statistics are calculated as for WRF-Chem

both globally and per surface monitor.

We also evaluate the regression blends of kriging, WRF-Chem, and MODIS using a

variation of the LOOCV technique. However, while we remove a single surface monitor

for each LOOCV permutation, as above, for this evaluation we do include the WRF-Chem

PM2.5 and the MODIS AOD at this location. This is to simulate the data available away

from surface monitors. To note, we use the LOOCV technique only for evaluation regression

blends. When producing actual estimates of PM2.5 concentrations in Washington, we use all

surface data available.
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CHAPTER 3

Results and Discussion

3.1. Sample timeseries data

Figure 3.1 shows timeseries of in-situ measurements of surface PM2.5 as well as the kriged

PM2.5 estimate, WRF-Chem simulated PM2.5 and MODIS AOD for two in-situ monitor

locations (Figure 3.1a,c) as well as the in-situ monitor locations (Figure 3.1b).

Figure 3.1a shows results corresponding to the location of the surface monitor in Mt.

Vernon, WA. Mt. Vernon is located in the northwest part of the state, which based on

the in-situ observations of PM2.5, does not appear to have experienced major impacts from

wildfire smoke at the surface in 2012 (Figure 2.1). Therefore, PM2.5 concentrations at this

monitor were likely dominated by non-wildfire sources such as biogenic and anthropogenic

emissions from the urban corridor near the Puget Sound during our analysis period. Examining

the timeseries, we see that there was little variability in the surface observations and concentrations

were consistently below 15 µg m−3. WRF-Chem overpredicts PM2.5 throughout the time

period, but also appears to predict increases in PM2.5 concentrations during September,

when there were large wildfires in central Washington, that are not corroborated by the

measurements. There were increases in MODIS AOD as well; therefore, it is possible that

smoke was elevated above the surface at this location, and the model incorrectly transported

some of the smoke plume to the surface. There are other possible explanations for the

MODIS AOD timeseries showing periods of high AOD that are not reflected in surface

observations: aerosols taking up water and thus increasing AOD without increasing dry

PM2.5 mass, changes in the aerosol size distribution, and local gradients in aerosols within

the 10 km MODIS aerosol retrieval.
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Figure 3.1. Time-series plots from (a) Mt. Vernon, WA with both regression
models plotted alongside observations in the top panel, and the three raw
dataseries in the bottom panel; (b) Map locations of Mt. Vernon and Pullman
WA; (c) time-series plot from Pullman WA.

Figure 3.1c shows the same information for Pullman, WA which is in eastern Washington,

downwind of the fires in central Washington (Figure 2.1). Pullman was impacted by smoke
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in mid-August and in September, as suggested by the timeseries of both the observed PM2.5

and the MODIS AOD. Like in Mt. Vernon, WRF-Chem appears to overestimate background

surface PM2.5; however, the positive bias during non-fire periods does not appear to be as

high. WRF-Chem also appears to overestimate increases in PM2.5 associated with wildfire

smoke.

To assess the performance of these techniques throughout the domain, we compared

estimated surface PM2.5 concentrations to in-situ observations at every site throughout the

domain (domain shown in Figure 2.2 and site locations shown in Figure 2.3). Figure 3.2 shows

the estimate from each predictive model (including the GRR and GWR blend methods)

plotted against surface observations, with corresponding slope, R2, Mean Absolute Error

(MAE) and Mean Bias (MB) consolidated in Table 3.1. Figure 3.3 shows the R2 value of

each technique at every surface site. These plots will be discussed further in the following

subsections.

Table 3.1. Performance statistics for each exposure estimate.

Exposure Estimate Slope R2 Mean Absolute Error Mean Bias

[µg m−3] [µg m−3]
WRF-Chem 0.67 0.25 11.45 10.22
Kriging 0.70 0.69 2.09 0.00

MODIS AOD 0.01 0.18 – –
Global Ridge Regression 0.70 0.69 2.14 0.01

Geo-Weighted Ridge Regression 0.78 0.66 2.40 0.37

3.2. Evaluation of the three individual datasets

3.2.1. WRF-Chem Surface PM2.5. Figure 3.2a shows the comparison of WRF-Chem

simulated PM2.5 (section 2.2.1) to surface observations. As shown in Table 3.1, WRF-Chem

estimates have a slope of 0.67, R2 of 0.25, and MAE of 11.4 and MB of 10.2 µg m−3. These

statistics suggest that our WRF-Chem simulation over-predicts concentrations throughout
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Figure 3.2. One-to-one plots of: (a) WRF-Chem, (b) Kriging, (c) MODIS
AOD, (d) Global Ridge Regression, (e) Geo-Weighted Ridge Regression
predictions of surface PM2.5 vs. measured concentrations.

WA during this time period (June-September 2012). The slope of less than 1 is driven by (1)

an underprediction of surface PM2.5 for the few highest concentrations that were recorded

and (2) a high PM2.5 bias in non-smoke regions. Estimates from our WRF-Chem simulation

are on average biased high, in large part due to the overprediction of PM2.5 in non-fire

regions.

Figure 3.3d shows the WRF-Chem PM2.5 average bias at each in-situ monitor. We

see that much of the positive bias is driven by the large number of monitors in western

Washington that were not impacted by smoke. The R2 values (Figure 3.3a) are close to

zero at many of these monitors as well, showing that WRF-Chem is not capturing the

variability at those surface monitors. Based on this, it appears that poor WRF-Chem

performance for our simulation can be attributed, in part, to non-wildfire emissions, such as

anthropogenic emissions, biogenic emissions, MOZART boundary conditions, or the choice
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Figure 3.3. A-C, E, and F: R2 values calculated at each surface monitor
for: (a) WRF-Chem simulated surface PM2.5 concentrations, (b) kriged in-situ
observations of PM2.5 concentrations, (c) MODIS AOD, (e) Global Ridge
Regression estimated surface PM2.5 concentrations, (f) Geo-Weighted Ridge
Regression predicted surface PM2.5. We excluded all monitors from evaluation
for over 60% of days with data missing from either MODIS or observations,
which is reflected in the relatively fewer monitors in the GRR and GWR
figures. (d) contains the mean-bias associated with WRF-Chem estimates at
each in-situ measurement site (and uses a different color scale).

of aerosol microphysics scheme. In contrast, the mean absolute bias is much closer to zero,

and R2 values are much higher in the central part of the state that was most-severely

impacted by smoke and where mean measured concentrations were higher. In the eastern

third of the state, WRF-Chem PM2.5 estimates from our simulation are also biased high

with respect to the surface observations, but R2 values remain high. This is consistent with

our observations in Pullman WA, where we observed in the timeseries (Figure 3.1c) that

WRF-Chem overpredicts ambient and wildfire PM2.5, but seems to capture the variability in

surface observations. We conclude from this that, in spite of the high bias, our WRF-Chem

simulations do offer useful information about wildfire-smoke PM2.5 although it struggles to
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represent PM2.5 concentrations near the Puget Sound, which was not greatly affected by

smoke.

To explore this bias due to non-smoke emissions further, an additional WRF-Chem

simulation was performed with biomass burning emissions turned off (not shown). Even with

no fires, WRF-Chem PM2.5 estimates were biased high in the Puget Sound region, leading

us to conclude that the overprediction in eastern WA was not due to simulation of the fire

emissions, but to the representation of anthropogenic and/or biogenic emissions or chemical

boundary conditions. It is well known that the choice of emissions inventory is a critical

parameter in air-quality simulations [58]; however, other air-quality studies of the Puget

Sound region (e.g. [59]) found good agreement between model-predicted PM2.5 concentrations

and in-situ measurements using the NEI in the CMAQ model, suggesting that our problems

are not inherently due to the NEI. Other air-quality studies using WRF-Chem to predict

surface PM2.5 and ozone concentrations have found that choice of chemical mechanism (e.g.

aqueous phase oxidation of SO2) [60] and representation of atmosphere-ocean interactions [61]

can also play a large role in surface PM2.5 concentrations. Changing the model configuration

(as discussed in Appendix A), can produce a wide range of PM2.5 concentrations. Therefore,

we could likely optimize our model simulation to better predict surface concentrations;

however, it may be unlikely that the optimal model settings would be the same in western

Washington along the coast, central Washington along the Cascade mountains, and in the

plains of eastern Washington.

As previously mentioned, one of the main challenges for determining wildfire-specific

health effects is overcoming exposure misclassification [31]. Other studies that have attempted

to use WRF-Chem to characterize exposure to wildfire smoke (e.g. [24]) have confirmed that

exposure misclassification can occur when using models to estimate exposure and the extent
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of exposure misclassification is difficult to quantify. In particular, the Alman et al. [24]

study had to contend with a comparatively smaller number of in-situ PM2.5 monitors in

their study domain against which to evaluate their exposure estimates. While it is possible

in principle to use WRF-Chem to generate highly accurate surface PM2.5 estimates, this may

require optimizing the WRF-Chem simulation to better account for parameters and processes

that are more representative of each region. This would likely also require enough in-situ

monitors to comprehensively evaluate WRF-Chem performance in the domain. While this

may be feasible in Washington due to the dense network of monitors, our goal is to produce

a method that is transferrable to different regions and fires. Therefore, we also analyzed

how routine observations could be used to estimate exposure and improve upon these model

estimates.

3.2.2. Kriged Surface PM2.5. The analogous one-to-one plot for our kriged PM2.5

estimates (section 2.2.2) and R2 map are shown in Figures 3.2b and Figure 3.3b, respectively.

Using kriging to estimate PM2.5 appears to outperform our WRF-Chem simulation of PM2.5

throughout the domain with a slope of 0.7, R2 of 0.69, MAE of 2.1 g/m3, and MB of 0.0.

The slope less than one is driven by, as with our WRF-Chem simulation, an underprediction

of the highest observed concentrations. This is expected, because interpolation techniques

cannot predict local maxima or minima that do not impact a measurement site used in the

interpolation. On average, however, kriging is able to produce estimates that are close to the

actual value, given the low MAE and bias (calculated using our evaluation technique from

section 2.4).

In Figure 3.3b, we note that kriging generally has the highest R2 values in regions where

surface monitors are closest together. This is an expected result; the spatial autocorrelation

of PM2.5 decays with distance, so sites in closer proximity are better able to capture the
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expected variability than more distant ones. However, there are individual sites that appear

to have low R2 values despite close proximity to other monitors. This low correlation can

occur if a monitor is near a local source of PM2.5, especially if these surface monitors have a

low PM2.5 variability range. Because the kriging model produces estimates with a lower error

and bias, we consider this to be a more-accurate estimate than our WRF-Chem simulations

for the 2012 Washington fires.

While interpolation has been shown to be useful for characterizing PM2.5 concentrations

for ambient air pollution (e.g. [47] [62]), relatively few studies have attempted to use interpolation

to characterize smoke concentrations for wildfires, largely because the highly concentrated

plumes of smoke often produce spatial PM2.5 concentration gradients that are too steep for

in-situ monitor networks to resolve [63]. Studies that do use in-situ monitors to determine

wildfire impacts on air quality either limit their study area to close to a monitor [63], or

combine PM2.5 monitor data with other sources of information (e.g. [28]). For the 2012

Washington fires, we are able to take advantage of Washington’s comprehensive in-situ

monitor network that was augmented by the deployment of extra monitors. Furthermore,

the number and distribution of large wildfires (Figure 2.1) produced large areas of smoke

impact instead of isolated plumes, which possibly explains why our interpolation is able to

represent surface concentrations with better-than-expected accuracy. However, we are still

concerned about the presence of local maxima or minima in PM2.5 concentrations in between

surface monitors, and therefore decided to incorporate other source of information, such as

the satellite observations and WRF-Chem output into our exposure estimates.

3.2.3. MODIS AOD. The one-to-one plot for MODIS AOD (section 2.2.3) and in-situ

PM2.5 concentrations is shown in Figure 3.2c. Because MODIS AOD is not the same

dimension as PM2.5, the one-to-one plot does not lend itself to the same interpretation
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as for WRF-Chem and Kriging. However, we can still use the figure to assess how well

AOD might predict surface PM2.5. First, we notice that there is a slope of 0.01 (Table 3.1);

physically, this means that an increase in 0.01 AOD on average produces an increase of 1

µg m−3 in PM2.5 concentrations. We can see, however, that the observations tend to be

bifurcated around the line (either above or below), with few data points lying along the line.

This variability in the AOD:PM2.5 ratio may be due to variability in (1) the vertical profile

of aerosol, e.g. due to lofted smoke, (2) the ambient relative humidity driving variability

in aerosol water, and (3) the aerosol size distribution or composition driving variability in

the mass extinction efficiency, and/or (4) temporal/spatial variability in the 24-hr PM2.5

not captured by the resolution of the satellite observation. The R2 value for MODIS AOD

is 0.18. In Figure 3.3c, we see that, like with WRF-Chem PM2.5, R
2 values for AOD are

close to zero in western Washington, but at some surface monitors in the central and eastern

portion of the state that were more-heavily smoke impacted, R2 values are as high as 0.6.

Our use of MODIS AOD to estimate surface PM2.5 concentrations produces an expected

level of performance: MODIS AOD has been successfully used to identify wildfire smoke

in previous studies (e.g. [23] [26]). With the exception of thick smoke occasionally being

erroneously classified as a cloud [26], AOD is well suited for identifying large changes in

atmospheric aerosol loading, which explains its good performance in central and eastern

Washington. Contrastingly, low variability in aerosol loading in western Washington, coupled

with the presence of fog and stratus clouds, as well as uncertainties in the aerosol retrieval in

coastal regions, produces lower performance. However, because this region was not impacted

by smoke, we may not need to rely on MODIS to estimate population exposure.

Even in smoke-impacted regions, we do not expect MODIS to explain all of the variance in

the surface PM2.5 concentrations, as there are still challenges associated with distinguishing
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surface PM2.5 from aerosol mass that is above the surface and not directly relevant to

human health. Other studies have attempted to deal with this uncertainty in different ways;

the Rappold et al. ([23]) study was conducted at a coarse spatial resolution and used a

binary exposure variable (e.g. smoke or no-smoke based on fractional coverage of counties).

At this level of spatial resolution, exposure misclassification is likely to occur from many

sources, and the contribution due to uncertainty in smoke plume height may be relatively

minor in comparison. The van Donkelaar et al. ([26]) study combines satellite AOD with

output from a chemical transport model to try to further constrain population-level exposure

estimates. Therefore, in the next part of our study, we investigate combining MODIS AOD

with WRF-Chem output and kriged in-situ measurements of PM2.5 to produce spatially

continuous estimates of PM2.5.

3.3. Regression Blends

3.3.1. Global Ridge Regression. For our first combination of model and observations,

we aggregated our three datasets (e.g. kriged PM2.5 measurements, WRF-Chem PM2.5

estimates, and MODIS AOD) from all in-situ monitor locations into a ridge regression blend

(GRR, section 2.3.1). As shown in Table 3.1, the GRR blend produces summary statistics

(slope = 0.70, R2=0.69, MAE = 2.14, MB=0.01) that are almost identical to the kriging

estimate. If we examine the coefficients in our regression model, as shown in Table 3.2,

we see that the GRR model is weighted very heavily towards the kriging model. If we

use the mean AOD:PM2.5 ratio from Figure 3.2c of 0.01 AOD/[µg m−3] to convert the

GRR coefficient for AOD into the same units as the other GRR coefficients, we find that

the relative weights are 0.91 for kriging, 0.07 for WRF-Chem, and 0.01 for MODIS AOD.

The result of these coefficients is that the GRR model-predicted PM2.5 is very close to the

31



kriging-predicted values, and the performance statistics are therefore very similar as well.

The heavy reliance on the kriged PM2.5 estimates in the GRR is due to the kriging estimates

outperforming both our WRF-Chem simulation and MODIS AOD at most locations. The

R2 values across the different measurement locations for the GRR are also quite similar to

the kriged PM2.5 estimate (Figure 3.2d,b). The only discernable difference is the absence of

a few surface monitor locations in the GRR figure (Figure 3.3d), which is due to a lack of

sufficient MODIS AOD observations at those locations.

It is important to note that these three inputs to the regression model are expected to

be highly correlated. While we address instabilities in the regression model by using Ridge

Regression, one unavoidable complication is that the regression coefficients are not necessarily

unique, due to multicollinearity. Information that is contained in multiple datasets is only

added to the regression model once. Therefore, a set of coefficients could exist that relies

more on either our WRF-Chem PM2.5 or MODIS AOD to produce the same estimate of

surface PM2.5.

Table 3.2. Regression coefficients for GRR fit. MODIS AOD and intercept
coefficients are listed, but are in different units than kriging and WRF-Chem
coefficients. The values in parentheses were converted to the same units by
dividing the coefficient by the average measured surface PM2.5 concentration,
and for MODIS AOD, multiplying by the slope (Figure 3.2c)

Regression Coefficient Mean Value Standard Deviation

Intercept [µg m−3] -0.78 0.04
([µg m−3/µg m−3]) (-0.00) (0.00)

Kriging [µg m−3/µg m−3] 0.91 0.00

WRF-Chem [µg m−3/µg m−3] 0.07 0.00

MODIS AOD [µg m−3/AOD] 0.87 0.04
([µg m−3/µg m−3]) (0.01) (0.00)
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3.3.2. Geographically Weighted Ridge Regression. For our second combination

of model and observations, we used Geographically Weighted Regression (GWR, described in

2.3.2). Table 3.1 shows the performance of the GWR model (slope = 0.76, R2=0.66, MAE =

2.40, MB=0.37). GWR is similar to GRR, but rather than using one set of coefficients for the

whole domain, a separate set of regression coefficients is calculated at each surface monitor

location. The coefficients are then interpolated using a Gaussian kernel with a bandwidth

parameter (equation 8) of 100 km. The bandwidth parameter can be thought of as a length

scale at which the regression coefficients calculated a surface monitor influence the GWR

coefficients throughout the domain. We varied the bandwidth to test the sensitivity and

found that increasing the bandwidth reduced the slope further from unity, but improved the

R2. We chose 100 km to maximize the performance of these two statistics. Although the

resulting R2 is lower than the R2 determined from the kriging estimate and the Global Ridge

Regression model and the MAE and MB are slightly higher, the slope is much closer to one.

And to note, these increases in MAE and MB from 2.1 to 2.4 and 0 to 0.4 µg m−3 (relative

to using the kriged PM2.5) are small, relative to the concentrations seen during the wildfire

smoke events (e.g. 80 µg m−3).

Figure 3.3e shows the R2 values at each site. For sites near other sites, the GWR

appears to perform the same or better than GRR, while isolated sites suffer a slight decrease

in performance. This may be due to the interpolation of regression coefficients, which adds

another layer of estimation to the system. Figure 3.4 contains a plot of the intercept and

three regression coefficients calculated at each in-situ monitor in the domain and rescaled to

sum to one. In Figure 3.4b, we see that at most of the in-situ monitor locations, GWR relies

heavily on the kriged PM2.5 measurements to produce the best estimate of surface PM2.5

concentrations. However, in Figure 3.4c and d, we see that there is a non-zero contribution
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from both WRF-Chem and MODIS in the central and eastern parts of the state, where both

datasets were shown to explain more of the variance in the system (Figure 3.3). Interestingly,

WRF-Chem appears to have a negative coefficient at some of the smoke-impacted monitors

in central Washington. These monitors are all located near the Puget Sound so we expect

a close correlation with the urban sites near the Puget Sound; however, these monitors are

separated from the urban areas by a mountain range and in reality, these surface monitors are

likely to be decoupled from the anthropogenic signal, despite the close proximity. Likewise,

because WRF-Chem overpredicts anthropogenic emissions, it is possible that WRF-Chem

predictions in this region also contain an anthropogenic signal, and the negative coefficient

allows the model to remove this signal from the predicted surface concentrations at these

locations.

GWR allows the model more degrees of freedom to account for strengths/weaknesses of

the three inputs in different regions. which is an advantage over GRR. A disadvantage of

GWR is that the total amount of data that is used to calibrate model coefficients at each

individual site is lower than the amount of data used to calibrate the single set of coefficients

in GRR, where the data from all individual sites are pooled together. Thus, it is possible

that the fits at the individual sites for GWR are less robust than the global fit for GRR.

Furthermore, while sites outside the analysis domain (external sites in Figure 2.3) were

used as inputs to the kriging dataset, they were not incorporated into the GWR analysis,

so analysis grid boxes near the boundaries of the domain have fewer regression coefficients

contributing to the GWR calculation, and are also less reliable.

Our techniques perform comparably to other studies that have also tried to estimate

smoke concentrations. The Yao et al. [29] study of the 2003-2012 fire seasons in British

Columbia, which combined prior days PM2.5 concentrations with the NOAA Hazard Mapping
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Figure 3.4. GWR Regression Coefficients (a) intercept, (b) kriged surface
PM2.5 concentrations, (c) WRF-Chem surface PM2.5 concentrations, (d)
MODIS AOD) calculated at each surface monitor, and normalized to sum to 1.
The MODIS AOD coefficient and intercept are in different units (µg m−3/AOD
and µg m−3 respectively), and were changed to the same units as the kriging
and WRF-Chem coefficients (as in Table 3.2) before the normalization was
performed.

System (HMS) product, and MODIS-measured Fire Radiative Power (FRP), reported correlation

coefficients of 0.84 (R2 of 0.71), and a Normalized Root Mean Square Error (NRMSE) of

55.6% whereas our GWR model produces an R2 of 0.66 and a NRMSE of 2%. Our study

likely produced lower NRSME than the Yao et al. [29] study because we input same day

PM2.5 in-situ measurements from other sites, rather than yesterdays measurement at the

same site. We expect that on average, PM2.5 concentrations are highly autocorrelated in

time, which explains why the Yao et al. study produced high R2 values; however, during
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wildfires that produce broad, regional smoke plumes, measurements may be decoupled from

yesterdays measurement, which contributes to their relatively high NRMSE. Because we use

a kriging interpolation to inform our regression model, we are able to capture these broad,

regional smoke plumes which reduces our NRMSE, though not including yesterdays same-site

measurement penalizes our surface-PM2.5-estimate R2 value. Finally, we expect that even

if identical techniques were used in various studies, the performance of the techniques will

vary for different fires and locations.

Another study, Reid et al. [28], combined many different types of land-use and GIS data

with in-situ and satellite observations and CTM output in a multi-method, machine-learning

framework. The Reid et al. [28] study found that a generalized boosting model (GBM) with

29 different variables input produced their best estimates, with a slope of 0.99, R2 of 0.80,

and a root mean square error (RMSE) of 1.5 µg m−3. In comparison to this study, we are able

to achieve similar performance with our error statistic (MAE of 2.4 µg m−3 for GWR), but

our slope and R2 do not achieve the same level of performance. In large part, this is because

the GBM uses more input variables (29 vs. our 3), allowing for more degrees of freedom

to train their model. Additionally, they used a suite of 11 sophisticated statistical models

and selected the top performer, whereas we use only one regression model. An advantage

of our techniques is that they allow us to investigate the spatial dependence of different

input datasets, which may be more difficult with esoteric machine-learning techniques.

Machine-learning approaches as applied by Reid et al. [28], use a wide range of environmental

variables as inputs to their model such as wind direction, planetary boundary layer height,

and distance to nearest fire, as well as land-use and distance to highways. While we expect

some of these to be related to surface PM2.5 surface concentrations, many of these variables

(boundary layer height, U wind and V wind) are not necessarily independent, and others
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(distance to highway) do not have a clear physical explanation for their ability to predict

wildfire smoke concentrations, which limits our ability to gain a physical understanding of

the system from these types of models. However, they do produce highly accurate results,

which in the context of a health study is the primary objective. As in our study, they found

that WRF-Chem simulation output was relatively uncorrelated with their best predictor

variable (GASP AOD).

AOD as a metric to assess surface PM2.5 is inherently limited by the challenge of distinguishing

between surface and lofted smoke. Likewise in many situations, in-situ monitors are not

numerous enough and fire plumes frequently are too narrow for an interpolation approach to

add much value to a blended model. Therefore, both Reid et al. [28] and our approach, as

well as the Alman et al. [24] approach could benefit from improved WRF-Chem simulations

of wildfire smoke.

3.4. Estimate Technique Performance Simulated with Fewer In-Situ

Measurements

In the case of the 2012 Washington Fires, kriging the surface-based PM2.5 measurements

produces estimates that generally far outperform WRF-Chem surface PM2.5 and MODIS

AOD datasets as concentration predictors throughout time and space. Therefore, the improvement

from blending WRF-Chem PM2.5 and MODIS AOD with the kriged PM2.5 estimate is minor.

However, not every region and time period has as comprehensive of a surface monitor network

as Washington state during the 2012 fire period. In a more-sparsely monitored region,

satellite, and in situ observations may add more value to the regression model than for the

case discussed here. Therefore, we explored how the slope, R2, and mean error of the kriging,

GRR, and GWR methods vary as the number of surface PM2.5 monitors in our domain varies
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from 12 to 212 (which corresponds to using all measurements). For each number of monitors,

we perform 100 trials where we randomly select the sets of surface monitors (e.g. for the

50-monitor case, we randomly select the 50 monitors and perform all subsequent analyses 100

different times). We include all monitors (evaluation and external monitors in Figure 2.3)

as candidates for random selection as inputs for the models. For each selection of monitors,

we perform a kriging fit of the surface-monitor data and compute a GRR and GWR. These

100 trials provide us with an estimate of how the different predictive models depend on the

choice and number of monitors. We evaluate each of these predictions at all evaluation sites

in Figure 2.3 as was done with the complete dataset (Section 2.4), regardless of the number

of input sites to comprehensively assess performance throughout the domain of interest.

Figure 3.5 shows the resulting R2 value, slope, and MAE for the kriging, GRR, and GWR

fits as a function of the number of surface sites in domain. In this analysis, we see that, on

average, the GWR performs best with respect to slope for any number of input monitors.

Furthermore, GWR achieves the highest R2 when fewer than 50 monitors (corresponding to

25% of total available monitors) are input into the model. Kriging and GRR both achieve

higher R2 values than GWR when 120 monitors (i.e. 60% of total available monitors) have

been input to the model. With respect to MAE, kriging performs best for any number of

sites. However, all three models maintain an MAE between 2.0 and 4.0 µg m−3, which is

small relative to the concentrations that are produced by wildfire smoke.

A limitation of this analysis is that we have not optimized any of these estimation

strategies for the new number of in-situ monitors. The kriging weights are calculated based

on the semivariogram (Equation 2). The purpose of the semivariogram is to capture the

dependence of physical semivariance (i.e. spatial autocorrelation) as a function of distance,

and should theoretically be independent of the number of in-situ monitors used to inform the
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Figure 3.5. R2, slope, and standard error (top to bottom) of Kriging,
Global Ridge Regression, and Geographically Weighted Regression models as
a function of number of sites. The shaded region represents between the 25th
and 75th percentiles, with the line representing the mean from the random
trials. All three models experience an increase in performance as sites are
added; the Global Regression and Kriging models converge after 100 (or 50%)
of the surface monitors are added to the calculation. GWR performs best
with respect to slope and R2 initially, but the other two models catch up as
monitors are added.

model. Therefore, the performance of the kriging estimate is unlikely to change. Likewise,

the only free parameter in the GRR estimate is the α parameter in the ridge regression

matrix. We do not expect reducing the number of surface monitors to change the correlation

between the three input datasets, and therefore the previous value should be sufficient.

In contrast, GWR has a bandwidth parameter, which determines the length-scale of

regression coefficients influence throughout the domain. As fewer surface monitors are

available, we expect the optimal bandwidth parameter to change. However, the bandwidth
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depends not only on the number of in-situ monitors, but the configuration of those monitors.

To fully explore this for an arbitrary choice of in-situ monitors requires a prohibitively

expensive calculation; therefore, the results we present here can be thought of as a lower-bound

for the GWR performance for few surface monitors.

3.5. “Smoke” vs. PM2.5 Concentrations

The motivation of this thesis was to characterize wildfire-smoke-specific health effects

by producing accurate estimates of smoke concentrations. However, our methods have

focused on predicting total PM2.5 concentrations, including contributions from non-wildfire

sources. This is because we rely on in-situ observations to evaluate our different approaches.

Furthermore, when we use observations (in-situ and satellite) in our analysis, they contain

PM2.5 from all sources, not only wildfires.

To account for this in our health analysis (not included in this thesis), we produce

estimates of the non-wildfire-smoke contribution to PM2.5 concentrations, and subtract this

from our estimates of total PM2.5. The details of how these estimates were obtained are

described in Appendix C.

40



CHAPTER 4

Conclusions and Future Work

This thesis describes the development of new methods for determining population-level

exposure to wildfire smoke by combining information from existing datasets that have

previously been used for determining exposure, and discusses a strategy for evaluating these

methods.

First, we use WRF-Chem to simulate smoke production and transport from wildfires

during the 2012 Washington fire season, and use the model output to estimate surface

PM2.5 concentrations. We evaluate the simulations with in-situ data; the result of these

model-observation comparisons suggest that WRF-Chem is able to capture variability in

surface PM2.5 measurements in central and eastern Washington which were impacted by

smoke, but overestimates surface PM2.5 concentrations in the Puget Sound urban area.

Next, we produce estimates of surface PM2.5 concentrations by ordinary kriging of the

in-situ monitors. We evaluate this estimate using LOOCV. According to our evaluation

strategy, kriging of in-situ observations produces estimates with substantially more skill

than our WRF-Chem simulation, a surprising result, given that wildfires usually produce

thin, highly concentrated smoke plumes, that we did not expect a network of in-situ monitors

would fully resolve. For this particular fire season, the large number of fires produced broad

plumes of smoke which the dense network of monitors were able to resolve.

We then examined the utility of MODIS AOD in estimating wildfire smoke concentrations.

We found that MODIS AOD performance varied throughout the region; central and eastern

Washington MODIS AOD performed as expected; with some post-processing to fill erroneously

masked pixels due to thick smoke, AOD was correlated with surface PM2.5 in smoke-impacted
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regions. MODIS AOD performed comparatively much worse in the western part of the state

due to low variability in surface PM2.5, as well as stratus clouds and fog reducing sample size.

However, because western Washington was not impacted by smoke during this time-period,

MODIS AOD was not a necessary tool in this region.

In order to generalize our methods to many different regions and fires, we attempt to

combine our interpolation estimates with our WRF-Chem simulations and MODIS AOD

measurements in two regression frameworks. Global ridge regression (GRR) produces linear

weights for WRF-Chem surface PM2.5, kriged in-situ measurements of PM2.5, and MODIS

AOD, and combines them to estimate surface PM2.5. Because our kriging estimates outperformed

WRF-Chem and MODIS, the GRR defaulted to the kriging estimates and failed to improve

performance. When we subset the data by surface monitor and interpolate coefficients

between in-situ monitors (i.e. GWR), we see that a more geographically flexible regression

framework changes estimates more than adding only WRF-Chem and MODIS to a global

regression framework, and though it improves the estimate with respect to the slope, it

produces minor decreases in R2 and small increases in MAE.

Finally, we investigate the performance of the top three performers (kriging alone, GRR

and GWR) with fewer surface monitors to calibrate the model. For situations with fewer

in-situ monitors, GWR and GRR both outperform kriging, with GWR performing the

best of the three. As more in-situ monitors are included, the three models converge to

a similar solution, with GWR producing estimates with a better slope, and slightly worse

R2 value. Because most regions of the western US are not monitored as comprehensively

as Washington, we expect that GWR will be a flexible, easily implemented technique that

can take advantage of any available in-situ measurements, as well as MODIS AOD (or other

satellite observations) and CTM simulations.
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4.1. Next Steps and Future Tools/Datasets

In this analysis, we have relied on in-situ observations, chemical-transport modelling, and

satellite observations. Each of these tools is continually being improved, which will likely

result in improvements in our ability to predict smoke.

As we show in Appendix A, the performance of WRF-Chem for estimating surface PM2.5

is sensitive to the many different possible model configurations. We believe that for our

study, improvements to the skill of the WRF-Chem input to our regression model will allow

the GRR and GWR to rely more heavily on the WRF-Chem input, and therefore improve

predictive skill, especially in regions where kriging does not perform well (i.e. where there are

fewer monitors). This may require a degree of optimization to determine the best simulation

settings for a particular region and/or fire event.

Independent of the model configuration settings, as our understanding of how to simulate

wildfire smoke improves, we expect our ability to represent the impact on air quality in a

chemical-transport model to improve as well. The NOAA FIREX and the JFSP FASMEE

field campaigns will take place in the next few years, which will use a combination of

modelling, aircraft, and in-situ measurements to characterize wildfires and prescribed burns.

One of the aims of these field campaigns is to develop better understanding of emissions and

plume rise, which are both known sources of error in modelling wildfires withWRF-Chem [64].

The findings from these field campaigns may lead to advancements in our modelling capabilities,

allowing us to make more-accurate predictions of surface PM2.5 concentrations.

With respect to in-situ monitors, the development of low-cost PM2.5 sensors is an active

area of research. Within the foreseeable future, the spatial density of in-situ observations

may increase through these low-cost sensors, which suggests that more regions may become
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as extensively monitored as Washington, allowing for robust interpolation of surface PM2.5

during smoke events.

In this analysis, we have focused on polar-orbiting MODIS instruments, which make

twice-daily measurements with a high degree of spectral detail. Other studies have found

good predictive skill using GASP AOD from aboard GOES satellites to determine areas that

are impacted by smoke [28]. GOES satellites are located in geostationary orbit, and provide

nearly continuous observations of the western US.. We did not test using this dataset in our

regressions. However, we expect that for our particular study region and time period, GASP

will experience many of the same challenges we experienced with MODIS (i.e. extensive

cloud cover and low variability in surface PM2.5 in western Washington, as well as erroneous

cloud-masking of dense smoke). Because our analysis was done at daily resolution, we used

the MODIS AOD retrieval instead. However, in order to extend our analysis to higher

temporal resolution (section 4.2), a geostationary platform will be essential for tracking

changes to smoke plumes within a single day.

Additionally, other techniques for filling in missing pixels in MODIS and GASP AOD data

have been demonstrated to work, such as Radial Basis Functions [28] which allow missing

pixels to have a local maximum. Given that these missing pixels are masked because the

retrieval mistakes the thick smoke for a cloud, this may be an appropriate consideration.

In addition to the current GOES satellites, the next generation NOAA geostationary

satellite for the western US (GOES-R) is expected to launch in November 2016. GOES-R

will provide the spectral and spatial detail of MODIS on a geostationary platform, allowing

fire observations over western North America throughout both day and night, and smoke

observations throughout the day. The advancements in smoke observation that this platform
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could provide may greatly enhance our ability to incorporate satellite observations into smoke

prediction models, especially at sub-daily timescales.

Finally, as Reid et al. [28] showed, an ensemble of sophisticated statistical frameworks

for combining data, as well more input variables, can lead to improved performance. A

machine-learning approach to these sorts of problems allow for different types of model

inputs, as well as different statistical approaches, which can ensure that the best performing

tools and best performing datasets are used for a given fire.

4.2. Estimation of other Exposure Metrics

Throughout our analysis, we have focused on predicting daily average PM2.5 concentrations.

However, daily average concentrations may not be the best predictor of health outcomes

(e.g. mortality or hospitalizations). Stakeholders in this project have expressed interest in

exploring the connection between health outcomes on other PM2.5 metrics, such as daily

maximum PM2.5 concentrations, or the number of hours above a specified threshold PM2.5

concentration.

While it is trivial to produce these estimates fromWRF-Chem simulation output, interpolating

metrics such as these is not straightforward. One approach could be to perform our analysis

at hourly temporal resolution instead of daily, and then calculate these associated metrics in

each grid box. This will limit the number of in-situ observations we can interpolate because

not every surface monitor reports hourly values, and would force us to modify our approach

of incorporating MODIS-Aqua and MODIS-Terra imagery for the satellite inputs to the

model given their limited number of overpasses per day. While we could incorporate GASP

AOD products, which are available at sub-daily timescales, we would still have no satellite

information available at night.
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Another approach could be to use the diurnal information we have at in-situ monitors

that do report hourly data to infer how the concentrations vary with respect to the 24-hour

average concentrations and extrapolate to parts of the domain that are highly correlated

with these surface monitors. This would require additional assumptions about how spatially

correlated different parts of the domain are, but may allow us to use many of the methods

and datasets developed in this study.

Additionally, in this analysis, we have focused on producing predictions of bulk PM2.5

mass associated with wildfire smoke. However, the composition of the particles may influence

the toxicity and the health response [65]. Wildfire smoke can contain organic carbon aerosols,

black carbon soot aerosols, and mineral dust with metals. The aerosols can be freshly emitted

or aged, which affects the oxidation state of many of the compounds in the particle phase.

Additionally, other non-particle species such as ozone, formaldehyde, benzene, or other

toxic volatile organic compounds may also be present in the smoke plume. These chemical

species have known long-term and short-term health effects; however, we may be erroneously

attributing these health effects to wildfire PM2.5 instead. Furthermore, these gaseous species

may interact with the human lung, producing nonlinearities in the health response to

PM2.5 [66]. Additional studies are required to determine how to estimate the concentrations

of the many gas-phase species that may impact human health, and additional epidemiological

techniques may be required to disentangle the potentially complicated interactions of these

many pollutants.

4.3. Additional Wildfire-Smoke Cases

The analysis in this thesis was performed on a single set of fires within a single U.S.

state (Washington). Our results suggest that the predictive utility of each of the three tools:
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in-situ measurements, satellite measurements, and models, varies between fires and regions.

Furthermore, the availability of in-situ measurements for use in an interpolation model varies

depending on the region. Therefore, it is important to try to repeat this analysis on fires in

different locations and years.

From a more-pragmatic standpoint, we might expect the health effects of smoke exposure

to vary between populations. The endpoint of this research is use of these exposure-estimation

techniques in a health study on exposure to wildfire smoke. More health studies of different

wildfires need to be done, and for therefore, there is a need to determine exposure for multiple

wildfires.

The Colorado 2012 wildfire season would make for an interesting comparison study

because there were a sparser set of in-situ monitors in the smoke-affected area relative

to the Washington case studied here. As we showed earlier, the information from the

model and satellites are more important when in-situ measurements are sparse. Therefore,

analyzing Colorado 2012 fires would be an opportunity to test these methods in a system

where additional in-situ monitors are not available. However, we will be limited in our

ability to evaluate our exposure estimates or quantify exposure misclassification due to a

lack of in-situ monitor sites. Because the 2012 fire season was composed of isolated fires, the

modeling system is more challenging.

Conversely, in 2015, the Colorado Front Range was impacted by long-range transport of

smoke from Canada and the Pacific Northwest. Unlike 2012, the smoke plumes were much

broader, with the entire front range experiencing similar concentrations, so this smoke event

may be easier to model. While less challenging in terms of assessing exposure, this case

is interesting from an epidemiology perspective because the smoke that impacted Colorado
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was emitted thousands of kilometers away, and aged smoke make have different health effects

than fresh smoke.

Another candidate fire is the Station Fire in Los Angeles, 2009. During the Station Fire,

smoke impacted the downtown area, exposing a large population. A large exposed population

may produce a health signal that is more robust against noise as compared to the smaller

populations exposed during the 2012 Washington and Colorado events. Therefore, this fire is

an opportunity to find a strong health signal across a large and diverse population. However,

given the complex emissions, topography, and other meteorological phenomena in and around

Los Angeles, this fire will present a major challenge for accurately assessing exposure.

Finally, the 2015 Washington fires are an interesting follow-up study because much of the

population will be the same as during the 2012 event, allowing for comparisons across fire

seasons. From an exposure assessment perspective, this is also the next logical step because

the procedure will be the same, or very similar, to the methods outlined in this thesis.
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APPENDIX A

WRF-Chem Sensitivity Simulations

As mentioned in Chapter 2, we performed a sensitivity study of the WRF-Chem model to

determine a) which combinations of parameters produced the best model performance and

b) how sensitive the simulation results are to different simulation settings. We evaluated

model performance by comparing the different simulated 48-hour surface concentrations in

downtown Fort Collins with measured values (Figure A.1).

The simulation results vary widely. In many simulations, PM2.5 concentrations are never

predicted to be above a typical background value; this is due to the model transporting

the smoke plume to the wrong location, erroneously concluding that Fort Collins was never

impacted by smoke. In simulations that do show elevated PM2.5, the concentrations exceed

measured concentrations by 2-2.5 times. One simulation does accurately predict the 48-hour

concentration at this surface site. However, this simulation used the coarsest model resolution,

and a biomass-burning emissions inventory that we believe overpredicts PM2.5 emissions

(section A.4); therefore, we suspect that we are not getting the correct concentration for the

right reasons.

Northern Colorado has a sparse network of in-situ measurements compared to the Pacific

Northwest. Additionally, the smoke plumes generated during High Park were relatively

isolated and narrow, with steep concentration gradients. Ultimately, it was difficult to

evaluate the different simulations to determine which simulation performed the best with

respect to surface concentrations.
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Figure A.1. WRF-Chem 48-hour average simulated PM2.5 concentrations in
downtown Fort Collins, CO during the High Park Fire. Different simulation
parameter settings are plotted in the bars, with the dashed line representing
measured concentrations.

A.1. Meteorological Initial/Boundary Conditions

Figure A.2 shows the difference in surface PM2.5 concentrations between WRF-Chem

simulations run with GFS and NAM meteorology initial/boundary conditions, averaged over
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a single day. We are only showing a single day because this is representative of what was

seen on every day.

Figure A.2. 24-Hour average surface PM2.5 concentration difference between
GFS and NAM (GFS - NAM) meteorology reanalysis datasets for June 9th
2012.

We see that the simulation with Global Forecasting System (GFS) analysis initial conditions

places the smoke plume further north than the North American Mesoscale Forecast System

(NAM) analysis simulation, though the total amount of mass at the surface does not appear

66



to be different. We also note that the difference appears to be on the order of +/- 5 µg m−3,

which is a small difference considering concentrations exceed 100 µg m−3 in some places.

A.2. Model Paramaterizations

We also investigated the impact of WRF parameterizations on our simulation results.

Figure A.3. 24-Hour average surface PM2.5 concentration (left) and AOD
(right) difference between modified parameterization set and base-case
parameterization set.

Figure A.3 shows the differences when we changed our parametrization settings. Recall

our base-case planetary boundary layer (PBL) scheme was the Yonsei University (YSU)

scheme [36] and Thompson microphysics [37]. We ran an additional simulation with the

Mellor-Yamada-Janjic (MYJ) PBL scheme [67] and Morrison microphysics [68]. With respect

to surface concentrations, there does not appear to be any systematic difference in the surface

PM2.5 concentration. We do see a noticeable difference when comparing AOD, with negative

values in the region where the smoke from the fire was located. This is likely because the

new sets of parameters allowed for more efficient transport of fire smoke out of the domain,

whereas the base case simulation kept the smoke closer to the surface, where it lingered.
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A.3. Model Resolution

We ran WRF-Chem simulations at the following spatial resolutions: 15 km, 12 km, 4 km,

3 km, and 1 km. We observed that coarser resolutions led to smoke plumes that are diluted

across larger grid boxes, producing broader areas of elevated PM2.5 with lower concentrations.

Figure A.4. 24-Hour average surface PM2.5 concentration at 1 km resolution
(left) and 3 km resolution (right) for June 11, 2012.

Figure A.4 shows the 24-hour average surface PM2.5 concentrations for one day during the

High Park fire. We see for a constant emission mass, smoke is diluted in coarser resolution

simulations, producing broader impacts of lower concentrations, when compared to higher

resolution.

We expected that higher resolution model runs would produce more accurate concentrations

because they better resolve the complex mountainous terrain. However, many of the canyons

that smoke drains through are sufficiently small enough, finer resolution is required to resolve

them. Therefore, at 1 km resolution, we did not see improvements in performance of the

model.
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A.4. Biomass Burning Emissions Inventory

We found that the choice of biomass burning emissions inventory makes a big difference

in the resulting simulated PM2.5 fields. We conducted a simulation using the FINN emission

factors, but substituting Smartfire (http://www.airfire.org/smartfire/) area burned for FINN.

Figure A.5 shows an example of the concentration differences in surface PM2.5 that this

change produced. Smartfire area burned produced 24-hour averages over 200 µg m−3 above

those produced by FINN. We believe that the Smartfire burn area produces unrealistically

high PM2.5 emission rates when paired with FINN emission factors. However, the takeaway

from this is that how emissions are calculated, and what inventory is used makes a critical

difference when predicting population-level exposure.
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Figure A.5. 24-Hour average surface PM2.5 concentration difference between
FINN/Smartfire inventory and FINN inventory for June 9th, 2012.
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APPENDIX B

Other Blend Techniques

Here we will describe all of the different physical (i.e. non-regression) blends we tried,

and the results. Many of these were done with the first iteration of data, which consisted of

fewer in-situ monitors, and only spanned the month of September.

B.1. Simple Average

The first blend we tried was a proof-of-concept of averaging WRF-Chem and kriging

estimates together, with no input from satellite-based observations.

Figure B.1. 24-Hour average surface PM2.5 concentration predicted by
averaging WRF-Chem and kriging estimates vs. in-situ observations.
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We see that this strategy produces summary statistics that are roughly a compromise

between the two. We are able to increase the slope closer to one relative to the kriging-only

estimates, but introduce considerable error and bias, and lower the R2 value considerably in

the process.

B.2. Weighted Average with Decaying Kriging Influence

One hypothesis we had was that kriging performs better closer to surface monitors and

worse further away. We therefore tried to use a weighted average between WRF-Chem and

kriging estimates. Our weighting was done with the distance kernel in Equation 9:

(9) K =
1

1 +
(

D
Ds

)η

where η and Ds are parameters that were selected to optimize performance. We use η = 3.0

and Ds = 30km, which produced the best statistics. We then weighted WRF-Chem such

that it would be weighted the equivalent of 2 scale distances from a surface monitor in every

grid box. Therefore, far from any monitor, the kriging weight kernel will decrease, and the

blend will rely more heavily on WRF-Chem. The results of this approach can be found in

Figure B.2.

As we see, the results are very similar to the kriging model, with some reduction in

performance where the model is introduced. The hope was that in parts of the domain

close to multiple surface monitors, the model would entirely use kriging, while further from

monitors, it would use WRF-Chem output. However, the parameter set that performed the

best (30km scale distance, 3rd power decay rate) leave very little opportunity for the model

to contribute.
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Figure B.2. 24-Hour average surface PM2.5 concentration predicted by
weighting kriging contribution to the blend by the value of the distance kernel
given in Equation 9, vs in-situ observations.

B.3. Weighted Average with Decaying Kriging Influence and FMS

Modulation of WRF-Chem

We attempted to improve performance by modulating the WRF-Chem contribution to

the blend according to the WRF-Chem agreement with MODIS AOD. For every day, we

calculate the Figure of Merit in Space (FMS), as defined in Equation 10

(10) FMS =
WAOD ∩MAOD

WAOD ∪MAOD
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where FMS ∈ [0, 1]. A value of 1 implies that WRF-Chem and MODIS AOD match exactly,

while a value of 0 implies no overlap between the two fields. We used the calculated FMS

to scale the WRF-Chem contribution to the weighted average and produced the prediction

in Figure B In order to use FMS, a binary threshold must be applied to both input fields.

The value of this threshold was tweaked to try to produce the best predictive skill.

Figure B.3. 24-Hour average surface PM2.5 concentration predicted by
weighting kriging contribution to the blend by the value of the distance kernel
given in Equation 9 and modulating WRF-Chem weighting by FMS, vs in-situ
observations.

As we see in Figure B.3, this strategy also fails to improve performance over the kriged

PM2.5 estimates.
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B.4. Weighted Average with Decaying Kriging Influence and

WRF-Chem/MODIS AOD Correlation

As we saw in Section 3.2.1, the skill of WRF-Chem has a strong regional dependence on

its skill. To try to exploit this, we attempted to modulate the influence WRF-Chem on the

blending model based on its agreement with MODIS observations.

Figure B.4 shows the correlation coefficient between MODIS and WRF-Chem AOD in

each gridbox within our analysis domain.

Figure B.4. Correlation coefficient between MODS and WRF-Chem AOD
in every gridbox.

As we saw in Sections 3.2.1 and 3.2.3, MODIS and WRF-Chem both perform better in

the central and eastern part of the state, and this is reflected in their correlation coefficients

with each other. Therefore, we combine the distance kernel weighting of kriging (Equation
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9) with WRF-Chem estimates, weighted by the strength of the correlation between MODIS

and AOD. The results are shown in Figure B.5.

Figure B.5. 24-Hour average surface PM2.5 concentration predicted by
weighting kriging contribution to the blend by the value of the distance
kernel given in Equation 9 and modulating WRF-Chem weighting by
correlation coefficient between WRF-Chem AOD and MODIS AOD, vs in-situ
observations.

As we see in Figure B.5, this approach of using MODIS to module WRF-Chem influence

on the blend does not produce any improvement over the kriging-only estimate.

B.5. Weighted Average with Decaying Kriging Influence and

WRF-Chem/MODIS Pixel-By-Pixel Comparisons

The final blend we present here tries to take into account spatial and temporal variability

in WRF-Chem skill. First, we calculated the distance kernel from Equation 9. Next,
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as a baseline, we set the WRF-Chem power equal to kriging power two scale distances

from a monitor. We then adjusted the WRF-Chem contribution according to the following

procedure.

On each day, for each pixel, we computed a score of agreement between MODIS AOD

and WRF-Chem AOD as shown in Equation 11:

(11) S = 1−

∣

∣

∣

∣

log10

(

MAOD

WAOD

)∣

∣

∣

∣

Once a score is computed, the following algorithm was implemented to determine weighting

of WRF-Chem and kriging PM2.5 for that location and time:

(1) If S > 0.7: Good agreement with satellite: Increase WRF-Chem contribution by

factor of 2

(2) If S < 0.2: Bad agreement with satellite: remove WRF-Chem from blend

(3) If 0.2 < S < 0.7: Rescale score such that S = 0.2;→ S = 0, and S = 0.7;→ S = 1.

Scale WRF-Chem contribution to blend by this value.

The algorithm was optimized by tweaking both the upper and lower limits for the score, as

well as the multiplicative modulation of WRF-Chem influence. The parameters shown in

the algorithm produced the best agreement with surface observations; the results are shown

in Figure B.6.

We see that performance of this blend is on par with all of the other blends that were

tried, slightly worse than kriging by itself.
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Figure B.6. 24-Hour average surface PM2.5 concentration predicted by
weighting kriging contribution to the blend by the value of the distance kernel
given in Equation 9 and modulating WRF-Chem by Equation 11, vs in-situ
observations.

Regression is a mathematical tool for optimizing contributions of each dataset for this

exact purpose. As we showed in this appendix, we were unable to find a way to combine

WRF-Chem, interpolation, and MODIS AOD in an intuitive algorithm that produced dramatic

improvements over ordinary kriging. Therefore, we proceeded with the regression approaches

outlined in Sections 2.3.1 and 2.3.2.
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APPENDIX C

Non WRF-Chem Background

To use these elements in a health study, we also need to provide an estimate of the

background PM2.5 to look at the health response of exposure to wildfire smoke only. When

running WRF-Chem, this is straightforward; we can run the model with biomass burning

emissions turned off. However, for these other techniques, we would like to be able to estimate

the background without WRF-Chem, especially given our hypothesis that WRF-Chem

overestimates the anthropogenic emissions in much of Washington.

To make this non-WRF background estimate, we made the following assumptions:

(1) During the time-period, variability in the background is small relative to wildfire

smoke

(2) It is better to underestimate background concentrations than overestimate, to prevent

negative concentrations

To estimate the background concentration, we took in-situ measurements of 24-hour

average PM2.5 concentrations at every surface monitor in and around our domain. We then

removed days where NOAA HMS indicated that there was smoke in the vicinity of this

surface monitor. Finally, we plotted a series of histograms of the 20th, 40th, 60th, and 80th

percentile of PM2.5 concentrations, in addition to the mean and median.

These histograms showed that from monitor to monitor, even the 60th percentile was

usually not above 10 µg m−3, and that the variability in PM2.5 concentrations was small

until around the 80th percentile. To avoid overestimating the background, we therefore

selected the median value at each in-situ monitor as the input to our model.
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We then kriged these median PM2.5 values to produce a PM2.5 concentration surface

throughout our domain. This was assumed to be our background PM2.5 concentration for

the health effects calculations that made use of kriged or regression PM2.5 estimates.

Figure C.1 shows the background PM2.5 concentrations in our analysis domain calculated

with this procedure. While there are certainly regional variations, there are no values above

12 µg m−3 anywhere in the domain, and spatial variability is low.

Figure C.1. Non-WRF-Chem estimate of background PM2.5 concentrations.
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