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ABSTRACT OF THESIS 

WINTERTIME LOCAL CIRCULATIONS OF NORTHWESTERN COLORADO 

Using two months of wintertime meteorological data, surface flows 

and thermal structure within the Yampa Valley of Northwestern Colorado 

have been investigated. The primary goals of this study were: 1) describe 

the climatology of these local circulations, 2) associate synoptic scale 

weather patterns with regional airflow patterns and 3) present case 

studies of observed airflow patterns. 

Three different procedure were chosen to meet each of the three 

objectives. A climatological analysis of the two month data set was 

performed in which statistical methods were used to help define the mean 

flow and the associated variability. The data set was then stratified 

into synoptically defined subsets. A climatological analysis was 

conducted on each subset in which the mean flow and variability were 

defined. Finally, case studies are presented in which detailed 

descriptions of the regional flow are shown. One case study is presented 

for each synoptically defined subset. 

Several interesting findings resulted from this research. The 

climatological analysis of the complete two month wintertime data set 

revealed interesting horizontal and vertical variations in the airflow 

existed. The airflow in the portion of the Yampa Valley floor lying east 

of the topographic constriction between Hayden and Milner remained 
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decoupled from the flow aloft 80% of the time. West of the constriction, 

down valley flows occurred most of the time with the exception of early 

afternoon at which time regional westerly flows extended down to the 

valley floor. Up valley flows as such did not occur during the study 

period. Above the valley floor regional westerly flows occurred greater 

than 90% of the study period. 

The synoptic stratification and subsequent climatological analysis 

of these synoptically defined subsets revealed differing local 

circulations with each synoptically defined category. Local circulations 

during periods dominated by a synoptic high pressure system were 

essentially the same as the local circulations described in the 

climatological analysis of the entire two month data set. During periods 

marked by an approaching cold front, the regional flows were stronger and 

were observed on the western valley floor for longer periods of time than 

during high pressure periods. The onset of down valley flows did not 

occur until much later in the evening. After the passage of a cold front, 

down valley flows were not observed and the valley floor was dominated by 

regional westerly flows. 

The same physical principles operated during each category but the 

strength of each factor varied with each synoptic category to affect a 

different local circulation associated with the respective categories. 

Thus airflow within a high mountain valley is a function of thermally 

forced pressure gradients and the turbulent mixing of kinetic energy from 

aloft. The thermally forced pressure gradient is a function of terrain, 

and the local energy budget. Seasonal variations in precipitation and 

local terrain will modify the thermally structure of the valley. In this 

study, the absence of up valley flows may be attributed to the cold 
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surface associated with unusually heavy snow fall in the upper portion of 

the Yampa Valley. Synoptic variations in wind speed was the biggest 

factor affecting the turbulent transfer of kinetic energy. After the 

passage of a cold front regional westerlies observed throughout the valley 

floor can be attributed to the strong winds aloft, but during synoptic 

high pressure systems with weak winds aloft, thermally forced flows are 

more common within the valley atmosphere. 
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I. INTRODUCTION 

As the world population continues to grow, ever increasing numbers 

of people will inhabit mountainous regions. For many mountain towns, 

specifically in the Colorado Rockies, tourism and ranching are two major 

economic sources. Local weather, particularly a winter storm which can 

deposit several feet of snow during one event, is a concern to ranchers, 

motorist, and skiers. In addition, the quality of life within the 

Rockies is potentially threatened by coal burning power plants, auto 

emissions, wood burning stoves and fireplaces; all which add to an ever 

increasing air pollution problem. Unfortunately, public weather forecasts 

are focused upon synoptic scale events, not upon mesoscale phenomenon such 

as those listed above. Thus a need arises to forecast local pollution 

episodes, orographic storms, and other such local weather phenomenon. 

However, before one can forecast such events, an understanding of 

the controlling factors must be grasped. This thesis presents an 

investigation of one of these factors, ·the local circulations of the Yampa 

Valley of Northwestern Colorado. It focuses upon the local winds and 

thermal structure as observed by a network of 24 automated surface weather 

stations located in the valley and on the adjacent peaks and ridges. A 

climatological summary of the wind and temperature structure is presented 

for the two-month study period in which diurnal trends were examined. 

Then the data set is stratified into synoptically defined subsets in which 

a climatological analysis is performed on each. Finally, three case 
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studies are presented, one for each synoptically defined subset. The 

first case focuses upon the valley circulations during a period dominated 

by a synoptic high-pressure system. The second case study is used to 

illustrate surface flows during a period marked by an approaching cold 

front. The third case study is used to demonstrate surface flows 

immediately after the passage of a cold front. A discuss ion of the 

relevant findings are then presented as they relate to previous studies. 

Suggestions are made for future research, as well as suggestions for air 

pollution and weather modification applications. 



II. BACKGROUND 

Early works in the study of local circulations in mountain valleys 

were reported by Burger and Ekhart (1937), who focused on the Austrian 

Alps, and in separate studies along the east slope of the Rocky Mountains, 

by Wagner (1938) and Ekhart (1940). Defant (1951) summarized observations 

from Austria's Inn Valley with the following theoretical model. Under 

weak gradient conditions at the synoptic scale, local flows were observed. 

The first of the local flows described is the thermal slope wind, which 

air rises due to a temperature difference between the air over the 

inclined slope and the air over the adjacent valley floor, at the same 

elevation. Soon after sunrise the air over the inclined slope, with this 

flow type, begins to warm, creating a relative area of low pressure. This 

drives an upslope wind with an average velocity of 2~4 m/s and 100-200 m 

thick, according to measurements. These flows are especially well 

developed on the southern slopes because of the stronger insolation, and 

are weaker or almost nonexistent on northern slopes. Shortly after 

sunset, a reversal in flow occurs producing the less intense downslope 

wind. 

Mountain and valley winds blow parallel to the valley axis. 

Beginning about 0900 LT the wind blows up the valley axis, continuing 

after sunset. It reaches its maximum intensity approximately at 1500 LT, 

about the time of maximum temperature. At night, the air drains down the 

valley axis and continues after sunrise, referred to as the mountain wind. 
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These winds are best developed during the summer months on clear, 

synoptically weak gradient days. Defant, following Wagner, explained 

valley winds as being thermally forced. Observations of diurnal 

temperature ranges over the valley were more than twice as large as 

diurnal temperature ranges over the adjacent plain. As a consequence, a 

horizontal pressure gradient is established toward the valley during the 

day and away from the valley at night. 

In his own work, Defant (1951) explained the interaction between the 

mountain valley and slope winds, ·as illustrated in Figure 1. The theory 

behind this interaction is based upon Prandtl' s (1942) discussion of 

turbulent heat conduction and turbulent friction. Defant's model is a 

generalized working model but as discussed by Whiteman (1980) several 

researchers have found only parts of this model apply to their particular 

valleys of study. 

Vergeiner and Drieseitl (1987) make several alterations to Defant's 

model. After their studies in Austria's Inn Valley, they redefined slope 

winds as spontaneous and intermittent, not continuous, but rather a 

succession of thermal bubbles. Secondly, and of primary significance to 

this paper, they discussed seasonal variations of these thermally forced 

flows. They observed in winter, drainage of cold air out of the valley 

was the seasonal norm, as opposed to summer when cold air drainage 

primarily occurred during the late night and early morning hours. They 

also recognized Steinacker (1984) as the first to adequately explain how 

valley winds are a function of pure geometry. Comparing a column of air 

over a mountain valley and a column of air over a plain surface, the 

column over the plain has a greater volume than the column over the 

mountain valley. The mountain slopes and ridges occupy the difference in 



Fig. 1. Schematic illustration of the normal diurnal variations 
of the air currents on a valley. (After F. Defant) 

(a) Sunrise; onset ·of upslope winds (white arrows), 
continuation of mountain wind (black arrows). Valley cold, 
plains warm. 

(b) Forenoon (about 0900); strong slope winds, transition 
form mountain wind to valley wind. Valley temperature same as 
plains. 

(c) Noon and early afterno~n; diminishing slope winds, fully 
developed valley wind. Valley warmer than plains. 

(d) Late afternoon; slope winds have ceased, valley wind 
continues. Valley continues warmer than plains. 

(e) Evening; onset of downslope winds, diminishing valley 
wind. Valley only slightly warmer than plains. 

(f) Early night; well-developed downslope winds,· transition 
from valley wind to mountain wind. Valley and plains at same 
temperature. 

(g) Middle of night; dowmslope winds continue, mountain wind 
fully developed. Valley colder than plains. 

(h) Late night to morning; downslope winds have ceased, 
mountain wind fills valley. Valley colder than plains. 

VI 



a -

-.! 

;; -

-" -

6 

- --- e 

-~ 



7 

volume (see Figure 2). The difference in diurnal temperature range is not 

only due to less volume of air to heat and cool through sensible processes 

by the surface of the column but also the valley has the added advantage 

of the slope surfaces also providing sensible heating and cooling. 

Regional flows are forced by large scale pressure gradients but 

modified by the terrain and atmospheric stability. Regional flows are 

frequently observed at levels below the blocking level of the continental 

divide but typically lie above the more stable layers in the valley below. 

In wintertime, the valley atmosphere is frequently stably stratified and 

blocked flows often result; this exemplifies one type of regional flow. 

Specifically, the barrier obstructs the flow, but only horizontal 

deflection occurs in the stable atmosphere. 

Synoptic flows are associated with large scale pressure gradients 

and are identified as free atmospheric flows as distinct from flows 

primarily originating from or controlled by the underlying terrain. 

Temperature inversions are a phenomenon frequently observed in 

mountain valleys and are primarily responsible for the trapping of a haze 

layer within these valleys. Whiteman (1980) investigated the cause for 

the buildup and destruction of temperature inversions in seven Colorado 

mountain valleys in all seasons. He concluded that the sensible heat flux 

from the valley surface provides the energy to cause the growth of the 

convective boundary layer (CBL). As the CBL grows, mass is removed from 

the base of the inversion layer provided by the diverging upslope flows. 

This allows the inversion layer to sink and warm. Whiteman (1981) cited 

similar mechanisms for the buildup of temperature inversions in Colorado 

mountain valleys. Soon after the time of maximum solar insolation, cooler 

downslope flows converge at the valley bottom. If the air does not drain 
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between valley and plain. 
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out the valley, it becomes trapped, building a cool stagnant layer of air, 

the top of which marks the top of the inversion layer. 

Whiteman also presented a conceptual model which described five 

distinct layers of airflow within the valley environment (see Figure 3) 

during inversion breakup. The five layers include the gradient wind, the 

incline wind, the stable core, the slope wind, and the valley floor wind. 

These winds were observed from tethersondings in which a wind shift in 

speed and direction is correlated with a unique vertical sector of the 

temperature sounding. The gradient wind responds to synoptic scale 

pressure gradients. The along-incline wind is a local, diurnally forced 

wind that blows up and down the mesoscale slope of a mountain range. The 

along-valley wind system is also local and diurnally forced It blows up 

and down the valley axis in the central region of the valley volume. The 

along-floor wind system is a diurnal wind system that blows up or down the 

valley in a shallow boundary layer over the valley floor. The slope wind 

is a diurnal wind system that blows up or down the valley sidewalls in a 

boundary layer that forms above them. 

Not only is temperature structure (specifically, the change of 

temperature as a function of height) important for trapping inversions but 

also is related to valley flows as explained. "Blocking is a process in 

which air can neither go over nor go around because it is too stable and 

the terrain feature too elongated, the influence of the mountain 

propagates rapidly upwind" (Pielke, 1984). 

critical Froude number, Fe, is exceeded. 

Blocking will occur when a 
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Figure 3. Typical wind system development at mid morning during inversion 
breakup. 
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F =- U/(gHL\9/Sr)ls 

F Froude number 

U upstream ambient wind 

g gravitational acceleration 

H height of the ridge above the upstream surface 

er a representative potential temperature 

L\9 - change in air temperature from near surface to above 
ridge height upwind of the ridge 

The square of the Froude number expresses the relative magnitudes 

of kinetic energy of the ambient wind to potential energy change required 

to lift a parcel from near the surface to a height to clear the ridge. 

If this ratio is larger than a critical Froude number (Fe) then the 

stagnant airmass within the valley will be dynamically swept out. If the 

ratio is less than Fe, then blocking will occur. The critical Froude 

number is determined by empirical study of each individual valley. 

Manins and Sawford (1982) studied upwind blocked flows in the 

Latrobe Valley of Southeastern Australia in which they observed a critical 

Froude number of 1.6. They also were unable to correlate the height of 

the blocked layer to the Froude number as was hoped. They identified the 

blocked layer to exist as one of four distinct layers within the valley 

environment. In the lowest 20 m they observed katabatic flows. Above 

this layer. extending up to 80 m was the blocked flow layer. 

Interestingly, the flow was not calm but actually had a katabatic 

component to it, which the authors suggested as being turbulently 

influenced by the katabatic layer below. Above the region of blocked flow 

existed the sweeping region from 80 m (ridge tops were at 100 m) to 160 
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m. This layer was defined by its transition to the ambient layer in which 

wind speeds gradually increased to ambient speeds, wind direction 

gradually transitioned from blocked to ambient direction, and the virtual 

potential temperature gradient steadily weakened. Above this sweeping 

region, ambient conditions existed beyond 160 m above the valley floor, 

60 m above ridge tops. 

Several numerical studies have been conducted to investigate the 

complex interactions within the mountain valley. Manins and Sawford 

(1978) employed a hydraulic approach to develop a model of katabatic 

winds. It emphasizes the importance of mixing between the ambient and 

cooled layers. Whiteman (1980) attempted to numerically simulate the 

breakup of temperature inversions in his Colorado mountain valleys with 

some success. Bader (1985) using a two and three dimensional model was 

also somewhat successful at reproducing the development of the mesoscale 

boundary layer for a western Colorado valley. He noted the significance 

of a synoptic scale wind field which provided the necessary shearing to 

deepen the nocturnal boundary layer. McNider and Pielke (1984) simulated 

slope and mountain flows using a three dimensional model and compared it 

with actual observations from an existing data set with qualitative 

success. Counter to intuition, their model showed that cooling of the 

valley atmosphere occurred due to upward vertical motion over the center 

of the valley, not due to direct downslope flow from the slopes. Also 

stressed, was the importance of turbulence in reproducing the dynamics of 

flows in mountain valleys. 

The occurrence of thermally forced flows within mountain valleys is 

typically a phenomenon of clear, synoptically weak gradient conditions. 

Vergeiner and Driesietl studied the variability of these flows under all 
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synoptic conditions. They only observed mountain valley flows 43% of the 

time under weak gradient flows and only 29% of the time for all days. 

However, the method of synoptic classification used by Vergeiner and 

Driesietl was based solely upon observed wind direction and speed, 

ignoring other such factors as stability and cloud cover. Perhaps a more 

encompassing synoptic classification system based upon the relative 

position within an extratropical cyclone is presented by Yu and Pielke 

(1986) which is based upon the work of Lindsey (1980). It relates 

predominate mesoscale phenomenon to synoptics. A detailed explanation 

of this system is presented later within this paper. 

To date, this author was not able to find any description of flows 

within mountain valleys during periods when thermally forced slope and 

valley flows were not observed with the exception of Marwitz (1980). He 

described the flow as it evolved through four distinct stages during a 

winter storm in the San Juan Mountains of Southern Colorado. Each stage 

was related to thermodynamic stability. "The stages in sequence are 

stable, neutral, unstable, and dissipation. During the stable stage, much 

of the flow below mountain top level is blocked and diverted away from the 

barrier. During the neutral stage, the storm is deep; it typically 

extends throughout much of the troposphere. During the unstable stage, 

a zone of horizontal convergence appears to form near the surface at the 

base of the mountain on the upwind side and a convective cloud line is 

often present over this convergence zone. 

height causes dissipation." 

Subsidence at mountain top 



III. OBJECTIVE 

The objective of this study is to better understand airflows in a 

high mountain valley. This objective is divided into three categories: 

1) describe the climatology of these local circulations, 2) associate 

synoptic scale weather patterns with regional airflow patterns and 3) 

present case studies of observed airflow patterns. 

In order to enhance the general characterization of local 

circulations in a high mountain valley, the climatology must be described 

in detail. To achieve this goal, descriptions of the mean slope and 

valley flow must be addressed. Variations of these flows should also be 

stated. To enhance the description further, spatial and temporal 

characteristics of these regional flows must be depicted, including 

descriptions of decoupled flows between the valley air and the atmosphere 

immediately above. 

Once the climatology is described adequately, the objective is to 

stratify the data set such that a physical understanding of these flows 

is possible. This objective is focused further by concentrating on 

interactions of scales of motion, specifically, the relationship between 

regional airflow patterns and the synoptic scale meteorological patterns. 

The goal is to illustrate any relationship between these two scales of 

motion, within the confinements of the available data set. With good 

fortune, this work will lead to identifying a predictive indicator in the 
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synoptic scale atmosphere such that details of the valley airflow can be 

more accurately forecast. 

More precise relationships can be observed in specific examples than 

in the climatology, hence the need for case studies. The increase in 

precision can be attributed to variability. Variability is greatly 

reduced when examining one day of data compared to the variability that 

occurs during several weeks. Hence, the goal is to examine and describe 

specific case studies of airflow in a high mountain valley, one for each 

type of synoptic scale weather pattern that occurs. In this manner, 

physical relationships between the different scales of motion may appear 

more readily than in the climatological analysis. 

In addition to an enhanced understanding of regional flows in a high 

mountain valley, the investigation is intended to have several practical 

applications. Applications of this study pertain to the transport of 

point source releases in complex terrain. These sources may include 

artificial nuclei from ground based cloud seeding generators or 

particulates introduced from wood burning fireplaces and stoves. After 

reading this thesis, the reader should be able to answer such questions 

as 1) Where is the best location for ground based cloud seeding generators 

for effective transport to cloud? 2) Under what meteorological 

conditions, if any, should regulations regarding the banning of wood 

burning stoves be enforced? Etc ... 



IV. DATA BASE 

A. COLORADO OROGRAPHIC SEEDING EXPERIMENT 

1. General Purpose 

The third Colorado Orographic Seeding Experiment (COSE III) was 

conducted during the winter of 1981-1982, as part of a continuing study 

of the clouds in the Northern Colorado River Basin. The specific 

obj actives of experiment were to 1) Describe the microphysical 

processes governing the growth and development of precipitation in 

northern Colorado orographic systems. 2) Quantitatively define the 

dispersion and transport of seeding materials in complex terrain. 3) 

Identify atmospheric covariants (predictors) needed for analyses of 

weather modification programs. 4) Establish a baseline for air quality 

measurements in the Yampa Valley. The project was conducted during the 

months of December, 1981 and January, 1982, although some measurements 

were taken during February, 1982. This particular study concentrated on 

the second of these objectives: quantitative description of the dispersion 

and transport of seeding materials in complex terrain. 

2. Location and Topography 

COSE III was carried out in the Yampa Valley of northwestern 

Colorado. The Yampa Valley is essentially an east-west valley, extending 

some 44 miles westward from the Park Range (see Figures 4 and 5). It 

varies in width from approximately 0.5 miles to 20 miles with an average 

width of about 12.5 miles. The Park Range, at the head of the valley, 
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Figure 4. COSE field program instrumentation network. 
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extends to about 11,000 feet above sea level, some 4755 feet above the 

valley floor, immediately upwind of the barrier. Highest elevations to 

the north and south of the valley, respectively, extend to 4407 feet and 

5569 feet above the valley floor. 

B. INSTRUMENTATION 

COSE III was designed "to maximize information concerning the 

changes which occur in cloud sys terns as air passes over a mountain 

barrier". To achieve this goal effectively, instrumentation was installed 

along an west-east line along the Yampa Valley, perpendicular to the Park 

Range. Spacial and temporal characteristics of the surface flow were 

measured by a unique set of 25 portable, remote, surface weather stations, 

referred to as PROBE (Portable Remote Observation Equipment) stations. 

The PROBE station instrumentation was provided on loan from the office of 

Atmospheric Water Resources, U.S. Bureau of Reclamation. Unfortunately, 

one of the stations experienced radio interference during the transmission 

of the data, such that the received data was not valid. Rawinsondes were 

launched from two locations every three hours, but during experiments 

only. Numerous other instrumentation was utilized during COSE III which 

did not pertain to this particular research. Figure 4 illustrates the 

COSE area with letters to indicate instrumentation utilized during the 

program. Figu~e 5 is a low resolution topographic map of the Yampa Valley 

with the PROBE station locations and associated elevations. 

Undoubtedly, the single most important instrumentation in this 

research, for the purpose of this study, was the PROBE station data. The 

period of operation was originally intended to be from 1 December 1981 to 

January 1982, but due to general delays and difficult working conditions, 
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it was 10 December before the entire array of stations was operational. 

The PROBE network was located throughout the valley and on the adjacent 

slopes and ridges. It extended 100 miles east-west and 31 miles north

south, yielding an average spacial density of one station for every 124 

square miles or 11 mile spacing. 

The PROBE array was designed to fulfill a number of objectives 

including: 1) classification of surface airflow for use in diffusion, 

transport, and local circulation studies; 2) precipitation measurements 

for verification of conceptual and numerical models; 3) pressure 

measurements to verify existence of certain dynamical factors; 4) 

temperature measurements for the study of radiatively induced flows. The 

performance of the network was considered excellent for the extreme condi

tions encountered. For a rough evaluation of station performance, refer 

to the PROBE station summaries in the COSE III Operation Log compiled by 

Rauber and Grant (1982), Colorado State University. 

Measurements of pressure, temperature, humidity, winds and 

precipitation were made every fifteen minutes for a five minute average. 

Pressure was recorded with a pressure transducer located in the DCP 

housing at three to six feet above the ground. Pressure was accurate only 

to within ±3 or 4 mb as limited by the accuracy of the calibration 

procedure. Temperature was measured five to six feet AGL with a 

thermistor; accuracy was within ±l.0°C, determined by laboratory testing 

of the thermistor. Humidity was measured with a humidity capacitor in 

which the capacitance was converted to 0-100 millivolts to represent 

relative humidity. This too was located at five to six feet AGL. Winds 

were recorded in speed and directional components then converted to the 

u and v components. Most sensors were placed sixteen feet AGL, but in 
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areas where expected heavy snowfall and accumulation was anticipated, 

sensors were placed 20 - 30 feet AGL. Winds were measured with an 

anemometer and wind vane. Precipitation was measured using a Belfort 

weighing bucket which varied in height between three and seven feet above 

the ground, depending on how much snow accumulation was expected at each 

site. 

Potential temperature was a calculated parameter computed from two 

measured parameters; temperature and pressure. Equation 2 shows the 

relationship between temperature, pressure, and potential temperature. 

where 

9 - T ( 1000 mb 1 P mb ) 0 
· 
286 

9 Potential temperature (kelvin) 

T Temperature (kelvin) 

P Pressure 

(2) 

Given a realistic temperature range between -30°C and l5°C and varying the 

pressure by ± 4 mb, the potential temperature can be considered accurate 

to a little better than ± 1.0°K. 



V. PROCEDURE 

There are three stages within this investigation. 

are 1) a climatological analysis of the two month 

In sequence, they 

data set, 2) a 

climatological type analysis of synoptically defined subsets of the 

complete data set and, 3) case study analysis of synoptically defined 

subset airflow patterns. Within the climatological analysis, statistical 

methods are utilized to help define the mean flow and the associated 

variability. The data set is then stratified into subsets. Each subset 

is associated with a region within an extratropical cyclone. The 

association between regional airflow and synoptic scale meteorological 

conditions is investigated using the same analysis techniques utilized in 

the climatological analysis. Finally, case studies are included in which 

detailed descriptions of the air flows are presented. One case study is 

presented for each synoptically defined subset of the extratropical 

cyclone. 

For ease of discussion, the PROBE network is divided into six 

different regions containing specific stations within the study area. 

Grouping the statlons allows one to utilize the most appropriate station 

locations to observe specific airflows including: slope flows, valley 

flows, barrier effects, and effects of elevation and exposure. The 

criteria used to group the PROBE station network is chosen to take 

advantage of the west to east orientation of the valley axis and the 

existing format of the data. 
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The criteria for selecting PROBE stations for use in investigating 

slope flows is as follows. First, the orientation of the slope must be 

perpendicular to the valley axis in order to easily distinguish between 

a valley and a slope flow. This also minimizes the amount of data 

processing necessary. Second, the station must lie on a slope and not lie 

on top of a ridge in order to eliminate the confusion of determining the 

individual effect of each slope on the slope flow. In addition, this 

criteria minimizes the ambiguities that may arise due to the expected 

enhanced turbulence in these regions. The orientation of the slope must 

be closely aligned to either north-south or east-west in order to minimize 

the amount of data processing necessary. Two of the PROBE stations meet 

these criteria, LAY (6180 ft) are HYD (6570 ft) are the stations used to 

investigate slope flows and are referred to as slope stations. 

To investigate valley flows, the valley is divided into three 

horizontal categories. The valley is divided into Down Valley, Middle 

Valley, and Upper Valley. Down Valley is defined as that portion of the 

Yampa Valley that lies far enough west such that the difference in 

elevation between the valley floor and the adjacent slopes and ridges is 

less than 1000 feet. This describes the area west of Craig. Down valley 

stations may be further divided into those stations where the river valley 

axis lies west to east and those stations where the river valley axis is 

not well defined. Those stations lying where the river flows east to west 

include lAY (6180 ft) and CSW (6400 ft). Stations in the Down Valley 

where the valley axis is not as well defined include SUN (6340 ft) and DIV 

(7130 ft). 

The Middle Valley is defined as that portion of the valley west of 

the constriction in width between Hayden and Milner that is surrounded by 
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adjacent peaks and ridges which rise greater than 1000 feet above the 

valley floor. Middle valley stations may be further divided into those 

stations where the river valley axis lies west to east and those stations 

where the river valley axis is not well defined. Stations located in this 

region in which the valley axis clearly lies east to west include HYD 

(6570 ft) and CGE (6570 ft). Stations located in this region of the 

valley where the valley axis is not as well defined include CNE (6910 ft) 

and CGN (6720 ft). In addition, two stations in the Middle Valley lie 

above the valley floor, one on the ridge to the north, BLK (9900 ft) and 

one on a smaller ridge to the south, HGM (7600 ft). 

There are three stations that lie on the slopes and ridges near the 

constriction in width between Hayden and Milner. Unfortunately, there are 

no station measurements on the valley floor within this constriction in 

width. HAR (7380 ft) and WLF (9135 ft) lie on the north side of the 

valley, and CHV (8000 ft) lies on the south side of the valley. 

The Upper Valley is defined as that portion of the valley east of 

the constriction and west of the barrier (the Park Range). At the extreme 

eastern end of the Upper Valley, the valley axis turns north-south within 

a few kilometers of the barrier. Stations located on the valley floor 

in the east-west region of the valley include MIL (6530 ft) and STW (6730 

ft). Only RAD (6800 ft) is located on the valley floor in the north-south 

portion of the .Upper Valley. 

The final section of the valley is the barrier itself. Only those 

stations on the barrier which lie windward of the continental divide are 

used to examine airflow characteristics on the barrier. These stations 

include DLK (9180 ft), BUR (9180 ft), FTP (9410 ft) and STP (10330 ft). 
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The slope flows are defined by the v (south to north) component wind 

for those stations identified as slope stations. Because the slope 

stations are situated on slopes perpendicular to the valley axis, the v 

component of the wind is parallel to the slope of the terrain. By 

presenting the v component of the wind for the slope stations at five 

different time periods throughout the day, the temporal characteristics 

of the slope flows are illustrated. 

Because the valley's axis is aligned west to east, valley flows are 

defined by the u component of the wind. Spatial characteristics of valley 

flows are illustrated by presenting PROBE station observations on a 

surface map of the region. In this manner, Down Valley flows are easily 

compared to Middle and Upper Valley flows, as well as comparing the valley 

floor airflow to the airflow on the adjacent slopes and ridge tops. 

Presenting the data at various times throughout the day allows for 

depiction of the temporal characteristics of the valley flow. 

Once the PROBE network is partitioned, the climatological analysis 

is organized to facilitate a discussion of the spatial and temporal 

distribution of the airflow. The spatial characteristics of the airflow 

are presented at five different time periods (0700, 1100, 1400, 1700 and 

2200 MST) to represent the temporal distribution of airflow. For each 

hour, the data is analyzed for values occurring only during that hour, for 

all days within the two month period. As an example, at 0700 MST, only 

the west to east component of the wind occurring at 0700 MST on each day 

for Storm Peak (PROBE station STP) is utilized in calculating the average 

west to east component of the wind for STP at 0700 MST. 

The airflow analysis is based upon the mean u (west to east) 

component and the mean v (south to north) component of the vector wind. 



26 

All values reported are the magnitude (knots) of the wind while direction 

is held constant (either 270 or 180 degrees). First, a discussion of the 

spatial distribution of the mean (for all days) u component of the wind 

is presented. This is followed by a presentation of the variability 

associated with the mean airflow for each station. 

The thermal structure of the valley is then presented. Potential 

temperature is chosen as the parameter to analyze because it is a 

conserved property of a dry airmass. The horizontal distribution of the 

mean (for all days) potential temperature is presented; the purpose of 

which is to quantify the horizontal temperature gradient along the valley 

which drives the thermally forced valley flows. A vertical profile of 

mean potential temperature is presented to obtain an idea of the vertical 

thermal structure. Unfortunately, sounding data from storm episodes is 

all that is available. However, by using the PROBE station data plotted 

as a function of elevation, temperature discontinuities are revealed. 

Finally, the frequency and spatial distribution of decoupled flows 

are investigated for each time period. Decoupled flows are identified by 

noting where the surface wind direction varies from the ambient airflow 

direction. Ratios of the number of u component winds from the east to the 

total number of observations are presented for each station for five 

different diurnal periods. In addition potential temperature observations 

are presented to help identify differing airmasses. 

In order to understand the necessary meteorological conditions in 

which particular flow phenomenon appear (e.g., drainage flow), the two 

months of data need to be stratified. The chosen method is based upon the 

interaction between scales of motion within the atmosphere. Therefore, 
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it is presupposed that the observed regional flows are related to the 

overlying, larger scale, synoptic weather patterns. 

The synoptic weather patterns are divided into three categories 

based upon the relative position of the associated extratropical cyclone 

to the study area (Yu, 1986). From a LaGrangian perspective, each region 

within the extratropical cyclone has a unique climate associated with it. 

The appropriate synoptic categories are determined for each twelve hour 

period for the entire two month data period. This is accomplished by 

referring to the facsimile surface and 500 mb weather maps and identifying 

which region of the extratropical cyclone the study area is located in, 

every twelve hours. Additional local weather information was gained by 

referring to the COSE III log book (Rauber and Grant, 1982). The regional 

observations are divided into one of three categories determined by the 

day and time of the observation. 

According to Yu, based upon a location's relative position within 

an extratropical cyclone, several regional atmospheric characteristics are 

disclosed. Examples of these characteristic parameters include surface 

winds, vertical motion, temperature inversions, dominant mesoscale 

systems, ventilation, deposition, and transport. Based upon this 

association, mountain-valley flows do not usually occur under all synoptic 

classes. The percentage of days of each observed synoptic category is 

presented. 

Once the data is stratified, the approach is similar to the two 

month climatological analysis. The PROBE network is divided into the same 

groups of stations as defined previously (upper valley, middle valley, 

etc). Then, using statistical analysis, the mean flow and variability is 

presented. The objective is to investigate the variability of the mean 
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flow pattern for each synoptic category. A decrease in the variability 

indicates a more precise relationship between the synoptic and mesoscale 

atmospheric conditions. 

Case study analysis for differing synoptic weather patterns and the 

associated regional flows are presented in detail. The first case study 

provides an example of regional airflows in which a polar high is the 

dominant synoptic scale feature. The second case study is used to examine 

the regional airflows during a synoptic scale pre-frontal condition. The 

third case study is used to present details of the regional airflow that 

occurred in a synoptic scale post- frontal environment. In each case 

study, the spacial distribution of the winds and potential temperature 

are presented along with the variations throughout the day. Vertical 

profiles of both these parameters are illustrated for different hours of 

the day. Finally, the relationship between the regional and synoptic 

meteorological conditions are discussed. 



VI. ANALYSIS AND RESULTS 

A. CLIMATOLOGICAL CHARACTERISTICS OF VALLEY BOUNDARY LAYER 

1. Slope Flows 

By presenting the v (south to north) component of the wind for the 

slope stations at five different time periods throughout the day, the 

temporal characteristics of the slope flows are illustrated. 

Table 1 presents the mean (for all days) component of the wind 

parallel to the local slope of the terrain for LAY (6180 ft) and HYD (6570 

ft); the standard deviation of the mean airflow for all days is shown in 

parenthesis. Both these stations are located on south facing slopes. 

PROBE station LAY was located in the wider, lower portion of the Yampa 

Valley while HYD was located in the more narrow, middle portion of the 

Yampa Valley. 

The v component wind at LAY (6180 feet) always exhibited an upslope 

flow. While values were greatest during the day, and were less during the 

afternoon and evening hours, alassic slope flows as those described by 

Defant (1951) were not observed. 

The mean v component wind at HYD (6570 feet) did exhibit upsl?pe 

flows during the day and downslope flows at night. Downslope flows were 

slightly larger in magnitude than upslope flows and all mean values were 

less than 1.5 knots. 



Table 1 

Swnmary of the mean (for all days during the study period) diurnal 
variation of the component of the wind parallel to the slope for selected 
PROBE stations. Eleva~ions are listed in feet. Yind speed units are 
knots. Standard deviations are listed in parenthesis. All times are 
Mountain Standard. 

Station (elev.) 

lAY ·(6180) 

HYD (6570) 

0700 

1.2 (4.3) 

-0.6 (2.3) 

1100 

3.5 (5.4) 

0.6 (2.5) 

1400 

4.7 (6.8) 

0.6 (3.9) 

1700 

1.4 (5.2) 

-1.4 (3.5) 

2200 

1.9 (6.2) 

-0.8 (2.9) 

w 
0 
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In each time period for both stations, standard deviations were 

always greater than the mean slope flow. Thus, slope flows were highly 

variable within the two month sample. 

2. Valley Flow 

a. 0700 MST 

The results of the valley flow climatological analysis are 

Illustrated on a map of the PROBE station network. West to east component 

of the wind are illustrated with wind barbs. Using the nomenclature of 

the National Weather Service, speeds are represented with barbs. 

Potential temperatures are plotted above the station and the frequency of 

decoupled flow is plotted below the station in percent. 

Figure 6 illustrates the average u (west to east) component of the 

surface wind (knots), potential temperature (K), and percent decoupled 

flow for the entire two month data set, as observed by the PROBE array at 

0700 MST. Appendix A presents the average, standard deviation, minimum, 

maximum, 75th, 50th, 25th percentiles and the number of observations of 

the west to east component of the wind for all days during the study 

period at 0700, 1100, 1400, 1700 and 2200 MST. 

At 0700 MST the mean valley flow was typified by calm to light winds 

on the valley floor with light to moderate westerly flow on the 

surrounding ridges (see Figure 6). Nearly all stations, except for those 

at the highest peaks, had standard deviations of the mean u component 

greater than the associated mean, indicating valley flow was highly 

variable. Potential temperatures were lowest within the upper valley and 

increased towards the lower valley and upwards. 

To investigate when a surface station observed flows which were 

decoupled (not associated with) from the synoptic scale winds, a simple 
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and percent decoupled flow (shown below the dots) at 0700 MST for all days 
within the study period. 
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numerical ratio was utilized. Assuming the synoptic airflow has a 

westerly component, as it typically does at 40.5° N latitude, a surface 

flow would have a westerly component of the wind in excess of 1.0 knots 

if the flows were coupled. According to the Glossary of Meteorology 

(American Meteorological Society, 1959), calm winds are defined as having 

a wind speed less than 1.0 knots. For the purposes of this study, a 

westerly flow is characterized by wind speeds greater than 1.0 knots. The 

ratio of the number of observations in which the u component of the wind 

was less than 1.0 knots from the west (calm or easterly winds) divided by 

the total number of observations at each distinct hour is presented. This 

represents the fraction of time for each hour and for each station that 

the surface flow was decoupled from the synoptic scale flow. Decoupled 

flows occurred most commonly (77% to 86%) in the upper valley but occurred 

only 50% of the time in the middle and lower valley and only 8% of the 

time on the barrier for the two month study period. 

The vertical extent of decoupled flows is typically marked by a 

temperature discontinuity. To determine the height of a temperature 

discontinuity, like that of a temperature inversion, a vertical profile 

of mean (for all days) potential temperature was utilized. Unfortunately, 

sounding data was only available during storm episodes, not continuously, 

and not during all types of meteorological conditions. However, by using 

the PROBE station data plotted as a function of elevation, temperature 

discontinuities became apparent (see Figure 7). The mean value was 

computed for all days in the study period, for each PROBE station, at each 

hour of the day. It must be noted that potential temperatures were 

observed from surface stations and not the from the free atmosphere. 
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Therefore, atmospheric stability can not be accurately be determined from 

Figure 7. 

Figure 7 illustrates the average potential temperature as a function 

of elevation. Only those stations within the upper valley east of the 

constriction in width between Hayden (HYD) and Milner (MIL) to the crest 

of the barrier were presented. Because of the large temperature range and 

the calm winds which were present in the upper valley, it is likely that 

this portion of the valley contained the strongest temperature inversion. 

At 0700 MST, a 7°K temperature discontinuity existed between 6800 

ft and 70 ft, approximately 340 ft above the valley floor. The layer of 

decoupled flow extended to somewhere in between 7380 ft and 8000 ft. The 

difference in frequency of decoupled flows between these two elevations 

is illustrated in Figure 6. HAR (7380 ft) experienced decoupled flows 56% 

of the time while CHV (8000 ft) only experienced decoupled flows 27% of 

the time during the two month study period. The u component of the wind, 

as illustrated in Figure 6 also supports this height as the top of the 

decoupled layer. The mean west to east component of the wind for the two 

month study period is -0.4 knots at HAR while at CHV the u wind was 4.7 

knots. A difference explainable by a discontinuity between the two 

stations. 

b. 1100 Local Time 

At 1100 MST, some changes had occurred. The upper valley air had 

warmed to the same potential temperature as the central and lower valley. 

In the lower valley decoupled flows decreased up to 30% at LAY (see Figure 

8). The entire profile had warmed between 4°K above the discontinuity and 

9°K below the discontinuity. However, no change in the height of the top 

of the decoupled flow layer had occurred by this time. 
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c. 1400 Local Time 

By 1400 MST a noticeable change had taken place in the valley (see 

Figure 9). U component wind speeds increased throughout the study area. 

As the magnitude of the mean u component wind increased so had the 

associated standard deviations. Decoupled flows remained relatively 

frequent (65% to 72%) in the upper valley but the frequency decreased 

significantly to the west and vertically. No change in the vertical 

extent of the decoupled flow layer was observed at 1400 MST (see Figure 

9). 

At 1400 MST there was no thermal gradient observed between the upper 

and lower valley (see Figure 9). At this time (1400 MST), no up valley 

flow circulations were driven by thermal gradients in this valley during 

the two month study period. Because there are no up valley flows,- this 

contrasts with what one would expect during the summer months, when an up 

valley circulation is the norm. 

d. 1700 Local Time 

Around the time of sunset, 1700 MST, differential cooling had begun 

throughout the entire valley; consequently, a thermal gradient was 

established between the upper and lower valley (see Figure 10). ~r, 

no significant changes had occurred in the mean u component winds or the 

variability of these winds at any stations. The spatial distribution of 

the decoupled layer remained similar to the 1400 MST observations. Figure 

7 illustrates that the vertical extent of the discontinuity had not 

changed between 1400 MST and 1700 MST. 

e. 2200 MST 

By 2200 MST the mean west to east airflow had continued to decrease 

throughout the entire valley (see Figure 11). The valley air continued 
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to cool but not as rapidly as that observed around sunset (see Figure 11). 

The thermal gradient between the upper and lower valley continued to 

strengthen until morning. The frequency of decoupled flows increased 

throughout the entire valley with the greatest increases occurring in the 

middle and lower valleys. The vertical extent of decoupled flows at 2200 

MST were similar to those observed at 0700 MST (see Figures 7 and 11). 

B. METEOROLOGICAL CONTROLS ON VALLEY BOUNDARY LAYER 

1. Meteorological Categories 

The synoptic weather patterns are divided into three categories 

based upon the relative position of the associated extratropical cyclone 

to the study area (Yu, 1986). From a LaGrangian perspective, each region 

within the extratropical cyclone has a unique climate associated with it. 

The appropriate synoptlc categories are determined for each twelve hour 

period for the entire two month data period. This is accomplished by 

referring to the facsimile surface and 500 mb weather maps and identifying 

which region of the extratropical cyclone the study area is located in, 

every twelve hours. Additional-local weather information was gained by 

referring to the COSE III log book (Rauber and Grant, 1982) .. The regional 

observations are divided into one of three categories determined by the 

day and time of the observation. 

According to Yu's article, based upon a location's relative position 

within an extratropical cyclone, several regional atmospheric 

characteristics are disclosed. Examples of these characteristic 

parameters include surface winds, vertical motion, temperature inversions, 

dominant mesoscale systems, ventilation, deposition, and transport. Based 

upon this association, mountain-valley flows do not usually occur under 



42 

all synoptic classes. The percentage of days of each observed synoptic 

category is presented. 

Once the data is stratified, the approach is similar to that used 

in the two month climatological analysis. The PROBE network is divided 

into the same groups of stations as defined previously (upper valley, 

middle valley, etc). Then, using statistical analysis, the mean flow and 

variability is presented. The objective is to investigate the 

variability of the mean flow pattern for each synoptic category. A 

decrease in the variability indicates a more precise relationship between 

the synoptic and mesoscale atmospheric conditions. 

Yu and Pielke (1986) showed that mesoscale phenomenon can be 

associated with the overlying synoptic conditions. Therefore, their 

method of synoptic stratification was employed in order to define the 

synoptic climatology of the Yampa Valley during December 1981 and January 

1982. 

A subjective classification scheme based on the classical cyclone 

model was reported by Lindsey (1980). Figure 12 illustrates a typical 

eastern U.S. wintertime extratropical cyclone; the synoptic flow is 

divided into five categories as described by Yu and Pielke: 

Category 1: in the warm sector of an extratropical 
cyclone - prefrontal passage 

Category 2: ahead of the warm front in the region of 
cyclonic isobaric curvature at the surface 

Category 3: behind the cold front in the region of 
cyclonic curvature to the surface isobars 

Category 4: under a polar high in a region of 
anticyclonic curvature to the surface isobars 

Category 5: in the vicinity of a subtropical ridge. 
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Figure 12. Example of a surface analysis chart (for January 9, 1964) 
showing the application of the synoptic climatological model for the five 
synoptic classes listed in Table 2. 
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Table 2 presents a summary of the meteorological conditions associated 

with the five synoptic classes related to an extratropical cyclone. Note 

that only categories four and five mention mountain-valley flows as the 

dominated mesoscale system. Also, category 3 is associated with forced 

airflow over rough terrain. 

Table 3 lists the results of the synoptic stratification for December 

1981 and January 1982. In Table 3, the synoptic pattern that was present, 

represented by numbers 1,3,4 and undecided, is listed on the right with 

the time period, to which it applies, listed to the left. Figure 13 

illustrates the monthly averaged frequencies for the occurrence of each 

synoptic climatological categories during the COSE III period. The 

synoptic summary of the Yampa Valley for the period is characterized as: 

a. High pressure systems dominate the weather occurring 50% 
in December and 28% in January. 

b. Subtropical ridges do not occur in the region for the 
period. 

c. Warm frontal occurrences do not occur in the region for 
the period. 

d. Cold fronts occur 28% during the period. 

e. Ambiguous situations (undecided) increased from 4% in 
December to 28% in January. 

2. Airflow for Respective Categories 

a. Category 1. in the warm sector of an extratropical 
cyclone - prefrontal passage 

(1) Slope Flows 

Table 4 presents the mean (for all category 1 days in the study 

period) component of the wind parallel to the local slope of the terrain 

for two PROBE stations at five different hours during a twenty-four hour 

period. Positive values are representative of south to north (V component 
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Table 2 

Overview of air quality aspects of the five synoptic Categories 
illustrated in Figure 12 (reproduced from Yu and Pielke, 1986). 

Category 
character
istics Category l 2 3 4 5 

Category mT; in the warm mT/cP, mT/cA. cP. cA; behind cP, cA; under a mT; in the vicin-
class sector of an extra- mP jcA; ahead of the cold front polar high in a ity and west of a 

tropical cyclone the warm front in the region of eye- region of anticyc- subtropical ridge 
in the region of · Ionic curvature to Ionic curvature to 
cyclonic curvature the surfac:c isobars the surfac:c 
at the surfac:c 

Surface Brisk SW surface Ught to moderate Strong NE to W Ught and variable Light SE to SW 
winds winds SE to ENE sur· surfac:c winds winds winds 

fac:c winds 
Vertical Weakening syn- Synoptic ascent Synoptic ascent Synoptic descent Synoptic subsid-
motion optic descent as due to warm advec- due to positive vor- (due to warm ence (descending 

the cold front tion and positive ticity advection advection and/or branch of the 
approaches vorticity advection aloft (in this region negative vorticity Hadley cell). 

aloft this ascent more advection aloft) Becomes strong 
than compensates as you approach 
for the descent due the ridge axis 
to cold advection) 

Inversion Weak synoptic sub- Boundary layer Deep planetary Synoptic subsid· Synoptic subsid-

Dominant 
mesoscale 
systems 

Ventilation 

Deposition 

sidence inversion capped by frontal boundary layer ence inversion ence inversion 
caps planetL-y inversion and/or warm ad· 
boundary layer vec::tion aloft create 

an inversion which 
caps the planetary 

Squall lines Embedded lines of 
convection 

Moderate to good Poor ventilation of 
ventilation low level (i.e. be-

low frontal invers-
ion) emissions 

Dry deposition Dominated. by Wet 
except wet depo- deposition 
sition in showers 

boundary layer 
Forced airftow over Mountain-valley Mountain-valley 
rough terrain sys- flows; land-sea flows; land-sea 
tems; lake effect breezes; urban cir- breezes; urban cir· 
storms culations (ther· cuJations (ther-

mally-forced sys- many-forced sys-
tems) tems) 

Excellent venti- Night or snow- Day: moderate to 
lation covered. ground: good ventilation; 

poor ventilation; night: moderate to 
day: poor to moder- poor ventilation 
ate ventilation 

Dry deposition Dry deposition Dry deposition 
except in showers except wet depo

sition in showers 
and thunderstorms 

Transport Long range Long range above Long range More local as you More local as you 
inversion approach the approach the 

center of the polar center of the sub-
high tropical high 
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Table 3 

Listing of synoptic stratification results. Dates and times are listed 
with the assigned synoptic Category for that time period. Asterisk 
indicates that weather maps were unavailable for this time period. 

(ALL TIMES ARE GMT) 
DATE BEGIN DATE END SYNOPTIC CATEGORY 

Dec 1, 1981 @ 0000 Dec 1, 1981 (I 2300 4 
Dec ~ 1981 • 0000 Dec ..., 1981 @ 0600 3 _, _, 
Dec 2, 1981 @ 0700 Dec ..,. 

..JI!f 1981 @ 0300 4 
Dec ..,. ...,), 1981 @ 0400 Dec 3, 1981 @ 0900 1 
Dec 3, 1981 • 1000 Dec 3, .1981 @ 2300 3 
Dec 4, 1981 @ 0000 Dec 10, 1981 • 1100 4 
Dec 10, 1981 @ 1200 Dec 11, 1981 @ 0700 1 
Dec 11, 1981 @ 0800 Dec 12, 1981 • 1100 3 
Dec 12, 1981 • 1200 Dec 13, 1981 @ 0300 4 
Dec 13, 1981 • 0400 Dec 13, 1981 @ 1700 1 
Dec 13, 1981 @ 1800 Dec 14, 1981 (I 1100 3 
Dec 14, 1981 @ 1200 Dec 16, 1981 @ 0600 1 
Dec 16, 1981 @ 0700 Dec 17, 1981 <t 0600 3 
Dec 17, 1981 • 0700 Dec 19, 1981 <t 1400 4 
Dec 19, 1981 • 1:500 Dac 21, 1981 • 0700 1 
Dec 21, 1981 • 0800 Dec: 22, 1981 @ 2200 3 
Dec 22, 1981 • 2300 D•c 2:5, 1981 @ 1200 4 
Dec 2:5, 1981 • 1300 Dec 2:5, 1981 @ 2100 1 
Dec 2:5, 1981 (I 2200 Dec 26, 1981 • 0900 3 
Dec 26, 1981 • 1000 Dec 27, 1981 • 1100 unda'fined 
Dec 27, 1981 • 1200 Dec 28, 1981 • 2300 3 
Dec 29, 1981 • 0000 Dtte 30, 1981 • 1100 4 
Dec 30, 1981 • 1200 Dtte 30, 1981 • 2100 1 
Dec 30, 1981 • 2200 Dtte 31, 1981 • 2300 3 
Jan 1, 1982 • 0000 Jan 4, 1982 • 1100 undefined* 
Jan 4, 1982 • 1200 Jan 5, 1982 • 2300 1 
Jan 6, 1982 • 0000 Jan 6, 1982 • 2300 3 
Jan 7, 1982. 0000 JAn 10, 1982 • 1100 4 
Jan 10, 1982. 1200 Jan 13, 1982 • 1100 undefined 
Jan 13, 1982. 1200 Jan 13, 1982 • 2300 3 
Jan 14, 1982. 0000 Jan 14, 1982 • 1100 undefined 
Jan 14, 1982. 1200 Jan 1:5, 1982 • 1100 4 
Jan 1:5, 1982. 1200 Jan 17, 1982 • 2300 3 
Jan 18, 1982 • 0000 Jan 18, 1982 • 1600 1 
Jan 18, 1982 • 1700' Jan 19, 1982 • 0200 3 
Jan 19, 1982. 0300 Jan 19, 1982 @ 1100 undefined 
Jan 19, 1982. 1200 Jan 22, 1982 • 0600 1 
Jan 22, 1982 • 0700 Jan 24, 1982. 2300 3 
Jan 2:5, 1982 • 0000 Jan 26, 1982 • 2300 4 
Jan 27, 1982 • 0000 Jan 27, 1982 • 0500 1 
Jan 27, 1982 @ 0600 Jan 27, 1982 • 1700 3 
Jan 27, 1982 • 1800 Jan 28, 1982 • 2300 4 
Jan 29, 1982 • 0000 Jan 29, 1982 • 2300 undefined 
Jan 30, 1982 • 0000 Jan 30, 1982 @ 1100 4 

Jan 30, .1982 • .1200 Jan 30, 1982 • 2300 
..,. 
. .;;,. 

Jan 31, .1982 • 0000 J., 31, .1982 • .1.100 4 
Jan 31,. 1982 • 1200 Jan 3'1 ·.' 1992 tl 2300 1 

* synoptic weath•r IDAPS w•ra unavAilabl• for this time period 
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Table 4 

Summary of the mean (for all days in which synoptic Category #l was 
present) diurnal variation of the component of the wind parallel to the 
slope for selected PROBE stations. Elevations are listed in feet. Wind 
speed units are knots: Standard deviations are listed in parenthesis. 
All times are Mountain Standard. 

Station (elev.) 

LA'( (1884) 

HYD (2003) 

0700 

3.7 (6.2) 

-1.2 (2.1) 

1100 1400 

6.8 (7.2) 10.1 (8.2) 

0.0 (1.7) 3.9 (4.9) 

1700 

2.7 (5.1) 

0.8 (5.1) 

2200 

4.5 (7.0) 

0.8 (2.9) 

.(:::--
00 



49 

of the wind) airflows. Speeds are listed in knots and the standard 

deviation of the mean is listed in parenthesis. 

PROBE station lAY exhibited upslope flows during all five hours 

listed in Table 4. As diurnal heating progressed, the strength of the 

flows increased to 10.1 knots at 1400 MST, and decreased by 1700 MST. 

However, the strength of the V component airflow did not consistently 

decrease as nocturnal cooling progressed. This was indicated by an 

increase in speed between 1700 and 2200 MST. Standard deviations of the 

mean were always larger than the mean V wind, indicating that flows were 

highly variable and turbulent. 

The mean V component airflow at HYD was weaker than at LAY, but 

followed similar trends. The mean V component airflow reversed from a 

weak down slope flow at 0700 MST to a 3.9 knot upslope wind at 1400 MST 

as daytime heating progressed. Mean V component flows decreased with 

nocturnal cooling, but did not reverse direction by 2200 MST. Large 

standard deviations indicate these slope flows were also highly variable 

and turbulent. 

When comparing these slope flows to those presented for the entire 

two month study period, both sites exhibited a larger V component of the 

wind. This is consistent with Table 2 in which the surface winds are 

described as being brisk and from the southwest in synoptic category one. 

(2) Valley Flows 

(a) 0700 MST 

Figure 14 ill~strates the average u (west to east) component of the 

surface wind (knots), potential temperature (K), and percent decoupled 

flow for periods in which the region was characterized by an approaching 

cold front at 0700 MST. Appendix A (Tables A-6 through A-10) presents the 
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average, standard deviation, minimum, maximum, 75th, 50th, 25th 

percentiles and the number of observations of the west to east component 

of the wind for these days during the study period at 0700, 1100, 1400, 

1700 and 2200 MST. 

At 0700 MST, the valley floor was typified by calm to light 

downvalley airflows extending from the upper valley to the middle and some 

parts of the lower valley, while light to moderate up valley winds 

occurred at the peaks and ridges (see Figure 14 and Table A-6). 

Downvalley flows began as far east as MIL (6530 ft) in the upper valley 

and extended to the PROBE station lAY (6180 ft) in the lower valley. 

These downvalley airflows extended as high as HAR ( 7380 ft), 830 feet 

above the valley floor. 

For nearly all PROBE stations, the standard deviations were larger 

than the mean U component wind speed. Nineteen of twenty-three stations 

had smaller standard deviations (of the mean U wind) than the standard 

deviations (of the mean U wind) for the entire study period. The standard 

deviation of the mean U wind was less than the standard deviation of the 

mean U wind presented in the climatology section. 

At 0700 MST a thermal gradient was present on the valley floor in 

which the upper valley was two to three degrees colder than the middle and 

lower valleys. Figure 14 illustrate the mean potential temperature 

distribution at 0700 MST for all periods when the study region was within 

the warm sector of an extratropical cyclone (synoptic Category 1). The 

overall distribution of potential temperatures remained very similar to 

that of Figure 6 (two month mean potential temperature distribution). 

However, potential temperatures were three to six degrees warmer than the 

two month mean potential temperature throughout the study period. 
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At 0700 MST, decoupled flows had a similar spatial distribution as 

those in the two month climatological study period but frequencies had 

typically increased by ten percent. Figure 14 illustrates the percent of 

\ 
decoupled flows at 0700 MST for synoptic Category #l conditions. The 

upper valley (MIL, STW, and RAD) was characterized by decoupled flow at 

least 92% of the time. Further west in the middle valley (CGE, CGN, CNE, 

and HYD) decoupled flow occurred 78% to 92% of the time. Decoupled flow 

occurred 50% to 62% in the lower valley (CSW, LAY, DIV, and SUN) with the 

exception of LAY. At HAR (7379 ft), a south facing slope, decoupled flow 

occurred 67% of the time while directly across the valley at CHV, 

decoupled flow only occurred 27% of the time. At the higher elevations 

(WLF, BLK, and STP) decoupled flow occurred less than 43% of the time. 

Figure 15 illustrates the mean potential temperature as a function 

of elevation for selected PROBE stations at 0700 MST, 1100 MST, 1400 MST, 

1700 MST, and 2200 MST. At 0700 MST, the vertical distribution of 

potential temperature remained very similar to that of the two month mean 

vertical distribution with two important distinctions. First, surface 

temperature discontinuity was slightly less than that of the two month 

mean. Second, the entire profile was three degrees warmer than that of 

the two month study period. 

(b) 1100 MST 

At 1100 MST, the mean U component airflow in the valley was the same 

as that observed at 0700 MST, with the exception that downvalley airflows 

now only extended as far west as CNE (6910 feet), in the middle valley 

(see Figure 16 and Table A-7). A weak convergence zone was present 

between the western portions of Craig (CSW and CGN) and the eastern 

sections of Craig (CNE and CGE). No change in the vertical extent of 



53 

11000 

1
. STP (10330) 

. 10000 

. I· 
9000 / I a.JR (9180) 

..... i;; 
....... // 

~ ....... I z· 
(,/) 
~ 8000 { ( CHV (8000) -- \ \ G 
G .... 

.... \ -z ~ ~ HAR (7'380) 
0 .. ·· / 
~ .. / 7000 .. . 
~ .... ·· / I 
UJ .······· ( (. RAO (6800) 
~ STW(67'30) UJ ... ·· ., 

MIL (6530) 
0700 2200 1100 1700 1400 

6000 

5000 

4000--------~------~----------------~------~ 275 280 285 -290 300 
POTENTIAL TEMPERATURE (°K) 

Figure 15. Average vertical profile of potential temperature (kelvin) 
constructed from selected PROBE station data for all days in which 
synoptic Category #l was present. 



292 
----eSl* 

39 

~ 
500tV 

291 
---e 

csw 
55 

~ 
ILK 
0 

~ 
HGM 

8 

298 

Figure 16. Average west to east component of the wind (knots, shown as 
wind barbs), average potential temperature (kelvin, shown above the dots), 
and percent decoupled flow (shown below the dots) at 1100 MST for all days 
in which synoptic Category #l was present. 

295 
---e 

HEB 
31 Vl 

.p. 



55 

downvalley flows occurred. Fifteen of 23 standard deviations (of the mean 

U wind) were less than the standard deviations of the two month mean U 

wind. 

At 1100 MST, the thermal gradient between the upper and lower valley 

had diminished to only a one degree difference (see Figures 15 and 16). 

Although potential temperatures warmed by three degrees throughout the 

valley, there still remained a 6 degree kelvin temperature discontinuity 

in the lowest 830 foot layer within the upper valley. 

By 1100 MST, no significant changes in the frequency of decoupled 

flows were observed within the study area. Figure 16 illustrates the 

percentage of decoupled flows during this time period. 

(c) 1400 MST 

By 1400 MST a noticeable change had occurred in the mean U component 

wind throughout the Yampa Valley. Downvalley flows were no longer present 

(see Figure 17 and Table A-8). Average U component winds were 2.9 to 11.9 

knots and occurred everywhere except the upper valley (MIL, STW, and RAD). 

Winds in the middle and lower valley were equally as strong as the winds 

observed at the peaks and ridges above the valley floor. 

Variability decreased since the morning hours as noted by mean U 

component winds exceeding the standard deviation of the mean at most 

stations within and above the valley (see Table A-8). However, only 12 of 

23 stations exhibited a decrease in variability as compared to the two 

month variability of the mean U wind for the same time. Thus, at 1400 MST 

this classification scheme does not account for all the observed 

variability of the mean flow. 

The thermal gradient that was present during the morning hours was 

no longer present at 1400 MST (see Figure 17). The upper valley (MIL, 
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STW, and RAD) had warmed to 294 K, the same temperature observed in the 

middle and lower valleys. 

Figure 15 illustrates that the lower temperature discontinuity that 

was present during the morning hours had diminished to only a two degree 

discontinuity between 6730 feet and 7380 feet. No large temperature 

discontinuities were present above 7380 feet, for the upper valley. 

By 1400 MST a noticeable change had occurred in the frequency of 

occurrence of decoupled flows in the Yampa Valley (see Figure 17). While 

the occurrence of decoupled flows remained frequent (85%) in the upper 

valley (MIL, STW, and RAD), the frequency of these events had decreased 

to 8% - 33% in the lower and middle valley. HYD was the one exception, 

where decoupled flows were observed 58% of the time period. On the 

barrier, the frequency of decoupled flows decreased from 25% - 43% at 1100 

MST to 11% - 14% at 1400 MST. On the slopes above the constriction in the 

valley's width between MIL and HYD, the frequency of decoupled flows also 

decreased as compared to the 1100 MST observations. The frequency of 

these events ranged from 25% at HAR (7379 ft) to 50% at WLF (8500 ft). 

Therefore, the region of decoupled flows occurred primarily the in upper 

valley and had a smaller vertical extent than in the morning hours. 

(d) 1700 MST 

By 1700 MST, no significant changes had occurred in valley airflow 

(see Figure 18). Cooling had occurred in the valley, and the upper valley 

was now one to two degrees cooler than the middle and lower valleys. 

Although a thermal gradient was present, a down valley circulation had not 

manifested itself by 1700 MST. 
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(e) 2200 MST 

As the evening progressed, the thermal gradient strengthened, but 

no downvalley winds were present at 2200 MST (see Figure 19). The mean 

U component airflow in the valley remained westerly or calm at all 

stations but decreased in magnitude within the valley (see Figure 19 and 

Table A-10). The middle valley was three to four degrees warmer than the 

upper valley at 2200 MST. Farther west, the lower valley was cooler than 

the middle valley, and two degrees warmer than the upper valley. A six 

degree kelvin temperature discontinuity was reestablished in the lowest 

830 foot layer of the upper valley (see Figure 15). The frequency of 

decoupled flows remained highest in the upper valley (62 - 75%) and 

decreased toward the middle and lower valleys (50%). The frequency of 

decoupled flows also decreased with elevation, decreasing to 54% at 7380 

feet and to less than 20% above 8000 feet. 

b. Category 3. Post Frontal Flows 

(1) Slope Flows 

Table 5 presents the mean (for all days in which synoptic category 

#3 was present) component of the wind parallel to the slope for selected 

PROBE stations at five different hours of the diurnal cycle. At HYD (6570 

ft), the airflow was consistently down slope (from the north), and very 

light. At LAY (6180 ft) the airflow was always blowing upslope and at 

less than two meters per s·econd. The speed of the slope wind at LAY 

increased from 0700 MST to 1400 MST and decreased the rest of the period. 

Therefore, while the V winds at LAY exhibited slope flow characteristics 

embedded in the net flow, the V winds at HYD did not exhibit any slope 

flow characteristics. 
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Table 5 

SUIDIDary of the mean (for all days in which synoptic Category #3 was 
present) diurnal variation of the component of the wind parallel to the 
slope for selected PROBE stations. Elevations are listed in feet. Wind 
speed units are knots. Standard deviations are listed in parenthesis. 
All times are Mountain Standard. 

Station (elev.) 

LAY (6180) 

HYD (6570) 

0700 

0.6 (4.1) 

-0.6 (2.9) 

1100 1400 1700 2200 

2.7 (4.7) 3.5 (5.8) 1.6 (5.6) 1.2 (3.7) 

-0.2 (3.1) -1.2 (3.7) -1.6 (3.1) -1.2 (2.9) 

0'\ 
...... 



(1) Valley Flows 

(a) 0700 MST 

62 

Figure 20 illustrates the average u (west to east) component of the 

surface wind (knots), potential temperature (K), and percent decoupled 

flow for periods in which the region was characterized by the recent 

passage of a cold front at 0700 MST. Appendix A (Tables A-ll through A-

15) presents the average, standard deviation, minimum, maximum, 75th, 

50th, 25th percentiles and the number of observations of the west to east 

component of the wind for these days during the study period at 0700, 

1100, 1400, 1700 and 2200 MST. 

At 0700 MST, downvalley flows (referring only to the mean U 

component airflow at each PROBE station) did not exist (see Figure 20 and 

Table A-11). Speeds varied from 1.2 knots in the upper valley (RAD and 

STW) to 11.1 knots on top of Wolf Mountain (WLF). Standard deviations of 

the mean U component wind were larger than the mean on the valley floor 

but not on the slopes, ridges, and peaks above the valley floor. U 

component wind speeds were stronger on the slope (HAR and CHV) above the 

constriction in valley width than at Black Mountain (BLK, 9900 ft) which 

may indicate channelling of the flow. As compared to the climatology 

study at 0700 MST, 10 of 23 stations had decreases in the standard 

deviation of the mean U component wind. 

Figure 20 illustrates the mean potential temperature (K) 

distribution within the study area for periods in which synoptic Category 

#3 (post- frontal) were present at 0700 MST. Considering only those 

stations on the valley floor (MIL, STW, RAD, HYD, CNE, CGE, CGN, CSW, DIV, 

LAY and SUN) the upper valley was typically 283 K while the middle and 

lower valley were typically 284 to 285 K. Therefore, a thermal gradient 
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existed at 0700 MST, with potential temperatures increasing toward the 

lower end of the valley. 

Figure 21 illustrates the vertical profile of potential temperature. 

It was constructed using PROBE data for selected stations in the upper 

valley. At 0700 MST, a four degree kelvin temperature discontinuity 

existed between RAD (6800 ft) and HAR (7380 ft). This discontinuity is 

much weaker than the mean temperature discontinuity observed for all days 

in which synoptic Category #l (prefrontal flows) was present. When this 

profile is compared to that of the climatology, mean potential 

temperatures were warmer below 7380 feet during post frontal flows. Also, 

the mean potential temperature at STP was three degrees colder than the 

mean potential temperature for the climatology. The upper level 

discontinuity observed at 0700 MST for the climatology was not present 

during post frontal flows. 

As mentioned previously, the frequency of decoupled flow at a PROBE 

station, as defined in this paper, is the ratio of the number of 

occurrences in which the west to east component of the wind was less than 

1.0 knots to the total number of observations multiplied by 100. In this 

particular section this ratio is expressed as a percentage and only 

applies to times in the study period in which post-frontal flows (synoptic 

Category #3) occurred. 

Figure 20 illustrates the percent occurrence of decoupled flows at 

0700 MST for all days in which synoptic category #3 was present. The 

frequency of decoupled flows ranged from 67% at LAY (6180 ft) to 9% at STP 

(10330 ft). With the exception of LAY, the upper valley (MIL, STW, and 

RAD) had the highest frequency of decoupled flows in the study area, 

greater than 53%. The next highest frequency of decoupled flow occurred 
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in the middle and lower valley ranging from 11% at CNE (6910 ft) to 67% 

at LAY. On the slopes above the constriction in valley width, decoupled 

flows occurred 22% of the time at HAR (7380 ft), while directly across the 

valley, decoupled flows occurred only 7% of the time at CHV (8000 ft). 

On the barrier, the occurrence of decoupled flow varied from 50% at DLK 

(9180 ft) to 9% at STP (10330 ft). The distribution of decoupled flows 

remained similar to that observed at 0700 MST during synoptic Category #l. 

However, the frequencies are substantially lower than those observed 

during synoptic Category #l. 

(b) 1100 MST 

At 1100 MST, winds remained up valley, the thermal gradient no 

longer existed on the valley floor, the temperature discontinuity had 

strongly diminished and the spatial distribution of the frequency of 

decoupled flow remained the same as that observed at 0700 MST. 

Seventeen stations experienced an increase in wind speed, only five 

reported a decrease, all flows remained up valley (see Figure 22 and Table 

A-12). Three of the decreases in wind speed occurred near the 

constriction at HAR, CHV, and WLF. While increases in potential 

temperature were observed at all stations, the greatest increases occurred 

in the upper valley. The temperature discontinuity between RAD (6800 ft) 

and HAR (7380 ft) had now diminished to half of its previous value at 0700 

MST. The frequency of decoupled flows decreased slightly from the 0700 MST 

observations (see Figure 21). Frequencies ranged from 56% at RAD (6800 

ft) to 0 % at HYC (9590 ft) on the lee side of barrier. The overall 

spacial distribution of decoupled flows remained very similar to that of 

0700 MST. 
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(c) 1400 MST 

By 1400 MST a noticeable change had occurred in the valley airflow 

and thermal structure. Significant increases in the mean U component wind 

speed had occurred in the lower and middle valley while the rest of the 

valley experienced increases of lessor magnitude (see Figure 23 and Table 

A-13) . Wind speeds in the lower and middle valley had increased from four 

to six knots to six to eight knots. By 1400 MST the upper valley (RAD, 

STW, MIL) had warmed to one degree kelvin greater than the middle valley 

(CGN, CSW, CNE, CGE, HYD). Although very weak, this thermal gradient 

would have contributed to up valley flows. The temperature discontinuity 

previously present at 0700 MST was no longer present at 1400 MST in the 

lower layer. However, a 6 degree discontinuity was present between CHV 

(8000 ft) and BUR (9180 ft). The frequency of occurrence of decoupled 

flows had continued to decrease but the same spatial distribution as 

observed earlier remained (see Figure 21). 

(d) 1700 MST 

Although cooling had begun throughout the valley by 1700 MST, no 

discernable changes had occurred in the valley airflow (see Figure 24). 

Mean U component wind speeds ranged from 1.6 knots at RAD (6800 ft) to 

·15.4 knots at STP (10330 ft) (see Table A-14). With the exception of STP, 

the strongest mean flows occurred at and above the constriction in valley 

width (HAR, CHV, and WLF). The thermal gradient present along the valley 

floor at 1400 MST was no longer present. Most areas continued to observe 

decreases in decoupled flow frequency and the overall occurrence of 

decoupled flows was at a minimum (see Figure 24). 

distribution of decoupled flow remained the same. 

The spatial 
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(e) 2200 MST 

By 2200 MST, a noticeable decrease in mean U component wind speed 

had occurred in the study area but up valley flows were still the mean for 

all stations (see Figure 25 and Table A-15). Thirteen stations 

experienced decreases in the mean U component wind, while only five 

stations experienced increases. Mean west to east component wind speeds 

ranged from 1.2 knots at STW (6730 ft) to 15.4 knots at STP (10330 ft). 

Fifteen of 23 stations had a decrease in the standard deviation of the 

mean U component wind as compared to the mean U component wind for all 

days during the study period. 

Cooling continued throughout the study area at 2200 MST (see Figure 

25). The horizontal distribution of mean potential temperatures was the 

same at 2200 MST as at 1700 MST. At 2200 MST, a five degree kelvin 

temperature discontinuity existed between 9180 feet and 10330 feet. This 

discontinuity was further supported by a 10 knot wind sheer existing 

between these two stations (BUR [9180 ft] and STP [10330 ft]). 

By 2200 MST the frequency of decoupled flows increased in the lower, 

middle and upper valley. The slope stations above the valley floor (HGM, 

CHV, HAR, DLK, BUR, and FTP) and the PROBE stations at the peaks and 

ridges observed about the same frequency of decoupled flows as at 1700 

MST. The frequency of decoupled flow remained the highest in the upper 

valley (23 - 58%). Toward the middle valley these frequencies decreased 

to 15 to 31% and 20 to 62% in the lower valley. The occurrence of 

decoupled flow also decreased with elevation and ranged from 0% to 43%. 
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c. Category 4. Under a polar high in a region of anticyclonic 
curvature to the surface isobars 

(1) Slope Flows 

Table 6 is a listing of the mean component of the wind parallel to 

the slope of the local terrain for all days in which a polar high pressure 

system was the dominant synoptic feature encompassing the Yampa Valley of 

northwestern Colorado. Units are listed in knots and standard deviations 

of the mean are listed in parenthesis. 

At PROBE station LAY (6180 ft.) a diurnal trend existed in the slope 

flow. Although no downslope winds were observed at the hours listed here, 

a diurnal variation was apparent in the strength of the upslope wind. At 

0700 MST, the mean slope wind was 1.2 knots and gradually strengthened to 

3.3 knots by 1400 MST. By 1700 MST, the strength of the upslope flow had 

weakened to 1.0 knots and remained less than 2.0 knots throughout the rest 

of the observation period. The standard deviation was larger than the 

mean in all cases but 1100 MST, indicating highly variable and turbulent 

flows, characteristic of slope flows. 

At PROBE station HYD (6570 feet) a similar diurnal trend was 

observed. At 0700 MST, a 0.4 knot downslope flow existed which reversed 

directions to 1.0 knot upslope flow by 1100 MST. At 1400 MST the mean 

airflow was 0.2 knots, essentially calm. The direction reversed by 1700 

MST to a 1. 9 knot downslope flow. By 2200 MST the strength of the 

downslope flow had decreased to 1. 2 knots. In each hour listed, the 

standard deviation remained larger than the mean slope flow. Embedded in 

the net flow at HYD, an upslope component was apparent during the morning 

heating hours and a downslope component was observed during the afternoon 

cooling hours. 



Table 6 

SUJ'DIIlary of the mean (for all days in which synoptic Category #4 was 
present)"- diurnal variation of the component of the wind parallel to the 
slope for selected PROBE stations. Elevations are listed in feet. Wind 
speed units are knots. _Standard deviations are listed in parenthesis. 
All times are Mountain Standard. 

Station (e1ev.) 

LAY (6180) 

HYD (6570) 

0700 

1.2 (2.3) 

-0.4 (2.1) 

1100 

2.3 (1.9) 

1.0 (1.7) 

1400 

3.3 (5.1) 

0.2 (2.1) 

1700 

1.0 (5.2) 

-1.9 (2.1) 

2200 

1.6 (6.6) 

·1.2 (1.9) 

-....$ 
.f.:" 



(2) Valley Flows 

(a) 0700 MST 

75 

Figure 26 illustrates the average u (west to east) component of the 

surface wind (knots), potential temperature (K), and percent decoupled 

flow for periods in which the region was dominated by a high pressure 

system at 0700 MST. Appendix A (Tables A-16 through A-20) presents the 

average, standard deviation, minimum, maximum, 75th, 50th, 25th 

percentiles and the number of observations of the west to east component 

of the wind for these days during the study period at 0700, 1100, 1400, 

1700 and 2200 MST. 

At 0700 MST, downvalley flows were present throughout the valley 

floor and on the adjacent slopes (see Figure 26 and Table A-16). In the 

upper valley, the airflow was calm. Further west, on the slopes above the 

constriction in valley width (HAR, and CHV) downvalley flows were stronger 

ranging from 1.9 knots at CHV (8000 ft) to 6.4 knots at HAR (7380 ft). 

In the middle valley (HYD, CGE, CNE, and CGN), downvalley flows ranged 

from calm at HYD (6570 ft) to 6.2 knots at CNE (6910 ft). Further west, 

in the lower valley (CSW, lAY, DIV, and SUN) downvalley flows were 

generally not as strong as the middle valley. On the barrier, DLK (9180 

ft) was the only station to experience downvalley flows. The vertical 

extent of downvalley flow was located somewhere between 8000 feet (CHV) 

and 9135 feet (WLF). 

At 0700 MST, mean potential temperatures along the valley floor 

ranged from 271 to 273 kelvin in the upper valley (MIL, STW, and RAD) to 

276 (CGE) to 283 (CNE) in the middle and lower valleys. Thus, a strong 

thermal gradient existed along the valley floor at 0700 MST. 
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Figure 27 is a plot of the mean potential temperature (K) for 

selected PROBE stations, against elevation during periods in which high 

pressure was the dominant synoptic scale feature. The PROBE stations were 

chosen because they occupied an upper valley location or were within close 

proximity. Five time periods are shown in Figure 27 and were chosen to 

represent the change in vertical structure during the diurnal cycle. 

The most prominent features in Figure 27 are the large scale 

temperature discontinuity at the lower levels and the difference in 

diurnal temperature variation between the lower elevation stations and the 

higher elevation stations. At 0700 MST, a 14 degree temperature 

discontinuity existed in 850 feet between MIL (6530 ft.) and HAR (7380 

ft.). Above 9000 feet, another temperature discontinuity was apparent 

between BUR (9180 ft) and STP (10330 ft) in which the temperature 

increased 9 degrees in 1150 feet. Based on this information, it is likely 

that a strong temperature inversion was present in the upper valley at 

0700 MST. 

Figure 26 illustrates the percent of total observations (for 

synoptic Category #4 only) in which the U component airflow was less than 

1.0 knots from the west at 0700 MST, referred to as percent decoupled 

flow. In the upper valley at 0700 MST, decoupled flow occurred greater 

than 90% of all days in which high pressure dominated the region. In the 

middle valley, the frequency of decoupled flow ranged from 73% (CGN) to 

100% (CGE). Further west, in the lower valley, the frequency of decoupled 

flow was slightly less and ranged from 55% at SUN (6340 ft) to 90% at DIV 

(7130 ft). Within the constriction in valley width, decoupled flow ranged 

from 64% to 83% at CHV and HAR, respectively. This is in great contrast 

to the frequency of decoupled flow at the highest stations. Storm Peak 
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(STP, 10330 ft) and Black Mountain (BLK, 9900 ft) experienced decoupled 

flow less than 10% of the time. 

(b) 1100 MST 

At 1100 MST, no significant changes had occurred in the valley 

airflow or thermal structure (see Figure 28 and Table A-17). Although the 

thermal gradient along the valley floor weakened, it still remained. The 

temperature discontinuity in the lower layer still remained (see Figure 

27). The spacial distribution of the decoupled flow remained very similar 

to that observed at 0700 MST. 

(c) 1400 MST 

By 1400 MST, downvalley flows only occurred at three stations, CSW 

(6400 ft), CGE (6570 ft) and HAR (7380 ft) (see Figure 29 and Table A-18). 

Mean U component winds in the upper valley (MIL, STW, and RAD) did not 

exceed 1. 0 knots. For all times in the study period, this region 

continued to have the lightest winds throughout the study area. Up valley 

flow was present throughout most of the middle and lower valley and did 

not exceed 4.1 knots. Above the constriction in valley width, the north 

side of the river (HAR, 7380 ft) observed downvalley flows of 1.6 knots 

while on the south side and 620 feet higher CHV (8000 ft) up valley flows 

of 2.7 knots occurred. On the barrier, up valley flows occurred at all 

stations and varied from 2.1 knots at DLK (9180 ft) to 11.1 knots at STP 

(10330 ft). 

By 1400 MST, the middle and lower valleys still remained warmer than 

the upper valley, although the thermal gradient had continued to diminish 

(see Figure 29). This thermal structure was not conducive to up valley 

circulation, but did support down valley circulations. As expected, the 
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valley had reached the warmest mean potential temperatures of the diurnal 

period. 

By 1400 MST, the lower elevation stations (MIL, STW, and RAD) had 

warmed by 18 degrees since 0700 MST, while the higher elevation stations 

had only warmed by 10 degrees since 0700 MST (see Figure 27). Thus, the 

temperature discontinuity apparent at 0700 MST had diminished to 6 degrees 

in 650 feet between STW and HAR. The temperature discontinuity between 

9180 feet and 10330 feet was still present at 1400 MST, although it too 

had diminished to only a 6 degree discontinuity. 

From the temperature discontinuity information and the difference 

in wind direction between HAR (7380 ft) and CHV (8000 ft) the top of the 

decoupled layer appeared to be between 7380 feet and 8000 feet in the 

upper valley. Below this discontinuity, the frequency of decoupled flow 

continued to be above 50% but less than the 90% seen earlier at 0700 MST. 

The horizontal extent of this decoupled layer extended to the middle 

valley and even to the lower valley but only along the river as seen by 

lAY (6180 ft). 

(d) 1700 MST 

By 1700 MST, differential cooling had begun throughout the valley 

and westerly flows had weakened at most valley locations but did not 

reverse to downvalley flows (see Figure 30 and Table A-19). The middle 

valley had cooled up to nine degrees colder than the upper valley while 

the lower valley had cooled up to seven degrees colder than the upper 

valley. Therefore, the thermal gradient along the valley floor was 

strengthening. Figure 27 illustrates the increase in the temperature 

discontinuity between 6730 feet (STW) and 7380 feet (HAR). 
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The extent of the decoupled flow layer was increasing since 1400 

MST. Figure 30 illustrates the difference between the wind at HAR (7380 

ft) and CHV (8000 ft). The top of the decoupled layer was somewhere 

between these two stations. The horizontal extent of the decoupled layer 

was increasing in width in the lower valley as indicated by the increase 

in frequency of decoupled flow at SUN (6340 ft) and DIV (7130 ft). 

(e) 2200 MST 

By 2200 MST downvalley flows were more prevalent (see Figure 31 and 

Table A-20). The upper valley (MIL, STW, and RAD) still remained 

relatively calm, while downvalley flows in the middle and lower valleys 

were accelerating. Mean U component winds in this region ranged from 1.9 

knots up valley at HYD (6570 ft) to 2.5 knots down valley at CGE (6570 

ft). Above the constriction in valley width HAR experienced a mean 

downvalley flow of 3.7 knots while across the valley at CHV (8000 ft), a 

mean up valley flow of 1.7 knots occurred. As expected, westerly flows 

continued at the higher elevations of WLF (9135 ft), BLK (9900 ft), and 

STP (10330 ft). 

By 2200 MST, the valley had continued to cool and the mean potential 

temperature distribution was very similar to that of 0700 MST (see Figure 

31). Mean potential temperatures along the valley floor ranged from 274°K 

at MIL and STW in the upper valley, to 284°K at CSW in the middle valley. 

Thus, the thermal gradient along the valley floor continued to strengthen 

in support of a down valley circulation. 

By 2200 MST, differential cooling had continued to occur along the 

valley floor and with elevation. The large temperature discontinuities 

that were present at 0700 MST, were reestablished by 2200 MST at both 

levels (see Figure 27). 
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As evening cooling progressed, the frequency of decoupled flows 

increased throughout the study area (see Figure 31). By 2200 MST, the 

frequency of these decoupled flows ranged from 95% at MIL (6530 ft), in 

the upper valley, to 0% at BLK (9900 ft) at the higher elevations. On the 

valley floor, decoupled flow occurred more than half the time. It 

extended all the way out to the lower valley and vertically to between 

7380 feet and 8000 feet. 

C. CASE STUDIES 

1. 8 December 1981 

a. Synoptic Pattern 

Figure 32 illustrates the 500mb (32a), 700mb (32b), and surface 

(32c) synoptic weather maps for 8 December 1981 at 0500 MST. The surface 

map illustrates that the region of interest is influenced by high pressure 

in the region of anticyclonic curvature to the surface isobars, a category 

4 classification. Above the valley, at 500 mb, winds were from the 

northwest at 40 knots; the potential temperature was 315°K. Below this 

level, at 700 mb, winds were from the west-northwest at 15 knots and the 

potential temperature was 305°K. Snowpack was considered unusually heavy. 

Conditions did not change significantly throughout this case study. 

b. Summary of PROBE Observations 

Free atmospheric synoptic flows were observed at stations located 

only at the highest elevations over 10000 feet, 3350 feet above the valley 

floor and only during periods of maximum temperature (1100-1700 MST). 

Storm Peak (STP, 10330 ft) experienced synoptic flow characteristics 

during the afternoon. Figure 33 illustrates at 1400 MST the winds at STP 

were from the west-northwest at 15 knots. Figure 34 illustrates that the 



87 

---------

Figure 32a. 500 mb upper level map depicting synoptic conditions of 
December 8, 1981 at 0500 MST. 
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Figure 32b. 700 mb upper level map depicting synoptic conditions of 
December 8, 1981 at 0500 MST. 
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Figure 32c. Surface map depicting synoptic conditions of December 8, 
1981 at 0500 MST. 
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potential temperature was 306°K, indicating the same airmass as the 700 

mb synoptic wind. 

Regional flow extended below the ridge tops down to BLK (9900 ft) 

and WLF (9135 ft) during the night and down to the valley floor at MIL 

(6530 ft) during the day. BLK (9900 ft) experienced regional flow 

throughout the 24 hour period. Figure 33 illustrates the winds at BLK 

were southwesterly at 5 knots through the night and southwesterly at 10 

knots during the day. The wind speed was greater than that below at MIL 

(6530 ft) but less than the gradient winds aloft. Large scale pressure 

gradients caused the westerly direction. Figure 34 illustrates the 

potential temperature for BLK (9900 ft) was 300 K during the nocturnal 

period and increased to 307°K during the day, very close to that of the 

700mb synoptic airmass. During the cooler period of the day (1800-1000 

MST) these regional flows extended down to WLF (9135 ft) as illustrated 

in Figure 33 by the south-southwesterly, 5 knot winds between 0800-1000 

MST. During daytime heating these flows can extend down to MIL (6530 ft) 

on the valley floor, as illustrated in Figure 33 by light, west

southwesterly wind between 1500 and 1600 MST. 

Figure 35 illustrates that the large temperature discontinuity 

between RAD (6800 ft, on the valley floor) and HAR (7380 ft, 835 feet 

above the valley floor), that was present during the evening and early 

morning hours (1700, 2200 and 0700 MST) was no longer present by late 

morning and afternoon (1100 and 1400 MST). This allowed mixing to occur 

all the way down to the valley floor. 

Valley airflow was observed to vary diurnally and was typically 

directed down valley. During the nocturnal cooling period these flows 

extended as high as DLK (9180 ft), in the upper valley, roughly 2380 feet 
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above the valley floor as illustrated by the 5 knot ~asterlies between 

1700 and 0900 MST in Figure 33. These valley flows were not observed on 

the upper valley floor during this period as shown by the calm winds at 

RAD (6800 ft) and MIL (6530 ft) in Figure 33. However, on the other side 

of the constriction between Hayden and Milner, downvalley winds were 

observed on the valley floor at CSW (6400 ft) during the nocturnal cooling 

period. Figure 36 illustrates the thermal gradient along the valley floor 

during the evening and early morning hours (1700, 2200 and 0700 MST). The 

upper valley always remained colder than the middle and lower valleys 

during these hours. 

downvalley flow. 

It is this thermal gradient which forces the 

In contrast, during maximum daytime heating (1500 MST), valley flows 

were only observed at CSW (6400 ft). Figure 36 illustrates the thermal 

gradient at 1400 MST along the valley floor. The airmass in the upper 

valley (MIL, STW and RAD) never warmed greater than the middle and lower 

valleys enough to force an up valley flow. However, the airmass at 

Hayden (HYD) in the far eastern portion of the middle valley was warmer 

than the airmass in the western valley. Therefore, up valley flows could 

have been thermally forced in the middle and lower valleys. 

The diurnal variation of the Valley flow was exemplified by the 

airflow at Mt. Harris (HAR, 7380 ft). Figure 33 illustrates HAR (7380 ft) 

experienced easterly, 5-10 knot winds between 1900 and 1300 MST. Figure 

34 illustrates HAR's potential temperature during this period was colder 

than the regional airmass observed by BLK (9900 ft). However, at 1400 MST 

winds reversed to n~thwesterly at 5 knot (see Figure 33). At the same 

time, the potential temperature had increased to the same temperature as 

BLK (9900 ft) (see Figure 34). By 1600 MST the winds reversed back to 
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easterly flow and the potential temperature began to decrease to colder 

temperatures than experienced by BLK (9900 ft). 

Slope flow characteristics were observed in a variety of locations 

from high ridges [e.g., HYC (9590 ft)] to the valley floor [e.g., SUN 

(6340 ft)]. Figure 33 illustrates a downslope flow for DIV (7130 ft) 

between 2000 and 1000 MST. Winds were southeasterly at 5-10 kt, blowing 

in a downslope direction. The potential temperatures for this station was 

approximately 294°K, colder than the regional airmass experienced by BLK 

(9900 ft) (see Figure 34). However, at 1100 MST winds were blowing from 

the southwest at 10-15 knots. The potential temperature at this time 

indicated this station was still in a colder airmass than at BLK (9900 

ft). Due to the late morning reversal and increased wind speeds, it is 

likely that DIV (7130 ft) was experiencing regional flow during 1100 MST 

on this day. 

2. 15 December 1981 

a. Synoptic Pattern 

Figure 37 illustrates the 500mb (37a), 700mb (37b), and surface 

(37c) synoptic weather maps for 16 December 1981 at 0000 MST. The study 

area is characterized by an approaching cold front associated with a 

transient wave in the westerlies. At 500 mb, the coldest air ( -35°C) 

was located over Canada, on the Manitoba-Ontario border. Over the 

northwestern United states a wave of cold air was moving towards 

northwestern Colorado with temperatures of -27 C. Above the study area 

at 500 mb, winds were from the west-northwest at 50 knots; the potential 

temperature was 309 K. Below this level, at 700mb, winds were from the 

west-northwest at 27 knots and the potential temperature was 301 K. 

Figure 37a and 37b both illustrate falling geopotential heights at a rate 
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Figure 37a. 500 mb upper level map depicting synoptic conditions of 15 
December 1981 at 1700 MST. 
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Figure 37b. 700 mb upper level map depicting synoptic conditions of 15 
December 1981 at 1700 MST. 



99 

I 

I I I , 
J_ _____ _j' 
I ... _____ 

', rJ . 
---~ 

'\: 
) 
" ( 

l 

\ 
l 

l-..... ... 
-----' I 

" ~---' ............. 
.... ................. ~-----.......1 ...... _ --J....._r--
10~ 

Figure 37c. Surface map depicting synoptic conditions of 15 December 
1981 at 1700 MST. 



100 

of 5 decameters over the last 12 hours. The surface map illustrates the 

study area was located in the warm sector of the extratropical cyclone. 

Craig, Colorado was reporting precipitation in sight, but none falling at 

the station. Snowpack was considered unusually heavy for this time of the 

year. 

b. Summary of PROBE Observations 

Synoptic flows were not observed during this case study, with the 

noted distinction that no observations were available for the highest 

elevation PROBE station, STP (10330 ft). Synoptic flows were determined 

by the 700mb map (Figure 37b). These flows were characterized by winds 

from the northwest at 25-30 knots and potential temperatures of 301 K. 

No stations reported winds and potential temperatures matching this 

description throughout the entire case study (see Figure 38 and 39). 

Regional flows were observed all the way down to the valley floor 

during the afternoon and earlier evening hours but were only observed at 

the higher elevations during the early morning, before sunrise (see Figure 

38 and 39). These regional flows were characterized by wind directions 

with westerly components, light to moderate speeds. Large discontinuities 

in the vertical profile of potential temperature would have limited the 

downward mixing of these regional airflow. Thus, regional airflows 

occurred above large temperature discontinuities. 

Black Mountain (BLK, 9900 ft) was characterized by southwesterly 

winds between 5 and 10 knots throughout the entire case study period (see 

Figure 38). The potential temperature was 295 K at 1700 MST on 14 

December 1981, only 3 degrees less than the 700 mb free atmospheric 

airmass over the study area. The potential temperature continued to cool 

slightly at BLK until 0300 MST 15 December 1981, at which time it began 
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to rise, indicating warm air advection. Figure 40 illustrates any 

temperature discontinuity during this case study occurred below the level 

of BLK (9900 feet). At 0700 MST BLK had a Froude number of 2.76. 

Mt. Harris (HAR, 7380 ft), Mt. Chavez (CHV, 8000 ft) and Hayden 

(HYD, 6570 ft), all situated near the constriction in valley width, were 

all characterized by regional flows from 1700 MST (14 December, 1981) to 

0400 MST (15 December, 1981), at which time a transition occurred (see 

Figure 38). Between 0400 and 0500 MST the wind direction at HAR (7380 ft) 

reversed to a down valley direction. The wind speed at HYD (6570 ft) was 

now calm. By 0600 MST the wind direction at CHV (8000 ft) reversed to 

downvalley flow. Figure 40 illustrates the decrease in the potential 

temperature at HAR (7380 feet) between the hours of 2200 MST and 0700 MST 

associated with an increase in the vertical extent of the lower 

temperature discontinuity. This corresponds to the same time period in 

which regional flows ended in this region. As the height of the 

temperature discontinuity increases, the vertical extent of valley flows 

increase and the downward extent of regional flows decreases. At 0700 

MST, HAR had a Froude number of 0.86. 

Valley flow features extended as high as 1450 feet above the valley 

floor treferring to CHV (8000 ft) at 0600 MST) and horizontally out to 

Craig but developed much later than in the first case study. The best 

evidence of valley flow was the flow reversal that occurred at 0300 MST 

at CNE (6910 ft) and at 0600 MST at HAR (7380 ft) and CHV (8000 ft) (see 

Fig 38). As compared to Case Study #l, valley flow features did not 

develop as quickly or as extensively in this case study. Figure 41 

illustrates at 1700 MST the lower (SUN), middle (CSW) and upper valley 

(MIL) floor all had the same potential temperature. This lack of strong 
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thermal gradient continued throughout the night. Figure 40 illustrates 

the constructed temperature profile in the upper valley at 0700 MST. It 

is apparent that a large temperature discontinuity did not exist as at the 

same time in Case Study #l. Figure 41 also illustrates the lack of a 

thermal gradient favorable for up valley flows during the late morning and 

afternoon, thus up valley flows were not identified. Froude numbers at 

0700 MST for some valley stations were 0.79 at RAD (6800 feet), ), 0.76 

at HYD (6570 feet) and 0.74 at SUN (6340 feet). Slope flows were not 

apparent during the case study. 

3. 16 December 1981 

a. Synoptic 

A fast moving, pacific cold front passed through the study area 

between 1700 and 2000 MST on the 15 December 1981. Associated with this 

cold front was a strong low pressure system centered over the plains of 

northeast Colorado at 0200 MST (0900 GMT) 16 December 1981 (see Figure 

42a). The 700mb flow at 1700 MST 16 December 1981 (0000 GMT 17 December) 

is illustrated in Figure 42b which shows north-northwesterly flow of 10 

knots was bringing down cold Canadian air; the potential temperature over 

the study area was 292 Kelvin. Figure 42c illustrates the 500 mb flow at 

0500 MST (1200 GMT) 16 December 1981. Winds over the Yampa Valley were 

northwesterly at 50 knots and the potential temperature was 294 kelvin. 

b. Summary of PROBE Observations 

Synoptic winds were determined by linear interpolation of the 700 

mb synoptic maps of 0000 GMT 16 December 1981 (1700 MST 15 December 1981, 

Figure 37b) and 0000 GMT 17 December 1981 (1700 MST 16 December 1981, 

Figure 42b). At 1700 MST 15 December 1981, synoptic level flows were 

characterized by north-northwesterly winds of 27 knots and a potential 
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Figure 42a. Surface map depicting synoptic conditions of 16 December 
1981 at 0200 MST. 
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Figure 42b. 700 mb upper level map depicting synoptic conditions of 16 
December 1981 at 0200 MST. 
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Figure 42c. 500 mb upper level map depicting synoptic conditions of 16 
December 1981 at 0200 MST. 
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temperature of 301 kelvin. Twenty-four hours later, synoptic flows were 

characterized by north-northwesterly winds of 10 knots and a· potential 

temperature of 292 kelvin. These characteristics were not observed for 

any PROBE station (see Figures 43 and 44). 

Regional flows were characterized by winds responding to synoptic 

scale pressure gradients and modified by the terrain. Potential 

temperatures were colder than the synoptic scale airmass. Thus regional 

flows were westerly in direction with a wide range of wind speeds. They 

were most easily identified during nocturnal periods when valley flows 

were typically observed. 

Regional flows occurred at most every station from the peaks of 

Black Mountain (BLK, 9900 ft) to the valley floor (SUN, 6340 ft). 

Westerly winds occurred at nearly every station prior to and after frontal 

passage (see Figure 43). Wind speeds varied from near calm (MIL 6530 ft) 

to 55 knots at CHV (8000 ft). Curiously, the highest wind speeds did not 

occur at the highest elevations but rather at the constriction in valley 

width at Mt. Chavez (CHV). Figure 45 illustrates the lack of any 

temperature discontinuities after frontal passage. The only significant 

change was a five to seven degree decrease in the entire temperature 

profile. Froude numbers for selected stations at 0700 MST on 16 

December 1981 were 1.80 at BLK (9900 feet), 0.55 at HAR (7380 feet), 0.50 

at RAD (6800 feet), 0.48 at HYD (6570 feet) and 0.47 at SUN (6340 feet). 

Valley and slope flows were not observed during this case study. 

Figure 46 illustrates the potential temperature along the lower (SUN), 

middle (HYD) and upper (MIL) valley floor at five different time periods. 

The valley floor was lacking in any thermal gradients to force valley 

flows. Figure 45 illustrates the lack of any large vertical temperature 
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gradients, thus supporting a well mixed valley atmosphere. Therefore, 

valley and slope flows were not observed during this case study. 



VII. DISCUSSION AND CONCLUSIONS 

The following picture of airflow evolves for the winter in the Yampa 

Valley under clear, stable conditions. A complexity of downvalley and 

downslope flows converge on the Valley from the upper valley blocking 

ridge and from the ridges on either side of the Valley. They start in the 

mid to late afternoon as the respective mountain slopes with different 

orientations become shaded from direct incoming solar radiation. This 

process accelerates after sunset. Slope flows from various parts of the 

Valley override or/and are overridden by other slope flows that have 

originated from other slopes or have started at different times due to 

variations in the times at which the respective slopes become shaded 

during the later afternoon. 

The respective layers of slope flows converge into a broad, 

downvalley flow toward the west. Horizontal differences occur along the 

Valley's axis. The cold, stable, decoupled airmass in the Upper Valley 

remains essentially intact as can be noted from the observations at all 

of the Upper Valley floor stations (MIL, STW, and RAD). In the middle 

valley, downvalley flows are strongest with speeds up to seven knots. 

Broadening of the width in the western Valley decelerates and decreases 

the depth of the downvalley airflow. 

Above the stable core within the valley, regional westward flows 

occur all the way up to the highest ridges during the evening and below 

this level during the day. During the afternoon from about 1400 to 1800 
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MST the free atmospheric synoptic flows penetrated to the highest peaks 

overlying the regional airflow. As the afternoon and evening progress, 

the stable valley core deepens, thus raising the effective height of the 

overlying layers of airflow. Hence, during the evening hours, regional 

westward flows extend up to and including the highest elevations. 

Beginning at 1100 MST, the downvalley winds diminish in the broader 

western Valley and regional flows extend down to the Valley floor. During 

years with heavy snow accumulation, the cold, stable airmass in the upper 

Valley does not warm enough to thermally force up valley flows. A 

convergence zone is formed approximately 50 miles west of the barrier, 

between the westerly regional flows in the western portion of the Valley 

and the relatively calm winds in the upper portion of the Valley. By 1900 

MST, downvalley flows are reestablished on the Valley floor and free 

atmospheric flows no longer extend down to this level. 

The most significant difference in valley airflow between periods 

of clear weather with weak gradient winds and periods marked by an 

approaching cold front is the time at which the onset of downvalley flows 

occur. The 700 mb winds are stronger during periods characterized by an 

approaching cold front; therefore, more kinetic energy is available for 

vertical mixing. In addition, the upper valley floor remains much warmer 

than periods of clear weather with weak gradient winds. Only,until late 

at night does enough cooling occurred in the Upper Valley to establish an 

along valley temperature gradient strong enough to force a downvalley 

airflow. Once a decoupled valley atmosphere is established, downvalley 

flows develop, typically between 2200 and 0700 MST. These downvalley 

winds were light, less than 3.0 knots. 
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During the late morning, solar heating allows the convective 

boundary layer (CBL) to grow and eventually couple with the stronger (as 

compared to gradient winds during periods dominated by a polar high 

pressure system) westerlies aloft. Therefore, late morning and afternoon 

winds are stronger, 4 to 12 knots everywhere except the narrow upper 

Valley, where winds remain relatively calm. Within the upper Valley, 

excessive snowcover during the study period may account for the calm 

conditions observed during the afternoon hours. Solar energy is used to 

melt the snow cover; therefore, less energy is available for the sensible 

heating of the Upper Valley atmosphere. Conditions remain this way until 

radiational cooling develops a thermal gradient strong enough to force a 

downvalley airflow, around 2200 MST. 

With the passage of a cold front in the Yampa Valley a dramatic 

difference in airflow occurs in the study area. Slope or valley flows 

are not observed after the passage of a cold front. Regional flows are 

observed everywhere. Westerly winds range from 1.0 to 13 knots, with the 

strongest winds occurring at the constriction in valley width. A well 

mixed CBL exists with no temperature discontinuities, thus allowing 

stronger winds aloft to mix down to the valley floor. Only slight 

decreases in wind speed occur during the nocturnal cooling period, but 

downslope and downvalley winds are not observed. 

Comparing this study to the work of others, under clear and 

synoptically undisturbed periods the diurnal variations of airflow at the 

respective stations are only partially consistent with Whiteman's 

conceptual model (Whiteman, 1981). Whiteman states,n the diurnal forcing 

is realized as the nocturnal boundary layer builds in height due to a mass 

influx into the valley from downslope flows (Whiteman, 1981). This raises 
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the height of each successive layer of airflow. During the daylight 

hours, a mass divergence out of the valley occurs due to upslope flows, 

essentially lowering the top of the stable layer. This phenomenon allows 

for the apparent lowering of the entire wind structure profile". 

Because upslope winds were not consistently observed and thermally 

forced upvalley winds were not observed at all, Whiteman's conceptual 

model does not fully explain the observed local circulations. Turbulent 

mixing, as presented by Banta (1982) offers a credible explanation of the 

observed boundary layer circulation. As sensible heating increases during 

the morning the surface layer warms greater than the atmosphere 

immediately above. This heating diminishes the surface stable layer 

allowing coupling of the surface layer with the CBL above. Because the 

CBL is deeper than the surface layer, it has more mass and its properties 

dominate those of the surface layer. Mixing of regional flows occurs down 

to the valley floor. This was typical of the western and middle portions 

of the Valley floor. 

The formation of a well-mixed boundary layer depends on local 

heating. Vergeiner (1987) explains this as a function of geometry. As 

the topography varies so will the surface area to volume ratio. The 

greater the surface area, the greater the heating (or cooling) of the 

volume of the overlying airmass. This helps to account for the horizontal 

differences in observed flows between the upper and lower valley. 

Excessive snowcover in the Upper Valley prevents the development of 

thermally forced upvalley airflows. 

The development, height, and destruction of the temperature 

inversion above the valley floor depends on the unique surface energy 

budget for that particular day. That energy budget varies with amount of 
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incoming solar radiation and moisture available for evaporation. So 

throughout the winter or in different years, the local circulations may 

differ but the general stratification should be similar. For example, 

during a year with an unusually low snowpack, more energy is available for 

the development of the convective boundary layer. This in turn may result 

in recoupling of the valley atmosphere with the free atmosphere and 

consequent daily "cleaning" of pollutants out of the upper valley. 

However, during years with an unusually heavy snowpack, the opposite may 

occur. With a greater amount of energy being contributed to evaporation, 

less energy is available for the development of the convective boundary 

layer. Consequently, there is not a daily destruction of the inversion 

layer and local pollutants would be trapped within the valley's calm and 

decoupled atmosphere. 

The stratification of the entire data set into synoptically defined 

categories to reduce the variability of the observed valley airflows was 

only partially successful. While variability was decreased in some 

instances, standard deviations of the observed airflow still remained 

high. The use of Lindsey's extratropical cyclone model was only partially 

applicable. Only three out of five possible synoptic categories occurred 

in the study region and many remained undefined by this methodology. Of 

the three synoptic categories that did occur, there was good agreement 

between the synoptically stratified summaries and the case studies. 

This study also described the change in valley airflow with the 

onset and passage of a cold front. The same principles applied as in the 

case of clear and synoptically undisturbed valley airflow but the strength 

of the individual parameters varied and accounted for differing local 



121 

circulations. This is promising for numerical modeling of these mesoscale 

mountainous circulations. 



VIII. APPLICATIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

A. AIR POLLUTION 

The largest population center of the Yampa Valley, Steamboat Springs 

is currently considering an ordinance which prohibits the burning of wood 

stoves and fireplaces, in a effort to improve air quality. Based upon the 

limited results of this study, such an ordinance would be very practical. 

If the lowest layer of the valley atmosphere does not warm enough to 

couple with the CBL then the local pollution of Steamboat Springs would 

reside in a stagnant airmass over the town. This situation occurred 

approximately 75%-80% of the period of study. However, during periods 

with little or no snow cover a wood burning ordinance may not be 

necessary. During these periods, the Upper Valley may couple with the 

overlying CBL allowing better ventilation within the valley. 

The results of this study also illustrate how monitoring the 

meteorological conditions with just one weather station is limited and not 

fully representative of the meteorology of e'he entire location. Such 

practices are commonly used to gather data for use in atmospheric 

dispersion models. The single station data set can unjustly bias the 

dispersion characteristics of the model output. Therefore, site selection 

is critical in properly representing the local meteorology in high 

mountain valleys. 
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B. WEATHER MODIFICATION 

According to Rauber (1985, Ph.D. dissertation on cloud systems of 

Northwestern Colorado), "shallow orographic cloud systems with cloud top 

temperatures greater than -20°C have been identified as the system with 

the largest potential for precipitation augmentation." He further 

described three zones to have persistent and significant amounts of liquid 

water including the region between cloud base and the -l2°C level, and the 

region of strong orographic ascent, near the barrier. Because cloud bases 

often extend below the minimum flight level in this region, ground based 

seeding generators would have been most likely to effectively deliver 

artificial nuclei to this portion of the cloud if precipitation 

augmentation was desired. 

The proper placement of these ground based seeding generators is 

critical to ensure proper delivery of artificial nuclei to the cloud. 

Rauber (1985) described the 16 December 1981 (Case study #3 in this 

thesis) as an orographic cloud system suitable for seeding with conditions 

as described above. Westerly winds occurred throughout the depth of the 

entire valley. In this case, placement of ground based seeding generators 

at any location upstream of the cloud would have been suitable, the higher 

the location the better assurance of delivery to cloud base. The upstream 

placement should allow enough time for ice nucleation, crystal growth and 

fall trajectory to occur within the desired watershed. Another 

possibility, as suggested by Rogers (personal communication), would be to 

release the artificial nuclei within a buoyant plume from elevated smoke 

stacks owned by the power plants located in Craig or Hayden. 
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C. SUGGESTIONS FOR FUTURE RESEARCH 

Several areas associated with local circulations in mountainous 

terrain require further investigation to enhance knowledge of this field. 

Quantitative information on each parameter of the surface energy budget, 

including snowpack, would compliment the wind and temperature data for 

use in numerical simulation studies. To add to this, the use of sondings 

in all conditions, in the upper and lower valley is advised to more 

accurately depict stability and inversion heights. As a final 

investigation, atmospheric tracer studies under each of the synoptic 

categories would not only add to the understanding of transport but also 

provide useful information on dispersion within mountainous terrain. 

To add to the understanding of boundary layer interaction with 

overlying clouds, corresponding aircraft data should be 

investigated. Microphysical data observed above the surface 

convergence zones should be inspected for indications of continental CCN 

introduction into what is typically a marine CCN distribution within these 

clouds. These areas above the surface convergence zones may also be 

inspected for regions of increased supercooled liquid water production 

within the cloud. 

This study showed the valley floor to be decoupled from the free 

atmosphere at least 50% of the time. National Weather Service 

observations from mountain valleys often report data from a decoupled 

atmosphere which are used in synoptic analysis. This increases the 

possibility of misleading current weather analysis and forecasts. If the 

stations were placed high enough on the surface but above the temperature 

inversion, for example on top of ski areas, a more accurate depiction of 

synoptic weather would be attained. 
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From the large number of synoptic weather patterns that were not 

categorized into one of the five synoptic climatologies as proposed by 

Lindsey, another synoptic category is suggested. Often, a trough in the 

westerlies resides over the state of Colorado for periods of days. These 

conditions are characterized by high pressure on the west side of the 

continental divide and low pressure to the east side of the divide. This 

synoptic pattern is favorable to the formation of orographic clouds over 

the Park Range. Additional analysis is suggested to investigate the local 

circulations within the Yampa Valley during these conditions. 



IX. SUMMARY 

Using two months of wintertime meteorological data, surface flows 

within the Yampa Valley of Northwestern Colorado were investigated. The 

primary goals of this study were: 1) describe the climatology of these 

local circulations, 2) associate synoptic scale weather patterns with 

regional airflow patterns and 3) present case studies of observed airflow 

patterns. 

Three different procedure were chosen to meet each of the three 

objectives. A climatological analysis of the two month data set was 

performed in which statistical methods were used to help define the mean 

flow and the associated variability. 

into synoptically defined subsets. 

The data set was then stratified 

A climatological analysis was 

conducted on each subset in which the mean flow and variability were 

defined. Finally, case studies were presented in which detailed 

descriptions of the regional flow were presented. 

presented for each synoptically defined subset. 

One case study was 

Several interesting findings resulted from this research. First, 

different synoptic conditions were associated with distinct local 

circulations within the Valley environment. Under synoptically clear and 

undisturbed periods the Yampa Valley surface flows were found not to be 

horizontally homogeneous. Due to differing widths along the valley's 

axis, the surface area to volume of air ratio within each valley cross 

section forced its own unique temperature structure in that portion of the 
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valley. Hence, differing stability regimes contributed to heterogenous 

flows along the valley floor. Four levels of flow were resolved 

vertically ranging from synoptic flows at ridge level to valley or blocked 

flows at the valley floor. 

The most significant difference in valley airflow between periods 

of clear, weather with weak gradient winds and periods marked by an 

approaching cold front was the time at which the onset of downvalley flows 

occurred. The 700 mb winds were stronger during periods characterized 

by an approaching cold front; therefore, more kine·tic energy was available 

for vertical mixing. In addition, the upper valley floor remained much 

warmer than periods of clear weather with weak gradient winds. Only, 

until late at night did enough cooling occur in the Upper Valley to 

establish an along valley temperature gradient strong enough to force a 

downvalley airflow. Once a decoupled valley atmosphere was established, 

downvalley flows developed, typically between 2200 and 0700 MST. These 

downvalley winds were less than 3.0 knots. 

During the late morning, solar heating allowed the convective 

boundary layer (CBL) to grow and eventually couple with the stronger (as 

compared to gradient winds during periods dominated by a polar high 

pressure system) westerlies aloft. Therefore, late morning and afternoon 

winds were stronger, 4 to 12 knots everywhere except the narrow upper 

Valley, where winds remain relatively calm. Within the upper Valley, 

excessive snowcover during the study period may have accounted for the 

calm conditions observed during the afternoon hours. Solar energy was 

used to melt the snow cover; therefore, less energy was available for the 

sensible heating of the Upper Valley atmosphere. Conditions remained this 
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way until radiational cooling produced a thermal gradient strong enough 

to force a downvalley airflow, around 2200 MST. 

With the passage of a cold front in the Yampa Valley a dramatic 

difference in airflow occurred in the study area. No slope or valley 

flows occurred after the passage of a cold front. Regional flows were 

observed everywhere. Westerly winds ranged from 1.0 to 13.0 knots, with 

the strongest winds having occurred at the constriction in valley width. 

A well-mixed CBL existed with no temperature discontinuities, thus 

allowing stronger winds aloft to mix down to the valley floor. Only 

slight decreases in wind speed occurred during the nocturnal cooling 

period, but downslope and downvalley winds were not observed. 
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·aable A-1. Statistical summary of west to east component winds 
tor all days during the study period at 0700 MST. Units are 
knots. For each PROBE station the average (AV6), standard 
deviation (STD), minimum value (MIN), maximum value (MAX), 75th 
percentile val~e (757.), median value (507.), 25th percentile value 
(257.) and number of observations <* OBS) are listed. 

STN AVG STD MIN 1'1AX 75/. 50/. 25'l. # OBS 
SUN 1.4 4.5 -8.7 1:3.6 2.9 .8 -··1. 2 59 
DIV .6 5.6 -8.6 16.9 4 .. 5 -.2 -.-::::;. 9 57 
LAY -.2 4. ~.::.; -8.9 19.2 .6 --.4 .. -2 .1 57 
csw 1 .. 4 5.8 -8 .. 9 15.4 5.4 -.2 -~~;. :3 42 
CGN 1.9 6 '") ...... ·-6. 2 28.6 4.1 .o -··1. 9 4'1 
CGE .4 7.4 -8.4 20.6 6.8 --2. '7 -·5. 6 ~38 

CNE -1.0 7.2 -12.6 16.5 2.7 -2 _,-, -·6.6 sci 
BLK 4.5 2.9 -.8 13.4 ~:r. a 4.3 2 .. 5 '~5 
HYD 1.2 3.5 -·6.0 .13.2 2.1 .4 -1.4 5,.._.. ... ..:.. 

HGM 4 .. ::::; 4.5 -.. 3. ::s 15.4 6.6 3.1 .4 51 
CHV 4. 7. -8.4 -12.8 26.2 CJ. 5 5 "') ... ...... ····1. 9 45 
HAR -.4 8.2 -1:3.8 18.7 5.1 --2. ~7 ···8. 2 56 
WLF 8.7 6.2 ·-·7 .2 20.4 1.1.7 9.1 :3.9 22 
MIL .. 'l 2.:3 ·-··7 .. 8 9.5 1.0 .2 - .. 8 60 
s·rw . ~~ ::::~. 5 ·-8. 4 11.1 .6 ·-. 4 ..... 2 .1 51. 
HAD .2 1.9 ·-2 .. 9 8 .. 2 .6 --.2 ··-1. 0 58 
BUH 2.1 2.3 --2.1 -,. 0 ~.::;. 3 1.7 .4 26 
STP 9.1 7.6 --14-.4 24.5 14.4 10.5 6.0 ::::;2 
DLK .o 2. :3; --.::::~. 9 '~. 5 1.4 .2 ··~·2. 7 ~$CJ 

F:··rt·::· 2.1 ,.., -·~ 
..;.... . ·-· ·-6.4 6 .. 8 ::; .. ~3 1 • <j .. 8 59 

HYC :::: .• l. ,.-:. ·-;r 
...:.... . ·-· ·~-4.9 7.4 4.9 ~:=~. 5 1 .. 9 60 

CUL 1.0 1.2 --1 .. 'l 2.9 1.'7 1.0 .o 56 
HEB 5 .. 1 '/.4 --1:::: .• 4 ~~7. 0 9.1 :3.9 .8 60 

t-' w 
.c::--



Table A-2. Statisticdl summary at west to east component winds 
tor all days during the st~dy per1od at 1100 MST. Units are 
knots. For each PROBE station the average. (AV6), standard 
deviation (STD), minimum value (MIN), maximum value (MAX), 75th 
percentile value (75X), med1an value (50X), 25th percentile value 
(25'l.) ·and number of observations (# OBS) are l1sted. 

s·rN 
SUN 
DIV 
LAY 
csw 
CGN 
CGE 
CNE 
BLK 
HYO 
HGI1 
CHV 
Hl·\f< 
WLF 
MIL 
E>l·w 
liPtl.) 
l3LJI-~ 
S .. I.P 

DLI< 
F'fl:;;' 

I··IYt.; 
LUI... 

Hl:::t:l 

AVG 
2.7 
2.7 
.1.9 

.8 
2 .. 3 
-... 4 

.. 4 
4.9 
2. ::::; 
L~ • 'l 
:5.7 
·-. 6 
6.4 

.6 
.1. .. 2 

.. 8 
2.5 
/ .. 4· 
1 • 't 
:::: .. l 
4 .. :.::: 
.1. .. (1 

4 .. ~j 

STD MIN 
4.7 -9.1 
7.4 -10.1 
4.1 -8.6 
7.2 -11.7 
5.8 -4.5 
7.8 -9.3 
7.0 -10.1 
:~:: • :3: - :3: • ~~:: 
4.5 -8.6 
5.2 -6.0 
9 . .1 -12.2 
8.9 -17.1 
6.8 -13.6 
2. 'I -·· ~j. 1 
4.1 -.. 7.t3 
,."-' ··;r ..... ~ .. _.. .. !!. 
..:... •.... • . .:. .. ·-· 
3. 1 .... ~1. B 
8.0 .. -1:.\.6 
1 .. 1 -<~:. 1. 
~;~.1 ..... 6.6 
:.:. • ~~:. . .... 6 .. :? 
1 " 7 ..... :.::: .. ~) 

1"11-'X 
17. 'J 
11.7 
15.6 
15.2 
22.4 
16.9 
17.1 
11.5 
14 .. 8 
11.1 
2-1.2 
19.8 
11.3 
8.9 

17.1 
11.9 
11.7 
24.7 

5.1 
6 .. 4 

1.1.. 'l 
4·" ~j 

75% 
4.9 
7.6 
:3; • .1 
6.6 
3.9 
6 ,., 

•"-

~.:;.] 

'7. 2 
2.1 
8 .. 6 

1.1.9 
5.4 

.10 .. 9 
1.0 

.8 

.B 
:2:. .. 1 

12.1 
:3: • .t 
4. ~i 
6 .. 0 
~~. 1 

8./ -16.1 23 .. 1 10.3 

50/. 
1.1 
1.4 
1.0 

.... 1. 2 
.6 

-·<3~. 1 
-1.7 
4.7 
.1.0 
4.3 
2.1 

-3.5 
6.4 

.o 

.. o 

.o 
1. 9 
5.6 
1.9 
::~;. 1 
5.2 
.1 .. 2 

25% 
.o 

-<.:::. 5 
·-- . :;-~ 
~ ,..1 ...... '- . ..:.:. 

-2 . .1 
--·7. 2 
-4.5 
2.1 
-.4 

.6 
-4.5 
-1.4 
2.1 

..... :1 .• :::~ 

·-·1. 0 
- .. 4 

.8 
2. ~j 

.6 
.1. .. 9 
::::; .. :3 

,..\ -··· .. ..::. 

6 .. 0 .. -·.1..2 

# DBS 
58 
::i6 
56 
47 
5:~:. 

~;6 

51 
4:~:; 

54 
~.::~; 

48 
~)H 

26 
60 
5.1. 
:.7 
:::::o 
::~~ ~.\ 

4-0 
~)<} 

60 
~.lB 

~j't 

~ 
w 
VI 



Table A-3. Statistical summary of west to east component winds 
for all days during the study period at 1400 MST. Units are 
~nots. For each PROBE station the average (AVG), standard 
deviation (STD), minimum value (MIN), maximum value (MAX), 75th 
percentile value .(757.), median value (507.), 25th percentile value 
(257..) and.number of observations(# OBS) are listed. 

STN AVG STD MIN MAX 75/. 50% 25/. # fJBS 

SUN 5.2 6.0 -6.8 22.7 8.2 4.1 .6 58 
DIV 7.0 6.8 -5.2 20.8 .10.9 7.6 1.7 51 
LI-\Y 5.2 5.6 -1.7 22.4 8.7 3.1 .6 59 
csw 4.7 8.0 --12.1 20.8 11.3 3.9 ·-2. 7 48 
CGN 5.4 6.8 -·9.1 27.8 9.5 5.1 .o 53 
CGE 4.5 9.1 --10.7 2:3.5 10.1 5.6 -5.1 :38 
CNE 5.2 8.4 -8.2 25.3 10.3 3.9 -2.3 60 
BLI< 6.0 2.9 -6 .. 2 11.7 7.8 6.2 5.1 4'7 
HYD ~~. 5 5.8 -4.5 18.9 7.8 .4 -.8 57 
HC:JM 5.6 5.6 ·-1 .. 9 19.2 9.9 2.9 .6 55 
CHV 7.4 8. -, --8.6 29.2 12.4 6.4 .o 47 
HAR ~3. 5 8.4 ·-9. 7 21.2 9.1 2.3 -4.5 58 
WLF 9.7 4.5 -4.9 19.1 J.0.7 8.9 7.6 2C'J 

MIL .1 .. 2 ~5. 7 -<$.1 12.1 1.9 .0 ·-1.6 59 
STW 2.1 ~\ .2 -··5.8 18.9 2.5 .4 -.6 52 
RAD .. 4 2.5 --4.3 8 .. 9 .8 .o --1.0 59 
BUH ~.::~ .. 9 2.9 ··- ,., . ..;.. 10.5 5.6 2.9 1.7 28 
STF' .10.1 6.8 --6 .a ~28.2 14.4 .10.3 5 .. 4 :38 

DL.K 2.7 1.2 _ ... 8 4.7 3 .. ~5 2.7 1..7 39 
FTP :::.. .. 9 .1.7 ,_4. :~) 8. '7 i~. 9 :3 •. 7 3 • .1. 58 
HYC ~:.\. 4 :;~. 5 -·" 1. • 9 .1.3.6 6.4 5.6 4.5 :i9 

COL 1 .. 6 :1. .6 -· .1. 7 6.B ~~ .. , .1 .. 6 .4 ~:·B 

HEB 6 .. 4 11 '"". lB 1 . ~. . . .::. ~ .. ,. .. . ::::~ ~5 .. ::~ .c::;. 6 8 .. 7 1 .. 7 ~.\9 

...... 
w 
0'\ 



Ta~le A-4. Statistical summary of west to east component w~nd~ 
for all days during the study period at 1700 MST. Units are 
knots. For each PROBE station the average (AVG), standard 
deviation (STD), minimum value (MIN), maximum value (MAX), 75th 
percentile value (75X), median value (50%), 25th percentile value 
(25%) and number of observations <* OBS) are listed. 

STN AVG STD MIN MAX 75/.. 50/. 251. # DBS 
SUN 2.9 5.1 -6.6 18.1 ~l.1 1.6 .. 0 ·:.:.-7 
DIV :3;. 5 6.2 -5.6 19.8 6.6 1.7 ·-··1. 4 5'') 

'- ..:: .. 
LAY 2.5 5.8 -·6.8 16.1 5.4 .4 --·1.6 56 
csw :2.'. '7 7.4 -9 .. :3 16.7 9.1 2.1 --2. '1 4'. ,J 

CGN 4.7 7.2 -·7 .6 1'1.6 8.9 ~_::;. 5 -··1. 9 49 
CGE 2.1 8 '") .... --9.1 19.6 8.7 -1.9 -.. 5. 4 :~;s 

CNE ~.::~. 9 8.4 -·CJ • :5 21.6 10.9 1.'1 --4.1 ~.\'7 

BLK 5.8 '7 a:· .,.:. .. .J -1.9 14.2 8.2 5 .. 4 2. (j 45 
HYD 4.9 6.0 -::.. • CJ 16.5 8.7 1 .. 7 .o ~.\5 

HGM 6.0 5.6 -4.1 16 .. 5 10.7 5 .. 8 .6 51 
CHV 7.8 8.9 -8.0 22.4 15.CJ 6.6 -1.4 4:2:; 
HAB 4 .. 1 8.6 -9.1 21.2 11.5 2.1 ·-·4 .. 5 ~·5 

WLF 10.9 4.7 1.6 20.4 14.0 10.7 ·1. 2 21 
MIL 1.0 2 .. c'l --2 .. 9 10 .. 1 1.4 .2 --.1 • 0 58 
Sl'W 1.0 4.1 -·6.0 9.9 1.0 .o --1.9 49 
RI-'U 1.2 3.3 .. -3. 7 14.4 1.4 .0 ·-· .. 2 '57 
BUR :3~. 5 ~~;. 1 -·l.. 6 1..1..5 4.9 2 .l. 1 , .. , .... 26 
STP 10.7 8 . ., .... --·5 .B 2'7.0 17.5 8. 'I -:::.~. 9 ::~;4 

DLK .8 2. :3~ --:::;; •. 7 5.6 ~··... ··::-...... _. .4 --1 .. 2 ~.:;;B 

FTP 2 .. 5 1. 'i --·1 .. 4 8 1''\ .. ..:.;. :3 .. 5 2.5 1 "" . . ..::.. ~j7 

HYC ~~;. 9 :::~. 1 ,_ .... 8 CJ. 'J 4.9 ~~~ . :::;; ,.~... ..;!' 
..:... . ·-· ~\7 

CUL 1. .. 6 l , .. , 
. "..:.:. ..... 1 .. 2 4 .. 7 2.5 .t .. 6 .. 8 ~jl;j 

Hf.:B L; .... , ...... .:. \:/ • ~ .. :. .... l. CJ • iJ. 42 .. :.? 10.1 4.9 .. 6 ~::.B 

.... 
w 
......... 



Table A-5. Statistical summary of west to east component winds 
for all days during the study period at 2200 MST. Units are 
knots. For each PROBE station the average (AVG), standard 
deviation (STD), minimum value (MIN), maximum value (MAX), 75th 
percentile value (757.), median value (507.), 25th percentile value 
(257.) and number of observations <• OBS) are listed. 

STN AVG STD MIN MAX 75/. 50/. 25/. # OBS 
SUN ==-=~ . ~5 5.4 -7.8 18.7 3.9 1.2 --·. 8 5'7 
DIV 1.6 5 • .1 -·5.2 11.7 5.8 -.2 -3.~3 51 
LI-~Y 1.6 5 ,.._, 

'"' ..... -6.0 l.5.2 2.5 -.4 -1..9 56 
csw 1.4 7.2 -13.0 19.6 8.2 -1.2 -4.5 42 
CGN 3.5 7.0 -6.8 19.8 7.2 .8 -2.1 48 
CGE 1.9 8.0 ·-12.2 16.9 8.4 .2 -5.2 36 
CNE 2.5 9.1 -12.2 23.9 11.1 1.0 -4.9 57 
BLK 5.8 3.1 -.4 12.1 8.0 6.0 3.5 44 
HYD 3.7 5.4 -2.3 17.5 7.2 1.0 -.4 56 
HGM 6.4 5.6 -2.9 20.2 8.9 5.6 1.6 51 
CHV 6.6 8.4 -9.5 23 .. 9 12.6 6.8 1.0 44 
HAR 2 .. 1 8.9 -11 • .1 .18.9 10 .. 1 1.6 .-7 .4 54 
WLF 9.l. 7.0 ···6. 8 19.8 14.8 8.9 4.3 25 
MIL 1.0 2.7 -3.7 11.5 1.6 .4 -.8 58 
STW ,..., 

•"'- 2.7 -5.6 7.2 .8 .o -1.2 49 
RAD 1.0 :::. •. 1 -2.5 15.4 .8 .o -.6 57 
BUR 2. -, :;~. 9 --·2. l. 8.0 4 .1. 1.6 ~ 23 • .L. 

STP 1.0.7 7 .. 4 -4.1 29.2 15.4 9.1 5.4 ~31 

DLK .o ~~. 9 -4.3 5.8 1.4 ... , - . ..:.:. -.::::; .1 38 
FTP ~~. ~.::. ::~ .. 1 -.1.0 8.0 :3. :~::: 1.9 .6 57 
HYC :3~. 5 ~~ .. , -1.'l .1~5.0 5.1. :~; .. , 1..9 5B 
COL. .1..6 1.0 - .. 8 3 •• CJ 1 • ('., 1..4 1.0 56 
H~.:.l:t 2. :~:; l.B --1.4.8 20.6 8.6 1..9 -·:?. 9 ~)U 

~ 
w 
(X) 



Table A-6. Statistical summary of west to east· component w1nds 
for all days in which synoptic Category #1 was present at 0700 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (757.), median value (507.), 25th 
percentile value (25%) and number of observations (# OBS) are 
listed. 

STN 
SUN 
DIV 
LAY 
csw 
CGN 
CGE 
CNE 
BLK 
HYD 
HGM 
CHV 
H/-\h: 
WLF 
MIL 
STW 
HAD 
Bt.n~ 

STP 
DLK 
PIC 
F·rp 
HYC 
COL 
HEE« 

AVG 
.8 
.. 8 

-.1..4 
1.6 

-1.0 
--.8 

-2.1 
4.1 
·- .6 
:3.5 
5

.. ,., 
"""" . ""-

--1 .] 
Jt. 9 
-.6 . () 

.o 
4 . :~~~ 

8.2 
l . . :;~ 

M 

~~=:. 7 
4 .. ::::; 

.B 
4.::::: 

STD MIN 
4.7 -8.7 
4.1 -4.9 
3.3 -8.9 
4.9 -6.6 
4. ~.::; -6.2 
6.6 -6.0 
3.7 -6.6 
1.9 .0 
2.5 -6.0 
2.9 -.8 
7.2 -12.8 
5.6 -11.9 
6.4 -7.2 
2 .. :3 -~1.8 

1 .• 9 --:3~.3 

MAX 
7.8 
5.6 
4.'7 
8.0 

10.5 
12.2 
7.4 
5.8 
2.3 
9.3 

16.3 
8.6 

10.9 
1.6 
c ,.,., 
~· ........ 

75~~ 

2.CJ 
4 .. :3 

.4 
5.4 

.4 
-:3.3 
-.2 
5.4 
1.0 
4.3 
8.6 
2.1 
8.2 

.8 

.. 4 
1.0 -1.4 2.3 .o 
1.0 3.3 5.4 5.1 
7.8 -4.7 21.0 11.3 
1.0 .o 3.3 1.4 

M M M M 
1~6 .8 5.8 3.5 
1.4 1.6 6.4 5.1 
1.0 -1.4 1.9 1.0 
8.2 -13.4 16.9 6.6 

501. 
... -1. 2 

.6 
..... 1. 2 

-·.6 
--2.7 
-4.7 
--2.9 
3.9 

.o 
2.1 
5.4 

-3.7 
3.9 
-.6 
-.6 

251. 
·····2 .. 7 
·-·3 .9 

•·r 7 
-·.~:·. 

-4.1 
--4.7 
-5.6 
-5 • .1 
1.7 

-2.3 
.o 
.6 

-6.2 
-·7 .2 
-1.4 
-1-.2 

.o -1.0 
:3.3 3 .. ~3 
6.0 3.1 
1.0 .o 

M M 
:;;! • ::~ ~t .. ~~~ 

4.::::: :3 •. 1 
1.0 .o 
~~;.J. 1 .. 4 

# OBS 
.1 :::. 
12 
1~3 

1.1 
1:~:: 

9 
1. :;~ 

9 
8 

11 
1.1. 
l.2 

5 
l ·~ ....... 
l.3 
1.3 

4 
8 
7 
M 

1.3 
.1.:3; 
.1.2 
1 ... ~ . ..... 

....... w 
\0 



Table A-7. Statistical summary of west to east component winds 
for all days in which synoptic Category #1 was present at 1100 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (751.), median value (50Z), 25th 
percentile value (251.) and number of observations (# OBS) are 
listed. 

STN 
SUN 
DIV 
LAY 
csw 
CGN 
CGE 
CNE 
Ecl.K 
HYD 
HGM 
CHV 
HAn 
WL.F' 
1"1 I L... 
S'lW 
RAD 
BUH 
STP 
DLI< 
PIC 
FTP 
HYC 
COL. 
HEB 

AVG 
1.6 
4.1 

.4 
1 ..., ..... 

.B 
- .. 8 
-·· .8 
5 .. 4 
... ~. 8 
5.6 
2 .. 5 

--:;~. 5 
.1.4 
-· .. 8 

.. 0 

.4 
:3~ • l. 
7.0 
~~ •. t 

M 
::::; • '7 
4 .. ~5 

.. 6 
:2 • :~:; 

STD MIN 
4.7 -9.1 
7.2 -5.2 
4.9 -8.6 
7.2 -9.9 
:3.7 -3.7 
5.1 -5.1 
4.1 -8.4 
1.9 2.9 
2.9 -8.6 
4.5 -4.1 
7.0 -12.1 
8.0 -17.1 
8.7 -13.6 
1.6 -5.1 
5.2 T7.8 
1.9 -1.6 
1.9 .. 6 
8.7 -6.6 

.8 1.7 
M M 

1 .. 4 1.9 
2.9 -1.7 
::·:~ • l. . .... :;~ • f.~ 
9.7 ····1~; .. 2 

1"1AX 
10.9 
1.7.7 
9.7 

14.2 
8.4 

11.1 
7.0 
9.3 
1.4 

1:3.2 
l.6.~3 

1.2.6 
8.4 
1.. 0 

l.7.1 
6.6 
5.8 

24.7 
3.9 

M 
5 .. 6 

10 .. ~') 

4.5 
.19.8 

751.. 
2. ::.:;; 
8.7 

.6 
6.8 
1.6 

-1.7 
1.7 
5 .. 1 

.8 
8.4 
6.4 
1. 0 
6.2 

.o 
--.6 

.6 
4.3 

11.3 
1.9 

M 
4.5 
5 .. 4 
2.1 
7 .. 2 

50% 25/.. 
1.4 -1.6 

.4 -:3.5 
·-.4 --1.9 

·-2 .. 9 ·-5.2 
-.8 --2.7 

-·3.1 -:3.9 
-2.1 -2.9 
4.3 4.1 
-. 4 -2.:3 
3.5 2.1 
:3.3 -4.5 

-2.7 -'7.4 
4.5 -13.6 
-.8 -·1.2 
-.8 -1..0 

.o -.6 
.1.9 .. 6 
4.5 .. 6 
.1.7 l..7 

M M 
~.::;.1 2.:3 
4.3 1.0 

.o -1.9 
4.3 -10.1 

# OBS 
13 
10 
13 
.11 
.t:3 

8 
1.2 

9 
J.O 
1:3 
12 
l. ~.!. 

4 
1 '?,' ·-· 
13 
.t:3 

4 
8 
7 
M 

J.;:::; 
1. :~: 
.t.:? 
1 ":!" 
. ·-· 

....... 

.a::--
0 



Table A-8. Statistical summary of west to east component winds 
for all days in which synoptic Category #1 was present at 14CO 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAXl, 75th percentile value (75%), median value (50%), 25th 
percentile value (25%) and number of observations (# OBS) are 
listed. 

STN 
SUN 
DIV 
LAY 
csw 
CGN 
CGE 
CNE 
BLK 
HYD 
HGM 
CHV 
HAR 
WL.F 
MIL 
STW 
PflD 
Bt.Jf< 
STP 
Ul...K 
F'IC 
F'IP 
H\fC 
COL 
1·-IEB 

AVG 
6.8 

11.9 
7.4 
7.6 
6.B 
"7 • :;~ 
8.6 
6.0 
3 .. 9 
7.4 
6 '''.' . ..:.. 
~5. 9 
~.\ • .1. 

.6 
1..6 

.8 
~::.. 4 

.10 .. 1 
:::~. 9 

tl 
:::; .. 9 
:j. 6 

.o 
::::. .. 1 

STD MIN 
4 .. :;; -1.6 
5 .. 1 1.7 
5.2 -1.7 
8 .. 0 ·-7.4 
~). 2 -2.5 
4.5 -1.2 
8.9 -7.0 
1.2 4.:3 
7.2 -4.5 
6.0 .4 
8.6 -8.6 
7 .. 2 -7.2 
5.6 -·4. 9 
4 1 ..... 1 . . -· . ..::· .. 
7 .. 0 -·~).8 

2.3 -1.9 
3.1 .8 
8.6 -3.9 

.. 6 1.7 
M M 

:J. • 0 :;~~. :.::~ 

2 .. 5 .. 4 
1.0 -1.0 

13.6 -18.1 

MAX 
12.4 
19.1 
l4.8 
17.7 
14.0 
13.6 
J.9.8 
7.8 

15.7 
.1.'~. 2 
23.1 
19.4 
12.2 
11.::::: 
.18.9 
6.2 

10.5 
28.2 
4.1 

M 
5.6 
<t. 5 
::: .. , 

2.1. .. 4 

751. 
9.7 

14.6 
9.1 

11.9 
9.5 

10.1 
14.8 
6.8 

10.7 
1.1..9 
11.3 
8.4 
6.4 

.o 

.. 4 

.4 
6.B 
9 ·;r ........ 
:;:. . 1 

f¥1 
4 .. 5 
6.0 

.8 
1.1.5 

501. 
5.B 

13.4· 
·7 .a 
8.0 
5.4 
6.4 
7.4 
6.0 

.o 
3.9 
6.0 
1 .. 9 
4 .. 3 

-1.4 
.o 
.o 

4 .. 5 
8 "" . ..::.. 
~~. 5 

1"1 
~3 •. , 

251. 
~;.9 

4.9 
2 .. 1 

-:3.7 
1.2 
2 • . 7 

-1..4 
4.9 

-2.7 
.6 

-·2.9 
--3.1 
·-·4.9 
-1.7 
. ... .:3. 5 
-.. 1.0 

.8 
4.7 
.1..7 

M 
:::;; .. l. 

5 .. 2 :2.'-1 
.. 8 .0 

7.8 -14.6 

# OBS 
.1.2 
1.0 
1.3 
.1.1 
1:~:; 

8 
12 
1.0 
1,.·' 
1 ":! . ..., 
12 
1 ·-:r ._. 

5 
.1.~5 

13 
13 

6 
9 
7 
M 

1 7 
.0 

t:s 
12 
13 

....... 

.p. 

....... 



Table A-9. Statistical summary of west to east component winds 
for all days in which synoptic Category #1 was present at 1700 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (757.), median value (50%), 25th 
percentile. value· (25%) and number of observations(# OBS) are 
listed. 

Sll\l 
SUN 
DIV 
LAY 
csw 
CGN 
CGE 
CNE 
BLK 
HYD 
HGM 
CHV 
Hi·)R 
WL.F 
ttl I L. 
STW 
RAD 
BUF;: 
STF' 
DL~:: 

PIC 
F'fF' 
HYC 
COL 
1·-tEB 

AVG 
:::;; . 1 
5.4 
2.1 
'7.2 
6.0 
4 .:· 

•• J 

8 '"',1 . ..:.. 
6.8 
7.6 
7.0 
9.5 
l:J.O 

1.2.4 
.4 

.1.. 9 
1.7 
5.8 
6.0 
2.5 

M 
~:.. 5 
4.7 
.1..9 
.1..1 

STD MIN 
~l.2 --5.8 
6.6 --·5.4 
'~.5 ·--4.'7 
6.2 ·-·7.6 
6.8 -5.4 
4. 7 -4. ~3 
8. 0 --8.2 
1.9 3.9 

MAX 
11.9 
1.5.2 
(~. 7 

15.9 
15.0 
9.9 

17.9 
9.7 

t • • 0 -1.2 16.5 
4.9 

10.7 
9.5 
4.1 
2 .. 9 
4.5 
~5. :3 
::5. 5 
8.0 
.1..7 

M 

-4.1 13.2 
-3.9 22.4 
-"1.2 21.2 
5.8 17.5 

·-2. 5 . 6. 4 
-·~3.7 9.9 
·-.4 11.3 
1..2 1.1.5 

-4.5 19.6 
.0 5.6 
M M 

l. 9 . 0 8.2 
9.7 
4.7 

2 .. 5 1 .. 2 
.1.7 '""1.2 

.1.2.2 "-.1.9.4 15.7 

'7 ~5/. 
6 .. 8 
6 ''·' ....... 
:::; • 9 

10.7 
10. :~; 
5.4 

12.8 
8.2 

11.9 
.10.7 
17.7 
11..5 
15.0 

.8 
4.5 
2.1 
7.0 
5.2 
,._, -=! 
..:. .. ·-· 

M 
::::. ... , 
6.2 
:;~. 5 

.1.0.9 

50% 25% 
1.4 -3.7 
3.9 -1.4 

• 2 ·····2. 5 
6.4 1.9 
6.6 -··5.1 
5.4 -4.3 
9.1 -·-2.9 
6.2 :3.9 
6.6 
6.6 
4.1 
1.9 

1.1..1 
-·-1.. 0 

.2 

.o 
5.2 
~:\. 9 
1. 9 

M 

1 .-, .... 
1.7 

--·3. 7 
-6.2 
5.8 

·····2. 5 
--3.1 

.o 
1.2 

··-1.. 0 
.0 
M 

2.7 2.5 
3.9 1 .. 4 
1.0 .o 
3.1. -15.2 

# UBS 
.1.1 
.1.0 
11 
11 
10 

6 
10 
10 
10 
11 
11 
11 

6 
.1.1 
11 
11 

6 
8 
5 
M 

1..1. 
1.1 
1..1. 
1..1 

~ 
+:o
N 



Table A-10. Statistical summary of west to east component winds 
for all days in which synoptic Category #1 was present at 2200 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (75%), median value (50%), 25th 
percentile value (25'l.) and number of observations (# OBS) are 
listed. 

STN AVG STD MIN MAX 75/.. 50/. 25/. # OBS 
SUN ::::.. :~:. 6.6 -·:~:; .1 .1.B.7 4 .. .1 .o --. '~ 1,.._, 

...:.. 

DIV ~~. 5 5 • .1. -·-4. 9 .1.1.5 7.2 .8 -<~ • .t 1.2 
LAY 2 .. ::l 5.6 -·6.0 .1.2 • .1 6.8 -.4 -<~-:~. 5 1::::. 
csw 1..4 7.4 --·9 .. 1 1..1.5 8.0 ·-·-4. 5 ····5 .. 6 10 
CGN 4.9 B.O -·6.8 .t.9.B 7. ::.~ .. 8 ... :;~ . ~~ .1..1. 
CGI::. 5 .. 6 4.9 ·<~ .1 .1.2.6 5.4 5.2 .... ::s. 1 6 
CNE 5 .. 4 B.7 ···f.3 • 7 20.0 1.0.7 ::5 ... , ····4 .. 7 1. ~::. 
BLK 6 .. B 2.7 1. .. 0 11. .. ~; 7.8 7.4 :3.5 .11 
HYD ::~; • :::.1 4.9 *'* .. ::~. :~; 12 .. 6 6.2 .t.O --·1. 4 1.2 
HE1M 6.8 ~·-8 .. B 20.2 7.4 5.2 1.2 1 '".) 

CHV 1.8 B.2 ·-··B. ·7 1.9.6 15.0 b.2 t ') .. - 1 ,._. 
...:.. 

~u~r~ ::~;. 5 7 .. 8 --5.4 1.5 .. 2 8.4 --1.0 -··-4. 5 1. :~ 
J.,lJLF 8.0 6 .. :? ·-··1. .. 9 .1.5.2 .1.0.9 B .. 4 -·· .t. 9 6 
1'1 I L. .6 1..9 --2. '1 4.7 1 ,._, . - .. 4 --1.0 .t:$ 
s·rLo.J .0 ~l . .1. ..... ::::;. <j 5.1 1..0 .o --·1. • 0 .12 
f~{~l) .0 .1..4 ·-2 .. 5 1. 9 .t3 .o .... .1 .. 0 .1.2 
r~tJn L~., .1. :~·:~. 9 1..4 B.O 2 .l. 1.6 .1.4 5 
s·rp t , .. , 4.1 --4 • .1 1.1.9 <"l • .t 6 .. 0 ··-4" 1 -, 

~,.;)., ..:;. I 

DLK 1 .. (:_1 ::::~ .. ~:=~ ··-·2.7 ~:). B 5.4 .o ·····2. 7 7 
PIC t'l I" I 1"1 M 1"1 1"1 M M 
r·rr· ::::; .. .1 ,..... . .. , 

.,: .• • I ....... 6 8.0 :·?. 9 .1. .. 1 .. 6 .1. ·.~; 

HYC 4.1 :~:: .. .l .o .t.:~:. .. 0 :~:;. 7 ::::.. 1 2 .. 9 t.:::. 
CUL. :1..1 .1. • ~2 .. 4 ::~;. 9 1 ... , 

. . " I 1 ... ~~:~ .. B .t.::::. 
HE.Et .0 .1.0 .. .1. ·· .. 14 .. B 1.6.9 6 .. 0 .... 2 .. ~· .... l .1. .. 1. .t::) 

~ 
.j::-. 

w 



Table A-11. Statistical summary of west to east component winds 
for all days in which synoptic Category #3 was present at 0700 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (75%), median value (50%), 25th 
percentile value (25X) and number of observations (# OBS) are 
listed. 

STN AVG STD MIN MAX 75% 50% 25% # OBS 
SUN 3.9 4.9 -5.1 13.6 6.0 2.1 .0 18 
DIV 5.6 4.9 -1.0 16.9 7.4 4.5 1.9 17 
LAY 1.6 6.0 -4.5 19.2 1.4 -.4 -3.3 18 
csw 4.7 6.8 -8.9 15.4 9.1 3.7 -2.9 15 
CGN 5.8 7.8 -4.5 28.6 8.4 2.9 -.6 17 
CGE 5.1 7.8 -5.6 20.6 8.6 6.8 -3.9 14 
CNE 6.4 6.0 -7.2 16.5 9.9 5.4 2.3 18 
BLK 4.9 2.9 .0 12.2 6.0 4.9 3.3 16 
HYD 3.5 4.7 -1.9 13.2 4.3 1.9 .0 17 
HGM 7.2 5.2 -3.3 15.4 10.5 6.4 3.3 17 
CHV 10.5 7.4 -5.4 26.2 11.3 9.7 2.5 15 
HAR 6.6 7.4 -10.5 18.7 10.1 8.4 -1.9 18 
WLF 11.1 4.7 2.1 17.3 13.2 11.7 6.4 10 
MIL 1.6 3.1 -2.1 9.5 1.2 .0 -.6 18 
STW 1.2 5.1 -8.4 11.1 2.1 .0 -2.3 17 
RAD 1.2 3.1 -2.9 8.2 1.0 .0 -1.7 17 
BUR 2.7 2.1 .0 7.0 3.5 1.7 .4 11 
STP 9.3 3.9 .0 14.4 10.7 9.9 6.0 11 
DLK 1.6 1.9 -1.4 4.5 3.1 .4 -1.0 10 
PIC M M H M M M M H 
FTP 3.5 1.9 .2 6.8 4.5 3.3 1.9 17 
HYC 4.1 1.7 -1.4 7.4 4.7 3.9 3.1 18 
COL 1.2 1. 4 -1.2 2.9 2.3 1.0 .0 18 
HEB 7.6 6.0 -3.7 19.4 9.9 6.4 1.7 18 

....... 

.{::'-

.{::'-



Table A-12. Statistical summary of west to east component winds 
for all days in which synoptic Category #3 was present at 1100 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX). 75th percentile value (75%), median value (50%), 25th 
percentile value (25%) and number of observations (# OBS) are 
listed. 

STN AVG STD MIN MAX 75% 50% 25% # OBS 
SUN 3.9 6.0 -5.6 17.9 6.6 4.1 -2.5 18 
DIV 6.6 6.6 -6.8 17.3 9.7 7.0 3.7 16 
LAY 4.5 4.9 -3.1 15.6 8.0 2.7 .0 16 
csw 5.2 6.8 -11.7 15.2 8.4 6.0 .0 15 
CGN 6.2 7.2 -4.3 22.4 9.5 5.6 -1.0 17 
CGE 3.9 8.7 -7.6 16.9 10.5 -2.7 -7.2 11 
CNE 5.6 7.2 -5.6 17.1 10.9 7.4 -1.6 16 
BLK 5.2 2.9 .6 10.7 7.0 4.3 2.5 14 
HYD 5.8 5.4 -.4 14.8 9.9 5.4 .4 16 
HGM 8.4 5.4 -.8 17.1 10.5 8.6 5.1 16 
CHV 9.5 9.3 -6.0 27.2 14.2 11.9 -4.5 15 
HAR 6.4 8.2 -8.2 19.8 10.9 6.6 -4.1 17 
WLF 10.9 4.7 2.3 17.3 13.8 10.3 7.0 8 
MIL 2.5 4.1 -3.1 8.9 4.9 .0 -.4 17 
STW 3.1 4.3 -2.9 9.9 6.6 .8 -1.0 16 
RAD 1.4 3.3 -1.7 11.9 1.2 .0 -.6 16 
BUR 3.3 1.7 1.0 6.4 4.3 2.7 1.2 11 
STP 10.3 6.2 .0 20.6 15.2 6.6 4.1 11 
DLK 3.1 1.2 1.4 5.1 3.5 3.1 1.9 11 
PIC M M M M M M M M 
FTP 3.9 1.4 1.2 6.4 4.9 4.1 2.5 16 
HYC 5.4 1.7 2.9 9.1 5.8 5.2 3.7 17 
COL 1.9 1.0 .0 3.5 2.3 1.7 1.0 17 
HEB 8.2 8.2 -12.1 23.1 11.7 9.3 4.3 16 

1-' 
.+:' 
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lBhle A-13. Statistical su~mary of west to east component winds 
for a!l days 1n which synoptic Category #3 was present at 1400 
MST. llnits arP knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (75%)~ median value (50%)~ 25th 
pErc~ntile value (25%) and number of observatio~s (# OBS} are 
listed. 

STN AVG STD MIN MAX 75% 50% 25% # OBS 
SUN 7.4 7.6 -6.8 22.7 12.6 6.4 .0 18 
DIV 8.6 7.2 -5.2 20.8 10.9 9.5 -2.5 14 
LAY 8.2 5.6 .6 22.4 9.1 7.8 2.5 18 
csw 8.2 8.2 -12.1 20.8 12.8 8.6 3.7 16 
CGN 8.2 9.1 -9.1 27.8 11.1 8.4 1.7 17 
CGE 6.4 11.9 -10.7 23.5 13.4 5.2 -6.2 13 
CNE 8.2 8.6 -8.2 25.3 10.3 8.4 2.9 18 
BLK 6.2 2.1 1. 9 11.7 7.2 5.8 5.1 16 
HYD 7.0 6.2 -3.1 18.9 11.3 7.8 -.4 16 
HGM 8.0 5.6 -1.9 18.5 11.3 7.2 2.5 17 
CHV 11.7 9.3 -5.2 29.2 15.4 10.3 4.3 15 
HAR 8.0 7.6 -7.4 21.2 12.6 8.4 1.0 17 
WLF 12.4 3.7 6.8 19.1 14.0 10.7 8.4 10 
MIL 2.5 4.3 -2.9 12.1 5.8 .4 -2.1 17 
STW 3.3 5.2 -4.7 14.6 5.6 .6 .0 17 
RAD 1.0 3.1 -3.5 8.9 1.9 .0 -1.4 17 
BUR 4.3 2.3 1.7 9.1 4.1 2.9 1.7 9 
STP 10.5 6.4 -.4 20.8 14.4 10.3 .0 11 
DLK 3.5 1.0 1.6 4.7 3.9 3.7 2.5 11 
PIC M M H M H M M H 
FTP 4.7 1.4 .8 7.2 5.4 4.7 4.1 16 
HYC 5.4 1.6 1.7 9.5 5.8 5.6 4.5 17 
COL 1.9 1.0 .0 3.5 2.7 1.7 1.2 17 
HEB 10.7 9.7 -12.2 35.2 14.4 9.3 5.6 17 

1-:-* 
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Table A-14. Statistical summary of west to east component winds 
for all days in which synoptic Category #3 was present at 1700 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (75%), median value (50%), 25th 
percentile value (25%) and number of observations (# OBS) are 
listed. 

STN AVG STD MIN MAX 75% 50% 25% # OBS 
SUN 5.6 5.4 -1.0 16.9 9.3 4.7 .0 12 
DIV 10.3 5.8 2.7 19.8 10.1 7.4 5.2 10 
LAY 7.2 6.4 -2.7 16.1 11.1 7.8 .0 13 
csw 7.8 7.0 -8.6 16.7 12.6 6.8 1.9 11 
CGN 9.7 5.4 -2.7 18.7 13.8 8.4 6.4 12 
CGE 7.0 9.3 -9.1 19.6 10.7 5.2 -6.6 9 
CNE 8.6 6.6 -4.7 17.9 11.3 8.4 5.4 13 
BLK 5.4 3.7 1.4 12.6 6.0 3.7 1.7 11 
HYD 8.2 5.6 -1.0 15.2 12.6 8.7 .0 12 
HGH 9.1 4.1 3.5 16.5 12.4 7.2 5.6 12 
CHV 12.6 7.4 -5.1 19.6 16.3 15.6 5.2 10 
HAR 10.7 7.8 -5.6 19.2 15.7 12.2 4.5 13 
WLF 11.7 3.5 6.8 16.9 12.6 11.9 6.8 6 
MIL 3.1 3.3 -.8 10.1 4.3 .8 .0 13 
STW 2.7 4.3 -3.3 9.5 5.6 .4 .0 12 
RAD 1.6 3.3 -3.3 10.9 1.9 .0 .0 13 
BUR 5.1 2.7 1.4 9.1 4.9 3.3 1.4 5 
STP 15.4 5.1 8.4 21.4 20.6 14.8 8.4 8 
DLK 2.3 1.9 -.8 4.7 3.7 1.7 -.8 7 
PIC H M M H H H H H 
FTP 3.5 1.4 .4 6.0 4.3 3.3 2.7 12 
HYC 4.9 1.9 1.9 8.7 5.1 4.1 3.3 13 
COL 1.9 1.2 .0 3.7 2.7 1.7 .6 13 
HEB 11.5 11.1 .6 42.2 12.6 6.2 4.1 13 

~ 
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lable A-15. Statistical summary of west to east component winds 
for all days in which synoptic Category #3 was present at 2200 
MST. Units are ~nots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (75%), median value (50%), 25th 
percentile value (25%) and number of observations (# OBS) are 
listed. 

STN AVG STD MIN MAX 75% 50% 25% # OBS 
SUN 5.6 5.8 -6.4 14.4 9.9 4.9 .2 13 
DIV 5.2 4.1 -2.7 11.7 7.6 5.8 -.8 10 
LAY 2.5 6.4 -6.0 15.2 5.2 -1.2 -1.7 13 
csw 5.8 4.9 -5.4 10.7 9.1 6.0 1.0 11 
CGN 7.4 6.0 -2.5 16.7 11.7 7.0 -.4 11 
CGE 7.0 8.7 -12.2 16.9 11.3 8.4 -6.8 10 
CNE 8.9 6.6 -3.3 17.1 13.4 11.1 3.1 13 
BLK 4.7 3.7 -.4 12.1 5.8 2.5 .0 11 
HYD 6.8 6.2 -1.6 17.5 11.7 5.8 .0 13 
HGM 9.5 4.1 1.7 15.4 13.6 8.0 6.4 12 
CHV 10.1 6.0 -3.9 21.0 12.6 9.7 6.8 10 
HAR 7.8 6.2 -9.1 13.8 11.5 7.8 5.1 13 
WLF 13.2 4.7 4.3 16.7 15.9 13.0 4.3 5 
MIL 2.9 3.7 -3.7 11.5 3.5 2.5 .0 13 
STW 1.2 3.1 -5.6 6.8 3.9 .6 -.6 12 
RAD 1.9 3.1 -1.0 10.1 2.5 .0 -.8 13 
BUR 6.0 1.0 5.1 7.0 5.1 5.1 5.1 2 
STP 15.4 5.2 8.4 24.3 16.5 14.6 8.4 7 
DLK 1.6 1.4 -.6 3.3 2.1 .8 -.6 7 
PIC M M M H M M M M 
FTP 3.5 1.7 .6 7.6 3.7 3.3 1.9 12 
HYC 4.9 1.9 .8 7.4 6.0 4.5 3.1 13 
COL 1.7 .8 .6 3.1 2.3 1.6 1.2 13 
HEB 5.1 6.4 -7.4 15.6 9.5 4.1 -1.7 13 

t-J 
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lahle A-16. Statistical summary of west to east component winds 
for all days in which synoptic Category #4 was present at 0700 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (75%), median value (50%), 25th 
percentile value (25%) and number of observations (# OBS) are 
listed~ 

STN AVG STD MIN MAX 75% 50% 25% # OBS 
SUN -.2 3.5 -7.6 5.2 1.6 .8 -1.4 20 
DIV -3.5 3.3 -8.6 4.7 -2.7 -4.5 -5.2 20 
LAY -.8 2.1 -8.0 1.9 .6 -.6 -1.9 18 
csw -2.7 1.6 -4.5 .4 -2.1 -3.5 -4.3 11 
CGN -.6 2.3 -5.4 3.9 .0 -1.0 -2.9 11 
CGE -5.6 1.9 -8.4 -2.1 -4.7 -6.0 -8.0 8 
CNE -6.2 4.1 -12.6 3.9 -4.9 -7.6 -9.1 21 
BLK 5.2 3.3 .6 13.4 5.8 5.1 2.5 14 
HYD .0 1.7 -2.7 3.7 .8 .0 -1.6 19 
HGM 2.3 2.7 -1.2 8.2 3.1 1.2 -.8 15 
CHV -1.9 6.0 -9.9 8.0 1.6 -5.4 -9.3 11 
HAR -6.4 5.6 -13.8 5.1 -3.7 -8.4 -11.7 18 
WLF 9.7 6.4 3.3 20.4 9.1 6.2 3.3 4 
MIL -.2 1.0 -1.6 1.4 .4 -.8 -1.2 21 
STW -.4 2.7 -2.7 8.4 .0 -1.0 -2.5 13 
RAD -.4 1.0 -1.7 2.3 .0 -.6 -1.0 20 
BUR 1.0 2.5 -2.1 6.0 1.7 1.0 -1.6 8 
STP 13.2 4.1 6.2 18'. 7 16.1 11.5 6.2 7 
DLK -1.6 2.1 -3.9 2.9 .0 -2.7 -3.3 18 
PIC M M M M M M M M 
FTP 1.0 1.6 -2.1 3.7 1.6 1.2 .0 21 
HYC 2.1 2.3 -1.4 6.6 3.5 2.1 -.2 21 
COL .8 1.0 -1.7 2.5 1.6 .8 .0 19 
HEB 4.1 8.2 -12.2 27.0 7.2 2.3 .0 21 
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Table A-17. Statistical summary of west to east component winds 
for all days in which synoptic Category #4 was present at 1100 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (757.), median value (50%), 25th 
percentile value (25%) and number of observations (# OBS) are 
l~sted. 

STN AVG STD MIN MAX 75'%. 50% 25'%. # DBS 
SUN 1.7 2 .. 9 -6.0 8.4 2.7 1.2 .o 19 
DIV - .. 8 6.6 ·-10.1 14.4 1.4 -1.0 -·7 .4 21 
L(.-'Y 1.0 1.6 -2.3 ~~; • . 7 1.4 .6 .o 21 
csw -·4 .. 7 :3.7 -11.3 2. "7 ·-<3. 3 -·5.8 --8.4 15 
CGN . ::·:~ 4. ~5 -4.5 14.4 .6 .o -~3. 3 1 r:· .J 

CUE -4.9 6.4 -8.7 14.6 -6.4 ·-7 .8 ·-8. 7 11 
CNE -~::.'. 5 5.1 -9.7 11.5 -·2 .1 -4.5 -·8.4 21 
BL.K 4.9 :3.5 .o 1.1.5 7.2 5.2 .o 15 
HYD 1.0 2.3 -··:~:.. :3 9. -, 1.6 1.0 -.6 21 
HGM 2.5 .tl. 5 ·-6.0 11.3 4 .. 7 1 .. 0 .o 16 
CHV -1.4 8.4 ·-12.2 17.7 --1.6 --:3.9 ··-8.0 1~3 

HI-'R -·5.6 6.6 -12.8 16o. :3 -6.0 -7 .. 4 --9.5 20 
WLI::.- 5.4 ~,. 6 -8.0 13.8 8.4 4.1 ,., "':/!' 

..:. .. .;) 11 
MIL -.2 .1.6 -2.:3 5 . ., .o -.8 ·-1.6 ·-.,.., . ..:. ..:....:.. 

s·rt,.J .4 :;~. 5 ·-·2. 5 8.7 .2 .o -·1. "7 14 
RAD .4 1.9 -2.:3 8.0 .6 .4 .0 20 
BUR 1 ,., . ..:.. 4.1 -5.8 11.7 1.0 .6 --1.2 1.1 
BTP 7.4 6.6 --5.8 21.4 11 .. 1 5.1 ,., 7, 

L • ·-' 11 
l>LK 1.2 1..1 -2.5 4.9 2 • .1 .6 --.4 18 
PIC M 1'1 M M M M M M 
FlP 2.7 1.7 . 8 5 .. 4 :3; ... , :3.1 1.2 :·:~::~ 

HYC 't .1 ~s. 5 -·<3. ::::. 1..1.9 5.8 5.1 .o :;:~2 

CUL .8 .1.."7 --·l. .. 9 4.1 .1.9 .4 --· .1 • 0 ::·::.1. 

HEB 2 .. :~~: 8.7 -·16 .. 1 1.4 .. 4 "7.4 .. 7. .• , 
·-• • I -1 .. .l~ :22 

...... 
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Table A-18. Statistical summary of west to east component winds 
for all days in which synoptic Category *4 was present at 1400 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (75%), median value (50%), 25th 
percentile value (25%) and number of observations <* OBS) are 
listed. 

STN AVO STD MIN MAX 75/. 50/. 25/. # OBS 
SUN 2.5 :3.5 -·5 .1 9 . .1 5 .. 1 2 • CJ .0 20 
DIV 4. 1. 5.4 -5.1 15.7 7.6 ~3. 5 -H1. 4 19 
LAY 1.6 ::s. 1 . "··1. 6 11.1 1.9 .6 -.8 20 
csw -.8 5.1 -8.2 1:3.4 1.0 -2.7 -5.1 15 
CGN 1.7 ::::; .. , -·2. 7 10.9 1.4 .4 --1.0 1.5 
CGE -.6 7.6 -8.4 15.6 .8 -5.1 -7.4 10 
CNE .6 4.7 -6.8 14.0 1.6 .o -3.3 22 
BLK 7.4 2.1 3.7 11.5 8.9 6.8 5.8 1.6 

.. HYD .8 2.7 -·1.9 9.5 1 "·' ·- -.4 -.8 21 
HGM 2.1 3.9 -1.9 12.8 2.7 1.4 -·1.6 17 
CHV 2.7 5.1 -4.9 14.2 6 ,., 

•"- 1.0 -·1. '7 1 , .. ~ ..... 
HAR -"1. 6 6.8 -9.7 16.3 ·-.8 -4.3 -·6.6 20 
Wl...F 9.5 2.5 6.0 16. -, 10.3 8.7 7.6 11 
MIL .o 1.7 -2.9 3.9 .8 .o -1.6 21 
STW 1.0 2.1 -2.1 6.6 .6 .o -.4 J. L~ 
HAD .o 1.9 -3.5 7.8 .o .o -.8 21 
BUR 2.9 2.7 .o 9.3 3. ~5 1.7 .4 10 
STP .11 .. .1. 5.2 1.. 9 20.8 1:3.6 10.5 6.6 .13 
DLK 2 .l. 1..4 ...... 8 3.9 3 • .1. 1.9 1.0 17 
PIC M M M M M M M M 
FTP ~3;. 7 1.7 .B 8.7 4.9 :3.3 2.:3 21 
HYC 5 .. 6 2.5 .0 1:3.6 6.4 5.4 4.:3 21 
CUL 2.1. ::~ .l. .... .1 .. 7 6.B ::::;. 5 2. ::::; .. 0 2.1. 
HEB 4 .. ~. 10.9 ··-·.16. 7 28.0 9.7 6.4 1 '".) ....... 21 

1-' 
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Table A-19. Statistic~! summary of west to east component winds 
for all days in which synoptic Category #4 was present at 1700 
MSt. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (75X), median value (50X), 25th 
percentile value (25X) and number of observations (# OBS) are 
listed. 

STN AVG STD MIN MAX '751.. 501.. 25/. # OBS 
SUN 1..7 ~!.. 7 -.. 6.6 9.9 ::::~. "7 1.4 .o 24 
DIV .1 .. 2 4.1 -5.6 12.2 2.5 1.0 -.. ·1. 9 22 
LPeY .6 5.1. -6.8 15.2 1.0 ·~-1 .. 0 ~-2. 7 '""\"-:\ .: . ..::. 
csw --.4 6.2 -'~. ::r. 14.8 .4 -1.2 ~-4. ::r, .1.6 
CGN .B 5.6 -·7 .6 17.1 1.6 -.2 -:3;. 3 . 17 
CGE ..... 4 7.4 -~8. 0 16. (~ --1.9 -·4. 7 ·--5. 4 1 -:~ 

. ·-· 
CNE .o 7.2 ·-·7. 4 21.6 .6 -:3.3 --4 .. 7 24 
BLK 5.6 4.1 ~-1. 9 14.2 8 ,.., 

•"'- 5. 4· 1.6 .17 
HYD 2.5 5.1 ·-3. 5 16.5 2.1. 1..2 ·-. 6 ,-.. -~-.._. __ , 

HGM 3.5 6.0 --2.9 16.3 5.8 1 .. 7 -1.6 .18 
CHV 2.5 5.4 --·8. 0 .11.5 5.8 .6 -1.4 1':'·' ... 
HAH ·-·. ::?. 6.4 -·'~. 1 15.0 1.4 -1.7 -5 .. 1 21 
WLF l.t .. ::; 4.9 1.6 20.4 1:3.2 10.7 7.0 .1.1. 
1'1 I L. .f-3 2.7 ·-·2. 9 8 .. 0 .1.2 .o --1.0 24 
s·rw ...... 4 :~:; • l. --6 .. 0 9.9 .o ··- .8 -1.9 .1.6 
HAD 1..2 3 "CJ -1.9 1.4.4 .0 .. 0 -·.6 ,.,~ 

..: .. ·-· 
BUH J.. 9 2. :~:. .... .1. .. 6 8.2 2.1 1 .. 7 .0 12 
STF' .1..1. .. 7 8 .. 9 .... 5. 8 27.0 1.7.5 '7 .B 2.5 1.1 
DL...I< ..... 4· ,..... ··:~· 

...:.... . · ...• -··::::; .. 7 4.9 1.2 --· .1.. 0 1''\ ··:r -··· .. :· .. -..:· 21. 
PIC M M M M M M M M 
Fl.P 1 .. 9 1 -·y 

. • I --1. .. 4 ~-~ .. B ~·~. 5 .1 .. 6 1.. 0 :?I.! 
HYC ::::. .. .1. l. 6 -.8 6.0 4.1 ~5 .. :~~: 1.9 , .. _,·:!' .. : .. ·-· 
CUI .... l. 4 .1. .. 0 .o ~~=; . {.7 1.9 1..4 .D ::·:~ '~ 

HEB ~::;. . :~::: 6.0 ·-·11.:~:. 1.5.9 !:· • ~;:~ :3.9 ·-- .1 • 0 ~:?4 

1--' 
V1 
N 



lable A-20. Statistical summary of west to east component winds 
for all days in which synoptic Category *4 was .present at 2200 
MST. Units are knots. For each PROBE station the average (AVG), 
standard deviation (STD), minimum value (MIN), maximum value 
(MAX), 75th percentile value (757.), median value (507.), 25th 
percentile value (257.) and number of observations (# OBS) are 
listed. 

STN AVG STD MIN MAX 757. 501. 25% # OBS 
SUN .4 :3:. 1 -7.8 5.8 2.3 .4 ·-·2. :3 21 
DIV ·····.t .. 0 ::>. -, ... ~5. 2 8.2 -·.6 -2.:3 -~3. 5 1.9 
LAY .4 ::s ... , -3.5 13. ~~ .4 ·-· .8 -··l. • 9 .t.9 
csw ..... 2 .. 1 4 .. 5 -.. 9 .1 11 .. 1 -2.1 -3.5 ·-··4 .. 5 13 
CGN .o 5.6 -5.1 19.1 .8 -1.7 -3.9 1 C" . .J 

CGE --2.5 6.0 -8.0 14.0 -·1. 9 -5.2 -6.8 1? 
CNE -2 .. ~!. 8.6 -1.2.2 23.9 -2.7 --4.7 -.. 8.2 20 
BLK 6 .. ., .... 2 .. 1 1.9 9.3 7.6 5 .. 8 4. ~3 15 
HYD 1.9 5.1 -2.1 17.1 1 .. 2 .6 --.4 20 
HGM 4.5 5.2 -2 .. 9 18.1 6.8 3.7 .4 16 
CHV 1.7 7.6 -9.5 14.2 6.0 --2.5 -8.6 11. 
HAR ··-:3. 7 7.4 ·-·11.1 14.2 -·-4. 5 -7.4 -·9.1 .18 
WLF 8.2 8.9 -·6.8 19.8 13.0 5.6 -·5. 4 9 
MIL .0 1. 9 -2.5 8.4 .4 .o -·.8 ::~1 

S'lW -·. 4 1..7 -.:3;. :3 4.9 .o .o --1.. 6 1. L~ 
F;:I.~D .8 :3.5 -·1.6 15.4 .. 6 .o --.8 21. 
BUR .1.7 ~5 • .1. -2.1. 7.8 :;~. :3 .o ·-·1.:2 1.1 
s·rp 9.7 10 • .1 ·--4 • .1 29.2 12 .. 1 3. "7 .6 9 
Dt.~:: -·-l. 2 2.5 -··4. :2:: 5.4 .4 ··~·l. 9 ..... ~!. • ~j ,l.CJ 

PIC M M 1"1 M M M M I" I 
F'IP .1. .. 2 1.1 ·--.1.. 0 5.8 :L .. (i .4 .. 0 :;;::.t. 
HYC :.:~ .1 :z. ~) -·~ .1. .. 9 f.3 • J.~ 4 .. 1 ~""'\ ''T . .::. .. ..:. .. 4 '?1. 

CIJL. 1. .. 2 .B ...... B ~.~·:~ .. ~j .t· .. 'I 1.2 .l. 0 10::/ 
HE.B ·"'i 1::: .. ::. . '-' l .. 2 ·-14 .. 6 20.6 :~:~ . ~.) .1.4 ~-·2. 7 :;?t 

...... 
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