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ABSTRACT 

The effects of inconsistency (systematic errors) and non-homogeneity of data 

(created ei thor by man-made or natural changes in the environment) on hydrolog.ic 

variables and time series are investigated. It is assumed that both the incon­

~ency and the non-homogeneity are in the form of constant and linear jumps, of 

linear and polynomial trends, and of their subsequent combinations. 

The independent sequences and the first order Markov linear dependent sequences 

are used in this study. The known jumps and trends are superposed on the stationary 

series. Changes in the probability density functions, including mean, variance, 

skewness, excess, and serial correlation are analytically determined for various 

cases of jumps and trends assumed in advance as the known non-homogeneity and/or 

inconsistency. 

Inconsistency and non-homogeneity introduce the dependence into the independent 

series, and increase the dependence of the first order Markov linear models. Usually, 

the first serial correlation coefficient becomes either positive and increased or 

only increased, respectively. Some forms of inconsistency and non-homogeneity may 

transf orm the one-peak probability density functions into two-peak or multi-peak 

density functions. Conseque~tly, the statistical parameters of a series, with 

inconsistent and non-homogeneous data, become significantly different from those 

of the original series. As the hydrologic time series are often subject to incon­

sistency and non-homogeneity, a portion of the positive dependence and tho higher 

variance in such a series comes from these two factors, apart from other basic 

physical processes in nature. 

vii 



PROPERTIES OF NON-HOMOGENEOUS HYDROLOGIC SERIES* 

by 

V. Yevjevich** and R. 1 . Jeng*** 

Chapter I 

INTRODUCTION 

1. Definition of inconsistency and non-homogeneity. 
The inconsistency in data is defined in this study as 
being systematic errors in measurements and compilations. 
Existing systematic fluctuations make a difference be­
t ween the figures produced by observation or computa­
tions and those produced by true values. Inconsistency 
is introduced by systematic errors in the series which 
change from time to time or from place to place. 

If discharge is observed only once or twice daily 
at a cross section of a river which has daily periodic 
fluctuations, and the values are then estimated, the 
systematic errors in daily flows may be inevitable. 
When the measuring technique is changed to a recording 
instrument, and the dai ly flows are more accurately 
determined, the two periods combined in a time series 
have an inconsistency in the amount of systematic errors 
for the previous period. If a rain gauge is installed 
in an area with a small amount of vegetation and with 
no surrounding buildings, and if the vegetation matures 
in time and buildings are constructed, the catch of the 
gauge may change slowly or suddenly due to a change of 
aerodynamic patterns during the storm periods. A sys­
tematic difference exists between the observed values 
and the true rainfall values in the form of a trend or 
a jump. ~1any similar examples may be given for various 
sources of inconsistencies in hydrologic data. 

The non-homogeneity in data is defined in this text 
as being the changes in a hydrologic series which result 
from a substantial transformation in environment which 
are ei ther man-made or are natural. Differences be­
t ween the virgin values (values produced i n observa­
tions if the causative factors remain unchanged with 
time) and the true values are called in this t ext the 
non-homogeneity to distinguish them from the classical 
concept of non-stationarity, although non-homogeneity 
remains a part . In a series of monthly values of pre­
cipitation or runoff, the annual periodic component is 
part of the non-stationarity concept. However, if 

1trends or jumps are added as described above, they in­
crease the non-stationarity . To separate these two 
types, the first one is called non-stationarity and the 
latter, non-homogeneity. 

If one begins a successful cloud seeding operation, 
the precipitation series experiences a jump (slippage) 
in its mean and also in its variance and other parame­
ters. Changes of river basin factors which affect run­
off-rainfall relationships introduce the non-homogeneity 
in data, usually in the form of jumps and trends. The 

1
natural changes such as forest fires and later forest 
growth, landslides into the river valleys creating tem­
porary l akes, erosion or rock dissolution processes, 
biological cycles or replacements in species in nature, 
and other similar changes produce the non-homogeneity 
of various types. Man-made changes are becoming more 
and moreimportant factors of non-homogeneity. The man­
produced release of heat, the dischar ge of various 
gases (which change the natural composition of the air) 
and fine particles into the ~ir by industrial and other 
activities, are assumed to be slowly affecting the tem­
perature, precipitation, and evaporation. These re­
leases are expected to be the causative factors of 
present and future very slow climatic changes. However, 
in order to be meaningful, the changes must be proven 
significant by statistical tests of data. The increased 
water consumption through additional evaporation and 
evapotranspiration which is caused by man's measpres 
and structures in river basins such as irrigation, 
diversions, pond construction, man-made lakes and res­
ervoirs, trans-mountain diversions, intentional change 
of vegetation cover, etc. is the main source of non­
homogeneity in a hydrologic series . The mean discharge 
of the Colorado River at the Lee Ferry gauging stat ion 
between the Upper and Lower River was about 15 percent 
smaller by 1960 than it was around 1900, mainly because 
of various man- made water depletion measures and struc­
tures. 

*A small version of this study is published under the name of "effects of Inconsistency and Non-homogeneity 
on llydrologic Time Series, " Proceedings of Fort Collins International Hydrology Symposium, September 1967. 
Vol . I, pages 451-4 58, (Colorado State University, Engineering Research Center, Fort Collins, Coloradcl ,(6j . 

**Professor of Civi l Engineering and Professor-in-Charge of Hydrology Program, Colorado State University, Fort 
Collins, Colorado. 

• *"Former Ph.D . Graduate of Colorado State University, Civil Engineering Department L Fort Collins , Colorado, now 
Assistant Professor, C~lifornia State College, Department of Civi l Englneering, os Angeles, California. 



The schematic definition of inconsistency and non­
homogeneity is: 

Trpe of variable 
values 

1. Observed values with systematic 
errors in part of the series 

Effect on series 

} + Differences: Inconsistency 

2 . True values in nature with 
changes in causative factors 
in the part of the series 

} + Differences :Non-homogeneity 

3. Virgin (time invariant) values 

The first concept is a clearly man-made difference 
between nature and the data. The second is related to 
induced changes in nature . Because non-homogeneity is 
a more important problem in water resource activities, 
both concepts are often encompassed under the term 
"non-homogeneity" in this t ext. 

In the present study, inconsistency and non­
homogeneity in the form of jumps and trends are treate~ 
If the differences between the historical true values 
and the virgin values are constant, it is called con­
stant jump. If a constant discharge is diverted con­
tinuously from one river to another, the first has a 
constant but negative jump in its mean and the second 
has the opposite, or a constant but posi tive jump . 
This is a classical case of a slippage problem in 
statistics and stochastic processes . If {Y(t) } is the 
stochastic process or a time series of historical 
values, then {Y(t) } = (X(t) } + 6 where {X(t)} is the 
time series of virgin values, and 6 is the constant 
jump which can be either a positive or a negative value. 
This constant jump must be introduced in a series be­
tween 0 and N (for a discrete series) or between 0 and 
T (for a continuous series); 0, N, and T being excluded 
in order that a series becomes non-homogeneous. 

Another kind of jump is the linear jump. If the 
difference between the historical and the virgin val­
ues shows a linear relation , the quantity of change 
is also lineariy dependent on the virgin value. Then 

K-I 
1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

{Y(t)} • {(l+ I)X(t)} represents the linear jump where 
"I" is a constant value greater or smaller than minus 
one, or minus one excluded. The exampie of this non­
homogeneity occurs in the model a diversion from one 
river basin to another happens to be proportional to 
the flow of the first river at a given gauging station. 
Another example is the case of weather modification 
when the artificial attainments in precipitation or 
runoff are proportional to the natural precipitation 
or runoff. 

The other type of inconsistency and non- homogeneity 
is the trend. When the difference between the histori­
cal and virgin values continuously change with time, 
it is called the trend. If these differences are a 
linear function of time, then the non-homogeneity and 
inconsistency are in the form of a linear trend. It 
can be represented as {Y(t)} = {X(t) } + at + b , where 
a and b are constant values which define the linear 
trend. It is called a polynomial trend if the differ­
ences follow a polynomial function of time, or (Y(t) } = 
{X(t)} + a

0 
+ a1t + a2t2 + ... + amtm , where coef-

ficients {a.) are constant values for a finite time 
1 series. 

2. Practical significance and examples of incon­
sistency and non-homogeneity. The planning, design, 
oper ation, and maintenance of water resource develop­
ments require statistical information in the form of 
various hydrologic series. A thorough understanding 
of the structure of hydrologic time series is a pre­
requisite for any reliable input data in the planning 
and operation of water r esouce projects. Apart from 
the stochastic variation of hydrologic quantities with 
time, diverse sources of i nconsistency and non-homoge­
neity superpose their changes to the stationary sto­
chastic and non-stationary determinist ic variations 
(cyclic movements) . Therefore, a hydrologic series 
observed for a sufficiently long time cannot generally 
be considered the sample from only one population. 
Inconsistency and non-homogeneity are often encountered 
in hydrology. Many hydrologic observations have a 
higher or lower degree of non-homogeneity or inconsist­
ency. Therefore, the study of the effects of non­
homogeneity and inconsistency of data on the properties 
of a hydrologic time series is a very important subject 
for practical application. 
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Fig . Fl uctuations of annual flow of the River Nile as an example of 
inconsistency in data of the time series 
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The essential practice in the water resource 
f~eld is to use_the statistical data of past observa­
tlons, make an 1nference about the population of a 
h~Jrol?gic variable, and expect that the basic proper­
tles w11l hold true in future samples. However, if 
the past_da~a sh?w an inconsistency and non-homogeneity, 
the stat1st1cal 1nference about a unique population may 
not correspond to fut~re samples . Future samples may 
not have non-homogene1ty or they may experience another 
type. Two examples, the Nile River and the Colorado 
River, are discussed here for a better illustration of 
inconsistency and non-homogeneity in order to show 
both their importance and ways of treating them. 

. ~· Two examples of inconsistency and non-homoge-
nelty 1n data. The case of the River Nile at Aswan Dam 
Fig. l, is given here as an example of inconsistency (l i. 
Before the construction of Aswan Dam (1903), observa­
tions were made by using stage gauge downstream of the 
presen~ dam-site . From 1903-1939, discharges were 
determ1ned accurately enough by relating sluice measure­
men~s to the gauge-stages downstream . The subsequent 
rat1ng curve was then applied in order to determine the 
discharges before 1903,from 1869 to 1902. 

After the dam was put into operation the down­
stream degradation through the remo.val of ~ediment 
islands and through bank erosion must have changed the 
rating curve which exist ed before the dam was built. 
The results [2} show that the mean discharge for 34 
years before 1903 (1869-1902) was 3380 m3/s or 1.15 in 
modular coefficie.nts, Fig. 1. The mean dis~harge for 
52 years after 1903 (1903-1955) was 2650 m3/s, or 0.90 
in modular coefficients , Fig. 1. The four-year period 
prior to the operation of the reservoir from 1899-1902, 
shows a mean flow close to the mean of the second period, 
1903-1955. One wonders if this was associated with the 
backwater regime above the darn due to its construction 
.and consequent deposition of coarse sediment upstream ' 
of the dam, or if the degradation of sediment, banks, 
and sediment islands downstream of the dam, was not 
really started in 1899 instead of 1903. Though the 
man-made reservoir increased the losses by evaporation 
and eventual!~ by seepage, the difference in the mean 
flow of 730 m / s between the two periods cannot be 
chiefly explained in this manner . Four factors might 
have combined to show a 25% difference in means of the 
two periods: 

(a) The natural stochastic variation may have 
been so that the 34-year period (1869- 1902) was much 
wetter than t he 52-year period (1903-1955) . However, 
the difference of the two means of 0 . 25 in modular 
coefficients (25% of the mean for the 86-year period, 
1869-1955) has onl y a 0 .01% chance to be produced by a 
natural stochastic fluctuation. If the time- intervals 
are divided into 29-year (1869-1898) and 57-year periods 
(1899-1955), then this difference would be stil l greate~ 
and the probability of its occurrence would be smaller · 
than 0 .01%. 

(b) Inconsistency in data was brought about by 
the use of a rating curve which was produced after 1903 
and appl ied to river gauging st ages before 1903. 

(c) Non-homogeneity in data was produced by the 
reservoir in the form of increased evaporation and per­
colation into the river banks, rocks and soils. 

(d) Non-homogeneity in data was produced by an 
increase in upstream water consumption, by larger lake 
evaporation and by irrigations . 

. One might be tempted to assume a long-range per­
Sl stence or periodicity in the annual f low of the Nile 
River·. Due to the fact t hat a preponderant number of 

3 

rivers.in.t~e world do not show long-range persistence 
or per10d1c1ty, the probabil i ty that it exists in . the 
Nile River should be very small indeed . Therefore, one 
s~o~ld postulate a hypothesis for this example . Spe­
Clflcally, the assumption is that the factors in 
~he combination of stochastic variation, inconsistency 
1n data, and non-homogeneity in annual river flows 
produce the graph of Fig . 1. The planners of the New 
Aswan Dam were, therefore, very wise in using the data 
of the period after 1903 for various water resource 
problems involving the reservoir and the Nile River 
water allocation, and particularly for their estimation 
of properties of inflows into the new reservoir. 

. Another in:tructive example is the non-homogeneity 
1n the annual r1ver flow of the Colorado River at Lee 's 
Ferry St ation , between the Upper and Lower river basins 
as given in Fig . 2. Figure 2 shows the virgin and' ' 
measured (historical) annual flows at this station 
Until 194 7, the information came from House Docume·~t 
No. 364, Washington, D. C., 1954 [3) : Colorado River 
Storage Project; and for years 1948-1959 the data were 
obtained from the U.S. Department of Interior, Bureau 
o~ Reclamation, Regional Office, Region 4, Salt Lake 
C1ty, Utah. The following information and t est of the 
example on non-homogeneity is mainl y from a publication 
on the Colorado River Basin (4]. · 

. It might be that some inconsistency exists in data 
pr1or to 1914. In the reference [3}, page 141, it is 
stated: "Although inaccuracies are risked with the 
extension of records prior to 1914 , the Bureau of 
Reclamation made extensions to include t he 1896-1947 
period at Lee Ferry ... . " In determining the depletion 
of the water yield, the same reference on page 143 
states: "Stream depletions from upper basin ·development, 
therefore, have been estimated only at sites of use, 
and aggregate depletions so determined are considered 
representative of the depletion at Lee Ferry, " and on 
the same page, "This includes depletions from all 
causes, such as irrigation and uses incident to irriga­
tion, water exports to areas outside of the drainage 
basins, domestic and industrial uses , and evaporation 
from storage r eservoirs. The esti mat e allows credits 
for water importations and channel salvage ." 

For the Lee' s Ferry Station, Fig. 3 gives t he 
relationships of three variables: (1) annual depletion, 
D, in 106 acre-feet; (2) annual virgin flow, V, in 106 
acre-feet; and (3) time .(as parameter) . It is clearly 
shown that the depletion has fast increased fro·m the 
turn of the century until the end of Worl d War I , then 
stayed approximatel y constant for the period, 1920-
1930, slowly increased from 1930-1950, then increased 
faster from 1954-1957. In t his case , the historical 
annual flow at Lee's Ferry Station is an evolutive 
time series (and not a stationary time series) . To 
make a series homogeneous (to compensat e for depletions~ 
the annual virgin flows which have been approximated 
give an insight as to what would be the flow if the 
hydrologic factors of Upper Colorado River Basin would 
remain unchanged by man 's acti vi ties . Although the 
approximated depletions have errors (because they de­
pend on many factors such as rough and approximate 
evaluations of net consumptive water uses and on net 
evaporation from the new water surfaces) , and although 
the computed virgin flows are less accurate than in 
the case where they coincide with historical (measured) 
flows, they nevertheless show a measure of man-made 
non-honogeneity i n the hydrologic r ecords of th.e 
Colorado River Basin. 

The following model is defined as the relation of 
~nnual depletion to annual virgin flow for a given 
1nterval of years, or for a s ingle year. They are 
approximated by straight lines (Fig . 3) because a 
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complex model would not be justified in view of the 
errors which are inherent in the determination of 
depl etions. For the period 1954-1957, the depletion 
model is 

0 = 1.26 + 0.0673 V (1) 

Figure 3 shows that both coefficients A and B in 
equation D = A + B V increase with time. This increase 
of A and B means a greater average depletion per year 
1~ith time. An increase of B means that. the depletion 
fluctuates more in function of the absolute value of 
virgin flow with time than in earlier depletions. The 
increase of B also means that the number of factors 
which affect the depletion, but are proportional to the 
virgin flow, increase with time ~hen more water is 
diverted to irrigation inside the basin, or when more 
water is diverted out of the basin during wet years, 
or when more evaporation occurs from reservoirs be­
cause of a greater mean free surface area in wet years 
than in dry years , and similar factors). 

The historical annual flow of the Lee's Ferry 
Station is considered to be a non-homogeneous (non­
stationary) time series. In statistical words, the 
information from 64 years of annual flows at Lee's 
Ferry Station is derived from a mixture of populations. 
Theoretically speaking, that mixture of populations 
and samples may be treated statistically or probabilis­
tically if the law of change intime from one population 
to the next is known . Due to the fact that most of 
the changes are introduced by man's activity, and that 
the laws of change in time for runoff are complex and 
unpredictable, the approach of treating the mixture of 
populations in annual runoff is not feasible. This is 
the reason why the techniques of changing the non­
homogeneous samples i nto homogeneous samples are intro­
duced and practiced currentl y. It would be extremely 
difficult .-to project the depletion of annual runoff in 
amount and in time at the Lee's Ferry Station for the 
next three to five decades with sufficient accuracy. 
This means that all future storage reservoirs, diversion 
projects, and irrigation schemes would have to be pre­
dicted exactly in runoff amount and in time for the 
next 30-50 years. If that very approximate depletion 
projection would be acceptable for economic and engi­
neering studies, it would be possible, at least theo­
retically, to treat future projected samples of runoff 
starting with the mixture of populations. 

The computation of virgin flows for Lee's Ferry 
Station from 1896 to 1959 is also a procedure to 
det ermine a homogeneous sample . In other words, the 
comput ed virgin flow sample is drawn from the population 
that existed prior to any depletion, under the circum­
stances of a large number of natural causes which affoct 
the runoff. Practical problems require however, that 
compu~ations in engineering and economics be carried 
out with homogeneous samples, or one population is in­
ferred from these samples (valid for the moment of 
comput ation, or for the time interval a project would 
normally serv~. For the period of 1954-1957, applying 
the depletion model of eq . (1) to the virgin f l ows of 
the sample, 1896-1959, a new homogeneous sample valid 
only for the period 1954- 1957 is obtained . Assuming 
that small changes in depletion have taken place from 
1958-1960 in comparison with the period from 1954-
1957, the new homogeneous sample can be considered 
the same as if drawn from the population of annual 
runoffs at Lee ' s Ferry Station,valid for the late 
fifties. The homogeneous sample reduced to the period, 
1954-1957, is also given in Fig. 2 . 
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By extrapolating the depletion model D • A + B V 
~r any other more complex mode~ in the future by com­
puting A and B as f unctions of time, it is possible to 
reduce the virgin f low sample, 1896-1959, to any future 
date. Whi l e planning the Upper Colorado River Basin 
development, it should be possible to project t he deple­
tion model, if not in function of time, than at least in 
function of future projects, and even in function of 
population growth. In this case, the new variate V , 
the annual flows at Lee's Ferry Station for a given t 
date is 

(2) 

where At and Bt are parameters of depletion model 

Dt = At + BtV' at the date t. Assuming that At(t) and 

Bt(t ) are ,given, then Vt(V , t) would also be given. With 

the probability distribution of V, as well as the char­
acteristics of sequence patterns of V given in ana lyti­
cal form, both probability distribution and sequence 
model for Vt can be derived as a function oft. This 

approach enables the computations of average hydrologic 
characteristics during a depreciation time for a water 
resource development project. 

The above analysis leads to the conclusion that 
the computation of effects of man-made structures and 
measures in river basins has an import ant bearing on 
the reliability of hydrologic data used for further 
water resource developments and water project opera­
tions. The studies and calculations aimed to make 
hydrologic samples homogeneous (and also consistent 
by removing the eventual inconsistency in data) through 
computation and analysis of depletion models (or system­
atic errors), is a new and important task of hydrol ogic 
activities. 

4. Subjec t. Changes introduced into a stationary 
time series by inconsistency and non-homogeneity of 
data in the. form of jumps (changes suddenly introduced 
inside a series) and trends arc the subject of this 
paper. The various models of jumps and trends may be 
superposed in a variety of ways. However, the usual 
case in many applied sciences is to search for changes 
which are introduced into the series as unknown jumps 
and trends . In this study, t he approach is opposite. 
The second order stationary (time-invariant ) series 
with known properties is subjected to known changes 
(jumps and trends) and the impact of these changes is 
investigated. The main attempt of this study is to 
determine the changes in the properties of various 
parameters and in the distributions which occur as a 
result of given types of jumps and trends so that a 
comparison with the observed series of unknown jumps 
and trends may be made. Specifically, the changes in 
density functions, in mean, variance, skewness , kurto~ 
and serial correlation coefficients are studied. The 
objective is to find the statistical properties of the 
series when the kno~~ inconsistency and non-homogeneity 
are introduced, and to show how these factors affect 
the original homogeneous series . 

5 . HyPotheses for investigations . The general 
structure of a hydrologic time series usually has three 
main parts: trend and/or jump and periodic as well as 
stochastic components. For the purpose of this study, 
it is assumed that the periodic component is absent, 
or the cyclic component can be detected and removed 
from the original time series . The former case is 
well approximated by an annual runoff or annual precipi­
tation series, or a series of similar variables of 
annual values. The procedure for detecting and 



substracting periodic components from the time series 
are beyond the scope of the present study . Ther efore, 
the general model of a hydrologic time series is given 
by 

(3) 

wi th Rt the jump or trend component, and et the 

stochast ic (dependent or independent) component, and 
Xt is the resulting series . For the sake of simplicity, 

the Et-component in this study is assumed to be a 

sequence of mutually independent random variabl es of a 
second order stationarity. The trend and/or jump com­
ponent is assumed to be a known mathematical function 
of time. 

6. Research program. The independent stochastic 
time ser ies is used for the investigation, and the 
inconsi stency and non-homogeneity of various types are 
introduced into the series to produce the non-homogeneous 
series . In terms of stochastic processes, the virgin 
(stationary) values of an independent hydrologic ser i es 
are assumed to be mutually independent and stationary 
random variables for the following investigations. In 
the same terms, these variables are identically distri­
buted along a t i me series with the known probability 
density function. 

Two independent stationary time series, one with 
the normal and the other with the lognormal probability 
density function are used . It is not considered very 
important to use the dependent stationary series for 
further investi gation because it is expected that it 
will s how results similar to the effect of inconsistency 
and non-homogeneity as in the case of an independent 
stationary series . 
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The types of non-homogeneity introduced int o an 
i ndependent stationary time series i n this study are: 

(a) Constant jump for a part of a series , 

(b) Combination of constant j umps along a series, 

(c) Linear jump for a part of a series, 

(d) Combination of linear jumps along a series, 

(e) Linear trend, and 

(f) Polynomial trend. 

The effects of non-homogeneity are studied on 
these properties of variables: 

(a) Probability density functions, 

(b) Expec~ed values (means), 

(c) Variances, 

(d) Skewness coefficients, 

(e) Kurtosis coefficients, and 

(f) Serial correlation coefficients. 

The f irst •Case of the constant jump in the series 
introduced at any place between its begi nning and its 
end is given in detail in Chapter II in order to better 
illustrate the method of investigation and consequent 
results. The other cases of non-homogeneity in other 
chapters are presented as final results to strengthen 
the conclusions of Chapter II and to show the differences 
in effects of v~rious types of non-homogeneity. 

The majority of non-homogeneity and inconsistency 
types i n hydrology are :in the f orm of jumps and trends 
and their various combinations. The cases studied 
provide a sufficient general picture of the effects of 
non-homogeneity on the properties of a hydrologic time 
series. 



Chapter II 

EFFECT OF A CONSTANT J\Jt.1P 

1. Definition of the change introduced by a con­
s tant jump. A constant change , 6 , is introduced into 
a ser ies of size N at the position m from the 
beginning of the series and n from the end of the 
series, with N m + n, so that 

for t < m 
(4) 

where xt is the historical value of a non-homogeneous 

hydrologic time series , e:t is the virgin value of an 

independent stationary series, and 6 is the constant 
jump being positive or negative throughout the l ast 
part, n, of the series. This is graphi cally repre­
sented in Fig. 4. 

X 

0 

Fig . 4 

0 .2 0.4 0 .6 0.8 1.0 
q 

A scheme of the constant -jump introduced into 
an independent homogeneous series , e:i 

This case may simulate a constant annual diversion, 
6, of water from one river basin to another, with a 
change 6 or - 6 . It is cl ear that xt values in the 

second part are biased in comparison with the first 
part or the converse . The position, m, corresponds to 
the time when the annual diversion begins . The ratios 
p = m/N and q = n/N, with p+q = 1 are used in this text 
as the dimensionless measures of the relative position 
of the constant jump in the series. For the non­
homogeneity to be present in a series, it must be shown 
that Q < p < 1 and 0 < q < 1. In other words, t he con­
stant jump should not be at the beginning or the end of 
the series. In order to measure the importance of the 
constant jump on the series, the relative values 6/x 
or 6/ ax may be used where X and ox are the mean and 

the standard deviation of the series of a variable x. 

2. Effect on a probability density function. It 
is assumed that &t is an independent and stationary 

random series which has g(t), a given probability den­
sity function. Then in the part of the series x • t 

t t' 
and in the part of the series, xt = tt + 6, both have 

g(·) as their probability density functions. Further­
more, the density function of xt is det ermined by 

g1v1ng the weights m and n to the densit ies of 
tt and t t+6, respectivel y, or 
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f(x) = p g(x) + q g(x-6) . (S) 

The probability density function, g(t), usually is 
assumed to be a known function . Normal and log- normal 
probability density functions are studied for this 
constant jump. For tt ' an independent normal function 

with the mean of c and the variance of o2 , the proba-
£ 

bility density functi on of non-homogeneous series xt 
is 

f(x) 

because the constant jump does not change the variance 
o2 in each part. e: 

For e:t, an independent log-normal function, a 

similar equation is obtained with some modification as 

f(x)= P 
- (lnx-f J212o2 -( ln(x-6) -E" ]2/2o2 n n n n e + e 

o xl2ii" n 

for x > 6, and 

o (x-6)&. n 

-(lnx- e ) 2 /2o2 
f (x) • _ __.p.._-ee 0 n 

a x,/2; 
D 

for 0 ~ x ~ 6 

(7) 

where €n is the mean of ln c , and a~ is the variance 

of ln t. As t he value xt can be less than 6 , but only 

in part m of the series, f (x) must be separately 
represented for values above and below o. 

It is characteristic that eq . (6) gives either a 
two-peak or one-peak new probability density function. 
If the h~drologic variables are standardized, with 
£ = 0, o& • 1, or N(O,l), and a positive constant 

jump 6 is introduced in the second part of the series, 
then eq. (6) becomes: 

f(x) • _£_ e-x2/2 + _s_ e-(x-6)2/2 
l2:rr l2:rr 

The first derivation of f(x) with respect t o x 
is 

1 -x2 /2 [ 6 (x-6/2) J f'(x) = - - e p(-x) + q e (6-x) • 
l2n 

Position x, for the maximum and t he minimun of f(x) , 
are roots of f'(x) m 0, or 

(8) 

(9) 



q e6(x-6/ 2)(6-x) - p X = 0 (10) 

because exp(-x2/2YI2irr is a non- zero quantity. The 
solution of eq . (10) is found on the digit al computer 
by using the trial -and-error method. The r esults show 
that the number of roots in eq. (10) is either one or 
three, depending on the values q and o. Whenever there 
is only one solution in eq. (10) , the probability den­
~ity function has one maximum (peak) . When there are 
three roots , there are two maxima (peaks) and one 
minimum in the probability density function. 

It is cl ear that the probability density function 
of a non-homogeneous series f(x) is composed of two 
normal density functions with two different means, 
zero and o, respectively, but each with the same 
variance of unity. Intuitively, one can expect that 
there are two peaks in the probability density function 
of a non-homogeneous series f(x) , one around zero and 
the ot.her around 6 , if 6 is large enough and q is 
close to 0.5. The exact positions of peaks for a given 
6, depend entirely on the value of q . Obviously, the 
value Qf q indicates which of the two normal density 
functions has more weight. Smal l values of q mean 
that the standard normal density function has more 
weight, whereas large val ues of q mean that the normal 
density function with the mean of 6 has a greater 
weight. The closer the value q i s to 0.5, and the 
greater value of 6 , the more distinguished are the 
two peaks i n the density function f (x) . In the oppo­
site case, the new probability density f unction is a 
one-peak distr ibution. 

3 . Criterion for one-peak or two-peak distri­
butions. The criterion for having one or two peaks 
in the probability density function of non-homogeneous 
series f (x) is obtained from t he results of computa­
tions on the digital computer. Equation (10) is solved 
for var ious values of q and 6. The results toll at 
what val ue 6 the function f(x) begins to be two-
peak distribution for a given value of q. For values 
of q far away from 0.5 , 6 must be very l arge to 
sufficiently separate the two normal probabil ity 
densit y functions in order to obtain the two peaks . 
When q is close to 0.5 , the two normal probability 
density functions with means zero and 6 , respectively , 
are almost equally weighted. In that case, even a 
comparatively small value of 6 will be sufficient to 
create the two-peak probability density cu.rves. 

Figure 5 shows the regions (1) and (2) necessary 
for dis tributions to have one and two peaks in terms 
of critical values q

0 
and 6

0 
, respectively. The 

line separating the two regions is obtained by connect­
ing the 12 computed points.of (q

0
, 6

0
) of eq . (10). This 

division will be discussed in details further in the 
text. Figure 5 will be replotted on different' coor­
dinate scales and an empirical equation of q

0 
• ~ (60) 

will be deve loped. For q
0 

= 0, or q
0 

= 1, a two-peak 

probability density function will never occur for any 
value of 6

0
. For q

0 
= 0.5, the critical values 6

0 

can be obtained analytically . 

For q = 0.5, eq. (10) becomes 

e 6 (X-6/ 2)(6-X) -X= 0 • (11) 

By inspection, x 6/2 is one of the roots of 
eq. (11). Therefore, f(x) will be either the maximum 
or the minimum at x m o/2 . In order t o detect whether 
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q 

Fig. 5 The two regions (1) and (2) i ndicating the 
va lues of q = n/N and 6 (constant jump) and 
designating if the probability density f unction 
of a non-homogeneous series, f(x), has one or 
two peaks: (1) One-peak region, (2) two-peak 
region 

it i s the maximum or minimum of f(x) , the second 
deviation of f(x) is 

and 

(12) 

(13) 

It is obvious that for 6 = 2, the second derivative 
of f(x) is equal to zero at x = o/2 . For 16 ! > 2, the 
second derivatives are positive. For !o! < 2, the 
second derivatives are negative. This analysis tells 
that the probability density function of a non-homoge­
neous series for q = 0 .5 has both its maximum and its 
points of inflection at x = l for 6 .. 2. Therefore, 
it has only one peak which is very flat . For !o l > 2, 
the probability density function has its minimum at 
6/2 , which implies that it has two peaks. For I 61 < 2, 
the probability density function of a non-homogeneous 
series has its maximum at o/2 which implies that it has 
only one peak. Therefore, the critical value of 6 
necessary for the probability density function to have 
one or two peaks is 6

0 
= 2 for the case q

0 
= 0 .5. 

Both the probabil ity density at x for the maximum 
and for !61 < 2, and the probability density at x for 
the minimum and for 161 > 2 ' in the case q = 0. 5 , arc 
equal to 



(14) 

It is obvious for q = 0.5 that the normal curve 
of eq. (14) is the locus of the above maxima or minima 
of the probability density of a non-homogeneous series 
for various values of o. For q • 0.5 and the four 
values of 6(6 = 0.0, 6 = 1.00, 6 = 2.0 and 6 = 3.0), 
the four probability density functions are given in 
Fig . 6. 

For the values of q different from 0.5, the 
solutions of eq. (10) for x cannot be obtained in 
the explicit form. As was discussed earlier in this 
text, the trial-and-error method is used to find the 
solutions. The critical value of 6

0 
for a given q

0 
is the maximum value of 6 giving only one solution 
in eq. (10). Eleven values of 6 and the correspond-a 
ing symmetrical values of q

0 
are listed in Table 1. 

They are plotted in Fig . 7 in logarithmic-probability 
scales in such a way that q

0 
= 0.5 corresponds to 

percentage zero, q
0 

= 0 corresponds to percentage 100, 

and 6
0 

is plotted on the logarithmic scale. Then 

q
0 

= ~(60) as a straight line in this paper. The 

mathematical representation of q in terms of 6 is 
then o o } 

q =- 1- f e d6o 1 ~ lnl60 l 1 -(lnl60 l-1.047) 2/2(0 .174) 2 

0 2 
0 . 0.174/iiT 

(15) 

Constants 1.047 and 0.174 are estimated from Fig. 7. 
If q

0 
> q > 1 - q

0
, the distribution has only one 

f (X) 
0.4 

0.3 

0.2 

0.1 

-4 -3 -2 - I 0 
X 

TABLE 1 Critical values of 6 for various values of 
0 

q, so that two peaks occur in a density func­
tion if 6 > o

0 
for given q

0 

qo 0 

0.01 4.09 0.99 
0.03 3.76 0.97 
0.05 3.59 
0.95 
Cl.10 3.32 0.90 
0 . 15 3.14 0 .85 
0.20 2.99 0.80 
0.25 2.85 o. 75 
0.30 2.72 0.70 
0.35 2.59 0.65 
0.40 2.44 0.60 
0.45 2 . 28 0.55 
0.50 2.00 

peak, otherwise it has two peaks. It should be noted 
that the new density function has only one peak for 
any value of q if I o I ~ 2. 

2 3 4 5 

Fig . 6 Probability density functions for various values of o with ~ • 0, a~ = 1.0 and q 0.5 
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Fig. 7 The critical value, q , as related to, 6 
0 0 

(constant jump), for determining whether the 
new probability density function will have one 
or two peaks 

The value of 6 indicates the distance between 
two different weighted probability density functions. 
Therefore, the positive and negative signs of 6 in~ 
dicate the relative position of these two probability 
density functions. The two-peak density function de­
pends on the value of 6 regardlessif it is positive 
or negative. Based on this explanation, the absolute 
value of o is used in eq . (15) for the general case. 
To find the critical value 6 for a given value q 

0 0 
from eq. (15), a trial-and-error procedure is necessary. 
If the resulting frequency curve has two peaks and a 
minimum of f(x) between them, the x-values are desig­
nated by m1(first peak) , m2 (minimum) , and m

3
(second 

pea~) . For a one-peak density function, the mode is 
des1gnated by m. 

It is obvious that the position m of the peak 
in the one-peak probability density funct i on is closer 
to either ~ or £ + 6, which depends only on values 
q and 6 . From eq. (6) it follows that the smaller 
the q, the closer m is to ~ and the converse, and 
the larger the q, the closer m is to ~ + 6 . For 
the two-peak density function, m1 and m

3 
are around 

& and & + 6 , respectively . The positions of m
1 

and m
3 

obtained on digital computer are plotted in 

Fig. 8 versus 6 by using q as parameter. The dis­
tances between the positions of one peak and the mean 
of zero and the second peak and + 6 , are equal in a 
symmetrical probability density function. For q = 0.5 
and 6 < 2, the position m

1 
has a l inear relationship 

with 6 , or m1 = 6/2. The position m
1 

(or m
3
) linearly 

increases with 6 up to 6 • 2. For the other values 
of q and for q = 0 . 5 but in the region of 6 > 2, the 
positions of m1 or m3 are non-linear relationships to 
6. Therefore, the values m1 and m3 depend on 6, as 
shown in Fig. 8. They will increase as 6 increases 
until they reach a maximum, then they decrease as 6 
further increases. It is evident from Fig . 8 that for 
the standardized variable c(c = 0, ac = 1) and for 

6 > 4, the posi tions m1 and m3 are approximately at 

0 and 6 , respectively. For non-s t andardized variables 
and 6 > 4 a , these positions are approximately £ 

£ • 

and ~ + 6 . For one-peak density curves and 6 > 4, 
the position m is approximately either at 0 (for 
small q) and at 6 (for large q). From practical view 
point and 6 > 4 (or 6 > 4 o c) the values q and 6 

barely affect the positions m
1

, m3, and m. 

10 

05 

4 5 

Fig. 8 The positions m1 and m3 of peaks in the 

probability density function for various values 
of q and 6, with m

3 
= 6 - m

1 

The position of the minimum, m2, in two-peak 

distributions increases as 6 increases. The value 
m2 , is equal to 6/2 for q = 0.5. For q ' 0.5, m2 is 

calculated on a digital computer and is shown in Fig. 9. 
The family of curves of m2 is symmetrical about the 

q • 0 .5 for q > 0.5. For smal l 6, m2 deviates signifi­

cantly from the value 6/2 when the minimum exists. 
For large 6 the deviation of m2 from 6/2 as 

(m2 - 6/2) is a constant. This constant increases as 

lq ~ o.sol increases. 

The absolute difference between the probability 
densities of peaks, in two-peak distributions , is 

1 -o2/2 -- le (2q-l) + (l-2q)). 
/'[; 0 

0 (16) 
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Fig. 9 The position, m2, of the minimum of f(x) between 

the two peaks in the probability density func­
tion of a non-homogeneous series for various 
values of q and 6 . 

-.s2;2 For l arge 6 , e will converge fast to unity, and 
then the difference, 0, depends only on q . This is 
shown in Fig. 10, on which the family of 0 curves ver­
sus 6 are plotted with q as parameter. Practically, 
curves become horizontal lines f or 6 > 4 for all values 
of q. 

4. h drolo 
monthly lows, 

hourly, daily or monthly precipitation, and so forth) 
exhibit two-peak probability density curves under 
particular conditions . In most cases, the t ime series 
of these variables are composed of a periodic (of day 
or year) and a stochastic component. The periodic 
component is mainly present in the means and standard 
deviations of t hese variables. The coefficient of 
variation, the skewness coefficient and t he covariances 
of the remaining stochastic component (obtained by 
removing the periodic movement in the mean and in the 
standard deviation) show relatively small or no peri­
odic movement. If ~ and a are the mean and 

T T 
standard deviation at any hour of the day, or any day, 
or any month of the year, then ci • (xi-~,)/cr, is 

considered as a stochastic component, with xi the 

original variable, and ~T and a, t he periodic func­

tions, wi th periods of either a day or a year. 

If the periodic component of ~, and cr, are 

transformed to a duration curve, and the first deriva­
tive is determined, the shape of this new curve will 
be similar to a U-probability density funct ion. 

11 
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Fig. 10 The absolute difference, D, between the proba­
bility densities of peaks in a two-peak dis­
tribution fqr various values of q and 6 . 

The U-curve may have the same effect on x-density f unc­
tion as a random variable with aU-shape density curve. 
The stochastic components are mainly bell-shaped or 
J-shaped distributions. The combination of a U-shaped 
and a bell-shaped distribution often produces a two­
peak density function. A combination of a periodic 
component (with U-type the f irst derivative of its 
dur ation curve) and a random component (with a bel l ­
shaped probability density function) produces, under 
certain particular conditions, a two-peak densi t y func­
tion of the variable x . Therefore, whenever hydrologic 
variabl es are composed of clear within- the-year or 
within-the-day periodic components and a stochast i c 
component and t r eated as a univariate (instead of 
multivariates), then i t is expected that some variables 
might exhibit two-peak probability density functions. 
Indeed, this fact has been observed quite frequently. 
Thus, a constant jump, as an equival ent of the periodic 
component, is shown in Fig . 11 , which may be interpreted 
as a periodic component. Therefore, it is expected to 
produce two-peak density functions for particular values 
of q and 6 . 

Various explanations for t wo-peak density curves 
in hydrology may be encountered if one scans the litera­
ture . The first explanation is that two distinct 
climatic regimes exist in river basins, when either 
precipitation or runoff phenomena and their daily or 

X 
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Fig. 11 A periodic movement (1) may be approximated by 
a constant jump s cheme (2) , with 6

1 
+ 62 = o 



monthly variable values are considered, and the total 
effect of these two regimes produces two-peak density 
curves (or four inflection point distribution curves) . 
The second explanation is that the river flows at a 
station below the confluence of two tributaries with 
different flow regimes may have two-peak density curves 
(two-peak histograms) if these two regimes are suffi­
ciently distinct . The third explanation is that the 
two peaks and the minimum between them are simply a 
sampling product, and if observations are continued 
the frequency density curves will slowly converge to 
one-peak curves. 

The first alternative is right only if there are 
two very distinct regimes of precipitation, one regime 
producing small amounts part of the year and nearly 
nothing the remaining time, and the other regime pro­
ducing l arge amounts during the period that the f irst 
regime does not produce, and then producing nothing or. 
very little in other periods. In other words, a large 
periodicity inside the year is created. 

It is easy to contest the second explanation. 
Assume that the two tributaries, with river flows x 
and y, respectively, have each a bell-shaped frequency 
density curve. Then the sum x+y also shows a similar 
curve. If the skewness coefficients of x and y 
are approximately equal, the variable 'x+y is less 
skewed but is also bell-shaped distributed. Only when 
the conditions of the first alternative are met by 
the two distinct and different tributary regimes in 
time, the two-peak f requency density curves may occur 
as the result of periodicity within the year. 

The third case is one of sampling errors, with 
two or more peaks in histograms occurring by the pure 
chance. It can be shown that in the cases of a com­
posite series (periodic and stochastic components) 
the differences between peaks, between frequency den­
sities of peaks, and between the frequency density of 
the minimum and frequencies of the two peaks, are 
statistically significant, even for medium size 
samples. 

5. Effect of constant jump non-homogeneity on 
the mean. The mean of the distribution of a constant 
jump non-homogeneous series i s 

E(x) J xf(x)dx J x(l -q)g(x)dx + J x q g(x-o)dx 

= (1-q) £ + q& + qo ; t + qo, (17) 

because J xg(x)dx & and f g(x-o)dx 1. 

It is obvious from a simple analysis that the change 
in the mean produced by t his type of non-homogeneity 
is qo. The absolute change of mean increases with 
q and I o I . 

6. Effect on variance. The variance of a constant 
jump non-homogeneous series is 

+OO 

f (x-x) 2f(x)dx (18) 
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Non-homogeneity will introduce the change in the 
variance with quantity of (1- q) qo2 . S1nce 0 < q < 1, 
(1 -q) qo2 is always a positive quantity regardless of 
o positive or negative . Equation (18) proves, there­
fore, that the variance of a non-homogeneous series is 
always greater on the average t han the variance of an 
original homogeneous series . . The variance of a series 
is always increased by introducing the inconsistency 
or non-homogeneity into dat~ . This increase has a 
maximum value for q = 0 . 50, for a given value of cr~ 

and o, or for a given dimensionless parameter ~ = 6/cr 
as shown in FiR. 12. .E 

2 
G'x 
o:2 

E 

8 

0 0.2 0.4 0.6 0.8 1.0 
q 

Fig. 12 The ratio of variances of a non-homogeneous 
and a homogeneous series, created by a con­
stant j ump, versus q for various values of 
a, with Cl ,; o/cr2 

7. Effect on skewness . The skewness coefficient 
of a constant jump non-homogeneous series is 

13 
+oo 0 

....!. J (x-i) 3 f(x) dx = (_£) 3 13£ + (2q-l) (q-1) qa3 (19) 
cr3 _.. ax 

X 

where 13£ is the skewness of the original homogeneous 

series, and a = o/crt. When q < 0.50 but 6 are nega­

tive, or q > 0.50 but o are positive, the quantity 
(2q-l)(q-l)qa3 is negative . In these cases cr:e < o:l3~ 

A ·n these cases a is definitely smaller s ax > a£ , ~ .., 

than 13t. 

A genera 1 method to determine which of the two, 
6 or 6 is larger can be developed. If the 

t ' ' 
difference between the skewness of a non-homogeneous 
series and an original homogeneous series is denoted by 
66, then 



6a a - a = -l { a (o3 - a3) + (2q-l) (q-l)q63} . 
C 

0
3 E E X 

X 

Since o~ is always a positive quantity, 6B is posi­

tive only when 

ae:(o~ -a~) + (2q-l)(q-l) q6 3 > 0 . (20) 

From eq . (20) it follows that the criti cal value 
ec of Be is 

(2q-l)(q-l) q 63 

a3 - a3 
X & 

The skewness of a non-homogeneous series will then 

(21) 

equal that of the original series if Be: = Be Then 

a > a E: if a c < a c, and a < a e: if a e: > a c . 
This holds true particularly for the symmetrical 
probability distribution ·such as the normal distri­
bution Be: = 0, and wh.en the skewness is not changed 

by non-homogeneity only if q = 0.5. If q > 0.50 and 
6 is negative, or q < 0.50 and 6 is positive, the 
skewness coefficient B is positive. If q > 0.50 
and 6 is positive, or q < 0.50 and 6 negative, 
the skewness coefficient 13 is negative. These prop­
erties are shown in Fig. 13. 

8. Effect on kurtosis. The kurtosis, y, of a 
constant jump non-homogeneous series is 

y 1 
+oo 

f (x-x) f(x) dx 

- q64 (q-1) (3q2-3q+l)} (22) 

where is the kurtosis of the original homogeneous 

series, and all other symbols are defined as stated. 
The difference of the kurtosis of the two series 
(after and before the non-homogeneity is introduced) 
denoted by ny, is 

6y 

Because o4 is a positive quantity, 6y is a positive 
X 

value only when 

From eq. (23) it follows that the critical value of 
y& i s 

13 

f3c 
2 

-2 ~------------~~------------~ 
0 0 .50 1.00 

q 

Fig . 13 The criterion, Be' versus q
3 

for various 
(] 

values of c Wlth c = a3/(~ -1) 
03 

e: 

(24) 

When ye: = yc , then ny is zero , or y = ye: . If 

y < y , then y > y ; and if y > y , then y < ye: 
& c e: e: c 

For the normal probability density function ye: 3, 

and the kurtosis of a non-homogeneous series ye: is 

3 if q = (1±11/3)/2, for all values of 6 . For any 

f 6 "f . b 1 13 d 0 value o , 1 · q lS etween 2 - 6 an , or 

1 13 2 + 6 and 1, the effect of non-homogeneity increases 

1 13 1 13 
the kurtosis. If q "is between 2- 6 and 2 + 6 , 
the non-homogeneity in data decreases the kurtosis. 

9. Effect on serial correlation coefficients. 
Expected values of the sample serial correlation 
coefficients of a homogeneous independent random series 
are zero (except of r

0 
= 1), because the series is 

assumed to be sequentially independent . However, in 
the parts p and q of non-homogeneous series, the 
values are still mutually independent, but for the 
total series , the expected sample serial correlation 
coefficients are not zero because the computed mean is 
not zero. The variance is not o2 and the expected e: 
covariances are not zeros . 



The computational mathematical expression for t he 
sample serial correlation coefficients used in this 
study is 

N-k 
~i~l (xi-x)(xi+k-x) 

a2 
X 

(25) 

where a2 ~ cr2 + (l-q)qcr2 is assumed ~o be a constant 
X €: 

parameter. The expected value of E(xi -x)(xi+k-x) can 

be found either according to k or to the relative 
value k/N. The region of k/N is assumed to be l ess 
than the smaller value of q and 1-q, so that 

N-k 
(x . -X)(x. -x) ~ (N-k)q2o2 + (n-k)o2 - qo2 (2n-k) 

~ ~+k i =l 

because E(ei - E)(ei+k-~) ~ 0 fork f 0, and 

E(xi - ~) = E(xi+k - E) = 0, and n the part of N 

between the position of constant jump o and the end 
of the ser ies. In the r egion m < k < n, where m is 
the part of N between t he beginning of the series 
and t he position of constant jump, 

rkja2 
0.3 

-0.1 

- 0 _2 

0.2 0.4 

I f n < k < m, then r(x. -X) (x . k-x) ~ (N-k)q2a2 - nq62. 
1 1+ 

If the value of k i s gr eater than the larger value 
of m and n, but of course i s less than the value of 
N, then E(x.-X)(x. k-x) = -q62(N-k)(l-q). From these 

1 1+ 

results, the expected values of the sample serial 
correlation coefficients are various function o f the 
lag k, according to the val ue of k and the position 
of the jump, rn . In summary_, 

r a2[q2+ q (l-2q)-pAJ f 1 ' M' ( ) k l->. , or N'" .::._" < 1n p,q 

rk pa2 cs.:.l - q) 1- A for p .::._A < q 

rk a2q2 >. 
(A- 1) for q .::._ A < p 

r = -pqet2 k ' for max(p,q) .::._A < 1 

where a = 6/ax , p = n/N, q n/N and A = k/N are 

dimensionless parameters. 

(26) 

The correlograms of eq. (26) are shown in Fig. 14 
for vari ous val ues of q. It should be noted that the 
correlograms are identical for the values q and 1-q . 
Whenever k is greater than m and n (whichever is 
l ar ger ), the expected sample serial correlation coef­
ficients are constants and are independent of k but 

q=O.I or 0 .9 

0.2 or 0.8 

0.3 or 0.7 

0.4 or 0 .6 

q=0.5 

0 .6 0.8 1.0 
A=k/N 

Fi g . 14 The relationship of rk/et2 , with a= 6/sx , versus A = k/N, for various values of q = n/N, and for t he 

case ofaconstant jump, o, introduced into a homogeneous series at the position p = m/N or q = n/N. 
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depend on q, 6, and a . As shown by eq. (26), the 
expected serial correlation coefficients of the non­
homogeneous series always have values different from 
the expedted coefficients of a homogeneous series. As 
the hydrologic series is often subject to inconsistency 
and non-homogeneity, a portion of the positive depend­
ence at the initial parts of the cor rel ograms (see Fig. 
14) al so comes from these two factors, apart from the 
effect of other basic physical processes of nature . 

If rk/a2 is differentiated wit h . respect to q 

and set -up equal to zero, one solution can be found in 

both regions, ~ < A < Min(p,q) and ~lax(p ,q) ~A ~ 1. 

Therefore, rk/a2 will have the maximum value when 
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q = 1/2 for a given value a . The maximum val ue of 

rk/cx2 is tci=~A ) in t he region ~ < >.. < ~lin (p,q), 

and (- ;}J in the region ~lax(p, q) < A < 1. 

The correlogram of a non-homogeneous series has 
the property that the serial correlation coefficients 
are constant negative values for the lag greater than 
a certain val ue . This property may provide a simpl e 
way for detecting the non-homogeneity in a time series . 
If the analysis of a hydrologic time series shows that 
the serial correlation coefficients f ollow approximately 
a negative constant value after the lag, k, is larger 
than a certain value, the hypothesis that there may be 
non-homogeneity present in the series is attractive f or 
further investigation. 



Chapter III 

EFFECTS OF A COMBINATION OF CONSTANT J~fPS 

1. Definition of change by constant jumps . The 
current hydrologic practice shows that changes occur 
in a sequence which may be composed of const ant jumps 
at several positions in a series. In this case, sev­
eral positive or negative constant changes , oi' occur 

along the series at various positions qi = ni/N, where 

n. = l ength of the series after the j ump 6 . and be-
l h 1 h 

foro the jump 61+1, so that E qi = 1, or E n1 = N, 
i =l i =l 

with h = total number of subseries , the fir st l ength 
included. This case would correspond to many constant 
diver sions of water in or out of a r iver basin wi t h 
varying values of o1 and qi. 

2. Effect on probability densi t i es. The pr oba­
bility density function of a non-homogeneous series xt 

of constant- jumps is determined by giving the weights 
qi to probability densities of (ct - 6i) respectively, 

or 

h 
f(x) • t qi g(x-6i) 

i=l 
(27) 

where g(·) is the basic probability density function of 
~ - lf g(·) is the normal probability density function, 
then 

f(x) • 
h qi 
E ---e 

i=l 0 lfi 
£ 

(28) 

linen g(.·) the l ognormal probability densi t y function, 

h 
f(x) = E 

i•l o (x-6.) lfi 
n 1 

f(x) 
qi 

r ----=---e 
i<v o (x-6 .)/fi' 

n 1 

where v is the subset of i for which o. is less 
]. 

(29) 

than x. The probability density function f(x) may be 
multimodal (several peaks) which depends on values qi 
and o . . 

is 

l 

3. Effect on the mean . The mean of the new series 

E (x) • x J xf(x) dx "E + q. 0 . . 
l ]. 

(30) 
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In this case, the change in the mean because of non­
homogeneity in the form of several constant jumps is 
h 

As may be positive or negative, it 
h 

can happen that the mean is unchanged if E q.6. = 0 , 
i=l 1 l 

or it can al so indicate ther e i s no change i n the total 
balance of water in a river basin for the sampl e s i ze 
N. It is often encountered in practice by the concept 
of wat er replacement or interchange , without changing 
t he water balance of adjacent river basins . However, 
the other properties of river regimes may be highly 
affected even in this case of unchanged mean. 

4. Effect on the variance. The var iance of a 
non-homogeneous series is 

·~ h h 
f (x-x)2f(x)dx • o2 +E q.6. 2-( E qi6i) 2 • 
_,. £ i=l l ]. i=l 

(31) 

It is obvious that the second term in eq. (31) is 
always greater than the third term. Hence the vari­
ance of series is increased by the non- homogeneity of 
constant jumps 6i. If the mean is unchanged, as 

shown in the above discussion, the variance can still 
be significantly increased. 

5. Effect on the skewness. Simil arly, as in the 
previous text , the skewness coefficient B of a multi­
ple constant-jump non-homogeneity is 

where sums in eq . (32) are all from i = 1 to i = h. 
If c is a normal variable with B = 0, the skewness 
of the non-homogeneous series willcbe either positive 
(B > 0) or negative (B < 0) depending on the values 
qi and 61 . If S£ ~ 0, the ske~ness coefficient, S, 

may be greater or smaller than St. In other words, 

the combination of constant jumps and their positions 
do not work only in one direction, such as is the case 
with the variance (the second central moment). 

6 . Effect on kurtosis . The kurtosis coefficient 
is also well affected by the non-homogeneity in the 
form of multiple constant jumps, so that 

+ ( l:q . 6 . ) ( 6 (E q. 6 ~) (I: q . 6. ) - 4 I:q. o ~ ) + I:q. 6 ~ } ( 33) 
11 ll 11 11 11 

with all sums in eq. (33) from i = 1 to i h . The 



non-homogeneity may cause the kurtosis to increase or 
decrease which will depend on values qi and oi. How-

ever, an anlysis of eq . ( 33) shows that on the average, 
the value, y , would be mainly greater than y , or the 
distribution of x should tend to have a flatter 
central part than the variable, c . 

7. Effects on serial correlation coefficients. 
The expected values of sample serial . correl ation coef­
ficients are given here only for the parameter A = k/N 
which is l ess than the minimum value of qi (k < ~in N, 
which is k < nmin') or 

+ 

Nlk k[ E (6.- ' q.6. )(6. l j 
h - 1 h 

- j+l J i = l 1 1 J+ 

h 
!: 

j=l 
(n. -k)(o. -

J J 

where k < min (n1, n2 , . . . ,nh). 

h 
~ 

i=l 
q. 0.) J 

l 1 

(34) 
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Many hydrologic processes may be exposed to shif ts 
(slippages) in the form of changing systematic errors 
of constant j umps. A similar case occurs with water 
withdrawal s to or from a river, especially in complex 
water resource developments and operation schemes . 
Therefore, an independent series (say approxi mate the 
series of annual precipitation) becomes a time depend­
ent variable by a combination of various constant 
jumps along t he series. Or, if a series is already 
dependent, the non-homogeneity of this type increases 
t he dependence, on the average . This statement "on 
the average" needs f ur ther explanation . 

A sample from an independent normal variable may 
shmv a time dependence (though not significant). By 
adding a constant jump to this sample, it may occur 
by pure chance that the dependence of the non -homoge­
neous sample becomes smaller than in the homogeneous 
sample. However, if the same procedure is ap,plied to 
many sampl es, the aver age result will show that the 
dependence is produced by constant jumps . If depend­
ence already exists in the homogeneous series, it will 
increase in the large majority of samples . 

An independent variable e will become a depend­
ent variable x by a sequence of the constant-jump 
source of non-homogeneity. 



Chapter IV 

EFFECT OF LINEAR J UMPS 

1. Definition of the change introduced by a 
linear jump. A non-homogeneity is introduced at posi­
tions t bet ween m and N of the series i n the form 
of 

xt (l+I)tt' form !.. t < N 

(35} 

for 0 < t !._ m , 

or al ong t he part n , with I = constant. In ot her 
words, xt i s proportional to ct. by a constant differ~ 

from unity along t he second part of the ser ies, where 
xt is the historical value of a non-homogeneous series, 

whil e £ is the virgin value of an independent station­
ary series. 

This case may simulate a diversion of river flows 
which are proportionalto discharges at a river gauging 
station. In other words, if a partition of river dis­
charge is made by a simple r ule of propor~ionality, 

the change in the river from which water is diverted is 
equal t o a negative linear jump . If the evaporation 
from a reservoir is approximately pr oporti onal t o t he 
annual inflow (higher rese·rvoir levels and the corres­
ponding larger evaporation surfaces may be linearly 
related to annual infl ows), then the loss of water 
from the initiation of reservoir operation may be 
closely described by a linear jump. If systematic 
errors are proportional to the values of a hydr ologic 
variable, the linear jump of eq. (35) may well describe 
this inconsistency in data from beginning to end. 

f(x) = p g(x) + q g(l~I) (36) 

with g( · ) the probability density function of the 
homogeneous series. 

lf it is assumed that the homogeneous series, ct' 

follows the normal distribution with mean 
vari ance o~ , then 

f(x) 

-
E and 

-[x- (l+I)£} 2/2(l+I)2o2 
+ ---"--- e E . (37) 

(l+I) o I2Ti 
t 

lf the basic probability density function g(·~ is lo~­
normal with the mean '[n of ln t and the vanance on 

of l n t then 
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1 x-'f" j2 - '20'TI[ln n 
f(x) t e + 

0 X .f2TI n 

-~(ln x-r -ln(l+I))2 2o n 
n (38) + e 

0 X .f2TI n 

for 0 < X < 00 and I > - 1 . 

When g( · ) is the normal probabil i t y density func­
tion of zero mean and variance o2, f(x) is composed 

t 

of two normal density functions both with the mean 
zero but different variances, o2 and (1+1)2 o2, 

t £ 

respectively. In this case, regardless of values q 
and "I," the probability density function of a non­
homogeneous series is always one peak function located 
at x = 0 and symmetrical about it. For I < 0 , and 
particularl y for q l arge, the variance of a non­
homogeneous series is less than o2 of a homogeneous 

t 

series . I f I < 0 , t he variance of (l+ I)tt will be 

smaller than the variance of t t' and for a large 

value of q, the probability density function with a 
small variance is more weighted than the unchanged part 
of series , so that it results in the variance of non­
homogeneous series being smaller, or o2 < o2 . 

X t 

3. Effect of a linear jump of a non-homogeneous 
series on the mean. The expected value of the new 
series of xt is 

00 

E(x) x = J xf(x)dx • (l+ql)E". (39) 

The change of mean because of non-homogeneity in the 
form of a linear jump is qiE" . The change depends not 
only on the properties of the non-homogeneity of q 
and I, but also on the mean, t. If t = 0, the mean 
i = 0 also. 

4. Effect on the variance . The variance of the 
non-homogeneous series is 

(40) 

This relationship of eq. (40) is shown in Fig. 15. 
The negative value of "I" means that the second part 
values (or the biased part of the series) have a 
smaller mean and a smaller variance than the first 
part. Therefore, the variation created by non-homo­
geneity is cancelled by the smaller variance in the 
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Fig. 15 The ratio of variances between a non-homogene­
ous and homogeneous series in the form of a 
l i near jump for various values of I and 

(~ )2: (1) (t:/o£)2 = 10 (2) (E"/o£) 2 = 1 
t 

(3) {1:/o ) 2 = 0 
£ 

biased part, rather than in the original homogeneous 
series . In this case, the variance of the non-homo­
geneous series is not necessary always greater than 
for homogeneous series. This property of a non-homo­
geneous series formed by a. linear jump is different 
from a non-homogeneous series formed by a constant 
jump. 

If the change in variance produced by the non­
homogeneity of a linear jump is denoted by 6a2 , then 

X 

(41) 

When the variances of homogeneous and non-homogeneous 
series are equal, and 6a2 = 0, then eq. (41) gives 

X 

I ., _ _ _ -.o:-2 ---

1 + (l-q)1:2 /o2 
£ 

Since "1" cannot be l ess than minus one, therefore, 
(1-q)£2 must be greater than o~ , then 

0 

1 - q > (_£) TJ2 

c 

The inequality (43) gives 

q < 1 - '12 ' 

(42) 

(43) 

(44) 
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where '1 = o£/E i s the coefficient of variation of 

the homogeneous series ti . Because q is a quantity 

which is always positive and less than the unity, then 
the inequality (44) can only occur when the coefficient 
of variation is smaller than the unity, or when the 
standard deviation is smaller than the mean. 

A conclusion can be determined from t he above 
analysis . When '1 < 1 for the homogeneous series, 
q < 1 - '12 and I • -2/(l+(l - q) t2/a2 ], then t he 

£ 

variances of the homogeneous and non-homogeneous series 
are equal. The non-homogeneity in this particul ar case 
does not affect the variance . I f I< -2/[ 1+(1 -q)/'12 ] , 
the variance· of the non-homogeneous series is smaller 
than for the homogeneous series. Only for 
I > -2/[1+(1-q)/nZJ does the non-homogeneity increase 
the variance . 

5 . Effect on the skewness. The skewness of the 
non-homogeneous series of a linear jump is 

B 
1 . ... 

- f (x-i)3 
a3 _.., 

X 

f(x)dx = _.!.{B 
a3 r: 

X 

• 3pq12fo~ (2• 1) • p 3 I 3f 3
} 

where p = 1-q . 

(45) 

The s kewness , B, of the probability density func­
tion of a non-homogeneous s eries will now be different 
from Br: of the homogeneous series. In general, r 
in this case will play an important role whe ther or 
not the effect wil l be a positive or a negative skew­
ness of a non-homogeneous ser ies . The degree of change 
mostly depends on q. 

6. Effect on kurtosis. The kurtosis of a non­
homogeneous series is 

y = _.!. { (l•4qi+6qi2 + 4ql 3 + 
CJ~ 

X 

+ 6ql(l+I)3 e:2o2 + ('E-x)~ + qif"[ (4+61+412+13)£3 
£ 

- 4( 3•31•12) 22< • 6 (2•I)f • ' - 4<3)} . 

( 46) 

Kurtosis of a non-homogeneous series is usually l ess 
than for a homogeneous series. In other words, the 
probability density function of a non-homogeneous 
series has a relatively flat-topped peak when a linear 
jump is introduced into a homogeneous series . 

7. Effects on serial correlation coefficients. 
Based on the same argument as in the case of a con­
stant jump, the expect ed values of the sample serial 
correlation coefficients of a non-homogeneous series 
in the form of linear jump are obtained by a similar 
procedure which gives : 



a2 [ q2+ q (l-2q) - pA ], 1 A < Min [p,q] rk 1-A for N < 

rk pa2 ~ ( - q) 1-A for p ~A < q 

( 4 7) 

rk a2q2 A 
Cx:rl for q ~A < p 

rk -pqa2 Max [p,q] < A < 1 -

where a = !1/ox , p = m/N , q = n/N, and A = k/N. The 

expressions for the serial correlation coefficients of 
a non-homogeneous series of the linear jump given in 
eq . (47). and of the constant jump given in eq. (26), 
are identical except for the differences in definition 
of a . It should be noted that the expected value of 
the mean and the expected values of the sample serial 
correl ation coefficients are not affected by the linear 
jump when theoriginal homogeneous series has a mean 
equal to zero. In other words, if the original series 
has zero mean and the linear jump is introduced into 
the series, the non-homogeneous series also has the 
expected mean of zero and the expected serial correla­
tion coefficients of zero . This last statement means 
that the linear change of positive and negative values 
&i around ~ = 0 by a multiplier (1 +I). even with 

-1 <I< 0 and for a part of series (O < q < 1), will 
not affect the serial correlation coefficients when 
passing from &-series to x-series. In other words, 
the covariances are changed by the same proportion as 
t.he variances . However, as most hydrologic series are 
positively-values variables with € > 0, the linear 
jump will affect both the mean and serial correlation 
coefficients, so that x r T and rk(x) 1 rk(t:). 

8. Definition of a combination of linear jumps. 
The combination of linear jumps is defined as 

xt e:t (1+11) for 0 < t < n 
- - 1 

xt e:t (1+12) for n
1 

< t < n - 1 + n2 

i-1 i 
xt t:t (l+Ii) for l.: n. < t < l.: no 

j=l J j=l J 
(48) 

.2. - 1 t 
xt t: t (l+It) for l.: n. < t < E n. 

j=l J j =l J 

This is equivalent to many discrete changes along the 
series during the observations in the samples of size 
N. It is then aossumed that 

t 
l: no 

j =1 J 
N 

with t = number of linear jumps. 

9. Effects of the combinat i on of linear jumps 

(49) 

on a probability density curve of this non-homogeneous 
series, and on its parameters. These effects are 
given in condensed form for various properties of the 
resulting non-homogeneous series: 
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(a) Effects on probability density function. 

f(x) 

(b) Effect on the mean. 

t 
E(x) = x = (1 + l.: qili)E o 

i=l 

(c) Effect on the variance. 

(SO) 

(51) 

(52) 

with all sums of e·q. (52) and following eqs . (53) and 
(54) being ·between i = 1 and i = t. 

(d) Effect on the skewness. 

+ 3(E-x)o2 [1+2l.:qoi. + l.:q . I. 2
] + 3Ea2 [l.:q.I.(l+I.)2 ]+ 

& 11 11 & 11 l 

(e) Effect o·n the kurtosis 0 

Y = _!_{y a4 [l.:(l+i.)4qo]+4(&-x) e a3[l.:(l+I.)3q.] 
a'+ E: E: 1 1 E: E: 1 1 

X 

(f) Effects on the serial correlation coeffi­
cients. 

1 t t-1 
+ N-k [ol.: no!~ 1 -k ( l.: I.2) 

J =2 J J- i =l 1 

R. 
+ (E-x)(2 E niri-l- ki1_1) 

i=l 

+ k /'~2 I. I. 
1

) 1} , for 1 < k < Min (n 0) • 
i =l 1 1+ J 

(55) 



Chapter V 

EFFECTS OF LINEAR AND NON-LINEAR TRENDS 

1. Definition of linear and non-l inear trends . 
The linear trend is defined as 

(56) 

which is a random variable t t superposed by a linear 

trend a+ bt. 

A non- l inear trend in this study is of a pol yno­
mial type where 

(57) 

which is a random variable , tt ' super posed by a non­

linear function of an unknown equation but developed 
in t he power series form . In bot h case s when 0 ~ t ~ N, 
a , b , and a

0
, a

1
, ... , am ar e coefficients of t he 

trend, respectively, for linear and non-linear type . 

The trends are very common features of hydrologic 
non-homogeneity and inconsistency . An irrigation proj­
ect does not enter into full devel opment when the 
irrigation starts, so the depletion of water by evapo­
transpiration occurs slowly over a period of time until 
the full implementation of the project . The same pro­
cedure happens with the return flow. The systematic 
errors (say the slow change of environment around a 
precipi t ation gauge) may be shown to be a trend . The 
change of water quality is usually of a slow trend 
type. Examples include the effects of r i ver basin 
conservation or anti-conser vat i on activity on sediment 
transport, or of the effects of temperature pollution 
when there is a sl ow i ncrease of the use of wat er for 
cool ing purposes , etc . 

The fact that many t echniques ar e developed i n a 
time series anal ysis for the det ection and stati stical 
inference of various trends, testifies of the impor­
t ance of this subject to many discipl i nes incl uding 
hydrology. 

2. Effects on the probabil ity densit y function. 
The distributions of a series with linear and non­
linear trends are, respectively, 

f(x) 

and 

1 N 
N f g(x- a-bt)dt 

0 

(58) 

(59) 

where N is the length of t he series, and g ( ·) is the 
original probability density funct ion of a homogeneous 
ct -series . 

lf E is normal , N(c, o2) , and the time i ndependent 
t E 

variable , t hen the linear trend a+bt produces a new 
pr oba bi l ity densit y f unction 
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(60) 

where ~(y) is the standard normal dist ribution function 
with y given either as y = (Nb+~+a-x)/o , or 
Y = (&+a-x) /o . E 

e: 

Figure 16 gives four pr obabi lity density f unc t ions 
of eq . (60) with e = Nb , e: = 0, '\ = 1, independent with 

E(rk) • 0, k ~ 0 , and wi th the l i near trend s ymmet rical 

for t he series (the trend passes through the me an £ = 0, 
at t he center of series at N/2). 

If the distribution of Et i s 

variable is independent,A(£ , o2 , n n 

l ognormal, and t he 

0) , or t he mean of 

E is o2 , with ln E is r:n, and the variance of l n 
n 

E(rk) • 0, except for k = 0 for ct 

a+bt then produces the probability 

variable, t he trend 

density function 

f(x) ,. J [ ln(x-a)-t Jl ~b \ 4> 0 n n , for a ~ x ~ (a + bN), and 

f ( x) • m} {4> [-1 n_c-::-: n-- a_)-- £_n] 

for x > a + bN . (61) 

If b is negative , 

and (62) 

Figure 17 gives four probability density functions 
of eqs. (61) - (62) with e= Nb, £ = 0 , var e:t ,. 1 , 

independent E with E(rk) = 0 except for k = 0 , and with 

t he linear trend a+bt symmetrical for the series of 
size N. 

3 . Effects on the mean . The linear trend ~ives 
t he mean 

E (x) = X: = a + } bN + t . (tJ3) 

In the case of a symmetrical linear trend , wi th 



f (x) 

Nb=8 

-4 - 3 -2 · I 0 2 3 4 5 

X 

Fig. 16 Probability density functions or the linear trend, xt a + bt + ~t' with Et the independent standard 

normal function N(O, l, 0), for four values of 9 = Nb 

2 4 5 

Fig. 17 Probability density functions of the linear trend, xt 

lognormal variable, for four values of 9 = Nb 

a+ bt + et, with et the independent 

a = - bN/2, eq. (63) becomes X = E, so that the trend 
does not change the mean . However, if the trend 
st arts at N = 0, then a = 0 , eq. (63) becomes 
x = €" + bN/2 . 

The pol ynomial trend-has the mean 

= ;; + (64) 
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For the start of the trend at a
0 

= €, then a
0 

in eq. 

(64) shoul d be replaced by £ . 

4. Effects on the variance. The linear trend 
always increases the variance, so that 

and for the polynomial trend, the variance is 

(65) 



m 
a2 = a2 + I: 

X e: i =l 

m ~-+j Ni+j J 
I: aiaJ. - (i+l)(j+l) = 

j=l 

m 
I: 

izl 

m 
I: 

j=1 
i+j[ ij ] aiaj N {i+l){j+l)(i+j+l) <66) 

It can be shown from eq . (66) that a2 > o2 regardl ess 
X e: 

of the type of polynomial and its various coefficients 
ai, aj . ln other wor ds, any trend of the type of eqs . 

(56) and (57) increases the variance of a non-homoge­
neous series xt in comparison with e:t series. 

5. Effect on the skewness . The linear trend 
changes the skewness so that 

(67) 

or for B • 0, also B • 0. The linear ' trend super­
posed on ~ series of independent normal variable does 
not introduce the skewness. However, as a2 > o2 , then 

X C 

the linear trend decr eases t he skewness of the depend­
ent skewed variable c , because IB I < Ia I in that case, 

t e: 
regardless whether or not Be is positive or negative. 

For the polynomial trend, the skewness of xt­
series is 

1 1 1 
""'(..,..j+...,l""')..,.(.;.i+-;k-+-:-1"<") - ..,.,(k:-+-:'1~)7(1..,..., +""'j-+""1) + (i+l) (j+k+l) 

(68) 

Whether or not e > Be or a < Be' depends then on the 
type of polynomial trend. If Be = 0, eq. (68) shows 
that B can be either positive or negative, which de­
depends on the coefficients of eq . (57) . 

6 . Effects on kurtosis. For the linear trend, the 
kurtos1.s of the xt-ser1.es is 

y = .!_ { y o4 +.!. (bN) 2 o2 
0~ e: e: 2 c 

1 4} + 80 (bN) (69) 

while the kurtosis of a series with a polynomial trend 
is 

y 

+ 
m 
l: 

i=1 

m 
l: 

k=1 

j =l 

m 
l: a.a.Ni+j ij l 

l J (i+l) (j +i) (i+j+l ) + 

23 

1 1 1 
- (i+l)(j+k+t+l) - {j+l)( i+k+t+l ) + (i+l)(j+l)( k+t+1) 

1 1 + 1 
- (k+l)(i+j+R.+l)+(i+l)(k+l)(j+R.+l) 7(~j+~l~)~(~k-+1M)~(~i-+~R.+~l) 

- (t+l){i+j+k+l) 
+ 1 

(i+l)(t+l)(k+j+l) 

+ 1 1 
(j + l ) ( H 1) ( i + k+ 1 ) + ...-( R.-+"""1,...) -.(.,..k+.:...,1~} ..... ( ,-. +-j +-1~) 

(Hl) (j+l~(k+l) ~ +1 )J (70) 

7 . Effects on serial corr elation coefficients . 
The linear trend produces a time dependence in xt-series 

even if e:t-series is independent, so t hat in this case 

rk(x) is 

= b
2 

{3N(N-2k)+4N+2k(k-2)+1} , 
4o2 

for k > 1 but k«N . 

X 
(71) 

Figure 18 gives the expected correlogram of a 
series composed of an independent normal variable t t 

and a linear trend a + bN , for a sample size N = 100, 
and for four values of the parameter~ • (o /b) 2 being c 
1, 100, 500, and 1000. Tho correlogram shows a highly 
dependent non- homogeneous series if b is sufficiently 
large in comparison with oE . The value~ • 1 corres-

ponds to ot • 1 (standardized ct variable) and a trend 

of 45°. Even a trend of the slope 1:1000 , for oc = 1, 

gives the first serial correlation coefficients of the 
order rk = 0.4 . 

It is l ikely that the time dependence of many 
series of annual precipitation is part ly or f ully 
produced by a trend in data, which is due to an in­
consistency in data . 

The expected serial correlation coefficients of a 
variable xt produced by an independent variable tt 

(0 , 1, 0), and a polynomial trend is 

E(r ) = ....!. j[ ~ ~ Ni]2- _1_[ ( ~ ~i Ni)( ~ ~i (N-k) i +l) 
k o2 i .. l 1.+1 N-k i=ll.+l i • ll.+l 

X 

m 
- l: 

j=1 

m 
l: 

k=1 



Equation (72) shows that E(rk) of xt ar e not zeros 

for k > 0, as is the case for E (rk) for ct. 

The linear and non-linear trends are, therefore, 

N = 100 
0.2 

0 2 4 6 8 

producers of time dependence if a homogeneous series 
is independent. They increase the dependence, on the 
average, if a series to which trends are applied are 
already time dependent. 

"'=1000 

10 12 14 16 18 20 
k 

Fig. 18 Correlograms of the l1near trend series, xt = a+ bt + t t' with t t the 1noependent variable for the 

sample size, N = 100, and for four values of the parameter, $ = CoeJb) 2 
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CHAPTER VI 

EXAMPLES OF EFFECTS OF NON-HOMOGENEITY 

1. Types of examples . The hypothetical cases were 
selected in order to i nvestigate the effects of non ­
homoge nei ty t hat are introduced i nt o an independent 
stationary stochastic series . In two cases, thi s varia­
ble is normal and independent, with the mean zero and 
t he variance unity, N(O ,l,O). In the other t wo cases, 
the variable is normal and dependent, N(O,l,p), of the 
first order Markov linear model, In each case, five 
sampl es of 200 random independent normal number s are 
generated . Practically , 1000 numbers, ~ .• ar e gener­
ated , and each divided into five samples~ 

For each sample of N = 200, the non-homogeneity 
is introduced in f ive parts or subsamples (0-40, 41 - 80, 
81-120, 121-160 , and 161-200). The first and third 
examples have the following non-homogeneities: 

( 1) For i = 1-40, a small l inear trend is intro­
duced in the form, x1 = ~ i - 0.10 + 0.005i; 

(2) For i 41-80, no change is made ; 

(3) For i 81-120, a slippage (jump) of 6 0.25 
is added, so that xi = ei + 6; 

(4) For i = 121- 160, 
introduced in the form, xj 

another linear t r end i s 
= E. + 0.12 - 0.006j, with 

J 
j = 1 for i = 121, and j = 40 for i = 160; and 

( 5) For i 
i n thu form , xi 

161-200, a linear jump is introduced 
0.85 € .. 

~ 

The second and fourth exampl es made all of these 
changes stronger , and under (2) another slippage 
(constant jump) is added, so that the second and fourth 
examples have: 

(1) For i 

+ 0 .020i ; 

1-40, a l i near trend, xi €. - 0 . 30 ... 
l 

(2) For i = 41 - 80, a slippage of o = 0.50 is i n­
troduced, so that, at any position, i = 81-120, the 
values xi = Ei + 0.50; 

(3) For i = 81-120, another slippage of 6 
is added, so that xi = ~i - 0. 40; 

-0 . 40 

( 4) For i = 
duced , so that x . 

J 

121 -160, t he l i near trend is intro­
Ej + 0 .45 - 0.30j , wher e j = l for 

i = 121, and j = 40 for i = 160 ; and 

(5) For i = 161-200, a linear jump is produced by 
xi 1.25 Ei . 

The third and fourth exampl es of non-homogeneity 
are applied to the dependent stati onary variable, 
'li = P '\- l + e:i ' with p = 0.20. The non-homogeneous 

variables thus obtained are yi. 

Altogether, there are two times two examples: 
the i ndependent variable , ei' with two types of non-

homogeneity, weak and strong, which produce xi -variables; 

and the dependent variable , ~i' wi th these two same 
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types of weak and s trong non- homogeneity , to produce 
y i -variables. 

Each of the 200 samples of all four examples , 
is changed by the corresponding five non-homogeneities 
in the 40 member subsamples, so that the non-homo­
geneous samples of 200 values of xi or yi are produced. 

In this way, five samples of xi and f ive sampl es of yi 

are obtained for each of the four examples : (a) a weak 
non-homogeneity approach of the first type , as xi- and 

yi -variabl es; and (b) a strong non-homogeneity of the 

second type, also as xi- and yi -variables. 

2 . Computations . For all four types of varia­
bles, Ei ' xi, ni and yi , and for each of t he sampl es 

of N = 200, t he fol lowi ng parameters are computed: 
the mean, t he standard deviation, the variance , t he 
ske~~ess coefficient, t he excess coeffi cient, a nd the 
first fifty serial correlat ion coefficients . The 
average values of five 200-value long samples are then 
computed for these parameters. 

For the same variables, Ei ' xi' ni and yi' and for 

the samples of N = 1000 that are composed as the se­
quence of five samples of N = 200 , the same parameters 
as previously sho~~ are computed . Frequency distri­
butions are also determined. 

3. Result s of t he first example . Thi s example 
is the seri es of Ei' independent stationary normal 

vari able, with the ~·eak type of non-homogenei ty intro­
duced in each of t he f ive subsamples of 40 values, for 
every sampl e of N = 200 that produces the non-homo­
geneous variable, xi . 

Figure 19 , dashed l ine (1), gives the frequency 
distribution of 1000 val ues of Ei i n t he Probability-

Cartesian scales . It is wel l fi tted by a st raight l ine 
(or the generated numbers follow t he normal distribu­
tion). The same figure, soli d line (2), shows the 
frequency distribution of 1000 values of xi of the first 
example . It departs somewhat from the distribut ion of 
ei' but still i t is approximately normally dis tributed. 

Table 2 shows, for the first example, the pa­
rameter s of ei- and xi-variables for five samples of 

N = 200, their averages, and the sample of N = 1000 
(composed of f i ve successi ve samples of N = 200) . 
Only the first three serial correl ation coefficients 
are given . By comparing the average parameters of 
five samples of N = 200 between E .- and x. - vari abl es, 
or the parameters of samples of N~= lOOO tor these 
variables , it i s clear that some changes have occurreu 
in nearly all paramet ers, though in a small way . 

Figure 20 shows, for the fir st example, t he correlo­
gr ams of Ei and xi ' as rk(ei) and rk(xi), graph l i nes 

(1) and (2), r espectively, for the sampl e of N = 1000. 
The line (3) gi ves their differences, 6r k = r k(xi )-

-rk(ei) . It is clear that these differences, though 
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Figure 19 Frequency distributions of three variables in the Probability-Cartesian scales for the first and third 
examples, derived from a sample of N = 1000: (1) distribution of ti' standard normal independent 

variable; (2) distribution of the non-homogeneous variable, xi' obtained by a superposition of weak 

non-homogeneitie$ to the variable, ti; and (3) distribution of the non-homogeneous variable, yi' 

obtained by a superposition of weak non-homogeneities, to the variable ni = 0.20 ni-l + t i 

-0.10 

Figure 20 Correlograms of the two series of the firs t example : (1) the series, ti' for t he sample of N = 1000; 

(2) the non-homogeneous series, xi' of the weak non-homogeneities introduced to ti' for N = 1000; and 

(3) the difference, 8rk = rk(xi) - r k(Ei) 

· 0.10 

Figure 21 Correlograms of the two series in the firs t example: (1) the average values of rk(ci) for five 

samples of N = 200 of the s eries, Ei; (2) the average values of rk(xi) f or five samples of N = 200 of 

the non-homogeneous series, xi, and the weak non-homogeneities introduced to t i; (3) the differences , 
6rk = r k (xi) - rk (ti ) 
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TABLE 2 

PAIWUlTERS OF 1liE FIRST EXA'IPI.£ Of NON~ENEITY EFFECTS 

PARAMETERS < - VARIABt..£ x ; • VARIABLE 
1st 2nd 3rd 4th 5 th Averaa• S111ple l st 2nd 3rd 4th 5th Average Sample 

Symbol s Sample Sample Sample Sample ~amp~~o ~~;, S of 5am?1e Sample Samp~~n Sample Sample of S of 
N = 200 N • • 200 N • ~ 200 N • 200 • 1•• Na l Onn N • ' ?nn "' •· ?nn "' • "' • • ?nn "' .~ ?nn S•mnl~~ N• IOOO 

Mean u 0.01521 0.04903 0.05537 0 .00078 0 . 09615 0.04331 0.04300 0.06963 0.09519 0.10692 0.04860 0.14169 0 . 09261 0.09241 

Standard 0 0.97843 1.01045 1.00894 1.04976 0.94196 0.99791 0 .99713 0.96926 1.00115 0.98771 Deviation 1.0)899 0.92571 0.98056 0. 97964 

Skewness B 0.00993 -0.08289 -0.10741 0.00365 0.03778 -0.02779 -0.03542 0 . 04527 -0.05367 0 .02727 0.03864 0.02856 0.01721 0.01133 

excess y -0.11946 -0. 13518 0.35190 -0 .50856 -0.42035 -0.16633 -0.1733 -0.17014 0.00382 o. 70525 -0.39298 -0 .34803 -0.04042 -0.04553 

!-Serial 
Correlation 
Coefficient 

PI 0 .02625 -0.04969 0 .13300 -0. 02098 • 0 . 06916 0.03155 0.0290< 0 .04927 -0.01372 0.15516 - 0.01761 0 . 09988 0 .06091 0.05191 

2- Serial 
Correlat ion p2 -0.05116 0 .00677 -0.09097 -0.01286 -0.03928 -0.03750 -0.0317~ - 0.02677 0.03659 -0.09490 -0.00329 -0.01462 -0.02810 -0.01546 
Coefficient 

3-Serial 
Corre14tion p3 -0.01017 0.03291 0.02451 -0.14829 -0.14682 -0.04957 -0.05241 0.00818 0.06693 0.03954 - 0.15003 -0.09978 -0.03695 -0.02961 
Coefficient 

TABLE 3 

PARAHETERS OF THE SECOND SXAMPLe OF NON-HCJ.!OGENEITY EFFECTS 

PARAMETERS I t - VARIABLE 
1st 2nd 3rd 4tll >til Averaae Surp1e 1st 2nd 

Xl • VARIABLE 
~r<l 4tl\ :>th Average :>up1e 

Syabo1s Surpl c Surp1e Surp1e Sup1e Suplc of 5 of Surplc Sup1o 
N ~ 200 N = 200 Saaolcs 11•1000 N = 200 N • 200 

Sa~~p1e Sample Sup1e of S of 
N • 200 N • 200 N • 200 Saaples N•IOOO 

Mean 

Standard 
Deviation 

Skewness 

~ 

N • 200 N • 200 N • 200 
0 .01521 0 .04!X)3 0 .05537 0 .00078. 0.09615 0.04331 0 .04300 0 .01667 0.06425 0.06161 0.00909 0.11242 O.OS282 0.05281 

0.97843 1.01045 1.00894 1.04976 0.94196 0.99791 0 .99713 1.08614 1.15429 1.10232 1.18249 1.07575 1.12020 1.11934 

0 .00993 -0.08289 - 0.10741 0.00365 0.03778 -0.02779 -0.03542 0.08705 -0.09990 0.09407 - 0.03639 0.11715 - 0.00242 -0.01130 

Excess 

! -Ser ial 
Corrc 1ation 
Coeffici ent 

r - 1.19459 -0.13518 0.35190 -0' .50856 - 0.42035 - 0.16633 -0.17332 -0.18548 -0.11599 0.84655 - 0.31934 -0.19447 0.00625 -0.01252 

0.02625 - 0.04969 0.13300 - 0 .02098 0.06916 0.03155 0.02900 0.10253 0.08933 0.18431 0.07463 0 . 18141 0.13275 0.12341 

2-Senal 
Correlation 
Coefficient 

-0.05116 0.00677 -0.09097 -0.01286 -0.03928 -0.03750 -0.03176 0 .03529 0.13870 0.02754 0.06545 0 .09368 0.06463 0.07728 

3- Scria1 
Correlation 
Coefficient 

-0.01017 0.03291 0 .02451 -0 .14529 -0.14682 -0.04957 - 0.05248 0.07185 0.14232 0.09825 -0.05309 -0.03619 0.03471 0 .03964 

they are relatively small, are positive up to about 
k • 40 of the order ~rk = 0.02 - 0.03 . 

Figure 21 shows the correlograms of ti and xi of 

the first example, similar as in Fig. 20, but in this 
case, rk(ci) and rk(xi) are the averages of five values, 

each obtained for one sample of N • 200 . The patterns 
are similar as for Fig. 20 , and the differences, ~rk' 

given as line (3), arc positive up to k = 40 . 

This first example of each non-homogeneity shows 
that the effects arc small but are not negligible 
when it comes to the crucial differences of a dependent 
or independent series . 

4. Results of the second example. This example 
is the series of ci, independent stationary normal 

variable, wit h the strong type of non-homogeneity in­
troduced in the five subsamples of 40 values, for 
every sample of N = 200 that produces the non-homo­
geneous variable, xi. 

Figure 22, dashed line (1), gives the frequency 
distribution of 1000 values of £i in the Probability-
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Cartesian scales. The solid line (2) gives the fre ­
quency distribution of 1000 values of xi, a strongly 

non-homogeneous variable. Though these graphs do not 
permit the investigation of detailed differences be­
tween t i- and xi-distributions, xi-distribution is 

approximately symmetrical with a greater slope (larger 
standard deviation) than ci , as a result of strong 

non-homogeneity. 

Table 3 gives parameters of ci- and xi-variables 

for five samples of N = 200, t heir averages, and the 
sample of N = 1000. This table is anal ogous to Table 
2. Only the first three serial correlation coef­
ficients are given. The table shows differences in 
parameters, especially in the standard deviation and 
in the serial correlation coefficients . 

Figure 23 shows, for the second example, the 
cor relograms of Ei and xi' as rk (ci ) and rk(xi), graph 

lines (l ) and (2), respectively, for the sample of 
N = 1000. The line (3) gives their differences 
~rk = rk(xi) - rk (t i) . It is clear that these differ-

ences are significant and posit ive up to k = 35, and 
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Figure 22 Frequency distributions of three variables in the Probability-Cartesian scales for the second and 
fourth examples, derived from a s~ple of N = 1000: (I) distribution of Ei , standard normal independent 
variable; (2) distribution of the non-homogeneous variable, xi , obtained by a superposition of s trong non­
homogeneities to the variable, Ei; ~d (3) distribution of the non-homogeneous variable, yi' ob~ained 
by a superposition of strong non-homogeneities to the variable, ~i = 0.20 ~i-l + t i 
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Figure 23 Correlograms of the two series of the second example: (1) for the series, ci, of the sample of N 

1000; (2) the non-homogeneous series, xi ' of the strong non-homogeneities introduced to ci, for 

N = 1000; and (3) the differences, 6rk = rk(xi) - rk(ci) 
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Figure 24 Correlograms of the two series of the second example : (1) the average values, Fk(ci), for five 

samples of N = 200 of the series, ci; (2) t he average values of rk(xi)' for five samples of N 200 

of the non-homogeneous series , xi, and t he strong non-homogeneities introduced to ci; and (3) the 
differences, nrk = rk(xi) - rk(ti) 
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then negative beyond. The differences decrease from 
r 1(xi) = 0.10, on. 

Figure 24 shows the correlograms of ei and xi 

of the second example, similar as for Fig. 23 , but 
in this case, rk(ei) and rk(xi) are the averages of 

five values, each obtained for one sampl e of N = 200. 
The patterns are nearly identical as for Fig . 23 and 
the differences, Ark' are positive and decrease from 

about Ar1 = 0. 10 for k = 1 to zero , approximately 

k = 35. 

This second example of strong non-homogenei ties 
shows that the affect s of non-homogeneity are signifi­
cant and cannot be neglected in the analysis of prop­
erties of a hydrologic time series. 

5 . Results of the third example. This example is 
the series of ni = 0.2 ni-l + ei' a dependent s tation-

ary normal variable of the first order Markov l inear 
model, with the weak non-homogeneities introduced in 
the five subsamples of 40 values each, for every sample 
of N = 200 that produces the non-homogeneous variable , 
yi. 

Figure 19, line (3) shows the distribution of 
variabl e, yi . The variance of ni is then var ni = 
= var e./(1-p2) = var e./0 .96 = 1.042 var e1 = 1.042, 

l l 

for var ei = 1, so that the variance of distributi on of 

y i has both the affect of var ni > 1. 00 and the affects 

of non-homogeneity . 

Table 4 shows the parameters of the yi-variable of 

the third example, both for the averages of five samples 
of N = 200 and for the unique sample of N = 1000. 
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Figure 25 Correlograms for the third example: (1) for 
the variable, yi' as rk(yi) of N = 1000, in the c~ 
the weak non-homogeneities are introduced to the 
dependent stationary and normal variable, 
n~ = 0. 20 n1--l + c.; (2) the expected correlogram 

... . l k 
of n.; pk = pk = 0.20 ; and (3) differences, 

l k 
Ark = rk (yi) - 0 . 20 
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Figure 25 s hows the correlograms of the third 
example of weak non-homogeneity, for the sample of 
N = 1000 of the y . -variable. Line (1) shows rk(y .) , 

J_ k k 1 

line (2) the expected correlogram pk = p = 0 . 2~ , and 
l ine (3) their differences, Ark = rk(yi) - 0.20 . Only 

for k = 1 is there a small positive difference, Ar1 0.038. 

Figure 26 shows the correlograms of the third 
example , similar to Fig. 25, but in this case , Yk(yi) 

are the averages of the five values of rk' each obtained 

for one sample of N = 200. The patterns are similar to 
those of Fig. 25. 
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Figure 26 Correlograms for the third example: (1) for 
the variable, y., as the average value, Y.k(y. ), 

J_ 1 

for five samples of N = 200, for the weak non­
homogeneities superposed to the variable, ni = 

= 0. 20 n. 
1 

+e.; (2) the expected correlogram of 
1-R l k . 

n.; pk = P = 0.20 ; and ( 3) d1fferences , 
l - k 

Ark = rk(yi) - 0 . 20 

The third example of weak non-homogeneities super­
posed to a dependent normal variable, with p = 0.20 
of the first order Markov l i near model , shows a rela­
tively small change in comparison with the original 
dependent variable, ni. 

6. Results of the fourth example. This example 
is the series o£ ni = 0.20 ni-l + ei , a dependent 

stationary normal variable of the first order Markov 
linear model, wi th the strong non-homogeneities intro­
duced in the f ive subsamples of 40 values each, for 
every sample of N = 200 that produces the non-homo­
geneous variable, yi . 

Figure 22, l i ne (3), gives the distribution of 
t~e y:i:"variable . Part of the increased standard devia­
tlon 1s due to the l arger variance (1.042) of n. i n 

l 

comparison to t he variance (1.000) of ci, whil e the 

other part is due to a strong non-homogeneity effect. 



TABLE 4 

Parameters of the third example of non-homogeneity effects 

PARAMETERS y - VARIABLE 
1st 2nd 3rd 4th 5th Average Sample 

Symbols Sampl e Sample Sample Sample Sample of 5 of 
N = 200 N = 200 N = 200 N = 200 N = 200 Samoles N = 1000 

Mean II 0.14630 0.19507 0.22843 0.09085 0.31099 0.19433 0.10192 

Standard 1.38389 1.41894 1 .41994 1.44768 1.30907 1.39590 1. 00387 
Deviation a 

Skewness e - 0 .10501 -0 . 20179 -0.23315 -0.09598 -0.34152 -0.19349 0.03029 

Excess y -1.55378 -1.50082 -1.10470 -1.71004 -1.45899 -1.46567 -0.00807 

1-Serial 
Correlation pl 0 . 23280 0 . 19129 0. 32119 0 .17196 0.26919 0 . 24947 0. 23792 
Coefficient 

2-Serial 
Correlation Pz 0.01574 0.07832 -0.01894 -0.01016 0 . 02155 0.01168 0.02227 
Coefficient 

3-Serial 
Correlation p3 0.01110 0.06900 0.03675 -0 .16036 -0.09556 -0.03520 -0.02576 
Coefficient 

TABLE 5 

Parameters of the fourth example of non-homogeneity effects 

PARAMETERS v - VARIABLE 
1st 2nd 3rd 4th 5th Average Sample 

Symbols Sample Sample Sample Sample Sample of 5 of 
N = 200 N = 200 N = 200 N = 200 N = 200 Samples N = 1000 

Mean II 0.03753 0 .13493 0.13751 0 .01219 0.25446 0.11532 0.06252 
Standard 
Deviation 0 1.55001 1.64179 1.58459 1. 68233 1.52871 1. 59749 1.14284 

Skewness e -0.07528 - 0.14923 -0.07463 -0.04949 -0.16553 -0.10283 0 . 01523 

Excess y -1.57910 -1.60560 -1.09944 - 1.70492 -1.49496 -1.49680 -0.01086 
1-Serial 
Correlation pl 0.26498 0.27287 0.34320 0.24343 0. 33289 0.31802 0.29097 
Coefficient 

2-Serial 
Correla<tion Pz 0.06424 0.17542 0.07981 0.06200 0.11245 0 .11171 0 .10393 
Coefficient 

3- Serial 
Correlation p3 0.06261 0.14935 0.10137 - 0.06675 -0.04364 0.04753 0.04043 
Coefficient 

Table 5 shows the parameter s of the yi-variable 

in the fourth example, both for the averages of five 
samples of N = 200 , and for the unique sample of N = 
1000 . 

are the averages of the five values of rk, each ob­

tained for one sample of N = 200. The patterns ar e 
similar to these of Fig. 27. 

Figure 27 shows, for the fourth example, the cor­
relograms of strong non-homogeneity, for the sample of 
N = 1000 of y . -variable . - Line (1) shows rk(y.), line 

l k k l 
(2) the expected correlogram pk = P = 0.20 , and line 

(3) their differences. It shows a significant increase 
in the time dependence by non-homogeneity. 

Figure 28 gives the correlograms for the fourth 
example, similar to Fig. 27, but in this case, Fk(yi) 

30 

The fourth example of strong non-homogeneities 
superposed to a dependent normal variable, with p = 
0. 20 of the first order ~farkov linear model, shows a 
significant change in comparison wi th the original 
dependent variable, ni. 

7. Conclusions. All four-hypothetical examples 
show that the non-homogeneity affects the properties 
of the stationary time series . The degrees of these 
changes are functions of types and degrees of non­
homogeneity. 
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Figure 27 Correlograms for the fourth example : (1) 
for the variable, y1, as rk(yi) of N = 1000, in the 

case the strong non-homogeneities are introduced to 
the dependent and normal variable, 11 . = 0. 20 11 . + 

1 1-1 

+ t.; (2) the expected correlogram· of 11. ; pk = 

= p~ = 0.20 k; and (3) their difference~, 
6rk = rk(yi) - 0.20R 
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Figure 28 Correlograms for the fourth exampl e: (1) for 
the variable , yi' as the averages, rk (yi)' fo r five 

samples of N = 200, for the strong non-homogeneity 
superposed to the variable,n. = 0 . 20 n. 1 + E. ; 

1 1- k 1 k 
(2) the expected correlogram of ni; pk = p = 020 

and (3) their differences, 6rk = r k(y1) - 0.20k 



Chapter VII 

DISCUSSION OF RESULTS AND CONCLUSIONS 

1. Main implication of results in previous chap­
ters on hydrologic information . The types of basic 
homogeneous series were simple in the analysis of pre­
vious chapters, such as independent normal and log­
normal random variables. Simplified and generalized 
cases of non-homogeneity and inconsisteney were treated. 
Regardless of these two factors, the relatively small 
changes introduced into a time series have often shown 
significant changes i n variable properties. The impli­
cat ion is that the data of many hydrologic random vari&­
bles contain unknown amounts of non-homogeneity and 
inconsistency. This in turn makes a difference in 
variable properties in comparison with the underlyi ng 
homogeneous series. 

A typical example is the analysis of the first 
serial correlation coefficient of the annual precipi­
tation series for a large number of gauging stations 
in Western North America [5). The series of annual 
precipitation are divided in two groups: (a) homoge­
nous or consistent with no significant change in sta­
tion position or environment, a total of 1141 stations , 
and (b) non-homogeneous or inconsistent with a signifi­
cant change of the vertical or horizontal position of 
stations during the period of observation (or with 
other changes which occurred during that time), a 
total of 473 stations . For the period of observation 
of 30 years, 1931- 1960, the first group of the series 
produced the average first ser ial co=el.ation coeffi­
cient of rl = 0.028, while the second group of the non-

homogeneous series produced rl = 0.053. The total 

records available gives an average length of 54 years 
for homogeneous series , and of 57 years for non-homo­
geneous series. The average first serial correlation 
coefficients are r 1 • 0.055 and r 1 = 0 .071, respec-

tively. The non-homogeneous series always gave on the 
ave:age a higher value of '1:'"1 than did the homogeneous 
ser1es . 

As one could assume, the many series included 
here in the group of homogeneous series may contain the 
unidentified non-homogeneity or inconsistency. This 
is an attractive assertion to make, namely that the 
values r 1 a 0.028 and F1 • 0.055 for the homogeneous 

series and for the record of 30 and 54 years, respec­
tively, may have been in part determined by inconsist­
ency in the data. One should take into account that , 
through the averaging used by a large number of station 
series (1141), any non-homogeneity increases the first 
serial co=elation coefficient. Therefore, even the 
first group of station series may be considered as 
quasi- stationary (or quasi-homogeneous) because of 
difficulties in detecting the relatively small amounts 
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of non-homogeneity and inconsistency. If it could be 
possible to remove all sources of inconsistency in the 
data, the above values r 1 = 0.028 and r 1 = 0.055 would 

be further reduced. This analysis leads to the state­
ment that annual precipitation is very close to being 
an independent hydrologic random variable. 

The hydrologic information is therefore very often 
biased by the pr esence of either a neglected or uni­
dentifiable non-homogeneity and inconsistency in a time 
series. In some cases, this bias may even show a sig­
nificant effect on water resource decision making . The 
bias in the mean results in an incorrect prediction of 
water resources available . The bias in the standard 
deviation and the first serial correlation coefficient 
to the upper side,also means a greater storage require: 
ment, all other factors being the same. 

The detection and removal of inconsistency and 
non-homogeneity in hydrologic data is an important part 
of processing the data and of extracting the maximum 
information from a given amount of data. 

2. Conclusions. The previous six chapters show 
that many types of sources of non-homogeneity and incon­
sistency have impacts on properties of hydrologic ran­
dom var iables, l eading to the following conclusions: 

(1) On the average, a constant jump or a combina­
tion of constant jumps change all properties of a 
sample. 

(2) On the average, a linear jump or a combina­
tion of linear j umps produce in a sample of positively 
valued variables a change in all properties of a time 
series . 

(3) A linear or polynomial trend al so affects 
all properties of a sample. 

(4) In the majority of cases , the non-homogeneity 
and inconsistency in a time series alters the variance 
of a variable. 

(S) In nearly all cases, any type of non-homo­
geneity and inconsistency in a time series produces 
the correlograms which show an increase in autocorre­
lation coefficients to positive values, at least in 
its initial part. 

(6) The study of the effect of various types, 
amounts, and sources of inconsistency and non-homoge­
neity, the investigation of methods for identification 
by statistical inference and physical analyses, the 
procedures for their removal and prediction, and simi­
lar works are important subjects of modern hydrology. 
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