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ABSTRACT

The effects of inconsistency (systematic errors) and non-homogeneity of data
(created either by man-made or natural changes in the environment) on hydrologic
variables and time series are investigated. It is assumed that both the incon-
sistency and the non-homogeneity are in the form of constant and linear jumps, of
linear and polynomial trends, and of their subsequent combinations.

The independent sequences and the first order Markov linear dependent sequences
are used in this study. The known jumps and trends are superposed on the stationary
series. Changes in the probability density functions, including mean, variance,
skewness, excess, and serial correlation are analytically determined for various
cases of jumps and trends assumed in advance as the known non-homogeneity and/or
inconsistency.

Inconsistency and non-homogeneity introduce the dependence into the independent
series, and increase the dependence of the first order Markov linear models. Usually,
the first serial correlation coefficient becomes either positive and increased or
only increased, respectively. Some forms of inconsistency and non-homogeneity may
transform the one-peak probability density functions into two-peak or multi-peak
density functions. Consequently, the statistical parameters of a series, with
inconsistent and non-homogeneous data, become significantly different from those
of the original series. As the hydrologic time series are often subject to incon-
sistency and non-homogeneity, a portion of the positive dependence and the higher
variance in such a series comes from these two factors, apart from other basic

physical processes in nature.

vii



PROPERTIES OF NON-HOMOGENEOUS HYDROLOGIC SERIES*

by

V. Yevjevich** and R. 1. Jeng***

Chapter I

INTRODUCT ION

1. Definition of inconsistency and non-homogeneity
The inconsistency in data is defined in this study as
being systematic errors in measurements and compilations
Existing systematic fluctuations make a difference be-
tween the figures produced by observation or computa-
tions and those produced by true values. Inconsistency
is introduced by systematic errors in the series which
change from time to time or from place to place.

If discharge is observed only once or twice daily
at a cross section of a river which has daily periodic
fluctuations, and the values are then estimated, the
systematic errors in daily flows may be inevitable.
When the measuring technique is changed to a recording
instrument, and the daily flows are more accurately
determined, the two periods combined in a time series
have an inconsistency in the amount of systematic errors
for the previous period. If a rain gauge is installed
in an area with a small amount of vegetation and with
no surrounding buildings, and if the vegetation matures
in time and buildings are constructed, the catch of the
gauge may change slowly or suddenly due to a change of
aerodynamic patterns during the storm periods. A sys-
tematic difference exists between the observed values
and the true rainfall values in the form of a trend or
a jump. Many similar examples may be given for various
sources of inconsistencies in hydrologic data.

The non-homogeneity in data is defined in this text
as being the changes in a hydrologic series which result
from a substantial transformation in environment which
are either man-made or are natural. Differences be-
tween the virgin values (values produced in observa-
tions if the causative factors remain unchanged with
time) and the true values are called in this text the
non-homogeneity to distinguish them from the classical
concept of non-stationarity, although non-homogeneity
remains a part. In a series of monthly values of pre-
cipitation or runoff, the annual periodic component is
part of the non-stationarity concept. However, if

itrends or jumps are added as described above, they in-

crease the non-stationarity. To separate these two
types, the first one is called non-stationarity and the
latter, non-homogeneity.

If one begins a successful cloud seeding operation,
the precipitation series experiences a jump (slippage)
in its mean and also in its variance and other parame-
ters. Changes of river basin factors which affect run-
off-rainfall relationships introduce the non-homogeneity
in data, usually in the form of jumps and trends. The
natural changes such as forest fires and later forest

‘growth, landslides into the river valleys creating tem-

porary lakes, erosion or rock dissolution processes,
biological cycles or replacements in species in nature,
and other similar changes produce the non-homogeneity
of various types. Man-made changes are becoming more
and more important factors of non-homogeneity. The man-
produced release of heat, the discharge of various

gases (which change the natural composition of the air)
and fine particles into the air by industrial and other
activities, are assumed to be slowly affecting the tem-
perature, precipitation, and evaporation. These re-
leases are expected to be the causative factors of
present and future very slow climatic changes. However,
in order to be meaningful, the changes must be proven
significant by statistical tests of data. The increased
water consumption through additional evaporation and

jevapotranspiration which is caused by man's measures

and structures in river basins such as irrigation,
diversions, pond construction, man-made lakes and res-
ervoirs, trans-mountain diversions, intentional change
of vegetation cover, etc. is the main source of non-
homogeneity in a hydrologic series. The mean discharge
of the Colorado River at the Lee Ferry gauging station
between the Upper and Lower River was about 15 percent
smaller by 1960 than it was around 1900, mainly because
of various man-made water depletion measures and struc-
tures.

*A small version of this study is published under the name of "Effects of Inconsistency and Non-homogeneity
on lydrologic Time Series," Proceedings of Fort Collins International Hydrology Symposium, September 1967,
Vol. I, pages 451-458, (Colorado State University, Engineering Research Center, Fort Collins, Coloradd,[6].

*ap

Collins, Colorado.

***Former Ph.D. Graduate of Colorado State University, Civil Engineering Department

rofessor of Civil Engineering and Professor-in-Charge of Hydrology Program, Colorado State University, Fort

Fort Collins, Colorado, Now

Assistant Professor, California State College, Department of Civil Engineering, fos Angeles, California.



The schematic definition of inconsistency and non-
homogeneity is:

Type of variable

values Effect on series

l. Observed values with systematic
errors in part of the series

Y & Differences: Inconsistency

2. True values in nature with
changes in causative factors

in the part of the series
Differences:Non-homogeneity

} -
3. Virgin (time invariant) values

The first concept is a clearly man-made difference
between nature and the data. The second is related to
induced changes in nature. Because non-homogeneity is
a more important problem in water resource activities,
both concepts are often encompassed under the term
"non-homogeneity" in this text.

In the present study, inconsistency and non-
homogeneity in the form of jumps and trends are treated.
If the differences between the historical true values
and the virgin values are constant, it is called con-
stant jump, If a constant discharge is diverted con-
tinuously from one river to another, the first has a
constant but negative jump in its mean and the second
has the opposite, or a constant but positive jump.

This is a classical case of a slippage problem in
statistics and stochastic processes. If {Y(t)} is the
stochastic process or a time series of historical
values, then {Y(t)} = {X(t)} + § where {X(t)} is the
time series of virgin values, and § is the constant
jump which can be either a positive or a negative value.
This constant jump must be introduced in a series be-
tween 0 and N (for a discrete series) or between 0 and
T (for a continuous series); 0, N, and T being excluded
in order that a series becomes non-homogeneous.

Another kind of jump is the linear jump. If the
difference between the historical and the virgin val-
ues shows a linear relation, the quantity of change
is also linearly dependent on the virgin value. Then

{Y(t)} = {(1+I)X(t)} represents the linear jump where
"I'" is a constant value greater or smaller than minus
one, or minus one excluded. The example of this non-
homogeneity occurs in the model a diversion from one
river basin to another happens to be proportional to
the flow of the first river at a given gauging station.
Another example is the case of weather modification
when the artificial attainments in precipitation or
runoff are proportional to the natural precipitation
or runoff,

The other type of inconsistency and non-homogeneity
is the trend. When the difference between the histori-
cal and virgin values continuously change with time,
it is called the trend. If these differences are a
linear function of time, then the non-homogeneity and
inconsistency are in the form of a linear trend. It
can be represented as {Y(t)} = {X(t)} + at + b, where
a and b are constant values which define the linear

trend. It is called a polynomial trend if the differ-
ences follow a polynomial function of time, or {Y(t)} =
X))} +a +at+ azt2 + ... +ath, where coef-

ficients {a.} are constant values for a finite time
series.

of incon-
design,

2, Practical significance and examples
sistency and non-homogeneity. The planning,
operation, and maintenance of water resource develop-
ments require statistical information in the form of
various hydrologic series. A thorough understanding
of the structure of hydrologic time series is a pre-
requisite for any reliable input data in the planning
and operation of water resouce projects. Apart from
the stochastic variation of hydrologic quantities with
time, diverse sources of inconsistency and non-homoge-
neity superpose their changes to the stationary sto-
chastic and non-stationary deterministic variations
(cyclic movements). Therefore, a hydrologic series
observed for a sufficiently long time cannot generally
be considered the sample from only one population.
Inconsistency and non-homogeneity are often encountered
in hydroleogy. Many hydrologic observations have a
higher or lower degree of non-homogeneity or inconsist-
ency. Therefore, the study of the effects of non-

homogeneity and inconsistency of data on the properties
of a hydrologic time series is a very important subject
for practical application.

02 34 years e 52 years

O'C I " A A i i ll i i - i A i L 1 i i
0 5 10 1520 2530 3540 45 50 55 60 6570 75 80 85
D2t Period 1869-1903 3 2nd Period 1903- 1955 L
D o 2

Fig. 1

Fluctuations of annual flow of the River Nile as an example of

inconsistency in data of the time series



The essential practice in the water resource
field is to use the statistical data of past observa-
tions, make an inference about the population of a
hydrologic variable, and expect that the basic proper-
ties will hold true in future samples. However, if
the past data show an inconsistency and non-homogeneity,
the statistical inference about a unique population may
not correspond to future samples. Future samples may
not have non-homogeneity or they may experience another
type. Two examples, the Nile River and the Colorado
River, are discussed here for a better illustration of
inconsistency and non-homogeneity in order to show
both their importance and ways of treating them.

3. Two examples of inconsistency and non-homoge-
neity in data. The case of the River Nile at Aswan Dam,
Fig. 1, 1s given here as an example of inconsistency [1].
Before the construction of Aswan Dam (1903), observa-
tions were made by using stage gauge downstream of the
present dam-site. From 1903-1939, discharges were
determined accurately enough by relating sluice measure-
ments to the gauge-stages downstream. The subsequent
rating curve was then applied in order to determine the
discharges before 1903, from 1869 to 1902,

After the dam was put into operation, the down-
stream degradation through the removal of sediment
islands and through bank erosion must have changed the
rating ‘curve which existed before the dam was built.
The results [2] show that the mean discharge for 34

years before 1903 (1869-1902) was 3380 m%/s, or 1.15 in
modular coefficients, Fig. 1. The mean discharge for

52 years after 1903 (1903-1955) was 2650 m3/s, or 0.90
in modular coefficients, Fig. 1. The four-year period
prior to the operation of the reservoir from 1899-1902,
shows a mean flow close to the mean of the second period,
1903-1955. One wonders if this was associated with the
backwater regime above the dam due to its construction,
and consequent deposition of coarse sediment upstream
of the dam, or if the degradation of sediment, banks,
and sediment islands downstream of the dam, was not
really started in 1899 instead of 1903. Though the
man-made reservoir increased the losses by evaporation
and eventuallg by seepage, the difference in the mean
flow of 730 m®/s between the two periods cannot be
chiefly explained in this manner. Four factors might
have combined to show a 25% difference in means of the
two periods:

(a) The natural stochastic variation may have
been so that the 34-year period (1869-1902) was much
wetter than the 52-year period (1903-1955). However,
the difference of the two means of 0.25 in modular
coefficients (25% of the mean for the 86-year period,
1869-1955) has only a 0.01% chance to be produced by a
natural stochastic fluctuation. If the time-intervals
are divided into 29-year (1869-1898) and 57-year periods
(1899-1955), then this difference would be still greater,
and the probability of its occurrence would be smaller
than 0.01%.

(b) Inconsistency in data was brought about by
the use of a rating curve which was produced after 1903
and applied to river gauging stages before 1903.

(c) Non-homogeneity in data was produced by the
reservoir in the form of increased evaporation and per-
colation into the river banks, rocks and soils.

(d) Non-homogeneity in data was produced by an
increase in upstream water consumption, by larger lake
evaporation and by irrigations.

One might be tempted to assume a long-range per-
sistence or periodicity in the annual flow of the Nile
River. Due to the fact that a preponderant number of

rivers in the world do not show long-range persistence
or periodicity, the probability that it exists in. the
Nile River should be very small indeed. Therefore, one
should postulate a hypothesis for this example. Spe-
cifically, the assumption is that the factors in

the combination of stochastic variation, inconsistency
in data, and non-homogeneity in annual river flows
produce the graph of Fig. 1. The planners of the New
Aswan Dam were, therefore, very wise in using the data
of the period after 1903 for various water resource
problems involving the reservoir and the Nile River
water allocation, and particularly for their estimation
of properties of inflows into the new reservoir.

Another instructive example is the non-homogeneity
in the annual river flow of the Colorado River at Lee's
Ferry Station, between the Upper and Lower river basins,
as given in Fig. 2. Figure 2 shows the virgin and
measured (historical) annual flows at this station.
Until 1947, the information came from House Document
No. 364, Washington, D. C., 1954 [3]: Colorado River
Storage Project; and for years 1948-1959 the data were
obtained from the U.S. Department of Interior, Bureau
of Reclamation, Regional Office, Region 4, Salt Lake
City, Utah. The following information and test of the
example on non-homogeneity is mainly from a publication
on the Colorado River Basin [4].

It might be that some inconsistency exists in data
prior to 1914. In the reference [3], page 141, it is
stated: '"Although inaccuracies are risked with the
extension of records prior to 1914, the Bureau of
Reclamation made extensions to include the 1896-1947
period at Lee Ferry... ." In determining the depletion
of the water yield, the same reference on page 143
states: '"Stream depletions from upper basin .development,
therefore, have been estimated only at sites of use,
and aggregate depletions so determined are considered
representative of the depletion at Lee Ferry," and on
the same page, "This includes depletions from all
causes, such as irrigation and uses incident to irriga-
tion, water exports to areas outside of the drainage
basins, domestic and industrial uses, and evaporation
from storage reservoirs. The estimate allows credits
for water importations and channel salvage."

For the Lee's Ferry Station, Fig. 3 gives the
relationships of three variables: (1) annual depletion,
D, in 108 acre-feet; (2) annual virgin flow, V, in 10%®
acre-feet; and (3) time (as parameter). It is clearly
shown that the depletion has fast increased from the
turn of the century until the end of World War I, then
stayed approximately constant for the period, 1920-
1930, slowly increased from 1930-1950, then increased
faster from 1954-1957. In this case, the historical
annual flow at Lee's Ferry Station is an evolutive
time series (and not a stationary time series). To
make a series homogeneous (to compensate for depletions)
the annual virgin flows which have been approximated
give an insight as to what would be the flow if the
hydrologic factors of Upper Colorado River Basin would
remain unchanged by man's activities. Although the
approximated depletions have errors (because they de-
pend on many factors such as rough and approximate
evaluations of net consumptive water uses and on net
evaporation from the new water surfaces), and although
the computed virgin flows are less accurate than in
the case where they coincide with historical (measured)
flows, they nevertheless show a measure of man-made
non-honogeneity in the hydrologic records of the
Colorado River Basin.

The following model is defined as the relation of
annual depletion to annual virgin flow for a given
interval of years, or for a single year. They are
approximated by straight lines (Fig. 3) because a
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complex model would not be justified in view of the
errors which are inherent in the determination of
depletions. For the period 1954-1957, the depletion
model is

D=1.26 + 0.0673 V 1)

Figure 3 shows that both coefficients A and B in
equation D = A + B V increase with time. This increase
of A and B means a greater average depletion per year
with time. An increase of B means that the depletion
fluctuates more in function of the absolute value of
virgin flow with time than in earlier depletions. The
increase of B also means that the number of factors
which affect the depletion, but are proportional to the
virgin flow, increase with time when more water is
diverted to irrigation inside the basin, or when more
water is diverted out of the basin during wet years,
or when more evaporation occurs from reservoirs be-
cause of a greater mean free surface area in wet years
than in dry years, and similar factors).

The historical annual flow of the Lee's Ferry
Station is considered to be a non-homogeneous (non-
stationary) time series. In statistical words, the
information from 64 years of annual flows at Lee's
Ferry Station is derived from a mixture of populations.
Theoretically speaking, that mixture of populations
and samples may be treated statistically or probabilis-
tically if the law of change intime from one population
to the next is known. Due to the fact that most of
the changes are introduced by man's activity, and that
the laws of change in time for runoff are complex and
unpredictable, the approach of treating the mixture of
populations in annual runoff is not feasible. This is
the reason why the techniques of changing the non-
homogeneous samples into homogeneous samples are intro-
duced and practiced currently. It would be extremely
difficult to project the depletion of annual runoff in
amount and in time at the Lee's Ferry Station for the
next three to five decades with sufficient accuracy.
This means that all future storage reservoirs, diversion
projects, and irrigation schemes would have to be pre-
dicted exactly in runoff amount and in time for the
next 30-50 years. If that very approximate depletion
projection would be acceptable for economic and engi-
neering studies, it would be possible, at least theo-
retically, to treat future projected samples of runoff
starting with the mixture of populations.

The computation of virgin flows for Lee's Ferry
Station from 1896 to 1959 is also a procedure to
determine a homogeneous sample. In other words, the
computed virgin flow sample is drawn from the population
that existed prior to any depletion, under the circum-
stances of a large number of natural causes which affect
the runoff. Practical problems require however, that
computations in engineering and economics be carried
out with homogeneous samples, or one population is in-
ferred from these samples (valid for the moment of
computation, or for the time interval a project would
normally serve). For the period of 1954-1957, applying
the depletion model of eq. (1) to the virgin flows of
the sample, 1896-1959, a new homogeneous sample valid
only for the period 1954-1957 is obtained. Assuming
that small changes in depletion have taken place from
1958-1960 in comparison with the period from 1954-
1957, the new homogeneous sample can be considered
the same as if drawn from the population of annual
runoffs at Lee's Ferry Station,valid for the late
fifties. The homogeneous sample reduced to the period,
1954-1957, is also given in Fig. 2.

By extrapolating the depletion model D = A + BV
for any other more complex model) in the future by com-
puting A and B as functions of time, it is possible to
reduce the virgin flow sample, 1896-1959, to any future
date. While planning the Upper Colorado River Basin
development, it should be possible to project the deple-
tion model, if not in function of time, than at least in
function of future projects, and even in function of

population growth. In this case, the new variate V_,
the annual flows at Lee's Ferry Station for a given L
date is

Ve = V=D, = (1-B) V - A, (2)

where ﬁt and Bt are parameters of depletion model
Dt = ﬁt - BtV, at the date t. Assuming that At(t} and
Bt(t] are,given, then Vt(V,t) would also be given. With

the probability distribution of V, as well as the char-
acteristics of sequence patterns of V given in analyti-
cal form, both probability distribution and sequence
model for Vt can be derived as a function of t. This

approach enables the computations of average hydrologic
characteristics during a depreciation time for a water
resource development project.

The above analysis leads to the conclusion that
the computation of effects of man-made structures and
measures in river basins has an important bearing on
the reliability of hydrologic data used for further
water resource developments and water project opera-
tions. The studies and calculations aimed to make
hydrologic samples homogeneous (and also consistent
by removing the eventual inconsistency in data) through
computation and analysis of depletion models (or system-
atic errors), is a new and important task of hydrologic
activities.

4. BSubject. Changes introduced into a stationary
time series by inconsistency and non-homogeneity of
data in the form of jumps (changes suddenly introduced
inside a series) and trends are the subject of this
paper. The various modelsof jumps and trends may be
superposed in a variety of ways. However, the usual
case in many applied sciences is to search for changes
which are introduced into the series as unknown jumps
and trends. In this study, the approach is opposite.
The second order stationary (time-invariant) series
with known properties is subjected to known changes
(jumps and trends) and the impact of these changes is
investigated. The main attempt of this study is to
determine the changes in the properties of various
parameters and in the distributions which occur as a
result of given types of jumps and trends so that a
comparison with the observed series of unknown jumps
and trends may be made, Specifically, the changes in
density functions, in mean, variance, skewness, kurtosis,
and serial correlation coefficients are studied. The
objective is to find the statistical properties of the
series when the known inconsistency and non-homogeneity
are introduced, and to show how these factors affect
the original homogeneous series.

5. Hypotheses for investigations. The general
structure of a hydrologic time series usually has three
main parts: trend and/or jump and periodic as well as
stochastic components. For the purpose of this study,
it is assumed that the periodic component is absent,
or the cyclic component can be detected and removed
from the original time series. The former case is
well approximated by an annual runoff or annual precipi-
tation series, or a series of similar variables of
annual values. The procedure for detecting and




substracting periodic components from the time series

are beyond the scope of the present study. Therefore,
the general model of a hydrologic time series is given
by

(3

with Rt the jump or trend component, and &, the

t
stochastic (dependent or independent) component, and
Xt is the resulting series. For the sake of simplicity,

the £y-component in this study is assumed to be a

sequence of mutually independent random variables of a
second order stationarity. The trend and/or jump com-
ponent is assumed to be a known mathematical function
of time.

6. Rescarch program. The independent stochastic
time series is used for the investigation, and the
inconsistency and non-homogeneity of various types are
introduced into the series to produce the non-homogeneous
series. In terms of stochastic processes, the virgin
(stationary) values of an independent hydrologic series
are assumed to be mutually independent and stationary
random variables for the following investigations. 1In
the same terms, these variables are identically distri-
buted along a time series with the known probability
density function.

Two independent stationary time series, one with
the normal and the other with the lognormal probability
density function are used. It is not considered very
important to use the dependent stationary series for
further investigation because it is expected that it
will show results similar to the effect of inconsistency
and non-homogeneity as in the case of an independent
stationary series.

The types of non-homogeneity introduced into an
independent stationary time series in this study are:

(a) Constant jump for a part of a series,

(b) Combination of constant jumps along a series,
(¢) Linear jump for a part of a series,

(d) Combination of linear jumps along a series,
(e) Linear trend, and

(f) Polynomial trend.

The effects of non-homogeneity are studied on
these properties of variables:

(a) Probability density functions,
(b) Expected values (means),

(c¢) Variances,

(d) Skewness coefficients,

(e) Kurtosis coefficients, and

(f) Serial correlation coefficients.

The first case of the constant jump in the series
introduced at any place between its beginning and its
end is given in detail in Chapter II in order to better
illustrate the method of investigation and consequent
results. The other cases of non-homogeneity in other
chapters are presented as final results to strengthen
the conclusions of Chapter II and to show the differences
in effects of various types of non-homogeneity.

The majority of non-homogeneity and inconsistency
types in hydrology are inthe form of jumps and trends
and their various combinations. The cases studied
provide a sufficient general picture of the effects of
non-homogeneity on the properties of a hydrologic time
series.



Chapter II

EFFECT OF A CONSTANT JUMP

1. Definition of the change introduced by a con-
stant jump. A constant change, &, is introduced into
a series of size N at the position m from the
beginning of the series and n from the end of the
series, with N = m + n, so that

X, =g fort <m

t t’
¢ (4)
X, = ct + 6§, fort>m
where x, is the historical value of a non-homogeneous

t
hydrologic time series, £ is the virgin value of an

independent stationary series, and § is the constant
jump being positive or negative throughout the last
part, n, of the series. This is graphically repre-
sented in Fig. 4.

X=€+3
Noa A /’Vf\f\
TN \V v

\/

! 1 L ]
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Fig. 4 A scheme of the constant:jump introduced into
an independent homogeneous series, €5

This case may simulate a constant annual diversion,
§, of water from one river basin to another, with a
change ¢ or -§, It is clear that X, values in the

second part are biased in comparison with the first
part or the converse. The position, m, corresponds to
the time when the annual diversion begins. The ratios
p=m/N and q = n/N, with p+q = 1 are used in this text
as the dimensionless measures of the relative position
of the constant jump in the series. For the non-
homogeneity to be present in a series, it must be shown
that 0 < p<1and 0 < q <1, In other words, the con-
stant jump should not be at the beginning or the end of
the series. In order to measure the importance of the
constant jump on the series, the relative values §/X
or &/ g may be used where X and o, are the mean and

the standard deviation of the series of a variable x.

2. Effect on a probability density function. It

is assumed that €y is an independent and stationary

random series which has g(e), a given probability den-
sity function, Then in the part of the series X.= €

tl

and in the part of the series, x_ = €, * §, both have

t
g(+) as their probability density functions. Further-
more, the density function of X is determined by

giving the weights m and n to the densities of

€, and zt+6, respectively, or

f(x) =p g(x) +q g(x-6) (5)

The probability density function, g(e), usually is
assumed to be a known function. Normal and log-normal
probability density functions are studied for this
constant jump. For €., an independent normal function

with the mean of T and the variance of ui, the proba-

bility density function of non-homogeneous series X,
is

-(x-t}Z/Zt:i -[x-G-E}2/2ci

£(x) = —B— ¢ TR S (6)
o V21 o /ZT

because the constant jump does not change the variance
aﬁ in each part.

For €y

similar equation is obtained with some modification as

, an independent log-normal function, a

- (1nx-€_)?/202 -[1n(x-6)-E 13202
f(x}=—2—e n S : B n n’
a_xv2n o_(x-8)/2%
n \
for x » 6, and
~(1nx-E )2 /202 Y ()
£(x) = —B—e T M
o xV2n
n
/

for 0 < x < &

where En is the mean of 1n e, and Ui is the variance
of In €. As the value X, can be less than &, but only
in part m of the series, f(x) must be separately

represented for values above and below &.

It is characteristic that eq. (6) gives either a
two-peak or one-peak new probability density function.
If the hgdrologic variables are standardized, with
T =0, s = 1, or N(0,1), and a positive constant

jump & is introduced in the second part of the series,
then eq. (6) becomes:

£x) = B o X/2 4 A 4822

(8)
s Vi
. The first derivation of f(x) with respect to x
is
-x2 2
£1(x) = 2 o /2 [p(-x) +qe’ ""’2}(5-;3] - ©®
o™

Position x, for the maximum and the minimun of f(x),
are roots of f'(x) = 0, or



q et D) ~px=o (10)

because exp[-xzfznyF is a non-zero quantity. The
selution of eq. (10) is found on the digital computer
by using the trial-and-error method. The results show
that the number of roots in eq. (10) is either one or
three, depending on the values q and &, Whenever there
is only one solution in eq. (10), the probability den-
dity function has one maximum (peak). When there are
three roots, there are two maxima (peaks) and one
minimum in the probability density function.

It is clear that the probability density function
of a non-homogeneous series f(x) is composed of two
normal density functions with two different means,
zero and &, respectively, but each with the same
variance of unity. Intuitively, one can expect that
there are two peaks in the probability density function
of a non-homogeneous series f(x), one around zero and
the other around §, if ¢ is large enough and q is
close to 0.5. The exact positions of peaks for a given
6, depend entirely on the value of q. Obviously, the
value of q indicates which of the two mormal density
functions has more weight. Small values of q mean
that the standard normal density function has more
weight , whereas large values of q mean that the normal
density function with the mean of & has a greater
weight. The closer the value q is to 0.5, and the
greater value of §, the more distinguished are the
two peaks in the density function f(x). In the oppo-
site case, the new probability density function is a
one-peak distribution.

3. Criterion for one-peak or two-peak distri-
butions. The criterion for having one oT two peaks
in the probability density function of non-homogeneous
series f(x) is obtained from the results of computa-
tions on the digital computer. Equation (10) is solved
for various values of q and §&. The results tell at
what value & the function f(x) begins to be two-
peak distribution for a given value of q. For values
of q far away from 0.5, & must be very large to
sufficiently separate the two normal probability
density functions in order to obtain the two peaks.
When q is close to 0.5, the two normal probability
density functions with means zero and &, respectively,
are almost equally weighted. In that case, even a
comparatively small value of & will be sufficient to
create the two-peak probability density curves.

Figure 5 shows the regions (1) and (2) necessary
for distributions to have one and two peaks in terms
of critical values 4, and 60 , respectively. The

line separating the two regions is obtained by connect-
ing the 12 computed points of (qo,ﬁoj of eq. (10). This

division will be discussed in details further in the
text. Figure 5 will be replotted on different coor-
dinate scales and an empirical equation of q, = W[éo}
will be developed. For i 0, or q, = 1, a two-peak
probability density function will never occur for any
value of 60. For q = 0.5, the critical values 60

can be obtained analytically.
For q = 0.5,eq. (10) becomes

RICEL 2 P

w i O (11)

By inspection, x = §/2 is one of the roots of
eq. (11). Therefore, f(x) will be either the maximum
or the minimum at x = §/2. 1In order to detect whether
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Fig. 5 The two regions (1) and (2) indicating the
values of q = n/N and & (constant jump) and
designating if the probability density function
of a non-homogeneous series, f(x), has one or
two peaks: (1) One-peak region, (2) two-peak
region

it is the maximum or minimum of f(x), the second

deviation of f(x) is

dx? 2Vz2r

¥ x{x-s)eﬁ(x'éfzﬂ i

_32/2
42 f(x) = S [.1-.,5("-5”)-{x-s)a°5f=~5f2hxz

(12)

and

Qi_ £(x)

dx?

(13)

2/21 o

1 _-82/8[ 5
B —— &
[2 2 2)

x=68/2

It is obvious that for é = 2, the second derivative
of f(x) is equal to zero at x = §/2. For [§]| > 2, the
second derivatives are positive. For |§| < 2, the
second derivatives are negative. This analysis tells
that the probability density function of a non-homoge-
neous series for q = 0.5 has both its maximum and its
points of inflection at x = 1 for § = 2, Therefore,
it has only one peak which is very flat. For |8] > 2,
the probability density function has its minimum at
/2, which implies that it has two peaks. For |&] < 2,
the probability density function of a non-homogeneous
series has its maximum at §/2 which implies that it has
only one peak. Therefore, the critical value of §
necessary for the probability density function to have
one or two peaks is § = 2 for the case 4, = 0.5.

Both the probability density at x for the maximum
and for |é| < 2, and the probability density at x for
the minimum and for |6]| > 2, in the case q = 0.5, are
equal to



1. e'62/8 (14) TABLE 1 Critical values of 60 for various values of
Yin q, so that two peaks occur in a density func-

tion if 4§ > 60 for given q,

It is obvious for q = 0.5 that the normal curve
of eq. (14) is the locus of the above maxima or minima

of the probability density of a non-homogeneous series q, .
for various values of 6. For q = 0.5 and the four
values of §(6 = 0.0, 6§ = 1.00, 6§ = 2.0 and 6§ = 3.,0), 0.01 4.09
the four probability density functions are given in 0.99 =
Fig. 6.
g 3.76
For the values of q different from 0.5, the 0.05
solutions of eq. (10) for x cannot be obtained in 0.95 3.59
the explicit form. As was discussed earlier in this 0'10
text, the trial-and-error method is used to find the 0.90 3.32
solutions. The critical value of 60 for a given q, 0'15
4 3 b . L
is the maximum value of & giving only one solution 0.85 234
in eq. (10). Eleven values of & and the correspond- 0.20 2.99
9 0.80 .
ing symmetrical values of q, are listed in Table 1. 0.25
i 2.85
They are plotted in Fig. 7 in logarithmic-probability 0.75 8
scales in such a way that q_ = 0.5 corresponds to 0.30 2.72
2 0.70 7
percentage zero, L 0 corresponds to percentage 100, 0.35
g 2.
and §  is plotted on the logarithmic scale. Then 0.65 e
0.40
q, = ¥(8,) as a straight line in this paper. The 0.60 2.44
mathematical representation of q_ in terms of §&_ is 0.45 2.28
9 2 0.55 :
then .
0.50 2.00
= 2 2 2
. g 3n|.s°| \ . {1n|6°] 1.047) /2(0.1?4)d‘s
°©21 Y5 .0.174/7%
(15)
peak, otherwise it has two peaks. It should be noted
Constants 1.047 and 0.174 are estimated from Fig. 7. that the new density function has only one peak for
If q,>q>1-q,, the distribution has only one any value of q if [8] < 2.
f (x)
04 -
03 -
02
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X

Fig. 6 Probability density functions for various values of § with © = 0, ¢, = 1.0 and q = 0.5
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Fig. 7 The critical value, Qs as related to, Go

(constant jump), for determining whether the
new probability density function will have one
or two peaks

The value of & indicates the distance between
two different weighted probability density functions.
Therefore, the positive and negative signs of & in-
dicate the relative position of these two probability
density functions. The two-peak density function de-
pends on the value of & regardlessif it is positive
or negative. Based on this explanation, the absolute
value of & is used in eq. (15) for the general case.
To find the critical value 6o for a given value q,

from eq. (15), a trial-and-error procedure is necessary.
If the resulting frequency curve has two peaks and a
minimum of f£(x) between them, the x-values are desig-
nated by ml(first peak), m, (minimum), and ms{second

peak). For a one-peak density function, the mode is
designated by m.

It is obvious that the position m of the peak
in the one-peak probability density function is closer
to either € or E + §, which depends only on values
qand & . From eq. (6) it follows that the smaller
the q, the closer m is to © and the converse, and
the larger the gq, the closer m is to £ + §. For

the two-peak density function, my and m, are around

€ and T + & , respectively. The positions of m

and m. obtained on digital computer are plotted in

Fig. 8 versus & by using q as parameter. The dis-
tances between the positions of one peak and the mean
of zero and the second peak and + §, are equal in a
symmetrical probability density function. For q = 0.5
and & < 2, the position m has a linear relationship

with & , or m = §/2, The position ml(or m3) linearly

increases with & up to & = 2. For the other values
of q and for q = 0.5 but in the region of & > 2, the
positions of m, or m, are non-linear relationships to
§. Therefore, the vglues m and ms depend on &, as
shown in Fig. 8. They will increase as ¢ increases
until they reach a maximum, then they decrease as &
further increases. It is evident from Fig. 8 that for
the standardized variable e(% = 0, o, & 1) and for

6 > 4, the positions m, and m_, are approximately at

1 3
0 and ¢, respectively. For non-standardized variables
and § > 4 9 these positions are approximately &

and € + §. For one-peak density curves and ¢ > 4,
the position m is approximately either at 0 (for
small q) and at & (for large q). From practical view
point and ¢ > 4 (or § > 4°c) the values q and 6

barely affect the positions My, Mg, and m.

10

Fig. 8 The positions my and my of peaks in the

probability density function for various values

of q and &, with me = § - mny

The position of the minimum, m,, in two-peak

distributions increases as ¢ increases. The value
My, is equal to &/2 for q = 0.5. For q ¥ 0.5, m,

calculated on a digital computer and is shown in Fig. 9.
The family of curves of m, is symmetrical about the

q= 0.5 for q > 0.5. For small &, m

is

2 deviates signifi-

cantly from the value §&/2 when the minimum exists.
For large & the deviation of m, from §&/2 as

(m2 - &6/2) is a constant. This constant increases as

|q - 0.50| increases.

The absolute difference between the probability
densities of peaks, in two-peak distributions, is

1 -2/

D=—1— e

2
(2q-1) + (1-2q)]. (16)
V21 o 4
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Fig. 9 The position, m,, of the minimum of f(x) between

the two peaks in the probability density func-
tion of a non-homogeneous series for various
values of q and §.

2
For large 6§, e'6 /2 will converge fast to unity, and
then the difference, D, depends only on q. This is
shown in Fig. 10, on which the family of D curves ver-

sus & are plotted with q as parameter. Practically,
curves become horizontal lines for &6 > 4 for all values
of gq.

4. Relevance of above analysis to hydrology.

Some hydrologic variables (daily flows, monthly flows,
hourly, daily or monthly precipitation, and so forth)
exhibit two-peak probability density curves under
particular conditions. In most cases, the time series
of these variables are composed of a periodic (of day
or year) and a stochastic component. The periodic
component is mainly present in the means and standard
deviations of these variables. The coefficient of
variation, the skewness coefficient and the covariances
of the remaining stochastic component (obtained by
removing the periodic movement in the mean and in the
standard deviation) show relatively small or no peri-
odic movement. If u and o are the mean and

standard deviation at any hour of the day, or any day,
or any month of the year, then £ = (xi-"r}lcr is
considered as a stochastic component, with X5 the

original variable, and M and o, the periodic func-

tions, with periods of either a day or a year.

If the periodic component of Mo and o_ are

T
transformed to a duration curve, and the first deriva-
tive is determined, the shape of this new curve will
be similar to a U-probability density function,
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Fig. 10 The absolute difference, D, between the proba-
bility densities of peaks in a two-peak dis-
tribution for various values of q and 4.

The U-curve may have the same effect on x-density func-
tion as a random variable with a U-shape density curve,
The stochastic components are mainly bell-shaped or
J-shaped distributions. The combination of a U-shaped
and a bell-shaped distribution often produces a two-
peak density function. A combination of a periodic
component (with U-type the first derivative of its
duration curve) and a random component (with a bell-
shaped probability density function) produces, under
certain particular conditions, a two-peak density func-
tion of the variable x. Therefore, whenever hydrologic
variables are composed of clear within-the-year or
within-the-day periodic components and a stochastic
component and treated as a univariate (instead of
multivariates), then it is expected that some variables
might exhibit two-peak probability density functions.
Indeed, this fact has been observed quite frequently.
Thus, a constant jump, as an equivalent of the periodic
component, is shown in Fig. 11, which may be interpreted
as a periodic component. Therefore, it is expected to
produce two-peak density functions for particular values
of q and &.

Various explanations for two-peak density curves
in hydrology may be encountered if one scans the litera-
ture. The first explanation is that two distinct
climatic regimes exist in river basins, when either
precipitation or runoff phenomena and their daily or

X
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Fig. 11 A periodic movement (1) may be approximated by

a constant jump scheme (2), with 61 + 52 = §




monthly variable values are considered, and the total
effect of these two regimes produces two-peak density
curves (or four inflection point distribution curves).
The second explanation is that the river flows at a
station below the confluence of two tributaries with
different flow regimes may have two-peak density curves
(two-peak histograms) if these two regimes are suffi-
ciently distinct. The third explanation is that the
two peaks and the minimum between them are simply a
sampling product, and if observations are continued
the frequency density curves will slowly converge to
one-peak curves.

The first alternative is right only if there are
two very distinct regimes of precipitation, one regime
producing small amounts part of the year and nearly
nothing the remaining time, and the other regime pro-
ducing large amounts during the period that the first
regime does not produce, and then producing nothing or
very little in other periods. In other words, a large
periodicity inside the year is created.

It is easy to contest the second explanation.
Assume that the two tributaries, with river flows x
and y, respectively, have each a bell-shaped frequency
density curve. Then the sum x+y also shows a similar
curve, If the skewness coefficients of x and ¥
are approximately equal, the variable x+y is less
skewed but is also bell-shaped distributed. Only when
the conditions of the first alternative are met by
the two distinct and different tributary regimes in
time, the two-peak frequency density curves may occur
as the result of periodicity within the year.

The third case is one of sampling errors, with
two or more peaks in histograms occurring by the pure
chance. It can be shown that in the cases of a com-
posite series (periodic and stochastic components)
the differences between peaks, between frequency den-
sities of peaks, and between the frequency density of
the minimum and frequencies of the two peaks, are
statistically significant, even for medium size
samples.

5. Effect of constant jump non-homogeneity on
the mean. The mean of the distribution of a constant
jump non-homogeneous series is

o oo L]

E(x) = X = [ xf(x)dx = [ x(1-g)g(x)dx + [ x q g(x-8)dx
= (l-q) € + qF + q6 = € + 8, (17)
because | xg(x)dx = € and [ g(x-6)dx = 1.

-C0 -0

It is obvious from a simple analysis that the change
in the mean produced by this type of non-homogeneity

is qd. The absolute change of mean increases with
q and |&].
6. Effect on variance. The variance of a constant

jump non-homogeneous series is

oo
02 = [ x-X)2f(x)dx = cé + (1-q) q&2. (18)

12

Non-homogeneity will introduce the change in the
variance with quantity of (l-q) q6%. Since 0 < q < 1,
(1-q) q52 is always a positive quantity regardless of
¢ positive or negative. Equation (18) proves, there-
fore, that the variance of a non-homogeneous series is
always greater on the average than the variance of an
original homogeneous series. The variance of a series
is always increased by introducing the inconsistency
or non-homogeneity into data. This increase has a
maximum value for q = 0.50, for a given value of Ug

e

and §, or for a given dimensionless parameter «
as shown in Fig. 12.
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Fig. 12 The ratio of variances of a non-homogeneous
and a homogeneous series, created by a con-
stant jump, versus q for various values of
a, with a = §/02
7. Effect on skewness. The skewness coefficient

of a constant jump non-homogeneous series is

+o= [n]
=L 0! £ dx =D 8+ (20-1)(@-Dae® (19
03 = X
X
where BE is the skewness of the original homogeneous

§

When q < 0.50 but are mega-

series, and o 5/UE.
tive, or q > 0.50 but & are positive, the quantit%
(2q-1) (q-1)qa® is negative. In these cases olf < o'f .

g is definitely smaller

As
than Se'

o, O, in these cases
X

A general method to determine which of the two,
g or BE, is larger, can be developed. If the

difference between the skewness of a non-homogeneous
series and an original homogeneous series is denoted by
AR, then



=8-8 =L 3 .48 3
A = B BE = p {Bs(ce - cx) + (29-1) (q-1)q6
x
Since ci is always a positive quantity, 4B 1is posi-
tive only when
B (a3 - 03) + (29-1)(q-1) q8% > 0 . (20)

From eq. (20) it follows that the critical value

8. of B, is

= n §3

B, = (29-1)(gq-1) q (21)

o

X >
The skewness of a non-homogeneous series will then
equal that of the original series if B "By = Then
B> B if BE < Bay and B < B if Be > Bc -
This holds true particularly for the symmetrical

probability distribution ‘such as the normal distri-
bution Be = 0, and when the skewness is not changed

If q > 0.50 and
is positive, the
If q > 0.50

negative,
These prop-

by non-homogeneity only if q = 0.5.

4 1is negative, or q < 0.50 and §
skewness coefficient £ is positive.
and § is positive, or q < 0.50 and §
the skewness coefficient 8 is negative.
erties are shown in Fig. 13.

8. Effect on kurtosis. The kurtosis, y, of a
constant jump non-homogeneous series is

1 4o
y=— | (xX) £(x) dx =
at -
X
=1% oh v, + 6(1-q)q8%02 - q8* (¢-1) (3@3qr1))  (22)
Ix
where Y is the kurtosis of the original homogeneous

series, and all other symbols are defined as stated.
The difference of the kurtosis of the two series
(after and before the non-homogeneity is introduced)
denoted by Ay, is

1
SRR Ll i R Ll e
X

4

Because o is a positive quantity, Ay is a positive

value only when

vi(of-0}) + (1-q)qé?(602+ (3q7-3q+1)6%] > 0. (23)

From eq. (23) it follows that the critical value of

1s
YE
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1 t;n

I
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0] 0.50 100
q

Fig. 13 The criterion, Bc’ versus q_ for various

values of c with ¢ = ad/(== -1)
3

o]
E

[602 + (Bq® - 3q+1)62]
v3 = (1-q)qs? —= . =

L
] a
X E

(602 + (392 - 3q + 1)62]

3 ol
UX £

(24)

When y_ =y, , then &y is zero, or y =vy_ . 1f
. 3 < =
Yo € Yoo then y >y ; and if v > v, then y < vy,

For the normal probability density function Yy 3y

and the kurtosis of a non-homogeneous series Ya is
3 if q = (1%/1/3)/2, for all values of &. For any
value of &, if q 1is between % - ﬁg and 0, or

% + ﬁg and 1, the effect of non-homogeneity increases
the kurtosis. If q 1is between % - Zg and % + £§ ;

the non-homogeneity in data decreases the kurtosis.

9. Effect on serial correlation coefficients.
Expected values of the sample serial correlation
coefficients of a homogeneous independent random series
are zero (except of T,= 1), because the series is

assumed to be sequentially independent. However, in
the parts p and q of non-homogeneous series, the
values are still mutually independent, but for the
total series, the expected sample serial correlation
coefficients are not zero because the computed mean is
not zero. The variance is not oi and the expected

covariances are not zeros.




The computational mathematical expression for the
sample serial correlation coefficients used in this
study is

1 N-k _ .
N__klzl (xi-X) [xi*'k‘-X)
T = : (25)
a
X

where ci = ci + (1-gq)qe? is assumed to be a constant
parameter. The expected value of E{xi-ij{xi+k-§) can

be found either according to k or to the relative
value k/N. The region of k/N is assumed to be less
than the smaller value of q and 1-q, so that

N-k

[ o e |

v (x,;-%) (x; ,, -K)=(N-K)q?62 + (n-K)62 - q6% (2n-K)

because E{si - E)(ci+k—5) = 0 for k # 0, and

E(xi L IR E(xi+k - €) = 0, and n = the part of N

between the position of constant jump & and the end
of the series. In the regionm< k < n, where m is
the part of N between the beginning of the series
and the position of constant jump,

E(x;=%) (X, -%) = (N-K) q%62 - (2n+m-2k) qé% +(n-k) &2.

/ot

03

If n <k <m, then I(x;-X)(x; ,-%) = (N-k)q282

If the value of k 1is greater than the larger value
of m and n, but of course is less than the value of
N, then I(x;-%)(x;,,-%) = -q6%(N-k) (1-q) . From these

results, the expected values of the sample serial
correlation coefficients are various function of the
lag k, according to the value of k and the position
of the jump, m. In summary,

- nqﬁz.

r = o2[q%+ giigg%l:Eﬁﬂ, for é—:_l < Min (p,q)

r. = pa? (%f% -4q) , for p< i <q

k
(26)
A
T, = a?q? (K:E» 5 for q < 2 <p
Ty » -pqe? for max(p,q) < A <1
where o = G/ax , p=n/N, q=n/Nand X = k/N are

dimensionless parameters.

The correlograms of eq. (26) are shown in Fig. 14
for various values of q. It should be noted that the
correlograms are identical for the values q and 1-q.
Whenever k is greater than m and n (whichever is
larger), the expected sample serial correlation coef-
ficients are constants and are independent of k but

q=0lor Q.9
-0l
02o0r08B
208 L 03 or O7
0.40r 0.6
q=05
-03 1 | 1 | 1 1 1 | | ]
0.2 04 06 08 ) 1.0
A= k/N

Fig. 14 The relationship of rk/uz, with a = Gfsx , versus } = k/N, for various values of q = n/N, and for the

case of a constant jump, &, introduced into a homogeneous series at the position p = m/N or q = n/N.



depend on q, 6§, and . As shown by eq. (26), the
expected serial correlation coefficients of the non-
homogeneous series always have values different from
the expedted coefficients of a homogeneous series. As
the hydrologic series is often subject to inconsistency
and non-homogeneity, a portion of the positive depend-
ence at the initial parts of the correlograms (see Fig.
14) also comes from these two factors, apart from the
effect of other basic physical processes of nature.

If rk/a2 is differentiated with. respect to q
and set-up equal to zero, one solution can be found in
both regions, % <k < Min(p,q) and Max(p,q) < » < 1,
Therefore, rk/rx2 will have the maximum value when
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q = 1/2 for a given value «. The maximum value of

r,/a? s dpmth ) in the region 2 A < Min (p,q),
k 1 451-4 N
and (- EJ in the region Max(p,q) < A < 1.

The correlogram of a non-homogeneous series has
the property that the serial correlation coefficients
are constant negative values for the lag greater than
a certain value. This property may provide a simple
way for detecting the non-homogeneity in a time series.
If the analysis of a hydrologic time series shows that
the serial correlation coefficients follow approximately
a negative constant value after the lag, k, is larger
than a certain value, the hypothesis that there may be
non-homogeneity present in the series is attractive for
further investigation.



Chapter III

EFFECTS OF A COMBINATION OF CONSTANT JUMPS

1. Definition of change by constant jumps. The
current hydrologic practice shows that changes occur
in a sequence which may be composed of constant jumps
at several positions in a series. In this case, sev-
eral positive or negative constant changes, ﬁi, ocecur

along the series at various positions Q = ni/N, where

n, = length of the series after the jump 8 and be-
h

fore the jump &.41, so that £ q, =1, or I n, =N,

% i=sl i=1 *
with h = total number of subseries, the first length
included. This case would correspond to many constant
diversions of water in or out of a river basin with
varying values of 8§ and Q-

2, Effect on probability densities. The proba-
bility density function of a non-homogeneous series x

t
of constant-jumps is determined by giving the weights
q; to probability densities of [et - ai) respectively,
or

h
£(x) = I q, 8(x-5,)
i=1

(27)

where g(-) is the basic probability density function of
e. If g(-) is the normal probability density function,

then
1 )
hooq 7z (€44
f(x) = & e ; (28)
i=1 UE/fF
When g(-) the lognormal probability density function,
1 2
h a ~ gy Beleedy) = u )
) » e g ;
i=1 Un{x-éi]/fF
for x > max [61, 62, ver 48p), and
1 5 2
q. -~ 9oz [In(x=8;)-p ]
f(x) = & --—-1—/__3 B (29)
i<v on(x-GiJ 2n
where v is the subset of i for which 6i is less

than x. The probability density function f(x) may be
multimodal (several peaks) which depends on values a;
and §..

i

3. Effect on the mean. The mean of the new series

is

o h
E(x) =X =] xf(x)dx=%+ [ q.6, .
o e =

(30)
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In this case, the change in the mean because of non-
homogeneity in the form of several constant jumps is
h

£ q,6, . As 6. may be positive or negative, it
jep 11 i h
can happen that the mean is unchanged if I qiai =0,

i=1

or it can also indicate there is no change in the total
balance of water in a river basin for the sample size
N. It is often encountered in practice by the concept
of water replacement or interchange, without changing
the water balance of adjacent river basins. However,
the other properties of river regimes may be highly
affected even in this case of unchanged mean.

4. Effect on the variance.
non-homogeneous series is

The variance of a

o h h
- S SN2 e 2 2
o2 L (x-R)2£(x)dx = o2 :El q;8; [151 q;6,)%. (31)

It is obvious that the second term in eq. (31) is
always greater than the third term. Hence the vari-
ance of series is increased by the non-homogeneity of
constant jumps Gi. If the mean is unchanged, as

shown in the above discussion, the variance can still
be significantly increased.

5. Effect on the skewness. Similarly, as in the
previous text, the skewness coefficient B of a multi-
ple constant-jump non-homogeneity is

1

B= = (32)
cx

3 . . 3
{szc;{z qiéi][Z(L iniJ -3 Eqisi2]+2qiéi

where sums in eq. (32) are all from i =1 to i = h.
If € is a normal variable with 8 = 0, the skewness
of the non-homogeneous series will be either positive
(8 > 0) or negative (8 < 0) depending on the values
9 and 61. If Bs # 0, the skewness coefficient, B,

may be greater or smaller than Bz' In other words,

the combination of constant jumps and their positions
do not work only in one direction, such as is the case
with the variance (the second central moment).

6. Effect on kurtosis. The kurtosis coefficient
is also well affected by the non-homogeneity in the
form of multiple constant jumps, so that

- 462 2_ 21 = 4
Y = T:u£+ﬁcelzqiéi {Eqiﬁi) ] 3{£qiai)

MQ&' ir—-

+ (29;8,)[6(zq;63) (2q;6;) - 4 q;63) + 1q;8; ) (33)

with all sums in eq. (33) from i = 1 to i = h. The




non-homogeneity may cause the kurtosis to increase or
decrease which will depend on values a4 and ﬁi. How -

ever, an anlysis of eq. (33) shows that on the average,
the value, v, would be mainly greater than y, or the
distribution of x should tend to have a flatter
central part than the variable, e.

7. Effects on serial correlation coefficients.
The expected values of sample serial correlation coef-
ficients are given here only for the parameter X = k/N
which is less than the minimum value of qi[k < Mg N,

which is k < n_. ,) or
min

h-1 h
¥l & [§B
ja1 9 i=1

I‘k:

ﬁ%g- q.6.)]

h
E
S 0 |

43630 (854 =

i=1

q;8;)? (34)

1

+
-2

h
(nj-k}(aj - f

j=1 i

where k < min (n

1* "y h -
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Many hydrologic processes may be exposed to shifts
(slippages) in the form of changing systematic errors
of constant jumps. A similar case occurs with water
withdrawals to or from a river, especially in complex
water resource developments and operation schemes.
Therefore, an independent series (say approximate the
series of annual precipitation) becomes a time depend-
ent variable by a combination of various constant
jumps along the series. Or, if a series is already
dependent, the non-homogeneity of this type increases
the dependence, on the average. This statement '"on
the average" needs further explanation.

A sample from an independent normal variable may
show a time dependence (though not significant). By
adding a constant jump to this sample, it may occur
by pure chance that the dependence of the non-homoge-
neous sample becomes smaller than in the homogeneous
sample. However, if the same procedure is applied to
many samples, the average result will show that the
dependence is produced by constant jumps. If depend-
ence already exists in the homogeneous series, it will
increase in the large majority of samples.

An independent variable ¢ will become a depend-
ent variable x by a sequence of the constant-jump
source of non-homogeneity.



Chapter 1V

EFFECT OF LINEAR JUMPS

1. Definition of the change introduced by a
linear jump. A non-homogeneity is introduced at posi-
tions t between m and N of the series in the form
of

X, = (1+#I)e , form<t <N

(35)

.Kt = Et,

for0 <ts<m,
or along the part n, with I = constant. In other
words, X, is proportional to L by a constant different

from unity along the second part of the series, where

Xy is the historical value of a non-homogeneous series,

while € is the virgin value of an independent station-
ary series.

This case may simulate a diversion of river flows
which are proportionalto discharges at a river gauging
station. In other words, if a partition of river dis-
charge is made by a simple rule of proportionality,
the change in the river from which water is diverted is
equal to a negative linear jump. If the evaporation
from a reservoir is approximately proportional to the
annual inflow (higher reservoir levels and the corres-
ponding larger evaporation surfaces may be linearly
related to annual inflows), then the loss of water
from the initiation of reservoir operation may be
closely described by a linear jump. If systematic
errors are proportional to the values of a hydrologic
variable, the linear jump of eq. (35) may well describe
this inconsistency in data from beginning to end.

2, Effect on probability density function. The
variable x/(1+I) will follow g(-) along the part n.
The probability density function of the non-homogeneous
series is then given as

X
£(x) = p g(x) + q 237D (36)
with g(-) the probability density function of the
homogeneous series.

If it is assumed that the homogeneous series, €er

follows the normal distribution with mean & and

variance oﬁ , then
- -(x-E)2 /202
f(x) = —L— e ¢ &
o V2n
£
~[x-(1+I)E1%/2(1+1) 202
PYSEINN. -~ 7))
(m)aalﬁ

If the basic probability density function g(-) is Iog-
normal with the mean Eh of Ine and the variance On

of Ine then
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1 2
- igrﬂln x-Eh]

flx) =—E— e ¢ +
o x VZr
n
1 (1n x-Z_-1n(1+1)]2
5oz (In X-€ - n(1+1)]
b—a__ T (38)

o x V2m
n

for 0 < x <o and I > -1,
When g(-) is the normal probability density func-
tion of zero mean and variance uz, f(x) is composed

of two normal density functions both with the mean
zero but different variances, oi and (1+1)2 oi,

respectively. In this case, regardless of values
and "I," the probability density function of a non-
homogeneous series is always one peak function located
at x = 0 and symmetrical about it. For I < 0, and
particularly for q large, the variance of a non-
homogeneous series is less than oé of a homogeneous

If I < 0, the variance of (1+I)Et will be

q

series.
smaller than the variance of s and for a large

value of q, the probability density function with a
small variance is more weighted than the unchanged part
of series, so that it results in the variance of non-

homogeneous series being smaller, or ai <ol

3. Effect of a linear jump of a non-homogeneous
series on the mean. The expected value of the new
series of X, is

an
E(x) = X = [ xf(x)dx = (1+qI)T . (39)

The change of mean because of non-homogeneity in the
form of a linear jump is qIE . The change depends not
only on the properties of the non-homogeneity of q
and 1, but also on the mean, €. If € = 0, the mean
X = 0 also.

4, Effect on the variance. The variance of the
non-homogeneous series is

o2 = fw(x-i)zf(x]dx =

(1+2q[+qIZJ(02+E2}-(1*ql)252 .

= (1+2qI + qI?) s§ + (1-q) qI%E2 . (40)

This relationship of eq. (40) is shown in Fig. 15.
The negative value of "I'" means that the second part
values (or the biased part of the series) have a
smaller mean and a smaller variance than the first
part. Therefore, the variation created by non-homo-
geneity is cancelled by the smaller variance in the



=10
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Fig. 15 The ratio of variances between a non-homogene-
ous and homogeneous series in the form of a
linear jump for various values of 1 and

G2 ) (€/o)2 =10 (2) (E/o)? =1

E
(3) (¥/s)? =0

biased part, rather than in the eriginal homogeneous
series. In this case, the variance of the non-homo-
geneous series is not necessary always greater than
for homogeneous series. This property of a non-homo-
geneous series formed by a linear jump is different
from a non-homogeneous series formed by a constant
jump.

If the change in variance produced by the non-

homogeneity of a linear jump is denoted by ﬁci , then

G, T 2 SR
dgs = og = 0F q1{2+1}cE + ql<(1-q)%T (41)

When the variances of homogeneous and non-homogeneous
series are equal, and aai = 0, then eq. (41) gives

-2
1+ {1-q)11/u§

I =

(42)

Since "1" cannot be less than minus one, therefore,
(1-q)§2 must be greater than oi , then

o
1-q> (5 =12 . (43)
T
The inequality (43) gives
q<l-n?, (44)
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where n = a:fE is the coefficient of variation of

the homogeneous series €y Because q is a quantity

which is always positive and less than the unity, then
the inequality (44) can only occur when the coefficient
of variation is smaller than the unity, or when the
standard deviation is smaller than the mean.

A conclusion can be determined from the above
analysis. When n < 1 for the homogeneous series,
q<l-n* and1I = -2/[1+[1-q)52/021, then the

variances of the homogeneous and non-homogeneous series
are equal. The non-homogeneity in this particular case
does not affect the variance. If I < -2/[1+(1-q)/n%],
the variance of the non-homogeneous series is smaller
than for the homogeneous series. Only for

I > -2/[1+(1-q)/n*] does the non-homogeneity increase
the variance.

5. Effect on the skewness. The skewness of the
non-homogeneous series of a linear jump is

1 +m _ l
g = —3]’ (x-%)? f(x)dx = - B, (1+3qI+3q12+ql?) u2+

=00 o
qx X

+ 3pql2Ee2 (2+1) + p3133 (45)

where p = 1-q .

The skewness, f, of the probability density func-
tion of a non-homogeneous series will now be different
from B of the homogeneous series. In general, T

in this case will play an important role whether or
not the effect will be a positive or a negative skew-
ness of a non-homogeneous series. The degree of change
mostly depends on q.

6. Effect on kurtosis. The kurtosis of a non-
homogeneous series is

- (1+4qI+6q12+ 4qI3 + qL“)(YEc: +48_F og) o
L
o
X

=
1

(1+3ql + 3qI2 + qi3}(45E 2 cg - 6T cé)

(46)

+

6ql(1+1)3 ‘E'Zci + (E=x)4 + qIE[(4+61+412+13)F3

4(3+31+12) B2K + 6 (2+1)E X2 - 4%3)

Kurtosis of a non-homogeneous series is usually less
than for a homogeneous series. In other words, the
probability density function of a non-homogeneous
series has a relatively flat-topped peak when a linear
jump is introduced into a homogeneous series.

7. Effects on serial correlation coefficients.
Based on the same argument as in the case of a con-
stant jump, the expected values of the sample serial
correlation coefficients of a non-homogeneous series
in the form of linear jump are obtained by a similar
procedure which gives:




1

T = al[q2+ gll:%%%—:—EiJ, for < A < Min [p,ql
3\
)
= pa? (%:r - q) for p< ) <q
} (47)
A
= uzqz (X:Ia for q <A <p
i 7
r, = -pqa Max [p,q] < A <1
where o = EI/UX , p=m/N, q =n/N, and A = k/N. The

expressions for the serial correlation coefficients of
a non-homogeneous series of the linear jump given in
eq. (47), and of the constant jump given in eq. (26),
are identical except for the differences in definition
of « . It should be noted that the expected value of
the mean and the expected values of the sample serial
correlation coefficients are not affected by the linear
jump when theoriginal homogeneous series has a mean
equal to zero. In other words, if the original series
has zero mean and the linear jump is introduced into
the series, the non-homogeneous series also has the
expected mean of zero and the expected serial correla-
tion coefficients of zero. This last statement means
that the linear change of positive and negative values
€4 around € = 0 by a multiplier (1 + I), even with

-1 <1< 0 and for a part of series (0 < g < 1), will
not affect the serial correlation coefficients when
passing from e-series to x-series. In other words,
the covariances are changed by the same proportion as
the variances. However, as most hydrologic series are
positively-values variables with ¥ > 0, the linear
jump will affect both the mean and serial correlation
coefficients, so that X # € and rk(x) # rk{ej.

8. Definition of a combination of linear jumps.
The combination of linear jumps is defined as

X, = at(1+11) for 0 < t <my
X, = et[1+12) for n 3 5—“1 + n2
i-1 i
X, = ct{1+1.} for £ n,<t< I n (48)
! j=1 - j=1
E=1 )
x, = _(1+I ) for E n, <t < I n,
t el Jat ju1 3

This is equivalent to many discrete changes along the
series during the observations in the samples of size
N. It is then assumed that

(49)

with & = number of linear jumps.

9. Effects of the combination of linear jumps
on a probability density curve of this non-homogeneous
series, and on its parameters. These effects are
given in condensed form for various properties of the
resulting non-homogeneous series:
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(a) Effects on probability density function.
s X
£(x) = T a8 () (50)
i=1 ¥
(b) Effect on the mean.
L
E(x) =X=(1+ T q.I.)E . (51)
¢ iti
i=1
(c) Effect on the variance.
2 27,2 2 27=2
9% [1+2Iqui + Eqilijca + [Equi (Eqili} 1€ (52)

with all sums of eq. (52) and following eqs. (53) and
(54) being between i = 1 and i = 2.

(d)

Effect on the skewness.

3]+

B

1 5 2
o ol [1+3£qi]i + 3£qui + Equi

X

i 2 2 2
+ 3(E X)o? [1+22qui + Eqili ]+ SEBE[Zqui[l+IiJ 1+

* (é‘-i‘)3+3(E»E)ZE(Zqui)H(E-”}E[EquiZ]*E3Equ: . (53

(e) Effect on the kurtosis.
" ¥ 4 y _— % 4
Y c“ {TEGE (2(1+1,)7q;1+4(E-X) 8 _o2[2(1+1,)"q,]
X

+

=3 3 R 2z
4EUE Bs[tqili(l+1i) ] + 6(E-X) os[zqi(1+1i} ]
12 € (E-%) og [Eqili(1+1i]2] + 652"2[5“1112“”132]

+ 4(?»?)35(£qi11] + 6 [E:i)ZE[zqiliZ]

(54)

4

4(2-X)e3(2q,1.3) + & (1q;1,*) + (E-0)*%).

Effects on the serial correlation coeffi-

(£)

cients.

-1
-k (¢ 5
1 fuml 5§

BB Fomme | ; n.12
N-k ju2 ivi-

B
m ks [

L
(B-X)(2
i=1

R-2
k{%
i=

Byky g~ Klg gl

IiIi+lJI , for 1 < k < Min [nj). (55)

1



Chapter V

EFFECTS OF LINEAR AND NON-LINEAR TRENDS

1. Definition of linear and non-linear trends.
The linear trend is defined as

X, =g, +a+ bt
t

t

which is a random variable ¢

¢ superposed by a linear

trend a + bt,

A non-linear trend in this study is of a polyno-
mial type where

= + + + t2+ .
xt Et ao alt a2 amt

which is a random variable, €., superposed by a non-

linear function of an unknown equation but developed
in the power series form.

a, b, and 2, a,, ... , a, are coefficients of the

trend, respectively, for linear and non-linear type.

The trends are very common features of hydrologic
non-homogeneity and inconsistency.
ect does not enter into full development when the
irrigation starts, so the depletion of water by evapo-

transpiration occurs slowly over a period of time until

the full implementation of the project. The same pro-
cedure happens with the return flow. The systematic
errors (say the slow change of environment around a
precipitation gauge) may be shown to be a trend. The
change of water quality is usually of a slow trend
type. Examples include the effects of river basin
conservation or anti-conservation activity on sediment
transport, or of the effects of temperature pollution
when there is a slow increase of the use of water for
cooling purposes, etc.

The fact that many techniques are developed in a
time series analysis for the detection and statistical
inference of various trends, testifies of the impor-
tance of this subject to many disciplines including
hydrology.

2. Effects on the probability density function.
The distributions of a series with linear and non-
linear trends are, respectively,

N
£(x) = ¢ | s(x-a-bt)d (58)

[+]

and
1 N m
£f(x) = N—j glx-a -a t-...-a t)dt (59)
[+]

where N is the length of the series, and g(-) is the

original probability density function of a homogeneous

ct-series.

If e, is normal, N(E,cé), and the time independent

variable, then the linear trend a+bt produces a new
probability density function

(56)

(57)

In both cases when 0 < t <N,

An irrigation proj-
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£(x) = ﬁ% ® (Nb+e;a-x} B (a+§~x} g
£ £

(60)

where ¢(y) is the standard normal distribution function
with y given either as y = (Nb+E+a-x)/o_ , or
y = (E+a-x)/aa. 2

Figure 16 gives four probability density functions
of eq. (60) with 6 =Nb, € = 0, o =1, independent with

E(rk) =0, k # 0, and with the linear trend symmetrical
for the series (the trend passes through the mean T = 0,
at the center of series at N/2).

If the distribution of €y is lognormal, and the
variable is independent,l(fn, c;, 0), or the mean of
In e is € , and the variance of In ¢ is c:, with
E(rk} = 0, except for k = 0 for €, variable, the trend
a+bt then produces the probability density function

. 1 ln(x-a)-ErI
(stﬁsﬁ——é—-—-—-—,foraf_xi{a+bl\‘},and
n

1n(x-a)-E 1n(x-a-bN)-E
1 n n
f(*)'mﬂ[ 5 ]"[ 5 } :

n

for x > a + bN , (61)

If b is negative,

1 ln(x-s-bNJ-En
f(x)a-Nb r::[—-———,fora+bN<x<a
“n

and (62)

In(x-a-bN)-E In(x-a)-&
L o[ “]- ¢[ "] ,for x> a.
Nb <) o

n n

f(x) = -

Figure 17 gives four probability density functions
of eqs. (61) - (62) with @ = Nb, € =0, vare_ = 1,

independent ¢ with E{rk) = 0 except for k = 0, and with
the linear trend a+bt symmetrical for the series of
size N.

3. Effects on the mean. The linear trend pgives
the mean

SBN* T

E(x) =X =a + 3

(63)

In the case of a symmetrical linear trend, with



Fig. 16

fix)

Nb=®

Probability density functions of the linear trend, X,

normal function N(0, 1, 0), for four values of 6 = Nb

=a+bt+ € with L the independent standard

Fig. 17 Probability density functions of the linear trend, X, =a+bt+e, with e, the independent

a = - bN/2, eq. (63) becomes ¥ = E, so that the trend

lognormal variable, for four values of 6§ = Nb

does not change the mean. However, if the trend (64)

starts at N = 0, then a = 0, eq. (63) Dbecomes
X = E + bN/2.

E(x)

The polynomial trend-has the mean

n

For the start of the trend at e 8 €, then a0 in eq.

should be replaced by E.

4. Effects on the variance. The linear trend

always increases the variance, so that

== 1 1 m
X=E+a =a,N + = a N-+ + —a N =
T | 5 %2 m “m § o wd o BENE
9 =0 * =73 (65)
moo .
u i
T+ ifl o7 &Y (64) | and for the polynomial trend, the variance is
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m m v Ni+j Ni +j
2 = g2 - - .
Gx UE +i£1 ji] aiaj +J+ IT;TTT3$T)]
m m s i
i+] i
= °§ 1 iEl jfl a,iaj N [ -~ S DT EER T ] (66)

It can be shown from eq. (66) that oi > ci regardless

of the type of polynomial and its various coefficients
a;, a,. In other words, any trend of the type of eqs.

(56) and (57) increases the variance of a non-homoge-
neous series Xy in comparison with €y series.

5. Effect on the skewness. The linear trend
changes the skewness so that
%
B = —-E- BE (67)
%%

or for B =0, also B = 0. The linear trend super-
posed on a series of independent normal variable does
not introduce the skewness. However, as ci > oz. then

the linear trend decreases the skewness of the depend-
ent skewed variable e, because [8] < |8 _| in that case

regardless whether or not £, is positive or negative.

For the polynomial trend, the skewness of X,

series is

m m m
L L L
i=1 j=1 k=1

T T
i+j+k+1

i+j+K
a.ajakN [

1
TEDGHRT) T G AT

1 +
(k+1) (1+3+])

Whether or not ¢ > §_or 8 < f_, depends then on the
type of polynomial trend. If B = 0, eq. (68) shows

that @ can be either positive or negative, which de-
depends on the coefficients of eq. (57).

(68)

6. Effects on kurtosis. For the linear trend, the
kurtosis of the X -series is

1

gld

X

(69)

g Logrannd B0 1 e
Y Y% * 2 (bl % * %0 (bN)

while the kurtosis of a series with a polynomial trend
is

y = LUy o602 ? g a,a Nt i 1+
G; E € j=1 j=1 1] (i+1) (j+1) (i+j+1)
moom m m
i+jtk+e 1
¥ E L > £ a.a.aaN [ ]
i=1 §=1 k=l g=1 TIKE TP
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1
T AT GFRFTY T

1 1
G GiekeieT) b T Rk e T)

1 1 1
T KA (14]+eT) (A1) (ke 1) (J48+1) ~ Go1) (k1) (iviel)

1 1
T TR RAT) T (k)

+ 1 + 1
(G1) (e41) (+k+T) © (e41) (k+T)(3+3+7)

e 3 ] (70)
(+1)(3+1) (k+1) . #1)
7. Effects on serial correlation coefficients.
The linear trend produces a time dependence in x_ -series

t
even if Et-series is independent, so that in this case

rk(x) is

2
E(r,) = P_E 3N (N-2K)+4N+2k (k-2)+1), for k > 1 but k<<N.
40
X

(71)

Figure 18 gives the expected correlogram of a
series composed of an independent normal variable ¢,

and a linear trend a + bN, for a sample size N = 100,
and for four values of the parameter i = (Gc/bj2 being

1, 100, 500, and 1000. The correlogram shows a highly
dependent non-homogeneous series if b is sufficiently
large in comparison with o,- The value { = 1 corres-

ponds to o, 1 (standardized € variable) and a trend

of 45°. Even a trend of the slope 1:1000, for o_ = 1,
gives the first serial correlation coefficients of the
order Ty ® 0.4.

It is likely that the time dependence of many
series of annual precipitation is partly or fully
produced by a trend in data, which is due to an in-
consistency in data.

The expected serial correlation coefficients of a
variable Xy produced by an independent variable e

(0, 1, 0), and a polynomial trend is

m 3 ) ma, 5 m a, %
JAGE Bop, B e B8 s
Bl = <5 [ifl it N-k[{iili+1N }Eili+1(N K
X
+ ( ? ¥hy| ¢ i {Ni+1-ki+1]
o 5. % ) 7T
i _
m o m (N-k)J+ a.a. J = =
o & T30 (45-r)kRNI-R R R
P R (L3 ) Hg '



Equation (72) shows that E(rk) of X, are not zeros producers of time dependence if a homogeneous series

: is independent. They increase the dependence, on the
for k'> 0, as is the ‘case for E[rkJ kot e average, if a series to which trends are applied are
The linear and non-linear trends are, therefore, already time dependent.

10 X
' -
08} YR y
0.6} L
=100
i =500
'4'=|
N =100 000
02f
| 1 1 1 1 1 || | 1 ]
0 2 4 6 8 10 12 14 16 18 20

k

Fig. 18 Correlograms of the linear trend series, xt =a + bt + Eps with Ee the inaependent variable for the

sample size, N = 100, and for four values of the parameter, y = {cls/b)2
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CHAPTER VI

EXAMPLES OF EFFECTS OF NON-HOMOGENEITY

1. Types of examples. The hypothetical cases were
selected in order to investigate the effects of non-
homogeneity that are introduced into an independent
stationary stochastic series. In two cases, this varia-
ble is normal and independent, with the mean zero and
the variance unity, N(0,1,0). 1In the other two cases,
the variable is normal and dependent, N(0,1,p), of the
first order Markov linear model, In each case, five
samples of 200 random independent normal numbers are
generated. Practically, 1000 numbers, e,, are gener-
ated, and each divided into five samples.

For each sample of N = 200, the non-homogeneity
is introduced in five parts or subsamples (0-40, 41-80,
81-120, 121-160, and 161-200). The first and third
examples have the following non-homogeneities:

(1) For i
duced in the form, Xy

1-40, & small linear trend is intro-
e, - 0.10 + 0,0051;

(2) For i = 41-80, no change is made;

(3) For i = 81-120, a slippage (jump) of & = 0.25
is added, so that xi = Ei + 83

(4) For i = 121-160, another linear trend is

introduced in the form, xj =g, + 0.12 - 0.006j, with
1 for i = 121, and j = 40 for i = 160; and

(5) For i = 161-200, a linear jump is introduced
in the form, X; = 0.85 €y

j

The second and fourth examples made all of these
changes stronger, and under (2) another slippage
(constant jump) is added, so that the second and fourth
examples have:

(1) For i = 1-40, a linear trend, X 5 8y = 0.30 +
+ 0.0201;

(2) For i = 41-80, a slippage of & = 0,50 is in-
troduced, so that, at any position, i = 81-120, the
values x, = . + 0.50;

i i

(3) For i = 81-120, another slippage of & = -0.40
is added, so that xi gy * 0.40;

(4) For i = 121-160, the linear trend is intro-
duced, so that Xj =g, +0.45 - 0.30j, where j = 1 for
i=121, and j = 40 for i = 160; and

(5) For i = 161-200, a linear jump is produced by
X, = 1.25 €.

The third and fourth examples of non-homogeneity
are applied to the dependent stationary variable,

ny = e ”i-l + Ei, with p 0.20. The non-homogeneous

variables thus obtained are Vi

Altogether, there are two times two examples:
the independent variable, s with two types of non-

homogeneity, weak and strong, which produce xiavariabkﬁ;

and the dependent variable, ng» with these two same
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types of weak and strong non-homogeneity, to produce
yiwvariables.

Each of the 200 samples of all four examples,
is changed by the corresponding five non-homogeneities
in the 40 member subsamples, so that the non-homo-
geneous samples of 200 values of X; or y; are produced.

In this way, five samples of X, and five samples of Y

are obtained for each of the four examples: (a) a weak
non-homogeneity approach of the first type, as X;- and

yi»variables; and (b) a strong non-homogeneity of the

second type, also as X~ and yi-variables.

2. Computations. For all four types of varia-

bles, €0 XyH Ty and Yis and for each of the samples

of N = 200, the following parameters are computed:

the mean, the standard deviation, the variance, the
skewness coefficient, the excess coefficient, and the
first fifty serial correlation coefficients., The
average values of five 200-value long samples are then
computed for these parameters.

For the same variables, €., X5 My and Yi» and for

i
the samples of N = 1000 that are composed as the se-
quence of five samples of N = 200, the same parameters
as previously shown are computed. Frequency distri-

butions are also determined.

3. Results of the first example. This example
is the series of €5 independent stationary noxrmal

variable, with the weak type of non-homogeneity intro-
duced in each of the five subsamples of 40 values, for
every sample of N = 200 that produces the non-homo-
geneous variable, X -

Figure 19, dashed line (1), gives the frequency
distribution of 1000 values of £y in the Probability-

Cartesian scales. It is well fitted by a straight line
{or the generated numbers follow the normal distribu-
tion). The same figure, solid line (2), shows the
frequency distribution of 1000 values of x; of the first
example. It departs somewhat from the distribution of
s but still it is approximately normally distributed.

Table 2 shows, for the first example, the pa-
rameters of €5 and xi—variables for five samples of

N = 200, their averages, and the sample of N = 1000
{composed of five successive samples of N = 200).
Only the first three serial correlation coefficients
are given. By comparing the average parameters of
five samples of N = 200 between €4" and x,-variables,
or the parameters of samples of N = 1000 for these

variables, it is clear that some changes have occurred
in nearly all parameters, though in a small way.

Figure 20 shows for the first example, the correlo-
grams of £5 and X5, as rk[gij and rk{xij, graph lines

(1) and (2), respectively, for the sample of N = 1000,
The line (3) gives their differences, ﬁrk = rk(xi)v

-rk[ei}. It is clear that these differences, though



Figure 19

Figure 20

Figure 21
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Frequency distributions of three variables in the Probability-Cartesian scales for the first and third
examples, derived from a sample of N = 1000: (1) distribution of €5s standard normal independent

variable; (2) distribution of the non-homogeneous variable, Xy obtained by a superposition of weak
non-homogeneities to the variable, €55 and (3) distribution of the non-homogeneous variable, Yi»

obtained by a superposition of weak non-homogeneities, to the variable n, = 0.20 n; , + &;
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-010

Correlograms of the two series of the first example: (1) the series, Ei’ for the sample of N = 1000;
(2) the non-homogeneous series, X5 of the weak non-homogeneities introduced to €y for N = 1000; and

(3) the difference, Ark = rk(xi] - rk(Ei)
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~0i0~

Correlograms of the two series in the first example: (1) the average values of rk(si} for five
samples of N = 200 of the series, £y (2) the average values of rk(xi) for five samples of N = 200 of
the non-homogeneous series, X s and the weak non-homogeneities introduced to €43 (3) the differences,
&fk = ?k{xi] - Tk[ai)
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TABLE 2

PARAMETERS OF THE FIRST EXAMPLE

OF NON<HQMOGENEITY EFFECTS

PARAMETERS ¢ - VARIABLE x{ - VARIABLE
Ist 2nd 3rd 4th 5th Average Sample 1st 2nd Srd dth 5th Average Sample
Symbols| Sample Sample Sample Sample Sample of § of Sample Sample Sample Sample Sample of 5§ of
N =200 Ne200 N=200 N=200 N=200 Samples N=1000 " = = = P =
Mean u 0,01521 0,04903 0,05537 0.00078 0,09615 0.04331 0.04300] 0.06963 0.09519 0.10692 0.04860 0,14169 0,09261 0,09241
g:::::;:n o 0.97843 1.01045 1.00894 1.04976 0.94196 0.99791 0.99713 0.96926 1.00115 0.98771 1,01899 0.92571 0.98056 0.97964
Skewness 8 0.00993 -0.08289 -0.10741 0.00365 0.03778 -0.02779 -0.03542] 0.04527 -0.05367 0.02727 0,03864 0.02856 0.01721 0,01133
Excess ¥ |-0.11946 -0.13518 0.35190 -0.50856 -0.42035 -0.16633 -0.17332 -0.17014 0.00382 0.70525 -0.39298 -0.34803 -0.04042 -0,04553
1-Serial .
Correlation  P; | 0.02625 -0.04969 0.13300 -0.02098 '0.06916 0.03155 0.029000 0.04927 -0.01372 0.15516 -0.01761 0.09988 0.06091 0.05191
Coefficient
2-Serial
Correlation Py |-0.05116 0.00677 -0.09097 -0.01286 -0.03928 -0.05750 -0.0317¢ -0.02677 0.03659 -0.09490 -0.00329 -0.01462 -0.02810 -0.01546
Coefficient
3-Serial
Correlation Py [-0.01017 0.03291 0.02451 -0.14829 -0.14682 -0.04957 -0.05244 0.00818 0.06693 0.03954 -0.15003 -0.09978 -0.03695 -0.02061
Coefficient
TABLE 3
PARAMETERS OF THE SECOND EXAMPLE OF NON-HOMOGENEITY EFFECTS
PARAMETERS € - VARIABLE xj - VARIABLE
I Tst Znd 3rd ith Sth  Average Sample | Ist Ind 31d Ith Tth Av:rage Slnglc
Symbols Sample Sample Sample Sample Sample of 5§ of Sample Sample Sample Sample Sample o o
N.:wzou N =200 N=200 N=200 N=200 Samples N=1000 |N =200 N = 200 N = 200 N = 200 N = 200 Samples N=1000
Mean v | 0.01521 0.04903 0.05537 0.00078 0.09615 0.04331 0.04300|0.01667 0.06425 0.06161 0.,00909 0.11242 0.05282 0.0528l
s ¢ | 0.97845 1.01045 1.00894 1.04976 0.94196 0.99791 0.99713|1.08614 1.15429 1.10232 1.18249 1.07575 1.12020 1.11934
Skewn ess g | 0.00993 -0.08289 -0.10741 0.00365 0.03778 -0.02779 -0,03542}-0.08705 -0,08990 0.09407 -0.03639 0.11715 -0.00242 -0.01130
Excess v |-1.19459 -0,13518 0.35190 -0.50856 -0,42035 -0.16635 -0.17332|-0.18548 -0.11599 0,84655 -0.51934 -0.19447 0.00625 -0.01252
1-5erial
Correlation py | 0.02625 -0.04969 0.13300 -0.02098 0.06916 0.03155 0.02900/0.10255 0.08935 0.184351 0.07463 0.18141 0.13275 0.12341
Coefficient
2-5erial
Correlation o, |-0.05116 0.00677 -0.09087 -0.01286 -0.03928 -0,03750 -0.031760.03529 0.13870 0.02754 0.06545 0.09368 0.06463 0.07728
Coefficient
3-Serial
Correlation  py [-0.01017 0.03201 0.02451 -0.14329 -0.14682 -0.04957 -0.05248/0.07185 0.14232 0.09825 -0.05309 -0.03619 0.03471 0.03964
Coefficient
they are relatively small, are positive up to about Cartesian scales, The solid line (2) gives the fre-
k = 40 of the order ark = 0.02 - 0.03. quency distribution of 1000 values of X, @ strongly
ik #. GOf non-homogeneous variable. Though these graphs do not

Figure 21 shows the correlograms of €5 i

the first example, similar as in Fig. 20, but in this
case, ?itei) and ?k(xi) are the averages of five values,

each obtained for one sample of N = 200. The patterns
are similar as for Fig. 20, and the differences, a?k,

given as line (3), are positive up to k = 40,

This first example of each non-homogeneity shows
that the effects arec small but are not negligible
when it comes to the crucial differences of a dependent
or independent series.

4. Results of the second example. This example
is the series of €5 independent stationary normal

variable, with the strong type of non-homogeneity in-
troduced in the five subsamples of 40 values, for
every sample of N = 200 that produces the non-homo-
geneous variable, X .

Figure 22, dashed line (1), gives the frequency
distribution of 1000 values of e, in the Probability-
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permit the investigation of detailed differences be-
tween ¢, - and xi-distributions, xi-distribution is

approximately symmetrical with a greater slope (larger
standard deviation) than €;» 85 a result of strong

non-homogeneity.

Table 3 gives parameters of ;" and xi-variables

for five samples of N = 200, their averages, and the
sample of N = 1000. This table is analogous to Table
2. Only the first three serial correlation coef-
ficients are given. The table shows differences in
parameters, especially in the standard deviation and
in the serial correlation coefficients.

Figure 23 shows, for the second example, the
correlograms of €; and X;» @S rk[:i} and rk(xi), graph

lines (1) and (2), respectively, for the sample of
N = 1000. The line (3) gives their differences
ﬂrk = rk{xi] - rk{ci). It is clear that these differ-

ences are significant and positive up to k = 35, and
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Figure 22 Frequency distributions of three variables in the Probability-Cartesian scales for the second and
fourth examples, derived from a sample of N = 1000: (1) distribution of e;, standard normal independent
variable; (2) distribution of the non-homogeneous variable, x;, obtained by a superposition of strong non-
homogeneities to the variable, ;s and (3) distribution of the non-homogeneous variable, Yi» obtained
by a superposition of strong non-homogeneities to the variable, g = 0.20 Nyt &
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Figure 23 Correlograms of the two series of the second example: (1) for the series, €y of the sample of N =

1000; (2) the non-homogeneous series, Xi» of the strong non-homogeneities introduced to e,, for

i »
N = 1000; and (3) the differences, ory = rk(xi) - rktgi)
Tk
0I5

0051

-0l0%

Figure 24 Correlograms of the two series of the second example: (1) the average values, ?k(cij, for five
samples of N = 200 of the series, £ (2) the average values of ?k(xi}, for five samples of N = 200
of the non-homogeneous series, X5, and the strong non-homogeneities introduced to €s) and (3) the
differences, ﬁ'fk = 'i’k(xi) - ?k (ei]
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then negative beyond., The differences decrease from

rl(xi) = 0.10, on.

Figure 24 shows the correlograms of £y and X4

of the second example, similar as for Fig. 23, but
in this case, Ti(ai} and Tk(xi) are the averages of

five values, each obtained for one sample of N = 200.
The patterns are nearly identical as for Fig. 23 and
the differences, ﬂfk’ are positive and decrease from

about ﬁ?} = 0.10 for k = 1 to zero, approximately
k = 35.

This second example of strong non-homogeneities
shows that the affects of non-homogeneity are signifi-

cant and cannot be neglected in the analysis of prop-
erties of a hydrologic time series.

5. Results of the third example. This example is
the series of n, = 0.2 Ny * & 2 dependent station-

ary normal variable of the first order Markov linear
model, with the weak non-homogeneities introduced in
the five subsamples of 40 values each, for every sample
of N = 200 that produces the non-homogeneous variable,
Yie
Figure 19, line (3) shows the distribution of
variable, Yi- The variance of ny is then var n, =

var 51/0.96 = 1,042 var € = 1.042,

for var gy = 1, so that the variance of distribution of

= var ei/(l-pz) =

Yi has both the affect of var y 1.00 and the affects

of non-homogeneity.

Table 4 shows the parameters of the yi-variable of

the third example, both for the averages of five samples
of N = 200 and for the unique sample of N = 1000.

re (v
0.30

020

0.10

-0.10

Figure 25 Correlograms for the third example: (1) for
the variable, ¥Yi» as rk{yi) of N = 1000, in the case
the weak non-homogeneities are introduced to the
dependent stationary and normal variable,

;= 0.20 Ny 3 + €.; (2) the expected correlogram
i

of N Py = pk =0,20"; and (3) differences,

ﬂrk = rk[yi] - 0.20
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Figure 25 shows the correlograms of the thixrd
example of weak non-homogeneity, for the sample of
N = 1000 of the yi-variable. Line (1) shows rk(yi),

line (2) the expected correlogram p, = pk = 0.2 k, and
line (3) their differences, ﬁrk = rk{yi) - 0.20%. Only

for k = 1 is there a small positive difference, ﬁrl =
= 0.038.

Figure 26 shows the correlograms of the third
example, similar to Fig. 25, but in this case, T%(yi)
are the averages of the five values of Tys each obtained

for one sample of N = 200.
those of Fig. 25.

The patterns are similar to

0.30}-

0.20F

010

-0.10

¥

Figure 26 Correlograms for the third example: (1) for
the variable, ¥;» 88 the average value, Tk(yi),

for five samples of N = 200, for the weak non-
homogeneities superposed to the variable, n; =

= 1,20 ny k + si; (2) the expected correlogram of
Ny §idy =0 = U.20k; and (3) differences,

- k
ark = rk{yi) - 0.20

The third example of weak non-homogeneities super-
posed to a dependent normal variable, with p = 0.20
of the first order Markov linear model, shows a rela-
tively small change in comparison with the origimal
dependent variable, ng-

6. Results of the fourth example. This example
is the series of n; =0.20 n, , + €, a dependent

stationary normal variable of the first order Markov
linear model, with the strong non-homogeneities intro-
duced in the five subsamples of 40 values each, for
every sample of N = 200 that produces the non-homo-
geneous variable, yi.

Figure 22, line (3), gives the distribution of
the y-variable. Part of the increased standard devia-
tion is due to the larger variance (1.042) of ny in

comparison to the variance (1.000) of €y while the

other part is due to a strong non-homogeneity effect.



TABLE 4

Parameters of the third example of non-homogeneity effects

PARAMETERS y - VARIABLE
1st 2nd 3rd 4th 5th Average Sample
Symbols Sample Sample Sample Sample Sample of 5 of

N = 200 N = 200 N = 200 N = 200 N = 200 Samples N = 1000
Mean "] 0.14630 0.19507 0.22843 0.09085 0.31099 0.19433 0.10192
Shandass o 1.38389 1.41894 1.41994 1.44768 1.30907 1.39590 1.00387
Deviation
Skewness 8 -0.10501 -0.20179 -0.23315 -0,09558 -0.34152 -0.19349 0.03029
Excess Y -1.55378 -1.50082 -1.10470 -1.71004 -1.45895 -1.46567 -0.00807
l1-Serial
Correlation Py 0.23280 0.19129 0.32119 0,17196 0.26919 0.24947 0.23792
Coefficient
2-Serial
Correlation Py 0.01574 0.07832 -0.018%4 -0.01016 0.02155 0.01168 0.02227
Coefficient
3-Serial
Correlation 03 0.01110 .06900 0.03675 -0.16036 -0.09556 -0.03520 -0.02576
Coefficient

TABLE 5
Parameters of the fourth example of non-homogeneity effects
PARAMETERS y - VARIABLE
1st 2nd 3rd 4th Sth Average Sample
Symbols Sample Sample Sample Sample Sample of 5 of

N = 200 N = 200 N = 200 N = 200 N = 200 Samples N = 1000
Mean u 0.03753 0.13493 0.13751 0.01219 0.25446 0.11532 0.06252
Standard
Havigeion a 1.55001 1.64179 1.58459 1.68233 1.52871 1.59749 1.14284
Skewness B -0.07528 -0.14923 -0.07463 -0.04949 -0,16553 -0.10283 0.01523
Excess Y -1.57910 -1.60560 -1.09944 -1.70492 -1.49496 -1.49680 -0.01086
1-Serial
Correlation 21 0.26498 0.27287 0.34320 0.24343 0.33289 0,31802 0.29097
Coefficient
2-Serial
Correlation Py 0.06424 0.17542 0.07981 0.06200 0.11245 0.11171 0.10393
Coefficient
3-Serial
Correlation P3 0.06261 0.14935 0.10137 -0.06675 -0.04364 0.04753 0.04043
Coefficient

Table 5 shows the parameters of the yiavariable

in the fourth example, both for the averages of five
samples of N = 200, and for the unique sample of N =
1000.

Figure 27 shows, for the fourth example, the cor-
relograms of strong non-homogeneity, for the sample of
N = 1000 of yi—variable4_.Line (1) shows rk(yi}, line

(2) the expected correlogram P = Dk = O.ZOk, and line

(3) their differences. It shows a significant increase
in the time dependence by non-homogeneity.

Figure 28 gives the correlograms for the fourth
example, similar to Fig. 27, but in this case, Tk(yi)
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are the averages of the five values of Ty each ob-

tained for one sample of N = 200.
similar to these of Fig. 27.

The patterns are

The fourth example of strong non-homogeneities
superposed to a dependent normal variable, with p
0.20 of the first order Markov linear model, shows a
significant change in comparison with the original
dependent variable, ny

7. Conclusions. All four hypothetical examples
show that the non-homogeneity affects the properties
of the stationary time series. The degrees of these
changes are functions of types and degrees of non-
homogeneity.
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Figure 27 Correlograms for the fourth example: (1)
for the variable, Yi» @ rk(yi) of N = 1000, in the

case the strong non-homogeneities are introduced to

the dependent and normal variable, n; =0.20 nio1 *

+ £.; (2) the expected correlogram of nys Py =

=p =0.20 k; and éS) their differences,

Ark = rk[yi) - 0.20
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Figure 28 Correlograms for the fourth example: (1) for
the variable, Yi» 38 the averages, ?k(yi], for five

samples of N = 200, for the strong non-homogeneity
superposed to the variable,n, = 0.20 n, + e
i i-1 i

k k

b ®H" = 0.20

(2) the expected correlogram of ngs
and (3) their differences, ark = Tk(yij - 0.20k



Chapter VII

DISCUSSION OF RESULTS AND CONCLUSIONS

1. Main implication of results in previous chap-
ters on hydrologic information. The types of basic
homogeneous series were simple in the analysis of pre-
vious chapters, such as independent normal and log-
normal random variables. Simplified and generalized
cases of non-homogeneity and inconsistency were treated.
Regardless of these two factors, the relatively small
changes introduced into a time series have often shown
significant changes in variable properties. The impli-
cation is that the data of many hydrologic random varia-
bles contain unknown amounts of non-homogeneity and
inconsistency. This in turn makes a difference in
variable properties in comparison with the underlying
homogeneous series.

A typical example is the analysis of the first
serial correlation coefficient of the annual precipi-
tation series for a large number of gauging stations
in Western North America [5]. The series of annual
precipitation are divided in two groups: (a) homoge-
nous or consistent with no significant change in sta-
tion position or environment, a total of 1141 stations,
and (b) non-homogeneous or inconsistent with a signifi-
cant change of the vertical or horizontal position of
stations during the period of observation (or with
other changes which occurred during that time), a
total of 473 stations. For the period of observation
of 30 years, 1931-1960, the first group of the series
produced the average first serial correlation coeffi-

cient of g * 0.028, while the second group of the non-
1" 0.053. The total

records available gives an average length of 54 years
for homogeneous series, and of 57 years for non-homo-
geneous series. The average first serial correlation
coefficients are Fi = 0.055 and T| = 0.071, respec-

homogeneous series produced r

tively. The non-homogeneous series always gave on the
average a higher value of b3 than did the homogeneous
series.

As one could assume, the many series included
here in the group of homogeneous series may contain the
unidentified non-homogeneity or inconsistency. This
is an attractive assertion to make, namely that the

values ?i = 0.028 and ?i = 0.055 for the homogeneous

series and for the record of 30 and 54 years, respec-
tively, may have been in part determined by inconsist-
ency in the data. One should take into account that,
through the averaging used by a large number of station
series (1141), any non-homogeneity increases the first
serial correlation coefficient. Therefore, even the
first group of station series may be considered as
quasi-stationary (or quasi-homogeneous) because of

difficulties in detecting the relatively small amounts
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of non-homogeneity and inconsistency. If it could be
possible to remove all sources of inconsistency in the
data, the above values fi = 0.028 and Tl = 0.055 would

be further reduced. This analysis leads to the state-
ment that annual precipitation is very close to being
an independent hydrologic random variable.

The hydrologic information is therefore very often
biased by the presence of either a neglected or umi-
dentifiable non-homogeneity and inconsistency in a time
series. In some cases, this bias may even show a sig-
nificant effect on water resource decision making. The
bias in the mean results in an incorrect prediction of
water resources available. The bias in the standard
deviation and the first serial correlation coefficient,
to the upper side, also means a greater storage require-
ment, all other factors being the same.

The detection and removal of inconsistency and
non-homogeneity in hydrologic data is an important part
of processing the data and of extracting the maximum
information from a given amount of data.

2. Conclusions. The previous six chapters show
that many types of sources of non-homogeneity and incon-
sistency have impacts on properties of hydrologic ran-
dom variables, leading to the following conclusions:

(1) On the average, a constant jump or a combina-
tion of constant jumps change all properties of a

sample.

(2) On the average, a linear jump or a combina-
tion of linear jumps produce in a sample of positively
valued variables a change in all properties of a time
series.

(3) A linear or polynomial trend also affects
all properties of a sample.

(4) In the majority of cases, the non-homogeneity
and inconsistency in a time series alters the variance
of a variable.

(5) 1In nearly all cases, any type of non-homo-
geneity and inconsistency in a time series produces
the correlograms which show an increase in autocorre-
lation coefficients to positive values, at least in
its initial part.

(6) The study of the effect of various types,
amounts, and sources of inconsistency and non-homoge-
neity, the investigation of methods for identification
by statistical inference and physical analyses, the
procedures for their removal and prediction, and simi-
lar works are important subjects of modern hydrology.
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