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ABSTRACT 
 
 
 

POST-FIRE EROSION RESPONSE AND RECOVERY, HIGH PARK FIRE, COLORADO 
 
 
 

Wildfires along the Colorado Front Range are increasing in extent, severity and 

frequency, and a better understanding of post-fire erosion processes is needed to manage 

burned lands.  The objectives of this study were to: 1) document post-fire sediment production 

after the 2012 High Park Fire burn area, Colorado, 2) determine how sediment production 

relates to fire, rainfall, surface cover, soil and topographic characteristics, 3)  model sediment 

yield at the study swales using the RUSLE and ERMiT erosion models and a site-specific 

multivariate regression (SSMR) model developed from the field measurements, and 4)  assess 

how well the RUSLE and SSRM models performed when using remotely-sensed data in place of 

field-measured data.   

Sediment production, rainfall, surface cover, soil and topographic characteristics were 

measured for 29 swales in the High Park Fire burn area from August 2012 through September 

2013.  Eight of the swales were mulched with either wood shreds in October 2012 or straw in 

June 2013.  Mean sediment yield from the unmulched swales in 2012 was 0.5 Mg ha-1 yr-1, 

increasing to 14.3 Mg ha-1 yr-1 in 2013.  The increase in 2013 was largely due to above-average 

rainfall amounts.  Mulched swales yielded 3.1 Mg ha-1 yr-1 in 2013.  Precipitation thresholds for 

sediment production were best identified by rainfall erosivity.  The erosivity threshold in 2012 

was 3 MJ mm ha-1 hr-1 increasing to 22 MJ mm ha-1 hr-1 in 2013.  Annual total sediment yield in 
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2013 was most closely correlated with rainfall erosivity whereas 2013 event sediment yield was 

more closely related by the thirty-minute maximum rainfall intensity.    

Independent variables with the strongest significant correlations to sediment yield were 

surface cover and topographic characteristics.  Sediment yield was positively correlated with 

exposed bare soil in 2012 (Pearson’s correlation coefficient [r] = 0.56) and negatively correlated 

with vegetation cover in 2013 (r = -0.46).  Sediment yield was negatively correlated with 

percent cover by mulch (r = -0.97), but the type of mulch material did not affect sediment yield.  

Slope length was negatively correlated with sediment yield (r = -0.19), and narrower swales 

produced more sediment per unit area than wide swales.  The best 2013 annual SSMR model 

used average percent bare soil in spring 2013, swale width-length ratio, summer erosivity, slope 

length and burn severity to predict sediment yield (R2 = 0.63).   

The two erosion models, ERMiT and RUSLE, did not accurately predict 2013 annual 

sediment yields.  ERMiT under-predicted sediment yields for storms with maximum thirty-

minute intensity recurrence intervals of 1.5-5 years, and over-predicted sediment yield for 

storms with precipitation depth recurrence intervals of 30-100 years.  The RUSLE model run 

with field-measured independent variables similarly did not accurately predict sediment yield 

from the hillslopes (R2 = 0.05), and when the RUSLE variables were calculated with remotely 

sensed or GIS-derived data the correlation with measured values was even weaker (R2 = 0.02).  

The SSMR model developed from field-measured variables predicted sediment yield relatively 

well (R2 = 0.63), but declined when using remotely-derived data (R2 = 0.46).   

The results of this study show that rainfall erosivity and intensity, surface cover and 

topography are the dominant controls on post-fire sediment yield.  The interactions of these 
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controls is not captured in the existing erosion models ERMiT and RUSLE.  Furthermore, the use 

of remote sensing and GIS to derive model inputs reduces the accuracy of these models.   
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PART I 

CONTROLS ON POST-FIRE HILLSLOPE-SCALE SEDIMENT PRODUCTION 
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1 INTRODUCTION AND BACKGROUND 
 

 
 

Wildfires affect the infiltration and runoff processes of a forest by removing surface 

cover, damaging soil structure, and increasing levels of soil-water repellency (Dunne and 

Leopold 1978, DeBano 1981, Martin and Moody 2001).  These changes decrease soil 

infiltration, increase overland flow, and leave soils vulnerable to the erosive effects of rainfall, 

ultimately leading to dramatic increases in soil erosion rates after burning (Morris and Moses 

1987, Benavides-Solorio and MacDonald 2001, Moody and Martin 2001b, Martin and Moody 

2008, Larsen et al. 2009, Goode 2012).  Pre-fire sediment yields in Colorado forests are typically 

less than 0.1 Mg ha-1 (MacDonald and Stednick 2003).  Along the Front Range of Colorado, 

sediment yields increased as much as 26 times after the Bobcat fire and by several orders of 

magnitude after the Hayman fire (Libohova 2004, MacDonald and Larsen 2009).  Annual 

sediment yields of 2-10 Mg ha-1 were documented in a study of six high-severity burns in the 

Front Range (Benavides-Solorio and MacDonald 2005).  A study of ten Front Range wildfires of 

varying ages showed sediment yields of 6.7 Mg ha-1 and 10.7 Mg ha-1 at high-severity sites in 

the first and second years after burning, respectively (Pietraszek 2006).  Post-fire sediment 

production rates decrease with time from burning, generally returning to pre-fire levels within 

three to four years at high-severity plots (Pietraszek 2006, MacDonald and Larsen 2009).  

Sediment mobilized off burned hillslopes frequently is transported to streams and rivers where 

it impairs water quality, fills reservoirs and degrades freshwater (Agnew et al. 1997, Moody and 

Martin 2001a, Libhoba 2004, Goode et al. 2012).   
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The driving force of erosion is rainfall.  Previous research has shown that sediment yield 

is positively correlated with precipitation intensity (Pietraszek 2006, Spigel and Robichaud 2007, 

Martin and Moody 2008) and erosivity (Benavides-Solorio and MacDonald 2005, Pietraszek 

2006).  Rainfall intensity controls the amount of excess precipitation, and therefore the amount 

of infiltration-excess overland flow available to erode and transport sediment (Dunne and 

Leopold 1978).  Previous studies in the Colorado Front Range have determined that rainfall 

intensities in excess of 10 mm hr-1 overwhelm the infiltration rates of areas burned at high 

severity, leading to overland flow and erosion, whereas rainfall intensities less than 10 mm hr-1 

may remain below the infiltration rate and are unlikely to cause erosion (Moody and Martin 

2001a, Moody and Martin 2001b, Pietraszek 2006).  Along the Colorado Front Range, high-

intensity convective storms are the dominant storm type in the summer, but long, low-intensity 

storms can also lead to erosion (Morris and Moses 1987, Benavides-Solorio and MacDonald 

2005, Pietraszek 2006).  In these storms rainfall erosivity is a useful factor to consider.  Erosivity 

can be high even when rainfall intensity is low if the storm produces large precipitation depths 

over a long period of time.  

Previous studies have shown that winter rainfall and snowmelt runoff are not significant 

contributors to annual post-fire erosion rates.  Benavides-Solorio and MacDonald (2005) found 

that sediment produced over winter months following a fire only contributed 7% of total annual 

sediment yield, and Pietraszek (2006) found that only 5-10% of sediment was produced during 

the winter season.  A rapid melt period following a heavy snowfall in the Hayman Fire did not 

produce any sediment (Pietraszek 2006).   
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 Burn severity in this study refers to the effects of fire on ground cover and soil 

conditions (Parsons 2010).  Low-severity burns leave much of the soil organic matter intact; 

moderate-severity burns consume up to 80% of the vegetation and surface organic matter; and 

high-severity burns consume nearly all of the surface and surface soil organic matter (Parsons 

2010).  Burn severity correlates strongly with sediment yield.  In a study of six fires of varying 

ages and severities, Benavides-Solorio and MacDonald (2005) found recent high-severity burns 

produced 5-40 times more sediment than moderate-severity burns while moderate-severity 

burns produced only twice as much sediment as low-severity burns. 

The loss of surface cover by burning plays a significant role in post-fire erosion 

(Johansen et al. 2001, Benavides-Solorio and MacDonald 2001, Benavides-Solorio and 

MacDonald 2005, Pietraszek 2006).  Vegetation and litter cover can be completely removed by 

fire, exposing bare soil to the erosive effects of rainfall.  At the Hayman Fire in Colorado, 

percent cover by vegetation decreased from 90% to 6% (Libohova 2004).  After the Cerro 

Grande Fire in New Mexico, percent bare soil increased from 3% to 74% of land surface 

(Johansen et al. 2001). Exposure of bare soil has been shown to explain 79% (Benavides-Solorio 

and MacDonald 2005), 81% (Benavides-Solorio and MacDonald 2001) and 58% (Pietraszek 

2006) of the variability in post-fire sediment yields. 

The relationship between surface cover and sediment yield changes with time since 

burning as vegetation recovers.  Vegetation has been documented to increase from less than 

5% of surface cover immediately following burning to 26-54% two years after burning 

(Benavides-Solorio and MacDonald 2005).  Post-fire surface coverage by vegetation in the 

Colorado Front Range typically returns to pre-fire levels in four to six years after burning 
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(Benavides-Solorio and MacDonald 2001, Benavide-Solorio and MacDonald 2005, Pietraszek 

2006).  Erosion rates at high-severity sites were documented to return to pre-fire rates three to 

four years after burning (Morris and Moses 1987, Moody and Martin 2001a).  Robichaud (2000) 

and Robichaud and Brown (2002) determined that post-fire sediment yields decrease by an 

order of magnitude each year after burning, retuning to background levels within 4 to 5 years.  

Following a fire, surface cover can be altered through application of mulch.  Straw 

mulch, wood shred and wood strand mulch are common post-fire applications (Robichaud et al. 

2013a).  Mulch provides the same benefits of natural vegetation by reducing rainsplash erosion, 

interrupting flow path length, increasing roughness, and increasing and maintaining soil 

moisture (Robichaud et al. 2013a).  Unlike natural vegetation, mulch can be applied 

immediately following a fire to establish those benefits when the land is most vulnerable.   

Straw mulch and wood shred mulch have been found to reduce erosion rates by 50-

100% (Groen 2008, Fernandez et al. 2011, Wagenbrenner et al. 2006, Foltz and Wagenbrenner 

2010, Robichaud et al. 2013a).  Straw mulch has a tendency to wash or blow away more quickly 

than wood mulch (Groen 2008, Robichaud et al. 2013b).  Wood shred mulch, being heavier, 

requires a greater application rate to provide similar coverage to straw (Fernandez et al. 2011).  

The effectiveness of wood shred mulch is also influenced by the percentage of fines (pieces 

smaller than 2.5 cm) it contains.  Foltz and Wagenbrenner (2010) found that wood shred mulch 

with just 2% fines content was most effective at reducing road erosion rates in a flume study. 

Both mulch types are most effective in the first year after application with the benefits then 

decreasing rapidly as surface coverage by the mulch dwindles (Groen et al. 2008, Robichaud et 
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al. 2013c).  Robichaud and others (2013b) determined that an effective mulch application is 

equivalent to one year of post-fire vegetation recovery.  

Numerous soil properties are altered by burning.  Though these changes have been 

documented, their exact effects on post-fire erosion are not yet well understood.  The amount 

of soil organic matter lost by burning increases with burn severity and decreases with depth 

below ground surface (Neary et al. 1999, Moody et al. 2005).  The loss of soil organic matter is 

manifested in the deterioration of the soil structure in burned soils (Neary et al. 1999, Moody 

et al. 2005).  These weak-structured soils are vulnerable to erosion.  Another physical soil 

change wrought by fire and subsequent rainfall is soil sealing, a process whereby soil particles 

loosened by rainfall impact settle into pore spaces and restrict infiltration (Neary et al. 1999).  

Soil moisture also decreases with burning, a condition that contributes to the overall instability 

of post-fire soils by reducing cohesion between particles (Neary et al. 1999).  Furthermore, the 

effects of soil sealing and water repellency prevent soils from re-wetting after a fire, leading to 

a slow return to pre-fire soil moisture conditions (Neary et al. 1999).  

Burning of vegetation creates a water repellent layer in the soil when resins and other 

compounds in the vegetation are combusted and driven into the soil by the heat gradient 

(DeBano 1981, Neary et al. 1999, DeBano 2000, Doerr and Thomas 2000, Huffman et al. 2001).  

High severity burns tend to form deeper and more repellent layers in the soil (DeBano 1981, 

DeBano 2000, Huffman et al. 2001).  These hydrophobic layers are most often present in the 

top 6 cm of soil, and the degree of water repellency tends to diminish to pre-fire levels within 1-

3 years after burning (DeBano 1981, Doerr and Thomas 2000, Huffman et al. 2001, Larsen et al. 

2009).  The interaction of these numerous soil properties make it difficult to determine which 
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factors are correlated with post-fire erosion, though water repellency explained 70% of the 

variability in sediment yield from rainfall simulations on high-severity plots in the Colorado 

Front Range (Benavides-Solorio and MacDonald 2001).   

Many of these soil properties also change over time.  Increasing soil moisture is 

correlated with a decrease in water repellency, which in turn may decease runoff and sediment 

yield (Neary et. al 1999, Benavides-Solorio and MacDonald 2001, Huffman et al. 2001, Foltz and 

Wagenbrenner 2010).  Furthermore, though soil texture is not immediately changed by fire, the 

subsequent erosion of finer particles can lead to an overall coarsening of the soil surface.  

Coarser textured soils are less prone to erosion due to the higher shear stress required to move 

the particles (Moody et al. 2005, Pietraszek 2006).   

Another control on post-fire erosion is hillslope topography including contributing area, 

topographic convergence, slope angle, and slope length.  Studies have found that the 

contributing area necessary to form channel heads is 2-3 orders of magnitude smaller on 

burned hillslopes than on unburned hillslopes (Eccleston 2008, Wohl 2013).  Convergent 

hillslopes have been shown to develop a greater density of rills, and subsequently yield more 

sediment than planar slopes (Pietraszek 2006).  Steeper slopes in unburned forests tend to 

produce more runoff and sediment yield than shallower slopes (Dunne and Leopold 1978).  In 

burned forests, this effect may be compounded by burn severity (Benavides-Solorio and 

MacDonald 2001), which tends to be higher on steep slopes where fire can burn upward into 

the tree canopy.  Benavides-Solorio and MacDonald (2001) showed that slope angle explained 

20% of the variability in post-fire erosion in three fires along the Colorado Front Range.  In a 

study of ten fires along the Front Range, Pietraszek (2006) found that, when multiplied by 



8 
 

contributing area, slope angle explained 64% of the variability in rill incision, indicating that 

slope becomes a more important factor with increasing contributing area.  

Slope length has not been explicitly measured as a control on post-fire erosion in the 

Colorado Front Range.  In studies of unburned, agricultural and road environments, erosion has 

been found to increase with slope length (Gabriels 1999, Kinnell 2000), decrease with slope 

length (Xu et al. 2009), or not be affected by slope length (Agassi and Benhur 1991, Palis et al. 

1997).  Erosion models typically include a slope length component that positively relates 

erosion to slope length (Renard et al. 1997, Cochrane and Flanagan 2004, Robichaud et al. 

2007a).  Moses (1982) and Morris (1986) concluded slope length has little effect on post-fire 

erosion due to the discontinuous and rough slopes in the Front Range.   

The research presented in Part I of this thesis explores the hillslope-scale erosion 

response to moderate and high severity burning in the 2012 High Park Fire in northern 

Colorado.  It is one component of a larger project that aims to improve understanding of 

watershed-scale sediment production processes, including sediment storage and transport to 

channels.  The objectives of this portion of the research were to 1) document post-fire 

sediment production in the first two years following the High Park Fire, and 2) determine to 

what degree sediment production is controlled by fire severity, rainfall, surface cover, soil and 

topographic characteristics.   
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2 METHODS 
 
 
 

2.1 Study area 
 

The High Park Fire burned 35,405 ha of forested land west of Fort Collins, Colorado in 

June and July 2012 (BAER 2012) (Figure 2.1).  The fire burned with intermingled areas of high 

severity burn (2,312 ha), moderate severity burn (14,325 ha), low severity burn (13,072 ha), and 

unburned land (5,695 ha).  Fourteen watersheds, nine of which are tributary to the Cache la 

Poudre River, were affected by the fire (BAER 2012).   

The climate of the Colorado Front Range is semiarid.  Average annual precipitation 

ranges from approximately 450 mm at the lower elevations of the study area (1740 m) to 

approximately 550 mm at the higher elevations of the study area (2580 m) (Richer 2009).  

Precipitation falls as snow during the winter months.  Summer rain events are typically spatially 

variable, high-intensity convective storms, with occasional low-intensity frontal storms, 

particularly in the spring and fall (MacDonald and Stednick 2003).  For this study the year will be 

divided into just winter and summer seasons, with “winter” referring to 1 November - 30 April 

and “summer” referring to 1 May - 31 October.   

 Within the burned area, two watersheds, Hill Gulch and Skin Gulch, were selected for 

erosion studies (Figure 2.1).  The watersheds were chosen based on: accessibility; their similar 

size, aspect and burn severity; and both drain directly to the Cache la Poudre River.  Hill Gulch 

covers 1430 ha, with elevations ranging from 1740 to 2380 m (Figure 2.2).  Skin Gulch is slightly 

larger and higher, with an area of 1556 ha and an elevation range from 1890 to 2580 m.  Forest 

composition is predominately ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus 



10 
 

contorta), with a scattering of Englemann spruce (Picea engelmanii), Douglas fir (Pseudotsuga 

menziesii), and quaking aspen (Populus tremuloides).  Non-forested sections of land are 

dominated by grasses and upland shrubs (BAER 2012).  The soil within the watersheds is 

primarily Redfeather sandy loam (BAER 2012).  

 The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) 

center used Landsat 7 multispectral images (30-m resolution) to calculate the differenced 

normalized burn ratio (dNBR) to represent soil burn severity (Figure 2.3) (USGS-EROS 2012).  

Gaps in the Landsat 7 dataset were filled using the nearest neighbor interpolation method.  The 

dNBR values for the High Park Fire ranged from -455 to 1027.  Soil burn severity classifications 

derived from those values are described in Table 2.1 (USGS-EROS 2012).  Though the dNBR 

scale refers to vegetation burn severity, it is closely correlated with soil burn severity and is 

generally used to represent both (USGS-EROS 2012, Cocke et al. 2005).  

  

2.2 Study swales 

Study swales were identified within each watershed at low, middle and upper 

elevations.  Swales for this study are defined as small (0.1-1.5 ha) zero-order catchments where 

two slopes converge along a central axis.  While these convergent hillslopes generally do not 

have channels prior to burning, rills and channels form readily after burning and act as conduits 

for sediment transport (Slattery et al. 1994, Moody and Martin 2001a, Libohova 2004).  Four to 

seven swales were established within each elevation range of each watershed, excluding the 

middle elevation range of Hill Gulch, for a total of 29 swales (Figure 2.2).  Swale names were 

composed of the first letter of the catchment name (“H” for Hill and “S” for Skin) followed by 
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the elevation group (“L” for lower, “M” for middle and “U” for upper) and numbered 

consecutively within each elevation group (e.g. SM1 for a sediment fence in Middle Skin Gulch).  

Twenty-one of the swales were established in August and September 2012, and eight 

were established in May and June 2013.  Swales were selected to include a range of slope 

lengths, slope angles, and contributing areas.  Mulching treatments were applied to eight of the 

swales in November 2012, after the summer rains, and in June 2013, prior to the summer rains. 

 

2.3 Measurements 

2.3.1 Sediment production 

 Sediment fences similar to Robichaud and Brown (2002) were installed in the central 

axis of each study swale at a location that was conducive to maximizing sediment storage while 

minimizing variability in burn severity.  At nine swales with particularly large contributing areas 

and/or long slope lengths, two fences were installed in succession (referred to as double 

fences) to increase sediment storage capacity and reduce the risk of sediment loss by 

overtopping.   

 Sediment fences were constructed by hammering seven to fourteen pieces of 1.2 m 

long, 1 cm diameter rebar into the ground in a horseshoe shape (Figure 2.4).   Silt fence fabric 

was stretched between the rebar and anchored with steel wire ties at three locations along 

each piece of rebar.  An additional apron of fabric was placed within the horseshoe to facilitate 

the separation of captured sediment from in situ sediment.  The lowest point of each fence was 

placed at the apex of the fence to ensure runoff flowed over the fence instead of around the 

uphill corners.  The capacity of single fences ranged from 0.8-2.0 Mg of dry sediment.  
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To the extent possible, fences were checked for sediment after each storm event as 

monitored by four telemetered United States Geologic Survey (USGS) rain gages near the study 

watersheds.  The fences were also checked and emptied at the end of the spring snowmelt 

season (late April) and just before the winter snow season (late October).  Trapped sediment 

was removed to a 20 L bucket with shovels and trowels, and the mass was measured to the 

nearest 0.5 kg on a hanging scale.  A representative sample was collected from the captured 

sediment, stored in a Ziploc bag, and brought to a lab to determine the moisture content 

(Gardner 1986).  This moisture content was then subtracted from the field-measured mass to 

determine the dry mass.   

  

2.3.2 Precipitation 

Funding and permission to install monitoring sites in the study watersheds in the latter 

part of July 2012, several weeks after complete containment of the fire.  Several significant rain 

storms in July went undocumented before the first rain gages and sediment fences could be 

installed.  In August 2012 Rainwise tipping bucket rain gages with a resolution of 0.25 mm were 

instrumented with HOBO UA-003-64 Pendant data loggers and installed at eight locations 

within the study watersheds (Figure 2.2).  One rain gage was installed per swale cluster in 

Lower Hill, Upper Hill, and Middle Skin Gulches, and two rain gages were installed in Lower Skin 

Gulch and Upper Skin Gulch, where there were large distances or elevation differences 

between individual swales.  Sediment fences were between 10 and 830 m from the nearest rain 

gage (Figure 2.5).  Rain gage names followed the naming convention as the sediment fences.   
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Rain gages were mounted on 4-inch PVC tubes sunk into the ground and backfilled with 

soil and rocks, then leveled with a bubble level.  Rain gages were placed in open areas away 

from windy ridges and promontories, with a minimum of 45 degrees of clearance between the 

gages and the surrounded vegetation and land features (Brakensiek et al. 1979).  The orifice of 

each rain gage was set approximately 0.7 m off the ground.  Data were downloaded and data 

loggers reset at the beginning and end of the summer, and periodically throughout the summer 

to ensure functionality.   

Rainfall analysis was performed with the Rainfall Intensity Summarization Tool (RIST) 

program from the Agricultural Research Service (ARS 2013, http://www.ars.usda.gov/Research/ 

docs.htm?docid=3251).  Individual storms were classified as events if they were separated by at 

least six hours with less than 1.27 mm of rainfall, the standard storm definition for the Revised 

Universal Soil Loss Equation (RUSLE) erosion model (ARS 2013).  Precipitation depth, duration, 

maximum 30-minute intensity, and rainfall erosivity were calculated by RIST for each storm.  

Erosivity is a measure of the erosive power of a rain event.  The index is the product of a 

storm’s maximum thirty-minute intensity and the storm’s total rainfall energy summed over the 

duration of the storm: 

 

𝑒 = 0.29 [1 − 0.72 exp(−0.05 ∗ 𝐼)]  (2.1) 

𝐸𝐼30 = 𝑒 ∗ 𝑀𝐼30      (2.2) 
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where e is rainfall energy in MJ ha-1 mm-1, I is rainfall intensity in mm hr-1, MI30 is the maximum 

thirty-minute rainfall intensity in mm hr-1, and EI30 is in MJ mm ha-1 hr-1.  The erosivity for each 

storm in a year can be summed to quantify total annual erosivity. 

Data from the eight rain gages for the study were compared to historical precipitation 

records from three Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) gages 

and one National Climatic Data Center (NCDC) rain gage in the burn area to determine how the 

2012 and 2013 summer precipitation totals compare to historical totals (CCC 2013, NCDC 2013).   

Storm dates were compared to the corresponding dates when fences were emptied, 

and storms were identified as sediment-producing or non-producing events.  Rainfall 

characteristics (P, MI30 and EI30) for sediment-producing and non-producing events at 

unmulched (n=517) and mulched (n=343) swales in 2012 and 2013 were plotted to determine if 

a rainfall threshold existed between the two types of storms.  The lowest value that produced 

sediment was determined to be the rainfall threshold for sediment production. 

 

2.3.3 Surface cover 

 Surface cover was measured within the contributing area of each swale at the end of 

the 2012 growing season (August 16 – October 13), before the 2013 growing season (June 10-

20), and at the end of the 2013 growing season (September 27 – October 10) by point counts.  

The number of evenly spaced transects necessary to collect at least 100 evenly spaced data 

points within each swale was determined based on the length of the swale.  Starting from a 

randomly determined point above the sediment fence, a flexible measuring tape was laid out 

perpendicular to the swale axis, and the cover type was recorded at 1-2 m intervals along the 
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tape.  Surface cover at each point was classified as bare soil, live vegetation, litter, rock larger 

than 1 cm diameter, bedrock, wood larger than 1 cm diameter, tree, straw mulch, or wood 

mulch.   

 

2.3.4 Soil-water repellency 

 Soil water repellency measurements were scheduled to be collected at the same time as 

the surface cover assessments, but data collection was interrupted in fall 2012 and spring 2013, 

and skipped in fall 2013 because of moist or frozen soils.  When possible, repellency tests were 

conducted at three locations within each swale using the critical surface tension (CST) method 

(Huffman et al. 2001).  This method produces more consistent values than the alternative water 

drop penetration time (WDPT) method, and has been shown to be more highly correlated with 

independent variables of soil-water repellency (Huffman et al. 2001).  Water repellency data 

were not included in the statistical analyses due to the incompleteness of the dataset.  

 

2.3.5 Topography 

Swale aspect and slope were measured in the field with a handheld compass and a 

handheld clinometer along the axis of each swale above the sediment fence.  Contributing area 

was determined by walking the perimeter of the swale and marking the boundary, then 

surveying the boundary with a Juno Trimble handheld global positioning system (GPS), which 

has horizontal accuracy of less than 5 m.  The shapefiles produced by the GPS were imported to 

ESRI’s ArcMap 10.1 and used to calculate contributing area.  Swale length was measured by 
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extending a measuring tape from each sediment fence along the axis to the top of the swale.  

Swale width was calculated by dividing the contributing area by the measured slope length. 

 

2.3.6 Soil texture and particle size distribution 

 Three aggregated soil samples weighing approximately 100 g each were collected from 

0-5 cm below ground surface within each swale.  Samples were dried for 24 hours at 105 °C.  

Particles greater than 2 mm were sieved out and weighed.  Fifty grams of the remaining sample 

was analyzed following the hydrometer method for particle size analysis (Gee and Or 2002).  

Soil texture classification as well as percent gravel, sand, silt and clay were determined from the 

results.   

 

2.4 Data analysis  

2.4.1 Univariate regression   

Sediment yield data for all swales, unmulched swales, and mulched swales were 

analyzed by event sediment yields and by annual sediment yields (totals from August-

December 2012 and January-September 2013).  Univariate regression analysis was performed 

for each subset of data to determine which factors had the strongest correlations with 

sediment yield.  The following independent variables were tested:  MI30, EI30, precipitation 

depth (P), slope length, slope angle, slope aspect, percent bare soil, percent live vegetation, 

percent sand content, percent silt content, percent clay content, width-length ratio, and 

differenced normalized burn ratio (dNBR, a remotely sensed measure of burn severity).  For 

annual regression, MI30 refers to the maximum thirty-minute rainfall intensity for the entire 
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year, and P and EI30 refer to the cumulative rainfall depth and erosivity for the year. The 

coefficient of determination (R2) and Pearson’s correlation coefficient (r) were used to quantify 

the strength of univariate correlations. The r values were considered significant if p-values were 

less than 0.05 unless otherwise specified.  

 

2.4.2 Multivariate regression   

Multivariate regression analysis was conducted for the same datasets as above, except 

that sediment yield data were regressed against all variables at once.  Variables in a 

multivariate regression model with p-values less than 0.1 were removed from the model one at 

a time until the best fit was found using only significant variables.  Model fit was measured with 

the adjusted R2 (aR2), which adjusts for the number of explanatory variables in the model 

instead of increasing the R2 for each added variable.   

All variables were independent from each other except for rainfall characteristics and 

slope length and width-length ratio.  To account for these cross-correlations, variance inflation 

factors (VIF) were calculated for each variable in each model.  VIF identifies pairs of parameters 

that are too closely correlated to be used in the same model (Ott and Longnecker 2010). When 

variables with a VIF greater than 5 were encountered the least significant of the pair was 

excluded from the model. 
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Figure 2.1:  Map showing the location of the High Park fire within Larimer County, Colorado, and 
the location of the study watersheds, Hill Gulch and Skin Gulch, within the fire. 
 



19 
 

 
Figure 2.2:  Location of rain gages and sediment fences within Skin and Hill Gulches (topography 
from NEON-AOP).  
 

 

  



20 
 

 
Figure 2.3:  Burn severity in the High Park Fire represented by differenced normalized burn ratio 
(dNBR) values (USGS-EROS 2012). 
 

Table 2.1:  Soil burn severity classifications for dNBR values at the High Park Fire (USGS-EROS 
2012). 

 
 

  

Soil burn severity Minimum Maximum

Unchanged -455 224

Low-severity 225 394

Moderate-severity 395 784

High-severity 785 1127

dNBR value
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Figure 2.4:  Sediment fence in upper Hill Gulch, installed 8 Sept 2012.  
 
 

 
Figure 2.5:  Rain gage in lower Hill Gulch with sediment fences HL1 and HL2 circled in the 
background. 
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3 RESULTS 

 
 

 
3.1  Precipitation   

Among the eight rain gages, seven provided complete or nearly complete records (Table 

3.1).  Over winter 2012-2013, rain gage SUR1 was knocked over twice by a bear; it was not 

replaced after the second mauling.  Data from this gage are not included in analyses except in 

direct relation to the sediment produced at adjacent swale SU1 in fall 2012.  Rain gage SUR2 

was also knocked over by a bear but only lost two months of winter data.  The gage was 

replaced and successfully recorded all the summer rainfall data.  SLR1 was damaged by an 

animal in May 2013 and repaired 6 June 2013; no abnormalities in the data were noted.    

Between 101 and 155 rain events were recorded by each of the gages.  The large range 

is due in part to the different installation and final download dates for each gage, and in part to 

the highly variable nature of convective storms in mountainous terrain.  Between 62% and 90% 

of events occurred during the summer.    

 An extreme precipitation event took place September 8-16, 2013.  A large, slow-moving, 

low-pressure storm dropped 254-296 mm of rain on the study swales in ten days.  The 

statewide event led to flooding in Hill Gulch and Skin Gulch.  The Natural Resources 

Conservation Service (NRCS) estimated that flows from Skin Gulch peaked at 70 m3 s-1 (13 m3 s-1 

km-2), the highest discharge per unit area of the 15 mountain streams surveyed along the 

Colorado Front Range (USDA-NRCS 2013a).  The recurrence interval of the 7-day rainfall event 

was estimated to be 200-500 years (NOAA-NWS 2013), and the associated peak discharge in 
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Skin Gulch was five times the 100-year event, and 1.5 times the 100-year post-fire event (USDA-

NRCS 2013a).  For this thesis this storm will be referred to as the 09/2013 event.  

Total precipitation at the gages from August 2012 to September 2013 averaged 633 mm 

(s.d. = 65 mm).  Of that, 37-50% fell in the 09/2013 event alone, and only 8-12% fell in 2012.  

Using historical precipitation records from 1990-2011, rainfall from May-September 2012 was 

55% of average, and from May-September 2013 was 157% of average (CCC 2013, NCDC 2013).  

Prior to the 09/2013 event, May-September rainfall in 2013 was 86% of normal.  The MI30 at 

each gage ranged from 27 mm hr-1 to 52 mm hr-1.  Cumulative EI30 ranged from 1200 to 2260 

MJ mm ha-1 hr-1, with 47-81% of that coming from the 09/2013 event.   

 

3.2 Sediment yield 

3.2.1 Dataset selection: 

Univariate regression revealed a positive linear relationship between event sediment 

production (SP) and contributing area (r = 0.20, p-value = 0.004), so SP was normalized by swale 

area to give sediment yield (SY) in units of Mg ha-1.  A histogram, a quantile-quantile plot, and 

the Shapiro-Wilk test of normality all showed sediment yield was not normally distributed with 

a strong right skew (Shapiro-Wilk p-value = 3.1x10-16) (Figure 3.1a).  Transforming the event SY 

data with the natural logarithm (logSY) increased normality with a Shapiro-Wilk p-value of 

2.4x10-7 (Figure 3.1b).  Complete normality was not achievable with standard transformations.  

For all events, SY data from mulched and unmulched swales were compared to the 

event MI30 (Figure 3.2a).  The mulched swales did not yield sediment until a higher threshold 

MI30 than the unmulched swales (14.7 mm hr-1 versus 9.6 mm hr-1, though an MI30 as low as 4.2 
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mm hr-1 produced less than 0.05 Mg ha-1 of sediment at two unmulched swales), and for most 

events the mulched swales had lower sediment yield than the unmulched swales (Figure 3.2).  

Therefore, unmulched and mulched swales were analyzed separately.   

Sometimes the sediment trapped in a sediment fence was produced by multiple storms 

instead of just one storm.  Sediment yields from single-storm events and multiple-storm events 

were lumped into the same dataset as there were no significant differences in their associated 

threshold MI30 values (Figure 3.2b).   

During three storm events (July 14, 2013, August 13, 2013, and September 6-16, 2013), 

some sediment fences were broken or overtopped by the sediment they trapped.  Overtopping 

occurs when the fence fills with sediment to a point where water can no longer be retained 

behind the fence long enough for sediment to settle out.  Fences were considered overtopped 

when the level of sediment trapped in the fence came to within 20 cm of the top of the fence.  

Eighteen fence-events overtopped and six fence-events lost data due to fence breakage, for a 

total of 24 data points out of 150 that under-represented the actual amount of sediment 

production.  Data from overtopped and broken fences were still used in analysis despite not 

representing the full amount of sediment produced in the event because these data provided 

information about the large amounts of sediment the swales were capable of producing, even if 

that information was an underestimate.  

Rain events in July 2013 produced enough sediment to overtop single fences at ten 

swales, so an effort was made to double the fences at those swales to increase fence capacity.  

Only five fences were doubled before back-to-back rain events forced the field team to spend 

its time emptying fences.  Subsequently, the 09/2013 event overtopped five single fences and 
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three sets of double fences.  Overall, only eight of the 29 fences fully captured at least 91% of 

the sediment-producing events from August 2012 to September 2013, while four fully captured 

70% or less of all sediment-producing events (Figure 3.3).   

In situations where the fence(s) overtopped, an unknown quantity of sediment escaped 

capture, thereby underrepresenting the actual sediment yield by an unknown amount.  Field 

observation of fences that did not overtop revealed potentially large amounts of sediment 

eluding capture.  For instance, a single fence at SM2 had only been half-filled with sediment 

from storms prior to July 2013.  After the fence was doubled in late July 2013, two storms that 

only half-filled the upper fence also deposited sediment in the lower fence, with 67% of the 

total sediment being trapped in the upper fence, and 33% in the lower fence (Figure 3.4).  This 

shows that the amount of sediment lost during non-overtopping events prior to the doubling of 

the fence was probably considerable. This indicates that most of the single-fence sediment 

yield measurements likely underestimate actual sediment production even when the fences did 

not overtop. 

 

3.2.2  Sediment yield observations 

 In 2012 (August-December) mean total sediment yield among all swales was 0.5 Mg ha-1 

yr-1 (s.d. = 0.9 Mg ha-1 yr-1, range 0.0-2.7 Mg ha-1 yr-1) (Figure 3.5).  These first-year rates are 

very low compared to previous studies in the Front Range (Benavides-Solorio and MacDonald 

2005, Pietraszek 2006, Robichaud et al. 2013c) because summer precipitation in 2012 was only 

55% of the 20-year average (CCC 2013, NCDC 2013), and the sediment fences were installed 

after the relatively large storms in early- to mid-July 2012.   In 2013 (January-September) mean 
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sediment yield for the unmulched swales increased substantially to 14.3 Mg ha-1 yr-1 (s.d. = 9.9 

Mg ha-1 yr-1, range 1.9-38.5 Mg ha-1 yr-1), and for the mulched swales to 3.1 Mg ha-1 yr-1 (s.d. = 

2.8 Mg ha-1 yr-1, range 0.1-8.9 Mg ha-1 yr-1) for the mulched swales.  These second-year rates 

are comparable to those found in other studies in the Colorado Front Range (Benavides-Solorio 

and MacDonald 2005, Pietraszek 2006, Robichaud et al. 2013c) despite summer rainfall in 2013 

being 157% of the 20-year average (CCC 2013, NCDC 2013).  Assuming pre-fire sediment yields 

were around 0.1 Mg ha-1 yr-1 (MacDonald and Stednick 2003), post-fire rates increased by five 

times in 2012, and by 140 and 30 times in 2013 at unmulched and mulched sites, respectively.  

The increase in sediment yield in 2013 can be attributed to the far greater rainfall amounts as 

well as the longer monitoring season and doubling of the sediment fences.  Only 0.3% of total 

sediment yield was produced over the snow season of November 2012 – April 2013.   

 
3.3 Effect of precipitation on sediment yield   

The thresholds of precipitation depth, maximum thirty-minute intensity (MI30) and total 

storm erosivity (EI30) were determined from the lowest values that produced sediment.  When 

all three thresholds were exceeded the rain event produced sediment.  These precipitation 

thresholds for sediment production are clearly separate from events that did not produce 

sediment when graphed on bivariate plots (Figures 3.6-3.8).  Four late-season events in 2012 

exceeded the thresholds but did not produce sediment (10/12/2012 at SMR1, 9/11/2012 at 

SUR2, and 9/25/2012 and 11/9/2012 at SUR1), possibly because earlier events in July and 

August had removed the most easily mobilized sediment from the swales.  

Precipitation thresholds for sediment production at unmulched swales in 2012 (P = 4 

mm, MI30 = 4 mm hr-1, EI30 = 3 MJ mm ha-1 hr-1) were lower than thresholds in 2013 (P = 8 mm, 
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MI30 = 11 mm hr-1, EI30 = 22 MJ mm ha-1 hr-1).  In 2013 the mulched swales also had higher 

thresholds (P = 10 mm, MI30 = 15 mm hr-1, EI30 = 38 MJ mm ha-1 hr-1) than the unmulched 

swales  (Table 3.2).  Threshold-exceeding events comprised only 5-8% of total events but 

contributed 85-91% of the total EI30.  Only one threshold-exceeding event occurred in the 

winter (11/9/2012 at SU1), but this did not produce any sediment. Mean MI30 for threshold-

exceeding storms was 18 mm hr-1 (s.d = 3.5 mm hr-1). 

Univariate regression analysis between precipitation variables and event logSY data 

showed unmulched sediment yield was most strongly correlated with event MI30 (r = 0.67), and 

mulched sediment yield was most strongly correlated with event EI30 (r = 0.5) (Table 3.3).  The 

relationships between logSY and event P and were positive but weak for both unmulched and 

mulched swales.  Regression analysis between annual logSY and precipitation variables showed 

more variable results, though EI30 usually showed the strongest relationship.  The relationship 

between annual mulched logSY data and MI30 was strongly negative (r = -0.93), suggesting that 

the annual MI30 is not a strong control on annual sediment yields for the eight mulched swales.  

Scatterplots of all univariate relationships are included for reference in Figure A17 in the 

appendix.  

 
 
3.4 Hillslope characteristics   

A wide range of hillslope characteristics were sought during site selection (Table 3.4).  

The area of each swale ranged from 0.08 ha to 1.58 ha with a mean area of 0.36 ha (s.d. = 0.38 

ha).  Slope length ranged from 50 m to 350 m; mean slope length was 140 m (s.d. = 59 m).  The 

slope of each swale ranged from 8% to 57% with a mean slope of 35% (s.d. = 12%).  An 
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additional topographic variable was calculated to characterize the shape of the swales:   the 

width-length ratio of each swale was calculated by dividing the average swale width by the 

swale axis length.  Values ranged from 0.07-0.64, with lower values indicating long, narrow 

swales.  Mean width-length ratio was 0.22 (s.d. = 0.14).  

 

3.5 Effect of hillslope characteristics on sediment yield   

In 2013 logSY was significantly correlated with slope angle, width-length ratio, and 

percent sand (r = 0.53, -0.61 and 0.52, respectively) (Table 3.5a).  No significant correlations 

were found between logSY and hillslope characteristics for mulched swales.  The correlations 

between slope length and the three subsets of logSY data, though insignificant, were all 

negative, so these relationships were investigated further.  While scatterplots of these datasets 

did not reveal any outliers forcing the negative correlations, they did show two outliers 

detracting from the negative correlation: swale SLD1 for unmulched data and swale HU3 for 

mulched data (Figure 3.9).  SLD1 had the longest slope length in the study (350 m) and HU3 had 

the longest slope length among mulched swales (200 m).  Despite their long slopes, both swales 

had unit area sediment yields near the mean.  When these two data points were removed, the 

correlation between logSY and slope length became more negative and more significant (Table 

3.5b).  This result is opposite of what was expected because most erosion models assume 

erosion increases with slope length (Renard et al. 1997, Cochrane and Flanagan 2004, 

Robichaud et al. 2007a).  However, many studies have shown a negative correlation or no 

correlation between slope length and erosion (Moses 1982, Morris 1986, Agassi and Benhur 

1991, Palis et al. 1997, Xu et al. 2009).  
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3.6 Burn severity   

The dNBR values at the study swales ranged from 355 at SU6 to 876 at SM3; the mean 

was 683.  For the High Park Fire, dNBR values between 395 and 784 indicate moderate severity 

burn (9 swales), and values greater than 784 indicate high-severity burn (20 swales) (USGS-

EROS 2012).  The severities assigned by dNBR values generally agreed with field observations of 

burn severity.  

 

3.7 Effect of burn severity on sediment yield  

Burn severity (dNBR) was not found to be correlated with sediment yield from the study 

swales in either 2012 (r = -0.09, p-value = 0.64) or 2013 (r = -0.09, p-value = 0.66).  Previous 

studies have found burn severity to correlate strongly with sediment yield in the Colorado 

Front Range (Benavides-Solorio 2005), so the lack of a significant correlation indicates that 

sediment yields are a complex response, the study swales did not capture a large enough range 

of burn severities and dNBR values, and the dNBR values may not fully capture all the changes 

in soil and other properties that control post-fire sediment production. 

 

3.8 Surface cover 

3.8.1 Unmulched swales 

Average percent bare soil at unmulched swales in fall 2012 was 57% (s.d. = 13%) and 

average percent live vegetation was only 3% (s.d. = 3%) (Table 3.6a).  In 2013, average percent 

bare soil decreased from 50% (s.d. = 19%) in mid-June to 41% (s.d. = 13%) in late September, 

and live vegetation increased over the same period from 14% (s.d. = 10%) in June to 27% (s.d. = 



30 
 

10%) in September.  Litter decreased from 14% (s.d. = 8%) to 3% (s.d. = 4%) between fall 2012 

and spring 2013 with no further change through fall 2013.  The remaining four surface cover 

classes did not change significantly over time; average percent surface cover at the time of the 

three surveys ranged from 13-15% for rock and 6-7% for bedrock, and stayed at 2% for wood 

and 1% for tree. 

Among unmulched swales, a significant negative correlation was found between sand 

content of the soils and average percent cover by vegetation (r = -0.52), indicating that 

vegetation recovery was less successful in soils with high sand content.  No significant 

correlation was found between sand content and percent cover by bare soil, or between other 

particle sizes and surface cover variables.   

 

3.8.2 Mulched swales   

Wood shred mulch was applied to four swales in October 2012 at a rate of 6 Mg ha-1 

(Tables 3.6b and 3.7).  Straw mulch was applied to six swales in spring 2013 at a rate of 3.4 Mg 

ha-1, including two of the swales that had already been mulched with wood shreds (HU3 and 

HU4); this combination of wood shred and straw mulch will be referred to as “mixed mulch”.  

The other four straw-mulched swales had either a dense, even blanket of straw (SU1 and SU2) 

or a sparse, clumpy layer of straw (HL5 and HL6).   

All four mulch types (wood shreds, mixed, sparse straw and dense straw) started and 

ended the 2013 rain season with different levels of coverage, ranging from 24-54% in spring 

2013 to 13-28% in fall 2013.  Despite the different starting coverage, all mulch declined by 50% 

(s.d. = 2%) over the course of the summer, regardless of material or application rate.  These 
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results show that mulch material and application rate were not associated with longevity, and 

that the swales with the highest initial coverage in spring 2013 ended the summer season with 

the highest coverage.  

It was noted in the field that when rills developed in the wood shred mulch those rills 

became somewhat permanent features on the hillslopes and continued to act as conduits 

channeling overland flow to the sediment fences.  In comparison, rills rarely formed in the 

straw mulch and when they did they disappeared within a couple storms.  

 

3.9 Effect of surface cover on sediment yield   

Because surface cover surveys were not conducted after each storm, event-based logSY 

data were regressed against whichever cover survey was nearest in time to the date of the 

event.  Annual regression for 2012 used the fall 2012 survey, and for 2013 used the average 

2013 cover from the spring and fall 2013 surveys.   

Event logSY was significantly correlated with percent cover by vegetation at unmulched 

and mulched swales (r = 0.36 and 0.28, respectively) (Table 3.8).  Annual logSY in 2013 was 

significantly and negatively correlated with percent cover by vegetation at unmulched swales (r 

= -0.46) and positively correlated with percent bare soil at mulched swales (r = 0.72).  While 

these correlations are expected, the event-based sediment yields for both the mulched and 

unmulched swales has a significant positive correlation between percent cover by vegetation 

and sediment yield.  This is likely due to the fact that the event-based sediment yields are 

dominated by the precipitation characteristics, but the vegetation cover was only measured on 

three occasions, so the gradual effects of changing vegetation are not detectable.  
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3.10 Effect of mulching on sediment yield   

Field observations of mulched swales after rain events in 2013 showed mixed responses 

depending on mulch type.  The two densely straw mulched swales (SU1 and SU2) yielded the 

least sediment overall (0.04 and 0.12 Mg ha-1 yr-1, respectively).  Little to no rilling was observed 

at these swales, even after the 09/2013 event.  The two sparsely straw mulched swales (HL5 

and HL6) yielded high amounts of sediment relative to the other six mulched swales (9.0 and 

4.8 Mg ha-1 yr-1, respectively) as well as some of the unmulched swales (Figure 3.5).  

Considerable rilling was observed at these swales following large rain events in July and 

September 2013.   

The two wood shred mulched swales, HU1 and HU2, produced 0.7 and 2.2 Mg ha-1 yr-1 

of sediment, respectively.  Adjacent to those swales were the two swales with mixed mulch, 

HL3 and HL4.  They produced 4.7 and 3.2 Mg ha-1 yr-1 of sediment, respectively.  Despite being 

treated with both wood shred mulch and straw mulch, HL3 and HL4 had the lowest percent 

cover of mulch of all the mulched swales in 2013.  Deep rilling pushed the wood mulch into long 

berms at all four of the swales mulched with wood shreds, leaving open pathways for runoff 

and sediment transport (Figure 3.10).  

Across all eight mulched swales, average sediment yield in 2013 was 3.0 Mg ha-1 yr-1, 

compared to 14.3 Mg ha-1 yr-1 for the unmulched swales (Table 3.9).  Among the mulched sites, 

the highest sediment yield (6.5 Mg ha-1 yr-1) came from the sparsely straw mulched sites, and 

the lowest (0.1 Mg ha-1 yr-1) came from the densely straw mulched sites. Overall, percent mulch 

cover in June 2013 was strongly correlated (r = -0.97) with 2013 sediment yields (Figure 3.11).   
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3.11 Soil texture  

All soils were determined to be loamy sands or sandy loams.  For the fraction less than 2 

mm, the sand content ranged from 30-84%, with a mean of 49% (s.d. = 13%) (Figure 3.12).  

Gravel content was also high, averaging 27% (s.d. = 16%).  Together, sand and gravel accounted 

for 77% of the total soil mass (s.d. = 7%).   

 

3.12 Effect of soil texture on sediment yield   

LogSY was regressed against percent gravel, sand, silt, clay, and combined sand-gravel 

content.  The only significant relationship was between unmulched logSY and percent sand for 

2013 (r = 0.52).  While the correlation between percent sand and sediment yield might indicate 

a greater susceptibility of sandy soils to erode, Moody and others (2005) showed that the 

critical shear stress for initiation of erosion was the same for three different soil types after 

burning at 300 °C or higher, regardless of the sand content of the soils.   

The positive relationship between sand content and sediment yield may also be due to 

the fact that sand particles are more easily trapped by the sediment fences than silts and clays. 

Field observations at double fences noted greater amounts of sand in upper fences, and more 

fines in the lower fences.  Since the majority of fences were single fences, this would help lead 

to a positive correlation between percent sand and sediment yields. An increasing sand content 

also was related to less live vegetation, which also would lead to increased sediment yields. 
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3.13 Multivariate regression models  

3.13.1 Overview   

The strongest multivariate relationships were found using annual totals instead of 

individual events (Table 3.10).  The 2013 annual model showed a stronger relationship between 

logSY and independent variables than the 2012 annual model, and mulched swales showed 

stronger relationships between logSY and independent variables than unmulched swales.  The 

variables in the resulting models were all significant according to the p-values in Table 3.10.   

 

3.13.2 Unmulched   

The best event-based model for all 2012 and 2013 events (n=113) used just two 

variables to predict logSY:  MI30 and slope length (adjusted R2 [aR2]= 0.53), with MI30 being the 

most important variable (partial R2 = 0.45) (Table 3.10a).  The 2013 annual model utilized a 

different set of four variables: width-length ratio, total EI30, percent vegetation cover, and slope 

length (aR2 = 0.67), with width-length ratio having the greatest influence (partial R2 = 0.26).  The 

2012 annual model only included percent vegetation cover and dNBR (aR2 = 0.45), with percent 

vegetation cover having the most influence (partial R2 = 0.26). 

 

3.13.3 Mulched 

Multivariate regression with the mulched dataset was difficult because of the high 

number of variables (11) compared to the low sample size (n=13 events or n=8 swales).  Since a 

multivariate regression analysis could not be run using all variables at once because of the 

limited degrees of freedom, different combinations of six variables were chosen at random and 
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run through the same process of eliminating variables based on least significant p-values.  The 

resulting best event-based model for mulched swales used just one variable: MI30 (R2 = 0.55) 

(Table 3.10b).  The best 2013 mulched model used MI30 and percent cover by bare soil (aR2 = 

0.92), with MI30 having the most influence (partial R2 = 0.83).   

 

3.13.4 Multivariate regression models for untransformed  sediment yield (SY)  

Multivariate regression models were created with the goal of extrapolating site data to 

the rest of Hill Gulch and Skin Gulch.  For the purposes of extrapolation, the model required a 

driving variable (rainfall) and a variable that would change as the burned area recovers (surface 

cover).  Independent variables were regressed against SY instead of logSY so the output would 

be in simpler units.  All swales, mulched and unmulched, were included in the models to make 

them widely applicable.  Percent cover by mulch was not included as a variable because bare 

soil and percent cover by mulch were so closely correlated (R2 = 0.62) and because mulch 

coverage only applied to eight of the 29 swales.  

The resulting event-based model used five variables:  MI30, slope length, width-length 

ratio, dNBR and average percent bare soil (aR2 = 0.37) (Table 3.10c).  MI30 had the most 

influence (partial R2 = 0.29).  The 2012 annual model utilized dNBR and percent vegetation 

cover (aR2 = 0.27) with dNBR having the most influence (partial R2 = 0.23).  The 2013 annual 

model used variables similar to the event-based model: average percent cover by bare soil in 

spring 2013, swale width-length ratio, total summer EI30, slope length and dNBR (aR2 = 0.53), 

with percent cover by bare soil having the most control (partial R2 = 0.28).  The equation for the 

2013 annual model was: 
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𝑆𝑌 = 20.82 − 0.07𝑙𝑒𝑛𝑔𝑡ℎ − 0.03𝑑𝑁𝐵𝑅 − 36.04𝑊𝐿𝑟𝑎𝑡𝑖𝑜 + 29.06𝐵𝑆 + 0.01𝐸𝐼30 (3.1)  

 
 

3.14 Analysis of the 09/2013 event   

3.14.1 Overview 

The 09/2013 event provided a unique opportunity to compare sediment yield and 

hillslope characteristics from all swales under similar storm conditions.  The 09/2013 storm 

produced nearly the same amount of rain at all swales with nearly the same MI30, EI30 and 

duration (Figure 3.13).  Precipitation depth varied from the mean by at most 8%, MI30 by at 

most 17%, EI30 by at most 18% and duration by at most 10%.  Standard deviations among the 

gages were very small, so the storm was considered sufficiently uniform to ignore precipitation 

variables in regression analysis.  

The 09/2013 event had multiple parts, depending on the definition of a storm.  Using 

the RUSLE definition (six hours with less than 1.27 mm of rain), all gages recorded a 

two-part storm, with the first portion occurring 6 September and the second 9-16 September.   

Conditions between portions of the storm were cool, overcast and drizzly with rain falling 

intermittently 7-8 September.  Because there was no chance to empty the sediment fences 

between the two portions of the storm the event was considered as one storm for this analysis.  

Six swales in Lower Skin Gulch may have had sediment from a storm on 28 August that 

exceeded the necessary thresholds for sediment production.  For those swales in Lower Skin 

Gulch the sediment and rainfall data from the 09/2013 event were combined with the sediment 

and rainfall data from the August 28th storm (these data are included in the storm comparisons 

in Figure 3.13).    
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Sediment production was positively and significantly correlated with contributing area 

for all swales (r = 0.39), so the SY data were again normalized by area and transformed by the 

natural logarithm to be more normal (logSY).  When separated, unmulched logSY data were 

normal (Shapiro-Wilk p-value = 0.14) and mulched logSY data were nearly normal (Shapiro-Wilk 

p-value = 0.007).   

 

3.14.2 Univariate regression for the 09/2913 event 

For all swales (n=29) logSY was significantly correlated only with percent cover by mulch 

(r = -0.57), showing that sediment yield decreased with mulch cover (Table 3.11).  For 

unmulched swales (n=21) logSY was only significantly correlated with slope length (r = -0.53), 

showing that sediment yield decreased as slope length increased.  Among mulched swales 

(n=8), logSY was not significantly correlated with any of the independent variables.  

 
 
3.14.3 Multivariate regression for 09/2013 event   

Multivariate regression analysis was conducted on the logSY data for unmulched swales, 

mulched swales, and all swales (Table 3.12).  LogSY for all swales and for just mulched swales 

could not be described with multivariate models, as percent cover by mulch was the only 

significant predictive variable for logSY at all swales (R2 = 0.29), and percent cover by rock was 

the most significant predictive variable for logSY at mulched swales (R2 = 0.37) though the p-

value was only significant for α = 0.1.  The multivariate model (aR2 = 0.47) for unmulched swales 

used slope length, dNBR and width-length ratio, with slope length exerting the most influence 

(partial R2 = 0.24).  These results show that, when rainfall is uniform, sediment yield in the 
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second year after burning is most strongly controlled by slope length and surface cover, with 

some influence from burn severity (dNBR) and shape of the contributing area. 
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Table 3.1:  Summary by rain gage of the total number of precipitation events, the number of events exceeding the rainfall thresholds 
for sediment production (threshold-exceeding or TE events), percent of precipitation events occurring in summer, total rainfall, 
maximum thirty-minute intensity (MI30), mean MI30 for threshold-exceeding events, total erosivity (EI30) for the date range, and total 
EI30 of threshold-exceeding events. 

 

 

Lower Hill HLR1 8/7/2012 - 9/22/2013 118 9 100 47 30 14 1481 91

Middle Hill HMR1 8/18/2012 - 10/21/2013 136 7 100 41 27 16 1539 85

Upper Hill HUR1 8/9/2012 - 9/18/2013 124 8 100 50 31 18 1712 94

Lower Skin SLR1 8/5/2012 - 10/5/2013 155 13 100 37 52 21 2261 94

Lower Skin SLR2 8/31/2012 - 10/5/2013 121 8 100 40 46 26 2010 91

Middle Skin SMR1 8/26/2012 - 9/27/2013 143 11 100 37 45 18 1787 90

Upper Skin SUR1*
8/16/2012-1/6/2013,   

2/18/2013-6/23/2013
37 2 50 77 9 7 36 50

Upper Skin SUR2
8/29/2012 - 2/5/2013, 

4/2/2013-10/10/2013
101 7 100 50 34 17 1200 89

128 (16) 9 (2) 100 (0) 42 (5) 38 (9) 18 (3) 1713 (325) 91 (3)

TE = threshold-exceeding

* = incomplete dataset, not used in analyses

** = not including SUR1

Average (standard deviation) **

Number 

of 

events

Number 

of TE 

events

TE events occuring 

in summer             

(% of total)

Total rainfall 

(mm)

MI 30      

(mm hr-1)

Total EI 30 of TE 

events (% of total)

Total EI 30            

(MJ mm ha-1 hr-1)

Mean MI 30 

for TE events 

(mm hr-1)

Group Gage Valid date range
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Figure 3.1:  Histograms and quantile-quantile plots of a) event sediment yield data (SY), and b) 
event sediment yield data transformed by the natural logarithm (logSY). 
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Figure 3.2:  Comparison of 2012 and 2013 sediment yield and rainfall intensity thresholds for 
initiation of sediment production for a) events at mulched and unmulched swales, and b) single-
storm and multi-storm events.  
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Figure 3.3:  Frequency distribution of the percentage of sediment production events that did not 
overtop the sediment fences.   
 
 

 
Figure 3.4:  Photo of the double sediment fence at swale SM2 showing the amount of sediment 
in the lower fence that was not trapped by the upper fence.  Red arrows point at the level of 
sediment in each fence. 
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Figure 3.5:  Total sediment yields by swale for August-December 2012 and January-September 
2013. Swales marked with * are mulched.  
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Figure 3.6:  Precipitation thresholds for sediment production at unmulched swales in 2012. Red 
lines indicate break-points between non-producing and sediment-producing events.  
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Figure 3.7:  Precipitation thresholds for sediment production at unmulched swales in 2013. Red 
lines indicate break-points between non-producing and sediment-producing events.  
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Figure 3.8:  Precipitation thresholds for sediment production at mulched swales in 2013. Red 
lines indicate break-points between non-producing and sediment-producing events.  
 

 

 

Table 3.2:  Precipitation thresholds for sediment production.  Sediment was produced when all 
three precipitation thresholds were exceeded.    

 

 

Depth (P ) (mm) MI 30  (mm hr-1) EI 30  (MJ mm ha-1 hr-1)

2012 4 4 3

2013 8 11 22

Mulched 10 15 38
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Table 3.3:  Pearson’s correlation coefficients between subsets of logSY data and precipitation 
depth, intensity and erosivity. Correlations significant to α < 0.05 are denoted with *. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P MI 30 EI 30

event-based 113 0.34* 0.67* 0.41*

2012 16 0.42 0.42 0.62*

2013 21 0.43* 0.01 0.22

event-based 13 0.43 0.08* 0.50*

2012 8 0.63 0.27 0.77*

2013 8 0.79* - 0.93* 0.66

Subset of logSY  data n

Pearson's correlation coefficient

Unmulched

Mulched
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Table 3.4:  Summary by swale of hillslope characteristics and sediment yield.  Minimum values denoted with * and maximum values with **. 

 

dNBR Class gravel sand silt clay

HL 1 Hill Low 7-Aug-12   0.08* 85 67 615 mod. 0.14 47 40 22 55 19 4 2.4 22.3

HL 2 Hill Low 7-Aug-12 0.10 120 121 549 mod. 0.17 39 25 26 52 19 3 2.4     38.5**

HL 3 Hill Low 7-Aug-12 0.18 100 185 593 mod. 0.13 31 78 37 46 14 4 1.8 8.8

HL 4 Hill Low 7-Aug-12 0.09    50*   43* 578 mod. 0.34 29 74 29 51 16 3     2.7** 22.5

HL 5 Hill Low 15-Jun-13 0.15 64 95 582 mod. 0.48 36 110 23 61 14 2 0.0 8.9

HL 6 Hill Low 15-Jun-13 0.21 73 152 615 mod. 0.47 42 90 28 57   13* 2 0.0 4.7

HLD 1 Hill Low 1-Aug-12 0.23 160 362 687 high 0.12 49 58 32 46 19 4 0.7 16.8

HU 1 Hill High 9-Aug-12 0.19 105 200 700 high 0.18 38 45 34 41 22 2 0.1 0.6

HU 2 Hill High 9-Aug-12 0.26 90 230 676 high 0.36 33 0 29 46 22 3 0.0 2.2

HU 3 Hill High 8-Sep-12 0.32 200 640 782 high 0.09 18 12 34 42 20 3 0.0 4.7

HU 4 Hill High 8-Sep-12 0.19 85 165 791 high 0.34 40 40 23 43 29 5 0.0 3.2

SL 1 Skin Low 1-Aug-12 0.45 160 713 586 mod. 0.14 53 280 37 43 17 3 1.3 11.3

SL 2 Skin Low 10-Aug-12 0.36 200 712 717 high 0.12 31 0 43 37 15 6 0.0 7.3

SL 3 Skin Low 10-Aug-12 0.83 200 1650 679 high 0.23 28 10 36 41 18 4 0.0 5.5

SL 4 Skin Low 10-Aug-12 0.25 160 405 667 high 0.12     57** 330 29 48 18 5 0.0 11.9

SL 5 Skin Low 10-Aug-12 0.34 160 540 712 high 0.18 28 320 29 47 21 3 0.0 11.5

SLD 1 Skin Low 3-Aug-12 1.31      350**       4582** 618 mod. 0.13 55 300 28 50 16 7 0.0 8.7

SM 1 Skin Middle 26-Aug-12 0.16 127 197 845 high 0.12 32 20 26 55 14 5 0.0 13.3

SM 2 Skin Middle 26-Aug-12 0.25 160 407 859 high 0.12 36 0 24 53 18 5 0.0 13.0

SM 3 Skin Middle 26-Aug-12 0.34 160 538     876** high 0.17 33 20 14 59 22 5 0.0 12.9

SM 4 Skin Middle 24-May-13 0.13 78 100 841 high 0.24 21 10 0* 70 22      8** 0.0 15.1

SM 5 Skin Middle 24-May-13 0.19 183 348 739 high 0.08 44 280 0*     80** 16 4 0.0 25.2

SM 6 Skin Middle 24-May-13 0.09 75 69 604 mod. 0.16 42 243 0* 72 24 4 0.0 38.4

SU 1 Skin High 27-Jul-12 0.25 155 388 807 high 0.21 27 10 35 38 24 2 0.0   0.1*

SU 2 Skin High 27-Jul-12 0.14 150 207 671 high 0.08 38 16 50 31 17 2 0.1   0.1*

SU 3 Skin High 27-Jul-12 0.13 150 200 743 high    0.07* 26 20      54**   30* 15    1* 0.0 7.7

SU 4 Skin High 27-Jul-12 0.37 150 561 666 high 0.18 49 110 27 46 24 3 0.0 6.2

SU 5 Skin High 28-May-13      1.58** 110 1740 660 high      0.64** 10 40 44 35 19 2 0.0 1.9

SU 6 Skin High 28-May-13 1.23 175 2159   355* mod. 0.46 8* 20 0* 60      36** 4 0.0 2.3

0.36 139 613 683 0.22 35 90 27 49 19 4 0.40 11.2

0.38 59 908 110 0.14 12 108 14 11 5 2 0.82 9.9

Mean 

Standard deviation

Elevation 

group

Water-

shed

Date of 

installation

Swale 

ID

Soil texture classes (%)
2013 SY    

(Mg ha-1 yr-1)

Burn severity
2012 SY    

(Mg ha-1 yr-1)

area * length 

(1000 m3)

Contributing 

area (ha)

width-length 

ratio

Slope 

angle (%)

Aspect 

(deg)

Slope 

length (m)
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Table 3.5:  Strength of the correlations for a) swale length, slope angle, burn severity (dNBR), percent sand content of the soils, swale 
width-length ratio and swale aspect, versus 2012 annual and 2013 annual sediment yield (logSY), and for b) swale length versus 2012 
annual and 2013 annual logSY including and excluding outliers.  
 

 

 

 

a. 

length angle dNBR % sand W-L ratio aspect

2012 16 -0.22 0.28       -0.66*** 0.20       0.24       -0.08  

2013 21 -0.31 0.53*** 0.19      0.52*** -0.61*** 0.22

Mulched 2013 8 -0.46 0.06      -0.37      0.17       0.61       0.58

n

Pearson's Correlation Coefficient

Subset of logSY  data

Unmulched

b.

Including outliers Excluding outliers

2012 -0.22 -0.57**  

2013 -0.31 -0.38*    

Mulched 2013 -0.46 -0.99***

* p-value <0.1

** p-value <0.05

*** p-value<0.01

Subset of logSY  data

Unmulched

Pearson's Correlation Coefficient
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Figure 3.9:  Relationships between logSY data and swale length at a) unmulched swales in 2012, b) mulched swales in 2013, and c) 
mulched swales in 2013, with outliers marked in red. When those outliers were removed, the correlations between logSY and swale 
length became stronger and more negative.  
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Table 3.6:  Mean percent surface cover by cover class in fall 2012, spring 2013 and fall 2013 at a) unmulched swales and b) mulched 
swales. 

  
 
 
Table 3.7:  Mean percent surface cover by mulch type in fall 2012, spring 2013 and fall 2013, and the percent decrease in surface 
cover by mulch type between spring and fall 2013.  
 

 

 

 

Fall 2012 Spring 2013 Fall 2013

41 (11)   54 (10)   26 (11) 48

--- 55 (4) 28 (0) 51

--- 24 (4) 13 (2) 54

--- 27 (7) 13 (0) 48Mixed wood shred and straw (n=2)

Wood shred (n=4 in 2012, n=2 in 2013)

Dense straw (n=2)

Sparse straw (n=2)

Mulch type (sample size)

Percent surface cover (standard deviation) Percent decrease 

spring to fall 2013
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Table 3.8:  Strength of the correlations between event-based, 2012 annual and 2013 annual  
logSY and percent surface cover by bare soil and live vegetation. Significant correlations are 
denoted with *. 

 
 

 

 
Figure 3.10:  Rills approximately 10-20 cm deep through wood mulch after the 09/2013 event. 
Photo is facing uphill from the sediment fence at swale HU1.  
 
 
 
 
 
 
 
 
 

cover by bare soil cover by vegetation

event-based 113 -0.16 0.36*

2012 16 0.56* -0.42

2013 21 0.15 -0.46*

event-based 13 0.09 0.28*

2012 8 0.11 0.04

2013 8 0.72* 0.17

Mulched

Pearson's correlation coefficient

Subset of logSY  data n

Unmulched
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Table 3.9:  Mean percent mulch cover for different mulch materials in spring 2013 and the 
associated mean 2013 sediment yields for those mulch materials.   

 
 
 
 
 
 

 
Figure 3.11:  Average total 2013 sediment yield versus average percent cover by different mulch 
types in spring 2013.  
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Figure 3.12:  Average sand content of soils within the study swales derived from three samples 
per swale with error bars indicating one standard deviation.  
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Table 3.10:  Summary of the best-fit multivariate regression models for a) event logSY, 2013 annual logSY and 2012 annual logSY at 
unmulched swales, b) event logSY and 2013 annual logSY at mulched swales, and c) event SY, 2013 annual SY and 2012 annual SY at 
all swales.  All variables are significant to the p-value indicated for each model.    
 

  

a)  Unmulched swales, logSY data:

All events Annual 2013 Annual 2012

n=113 Adjusted R
2
 = 0.53 p-values < 0.0001 n=21 Adjusted R

2
 = 0.67      p-values <0.1 n=22 Adjusted R

2
 = 0.45   p-values < 0.005

Variables Partial R
2

VIF Variables VIF Variables Partial R
2

VIF

MI 30 0.45 1.02 Width-length ratio 0.26 1.29 Vegetation cover 2012 0.26 1.03

Slope length 0.08 1.02 EI 30 0.23 1.61 dNBR 0.19 1.03

Average vegetation cover 2013 0.13 1.12

Slope length 0.05 1.35

b)  Mulched swales, logSY data:

All events Annual 2013

n=13 Adjusted R
2
 = 0.55      p-values < 0.005 n=8 Adjusted R

2
 = 0.92   p-values < 0.1

Variables Partial R
2

VIF Variables VIF

Mulch cover 0.55 N/A MI 30 0.83 1.4

Average bare soil cover 2013 0.09 1.4

c)  All swales, SY data

All events Annual 2013 Annual 2012

n=126 Adjusted R2 = 0.37        p-values < 0.05 n=29 Adjusted R2 = 0.53 p-values < 0.1 n=22 Adjusted R2 = 0.27    p-values < 0.1

Variables VIF Variables VIF Variables Partial R2
VIF

MI 30 0.29 1.1 Average bare soil cover 2013 0.28 1.09 dNBR 0.23 1.02

Slope length 0.04 1.26 Width-length ratio 0.08 1.47 Vegetation cover 2012 0.04 1.02

Width-length ratio 0.02 1.64 Total summer EI 30 0.06 1.35

dNBR 0.015 1.19 Slope length 0.06 1.33

Average bare soil cover 2013 0.005 1.17 dNBR 0.05 1.3

Partial R2Partial R2

Partial R
2

Partial R
2
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Figure 3.13:  Event precipitation a) depth, b) duration, c) MI30, and d) EI30 for the 09/2013 event as reported from six different rain 
gages co-located with study swales.  Data from gages SLR1 and SLR2 include precipitation data from a storm on 28 August, 2013. 
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Table 3.11:  Strength of the correlation between logSY and hillslope and cover variables for the 09/2013 event.  Correlations marked 
with * are significant with p-values <0.05. 

 
 
 
 
Table 3.12:  Summary of the best-fit multivariate regression models for the 09/2013 event at all swales, unmulched swales, and 
mulched swales.  All variables are significant to the p-value indicated for each model.  

 

 

 

 

 

bare soil vegetation rock mulch

All 29  - 0.16 0.13 0.04 -0.10 -0.30 0.35 -0.16 0.26 -0.57*

Unmulched 21 -0.53* -0.21 0.20 -0.22 0.07 0.32 -0.31 0.01 NA

Mulched 8 -0.38 0.57 -0.13 -0.10 -0.16 0.39 -0.36 0.68 -0.53

Pearson's Correlation Coefficient

percent surface cover
Swales n

Slope 

length

width-

length ratio

Slope 

angle
dNBR

sand 

content

All swales Unmulched swales Mulched swales
n=29 Adjusted R2 = 0.29 p-value <0.01 n=21 Adjusted R2 = 0.35 p-values<0.05 n=8 Adjusted R2 = 0.37 p-value<0.1

Variables Partial R2
VIF Variable Partial R2

VIF Variable Partial R2
VIF

Mulch cover 0.29 N/A Length 0.24 1.07 Rock cover 0.37 N/A

dNBR 0.14 1.18

Width-length ratio 0.09 1.25
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4 DISCUSSION 
 
 
 
4.1 Rainfall variables as controls on sediment yield 

 Previous studies in the Colorado Front Range have identified a post-fire 30-

minute rainfall intensity threshold for sediment production of 10 mm hr-1 at high-severity sites 

(Moody and Martin 2001a, Moody and Martin 2001b, Pietraszek 2006).  That threshold is 

consistent with the rainfall intensity threshold in this study for the second year after burning 

(11 mm hr-1).  However, in the first year after burning, rainfall intensities of only 4 mm hr-1 

sometimes mobilized small amounts of sediment, indicating that the threshold changes over 

time (Table 3.2).  Another factor to consider is the stabilization and protection of soils provided 

by recovering vegetation.  It is expected that the rainfall thresholds for sediment production 

will be even higher in the third year after burning. 

 The gap in time between the end of the High Park Fire and the start of the rainfall and 

sediment production monitoring for this project may explain why the first-year sediment yields 

for this project were so much lower than those recorded in the first year after burning at other 

fires in the Colorado Front Range (0.5 Mg ha-1 yr-1 versus 6.7-7.6 Mg ha-1 yr-1) (Benavides-

Solorio and MacDonald 2005, Pietraszek 2006, Robichaud et al. 2013c).  Monitoring did not 

begin in earnest until the second week of August 2012, one month after containment of the 

High Park Fire.  The Buckhorn Mountain weather station on the southern edge of the burn area 

was not operational during the fire but resumed operation on 9 July 2012 and recorded eleven 

days of rain between 9 July and 7 August 2012, four of which exceeded the 4 mm rainfall depth 

threshold for sediment production in 2012 (NOAA-NCDC 2012) (Figure 4.1).   
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 The greatest daily precipitation recorded at Buckhorn Mountain during that time was 11 

mm on 9 July, just days after the fire was contained.  A rain event with similar total depth in 

September 2012 yielded 0.6 to 2.6 Mg ha-1 in Lower Hill Gulch.  Two other storms at Buckhorn 

had at least 8 mm of rain, and radar data indicate that much larger storms occurred on 6-8 July, 

causing extensive aggradation and channel change in Skin Gulch.  Hence high sediment yields 

almost certainly occurred in July 2012 before monitoring commenced.  Clearly it is important to 

begin monitoring immediately after a fire, and if this had been possible the sediment yields for 

the first year after burning would be much closer to the first year average yields measured at 

other fires in the Colorado Front Range. 

 Of the three precipitation metrics, EI30 was the best predictor of a sediment production 

threshold as evidenced by seven events that did not produce sediment despite exceeding the 

thresholds for two out of three rainfall parameters (Table 4.1).  Of these seven events, five 

appear to have been limited by insufficient EI30, whereas P and MI30 were the limiting factors 

for only one event each.  The dependence of EI30 on MI30 helps explain why EI30 controls the 

rainfall thresholds for sediment production (Figure 4.2).  A small increase in MI30 corresponds 

with a large increase in EI30, meaning storms with an MI30 too low to produce sediment may still 

have an EI30 sufficiently large to do so.  This positive relationship between EI30 and MI30 has also 

been observed in previous studies (Benavides-Solorio and MacDonald 2005, Pietraszek 2006).  

With the exception of the 7/28/2013 event at gage SUR2, all of the events in Table 4.1 occurred 

in the winter or shoulder seasons when convective storms generally do not occur (MacDonald 

and Stednick 2003).   These winter and shoulder season storms typically have lower erosive 

power than the summer convective storms that dominated sediment production at the study 
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swales (Spigel and Robichaud 2007).  The average monthly total EI30 at the rain gages was 10 MJ 

mm ha-1 hr-1 during the winter and shoulder months October 2012 to May 2013 compared to 

64 MJ mm ha-1 hr-1 in the summer months July to Sept 2012 and June to August 2013; 

September 2013 was excluded so that the comparison would not be skewed by the extreme 

09/2013 event.  

Despite EI30 being the strongest control on sediment production thresholds it was the 

dominant rainfall parameter in only two multivariate regression models, the unmulched 2013 

annual model and the 2013 annual model for untransformed sediment yield at all swales (Table 

3.10a and 3.10c).  The event-based model for unmulched swales was primarily controlled by 

MI30 (partial R2 = 0.45).  This relationship can possibly be explained by the range of values for 

MI30 compared to EI30.  While MI30 values ranged from 4-46 mm hr-1 throughout the entire 

study period, EI30 values were greatly skewed by the 09/2013 event with erosivities in excess of 

900 MJ mm ha-1 hr-1. Indeed, when the 09/2013 event is removed from the unmulched event-

based model, EI30 becomes a much more significant parameter with a partial R2 of 0.37.  

However, MI30 still controls the model (partial R2 = 0.50).  

 EI30 is the primary rainfall parameter in the unmulched 2013 annual regression models.  

On the annual time-scale, EI30 becomes a stronger parameter than MI30 because EI30 can be 

summed over the course of a year whereas MI30 is still only an event-based parameter.  

However, the mulched 2013 annual regression model is controlled by MI30 (partial R2 = 0.83).  

This is because, though the annual model represents the sum of all events throughout 2013, it 

was only based off 13 events at 8 swales.  That is less than two events per site, rendering the 
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model an event-based model in practice.  In that light, MI30 controls the annual model for the 

same reasons it controls the event-based model.  

 The information presented here shows that, because rainfall thresholds for sediment 

production change over time, a single model may not be able to represent multiple years of 

post-fire erosion. Furthermore, multiple rainfall parameters need to be considered when 

developing a post-fire regression model because the rainfall parameters that control sediment 

yield vary over time as areas recover. 

 

4.2 Primary versus secondary controls on sediment yield 

 MI30 was the primary controlling variable in the event-based models for unmulched 

swales and for all swales (Table 3.10c).  In event-based modeling, event-based variables such as 

rainfall intensity will understandably control the output.  On an annual timescale, however, 

variables that are themselves measured on longer timescales will control the model, and event-

based rainfall parameters will become secondary controls.  This is seen in most of the annual 

regression models (Table 3.10).  In these models, the primary variables controlling SY were 

topography (length and width-length ratio), surface cover (percent cover by vegetation), and 

burn severity (dNBR), all of which are more consistent over the course of a year than event 

rainfall.  Surface cover, topographic and burn severity variables also became controlling 

variables when rainfall was held relatively constant, as was the case in the 09/2013 event (Table 

3.12).   

 The primary controls on sediment yield changed with time from burning, with percent 

cover by vegetation and burn severity controlling sediment yield in the first year after burning, 
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and topographic variables controlling sediment yield in the second year after burning (Table 

3.10).  Previous studies have found rainfall parameters to be secondary controls on annual 

post-fire sediment yield, with surface cover, and specifically percent cover by bare soil, being 

the dominant control (Benavides-Solorio and MacDonald 2005, Pietraszek 2006).  However, 

these studies used regression models to predict cumulative sediment yield from multiple years 

using just one relationship between predicting variables and sediment yield.  As shown in the 

rainfall thresholds for sediment production observed in this study, the relationship between 

rainfall and sediment yield changes with time since burning, so the time period being analyzed 

can affect which variables are dominant controls.  Because controls on sediment yield change 

with time since burning as vegetation and soils recover and easily mobilized sediment is 

removed from the hillslopes, regression models that lump multiple years together may obscure 

the dynamics of post-fire erosion recovery.   However, in order to fully understand the role 

ofthese dynamics, multiple years of data with widely varying controls are needed.  

 

4.3 Effects of slope length and width-length ratio on sediment yield 

 Previous post-fire erosion studies in the Colorado Front Range have not directly 

investigated the influence of slope length on sediment yield despite it being a key component in 

most erosion models (Renard et al. 1997, Cochrane and Flanagan 2004, Robichaud et al. 2007a).  

In the erosion models RUSLE, WEPP and ERMiT, sediment yields are simulated to increase as 

slope length increases.  In this study, however, the opposite was true.  Slope length had a 

significant negative correlation with all subsets of logSY data in the univariate regression 

models, indicating that sediment yield decreased with increasing slope length (Table 3.5a).   
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 Erosion studies unrelated to fire have mixed conclusions regarding the effect of slope 

length on erosion rates.  Length has been determined to be positively (Gabriels 1999, Kinnell 

2000) or negatively (Xu et al. 2009) correlated with sediment yield, or not correlated at all 

(Agassi and Benhur 1991, Palis et al. 1997).  In this study, slope length may have been inversely 

related to sediment yield because long slopes provide more opportunities for slope roughness 

to interrupt the flow of water and sediment down a slope.  If slope length is indeed inversely 

related to post-fire erosion rates, this has significant implications for the models that rely on 

the opposite.  This concept will be explored more thoroughly in Part II of this thesis.  

 The shape of the contributing area is another topographic variable that has not been 

examined explicitly in its relationship to post-fire sediment production.  In this study the only 

significant relationship was for unmulched swales where narrow swales produced more 

sediment than wide swales in 2013 (r = -0.61) (Table 3.5a).  Low width-length ratios (narrow 

side-slopes)  funnel runoff and sediment directly to the swale axis along shorter path lengths.  

Once in the axis of the swale, rilling becomes the dominant overland flow path instead of 

sheetwash.  Rilling is a greater source of erosion than sheetwash (Pietraszek 2006), so the 

longer and narrower swales will have longer rills per unit area and presumably higher rates of 

sediment yield than swales with high width-length ratios.   

Despite only having a significant univariate correlation with logSY at unmulched swales 

in 2013, the width-length ratio was a significant variable in three of the multivariate regression 

models, including the unmulched 2013 model where width-length ratio was the dominant 

factor controlling sediment yield (Table 3.10a).  This variable begins to address the pathways of 

runoff and sediment routing to the swale outlet, and its importance in multiple regression 
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models suggests that variables describing swale shape should be investigated further to 

determine their importance in estimating post-fire erosion.  

 

4.4 Mulch materials and application rates 

 The amount of ground coverage provided by the mulch strongly influenced sediment 

yield (Figure 3.10).  This is supported by other studies comparing mulch materials and their 

resulting surface coverage and sediment outputs (Fernandez et al. 2011, Robichaud et al. 

2013b, Robichaud et al. 2013c).  Swales in this study were scheduled to receive 2.2-3.4 Mg ha-1 

of straw mulch or 13.5 Mg ha-1 of wood shred mulch, but the surface cover provided by those 

applications varied widely (J. Oropeza, personal communication, 22 April 2014).  The swales 

that had low percent surface cover by mulch experienced greater sediment yields than swales 

with denser surface cover by mulch, and greater sediment yields even than some unmulched 

swales (Figure 3.10).   

 Fernandez et al. (2011) found that although wood chips were applied at a higher rate 

than straw mulch due to their greater mass (4 Mg ha-1 versus 2.5 Mg ha-1), wood chips only 

provided 45% surface cover while straw mulch provided 80%.  Poor coverage by wood mulch 

was confirmed by the swales in this study—swales mulched with wood shreds had only 41% 

average surface cover immediately following application in November 2012, whereas the 

swales densely mulched with straw had 55% average surface cover following application.  

Previous studies have shown that surface cover by straw mulch decreases much more rapidly 

than cover by wood mulch (Robichaud et al. 2013c, Gruen 2008).  In this study, however, mulch 

coverage at all mulched swales decreased by 50% from spring 2013 to fall 2013 (Table 6c).  The 
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mulch that initially provided the highest coverage therefore still had the highest coverage in fall 

2013, and that was the dense coverage of straw mulch at SU1 and SU2.    

 Past research has also found that vegetation recovery is not improved by application of 

mulch and this too was supported by the swales in this study (Robichaud et al. 2013b, 

Fernandez et al. 2011).  No correlation was found between percent cover by mulch and percent 

cover by vegetation. 

 All of these pieces of information show that, among the swales in this study, persistence 

of ground cover and effectiveness at reducing sediment yield did not differ among the three 

mulch materials, but rather that the amount of surface cover provided by the mulch is a strong 

control on sediment yield.  Hence, the material used for mulching may not affect erosion 

reduction rates as long as the material is applied at a rate that provides sufficient coverage to 

reduce erosion.  Considering this information, the mulch material that provides the most cover 

per unit cost should be used to mulch hillslopes in order that greater coverage and lower 

sediment yield can be attained.   
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Figure 4.1:  Daily precipitation totals recorded at the Buckhorn Mountain rain gage from 1 July 
2012 to 7 August 2012 (NOAA-NCDC 2012).  The red line indicates the precipitation depth 
threshold for sediment production in 2012 based on August-December 2012 data at the study 
swales.  
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Table 4.1:  Precipitation events that exceeded two out of three of the precipitation  thresholds 
for sediment production but probably did not produce sediment because values marked with * 
did not meet the necessary precipitation threshold. 

 

 

 
 
 
 

 
Figure 4.2:  Relationship between MI30 and EI30 for events recorded at the study swales from 
August 2012 to September 2013.  
  

Rain gage Date P (mm) MI30 (mm hr-1) EI30 (MJ mm ha-1 hr-1) Absence of sediment production 

HLR1 12/20/2012 7 4   3*
Cannot verify -- four fences contained <0.03 Mg 

of sediment at the end of the winter season

SLR2 5/29/2013 12 11  19* Verified

SMR1 12/20/2012 4 4   2*
Cannot verify -- four fences contained <0.05 Mg 

of sediment at the end of the winter season

SMR1 10/25/2012 5 4   2* Verified

SUR1 10/28/2012 13   3* 4 Verified

SUR1 11/23/2012  4* 8 7 Verified

SUR2 7/28/2013 10 11  19*
Cannot verify -- a threshold-exceeding storm 

followed this event
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5 CONCLUSIONS 
 
 

 
 The objectives of Part I of this thesis were to document post-fire sediment production in 

the High Park Fire, and to determine how sediment production relates to fire, rainfall, surface 

cover, soil and topographic characteristics.  These variables were monitored at 29 swales 

burned at moderate and high severity from August 2012 to September 2013.   

 On an event basis, sediment yield is controlled by precipitation intensity.  This statistical 

result confirms that infiltration excess overland flow is the primary mechanism for sediment 

production and delivery on burned hillslopes.  On a longer timescale, precipitation between 

sites tends to be more similar, so surface cover and topographic characteristics become more 

important in explaining the variability in sediment yields between sites.  More specifically, 

percent cover by bare soil or vegetation, and slope length and width-length ratio are dominant 

controls on hillslope-scale sediment yield on an annual timescale.   

 The precipitation thresholds for sediment production increase over time, indicating an 

increase in infiltration rate.  The changes in surface cover and soil characteristics as the burned 

area recovers affect which variables control sediment yield.  Burn severity and the associated 

loss of vegetation cover are important controls immediately after burning.  When rainfall is held 

constant, surface cover and topographic characteristics are the dominant controls on sediment 

yield.   

 Though the swales in this study had small contributing areas (0.1-1.5 ha) and consistent 

hillslope gradients, greater sediment production on short slopes and narrow swales suggests 

that the dynamics of overland flow, sediment transport and rilling affect sediment delivery to 
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the swale outlet.  The swale areas may not have been small enough that internal deposition 

and remobilization could be neglected.  More research is needed to determine how slope 

length and shape affect sediment yield.  
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PART II 

APPLICATION AND EVALUATION OF THREE EROSION MODELS  
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6 INTRODUCTION AND BACKGROUND 
 
 
 
6.1 Introduction 

 
Hillslope scale erosion models predict either the mass of sediment production off a 

hillslope or the potential for a hillslope to produce sediment (Merritt et al. 2003, Robichaud and 

Ashmun 2013).  These models are tools that allow land managers to identify areas where 

erosion may present a risk to life, property, infrastructure, or degrade site productivity.  Post-

fire applications of these models have been used to identify and treat hillslopes that are likely 

to produce large amounts of sediment, sections of road prone to washouts, and potential 

sources of water supply impairment (Wilson et al. 2001, Miller et al. 2003, Robichaud et al. 

2009, Rulli et al. 2013).   

While catchment-scale erosion models represent the three stages of erosion 

(detachment, transportation and deposition), hillslope-scale models typically neglect 

channelized flow and deposition, focusing instead on the detachment and early transport 

processes of rainsplash, sheetwash and rilling (Moody and Martin 2001a, Merritt et al. 2003, 

Libohova 2004, Tongway and Ludwig 2011).  Rainsplash is the detachment of particles through 

the impact of raindrops, and sheetwash is the removal and transport of loosened sediment by 

water flowing broadly across a surface.  Rills are small channels that develop on a previously 

unchanneled surface due to concentrated flow and erosion.   

While numerous models exist to predict erosion within a catchment, few models have 

been developed that incorporate the changes in processes specific to post-fire erosion (Merritt 

et al. 2003, Aksoy and Kavvas 2005).  One erosion model that has been developed specifically 
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for post-fire applications is the web-based Erosion Risk Management Tool (ERMiT).  Another 

erosion model, the Revised Universal Soil Loss Equation (RUSLE), has been applied in post-fire 

environments despite its development and intended use in agricultural settings.  Additionally, 

multivariate regression models can be developed from site-specific erosion data and 

extrapolated to predict erosion response away from the study locations.   

The objectives of the second part of this study were to compare field-measured 2013 

annual sediment yields at 29 study swales in the High Park Fire, Colorado to the sediment yields 

predicted by the ERMiT and RUSLE erosion models and a site-specific multivariate regression 

model (SSMR) using: 1) field-measured inputs, and 2) remotely-sensed and GIS-derived inputs.  

These tests will help evaluate the suitability of the ERMiT and RUSLE models for predicting post-

fire erosion and will improve understanding of how remotely sensed data can be used to derive 

model inputs.  

 

6.2 The models 

6.2.1 ERMiT 

 Overview: ERMiT (version 2006.01.18, Robichaud et al. 2007, website: 

http://forest.moscowfsl.wsu.edu/cgi-bin/fswepp/ermit/ermit.pl) is a stochastic hillslope-scale 

runoff and erosion model designed specifically for post-fire applications (Merritt et al. 2003, 

Robichaud et al. 2007a).  The model is based on the Water Erosion Prediction Project (WEPP) 

and utilizes many of the same processes as WEPP.  In addition to representing rill and inter-rill 

erosion, ERMiT models evapotranspiration, infiltration, runoff, soil detachment, and sediment 

transportation and deposition (Robichaud et al. 2007a).  The user inputs are climate (by means 
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of location and elevation), soil texture, soil rock content, vegetation type, soil burn severity, and 

hillslope gradient and length (Robichaud et al. 2007a).  Instead of providing a prediction of 

annual sediment yield like RUSLE, ERMiT combines multiple runs of WEPP and stochastically 

varies climate, the spatial pattern of burn severity, and soil hydraulic conductivity and 

erodibility to predict the probability of a given sediment delivery from the hillslope for the 

largest runoff event for each year from the stochastically simulated climate.  The probabilistic 

predictions made by ERMiT are particularly useful for determining the effects of a post-fire 

treatment such as mulching because they show land managers which mulch application rates 

will reduce probable sediment yields sufficiently to meet their goals.  The following information 

is taken from the ERMiT User Manual (Robichaud et al. 2007a) unless otherwise noted.   

 User inputs:  The Rock:Clime database of 2600 climate stations across the United States 

generates a climate file for the area of study.  Climate parameters can be adjusted using the 

Parameter-Elevation Regressions on Independent Slopes Model (PRISM) which varies 

precipitation depth, air temperature and number of wet days based on elevation, latitude and 

longitude.  The parameters from PRISM are then input into WEPP’s CLIGEN program to 

generate a 100-year weather file specifically formatted for WEPP.  The file includes daily 

precipitation, air temperature, solar radiation and wind data. 

 For each hillslope the user can select one of four soil textures (clay loam, silt loam, 

sandy loam, or loam).  The rock content of the soils can be determined from soil surveys or 

from field samples.  Vegetation type is limited to forest, range or chaparral; forest vegetation 

has no further inputs.  Hillslope length refers to the horizontal length between the top and toe 

of the hillslope.  The hillslope gradient is divided into the upper 10%, middle 80%, and bottom 
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10%, each of which can be assigned a different gradient in percent.  If the slope begins at a 

hilltop or ridgeline the upper gradient is entered as “zero”.  Finally, the burn severity (high, 

moderate or low) is selected, and user inputs are complete.  

  Process:  ERMiT runs WEPP for the 100-year climate file to determine the number of 

wet days in the time period being modeled (Elliot et al. 2000). For every wet day, WEPP 

determines if the precipitation fell as rain or as snow, then calculates the infiltration and runoff 

from the event.  From that 100-year run of WEPP, ERMiT selects the event with the highest 

runoff for each year, and from those 100 events ERMiT selects the 5th, 10th, 20th, 50th and 75th 

greatest runoff events for further analysis.   

 ERMiT automatically divides the hillslope into three portions referred to as Overland 

Flow Elements (OFE).  Spatial variability of wildfire burn severity and soil parameters are 

represented through probabilistic combinations of these variables across the three OFE’s.  For 

burn severity the combinations only utilize low and high burn severities, but the different 

combinations of these two severities allow for moderate burn severity to be expressed.  The 

probabilities of certain burn severity configurations change with time since burning to 

represent recovery.  Spatial variability of soil parameters is modeled in the same way, with five 

different soil types (Soils 1, 2, 3, 4 and 5) arranged in different configurations to represent 

varying soil properties including erodibility and infiltration rate.  The probability of each 

configuration changes with time to represent soil recovery.   

 The precipitation data for each of the five years selected from the climate file are 

processed multiple times using every possible combination of soil and burn severity 

configurations.  Each combination of the three sources of variability (climate, burn severity and 



75 
 

soil parameters) is assigned a joint occurrence probability associated with a sediment yield 

prediction.  After ranking the predictions by sediment yield, each individual probability is 

converted to an exceedance probability by adding it to the sum of the previous probabilities 

and adding 1%.  

 ERMiT allows for recovery over time by successively removing the most severe burn 

severity configurations and by lowering the probability of each soil parameter set.  ERMiT is 

also designed to account for post-fire erosion mitigation treatments.  The effectiveness of a 

mulch treatment is modeled by decreasing the probability of the most erodible soil parameter 

sets for the first two years after application.   

 Outputs:  ERMiT produces graphs and tables that describe the exceedance probability of 

the runoff and sediment yield associated with a single hypothetical event for the first through 

fifth years after burning.  For example, a 10% exceedance probability of 7.5 Mg ha-1 means 

“there is a 10% probability that a single rain event will result in at least 7.5 Mg ha-1 sediment 

delivery to the base of the hillslope” (Robichaud et al. 2007a).  The effects of mulching on event 

sediment yields are described in a separate table.  

 Examples of use:  One validation study of ERMiT has been published from conference 

proceedings (Robichaud et al. 2011).  The study found that ERMiT generally over-predicted 

post-fire sediment yields on treated and untreated hillslopes, though most of the under-

predictions in the study occurred in the Colorado Front Range.  The authors hypothesize that 

the under-predictions in the Colorado Front Range are due to the high-intensity storms in the 

region, soils that are more erodible than ERMiT soils, and delayed recovery due to climate.  The 

ERMiT model has been extensively used by Burned Area Emergency Response (BAER) teams 
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and other land managers to decide where post-fire treatments should be applied (eg. 

Robichaud et al. 2009, BAER 2012).   

 

6.2.2 RUSLE 

Overview:  The Universal Soil Loss Equation (USLE) is a lumped empirical erosion model 

developed from a large agricultural dataset of study sites referred to as Unit Plots (Aksoy and 

Kavvas 2005).  It was intended as a small hillslope scale model but has been incorporated into 

other catchment scale erosion and sediment transport models, making it a versatile tool for 

modeling the initial stages of erosion (Merritt et al. 2003, Aksoy and Kavvas 2005).  Though 

designed to model erosion on an annual basis, RUSLE has also been successfully used to model 

event-based erosion (Nearing 2005).  The model has gone through many iterations, beginning 

with USLE in 1965, then RUSLE, then RUSLE1 and now RUSLE2 (Renard et al. 2011).  Original 

USLE was designed with agricultural uses in mind, and the inputs were easily, if broadly, 

determined from a series of tables and charts.  As the applications for USLE expanded, so did 

methods for calculating inputs.  The following information is taken from the RUSLE Handbook 

(Renard et al. 2011).   

Inputs:  The RUSLE equation is: 

 

A = R K L S C P     (6.1) 
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where A is estimated annual soil loss per unit area, R is the rainfall erosivity factor, K is the soil 

erodibility factor, L is the slope-length factor, S is the slope-steepness factor, C is the cover and 

management factor, and P is the supportive practices factor.   

The R factor represents the annual rainfall erosivity (EI30).  R factors are typically 

determined from isoerodant maps of the US, but those maps do not have fine enough 

resolution for use in topographically variable terrain such as the Colorado Front Range.  The R 

factor can also be calculated from each storm’s maximum thirty-minute intensity and its total 

rainfall energy: 

 

𝑒 = 0.29 [1 − 0.72 exp(−0.05 ∗ 𝐼)]  (6.2) 

𝐸𝐼30 = 𝑒 ∗ 𝑀𝐼30      (6.3) 

 

where e is rainfall energy in MJ ha-1 mm-1, I is rainfall intensity in mm hr-1, MI30 is the maximum 

thirty-minute rainfall intensity in mm hr-1, and EI30 is in MJ mm ha-1 hr-1.  The EI30 for each storm 

is summed to obtain the the total EI30 for each year, and after dividing by 100 the R factor is the 

mean annual erosivitity from a long-term rainfall record (Renard et al. 1997). 

The K factor represents the effects of soil properties on erosion.  It is a lumped 

parameter representing a) the processes of soil detachment and transport by rainsplash and 

overland flow, b) deposition caused by topography and surface roughness, and c) rain 

infiltration.  The K factor has been calculated for most soil surveys by the NRCS based on the  

soil texture, structure and permeability.   
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The L and S factors represent the effect of topography on erosion through a series of 

equations.  The L factor, slope length, is the RUSLE factor most open to interpretation (Renard 

et al. 2011).  Slope length in RUSLE is defined as the point where overland flow is initiated to 

the point where channelized flow or deposition occurs.  These “points” are not always easy to 

identify in natural landscapes.  In recent years, calculation of the L factor has increasingly been 

done with a Geographic Information System (GIS), but this can lead to excessively long slope 

lengths.  The S factor, slope angle, describes how erosion increases with slope angle.  The 

RUSLE equation is more sensitive to the S factor than to the L factor.   

The C factor represents the effects of surface cover and cover management on soil 

erosion.  It is a ratio describing how erosion rates compare to those at the Unit Plot condition.  

A value of zero indicates a non-erodible surface, and values greater than 1 indicate erosion 

rates greater than those under normal Unit Plot conditions.  In RUSLE the C factor is calculated 

from five subfactors that describe the effects of prior land use, canopy cover, surface cover, 

surface roughness and soil moisture.  Given the complexity of the C factor, most users derive C 

factors from existing RUSLE2 tables.  However, the full set of equations can be found in the 

RUSLE Handbook (Renard et al. 2011).   

Finally, the P factor represents the impact of management practices on erosion.  Like 

the C factor, it is a ratio that describes how erosion rates compare to those at the Unit Plot 

condition.  This factor generally only applies to agricultural lands, though it can be used to 

account for the effects of mulching and other treatments in post-fire scenarios.   

Implementation:  The most current version of RUSLE, RUSLE2, is a computer program 

that automatically supplies values for the various RUSLE factors based on the user’s selection of 
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conditions such as crop type and management practices.  No interface exists to adjust factor 

values, so RUSLE has to be calculated by hand to be applied in post-fire scenarios.  These 

calculations can be completed in a GIS to produce maps of the outputs.  

Outputs:  RUSLE predicts sediment loss lumped both spatially and temporally in units of 

mass per unit area per year.   

  Examples of use:  Numerous post-fire studies have used RUSLE to predict sediment 

yield after burning, but very few have compared their results with actual field measurements of 

soil loss.  In a study of 252 plot-years of data from 9 fires in the Colorado Front Range, Larsen 

and MacDonald (2007) found that RUSLE over-predicted low rates of sediment yield (less than 1 

Mg ha-1 yr-1) and under-predicted higher rates of sediment yield.  The correlation between 

predicted and observed sediment yield was weak (R2 = 0.16, Reff
2 = 0.06, RMSE = 6.46 Mg ha-1 

yr-1).  They suggested that the model might be improved by incorporating an erosivity threshold 

for initiating erosion or enabling a nonlinear relationship between rainfall erosivity and 

sediment yield.   

 Fernandez and others (2012) compared actual soil loss in the first year following a fire in 

Spain to the soil loss predicted by RUSLE.  They found that RUSLE overestimated soil loss but 

that the magnitude of overestimation was remedied by decreasing the RUSLE R and C factors.  

The correlation between predicted and observed sediment yield was very poor (R2 not 

reported, Reff
2 = -2.2, RMSE = 30.1 Mg ha-1 yr-1).  They also compared soil loss from unmulched 

study sites and study sites mulched with straw or wood chips to calculate P factor values of 

0.343 and 0.943, respectively.  
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6.2.3 Site-specific multivariate regression model (SSMR) 

Overview:  In Chapter 3 of this thesis a multivariate regression model was developed to 

predict 2013 annual sediment yield at the 29 swales in this study using field-measured data.  

The resulting model used five variables to predict sediment yield:  slope length, dNBR (burn 

severity), swale width-length ratio, total summer erosivity and average 2013 percent cover by 

bare soil (Table 3.10c).  The model predicted annual sediment yield with an adjusted R2 of 0.53; 

percent cover by bare soil was the dominant controlling variable with a partial R2 of 0.28.  The 

predictive equation for the SSMR model is: 

 

𝑆𝑌 = 20.82 − 0.07𝐿 − 0.03𝑑𝑁𝐵𝑅 − 36.04𝑊𝐿𝑅 + 29.06𝐵𝑆 + 0.01𝐸𝐼30  (6.4) 

 

where SY is sediment yield in Mg ha-1 yr-1, L is surface slope length in m, dNBR is the burn 

severity represented by the differenced normalized burn ratio, WLR is the swale width-length 

ratio, BS is the average percent cover by bare soil in 2013, and EI30 is the total summer erosivity 

in MJ mm ha-1 hr-1.  
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7 METHODS 

 
 

 
7.1 Datasets 

 Sediment production, fire, rainfall, surface cover, soil and topographic characteristics 

were measured at 29 swales in Hill and Skin Gulches in the High Park Fire, Colorado, from 

August 2012 through September 2013 as described in Part I of this thesis.  Sediment production 

data were normalized by area to give sediment yield in units of Mg ha-1.  The year 2013 

provided the most complete annual dataset (January through September) as well as the 

majority of the sediment produced during the study (98%).  Hence, only the portion of the 

dataset collected in 2013 was used for the models described in Part II of this thesis.   

Digital surrogates for the field-measured data were used to assess the ability of 

remotely sensed datasets to replace field-measured datasets.  All geospatial work was 

conducted in ArcMap version 10.1 (ESRI 2012).  Topographic features were derived from high-

resolution LiDAR data collected in October 2012 by the National Ecological Observatory 

Network’s (NEON) Airborne Observation Platform (AOP).  The LiDAR data were converted to a 

digital terrain model (DTM) with a spatial resolution of 1 m (Figure 7.1).  Burn severity was 

determined from the dNBR map shown in Part I of this thesis (Figure 2.3).  Surface cover data 

were calculated from multispectral data (5-m resolution) collected by RapidEye on June 2 and 

October 10, 2013.  The normalized differenced vegetation index (NDVI) for each date was 

derived from these multispectral data (Figure 7.2).   

The field-measured data (Table 7.1) and remotely sensed data (Table 7.2) were input to 

five models:  ERMiT, RUSLE (a “field” run and a “remote sensing” run), and a site-specific 
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multivariate regression (SSMR) model (a “field” run and a “remote sensing” run) (Figure 7.3).  

The prediction accuracy of the models was determined by comparing predicted sediment yields 

to measured sediment yields and measuring the fit with the coefficient of determination (R2), 

Pearson’s correlation coefficient (r), Nash-Sutcliffe efficiency factor (Reff
2), and the root mean 

squared error (RMSE) (Ott and Longnecker 2010). 

 
 
7.2 ERMiT 

7.2.1 Overview 

As presented above, ERMiT is an internet-based program that calculates the exceedance 

probabilities of sediment yields from the largest runoff events for a simulated 100-year climate.  

The interface requires the user to input values for climate, soil texture, soil rock content, 

vegetation type, soil burn severity, and hillslope gradient and length (Figures 7.4 and 7.5).  The 

input values used here are summarized in Table 7.3.   

 

7.2.2 Inputs 

Climate:  ERMiT automatically creates a climate file from the climate database 

Rock:Clime based on the location selected by the user, though rainfall and temperature values 

can be adjusted by the user through PRISM to more closely match the site-specific climate.  The 

Fort Collins weather station was used for the base climate, and then this was adjusted into 

separate climate files for Hill and Skin Gulches using the centroid latitude, longitude and 

elevation of each catchment (Tables 7.4 and 7.5).  The number of wet days estimated by PRISM 

was increased by 10% to account for the difference in precipitation depth between Fort Collins 
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and the study watersheds.  Temperatures were adjusted to the centroid elevation of each 

catchment by elevation using the lapse rate.  ERMiT classifies monsoonal climates as those with 

greater than 600 mm of precipitation per year with at least 30% falling from July to September.  

If a climate is monsoonal ERMiT slows recovery in the second year after burning.  

Soil texture and soil rock content:  Three soil samples from 0-5 cm depth were collected 

per swale.  The soil texture for each sample was determined using the hydrometer method 

(Gee and Orr 2002) and averaged over each swale.  All soils were determined to be sandy loams 

or loamy sands; the sandy loam texture was used for ERMiT because loamy sand is not an 

option.  The gravel content of the soils (particles greater than 2 mm diameter) was used for the 

soil rock content.  

 Vegetation type:  Vegetation type in ERMiT is classified as forest, range or chaparral.  

The “forest” option was selected for all the study swales.   

Soil burn severity:  Burn severity for each swale was calculated from the dNBR map of 

the High Park Fire using the zonal statistics tool in ArcMap 10.1 (Figure 2.3).   

Hillslope angle:  ERMiT allows for three separate hillslope angles to describe a single 

slope.  Study swales were specifically chosen to have minimal variation in slope angle. Hillslope 

angle was measured in the field upwards from the sediment fence at the base of the swale 

using a handheld clinometer.  That value was input as the hillslope angle for the lower two 

sections of the hillslope.  Per the ERMiT User Manual the top section of each swale was given a 

value of zero because each swale began at a ridgeline (Robichaud et al. 2007a).    
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Hillslope length:  Surface hillslope length was measured in the field using a measuring 

tape extended along the axis of the swale.  The horizontal hillslope length required by ERMiT 

was calculated from the surface hillslope length and hillslope angle.   

Mulch:  The amount of mulch applied to each swale is not an input option for the ERMiT 

model but rather is described in output tables after the model is run.  Values are calculated for 

straw mulch applied at rates of 1.1, 2.2, 3.4 or 4.5 Mg ha-1 with associated surface coverage of 

47, 72, 89 and 94%, respectively.  Straw mulch was applied to the swales at a rate of 2.2 Mg ha-1 

but average surface coverage within a week of application ranged from 20-59%, considerably 

lower than the expected 72%.  Additionally, wood shred mulch and mixed mulch are not 

options in ERMiT.  To account for the above differences between ERMiT predictions and field 

observations, the observed mulch coverage values were used to backcalculate application 

rates.  When observed coverage was lower than the lowest coverage allowed by ERMiT (47%) 

the lowest application rate (1.1 Mg ha-1) was used.    

 

7.2.3 Operation:   

ERMiT was run online for each study swale.  The outputs, including exceedance 

probability graphs and tables for untreated and mulched hillslopes, were downloaded and 

saved.  The graphs and tables created by ERMiT for each swale include predictions for both the 

first and second years after burning but only the second year after burning (2013) was analyzed 

here because ERMiT predicts sediment yields from the annual maximum runoff events which 

were not in the abbreviated 2012 sediment yield data from the study swales.  
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7.2.4 Statistical analysis:   

ERMiT predicts event sediment yield from annual maximum runoff events, so the ERMiT 

outputs must be compared to observed sediment yields produced by the largest daily events in 

2013.  The “largest daily event” is not defined in the ERMiT literature, so the exceedance 

probability of the observed sediment yield for each of two “large” events at each study swale 

was referenced from the tables produced by ERMiT:  the largest rain event in terms of 

maximum daily precipitation depth, and the largest rain event in terms of largest maximum 

thirty-minute rainfall intensity (MI30).  Because the storm with the greatest daily depth was 

from 11-12 September 2013 at all swales, during the 09/2013 event, only storms prior to the 

09/2013 event were considered for MI30 values.  

A frequency distribution and a cumulative frequency distribution of these data were 

plotted and compared to the expected distribution based on the recurrence intervals of the 

rain events.  The sediment yield for the exceedance probability associated with the recurrence 

intervals for each event at each swale was also plotted and compared to the observed event 

sediment yield for each swale to assess how well ERMiT predicted relative erosion rates among 

swales.   

 

7.3 RUSLE 

7.3.1 Overview   

The ability of RUSLE to accurately predict 2013 sediment yields from the study swales 

was assessed twice: once using field-collected data where possible (“field run”, Figure 7.6), and 
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once using only remotely-sensed surrogates for field data (“RS run”).  Consequently, two sets of 

RUSLE factors were calculated.   

 

7.3.2 RUSLE factors for the field run, RUSLEf 

R factor—rainfall erosivity factor:  Cumulative rainfall erosivity for January-September 

2013 was calculated for each of the six tipping bucket rain gages co-located with the study 

swales using equations 6.2 and 6.3.  Annual erosivities were divided by 100 to arrive at the R 

factor in units of MJ mm ha-1 hr-1 (Renard et al. 1997).  Each swale was assigned the R factor 

from the rain gage nearest to it (Table 7.6).   

K – soil erodibility factor:  Pre-fire K factors for the study swales were taken directly from 

soil survey data for Larimer County and Arapaho-Roosevelt National Forest Area accessed 

through the online Soil Survey Geographic database (SSURGO)  (USDA-NRCS 2013b).  The 

Larimer County soil survey listed “rock outcrop” instead of a soil type for the seven swales in 

Lower Hill Gulch and for swale SL1 in Lower Skin Gulch.  Field observation of these swales 

showed that the swales were dominantly soil, not rock, and therefore were assigned the K 

factors of adjacent soil types.  K factors listed in the soil survey are in US customary units; they 

were divided by 7.59 to convert them to SI units of Mg ha hr ha-1 MJ-1 mm-1 (Renard et al. 

1997). K factors can range from 0 to 0.132 Mg ha hr ha-1 MJ-1 mm-1.  Values greater than 0.132 

Mg ha hr ha-1 MJ-1 mm-1 indicate a soil that is more erodible than those used in the 

development of RUSLE.  These values are mathematically valid but are beyond the range of 

values for which RUSLE has been tested.  
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 The K factors presented in the soil surveys do not account for the changes in soil 

structure and permeability caused by fire.  Burned soils lose structural integrity through burning 

due to consumption of organic matter (Neary et al. 1999, Moody et al. 2005).  Infiltration rates 

were not measured in the study swales, but previous research on granitic soils in ponderosa 

pine forests burned by high-severity fire show a 2.6 fold decrease in infiltration rates from 120 

mm hr-1 to 45 mm hr-1 in one study (Martin and Moody 2001), and from 69 mm hr-1 to 26 mm 

hr-1 in another study (Campbell et al. 1977).  According to the nomograph for calculating K 

factors, these changes in structure and permeability lower the permeability class from “rapid” 

to “moderate to rapid”, and consequently increase the K factor by 0.004 Mg ha hr ha-1 MJ-1 mm-

1, by no means a large enough increase to account for the 2+ order of magnitude increase in 

sediment yield typically seen after a high-severity fire (Robichaud and Brown 1999, Moody and 

Martin 2001a, Benavides-Solario and MacDonald 2005, Nearing et al. 2005, Larsen and 

MacDonald 2007).   

Coming at it from a different angle, MacDonald and Larsen (2007) back-calculated K 

factors from their sediment yield data from wildfires in Colorado; their mean back-calculated K 

factor for high-severity burn plots was 2.5 times greater than the K factors provided in the soil 

survey.  For the swales in this study, adjusting the K factors up by a factor of 2.5 produces K 

factors above 0.132 Mg ha hr ha-1 MJ-1 mm-1, so an approach somewhere in the middle was 

taken.   

The increase in the K factor resulting from the maximum decrease in permeability class 

from “rapid” to “very slow” is 0.016 Mg ha hr ha-1 MJ-1 mm-1 (Renard et al. 1997).  When Miller 

et al. (2003) added 0.016 Mg ha hr ha-1 MJ-1 mm-1 to their pre-fire K factors, the resulting post-
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fire K factors were 100% higher than the pre-fire K factors.  For this study, instead of adding a 

constant 0.016 Mg ha hr ha-1 MJ-1 mm-1 to all soils, pre-fire K factors were increased by 100% in 

high-severity burn areas, by 75% in areas of moderate-severity burn, and by 50% in areas of 

low-severity burn (Table 7.7, Figure 7.7).  This method was used so that the relative magnitudes 

of pre-fire K factors between swales would be maintained in the post-fire scenario.  

LS—length-slope factor:  The RUSLE L and S factors were calculated using Equations 7.5 

– 7.9 below from Renard et al. 2011 (Table 7.8):    

 

𝑆 = 10.8 𝑠𝑖𝑛𝜃 + 0.03     (7.5) 

𝑆 = 16.8 𝑠𝑖𝑛𝜃 − 0.50    (7.6) 

𝛽 =
𝑠𝑖𝑛𝜃

0.0896
/[3.0(𝑠𝑖𝑛𝜃)0.8 + 0.56]   (7.7) 

𝐿 = (
𝜆

22.1
)

𝑚

      (7.8) 

𝐿𝑆 = 𝐿 ∗ 𝑆       (7.9) 

 

where θ is slope angle in radians, λ is horizontal slope length in meters, and m is the rill to inter-

rill erosion ratio.  Equation 7.5 is used when slope angle is less than 9%, and Equation 7.6 is 

used when slope angle is greater than or equal to 9%.  The exponent m is often calculated with 

the equation 𝑚 = 𝛽/(1 +  𝛽), but that ratio does not account for the high proportion of rill 

erosion (60-80%) observed after moderate- and high-severity burning (Moody and Martin 

2001a, Pietraszek 2006).  Instead, reasonable values of m were assigned based on burn severity 

as shown in Table 7.8, with values of 0.7 for moderate severity and 0.8 for high severity.  
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Horizontal slope length was calculated from the field-measured surface slope length and the 

slope angle.  

 C—cover management factor:  The RUSLE C factor is composed of five subfactors: 

 

𝐶 = 𝑃𝐿𝑈 + 𝐶𝐶 + 𝑆𝐶 + 𝑆𝑅 + 𝑆𝑀    (7.10) 

 

where PLU is the prior land use subfactor, CC is the canopy cover subfactor, SC is the surface 

cover subfactor, SR is the surface roughness subfactor, and SM is the soil moisture subfactor 

(Table 7.9).  The PLU subfactor is calculated from a series of factors describing soil 

reconsolidation, root mass, mass of buried residue, and the effects of surface residue.  A 

reconsolidation factor of 0.45 was chosen for forest soils, and the mass of buried residue was 

assumed to be zero (Dissmeyer and Foster 1981, Larsen and MacDonald 2007).  The remaining 

factors were taken from the RUSLE2 database for scenarios that closely resembled post-fire 

conditions.  The resulting PLU was 0.39 for all swales.  The CC values were calculated from the 

fraction of land surface covered by vegetation canopy (assumed to be the average percent 

surface cover by vegetation from the spring and fall 2013 surveys) and the fall height of the 

canopy (assumed to be 7 cm, the value the RUSLE2 database for weeds, following Larsen and 

MacDonald 2007).  The SC values were calculated from a coefficient describing the 

effectiveness of surface cover in reducing erosion (assumed to be 0.05 when rilling is dominant, 

Renard et al. 2011), the percentage of land area covered by surface cover (the average cover 

provided by all surface cover classes except bare soil at the time of the spring and fall 2013 

surveys), and the surface roughness (assumed to be 1.52 cm, following Larsen and MacDonald 
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2007).  The SR subfactor was calculated using the same surface roughness factor as in the SC 

subfactor.  Finally, the SM subfactor was set to 1 since it is only applicable in the Northwest 

Wheat and Range Region (Renard et al. 2011). 

 P—conservation practice factor:  The P factor is the ratio between the actual sediment 

yield from a hillslope and the expected sediment yield based on the RUSLE Unit Plot, with a 

value of zero indicating a 100% reduction in expected sediment yield.  A P factor of 1 was 

assigned to swales with no mulch treatment.  P factors for mulched swales were calculated 

from previous studies on post-fire mulching treatments in the Rocky Mountains.  Differences in 

sediment yield between untreated and treated hillslopes were averaged across five studies 

(Wagenbrenner et al. 2006, Groen and Woods 2008, Robichaud et al. 2013a, b and c) and used 

to calculate a P factor of 0.25 for swales mulched with straw, 0.18 for swales mulched with 

wood shreds, and 0.22 for swales mulched with both materials (Table 7.10)   

   

7.3.3 RUSLE factors for the remote sensing run, RUSLERS 

Collecting field measurements for all the RUSLE components is an unmanageable task 

when applying the model to a large and topographically complex area such as the 35,405 ha 

High Park Fire.  Digital surrogates for field-collected data were compiled to assess the ability of 

RUSLE to accurately predict 2013 sediment yields without direct field measurements (Figure 

7.8).   

R—rainfall erosivity factor:  Cumulative rainfall EI30 for 2013 was extrapolated across Hill 

and Skin Gulches by ordinary co-kriging in ArcMap.  Annual EI30 values for 2013 for each rain 

gage were co-kriged with the 1-m resolution (resampled to 20-m using the nearest neighbor 
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method) DTM of the High Park Fire.  The model was optimized using an iterative cross 

validation technique built into ArcMap’s Geospatial Analyst Wizard.  The predictive equation 

produced by co-kriging was: 

 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝐼30 = 0.67 ∗ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐸𝐼30 + 587.6  (7.11) 

 

The RMSE for the relationship was 562 MJ mm ha-1 hr-1 with an average standard error of 264 

MJ mm ha-1 hr-1 (Figure 7.9).  Average predicted EI30 for each swale was extracted from the co-

kriged layer with the zonal statistics tool.  EI30 values were divided by 100 to yield R factors 

(Renard et al. 1997) (Table 7.11). 

K—soil erodibility factor:  Because the K factors for RUSLEf were already derived from 

soil surveys rather than field-collected data, the same K factors as were calculated in the 

previous section were used for RUSLERS.  

 LS—length and slope factors:  In order to calculate digital versions of the L and S factors 

for RUSLE, the study swales were redefined using ArcMap and compared to the GPS-measured 

swale perimeters to assess how well a 1-m DTM can define hillslopes as small as those used in 

this study (0.1 ha – 1.5 ha).  First, the GPS-measured fence locations were compared to a flow  

accumulation raster for the High Park Fire derived from the 1-m DTM and a D8 flow routing 

algorithm.  Fence points that did not align with the outflow points as defined by the flow 

accumulation raster were adjusted accordingly.  Swales were then defined with the watershed 

tool in ArcMap using the adjusted fence locations as the pour points of the catchments.  The 

small cell-size of the pour points (1 m) resulted in swales that were far too narrow or even 
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nonexistent.  Increasing the cell size of the pour points to 8 m produced swales that were 

visually comparable to those measured in the field with the GPS (Figure 7.10).  The physical 

dimensions of each swale were calculated in ArcMap and compared to the field measurements 

(Table 7.12).   

C—cover management factor:  The swale-averaged NDVI values for 2 June 2013, 1 

October 2013, and the average of the two images were compared to the C factors calculated in 

the previous section.  The strongest correlation with the C factors was found with using the 

average 2013 NDVI for each swale (R2 = 0.24) (Figure 7.2).  The predictive equation produced by 

that correlation was: 

 

𝐶 𝑓𝑎𝑐𝑡𝑜𝑟 = −0.1993𝑁𝐷𝑉𝐼 + 0.2582    (7.12) 

 

P—supportive practices factor:  The same values for the P factors as were calculated for 

RUSLEf were used for RUSLERS.   

 

7.4 SSMRRS 

The site-specific multivariate regression (SSMR) model predicting sediment yield from all 

swales in 2013 was developed in Part I of this thesis.  The model utilizes average percent cover 

by bare soil in spring 2013, swale width-length ratio, total summer EI30, slope length and burn 

severity as described by dNBR (Figure 7.11, Table 7.13).  Aside from dNBR, all model inputs 

were measured in the field.  To understand if the model could be applied across Hill and Skin 

Gulches, where field-measured data are unavailable, the model was tested using digital 
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surrogates for the field measured data derived using the methods below (Figure 7.12, Table 

7.14).  

 
7.4.1 Inputs 
 
 Slope length:  Horizontal slope length was measured in ArcMap with the ruler tool along 

the axis of the GPS-measured swales.  Surface slope length was calculated from the horizontal 

slope length and slope angle. 

Percent cover by bare soil:  The 2 June 2013 NDVI data were compared to percent cover 

by bare soil measured in the field in 10-20 June 2013 producing a negative correlation between 

NDVI and bare soil (R2 = 0.20).  This relationship indicates NDVI, a measure of vegetation health, 

is lower with greater amounts of bare soil.  No transformations of NDVI data produced a 

stronger correlation. The predictive equation produced by that correlation was: 

 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑣𝑒𝑟 𝑏𝑦 𝑏𝑎𝑟𝑒 𝑠𝑜𝑖𝑙 = −0.5426𝑁𝐷𝑉𝐼 + 0.3691  (7.13) 

 

Summer erosivity:  Cumulative summer erosivity (EI30) from May-September 2013 was 

extrapolated across Hill and Skin Gulches by ordinary co-kriging in ArcMap.  Annual EI30 values 

for 2013 for each rain gage were co-kriged with a 1-m resolution (resampled to 20-m using the 

nearest neighbor method) DTM of the High Park Fire.  The model was optimized using an 

iterative cross validation technique built into ArcMap’s Geospatial Analyst Wizard.  The 

predictive model produced by co-kriging was:  

 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝐼30 = 1.02 ∗ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐸𝐼30 − 34.70   (7.14) 
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The RMSE for the relationship was 84 MJ mm ha-1 hr-1 with an average standard error of 182 MJ 

mm ha-1 hr-1 (Figure 7.13).  Average predicted EI30 for each swale was extracted from the co-

kriged layer with the zonal statistics tool.   

Width-length ratio:  The surface slope length was measured along the axes of the GPS-

measured swales with the ruler tool in ArcMap.  Area was divided by this surface slope length 

to yield average slope width, and the resulting slope width was divided by surface slope length 

to yield the width-length ratio.   

Burn severity:  The burn severity was determined from the dNBR map (USGS-EROS 

2012). 
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Figure 7.1: Digital terrain model (DTM) of Skin and Hill Gulches showing the increase in 
elevation from northeast to southwest (NEON-AOP). 
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Figure 7.2:  Normalized differenced vegetation index (NDVI) across Skin and Hill Gulches in 
spring and fall 2013.  Red indicates healthy vegetation (Rapideye 2013).  
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Table 7.1:  Summary by swale of field-measured independent variables used as model inputs 
and the field measured 2013 sediment yields. 
 

  
  

HL 1 Hill 0.08 85 77 0.14 25 66 1425 1386 22.3

HL 2 Hill 0.10 120 112 0.17 21 70 1425 1386 38.5

HL 3 Hill 0.18 100 96 0.13 17 63 1425 1386 8.8

HL 4 Hill 0.09 50 48 0.34 16 76 1425 1386 22.5

HL 5 Hill 0.15 64 60 0.48 20 38 1425 1386 8.9

HL 6 Hill 0.21 73 67 0.47 23 38 1425 1386 4.7

HLD 1 Hill 0.23 160 144 0.12 26 56 1425 1386 16.8

HU 1 Hill 0.19 105 98 0.18 21 17 1689 1668 0.6

HU 2 Hill 0.26 90 85 0.36 18 35 1689 1668 2.2

HU 3 Hill 0.32 200 197 0.09 10 57 1689 1668 4.7

HU 4 Hill 0.19 85 79 0.34 22 26 1689 1668 3.2

SL 1 Skin 0.45 160 141 0.14 28 50 2226 2173 11.3

SL 2 Skin 0.36 200 191 0.12 17 31 1997 1951 7.3

SL 3 Skin 0.83 200 193 0.23 16 31 1997 1951 5.5

SL 4 Skin 0.25 160 139 0.12 30 31 1997 1951 11.9

SL 5 Skin 0.34 160 154 0.18 16 35 1997 1951 11.5

SLD 1 Skin 1.31 350 307 0.13 29 42 2226 2173 8.7

SM 1 Skin 0.16 127 121 0.12 18 69 1742 1698 13.3

SM 2 Skin 0.25 160 151 0.12 20 70 1742 1698 13.0

SM 3 Skin 0.34 160 152 0.17 18 69 1742 1698 12.9

SM 4 Skin 0.13 78 76 0.24 12 73 1742 1698 15.1

SM 5 Skin 0.19 183 168 0.08 24 57 1742 1698 25.2

SM 6 Skin 0.09 75 69 0.16 23 63 1742 1698 38.4

SU 1 Skin 0.25 155 150 0.21 15 19 1184 1182 0.1

SU 2 Skin 0.14 150 140 0.08 21 14 1184 1182 0.1

SU 3 Skin 0.13 150 145 0.07 15 58 1184 1182 7.7

SU 4 Skin 0.37 150 135 0.18 26 55 1184 1182 6.2

SU 5 Skin 1.58 110 109 0.64 6 75 1184 1182 1.9

SU 6 Skin 1.23 175 174 0.46 5 58 1184 1182 2.3

Swale 

ID

Water-

shed

Contributing 

area (ha)

Surface slope 

length (m)

2013 SY         

(Mg ha-1 yr-1)

Horizontal slope 

length (m)

2013 total EI 30           

(MJ mm ha-1 hr-1)

2013 summer EI 30 

(MJ mm ha-1 hr-1)

2013 bare 

soil (%)

Width-length 

ratio

Slope angle 

(deg)



98 
 

Table 7.2:  Summary by swale of independent variables derived from remotely sensed data and 

used as model inputs. 

 

 
 

HL 1 Hill 0.12 126 114 0.08 20 48 1400 1389

HL 2 Hill 0.15 109 102 0.12 21 42 1400 1387

HL 3 Hill 0.05 94 90 0.06 16 55 1400 1387

HL 4 Hill 0.07 49 47 0.31 14 56 1400 1386

HL 5 Hill 0.17 57 54 0.52 16 45 1400 1402

HL 6 Hill 0.25 68 63 0.53 19 39 1500 1403

HLD 1 Hill 0.23 168 151 0.08 28 53 1400 1372

HU 1 Hill 0.22 104 97 0.21 21 48 1700 1652

HU 2 Hill 0.32 119 113 0.23 16 47 1700 1671

HU 3 Hill 0.59 259 255 0.09 18 51 1700 1743

HU 4 Hill 0.27 88 82 0.35 18 46 1700 1760

SL 1 Skin 0.86 233 206 0.16 27 44 2200 2230

SL 2 Skin 0.42 164 157 0.15 31 40 2100 2004

SL 3 Skin 0.90 183 176 0.27 28 41 2000 2004

SL 4 Skin 0.53 152 132 0.23 25 44 2000 1908

SL 5 Skin 0.51 184 177 0.15 23 41 2000 1873

SLD 1 Skin 1.45 321 281 0.14 28 52 2100 2260

SM 1 Skin 0.81 304 290 0.09 19 71 1800 1726

SM 2 Skin 0.08 109 103 0.07 19 55 1800 1670

SM 3 Skin 0.40 133 126 0.23 18 58 1800 1670

SM 4 Skin 0.17 123 120 0.11 11 56 1800 1720

SM 5 Skin 0.20 148 135 0.09 27 56 1800 1797

SM 6 Skin 0.08 74 68 0.14 21 51 1800 1770

SU 1 Skin 0.75 149 144 0.34 14 68 1300 1165

SU 2 Skin 0.25 191 179 0.07 19 34 1200 1169

SU 3 Skin 0.22 154 149 0.09 12 57 1200 1182

SU 4 Skin 0.58 201 180 0.14 20 52 1300 1200

SU 5 Skin 3.29 203 202 0.80 6 51 1200 1155

SU 6 Skin 0.95 262 261 0.14 5 42 1200 1180

2013 bare 

soil (%)

2013 total EI 30           

(MJ mm ha-1 hr-1)

2013 summer EI 30 

(MJ mm ha-1 hr-1)

Horizontal slope 

length (m)

Swale 

ID

Water-

shed

Surface slope 

length (m)

Width-length 

ratio

Slope angle 

(degree)

Contributing 

area (ha)
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Figure 7.3:  Flow chart describing the inputs and outputs of the three models and two sets of 
input types used in this study. 

 

 
Figure 7.4: Screen-capture of the ERMiT online interface showing the user inputs required to run 
the model (http://forest.moscowfsl.wsu.edu/cgi-bin/fswepp/ermit/ermit.pl).  

http://forest.moscowfsl.wsu.edu/cgi-bin/fswepp/ermit/ermit.pl
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Figure 7.5:  Flow chart of inputs to the ERMiT model. 
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Table 7.3:  Summary by swale of user inputs to the ERMiT model. 

 

 

  

Top Middle Toe

HL1 Hill Sandy loam 22 Forest 0 47 47 246 Moderate

HL2 Hill Sandy loam 26 Forest 0 39 39 358 Moderate

HL3 Hill Sandy loam 37 Forest 0 31 31 306 Moderate

HL4 Hill Sandy loam 29 Forest 0 29 29 154 Moderate

HL5 Hill Sandy loam 0 Forest 0 36 36 193 Moderate 20

HL6 Hill Sandy loam 0 Forest 0 42 42 215 Moderate 29

HLD1 Hill Sandy loam 32 Forest 0 49 49 460 High

HU1 Hill Sandy loam 0 Forest 0 38 38 314 High 64

HU2 Hill Sandy loam 0 Forest 0 33 33 273 High 44

HU3 Hill Sandy loam 0 Forest 0 18 18 630 High 20

HU4 Hill Sandy loam 0 Forest 0 40 40 253 High 35

SL1 Skin Sandy loam 37 Forest 0 53 53 452 Moderate

SL2 Skin Sandy loam 43 Forest 0 31 31 611 High

SL3 Skin Sandy loam 36 Forest 0 28 28 616 High

SL4 Skin Sandy loam 29 Forest 0 57 57 445 High

SL5 Skin Sandy loam 29 Forest 0 28 28 493 High

SLD1 Skin Sandy loam 28 Forest 0 55 55 981 Moderate

SM1 Skin Sandy loam 26 Forest 0 32 32 387 High

SM2 Skin Sandy loam 24 Forest 0 36 36 482 High

SM3 Skin Sandy loam 14 Forest 0 33 33 486 High

SM4 Skin Sandy loam 0 Forest 0 21 21 244 High

SM5 Skin Sandy loam 0 Forest 0 44 44 536 High

SM6 Skin Sandy loam 0 Forest 0 42 42 221 High

SU1 Skin Sandy loam 0 Forest 0 27 27 479 High 51

SU2 Skin Sandy loam 0 Forest 0 38 38 449 High 59

SU3 Skin Sandy loam 54 Forest 0 26 26 465 High

SU4 Skin Sandy loam 27 Forest 0 49 49 431 High

SU5 Skin Sandy loam 44 Forest 0 10 10 350 High

SU6 Skin Sandy loam 0 Forest 0 8 8 558 Moderate

Swale 

ID

Climate 

file
Soil texture

Rock fragment 

(gravel) 

content (%)

Hillslope horizontal 

length (ft)

Burn 

severity

Spring 2013 

coverage by 

mulch (%)

Slope gradient (%)Vegetation 

type
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Table 7.4:  ERMiT climate file for Hill Gulch based on the Fort Collins climate station and 
adjusted using the observed rainfall and the centroid location and elevation of Hill Gulch.  

 
 
 
 
Table 7.5:  ERMiT climate file for Skin Gulch based on the Fort Collins climate station and 
adjusted using the measured precipitation and the centroid location and elevation of Skin Gulch. 

 
 

January 1.3 -12.2 19.1 4.4

February 3.2 -10.5 20.6 5.4

March 6.7 -7.4 40.1 7.5

April 12.2 3.1 48.5 8.7

May 16.9 2.5 68.6 11.7

June 22.6 7.2 45.7 9.0

July 25.8 10.2 50.0 9.4

August 24.9 9.2 44.7 9.3

September 20.4 4.2 41.4 6.5

October 14.4 -1.8 33.0 5.6

November 6.9 -7.9 25.9 4.9

December 2.2 -11.5 20.8 4.8

Annual 458.5 87.2

Month
Mean maximum 

temperature (°C)

Mean minimum 

temperature (°C)

Mean precipitation 

(mm)

Number of 

wet days

January 0.8 -12.6 20.3 4.4

February 2.7 -10.9 25.9 5.4

March 6.2 -7.8 43.9 7.5

April 11.7 -2.9 55.1 8.7

May 16.4 2.1 77.5 11.7

June 22.1 6.8 50.3 9.0

July 25.3 9.8 52.3 9.4

August 24.4 8.8 47.0 9.3

September 19.9 3.8 41.4 6.5

October 13.9 3.3 34.3 5.6

November 6.4 -8.4 27.2 4.9

December 1.7 -11.9 21.8 4.8

Annual 497.6 87.2

Mean maximum 

temperature (°C)

Mean minimum 

temperature (°C)

Mean precipitation 

(mm)

Number of 

wet days
Month
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Figure 7.6:  Flowchart showing the inputs for the “field” run of RUSLE model, RUSLEf. 
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Table 7.6:  Summary by swale of RUSLE factors derived from field-measured data. 
 

 
 

  

Swale ID
R                                  

(MJ mm ha-1 hr-1)

K                                               

(Mg ha hr ha-1 MJ-1 mm-1)
LS C P

HL 1 14 0.06 16 0.26 1.00

HL 2 14 0.06 17 0.27 1.00

HL 3 14 0.06 12 0.24 1.00

HL 4 14 0.06 7 0.26 1.00

HL 5 14 0.06 10 0.26 0.25

HL 6 14 0.06 13 0.24 0.25

HLD 1 14 0.06 31 0.30 1.00

HU 1 17 0.07 18 0.35 0.18

HU 2 17 0.07 14 0.34 0.18

HU 3 17 0.07 14 0.36 0.22

HU 4 17 0.07 16 0.32 0.22

SL 1 22 0.06 27 0.24 1.00

SL 2 20 0.07 25 0.32 1.00

SL 3 20 0.07 23 0.28 1.00

SL 4 20 0.07 34 0.32 1.00

SL 5 20 0.06 19 0.31 1.00

SLD 1 22 0.07 48 0.25 1.00

SM 1 17 0.07 18 0.33 1.00

SM 2 17 0.07 24 0.34 1.00

SM 3 17 0.07 22 0.35 1.00

SM 4 17 0.07 8 0.29 1.00

SM 5 17 0.07 32 0.34 1.00

SM 6 17 0.07 13 0.27 1.00

SU 1 12 0.06 18 0.35 0.25

SU 2 12 0.05 24 0.28 0.25

SU 3 12 0.05 17 0.32 1.00

SU 4 12 0.05 29 0.34 1.00

SU 5 12 0.05 4 0.33 1.00

SU 6 12 0.05 4 0.24 1.00
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Table 7.7:  Summary by swale of pre-fire and post-fire K factors describing soil erodibility in units 
of Mg ha hr ha-1 MJ-1 mm-1.   

 

 
Figure 7.7:  Map of post-fire K factor values across Skin and Hill Gulches (USDA-NRCS 2013b). 
The uniform light-colored polygons indicate rock outcrops with no erodibility. 
 

Swale ID
pre-fire 

K factor

post-fire 

K factor
Swale ID

pre-fire K 

factor

post-fire 

K factor

HL 1 0.03 0.06 SL 5 0.04 0.06

HL 2 0.03 0.06 SLD 1 0.04 0.07

HL 3 0.03 0.06 SM 1 0.04 0.07

HL 4 0.03 0.06 SM 2 0.04 0.07

HL 5 0.03 0.06 SM 3 0.04 0.07

HL 6 0.03 0.06 SM 4 0.04 0.07

HLD 1 0.03 0.06 SM 5 0.04 0.07

HU 1 0.04 0.07 SM 6 0.04 0.07

HU 2 0.04 0.07 SU 1 0.04 0.06

HU 3 0.04 0.07 SU 2 0.03 0.05

HU 4 0.04 0.07 SU 3 0.03 0.05

SL 1 0.04 0.06 SU 4 0.03 0.05

SL 2 0.04 0.07 SU 5 0.03 0.05

SL 3 0.04 0.07 SU 6 0.03 0.05

SL 4 0.04 0.07
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Table 7.8:  Summary by swale of the field-measured slope length and slope angle values and the 
exponent m used to calculate the S and L factors and combined LS factor for RUSLEf. 

 

 
 
  

Swale ID
Slope gradient 

(radians)

Slope length 

(m)
m S factor L factor LS factor

HL 1 0.44 76.9 0.7 6.6 2.4 16

HL 2 0.37 111.8 0.7 5.6 3.1 17

HL 3 0.30 95.5 0.7 4.5 2.8 12

HL 4 0.28 48.0 0.7 4.2 1.7 7

HL 5 0.35 60.2 0.7 5.2 2.0 10

HL 6 0.40 67.3 0.7 6.0 2.2 13

HLD 1 0.46 143.7 0.8 6.9 4.5 31

HU 1 0.36 98.2 0.8 5.5 3.3 18

HU 2 0.32 85.5 0.8 4.8 3.0 14

HU 3 0.18 196.8 0.8 2.5 5.8 14

HU 4 0.38 78.9 0.8 5.7 2.8 16

SL 1 0.49 141.4 0.7 7.4 3.7 27

SL 2 0.30 191.0 0.8 4.5 5.6 25

SL 3 0.27 192.6 0.8 4.0 5.7 23

SL 4 0.52 139.0 0.8 7.8 4.4 34

SL 5 0.27 154.1 0.8 4.0 4.7 19

SLD 1 0.50 306.7 0.7 7.6 6.3 48

SM 1 0.31 121.0 0.8 4.6 3.9 18

SM 2 0.35 150.5 0.8 5.2 4.6 24

SM 3 0.32 151.9 0.8 4.8 4.7 22

SM 4 0.21 76.3 0.8 3.0 2.7 8

SM 5 0.41 167.5 0.8 6.3 5.1 32

SM 6 0.40 69.1 0.7 6.0 2.2 13

SU 1 0.26 149.6 0.8 3.9 4.6 18

SU 2 0.36 140.2 0.8 5.5 4.4 24

SU 3 0.25 145.2 0.8 3.7 4.5 17

SU 4 0.46 134.7 0.8 6.9 4.2 29

SU 5 0.10 109.5 0.8 1.2 3.6 4

SU 6 0.08 174.4 0.7 0.8 4.2 4
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Table 7.9:  Summary by swale of the subfactors used in the C factor calculation for RUSLEf. 
 

 

 

Table 7.10:  RUSLE P-factors for straw, wood shred and mixed mulch.  

 
 

Swale ID PLU CC SC SR SM C factor

HL 1 0.51 0.86 0.99 0.61 1.0 0.26

HL 2 0.50 0.89 0.99 0.61 1.0 0.27

HL 3 0.55 0.73 0.99 0.61 1.0 0.24

HL 4 0.53 0.81 0.99 0.61 1.0 0.26

HL 5 0.53 0.81 0.99 0.61 1.0 0.26

HL 6 0.55 0.73 0.99 0.61 1.0 0.24

HLD 1 0.56 0.69 0.99 0.79 1.0 0.30

HU 1 0.49 0.92 1.00 0.79 1.0 0.35

HU 2 0.52 0.84 0.99 0.79 1.0 0.34

HU 3 0.49 0.92 1.00 0.79 1.0 0.36

HU 4 0.54 0.75 0.99 0.79 1.0 0.32

SL 1 0.54 0.75 0.99 0.61 1.0 0.24

SL 2 0.55 0.74 0.99 0.79 1.0 0.32

SL 3 0.57 0.64 0.98 0.79 1.0 0.28

SL 4 0.54 0.75 0.99 0.79 1.0 0.32

SL 5 0.55 0.74 0.99 0.79 1.0 0.31

SLD 1 0.54 0.76 0.99 0.61 1.0 0.25

SM 1 0.53 0.80 0.99 0.79 1.0 0.33

SM 2 0.53 0.82 0.99 0.79 1.0 0.34

SM 3 0.50 0.90 1.00 0.79 1.0 0.35

SM 4 0.57 0.65 0.98 0.79 1.0 0.29

SM 5 0.45 0.96 1.00 0.79 1.0 0.34

SM 6 0.49 0.92 1.00 0.61 1.0 0.27

SU 1 0.49 0.92 1.00 0.79 1.0 0.35

SU 2 0.58 0.62 0.98 0.79 1.0 0.28

SU 3 0.54 0.77 0.99 0.79 1.0 0.32

SU 4 0.52 0.83 0.99 0.79 1.0 0.34

SU 5 0.53 0.80 0.99 0.79 1.0 0.33

SU 6 0.55 0.74 0.99 0.61 1.0 0.24

Mulch material Average P  factor Standard deviation

Straw 0.25 0.14

Wood shreds 0.18 0.08

Mixed 0.22 0.14
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Figure 7.8:  Flowchart of inputs for the “remote sensing” run of the RUSLE model, RUSLERS 
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Figure 7.9:  Map of predicted total EI30 across Skin and Hill Gulches for January-September 2013. 
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Table 7.11:  Summary by swale of the RUSLE factors derived from remotely-sensed data. 

 

 

Swale ID
R                                  

(MJ mm ha-1 hr-1)

K                                               

(Mg ha hr ha-1 MJ-1 mm-1)
LS C P

HL 1 14 0.06 21 0.29 1.00

HL 2 14 0.06 16 0.28 1.00

HL 3 14 0.06 12 0.31 1.00

HL 4 14 0.06 7 0.32 1.00

HL 5 14 0.06 10 0.29 0.25

HL 6 15 0.06 12 0.27 0.25

HLD 1 14 0.06 32 0.30 1.00

HU 1 17 0.07 18 0.30 0.18

HU 2 17 0.07 18 0.29 0.18

HU 3 17 0.07 18 0.30 0.22

HU 4 17 0.07 16 0.29 0.22

SL 1 22 0.06 35 0.27 1.00

SL 2 21 0.07 21 0.30 1.00

SL 3 20 0.07 21 0.29 1.00

SL 4 20 0.07 33 0.29 1.00

SL 5 20 0.06 21 0.28 1.00

SLD 1 21 0.07 45 0.30 1.00

SM 1 18 0.07 36 0.34 1.00

SM 2 18 0.07 18 0.32 1.00

SM 3 18 0.07 19 0.32 1.00

SM 4 18 0.07 11 0.30 1.00

SM 5 18 0.07 27 0.32 1.00

SM 6 18 0.07 13 0.30 1.00

SU 1 13 0.06 17 0.35 0.25

SU 2 12 0.05 29 0.27 0.25

SU 3 12 0.05 17 0.33 1.00

SU 4 13 0.05 37 0.29 1.00

SU 5 12 0.05 7 0.31 1.00

SU 6 12 0.05 5 0.28 1.00
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Figure 7.10:  Visual comparison of swale boundaries derived from field observations and swale  
boundaries derived from GIS delineation of hillslopes.   
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Table 7.12:  Statistics describing the strength of the correlations between independent variables 
derived from field measurements and from remotely-sensed and GIS data. The significance of 
each correlation is denoted with superscripts.  

 
 
 
 
 
 

 
Figure 7.11:  Flowchart of inputs for the “field” run of the SSMR model, SSMRf. 

 

Variable R2
r

Contributing area (ha) 0.75 0.87***

Surface slope length (m) 0.55 0.74***

Horizontal slope length (m) 0.53 0.73***

Width-length ratio 0.73 0.85***

Slope angle (%) 0.51 0.71***

2013 bare soil (%) 0.19 0.44*    

2013 total EI 30  (Mj mm ha -1 hr-1) 0.97 0.98***

x   not significant

*    p-value < 0.05

**  p-value < 0.01

***p-value < 0.001
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Figure 7.12:  Flowchart of inputs for the “remote sensing” run of the SSMR model, SSMRRS. 
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Table 7.13:  Summary by swale of input values for SSMRf. 
 

 
 
 
 
 
 
 
 
 
 
 

Swale ID
Slope length 

(m)

Bare soil spring 

2013 (%)

2013 summer EI30 

(MJ mm ha-1 hr-1)

Width-length 

ratio
dNBR

HL 1 85 66 1386 0.14 615

HL 2 120 70 1386 0.17 549

HL 3 100 63 1386 0.13 593

HL 4 50 76 1386 0.34 578

HL 5 64 38 1386 0.48 582

HL 6 73 38 1386 0.47 615

HLD 1 160 56 1386 0.12 687

HU 1 105 17 1668 0.18 700

HU 2 90 35 1668 0.36 676

HU 3 200 57 1668 0.09 782

HU 4 85 26 1668 0.34 791

SL 1 160 50 2173 0.14 586

SL 2 200 31 1951 0.12 717

SL 3 200 31 1951 0.23 679

SL 4 160 31 1951 0.12 667

SL 5 160 35 1951 0.18 712

SLD 1 350 42 2173 0.13 618

SM 1 127 69 1698 0.12 845

SM 2 160 70 1698 0.12 859

SM 3 160 69 1698 0.17 876

SM 4 78 73 1698 0.24 841

SM 5 183 57 1698 0.08 739

SM 6 75 63 1698 0.16 604

SU 1 155 19 1182 0.21 807

SU 2 150 14 1182 0.08 671

SU 3 150 58 1182 0.07 743

SU 4 150 55 1182 0.18 666

SU 5 110 75 1182 0.64 660

SU 6 175 58 1182 0.46 355
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Table 7.14:  Summary by swale of input values for SSMRRS. 
 

   
 

 

Swale ID
Slope 

length (m)

Bare soil spring 

2013 (%)

2013 summer EI 30 

(MJ mm ha-1 hr-1)

Width-length 

ratio
dNBR

HL 1 126 48 1389 0.08 615

HL 2 109 42 1387 0.12 549

HL 3 94 55 1387 0.06 593

HL 4 49 56 1386 0.31 578

HL 5 57 45 1402 0.52 582

HL 6 68 39 1403 0.53 615

HLD 1 168 53 1372 0.08 687

HU 1 104 48 1652 0.21 700

HU 2 119 47 1671 0.23 676

HU 3 259 51 1743 0.09 782

HU 4 88 46 1760 0.35 791

SL 1 233 44 2230 0.16 586

SL 2 164 40 2004 0.15 717

SL 3 183 41 2004 0.27 679

SL 4 152 44 1908 0.23 667

SL 5 184 41 1873 0.15 712

SLD 1 321 52 2260 0.14 618

SM 1 304 71 1726 0.09 845

SM 2 109 55 1670 0.07 859

SM 3 133 58 1670 0.23 876

SM 4 123 56 1720 0.11 841

SM 5 148 56 1797 0.09 739

SM 6 74 51 1770 0.14 604

SU 1 149 68 1165 0.34 807

SU 2 191 34 1169 0.07 671

SU 3 154 57 1182 0.09 743

SU 4 201 52 1200 0.14 666

SU 5 203 51 1155 0.80 660

SU 6 262 42 1180 0.14 355
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Figure 7.13:  Predicted total erosivity across Skin and Hill Gulches May-September 2013. 
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8 RESULTS 
 

 
 

8.1 ERMiT 

Climate file:  The climate files produced by Rock:Clime for Hill and Skin Gulches based on 

the elevation, latitude and longitude of the centroids of each watershed showed greater 

average annual precipitation than the base climate station of Fort Collins, but less than the 

Buckhorn Mountain climate station located nearby but at a higher elevation (Table 8.1).  The 

distribution of precipitation throughout the year at Hill and Skin Gulches in 2013 resembled 

that of Fort Collins but with a mid-summer peak like that at Buckhorn Mountain (Figure 8.1).  

The annual precipitation from all four sources falls below 600 mm and therefore meets 

the first ERMiT requirement for a monsoonal climate.  ERMiT assigns a monsoonal climate to 

stations with 30% or greater of annual precipitation falling in July-September.  The proportion 

of precipitation that falls in these months is on the border between ERMiT’s monsoonal and 

non-monsoonal classification for all four locations.  The higher-elevation Buckhorn Mountain 

gage barely qualifies as monsoonal with greater than 30% of precipitation falling in those three 

months, while the other three locations fall barely short and therefore qualify as non-

monsoonal.  Given the “black box” design of ERMiT, it is not known for sure whether Hill Gulch, 

with exactly 30% of total precipitation falling from July to September, was treated as 

monsoonal or non-monsoonal in the model.  

For each watershed climate file, ERMiT also outputs the depths and maximum thirty-

minute intensities (MI30) for the 1.5-, 2-, 5-, 10-, 20- and 100-year recurrence interval (RI) 

events (Table 8.2).  The majority of observed MI30 values from sediment-producing storms 

(n=54) at the study swales were below the 1.5-year RI with a handful of 2013 events falling in 
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the 1.5- to 5-year RI range (Figure 8.2).  The 09/2013 event produced daily rainfall depths that 

approached or exceeded the 100-year RI depths modeled by Rock:Clime, but the storm was of 

long enough duration to not exceed the 5-year MI30.  The storms used for the maximum MI30 

portion of the analysis had RI’s of five years or less.  This distribution of recurrence intervals is 

expected given that the study lasted just over one year.  

Sediment yield:  ERMiT was run once per swale for each of the two storms: maximum 

MI30 and maximum daily depth (Table 8.3).  Each run produced a graph of exceedance 

probabilities for a range of sediment yields (in units of ton ac-1) from the untreated swale, a 

table of values for that graph, and a separate table of exceedance probabilities for the treated 

swale.  Examples of these outputs are shown in Figures 8.3 and 8.4.   

The ERMiT exceedance probability (EEP) for each fence-event is shown in Figure 8.5.  

Smaller sediment yields had greater EEPs.  As sediment yields increased EEP decreased 

gradually.  Sediment yields associated with both sets of events were spread throughout the 

distribution.   

The EEPs for observed sediment yields were divided into 20% classes and plotted as a 

frequency distribution (Figure 8.6).  The maximum MI30 events had RIs from <1.5 years to 5 

years.  Therefore, the EEP for all the maximum MI30 events should fall between 20% and 75%.  

Seventy-two percent of the measured sediment yields associated with the maximum MI30 

events fell in that range, while 28% of the measured sediment yields had a EEP less than 20% or 

greater than 75% (Figure 8.6a).  The maximum daily depth event had a RI of approximately 30 

years to greater than 100 years.  Therefore, the EEP for all the maximum depth events should 

fall between 1% and 3%.  Only 14% of the measured sediment yields associated with the 
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maximum daily depth event fell below 10% (Figure 8.6b).  The cumulative frequency 

distribution of EEPs shows that the event sediment yield occurrence predicted by ERMiT for 

both sets of events is skewed toward the low-probability end of the distribution (Figure 8.7).  

For both distributions, roughly 60% of the events occur before the 50% EEP is reached, and 80% 

of events before the 60% EEP.    

 The EEP sediment yield associated with the RI of each event at each swale and the 

observed sediment yield for each swale show consistent under-prediction by ERMiT for the 

maximum MI30 events and consistent over-prediction by ERMiT for the maximum daily depth 

event (Figure 8.8).  Fifteen swales had much greater sediment yields than the EEP yield for MI30 

events.  Six swales in Lower Skin gulch were closely matched by ERMiT’s predictions, but of 

those six swales four overtopped their fences; the un-captured sediment from those swales 

would likely have increased the observed sediment yield beyond the EEP sediment yield.  

ERMiT accurately predicted the low sediment yields at mulched swales except at swales HL5 

and HL6 where the mulch coverage was less than the lowest amount included in the ERMiT 

output.  For the maximum daily depth event, all swales had far greater sediment yields 

predicted by ERMiT than what was observed.  ERMiT over-predicted sediment yield at the 

swales by approximately 2.5 to 100 times.   

Further comparison of the EEP event sediment yields and the observed event sediment 

yields by swale reveals low correlations and the Reff
2 for both sets of events indicates that 

sediment yield is more accurately predicted with the mean than with the model (Figure 8.9) 

(Table 8.4).  These results show that ERMiT did not accurately predict sediment yield from the 

study swales for either definition of a “maximum event”.   
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8.2 RUSLEf 

The mean sediment yield predicted by RUSLEf was 5.3 Mg ha-1 yr-1 (s.d. = 4.8 Mg ha-1 yr-

1) compared to the mean observed sediment yield of 11.2 Mg ha-1 yr-1 (s.d. = 9.9 Mg ha-1 yr-1) 

(Figure 8.10).  The maximum predicted sediment yield of 18.7 Mg ha-1 yr-1 was only half the 

observed maximum of 38.5 Mg ha-1 yr-1.  The greater range and variability of the observed 

sediment yield was not captured by the model.  

Predicted sediment yields did not correlate strongly with the observed sediment yields 

(Table 8.4).  A logarithmic trend line produced an R2 of 0.16, but the linear trend line only had 

an R2 of 0.05.  The Pearson’s correlation coefficient (r) of 0.22 was not significant (p-value = 

0.34).  The Nash-Sutcliffe model efficiency (Reff
2) of -0.4 indicates that the mean observed 

sediment yield is a better predictor of sediment yield than the RUSLEf model (Ott and 

Longnecker 2010).  Finally, the RMSE shows that the average distance between the best-fit line 

and the data points is 11.6 Mg ha-1 yr-1, a considerable amount given that the mean observed 

sediment yield was 11.2 Mg ha-1 yr-1and the standard deviation was only 9.9 Mg ha-1 yr-1.  

Overall the model tended to under-predict observed sediment yields with 22 of the 29 swales 

falling below the 1:1 line, including 5 of the 8 mulched swales.  

RUSLE is a linear model where all factors are multiplied together to produce a prediction 

of sediment yield so each input variable should be evaluated for correlation with observed and 

predicted sediment yield.  The only RUSLE variable that showed a significant positive 

correlation with observed sediment yields was P, the management practices factor (Table 8.5).  

While RUSLE factors R, K, S and P correlated well with predicted sediment yields, the C factor 

did not, nor did the L factor when not combined with S to form the LS factor.  The L factor and 
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measured slope length were negatively correlated with the observed sediment yields, and 

positively correlated with predicted sediment yield.  This conflict of direction resulted in a R2 of 

0.00 between the LS factor and observed sediment yields despite the LS factor having a strongly 

positive and significant correlation with predicted sediment yield (R2 = 0.73, r = 0.85).  

 

8.3 RUSLERS 

The RUSLE factors generated from remotely-sensed surrogates for field-measured data 

were generally well correlated with the RUSLE factors derived from field-measured data (Table 

8.6).  The correlation between the GIS-derived and field-derived R factors was nearly perfect 

because the co-kriged erosivities produced by the GIS were derived from the rain gages that 

were co-located with the study swales.  It is expected that the correlation between remotely-

derived and field-derived R factors would diminish substantially with distance from a rain gage.  

The LS factors derived from the GIS-delineated swales were significantly correlated with the 

field-measured LS factors with an R2 of 0.60 and an r of 0.78 (p-value < 0.001).  The individual L 

and S factors calculated for RUSLERS were each correlated with their field-measured 

counterparts in RUSLEf with an R2 of 0.53  The remotely-derived C factors had the weakest 

correlation with the field-derived factors—the R2 was only 0.25, though the r of 0.5 was still 

reasonably significant (p-value < 0.01).   

Overall, RUSLERS performed slightly worse than RUSLEf, though neither performed well 

enough to draw a meaningful comparison (Figure 8.11).  The mean predicted sediment yield 

from RUSLERS was 6.2 Mg ha-1 yr-1 (s.d. = 5.7 Mg ha-1 yr-1), approximately 1 Mg ha-1 yr-1 greater 

than RUSLEf, and still almost half of the observed mean.  The maximum predicted sediment 
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yield of 19.4 Mg ha-1 yr-1 was still only half the observed maximum of 38.5 Mg ha-1 yr-1.  

Sediment yield predicted by RUSLERS had an even weaker correlation with the observed 

sediment yield than did RUSLEf, as was expected given the moderate correlation between the 

remotely-derived and field-measured C factors in the equation (Table 8.6).  A logarithmic trend 

line produced an R2 of 0.12, but the linear trend line only had an R2 of 0.02.  The r of 0.15 for 

predicted and observed sediment yield was not significant (p-value = 0.37).  The Reff
2 of -0.4 was 

the same as for the field run, indicating that the mean observed sediment yield is a better 

predictor of sediment yield than the RUSLERS model.  Finally, the RMSE for RUSLERS shows that 

the average distance between the best-fit line and the data points is 11.8 Mg ha-1 yr-1, which 

was slightly greater than for RUSLEf.  Overall the model again under-predicted observed 

sediment yields with 21 of the 29 swales falling below the 1:1 line, including 5 of the 8 mulched 

swales.  

Sediment yield predicted by RUSLERS correlates well with sediment yield predicted by 

RUSLEf with an R2 of 0.77 and an r of 0.88 (p-value <0.001) (Table 8.6).  This indicates that, 

although both models poorly represent reality, they are at least behaving similarly with field-

measured and remotely-derived inputs.  

 

8.4 SSMRf 

The site-specific multivariate regression model (SSMR) derived from the field measured 

data performed well.  One value produced by the model was negative (for swale SU1), but 

adjusting that value to zero only increased the R2 from 0.61 to 0.63.  The mean predicted 

sediment yield was 13.2 Mg ha-1 yr-1 (s.d. = 7.4 Mg ha-1 yr-1), which was just slightly higher than 
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the mean observed sediment yield of 11.2 Mg ha-1 yr-1 (s.d. = 9.9 Mg ha-1 yr-1).  The maximum 

predicted sediment yield of 27.0 Mg ha-1 yr-1 was only three-quarters of the observed maximum 

of 38.5 Mg ha-1 yr-1.  The predicted sediment yield was quite strongly correlated with observed 

sediment yield with an R2 of 0.63 (p-value < 0.001) (Figure 8.12, Table 8.4).  The Reff
2 of 0.26 

indicates that the model is a better predictor of sediment yield than the mean observed value.  

The RMSE of 6.4 Mg ha-1 yr-1 was lower than the RMSE for either RUSLE model and the standard 

deviation of the observed sediment yields.   

 

8.5 SSMRRS 

All variables derived from remotely-sensed datasets correlated well with the field-

measured variables (Table 8.7).  Remotely-derived slope length, width-length ratio, and total 

summer erosivity were significantly correlated with their field-measured counterparts with p-

values less than 0.001. The correlation between the remotely-derived and field-measured 

percent cover by bare soil was less significantly correlated with an R2 of 0.19 and a p-value less 

than 0.05.   

Overall, the SSMRRS model performed well, producing correlation statistics comparable 

to the field run, and considerably better than the statistics produced by either RUSLE model, 

with the exception of the Reff
2 (Table 8.4).  One sediment yield value produced by the model 

was negative (for swale SU5) and that value was adjusted up to zero, increasing the R2 from 

0.35 to 0.46.  The mean predicted sediment yield was 12.9 Mg ha-1 yr-1 (s.d. = 5.7 Mg ha-1 yr-1), 

very similar to the mean predicted sediment yield from the field run.  The maximum predicted 

sediment yield of 25.0 Mg ha-1 yr-1 was slightly less than the maximum predicted by the field 
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run.  The predicted sediment yield was less strongly correlated with observed sediment yield 

with an R2 of 0.46  and a p-value <0.001 (Figure 8.13). The Reff
2 declined to -0.76 indicating that 

the model is a worse predictor of sediment yield than the mean (Table 8.3).  The RMSE of 7.5 

Mg ha-1 yr-1 was higher than the RMSE for the field run, but still lower than the standard 

deviation of the observed sediment yields.   

The sediment yield predicted by SSMRf model was significantly correlated with the 

sediment yield predicted by SSMRRS with an R2 of 0.64 and an r of 0.80 (p-value <0.001), 

indicating that the version of the model derived from remotely-sensed data tracks well with the 

version derived from field-measured data.  
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Table 8.1:  Comparison of monthly and annual mean precipitation depths from the Buckhorn 

Mt. climate station, Skin and Hill Gulch climate files generated for ERMiT, and the Fort Collins 

climate station.   

 

 

 
Figure 8.1:  Comparison of mean monthly precipitation depths from the Buckhorn Mt. climate 
station, Skin and Hill Gulch climate files generated for ERMiT, and the Fort Collins climate 
station. 

Buckhorn Mt. Skin Gulch Hill Gulch Fort Collins

Elevation (m) 2,313 2,245 2,161 1,563

Jan 16 20 19 9

Feb 17 26 21 12

Mar 48 44 40 30

Apr 72 55 49 49

May 80 77 69 69

Jun 63 50 46 44

Jul 62 52 50 39

Aug 62 47 45 36

Sep 46 41 41 33

Oct 39 34 33 27

Nov 24 27 26 15

Dec 17 22 21 13

Annual 546 498 458 377

July-Sept proportion 31% 28% 30% 29%

Monsoonal? Yes No No No
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Table 8.2:  ERMiT-predicted storm recurrence intervals for Hill Gulch and Skin Gulch and their 
associated depths and maximum thirty-minute intensities 

 
 
 
 
 

 
Figure 8.2:  Distribution of ERMiT-predicted recurrence intervals for observed storm  
maximum thirty-minute intensities (MI30)  
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Table 8.3:  MI30 and rainfall depth for the largest MI30 storm and largest daily depth storm at 
each rain gage.  Note:  the largest MI30 storms exclude the 09/2013 event.  
 

 
 

 

 
Figure 8.3:  Example ERMiT output graph for swale HU2.  The red line indicates the first year 

after burning, 2012, and the green line represents the second year after burning, 2013.  The 

black dots are observed sediment yields from HU2 superimposed on the ERMiT output.  

Gage MI 30  (mm hr-1) RI (yrs) Date Gage Depth (mm) RI (yrs) Date

HLR1 18.3 <1.5 7/28/2013 HLR1 155 ~100 09/11/2013

HUR1 31.5 <1.5 7/18/2013 HUR1 170 >100 09/11/2013

SLR1 52.2 2-5 7/14/2013 SLR1 148 ~95 09/11/2013

SLR2 46.4 2 7/14/2013 SLR2 136 ~95 09/11/2013

SMR1 44.5 2 7/14/2013 SMR1 156 ~100 09/11/2013

SUR2 21.1 <1.5 8/13/2013 SUR2 120 ~90 09/11/2013
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Figure 8.4:  Example ERMiT output table from swale HU2 showing the exceedance probabilities 
for a range of sediment yields for the first through fifth years after burning.  The middle portion 
of data is not included in this example.  
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Figure 8.5:  ERMiT exceedance probabilities (EEPs) for the observed sediment yields from two 

sets of 29 fence-events.  Solid diamonds indicate fence-events with the 2013 maximum MI30, 

and hollow squares indicate the fence-events with the maximum depth (09/2013 event). 

 

 

 

 
Figure 8.6:  Frequency distribution of the percentage of observed events from each ERMiT 
exceedance probability class for a) maximum MI30 events, and b) the maximum depth (09/2013) 
event.  

0

5

10

15

20

25

0 20 40 60 80 100

Ev
en

t 
se

d
im

en
t 

yi
el

d
 (

M
g 

h
a-1

)

ERMiT exceedance probability (%)

Maximum intensity event

Maximum depth event



130 
 

 
Figure 8.7:  Cumulative frequency distribution of the percentage of observed events from each 
ERMiT exceedance probability (EEP) class for a) the maximum MI30 events, and b) the maximum 
depth event (09/2013 event).  The red line represents a 1:1 ratio between the EEPs and observed 
events.  
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a. 

 
 
b. 

 
 
Figure 8.8:  The ERMiT Exceedance Probability (EEP) sediment yields for the associated 
recurrence interval of the events alongside the observed sediment yields for each fence from the 
a) maximum MI30 event, and b) maximum daily depth event.  Mulched swales are marked with * 
and swales with fences that overtopped are marked with >.  
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a.  

 
 
b.  

 
Figure 8.9:  Relationship between the ERMiT Exceedance Probability (EEP) sediment yields for 
the recurrence interval of the events and the observed sediment yields for each fence from the 
a) maximum MI30 event, and b) maximum daily depth event.  The dotted line represents the 1:1 
relationship between the two variables.  
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Table 8.4:  Correlation statistics comparing sediment yield predicted by the ERMiT 50% EEP 

predictions to the maximum MI30 events (ERMiT50-MI30) and maximum daily depth events 

(ERMiT50-depth), and RUSLEf, RUSLERS, SSMRf and SSMRRS models to observed 2013 sediment yield.  

Significance of the Pearson correlation coefficients (r) is indicated with superscripts. 

  

 
 
Figure 8.10:  Predicted versus observed annual sediment yield by swale for RUSLEf.  The dashed 
line represents a 1:1 ratio between predicted and observed values, while the solid line shows the 
best-fit regression. Solid diamond markers represent unmulched swales while hollow square 
markers represent mulched swales. 

Model R2 r Reff
2

RMSE (Mg ha-1 yr-1)

ERMiTMI30 0.11 0.33x
-8.4 5.4

ERMiTdepth 0.00 0.02x
-2.1 61.8

RUSLEf 0.05 0.22x -0.4 11.6

RUSLERS 0.02 0.15x -0.4 11.8

SSMRf 0.63      0.79*** 0.3 6.4

SSMRRS 0.46      0.68*** -0.8 7.5

x   not significant

*    p-value < 0.05

**  p-value < 0.01

***p-value < 0.001
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Table 8.5:  Strength of the correlations between independent variables and the sediment yield 
(SY) predicted by RUSLEf and the SY observed in the field. L refers to the RUSLE slope length 
factor and S refers to the RUSLE slope angle factor, while “Length” and “Slope” are the actual 
field measurements used to derive those factors.  

 

 

 

Table 8.6:  Correlation statistics comparing RUSLE factors derived from field measurements to 

those derived from remotely-derived data.  The correlation between RUSLEf predicted sediment 

yield and RUSLERS sediment yield is included at the bottom.  

 

Variable R2
r R2

r

R 0.49 0.7*** 0.02 0.13x

K 0.20 0.44* 0.04 0.20x

L 0.08 0.28
x

-0.13 - 0.36*

Length 0.10 0.31
x

-0.10 - 0.32
x

S 0.50 0.71*** 0.06 0.25
x

Slope 0.58 0.73*** 0.05 0.23x

LS 0.73 0.85*** 0.00 0.04x

C 0.01 0.07x
-0.06 - 0.24x

P 0.30 0.55** 0.26 0.51**

x
 not s igni ficant

* p-va lue <0.05

** p-va lue <0.01

*** p-va lue <0.001

Predicted SY Observed SY

RUSLE factor R2
r

R 0.97 0.98***

L 0.53 0.73***

S 0.53 0.73***

LS 0.60 0.78***

C 0.25 0.50**

Predicted SY (Mg ha -1 yr-1) 0.77 0.88***

x   not significant

*    p-value < 0.05

**  p-value < 0.01

***p-value < 0.001
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Figure 8.11:  Predicted versus observed annual sediment yield by swale for RUSLERS.  The dashed 
line represents a 1:1 ratio between predicted and observed values, while the solid line shows the 
best-fit regression. Solid diamond markers represent unmulched swales while hollow square 
markers represent mulched swales. 
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Figure 8.12:  Predicted versus observed 2013 sediment yield for the field run of the SSMR model.  
The dashed line represents a 1:1 ratio between predicted and observed values, while the solid 
line shows the best-fit regression.  
 

 

Table 8.7:  Correlation statistics for field-measured and remotely-derived SSMR independent 

variables.  
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Variable R2 r

Slope length 0.55 0.74***

Width-length ratio 0.72 0.85***

Percent cover by bare soil 0.19 0.44*

Total summer erosivity 0.98 0.99***

Predicted SY (Mg ha -1 yr-1) 0.64 0.80***

x   not significant

*    p-value < 0.05

**  p-value < 0.01

***p-value < 0.001



137 
 

 
Figure 8.13:  Predicted versus observed 2013 sediment yield for SSMRRS.  The dashed line 
represents a 1:1 ratio between predicted and observed values, while the solid line shows the 
best-fit regression.  
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9 DISCUSSION 
 

 
 

9.1 Analysis of the ERMiT model 

Sources of error:  Observed sediment yield data included data from 12 overtopped 

fences during the maximum MI30 events and 11 overtopped fences during the maximum depth 

event.  This means the observed sediment yields at those 11 or 12 fences were likely greater 

than what was used in this analysis.  However, observed sediment yields still exceeded the 

predicted sediment yields for the maximum MI30 events, and observed sediment yields were far 

too low to meet or exceed the predicted sediment yields for the maximum daily depth event 

even if the fences hadn’t overtopped.  These results show that for common storms with low 

recurrence intervals ERMiT is under-predicting the sediment yields observed in this study, and 

for extreme events ERMiT is over-predicting the sediment yields in this study. 

Climate:  The total annual precipitation generated for the ERMiT model by Rock:Clime 

qualified the climate files to be treated as monsoonal, but the proportion of precipitation that 

fell from July to September was just short of the necessary 30% needed to be treated as 

monsoonal.  Whether or not the actual climate of the region is monsoonal is debatable; the 

region falls along the margin separating monsoonal and non-monsoonal climates (Bordoni and 

Stevens 2006, Gochis et al. 2004).  Burned areas in monsoonal climates recover more slowly 

than non-monsoonal climates (Robichaud et al. 2007a), so ERMiT treats second-year hillslopes 

in monsoonal climates similarly to first-year hillslopes, while hillslopes in non-monsoonal 

climates are allowed to recover substantially between the first and second years (Robichaud et 

al. 2007a).  A small alteration in the temporal distribution of precipitation would qualify the 
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study swales as monsoonal and cause ERMiT to predict higher sediment yields in the second 

year after burning.  In a fire such as the High Park Fire, where the climate is borderline 

monsoonal and the fire spans a wide range of elevations (1740-2580 m), an option in ERMiT to 

force monsoonal conditions could be useful.  Otherwise, given the data supporting slower post-

fire recovery in the Rocky Mountains in comparison to the Interior Pacific Northwest, perhaps 

the monsoonal classification and subsequent delay of post-fire recovery in ERMiT should be 

region-based instead of precipitation-based.   

Burn severity:  ERMiT calculates the occurrence probability of a range of sediment yields 

partly by calculating the probability of different burn severity configurations.  Though the user 

inputs “high-severity burn” to the ERMiT model, ERMiT calculates a probability for four 

different “high-severity burn” configurations among the three sections (OFE’s) of the hillslope.  

Of these, only one configuration allows for high-severity burn on all three OFE’s of hillslope 

(HHH), and that configuration only has a 10% chance of occurring in ERMiT in the first year after 

burning, and a 0% chance in subsequent years.  Many of the swales in this study burned 

uniformly at high, giving them a 100% likelihood of the HHH configuration in the first year after 

burning, which is substantially higher than the probability allowed by ERMiT.  Given the slow 

recovery in the second year after burning, ERMiT will almost certainly underestimate sediment 

production by the swales burned at high severity for the first two years after burning.  This 

underestimation may partly explain why sediment yields were so consistently underestimated.  

Soils:  ERMiT assumes runoff occurs if rainfall intensity exceeds the effective hydraulic 

conductivity (Ke) of the soils.  The five soil classes described by ERMiT (Soils 1-5) each are 

assigned a different Ke ranging from 5-22 mm hr-1 for soils burned at high severity, and 14-48 
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mm hr-1 for soils burned at low severity.  In the first year after burning, Soil 1, with a Ke of 5 mm 

hr-1 is the closest to the rainfall intensity threshold for sediment production in 2012 (4 mm hr-1), 

but in ERMiT this has a 10% chance of occurring.   In the second year after burning the 

combined occurrence probability of Soils 3, 4 and 5, which are all below the 11 mm hr-1 rainfall 

intensity threshold for sediment production, was 40%.     

The above discrepancies may reflect the data from which ERMiT was parameterized.  Of 

the fifteen fires used to parameterize the model, only one was located in the Colorado Front 

Range while eight of the other studies were in the interior Pacific Northwest where soils are 

moister and respond differently to burning and subsequent recovery (Robichaud et al. 2007b).  

If land managers want to use ERMiT to model erosion potential in the fire-prone Colorado Front 

Range, more data from Front Range fires should be incorporated into the model.   

Mulch:  The reduction in erosion with mulching is modeled in ERMiT by increasing the 

occurrence probability of less-erodible soils (Soils 1 and 2) and decreasing the occurrence 

probability of more-erodible soils (Soils 4 and 5).  This process appears to have worked well for 

modeling sediment yield for the maximum MI30 event, though sediment yield at HL5 and HL6, 

the two swales sparsely mulched with straw, were under-predicted by ERMiT.  ERMiT straw 

mulching application rates and their associated coverage differed from what was observed at 

the study swales.  According to the ERMiT User Manual straw mulch applied at a rate of 2.2 Mg 

ha-1 is equivalent to 72% ground cover (Robichaud et al. 2007a).  Field verification of straw 

mulch application rates at the study swales found coverage to range from 20% to 59%, 

considerably short of the 72% used by ERMiT.  The range of coverage found at the study swales 

was better represented in ERMiT with the 1.1 Mg ha-1 application rate which is associated with 
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47% coverage.  These differences between application rate and coverage should be kept in 

mind when selecting a mulch treatment in ERMiT.  Wood shred mulch is not represented by 

ERMiT at all, so percent ground coverage was used to estimate an appropriate level of 

mulching.  Seeing as the primary purpose of ERMiT is to predict to what degree erosion can be 

reduced with treatments, a wider range of options would be useful in the model.  

A more significant problem with the mulching component of ERMiT is the inability of the 

user to choose when mulch is applied to the burned hillslope.  The model assumes mulch is 

applied in the first year after burning and provides less protection in subsequent years.  If, as in 

the case of the swales in this study, mulch was applied in the second year after burning, the 

user has to decide between the output for the first year after burning with fresh mulch, or the 

second year after burning with old mulch, neither of which truly represents the conditions 

onsite.   

 

9.2 Analysis of the RUSLE model 

Sources of error:  The inputs for the RUSLE model leave substantial room for error.  In a 

model using five factors composed of five subfactors which are in turn composed of 24 

variables, standard RUSLE procedure relies heavily on estimations and generalizations (e.g., 

Renard et al. 1997, Miller et al. 2003, Larsen and MacDonald 2007, Renard et al. 2011, 

Fernandez et al. 2012).  Key estimation issues for applying RUSLE in a post-fire environment 

include: post-fire values for the K factor, which was increased based on burn severity; values for 

the exponent m that describes the rill-interill ratio in the calculation of the L factor; and nearly 

all sub-factors in the C factor calculation.  Furthermore, the studies referenced to determine 
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the P factor for straw and wood shred mulch were few and highly variable.  These sources of 

error are unavoidable in an empirical model that was not designed or calibrated to predict post-

fire erosion.  More detailed studies are needed to improve these parameters and improve the 

poor performance of RUSLE in this study as well as Larsen and MacDonald (2009).  

 Further error was introduced when the RUSLE factors were derived from remotely 

sensed data.  Though the R factor correlated almost perfectly between RUSLEf and RUSLERS due 

to the proximity of the swales to the rain gages used to extrapolate the rain data, the 

correlation between the RUSLEf and RUSLERS LS and C factors was weak and reduced the ability 

of RUSLE to predict sediment yield (Table 8.6).  

Finally, data from overtopped fences added error to the comparisons between observed 

and predicted sediment yield with 19 of the 29 fences underrepresenting actual sediment yield 

to an unknown degree.  RUSLE’s consistent under-prediction of sediment yield would be even 

greater with complete sediment yield data.   

Why did RUSLE consistently under-predict sediment yield?  The primary source of error 

in this model, and the most likely reason for under-estimation in this study, is simply that the 

original USLE model was developed for agricultural use.  RUSLE incorporated some data from 

rangelands, but the empirical coefficients and equations cannot be directly applied to a burned 

forest.  

One key limitation in using RUSLE in a post-fire environment is the change in soil 

erodibility.  The R, L and S factors do not change after burning, leaving only the C and K factors 

to represent the changes wrought by burning the soils.  These factors do not have a large 

enough range of possible values to represent the magnitude of change in erodibility after fire.  
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For example, with the K factor Larsen and MacDonald (2007) showed that reducing the 

infiltration rate from the highest permeability class (≥108 mm hr-1) to the slow-moderate 

permeability class (4-18 mm hr-1) would increase the K factor by 0.0095 Mg ha-1 MJ-1 mm-1 ha hr 

with an associated increase in sediment yield of only 40-50%, which is far less than the 

observed several order of magnitude increase in sediment yields after high-severity fires in the 

Colorado Front Range.  Increasing the impact of the K factor by adding an exponent to it may 

help remedy the under-prediction of RUSLE found in this study, and may also help differentiate 

between burn severities.  Indeed, adding an exponent of 0.75 to the K factor resulted in 

sediment predictions that were equally distributed above and below the 1:1 ratio of predicted 

and observed sediment yields, though it did nothing to improve the fit of the model (Figure 

9.1).  

Why did RUSLE over-predict when it did?  In the original RUSLEf run, only 7 swales fell 

above the 1:1 line.  Of these over-predictions just SLD1 stood out as an outlier with an observed 

sediment yield of 8.7 Mg ha-1 versus a predicted sediment yield of 18.7 Mg ha-1.  SLD1 had the 

longest slope out of all the study swales (350 m) and one of the highest slope angles (55%), 

both variables that drive the LS factor.  In this study the LS factor had the strongest correlation 

with predicted sediment yield relative to the other factors (Table 8.6).   

It is because of the interaction of slope length and slope angle in the LS factor that not 

all swales with long slope lengths were over-predicted by RUSLE.  The three highest sediment 

yields predicted by RUSLEf were associated with the three highest LS factors, but those LS 

factors were only associated with the highest slope length at SLD1; the other two highest LS 

factors (SM5 and SL4) were due to driven up by high slope angles in conjunction with relatively 
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long slope lengths (Figure 9.2).  The same goes for RUSLERS, where all five sediment yields that 

were over-predicted by the model also had the five highest LS factors.  These results illustrate 

that the LS factor is a strong driver of the RUSLE equation, and because this factor does not 

change pre- and post-fire, the equation must rely on the K and C factors to model change in 

erosion conditions.    

 

9.3 Analysis of the SSMRf model 

Sources of error:  The SSMRf model had the best performance of all the models, which is 

expected since the model was developed directly from field observations.  However, since all 

the field data went into making the model it was not tested against any sites not used in its 

development.  The SSMRf model only had an R2 of 0.68 despite being derived purely from field 

measurements.  This low R2 may have resulted because inaccuracies in field measurements 

affected relationships between independent variables and sediment yield that otherwise may 

have been clearer.  For example, not all sediment produced by a swale was trapped by the 

sediment fences, as was evidenced by double-fences with sediment in the lower fence despite 

the upper fence being only half full (Figure 3.4).  Additionally, some events overtopped 

sediment fences, meaning potentially large amounts of sediment eluded capture.  Though Part I 

of this thesis suggested that these errors in the data were not significant, they should be kept in 

mind as inaccuracies in sediment yields that affect the data analysis.  

The more likely reason the multivariate model did not accurately predict sediment 

yields is because post-fire erosion processes are more complex than the field measurements 

captures.  As has been repeatedly shown in post-fire erosion studies in the Colorado Front 
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Range, post-fire sediment yields are highly variable and difficult to predict (e.g. Benavides-

Solorio and MacDonald 2005, Pietraszek 2006, Moody and Martin 2009, Robichaud et al. 

2013c).  Possible variables to include in future studies are continuous runoff measurements to 

characterize the flow event dynamics that produce sediment, hydrophobicity measurements, 

more continuous monitoring of vegetation regrowth over time, and soil measurements that 

attempt to quantify the amount of loose soil available to be eroded, the degree of soil 

armoring, and the degree of soil sealing over time.   

 

9.4 Analysis of the SSMRRS model 

When using remotely sensed data instead of field-measured data to predict sediment 

yield with the SSMR model, the correlation between predicted and observed sediment yield 

decreased (Table 8.4).  The drivers of the SSMR model are slope length and percent cover by 

bare soil with a partial R2 of 0.20 and 0.19, respectively.  These were also the two variables that 

had the poorest correlation between their field-measured and remotely-derived values (Table 

8.4).  Given the loss of accuracy between the field-measured and remotely-derived variables, it 

is somewhat surprising that the SSMRRS model performed as well as it did.   

The visible differences in contributing area and the poor correlation between slope 

length in SSMRf and SSMRRS illustrates the difficulty in using a GIS to measure topographic 

parameters on the hillslope scale.  There are multiple sources of uncertainty when comparing 

field-measured topographic variables to GIS-derived or remotely-sensed topographic variables.  

A single continuous field measurement of slope angle neglects variation in angle between the 

top and toe of the slope while slope calculation in a GIS includes all the variations in slope 
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within the contributing area.  Field measurement of a swale perimeter takes into account 

directional forcing of overland flow by small features that aren’t included in a 1-m DTM such as 

downed logs and boulders.  However, the accuracy of a field-measured perimeter may be 

inhibited by the inability to step back and take a wider view of the local landscape.  GIS-derived 

topographic variables may also be affected by inaccuracies in georeferencing or in LiDAR-

derived elevations.  Furthermore, the use of the D8 flow direction algorithm in the GIS to define 

contributing area from LiDAR provided one result while a multi-direction flow algorithm may 

have produced a different result.   

Additionally, the poor correlation between field-measured percent cover by bare soil 

and the remotely sensed NDVI values illustrates the difficulty of using remotely sensed data to 

measure surface cover following a fire.  Figure 9.3 shows the relationship between spring 2013 

field-measured bare soil coverage and the bare soil coverage predicted by NDVI using equation 

7.13; field-measured bare soil has a range of 0.62 compared to a range of just 0.37 for the 

NDVI-predicted bare soil.  The discrepancies between the two data sources is likely because 

NDVI is a measure of vegetation greenness and is poorly suited to detecting the small changes 

in vegetation regrowth and reduction in bare soil in a post-fire environment.  Since surface 

cover by bare soil is a significant factor in predicting post-fire erosion (Benavides-Solorio and 

MacDonald 2005, Pietraszek 2006, Groen and Woods 2008), extrapolation of field-measured 

data using remote sensing is unlikely to provide a good representation of post-fire surface 

cover until better techniques are developed.   
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9.5 Comparison to other studies 

In this study, the RUSLE and ERMiT models did not reliably predict relative erosion rates 

between different burned hillslopes in the Colorado Front Range.  Similar findings were 

presented by Larsen and MacDonald (2007).  In their study of six wild and three prescribed fires 

in the Colorado Front Range, RUSLE predicted sediment yield with an R2 of 0.16, Reff
2 of 0.06, 

and RMSE of 6.46 Mg ha-1 yr-1.  Disturbed WEPP performed slightly better with an R2 of 0.25, 

Reff
2 of 0.19, and RMSE of 5.99 Mg ha-1 yr-1.  Both models performed better when applied to 

grouped hillslopes instead of individual hillslopes, indicating that the field measurements and 

the models are not accurately capturing all the variations in site conditions and resulting 

erosion processes.  Fernandez and others (2010) found the RUSLE overestimated erosion rates 

for two burned watersheds in northwestern Spain by an order of magnitude.  The fit of the 

model was quite poor with a Reff
2 of -2.2 and a RMSE of 31 Mg ha-1 yr-1. Benavides-Solorio and 

MacDonald (2005) studied three wild and three prescribed burns in the Colorado Front Range 

and developed a multivariate regression model from the data with an R2 of 0.65 and RMSE of 

6.5 Mg ha-1 yr-1.  When validated with a second set of data from the same fires, the model R2 

dropped to 0.61 and sediment yields were underestimated by nearly an order of magnitude.   

A number of studies have used RUSLE and other erosion models to predict sediment 

yield following a fire, but have not field-verified these predictions.  For example, Miller and 

others (2003) used RUSLE in a GIS to predict post-fire erosion in sub-catchments burned by the 

Cerro Grande Fire in New Mexico.  RUSLE predicted an increase in sediment yield per 

catchment from 0.5-9.2 Mg ha-1 yr-1 to 1.7-110 Mg ha-1 yr-1, and that seeding treatments would 

reduce erosion rates by 0.3-26% in the first year after burning.  ERMiT was used in Australia to 
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determine the predicted erosion rates for a range of exceedance probabilities and by how 

much mulching would reduce those rates (Robichaud 2009).  The poor performances of ERMiT 

and RUSLE in this study emphasize the need to validate these models for a wide range of 

conditions.  
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Figure 9.1:  Predicted versus observed 2013 sediment yield by swale for the RUSLEf model with 
the K factor raised to the 0.75 power.  The dashed line represents a 1:1 ratio between predicted 
and observed values, while the solid line shows the actual relationship. Solid diamond markers 
represent unmulched swales while hollow square markers represent mulched swales. 

 

 

 
Figure 9.2:  RUSLEf - predicted sediment yield by swale compared to the associated slope angle, 
slope length and RUSLEf LS factor.  
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Figure 9.3:  Relationship between field-measured bare soil coverage and the bare soil coverage 
predicted by the NDVI.   
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10 CONCLUSIONS 
 
 
 
 Three empirical models were used to estimate post-fire hillslope-scale erosion at 29 

study swales in the High Park Fire, Colorado.  ERMiT under-predicted sediment yield from 

events with low recurrence intervals (1.5-5 years) and over-predicted sediment yield from 

events with high recurrence intervals (30-100 years).  RUSLE did not produce a reasonable 

estimation of either mean sediment yield from all swales or sediment yield from individual 

swales.  The site-specific multivariate regression model predicted 2013 annual sediment yield 

with an r of 0.79 and a RMSE of 6.4 Mg ha-1 yr-1.  The accuracy of both RUSLE and a site-specific 

multivariate regression (SSMR) model decreased when remotely sensed and GIS data were 

used in place of field-measured data.  

 The predictive ability of ERMiT was limited by assumptions embedded in the model 

about post-fire recovery that are inconsistent with field observations, including the low 

assumed probability of three consecutive high-severity overland flow elements and associated 

soil parameters, the need to delay recovery in a climate that is just outside the definition of 

monsoonal, and the timing of mulch application following a fire.  The performance of ERMiT 

could be improved if the user had more flexibility to adjust these parameters.  RUSLE, on the 

other hand, lacks the flexibility in its factors to simulate the magnitude of soil erodibility 

changes following fire, and the empirical relationships as embodied in the LS factor are not 

consistent with the observed data.  ERMiT has the potential for improved accuracy if it allows 

the user more flexibility to create realistic scenarios for each field setting. 
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Non-verified applications of erosion models in post-fire settings are common, but the 

results of this study indicate that the predictions are relatively poor.  This is due to the 

uncertainty in the underlying parameterization of the controlling processes, the extent to which 

processes are not included in the models, and the difficulties in accurately measuring the key 

variables, such as percent cover.  Until post-fire erosion processes are better understood and 

the models more accurately represent that knowledge, land managers need to recognize the 

high uncertainties associated with models such as ERMiT, RUSLE, and even local empirical 

models.   

  One of the primary reasons land managers model post-fire erosion is to identify areas 

prone to erosion and treat them to mitigate impairment of a water supply (BAER 2012, Goode 

et al. 2012, Robichaud and Ashmun 2013).  The ERMiT model takes a commendable step 

toward a simplified model that predicts erosion potential and the erosion reduction due to 

mulching.  However, as shown in this study, the underlying assumptions in ERMiT need to be 

adjusted to improve the ability of the model to accurately predict erosion on one hillslope 

relative to another, for example by recalculating the hillslope length relationship to reduce the 

probability of particularly long hillslopes to produce sediment.   

The paucity of post-fire validation for ERMiT and RUSLE illustrates a need for more 

model validation studies.  A better understanding of some of the underlying principles of these 

models is also needed, for example the relationship between slope length and sediment yield.  

Additionally, as remote sensing becomes an increasingly common way of calculating post-fire 

variables over large areas (e.g., dNBR for burn severity and DTMs for topography), reliable 
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methods are needed to ensure that these can adequately characterize field conditions and 

parameterize post-fire erosion models.    
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APPENDIX 
 
 
 

Table A1:  Metadata for the 29 swales used in this study 
 

 
 
 

 

 

 

First fence Second fence

HL1 40.67955 -105.306217 8/7/2012

HL2 40.679783 -105.3066 8/7/2012 7/30/2013

HL3 40.680333 -105.306167 8/7/2012

HL4 40.680433 -105.306633 8/7/2012 7/30/2013

HL5 40.67867 -105.307 6/15/2013 9/13/2012 Straw

HL6 40.67832 -105.307 6/15/2013 9/13/2012 Straw

HLD1 40.680783 -105.304233 8/1/2012 8/7/2012

HU1 40.660767 -105.328683 8/1/2012 10/10/2012 wood

HU2 40.660683 -105.329117 8/1/2012 10/10/2012 wood

HU3 40.66165 -105.332867 9/8/2012 10/10/2012 wood and straw

HU4 40.6624 -105.333067 9/8/2012 10/10/2012 wood and straw

SL1 40.668733 -105.3926 8/1/2012

SL2 40.6661 -105.3951 8/10/2012

SL3 40.666117 -105.395567 8/10/2012

SL4 40.664833 -105.39815 8/10/2012

SL5 40.664167 -105.398333 8/10/2012

SLD1 40.669533 -105.390783 8/3/2012 8/10/2012

SM1 40.6495 -105.375583 8/26/2012 9/9/2013 wood

SM2 40.649617 -105.38005 8/26/2012 7/27/2013

SM3 40.649433 -105.380533 8/26/2012

SM4 40.648967 -105.374283 5/24/2013

SM5 40.650033 -105.371567 5/25/2013 7/27/2013

SM6 40.649417 -105.370483 5/24/2013

SU1 40.639283 -105.416533 7/30/2012 7/1/2013 Straw

SU2 40.64945 -105.421333 7/30/2012 7/1/2013 Straw

SU3 40.650333 -105.422883 7/30/2012 9/2/2013

SU4 40.651583 -105.42075 7/30/2012 9/2/2013

SU5 40.642333 -105.42405 5/28/2013

SU6 40.647183 -105.42265 5/28/2013

Longitude (deg)Latitude (deg)Location Mulch material
Date installed Date 

mulched
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Table A2:  Rain gage metadata for all rain gages used in this study 

 

 

 

 

 

 

 

 

 

Latitude (deg) Longitude (deg) Elevation (m) Date range

SLR1 40.667717 -105.39325 1973 8/5/2012 - 10/5/2013

SLR2 40.665333 -105.3972 2155 8/31/2012 - 10/5/2013

SMR1 40.64915 -105.377967 2232 8/26/2012 - 9/27/2013

SUR1 40.639017 -105.416317 2694 8/16/12-1/6/13, 2/18/13-6/23/13

SUR2 40.649817 -105.423183 2514 8/29/2012 - 2/5/2013, 4/2/2013-10/10/2013

HLR1 40.680083 -105.306667 1884 8/7/2012 - 9/22/2013

HMR1 40.673933 -105.309583 1830 8/18/2012 - 10/21/2013

HUR1 40.660383 -105.32895 2314 8/9/2012 - 9/18/2013

CO-LR-85 40.6364 -105.3684 2247 2004-2005, 2008-2013

CO-LR-197 40.624 -105.3405 2526 1998-2005, 2013

CO-LR-546 40.6754 -105.215 1673 1999-2013

NCDC Buckhorn Mt 1 E 40.61667 -105.28333 2255 May-September 1990-2013

Bellvue 40.646161 -105.280261 2076 Apr1-Sep30

Livermore 40.705556 -105.411111 2311 Apr1-Sep30

Masonville 40.536722 -105.245111 2216 Apr1-Sep30

Sky Corral 40.629361 -105.386833 2354 Apr1-Sep30

Stove Prairie 40.619361 -105.359333 2250 Apr1-Sep30

Study gages

CoCoRaHS

UGSG

Rain gage
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Table A3:  Physical hillslope characteristics measured in the field 

Swale ID Slope length (m) Width-length ratio Slope angle (%) Orientation (deg) Severity (dNBR) Severity (class) Contributing area (ha) area * slope (ha)

HL 1 85 0.14 47 220 615 moderate 0.08 3.7

HL 2 120 0.17 39 205 549 moderate 0.10 3.9

HL 3 100 0.13 31 258 593 moderate 0.18 5.7

HL 4 50 0.34 29 254 578 moderate 0.09 2.5

HL 5 64 0.48 36 290 582 moderate 0.15 5.3

HL 6 73 0.47 42 270 615 moderate 0.21 8.7

HLD 1 160 0.12 49 238 687 high 0.23 11.1

HU 1 105 0.18 38 225 700 high 0.19 7.2

HU 2 90 0.36 33 180 676 high 0.26 8.4

HU 3 200 0.09 18 192 782 high 0.32 5.8

HU 4 85 0.34 40 220 791 high 0.19 7.8

SL 1 160 0.14 53 100 586 moderate 0.45 23.6

SL 2 200 0.12 31 180 717 high 0.36 11.0

SL 3 200 0.23 28 190 679 high 0.83 23.1

SL 4 160 0.12 57 150 667 high 0.25 14.4

SL 5 160 0.18 28 140 712 high 0.34 9.5

SLD 1 350 0.13 55 120 618 moderate 1.31 72.0

SM 1 127 0.12 32 200 845 high 0.16 5.0

SM 2 160 0.12 36 180 859 high 0.25 9.1

SM 3 160 0.17 33 200 876 high 0.34 11.1

SM 4 78 0.24 21 190 841 high 0.13 2.7

SM 5 183 0.08 44 100 739 high 0.19 8.4

SM 6 75 0.16 42 63 604 moderate 0.09 3.9

SU 1 155 0.21 27 190 807 high 0.25 6.8

SU 2 150 0.08 38 196 671 high 0.14 5.2

SU 3 150 0.07 26 200 743 high 0.13 3.5

SU 4 150 0.18 49 290 666 high 0.37 18.3

SU 5 110 0.64 10 220 660 high 1.58 15.8

SU 6 175 0.46 8 200 355 moderate 1.23 9.9
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Table A4:  Sediment data collected at the 29 study swales 

 

Swale Collection date Field mass (kg) Field comments Dry mass (Mg) Swale area (ha) Yield (Mg ha-1)

9/15/2012 250.8 0.176 0.08 2.21
10/5/2012 19.0 0.017 0.08 0.21
4/7/2013 7.5 0.006 0.08 0.07
7/20/2013 104.0 0.082 0.08 1.02
9/28/2013 1974.5 Overtopped 1.699 0.08 21.24

1.980 0.08 24.75
9/15/2012 293.6 0.200 0.10 2.00
10/5/2012 52.5 0.042 0.10 0.42
4/7/2013 22.0 0.015 0.10 0.15
5/7/2013 28.0 Post-snowmelt event; saturated overland flow around fence 0.016 0.10 0.16
7/20/2013 296.0 0.250 0.10 2.50
7/26/2013 5.0 0.003 0.10 0.03
7/30/2013 1497.5 Overtopped 1.319 0.10 13.19
10/20/2013 2608.0 Upper and lower fences combined, both overtopped 2.252 0.10 22.52

4.097 0.1 40.97
9/14/2012 390.5 0.313 0.18 1.74
10/5/2012 8.0 0.006 0.18 0.03
7/20/2013 17.5 0.013 0.18 0.07
7/29/2013 946.5 Broken 0.744 0.18 4.14
9/22/2013 1027.5 0.825 0.18 4.58

1.900 0.18 10.56
9/7/2012 1.2 Very dry 0.001 0.09 0.01
9/14/2012 302.6 0.233 0.09 2.59
10/5/2012 13.0 0.011 0.09 0.12
4/7/2013 36.0 0.027 0.09 0.31
6/4/2013 5.0 0.005 0.09 0.05
7/20/2013 327.0 0.186 0.09 2.07
7/26/2013 5.0 0.004 0.09 0.04
7/29/2013 1103.0 0.896 0.09 9.96
9/28/2013 1167.0 Broken 0.911 0.09 10.12

2.274 0.09 25.27
7/20/2013 18.0 0.013 0.15 0.09
7/30/2013 641.5 0.554 0.15 3.69
9/28/2013 954.5 Broken 0.765 0.15 5.10

1.332 0.15 8.88

HL 3

HL 4

total

total

total

total

total

HL 1

HL 2

HL 5
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Table A4 continued 

 

7/30/2013 533.0 0.438 0.21 2.08
9/28/2013 761.5 Broken 0.556 0.21 2.65

0.994 0.21 4.73
9/14/2012 202.2 Upper and lower fences combined  0.146 0.23 0.64
9/28 & 10/18/13 1876.5 Upper fence overtopped, lower fence broken 1.583 0.23 6.88
7/29 & 8/5/13 2702.0 Upper and lower fences combined  2.187 0.23 9.51
10/5/2012 16.5 Upper only 0.013 0.23 0.06
4/7/2013 3.5 Upper only 0.003 0.23 0.01
7/20/2013 125.0 Upper only 0.075 0.23 0.33
7/26/2013 22.0 Upper only 0.014 0.23 0.06

4.020 0.23 17.48
9/3/2012 15.2 0.010 0.19 0.05
10/7/2013 179.5 0.118 0.19 0.62

0.128 0.19 0.67
7/19/2013 61.5 0.031 0.26 0.12
10/21/2013 659.0 0.551 0.26 2.12

0.581 0.26 2.24
4/5/2013 30.0 Mud and mulch; tried to remove as much mulch as possible 0.020 0.32 0.06
10/21/2013 1744.5 Overtopped 1.481 0.32 4.63

1.501 0.32 4.69
4/5/2013 11.5 Mud and mulch; tried to remove as much mulch as possible 0.007 0.19 0.03
9/18/2013 754.5 0.604 0.19 3.18

0.610 0.19 3.21
8/2/2012 640.3 Rain event 8/1/12, 0.75 in. Wedge rain gage. 0.584 0.45 1.30
9/7/2012 2.7 Very dry 0.003 0.45 0.01
7/15/2013 2565.5 Overtopped 2.291 0.45 5.09
8/2/2013 572.5 0.487 0.45 1.08
8/19/2013 1796.5 Overtopped 1.746 0.45 3.88
10/5/2013 669.0 0.571 0.45 1.27

5.682 0.45 12.63
8/31/2012 8.7 High water mark of 37 cm 0.006 0.36 0.02
7/8/2013 1.5 All l itter, no sed 0.001 0.36 0.00
7/16/2013 1182.5 Overtopped 1.079 0.36 3.00
8/2/2013 169.5 0.159 0.36 0.44
8/16/2013 820.0 0.783 0.36 2.18
10/5/2013 733.5 0.622 0.36 1.73

2.650 0.36 7.36total

total

total

total

total

total

total

total

HU 3

HU 2

HU 1

HL 6

HLD 1

HU 4

SL 2

SL 1



166 
 

Table A4 continued 

 

8/31/2012 71.2 0.038 0.83 0.05
10/5/2012 2.5 0.002 0.83 0.00
7/8/2013 2.5 All l itter, no sed 0.002 0.83 0.00
7/16/2013 2084.0 Overtopped 2.064 0.83 2.49
8/2/2013 403.5 0.365 0.83 0.44
8/16/2013 1301.0 0.923 0.83 1.11
10/5/2013 1368.0 Overtopped 1.202 0.83 1.45

4.596 0.83 5.54
9/3/2012 2.5 Very dry 0.002 0.25 0.01
7/8/2013 1.0 Very dry 0.001 0.25 0.00
7/13/2013 551.5 0.417 0.25 1.67
7/16/2013 1407.0 1.276 0.25 5.10
8/2/2013 208.0 0.179 0.25 0.71
8/16/2013 507.0 0.465 0.25 1.86
10/5/2013 780.5 0.626 0.25 2.50

2.965 0.25 11.86
9/3/2012 8.5 0.008 0.34 0.02
10/5/2012 2.0 0.001 0.34 0.00
4/5/2013 7.5 0.003 0.34 0.01
7/8/2013 2.0 Very dry 0.002 0.34 0.01
7/13/2013 1283.0 1.231 0.34 3.62
7/16/2013 969.5 0.911 0.34 2.68
8/2/2013 267.5 0.249 0.34 0.73
8/16/2013 746.0 0.717 0.34 2.11
10/5/2013 868.0 Overtopped 0.813 0.34 2.39

3.935 0.34 11.57
7/16 & 8/6/13 9319.5 Upper and lower fences combined, both overtopped 9.000 1.31 6.87
8/19/2013 1515.0 Upper and lower fences combined  1.428 1.31 1.09
10/5/2013 1089.0 Upper and lower fences combined  0.922 1.31 0.70
8/31/2012 0.7 Upper  fence only 0.000 1.31 0.00

11.350 1.31 8.66
10/12/2012 2.5 0.002 0.16 0.02
4/5/2013 5.5 0.003 0.16 0.02
6/4/2013 9.0 0.007 0.16 0.04
7/18/2013 1520.0 Overtopped 1.062 0.16 6.64
8/5/2013 321.0 0.245 0.16 1.53
9/7/2013 762.0 0.612 0.16 3.83
10/13/2013 307.5 0.198 0.16 1.24

2.130 0.16 13.31

total

total

total

total

total

SM 1

SLD 1

SL 5

SL 4

SL 3
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Table A4 continued 

 

4/5/2013 15.0 0.008 0.25 0.03
6/4/2013 3.5 Very dry 0.003 0.25 0.01
7/19/2013 1503.0 Overtopped 1.237 0.25 4.95
8/2/2013 643.5 Upper and lower fences combined  0.516 0.25 2.06
9/6/2013 994.0 Upper and lower fences combined  0.828 0.25 3.31
9/7/2013 264.0 Upper and lower fences combined  0.174 0.25 0.70
10/13/2013 622.5 Upper and lower fences combined  0.477 0.25 1.91

3.243 0.25 12.97
10/12/2012 4.5 Very dry 0.003 0.34 0.01
4/5/2013 94.0 0.048 0.34 0.14
6/4/2013 9.5 0.009 0.34 0.03
7/19/2013 2220.5 Overtopped 1.801 0.34 5.30
8/2/2013 693.0 0.567 0.34 1.67
9/6/2013 1005.0 0.893 0.34 2.63
9/7/2013 593.0 0.400 0.34 1.18
9/27/2013 775.5 0.670 0.34 1.97

4.391 0.34 12.92
6/4/2013 50.5 first storm for this fence 0.037 0.13 0.28
7/18/2013 1120.5 Broken 0.777 0.13 5.98
7/19/2013 116.5 0.071 0.13 0.55
8/5/2013 369.5 0.295 0.13 2.27
9/7/2013 823.0 0.519 0.13 3.99
9/27/2013 360.5 0.257 0.13 1.98

1.957 0.13 15.05
7/8/2013 0.5 0.000 0.19 0.00
7/18/2013 1940.5 overtopped 1.816 0.19 9.56
7/19/2013 358.0 0.300 0.19 1.58
8/5/2013 718.5 Upper and lower fences combined  0.659 0.19 3.47
9/9/2013 1553.5 Upper and lower fences combined  1.336 0.19 7.03
10/13/2013 798.5 Upper and lower fences combined  0.685 0.19 3.61

4.796 0.19 25.24
6/4/2013 14.5 0.014 0.09 0.15
7/18/2013 2245.5 100% overtopped 2.020 0.09 22.44
7/19/2013 325.0 0.268 0.09 2.97
8/5/2013 331.5 0.303 0.09 3.37
9/9/2013 803.5 0.595 0.09 6.61
10/13/2013 284.0 0.254 0.09 2.82

3.453 0.09 38.37total

total

total

total

total

SM 5

SM 4

SM 3

SM 2

SM 6
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Table A4 continued 

  

8/28/2013 18.0 0.013 0.44 0.03
10/10/2013 13.0 0.009 0.44 0.02

0.022 0.44 0.05
9/15/2012 1.0 Very dry 0.001 0.14 0.01
11/16/2012 11.0 0.007 0.14 0.05
5/21/2013 4.5 0.003 0.14 0.02
7/11/2013 6.5 0.005 0.14 0.04

0.016 0.14 0.11
11/16/2012 8.5 Very dry 0.005 0.13 0.04
5/21/2013 5.5 Very dry 0.004 0.13 0.03
7/11/2013 232.0 0.171 0.13 1.31
8/28/2013 239.0 0.173 0.13 1.33
10/26/2013 901.0 Upper and lower fences combined  0.652 0.13 5.02

1.005 0.13 7.73
9/2/2013 367.5 0.324 0.37 0.88
7/14/2013 125.0 0.092 0.37 0.25
7/11/2013 284.5 0.228 0.37 0.62
10/26/2013 1766.0 Upper and lower fences combined, both overtopped 1.643 0.37 4.44

2.288 0.37 6.18
8/28/2013 996.5 0.700 1.58 0.44
7/26/2013 313.0 0.259 1.58 0.16
7/11/2013 439.0 0.346 1.58 0.22
10/26/2013 2072.5 Broken 1.636 1.58 1.04

2.941 1.58 1.86
9/2/2013 17.0 0.015 1.23 0.01
8/28/2013 603.5 0.439 1.23 0.36
7/26/2013 309.0 0.268 1.23 0.22
7/11/2013 283.0 0.199 1.23 0.16
10/26/2013 2204.0 1.918 1.23 1.56

2.839 1.23 2.31total

total

total

total

total

total
SU 1

SU 6

SU 5

SU 4

SU 3

SU 2
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Table A5:  Soil moisture analysis from sediment fence samples 

 

Swale

Sample 

collection 

date

Labwork 1 

start day

Initial 

mass (g)

Final 

mass (g)

Water 

content 

(g)

Water 

content 

(g/g)

Labwork 2 

start day

Initial 

mass (g)

Final 

mass (g)

Water 

content 

(g)

Water 

content 

(g/g)

Lab Comments
Average water 

content (g/g)

HL 1 9/15/2012 2/3/2013 164.79 109.56 55.23 0.34 2/13/2013 106.78 79.27 27.51 0.26 0.30

HL 1 10/5/2012 2/3/2013 165.92 148 17.92 0.11 2/13/2013 107.68 93.59 14.09 0.13 0.12

HL 1 4/7/2013 8/15/2013 124.62 93.96 30.66 0.25 0.25

HL 1 7/20/2013 8/15/2013 137.17 108.13 29.04 0.21 0.21

HL 1 9/28/2013 11/3/2013 230.53 193.25 37.28 0.16 11/23/2013 195.89 172.87 23.02 0.12 0.14

HL 2 9/15/2012 2/3/2013 152.03 100.54 51.49 0.34 2/13/2013 144.99 101.26 43.73 0.30 0.32

HL 2 10/5/2012 2/3/2013 132.72 100.34 32.38 0.24 2/13/2013 155.65 134.13 21.52 0.14 0.19

HL 2 4/7/2013 8/15/2013 119.29 83.05 36.24 0.30 0.30

HL 2 5/7/2013 8/15/2013 139.69 79.19 60.50 0.43 0.43

HL 2 7/20/2013 8/15/2013 191.53 161.65 29.88 0.16 0.16

HL 2 7/26/2013 8/15/2013 93.82 65.42 28.40 0.30 0.30

HL 2 7/30/2013 8/15/2013 195.74 172.38 23.36 0.12 0.12

HL 2L 10/20/2013 11/23/2013 180.92 151.49 29.43 0.16 11/24/2013 208.61 174.53 34.08 0.16 0.16

HL 2U 10/20/2013 11/23/2013 207.45 183.25 11/24/2013 140.31 125.87 14.44 0.10 0.10

HL 3 9/14/2012 2/3/2013 187.35 155.08 32.27 0.17 2/13/2013 181.98 140.73 41.25 0.23 0.20

HL 3 10/5/2012 2/3/2013 167.28 118.85 48.43 0.29 2/13/2013 168.25 124.92 43.33 0.26 0.27

HL 3 7/20/2013 8/15/2013 133.22 97.13 36.09 0.27 0.27

HL 3 7/29/2013 8/15/2013 162.16 127.55 34.61 0.21 0.21

HL 3 9/22/2013 11/3/2013 166.75 132.68 34.07 0.20 11/22/2013 167.93 135.91 32.02 0.19 0.20

HL 4 9/7/2012 2/3/2013 61.69 58.97 2.72 0.04 2/13/2013 64.32 61.58 2.74 0.04 High OM 0.04

HL 4 9/14/2012 2/3/2013 139.86 104.58 35.28 0.25 2/13/2013 157.29 124.5 32.79 0.21 0.23

HL 4 10/5/2012 2/3/2013 182.47 159.33 23.14 0.13 2/13/2013 109.44 91.48 17.96 0.16 0.15

HL 4 4/7/2013 8/15/2013 99.87 76.22 23.65 0.24 0.24

HL 4 6/4/2013 8/15/2013 47.56 45.54 2.02 0.04 0.04

HL 4 7/20/2013 8/15/2013 155.63 88.64 66.99 0.43 0.43

HL 4 7/26/2013 8/15/2013 130.97 96.42 34.55 0.26 0.26

HL 4 7/29/2013 8/15/2013 217.48 176.76 40.72 0.19 0.19

HL 4 9/28/2013 11/3/2013 197.60 150.85 46.75 0.24 11/22/2013 227.55 181.39 46.16 0.20 0.22

HL 5 7/20/2013 8/15/2013 136.85 99.34 37.51 0.27 0.27

HL 5 7/30/2013 8/15/2013 186.24 160.76 25.48 0.14 0.14

HL 5 9/28/2013 11/3/2013 256.36 203.09 53.27 0.21 11/22/2013 213.88 173.58 40.3 0.19 0.20

HL 6 7/30/2013 8/15/2013 134.81 110.67 24.14 0.18 0.18

HL 6 9/28/2013 11/3/2013 248.28 191.13 57.15 0.23 11/22/2013 206.36 142.54 63.82 0.31 0.27

HLD 1L 9/14/2012 2/3/2013 162.28 98.68 63.60 0.39 2/13/2013 130.38 89.32 41.06 0.31 0.35

HLD 1L 7/29/2013 8/15/2013 191.00 131.62 59.38 0.31 0.31

HLD 1L 9/28/2013 11/3/2013 290.08 253.20 36.88 0.13 11/22/2013 251.15 223.64 27.51 0.11 0.12

HLD 1U 9/14/2012 2/3/2013 166.95 114.46 52.49 0.31 2/13/2013 157.25 126.88 30.37 0.19 0.25

HLD 1U 10/5/2012 0.19 0.17 No sample, used average of other 10/5 HL sites 0.18

HLD 1U 4/7/2013 8/15/2013 99.83 75.95 23.88 0.24 0.24
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Table A5 continued: 

 

HLD 1U 7/20/2013 8/15/2013 182.48 109.62 72.86 0.40 0.40

HLD 1U 7/26/2013 8/15/2013 145.49 90.86 54.63 0.38 0.38

HLD 1U 8/5/2013 8/15/2013 195.67 176.56 19.11 0.10 0.10

HLD 1U 10/18/2013 11/3/2013 211.32 172.97 38.35 0.18 11/22/2013 127.98 105.42 22.56 0.18 0.18

HU 1 9/3/2012 2/3/2013 132.38 81.26 51.12 0.39 2/13/2013 113.48 73.81 39.67 0.35 0.37

HU 1 10/7/2013 11/23/2013 111.97 72.69 39.28 0.35 11/24/2013 136.47 90.87 45.6 0.33 0.34

HU 2 7/19/2013 8/15/2013 149.07 74.12 74.95 0.50 0.50

HU 2 10/21/2013 11/23/2013 154.83 122.70 32.13 0.21 11/24/2013 197.94 173.88 24.06 0.12 0.16

HU 3 4/5/2013 8/15/2013 85.40 56.90 28.50 0.33 0.33

HU 3 10/21/2013 11/23/2013 180.79 149.96 30.83 0.17 11/24/2013 175.04 151.94 23.1 0.13 0.15

HU 4 4/5/2013 8/15/2013 137.82 78.54 59.28 0.43 0.43

HU 4 9/18/2013 11/3/2013 168.83 126.63 42.20 0.25 11/22/2013 172.01 146.29 25.72 0.15 0.20

SL 1 8/2/2012 0.09 0.08 No sample, used average for this site 0.09

SL 1 9/7/2012 2/3/2013 174.02 170.39 3.63 0.02 2/13/2013 142.35 139.65 2.7 0.02 0.02

SL 1 7/15/2013 8/15/2013 273.76 244.45 29.31 0.11 0.11

SL 1 8/2/2013 8/16/2013 216.76 187.45 29.31 0.14 10/31/2013 161.18 134.91 26.27 0.16 0.15

SL 1 8/19/2013 11/3/2013 233.33 226.62 6.71 0.03 11/22/2013 283.50 275.77 7.73 0.03 0.03

SL 1 10/5/2013 11/23/2013 168.71 138.29 30.42 0.18 11/24/2013 212.09 188.01 24.08 0.11 0.15

SL 2 8/31/2012 2/3/2013 188.29 134.22 54.07 0.29 2/13/2013 170.5 125.78 44.72 0.26 0.27

SL 2 7/8/2013 8/16/2013 90.09 78.12 11.97 0.13 10/31/2013 102.67 89.53 13.14 0.13 0.13

SL 2 7/16/2013 8/15/2013 239.84 218.76 21.08 0.09 0.09

SL 2 8/2/2013 8/16/2013 168.60 156.54 12.06 0.07 10/31/2013 103.24 97.57 5.67 0.05 0.06

SL 2 8/16/2013 11/3/2013 229.06 218.29 10.77 0.05 11/22/2013 122.51 117.34 5.17 0.04 0.04

SL 2 10/5/2013 11/23/2013 196.11 166.77 29.34 0.15 11/24/2013 200.55 169.53 31.02 0.15 0.15

SL 3 8/31/2012 2/3/2013 187.51 95.98 91.53 0.49 2/13/2013 147.86 81.02 66.8433 0.45 Weighted value from the three samples 0.47

SL 3 10/5/2012 2/3/2013 174.7 114.14 60.56 0.35 2/13/2013 135.26 96.16 39.1 0.29 0.32

SL 3 7/8/2013 8/16/2013 109.14 90.95 18.19 0.17 10/31/2013 97.82 81.41 16.41 0.17 0.17

SL 3 7/16/2013 8/15/2013 226.34 224.13 2.21 0.01 0.01

SL 3 8/2/2013 8/16/2013 229.93 206.47 23.46 0.10 10/31/2013 201.58 184.08 17.5 0.09 0.09

SL 3 8/16/2013 11/3/2013 281.56 130.88 150.68 0.54 11/22/2013 159.38 152.18 7.2 0.05 0.29

SL 3 10/5/2013 11/23/2013 180.21 154.24 25.97 0.14 11/24/2013 206.69 186.3 20.39 0.10 0.12

SL 4 9/3/2012 2/3/2013 144.49 139.15 5.34 0.04 2/13/1931 99.31 96.27 3.04 0.03 0.03

SL 4 7/8/2013 8/16/2013 50.84 48.71 2.13 0.04 0.04

SL 4 7/13/2013 8/15/2013 210.22 159.07 51.15 0.24 0.24

SL 4 7/16/2013 8/16/2013 230.97 206.56 24.41 0.11 10/31/2013 150.57 138.35 12.22 0.08 0.09

SL 4 8/2/2013 8/16/2013 163.94 133.23 30.71 0.19 10/31/2013 190.58 172.37 18.21 0.10 0.14

SL 4 8/16/2013 11/3/2013 183.00 164.86 18.14 0.10 11/22/2013 211.44 197.16 14.28 0.07 0.08

SL 4 10/5/2013 11/23/1931 165.04 120.30 44.74 0.27 11/24/2013 220.05 192.33 27.72 0.13 0.20

SL 5 9/3/2012 2/3/2013 157.17 144.15 13.02 0.08 2/13/1931 150.94 136.95 13.99 0.09 0.09

SL 5 10/5/2012 2/3/2013 161.5 116.13 45.37 0.28 2/13/2013 105.17 78.26 26.91 0.26 0.27

SL 5 4/5/2013 8/16/2013 173.40 72.58 100.82 0.58 10/31/2013 171.29 59.21 112.08 0.65 0.62

SL 5 7/8/2013 8/16/2013 77.82 68.27 9.55 0.12 10/31/2013 86.94 79.05 7.89 0.09 0.11
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Table A5 continued: 

 

SL 5 7/13/2013 8/16/2013 228.80 217.04 11.76 0.05 10/31/2013 97.11 94.3 2.81 0.03 0.04

SL 5 7/16/2013 8/15/2013 264.16 248.24 15.92 0.06 0.06

SL 5 8/2/2013 8/16/2013 203.55 189.95 13.60 0.07 10/31/2013 167.96 155.94 12.02 0.07 0.07

SL 5 8/16/2013 11/3/2013 272.49 261.77 10.72 0.04 11/22/2013 235.77 226.84 8.93 0.04 0.04

SL 5 10/5/2013 11/23/2013 167.64 157.03 10.61 0.06 11/24/2013 254.73 238.31 16.42 0.06 0.06

SLD 1L 8/6/2013 8/16/2013 289.87 278.21 11.66 0.04 10/31/2013 244.80 236.93 7.87 0.03 0.04

SLD 1L 8/19/2013 11/3/2013 264.98 244.32 20.66 0.08 11/22/2013 246.76 230.50 16.26 0.07 0.07

SLD 1L 10/5/2013 11/23/2013 193.16 161.39 31.77 0.16 11/24/2013 200.40 167.29 33.11 0.17 0.16

SLD 1U 8/31/2012 2/3/2013 110.72 80.32 30.40 0.27 2/13/2013 88.29 68.17 20.12 0.23 0.25

SLD 1U 7/15/2013 8/16/2013 231.23 219.98 11.25 0.05 10/31/2013 148.06 141.50 6.56 0.04 0.05

SLD 1U 8/6/2013 8/16/2013 226.40 216.31 10.09 0.04 10/31/2013 216.76 216.00 0.76 0.00 0.02

SLD 1U 8/19/2013 11/3/2013 230.61 217.65 12.96 0.06 11/22/2013 245.05 232.69 12.36 0.05 0.05

SLD 1U 10/5/2013 11/23/2013 193.94 163.78 30.16 0.16 11/24/2013 176.86 150.82 26.04 0.15 0.15

SM 1 10/12/2012 2/3/2013 71.81 69.04 2.77 0.04 2/13/1931 72.66 69.84 2.82 0.04 High OM 0.04

SM 1 4/5/2013 8/15/2013 93.83 53.68 40.15 0.43 0.43

SM 1 6/4/2013 8/16/2013 68.26 54.02 14.24 0.21 10/31/2013 61.81 49.85 11.96 0.19 0.20

SM 1 7/18/2013 8/15/2013 221.47 154.74 66.73 0.30 0.30

SM 1 8/5/2013 8/16/2013 164.33 123.59 40.74 0.25 10/31/2013 154.30 119.46 34.84 0.23 0.24

SM 1 9/7/2013 11/3/2013 195.81 165.19 30.62 0.16 11/22/2013 132.28 101.06 31.22 0.24 0.20

SM 1 10/13/2013 11/23/2013 208.24 133.58 74.66 0.36 11/24/2013 197.51 127.58 69.93 0.35 0.36

SM 2 4/5/2013 8/15/2013 93.41 50.09 43.32 0.46 0.46

SM 2 6/4/2013 8/16/2013 46.03 43.30 2.73 0.06 10/31/2013 45.00 42.31 2.69 0.06 0.06

SM 2 7/19/2013 8/15/2013 198.09 163.01 35.08 0.18 0.18

SM 2L 8/2/2013 8/16/2013 154.14 104.18 49.96 0.32 10/31/2013 119.81 83.27 36.54 0.30 0.31

SM 2L 9/6/2013 11/3/2013 205.54 142.67 62.87 0.31 11/22/2013 169.39 133.58 35.81 0.21 0.26

SM 2L 9/7/2013 11/3/2013 175.70 112.80 62.90 0.36 11/22/2013 121.42 79.08 42.34 0.35 0.35

SM 2L 10/13/2013 11/23/2013 148.50 103.26 45.24 0.30 11/24/2013 125.15 90.35 34.8 0.28 0.29

SM 2U 8/2/2013 8/16/2013 140.32 114.46 25.86 0.18 10/31/2013 161.44 146.03 15.41 0.10 0.14

SM 2U 9/6/2013 11/3/2013 169.33 154.42 14.91 0.09 11/22/2013 180.07 158.37 21.7 0.12 0.10

SM 2U 9/7/2013 11/3/2013 136.04 89.47 46.57 0.34 11/22/2013 176.57 118.08 58.49 0.33 0.34

SM 2U 10/13/2013 11/23/2013 168.98 136.95 32.03 0.19 11/24/2013 180.07 140.39 39.68 0.22 0.20

SM 3 10/12/2012 2/3/2013 83.11 62.96 20.15 0.24 2/13/2013 86.41 65.41 21 0.24 High OM 0.24

SM 3 4/5/2013 8/15/2013 114.20 57.84 56.36 0.49 0.49

SM 3 6/4/2013 8/16/2013 35.86 34.29 1.57 0.04 10/31/2013 49.64 46.55 3.09 0.06 0.05

SM 3 7/19/2013 8/15/2013 191.81 155.60 36.21 0.19 0.19

SM 3 8/2/2013 8/16/2013 176.38 150.26 26.12 0.15 10/31/2013 141.66 111.15 30.51 0.22 0.18

SM 3 9/6/2013 11/3/2013 238.07 215.29 22.78 0.10 11/22/2013 213.73 186.49 27.24 0.13 0.11

SM 3 9/7/2013 11/3/2013 174.20 108.01 66.19 0.38 11/22/2013 259.95 189.43 70.52 0.27 0.33

SM 3 9/27/2013 11/3/2013 255.65 222.77 32.88 0.13 11/22/2013 197.40 169.18 28.22 0.14 0.14

SM 4 6/4/2013 8/16/2013 93.29 66.43 26.86 0.29 10/31/2013 85.62 64.15 21.47 0.25 0.27

SM 4 7/18/2013 8/16/2013 190.67 130.19 60.48 0.32 10/31/2013 212.29 149.65 62.64 0.30 0.31

SM 4 7/19/2013 8/15/2013 159.46 97.59 61.87 0.39 0.39
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Table A5 continued: 

 

SM 4 8/5/2013 8/16/2013 150.12 117.85 32.27 0.21 10/31/2013 141.73 115.08 26.65 0.19 0.20

SM 4 9/7/2013 11/3/2013 254.62 136.16 118.46 0.47 11/22/2013 238.73 173.32 65.41 0.27 0.37

SM 4 9/27/2013 11/3/2013 207.11 149.48 57.63 0.28 11/22/2013 177.34 124.94 52.4 0.30 0.29

SM 5 7/8/2013 8/15/2013 70.33 66.09 4.24 0.06 0.06

SM 5 7/18/2013 8/15/2013 199.62 186.81 12.81 0.06 0.06

SM 5 7/19/2013 8/15/2013 225.69 189.03 36.66 0.16 0.16

SM 5L 8/5/2013 8/15/2013 153.85 135.16 18.69 0.12 0.12

SM 5L 9/9/2013 11/3/2013 215.37 145.78 69.59 0.32 11/22/2013 184.90 124.17 60.73 0.33 0.33

SM 5L 10/13/2013 11/23/2013 175.59 153.34 22.25 0.13 11/24/2013 180.57 157.86 22.71 0.13 0.13

SM 5U 8/5/2013 8/16/2013 251.50 233.30 18.20 0.07 10/31/2013 180.30 166.63 13.67 0.08 0.07

SM 5U 9/9/2013 11/3/2013 200.19 177.07 23.12 0.12 11/22/2013 232.27 211.43 20.84 0.09 0.10

SM 5U 10/13/2013 11/23/2013 179.01 151.39 27.62 0.15 11/24/2013 182.45 158.09 24.36 0.13 0.14

SM 6 6/4/2013 8/16/2013 85.60 80.73 4.87 0.06 10/31/2013 89.94 86.77 3.17 0.04 0.05

SM 6 7/18/2013 8/15/2013 245.57 220.90 24.67 0.10 0.10

SM 6 7/19/2013 8/15/2013 225.96 186.13 39.83 0.18 0.18

SM 6 8/5/2013 0.10 0.08 missing; use SMC from SM5 0.09

SM 6 9/9/2013 11/3/2013 180.89 119.40 61.49 0.34 11/22/2013 192.86 158.15 34.71 0.18 0.26

SM 6 10/13/2013 11/23/2013 175.11 154.55 20.56 0.12 11/24/2013 121.36 110.14 11.22 0.09 0.10

SU 1 8/28/2013 11/3/2013 148.94 96.95 51.99 0.35 11/22/2013 64.93 48.91 16.02 0.25 0.30

SU 1 10/10/2013 11/23/2013 137.51 100.70 36.81 0.27 11/24/2013 140.06 101.53 38.53 0.28 0.27

SU 2 9/15/2012 2/3/2013 106.85 104.14 2.71 0.03 2/13/2013 46.81 45.96 0.85 0.02 High OM 0.02

SU 2 11/16/2012 8/16/2013 66.51 43.12 23.39 0.35 0.35

SU 2 5/21/2013 8/16/2013 66.51 43.12 23.39 0.35 10/31/2013 75.22 49.11 26.11 0.35 0.35

SU 2 7/11/2013 8/15/2013 85.45 68.15 17.30 0.20 0.20

SU 3 11/16/2012 2/3/2013 84.47 50.85 33.62 0.40 2/13/2013 71.24 48.37 22.87 0.32 High OM 0.36

SU 3 5/21/2013 8/16/2013 65.73 50.14 15.59 0.24 10/31/2013 63.24 48.30 14.94 0.24 0.24

SU 3 7/11/2013 8/15/2013 140.47 103.38 37.09 0.26 0.26

SU 3 8/28/2013 11/3/2013 144.61 101.05 43.56 0.30 11/22/2013 170.16 126.85 43.31 0.25 0.28

SU 3L 10/26/2013 11/23/2013 199.35 125.31 74.04 0.37 11/24/2013 158.78 103.19 55.59 0.35 0.36

SU 3U 10/26/2013 11/23/2013 138.61 102.48 36.13 0.26 11/24/2013 132.32 97.77 34.55 0.26 0.26

SU 4 9/7/2013 11/3/2013 192.51 170.29 22.22 0.12 11/22/2013 200.25 176.28 23.97 0.12 0.12

SU 4 7/14/2013 8/15/2013 203.69 150.71 52.98 0.26 0.26

SU 4 7/11/2013 8/15/2013 170.95 136.77 34.18 0.20 0.20

SU 4U 10/26/2013 11/23/2013 259.39 241.84 17.55 0.07 11/24/2013 223.68 208.16 15.52 0.07 0.07

SU 4L 10/26/2013 11/23/2013 238.57 221.91 16.66 0.07 11/24/2013 111.08 103.24 7.84 0.07 0.07

SU 5 8/28/2013 11/3/2013 206.02 145.26 60.76 0.29 11/22/2013 224.81 157.53 67.28 0.30 0.30

SU 5 7/26/2013 8/16/2013 172.08 145.01 27.07 0.16 10/31/2013 145.78 118.10 27.68 0.19 0.17

SU 5 7/11/2013 8/16/2013 161.07 130.40 30.67 0.19 10/31/2013 123.07 94.61 28.46 0.23 0.21

SU 5 10/26/2013 11/23/2013 150.34 111.81 38.53 0.26 11/24/2013 159.36 133.00 26.36 0.17 0.21

SU 6 9/2/2013 11/3/2013 155.20 136.08 19.12 0.12 11/22/2013 190.39 163.35 27.04 0.14 0.13

SU 6 8/28/2013 11/3/2013 154.24 116.51 37.73 0.24 11/22/2013 146.20 102.48 43.72 0.30 0.27

SU 6 7/26/2013 8/15/2013 168.75 146.11 22.64 0.13 0.13

SU 6 7/11/2013 8/15/2013 143.55 100.84 42.71 0.30 0.30

SU 6 10/26/2013 11/23/2013 158.77 137.69 21.08 0.13 11/24/2013 201.89 176.35 25.54 0.13 0.13
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Table A6: Percent cover count data 

 

 
 

Swale Date Bare soil Rock <1 cm Live veg Litter Wood < 1cm Tree Bedrock Wood mulch Straw mulch

HL3 8/16/2012 52 7 4 30 4 1 3 0 0
HL1 8/19/2012 77 2 0 10 1 0 10 0 0
HL4 8/19/2012 76 4 2 13 0 0 4 0 0
HL2 8/22/2012 71 2 0 13 1 2 11 0 0

HLD1 8/31/2012 70 14 1 10 0 0 5 0 0
SL2 9/7/2012 31 38 5 1 5 6 15 0 0
SL3 9/7/2012 37 40 5 5 1 1 12 0 0

HU3 9/8/2012 66 12 0 7 4 0 12 0 0
SU2 9/22/2012 63 14 8 10 4 2 0 0 0
SU3 9/22/2012 56 8 5 24 6 1 0 0 0
SU4 9/22/2012 47 23 4 25 1 0 0 0 0
HU1 9/23/2012 50 12 1 9 0 2 26 0 0
SU1 9/23/2012 52 15 3 26 2 3 0 0 0
SL5 10/5/2012 42 27 8 4 1 1 17 0 0

SM1 10/12/2012 63 5 1 26 3 1 1 0 0
SM2 10/12/2012 69 6 2 14 3 4 3 0 0
SM3 10/12/2012 67 7 2 12 5 1 6 0 0
SL1 10/13/2012 65 12 7 13 0 2 0 0 0

SLD1 10/13/2012 50 19 3 23 3 1 1 0 0
SL4 11/2/2012 41 34 5 5 4 1 10 0 0

HU1 11/3/2012 22 5 1 0 2 1 15 55 0
HU2 11/3/2012 38 7 1 0 1 1 7 45 0
HU3 11/3/2012 50 10 0 1 3 1 9 26 0
HU4 11/3/2012 42 5 1 3 5 3 5 37 0
HL1 6/10/2013 66 3 7 1 5 1 11 0 5
HL2 6/10/2013 70 3 4 1 1 1 16 0 3
HL3 6/10/2013 63 5 25 1 1 0 3 0 2
HL4 6/10/2013 76 4 10 5 0 1 4 0 1

HLD1 6/10/2013 56 16 20 1 0 1 6 0 0
SL1 6/11/2013 50 25 18 4 2 0 1 0 0
SL2 6/11/2013 31 28 26 0 0 3 12 0 0
SL3 6/11/2013 31 18 37 0 5 2 8 0 0
SL4 6/11/2013 31 34 18 2 4 2 9 0 0
SL5 6/11/2013 35 34 22 1 0 2 6 0 0

SLD1 6/11/2013 42 22 7 22 4 2 1 0 0
SM1 6/14/2013 69 10 6 5 8 0 2 0 0
SM2 6/14/2013 70 10 10 3 3 2 2 0 0
SM3 6/14/2013 69 10 7 1 1 2 11 0 0
SM4 6/14/2013 73 0 22 3 3 0 0 0 0
SM5 6/14/2013 57 31 1 1 0 1 9 0 0
SM6 6/14/2013 63 28 1 2 1 0 5 0 0
HU1 6/17/2013 17 3 1 0 1 0 12 64 0
HU2 6/17/2013 35 8 5 1 1 0 5 44 0
HU3 6/17/2013 57 9 0 0 2 1 10 6 14
HU4 6/17/2013 26 4 21 0 6 0 9 16 18
SU1 6/18/2013 60 17 5 11 2 1 4 0 0
SU2 6/18/2013 49 8 41 1 0 1 0 0 0
SU3 6/18/2013 58 6 25 5 3 2 0 0 0
SU4 6/18/2013 55 27 10 6 1 0 1 0 0
SU5 6/18/2013 75 3 17 3 2 1 1 0 0
SU6 6/18/2013 58 8 31 0 4 0 0 0 0
HL5 6/20/2013 38 2 17 0 0 0 23 0 20
HL6 6/20/2013 38 2 21 0 1 1 8 0 29
SU1 7/4/2013 19 9 8 9 2 0 3 0 51
SU2 7/4/2013 14 8 18 0 0 0 0 0 59
SM1 9/27/2013 46 10 35 2 5 2 1 0 0
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Table A6 continued: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SM2 9/27/2013 51 14 27 1 3 0 4 0 0
SM3 9/27/2013 59 16 15 0 3 0 7 0 0
SM4 9/27/2013 38 5 49 1 3 1 1 0 0
SM5 9/27/2013 52 31 7 1 0 0 8 0 0
SM6 9/27/2013 43 32 16 0 0 0 9 0 0
HL1 9/28/2013 57 4 22 1 0 0 15 0 0
HL2 9/28/2013 62 5 18 0 1 1 11 0 1
HL3 9/28/2013 52 9 31 1 2 2 4 0 0
HL4 9/28/2013 60 6 28 0 2 0 3 0 1
HL5 9/28/2013 37 4 22 0 1 0 26 0 11
HL6 9/28/2013 35 7 34 0 2 2 5 0 15

HLD1 9/28/2013 33 5 44 1 1 3 13 0 0
SL1 10/5/2013 47 15 34 0 0 2 3 0 0
SL2 10/5/2013 31 29 27 1 1 1 11 0 0
SL3 10/5/2013 30 22 36 0 3 1 8 0 0
SL4 10/5/2013 25 30 33 2 2 2 5 0 0
SL5 10/5/2013 30 24 32 5 0 2 8 0 0

SLD1 10/5/2013 28 9 42 12 2 3 3 0 0
HU1 10/7/2013 19 14 14 1 1 2 12 37 0
HU2 10/7/2013 34 9 28 4 1 1 7 15 0
HU3 10/7/2013 45 18 17 0 6 0 2 5 8
HU4 10/7/2013 32 12 30 0 1 2 9 6 8
SU1 10/10/2013 29 14 11 6 6 4 2 0 29
SU2 10/10/2013 28 6 38 0 1 1 0 0 28
SU3 10/10/2013 43 12 21 20 3 1 0 0 0
SU4 10/10/2013 33 33 24 4 1 1 5 0 0
SU5 10/10/2013 66 3 23 4 2 0 1 0 0
SU6 10/10/2013 57 14 23 5 1 0 0 0 0
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Table A7:  Particle size analysis data 

 

 
 

Gravel Sand Silt Clay

1 28 43 25 4 Loamy-Sand
2 34 44 20 2 Loamy-Sand
3 40 37 22 2 Loamy-Sand

average 22 2 Loamy-Sand
1 40 42 17 2 Loamy-Sand
2 12 53 30 5 Sandy-Loam
3 35 43 19 3 Loamy-Sand

average 22 3 Loamy-Sand
1 37 37 23 4 Loamy-Sand
2 24 47 26 3 Loamy-Sand
3 41 44 12 4 Sand 

average 20 3 Loamy-Sand
1 27 43 26 4 Loamy-Sand
2 28 41 27 4 Sandy-Loam
3 15 45 33 7 Sandy-Loam

average 29 5 Sandy-Loam
1 27 56 13 4 Loamy-Sand
2 25 51 20 4 Loamy-Sand
3 43 32 22 3 Loamy-Sand

average 19 4 Loamy-Sand
1 20 57 18 5 Loamy-Sand
2 24 54 18 5 Loamy-Sand
3 23 53 21 2 Loamy-Sand

average 19 4 Loamy-Sand
1 14 58 22 5 Loamy-Sand
2 29 50 18 3 Loamy-Sand
3 35 47 16 1 Loamy-Sand

average 19 3 Loamy-Sand
1 32 48 16 5 Loamy-Sand
2 39 46 12 3 Sand
3 40 43 14 3 Loamy-Sand

average 14 4 Loamy-Sand
1 13 62 21 4 Loamy-Sand
2 38 46 14 2 Loamy-Sand
3 36 46 15 3 Loamy-Sand

average 16 3 Loamy-Sand
1 19 68 12 1 Sand
2 25 58 14 3 Loamy-Sand
3 25 57 15 3 Loamy-Sand

average 14 2 Loamy-Sand
1 30 52 16 2 Loamy-Sand
2 31 56 12 1 Sand
3 23 62 12 4 Sand

average 13 2 Loamy-Sand
1 22 56 14 9 Sandy-Loam
2 31 46 16 8 Sandy-Loam
3 30 49 17 4 Sandy-Loam

average 50 16 7 Sandy-Loam

HL4

HL5

HL6

SLD1

HL3

Swale Sample
Percent

Texture

HU1

HU2

HU3

HU4

HLD1

HL1

HL2
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Table A7 continued: 

 

 
 

 

1 52 34.8623 12 1 Sandy-Loam
2 26 45.1163 23 6 Sandy-Loam
3 33 48.3877 16 3 Sandy-Loam

average 17 3 Sandy-Loam
1 41 34.6699 15 9 Fine sandy loam
2 34 43.3123 20 3 Fine sandy loam
3 54 31.8419 9 5 Fine sandy loam

average 15 6 Fine sandy loam
1 26 49.1245 19 7 Fine sandy loam
2 36 43.0118 19 3 Fine sandy loam
3 48 31.7082 16 4 Fine sandy loam

average 18 4 Fine sandy loam
1 25 49.1836 20 5 Fine sandy loam
2 42 39.8885 15 3 Fine sandy loam
3 20 54.2048 18 7 Fine sandy loam

average 18 5 Fine sandy loam
1 27 51.0958 20 2 Fine sandy loam
2 43 38.3 15 3 Fine sandy loam
3 18 51.0262 27 4 Fine sandy loam

average 21 3 Fine sandy loam
1 NA NA 17 9 Sandy loam
2 NA NA 22 9 Sandy loam
3 NA NA 28 5 Sandy loam

average 22 8 Sandy loam
1 NA NA 15 5 Sandy loam
2 NA NA 12 3 Sandy loam
3 NA NA 20 5 Sandy loam

average 16 4 Sandy loam
1 NA NA 15 3 Loamy coarse sand
2 NA NA 22 5 Loamy coarse sand
3 NA NA 35 5 Loamy coarse sand

average 24 4 Loamy coarse sand
1 37 45.3373 13 5 Loamy coarse sand
2 19 60.0161 15 6 Loamy coarse sand
3 21 59.5004 15 5 Loamy coarse sand

average 14 5 Loamy coarse sand
1 12 58.9287 23 6 Fine sandy loam
2 26 53.5759 17 4 Fine sandy loam
3 34 47.7191 15 4 Fine sandy loam

average 18 5 Fine sandy loam
1 15 58.0594 22 5 Fine sandy loam
2 15 61.4396 19 5 Fine sandy loam
3 14 56.7458 24 5 Fine sandy loam

average 22 5 Fine sandy loam
1 54 31.6957 12 2 Sandy loam
2 46 32.202 20 2 Sandy loam
3 49 30.0657 19 2 Sandy loam

average 17 2 Sandy loam

SM1

SM2

SM3

SU2

SM6

SL1

SL2

SL3

SL4

SL5

SM4

SM5
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Table A7 continued: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 58 27.3564 13 1 Sandy loam
2 49 32.4145 18 1 Sandy loam
3 54 29.7461 15 1 Sandy loam

average 15 1 Sandy loam
1 NA NA 39 4 Fine sandy loam
2 NA NA 30 3 Fine sandy loam
3 NA NA 40 5 Fine sandy loam

average 36.33333 4 Fine sandy loam
1 22 45.9897 30 2 Fine sandy loam
2 40 39.3295 19 1 Fine sandy loam
3 43 29.804 25 3 Fine sandy loam

average 24 2 Fine sandy loam
1 26 48.6444 23 2 Fine sandy loam
2 34 42.3604 21 3 Fine sandy loam
3 21 48.4311 29 2 Fine sandy loam

average 24 3 Fine sandy loam
1 18 50.7854 29 2 Fine sandy loam
2 44 37.4507 17 1 Fine sandy loam
3 71 17.955 10 1 Fine sandy loam

average 19 2 Fine sandy loam

SU1

SU4

SU5

SU3

SU6
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Table A8:  Precipitation data from rain gage HLR1 

 

 
 

Date P (mm) Dur (hr) MI5 (mm hr-1) MI15 (mm hr-1) MI30 (mm hr-1) MI60 (mm hr-1) Energy (MJ ha-1) EI30 (MJ mm ha-1 hr-1) Produced sediment

8/7/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/16/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/23/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/2/2012 2.29 0.35 21.946 8.128 4.58 2.29 0.44 2.017
9/7/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/11/2012 11.94 17.57 30.48 17.018 9.652 4.826 1.683 16.246 P
9/24/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/25/2012 17.02 14.88 12.192 10.16 9.652 7.264 2.182 21.062 P
9/27/2012 8.64 1.97 15.24 13.208 8.941 5.503 1.228 10.979 P
10/1/2012 0.76 3.28 3.048 1.016 0.508 0.508 0.043 0.022
10/5/2012 0.76 0.22 4.267 3.04 1.52 0.76 0.061 0.092
10/6/2012 1.52 2.85 4.267 2.032 1.016 0.762 0.12 0.122
10/12/2012 4.83 10.78 6.096 4.064 3.217 2.54 0.504 1.621
10/13/2012 0.51 0.3 3.048 1.422 1.02 0.51 0.024 0.024
10/13/2012 1.02 0.45 3.658 2.438 2.04 1.02 0.08 0.163
10/16/2012 1.02 2.17 3.048 2.032 1.016 0.508 0.067 0.068
10/24/2012 2.54 2.7 3.048 2.032 1.524 1.016 0.208 0.317
10/25/2012 1.02 4 6.096 2.032 1.524 0.762 0.117 0.178
10/26/2012 0.51 0.7 3.048 1.016 0.508 0.51 0.022 0.011
11/10/2012 1.27 2.88 3.048 2.032 1.524 0.762 0.094 0.143
11/11/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/15/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/16/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/20/2012 6.86 4.82 5.08 4.47 3.962 3.251 0.692 2.74
12/21/2012 0.76 2.32 3.048 1.016 0.508 0.254 0.042 0.022
12/25/2012 1.78 2.72 3.658 3.048 2.134 1.422 0.149 0.319
12/26/2012 1.02 1.48 3.048 1.829 1.016 0.762 0.068 0.069
12/27/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/29/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/10/2013 1.78 2.98 3.048 2.032 1.524 1.27 0.139 0.212
2/14/2013 0.76 0.68 3.048 1.016 1.016 0.76 0.046 0.046
2/15/2013 1.52 2.32 3.048 2.032 1.524 1.016 0.117 0.178
2/21/2013 3.81 4.5 3.048 2.235 1.727 1.524 0.334 0.577
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Table A8 continued: 

 

 
 

2/25/2013 12.7 7.17 7.62 6.435 5.715 4.89 1.409 8.053
2/26/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/4/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/5/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/9/2013 1.78 2.4 3.048 1.422 1.422 1.016 0.136 0.194
3/10/2013 0.51 1.15 3.048 1.016 0.508 0.254 0.021 0.011
3/12/2013 3.3 4.73 4.572 3.658 2.642 1.778 0.295 0.78
3/23/2013 4.06 2.07 4.267 3.251 3.048 2.642 0.396 1.207
3/24/2013 2.29 7.07 3.048 1.626 1.016 0.762 0.176 0.178
3/25/2013 4.57 6.95 3.658 3.048 2.743 2.286 0.417 1.145
3/30/2013 2.54 1.68 6.096 3.81 3.454 2.286 0.262 0.905
3/31/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/1/2013 1.27 7.78 3.048 2.032 1.524 0.762 0.094 0.143
4/2/2013 3.81 6.85 4.572 3.861 2.54 1.524 0.342 0.868
4/7/2013 1.02 0.78 4.267 2.032 1.524 1.02 0.079 0.12
4/7/2013 1.02 0.3 8.534 3.454 2.04 1.02 0.146 0.299
4/10/2013 7.87 5.55 6.706 4.318 3.81 3.429 0.838 3.193
4/11/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/13/2013 5.84 1.82 12.192 9.483 7.366 4.826 0.781 5.755
4/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/17/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/18/2013 5.59 6.95 3.048 2.438 2.337 2.032 0.499 1.166
4/19/2013 9.4 4.6 6.096 4.674 4.064 3.683 0.984 4.001
4/22/2013 1.27 0.27 7.112 4.877 2.54 1.27 0.137 0.348
4/22/2013 1.52 1.1 3.048 2.032 1.727 1.27 0.125 0.215
4/23/2013 11.68 4.08 9.144 6.858 5.588 4.635 1.345 7.515
4/30/2013 3.81 1.6 7.112 4.877 3.861 2.794 0.402 1.553
5/1/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/1/2013 7.37 7.08 7.315 3.454 2.54 2.032 0.742 1.885
5/2/2013 14.73 6.03 10.668 7.112 6.096 5.144 1.746 10.642
5/8/2013 10.41 9.33 9.144 6.096 4.572 3.556 1.169 5.344
5/9/2013 7.37 6.08 21.336 16.256 9.144 4.572 1.182 10.808
5/10/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/11/2013 0.51 3.57 3.048 1.016 0.508 0.254 0.021 0.011
5/15/2013 0.51 3.17 3.048 1.016 0.508 0.254 0.021 0.011
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Table A8 continued: 

 

 
 

5/18/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/20/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/20/2013 0.76 2.25 3.048 2.032 1.016 0.508 0.047 0.048
5/20/2013 1.52 1.58 3.048 2.032 1.524 1.27 0.118 0.18
5/29/2013 13.97 3 21.336 13.208 10.668 8.763 2.088 22.27 P
6/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
6/28/2013 2.79 0.5 28.042 10.16 5.588 2.79 0.586 3.277
6/30/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/1/2013 0.76 0.27 3.658 2.845 1.52 0.76 0.056 0.085
7/2/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/5/2013 4.32 0.43 24.384 14.224 8.64 4.32 0.785 6.779
7/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/7/2013 1.02 0.2 7.112 4.08 2.04 1.02 0.114 0.232
7/12/2013 2.03 9.23 11.176 5.69 3.048 1.524 0.261 0.796
7/13/2013 3.3 7.05 4.572 3.861 3.048 2.54 0.319 0.974
7/15/2013 8.13 6.17 14.224 8.128 6.096 3.2 1.067 6.503
7/18/2013 13.72 8.8 45.72 26.077 14.732 8.89 2.564 37.767 P
7/20/2013 1.27 0.48 6.096 4.064 2.54 1.27 0.126 0.319
7/25/2013 1.27 0.92 3.048 3.048 2.032 1.27 0.103 0.209
7/25/2013 6.35 4.13 19.812 14.224 9.652 5.842 1.046 10.1
7/26/2013 3.81 0.27 37.948 15.037 7.62 3.81 0.869 6.624
7/27/2013 0.76 0.62 3.658 2.032 1.016 0.76 0.052 0.053
7/28/2013 12.7 10.37 60.96 34.883 18.288 9.144 2.556 46.752 P
7/30/2013 0.51 0.15 3.658 2.04 1.02 0.51 0.03 0.03
8/1/2013 1.02 0.52 6.706 3.048 1.93 1.02 0.104 0.2
8/2/2013 5.08 2.65 25.908 11.176 5.588 3.048 0.891 4.981
8/5/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/11/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/18/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/21/2013 1.52 0.88 5.334 3.048 1.524 1.52 0.15 0.229
8/23/2013 4.32 0.68 18.898 13.818 7.925 4.32 0.77 6.103
8/24/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/24/2013 0.51 0.98 3.048 1.016 0.508 0.51 0.021 0.011
8/25/2013 0.51 0.33 3.048 1.016 1.02 0.51 0.023 0.024
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Table A8 continued: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8/26/2013 2.79 2.85 18.898 10.16 5.08 2.54 0.503 2.553
8/29/2013 0.76 0.22 3.81 3.04 1.52 0.76 0.06 0.091
8/31/2013 1.78 0.28 12.192 6.706 3.56 1.78 0.25 0.889
9/2/2013 0.76 0.13 7.315 3.04 1.52 0.76 0.086 0.131
9/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/9/2013 7.37 15.67 13.716 7.112 4.572 2.286 0.812 3.711
9/10/2013 224.79 63.77 45.72 33.528 29.972 22.162 37.708 1,130.19 P
9/13/2013 0.76 0.73 3.048 1.829 1.016 0.76 0.046 0.047
9/14/2013 39.62 32.8 18.288 14.224 12.7 7.823 5.13 65.151 P
9/16/2013 0.76 2.02 3.048 1.016 0.508 0.508 0.043 0.022
9/18/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/18/2013 0.51 0.1 5.486 2.04 1.02 0.51 0.049 0.05
9/19/2013 0.51 0.17 3.048 2.04 1.02 0.51 0.028 0.029
9/22/2013 0.25 0.08 3.048 1 0.5 0.25 0 0.001



182 
 

Table A9:  Precipitation data from rain gage HMR1 

 

 

Date P (mm) Dur (hr) MI5 (mm hr-1) MI15 (mm hr-1) MI30 (mm hr-1) MI60 (mm hr-1) Energy (MJ ha-1) EI30 (MJ mm ha-1 hr-1)

8/20/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/23/2012 0.51 1.32 3.048 1.016 0.508 0.254 0.021 0.011
9/1/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/2/2012 1.78 0.18 16.764 7.12 3.56 1.78 0.307 1.092
9/11/2012 8.13 15.08 5.486 3.251 2.946 2.438 0.785 2.313
9/12/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/24/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/25/2012 15.24 13.83 13.716 9.652 8.255 6.198 1.858 15.339
9/26/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/27/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/27/2012 6.86 1.95 7.112 5.588 4.699 3.759 0.813 3.82
10/1/2012 0.76 4.85 3.048 1.016 0.508 0.254 0.042 0.021
10/5/2012 0.76 0.45 3.048 1.829 1.52 0.76 0.048 0.073
10/6/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/6/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/12/2012 3.81 9.77 4.572 3.454 2.845 2.032 0.357 1.015
10/13/2012 0.51 0.3 3.048 1.422 1.02 0.51 0.024 0.024
10/13/2012 1.02 0.6 3.048 2.032 1.524 1.02 0.074 0.112
10/16/2012 0.76 1.7 3.048 1.829 1.016 0.508 0.045 0.046
10/24/2012 2.54 2.7 3.048 2.032 1.524 1.118 0.21 0.32
10/25/2012 0.51 1.5 3.048 1.016 0.508 0.254 0.021 0.011
10/26/2012 2.54 3.73 4.877 2.642 1.524 1.27 0.217 0.33
10/27/2012 7.37 6.28 4.267 3.048 2.845 2.54 0.697 1.981
10/28/2012 2.29 2.4 3.048 1.829 1.524 1.168 0.185 0.281
11/3/2012 1.78 0.23 15.85 7.12 3.56 1.78 0.331 1.177
11/10/2012 1.27 2.88 3.048 2.032 1.524 0.762 0.094 0.143
11/11/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/15/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/16/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/20/2012 6.86 4.82 5.08 4.47 3.962 3.251 0.692 2.74
12/21/2012 0.76 2.32 3.048 1.016 0.508 0.254 0.042 0.022
12/25/2012 1.78 2.72 3.658 3.048 2.134 1.422 0.149 0.319
12/26/2012 1.02 1.48 3.048 1.829 1.016 0.762 0.068 0.069
12/27/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
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Table A9 continued: 

 

 
 

12/29/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/10/2013 1.78 2.98 3.048 2.032 1.524 1.27 0.139 0.212
2/14/2013 0.76 0.68 3.048 1.016 1.016 0.76 0.046 0.046
2/15/2013 1.52 2.32 3.048 2.032 1.524 1.016 0.117 0.178
2/21/2013 3.81 4.5 3.048 2.235 1.727 1.524 0.334 0.577
2/25/2013 12.7 7.17 7.62 6.435 5.715 4.89 1.409 8.053
2/26/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/4/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/5/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/9/2013 1.78 2.4 3.048 1.422 1.422 1.016 0.136 0.194
3/10/2013 0.51 1.15 3.048 1.016 0.508 0.254 0.021 0.011
3/12/2013 3.3 4.73 4.572 3.658 2.642 1.778 0.295 0.78
3/23/2013 4.06 2.07 4.267 3.251 3.048 2.642 0.396 1.207
3/24/2013 2.29 7.07 3.048 1.626 1.016 0.762 0.176 0.178
3/25/2013 4.57 6.95 3.658 3.048 2.743 2.286 0.417 1.145
3/30/2013 2.54 1.68 6.096 3.81 3.454 2.286 0.262 0.905
3/31/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/1/2013 1.27 7.78 3.048 2.032 1.524 0.762 0.094 0.143
4/2/2013 3.81 6.85 4.572 3.861 2.54 1.524 0.342 0.868
4/7/2013 1.02 0.78 4.267 2.032 1.524 1.02 0.079 0.12
4/7/2013 1.52 1.47 10.363 4.064 2.032 1.016 0.23 0.467
4/10/2013 8.64 2.55 8.382 6.096 5.249 4.741 1.041 5.466
4/13/2013 7.11 1.73 12.192 10.668 8.805 6.096 1.029 9.061
4/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/18/2013 5.08 6.35 3.048 2.032 1.524 1.524 0.437 0.666
4/19/2013 10.92 4.82 6.096 6.096 5.757 4.928 1.213 6.986
4/22/2013 2.79 9.8 6.096 4.064 2.032 1.27 0.269 0.547
4/23/2013 12.7 2.3 15.24 11.176 9.313 8.128 1.799 16.758
4/30/2013 5.08 3.62 9.144 6.096 4.877 3.556 0.581 2.834
5/1/2013 8.89 6.5 3.048 2.032 2.032 1.93 0.829 1.684
5/2/2013 21.84 8.55 5.08 5.08 4.911 4.509 2.461 12.084
5/3/2013 0.51 0.83 3.048 1.016 0.508 0.51 0.022 0.011
5/8/2013 11.18 9.32 9.144 7.112 5.08 4.115 1.24 6.301
5/9/2013 9.65 6.1 30.48 21.336 12.598 6.858 1.637 20.623
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Table A9 continued: 

 

 
 

5/11/2013 1.02 3.73 3.048 1.219 1.016 0.508 0.065 0.067
5/15/2013 0.76 3.2 3.048 1.016 0.711 0.508 0.043 0.031
5/18/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/20/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/20/2013 2.29 1.93 3.048 2.642 2.032 2.032 0.202 0.41
5/29/2013 14.99 3.32 30.48 17.272 11.938 10.075 2.353 28.09
6/14/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
6/14/2013 2.54 0.08 30.48 10.16 5.08 2.54 0.663 3.368
6/15/2013 0.51 0.17 3.048 2.04 1.02 0.51 0.028 0.029
6/16/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
6/17/2013 5.33 0.1 63.398 21.32 10.66 5.33 1.448 15.44
6/27/2013 1.27 0.1 14.63 5.08 2.54 1.27 0.27 0.686
6/28/2013 2.03 0.73 19.507 7.112 3.556 2.03 0.389 1.385
7/1/2013 1.27 3.12 4.267 3.048 2.032 1.016 0.108 0.219
7/5/2013 4.83 0.58 27.432 14.478 9.144 4.83 0.894 8.177
7/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/7/2013 1.27 0.92 9.144 4.064 2.032 1.27 0.145 0.295
7/12/2013 2.03 3.42 15.24 6.096 3.048 1.524 0.3 0.914
7/13/2013 4.83 7.55 6.096 5.08 3.962 2.946 0.511 2.025
7/14/2013 7.37 9.9 9.144 6.502 4.064 3.048 0.852 3.463
7/18/2013 18.03 8.38 60.96 39.624 23.876 13.868 3.611 86.208
7/19/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/19/2013 0.51 5.47 3.048 1.016 0.508 0.254 0.021 0.011
7/20/2013 1.78 0.62 7.112 5.486 3.048 1.78 0.197 0.601
7/25/2013 1.27 0.68 3.048 3.048 2.032 1.27 0.107 0.217
7/25/2013 7.87 2.27 28.956 18.796 12.7 7.366 1.434 18.206
7/26/2013 3.56 2.83 30.48 13.208 6.604 3.302 0.72 4.755
7/27/2013 1.27 0.8 5.08 3.861 2.032 1.27 0.115 0.234
7/28/2013 14.99 10.27 76.2 43.688 22.352 11.176 3.203 71.596
7/29/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/30/2013 0.76 1.25 4.877 2.032 1.016 0.508 0.059 0.06
8/1/2013 1.78 0.48 12.802 5.283 3.56 1.78 0.258 0.918
8/2/2013 4.32 6.18 13.716 9.754 5.08 2.54 0.595 3.02
8/5/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
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Table A9 continued: 

 

 
 

 

 

8/11/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/18/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/21/2013 2.29 0.9 7.315 4.064 3.048 2.29 0.264 0.804
8/22/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/23/2013 4.83 0.58 27.432 17.475 9.144 4.83 0.984 8.997
8/24/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/24/2013 0.51 0.38 3.048 1.016 1.02 0.51 0.023 0.023
8/25/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/26/2013 3.3 3.03 18.288 11.989 6.096 3.048 0.599 3.649
8/27/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/29/2013 0.76 0.23 3.658 3.04 1.52 0.76 0.058 0.088
8/30/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/31/2013 1.78 0.32 10.668 6.299 3.56 1.78 0.233 0.831
9/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/9/2013 7.62 15.77 12.192 6.096 4.064 2.286 0.797 3.238
9/10/2013 229.36 63.27 48.768 33.528 26.67 21.717 38.353 1,022.86
9/13/2013 1.52 1.27 4.877 2.235 1.524 1.27 0.143 0.218
9/14/2013 43.69 38.6 24.384 18.627 14.732 9.398 5.864 86.393
9/18/2013 0.76 1.48 6.096 2.032 1.016 0.508 0.095 0.096
9/19/2013 0.76 1.2 3.658 2.032 1.016 0.508 0.051 0.052
9/22/2013 1.52 2.93 6.096 4.064 2.032 1.27 0.143 0.291
9/23/2013 7.11 3.3 6.096 5.419 4.674 4.013 0.778 3.636
9/27/2013 5.08 7.38 9.144 7.789 5.893 3.81 0.593 3.494
10/3/2013 11.68 9.53 5.08 4.741 3.556 2.794 1.157 4.115
10/4/2013 4.57 5.88 6.096 5.283 4.572 3.708 0.499 2.282
10/10/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/10/2013 1.27 2.6 4.267 2.032 1.524 0.762 0.103 0.156
10/17/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/18/2013 13.21 5.45 18.898 12.395 8.992 6.096 1.863 16.751
10/19/2013 1.02 2.17 3.048 1.016 0.508 0.508 0.065 0.033
10/20/2013 3.3 1.75 6.096 4.826 3.556 2.54 0.334 1.186
10/21/2013 0.51 0.1 5.486 2.04 1.02 0.51 0.001 0.001
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Table A10:  Precipitation data from rain gage HUR1 

 

 

Date P (mm) Dur (hr) MI5 (mm hr-1) MI15 (mm hr-1) MI30 (mm hr-1) MI60 (mm hr-1) Energy (MJ ha-1) EI30 (MJ mm ha-1 hr-1) Produced sediment

8/9/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/11/2012 0.51 1.15 3.048 1.016 0.508 0.254 0.021 0.011
8/16/2012 1.52 1.97 9.144 4.064 2.032 1.27 0.174 0.353
8/20/2012 2.29 0.47 12.192 7.112 4.58 2.29 0.32 1.465
8/23/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/23/2012 0.51 0.3 3.048 1.422 1.02 0.51 0.024 0.024
8/29/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/2/2012 4.06 0.27 39.624 16.053 8.12 4.06 0.911 7.396 P
9/3/2012 0.51 0.13 4.267 2.04 1.02 0.51 0.033 0.033
9/7/2012 0.51 2.07 3.048 1.016 0.508 0.254 0.021 0.011
9/11/2012 8.13 12.15 4.572 3.251 2.667 2.54 0.786 2.095
9/12/2012 0.76 3.23 3.048 1.016 0.508 0.254 0.042 0.021
9/24/2012 0.51 1.62 3.048 1.016 0.508 0.254 0.021 0.011
9/25/2012 13.21 13.25 9.144 6.35 4.267 3.302 1.549 6.611
9/26/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/27/2012 1.02 0.52 3.048 2.032 1.93 1.02 0.076 0.147
9/27/2012 3.56 6.83 5.08 4.267 3.556 2.438 0.34 1.21
10/1/2012 1.02 2.48 3.048 1.626 1.016 0.762 0.067 0.068
10/5/2012 1.02 0.5 3.048 2.845 2.032 1.02 0.079 0.16
10/7/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/12/2012 3.3 12.95 6.096 3.251 2.032 1.27 0.324 0.658
10/13/2012 0.76 0.88 3.048 1.626 1.016 0.76 0.046 0.046
10/13/2012 0.76 0.5 3.048 2.032 1.524 0.76 0.048 0.074
10/16/2012 0.51 1.62 3.048 1.016 0.508 0.254 0.021 0.011
10/24/2012 0.51 0.37 3.048 1.016 1.02 0.51 0.023 0.023
10/26/2012 3.3 5.12 5.486 3.048 2.235 1.778 0.33 0.737
10/27/2012 1.78 4.87 3.048 1.016 1.016 0.559 0.13 0.132
10/28/2012 5.84 9.65 3.048 2.032 1.727 1.524 0.52 0.898
11/13/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/15/2012 0.51 0.93 3.048 1.016 0.508 0.51 0.021 0.011
11/16/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/20/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/21/2012 0.76 2.47 3.048 1.016 0.508 0.508 0.043 0.022
12/23/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
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Table A10 continued: 

 

 
 

12/29/2012 0.51 1.37 3.048 1.016 0.508 0.254 0.021 0.011
1/16/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/28/2013 0.51 0.53 3.048 1.016 0.813 0.51 0.022 0.018
2/11/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/12/2013 0.51 1.98 3.048 1.016 0.508 0.254 0.021 0.011
2/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/16/2013 1.02 3.93 3.048 1.016 0.508 0.254 0.063 0.032
2/17/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/21/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/22/2013 1.27 3.07 3.048 1.016 1.016 0.508 0.087 0.088
2/23/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/25/2013 5.08 5.08 6.096 3.048 2.337 2.032 0.509 1.189
2/27/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/1/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/5/2013 0.51 0.47 3.048 1.016 1.02 0.51 0.022 0.023
3/10/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/12/2013 3.81 1.75 8.128 5.283 4.064 3.048 0.41 1.666
3/25/2013 4.32 5.07 3.658 3.251 3.048 2.591 0.406 1.236
3/26/2013 3.3 2.83 3.048 2.642 2.032 1.778 0.294 0.597
3/30/2013 0.51 0.82 3.048 1.016 0.508 0.51 0.022 0.011
3/31/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/1/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/2/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/2/2013 3.3 3.75 8.534 4.064 3.251 2.286 0.364 1.184
4/3/2013 2.54 1.48 4.267 3.048 2.54 2.032 0.237 0.602
4/7/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/10/2013 4.57 5.5 4.267 3.658 3.251 2.54 0.43 1.399
4/11/2013 1.27 4.93 3.048 1.016 0.508 0.508 0.085 0.043
4/12/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/13/2013 0.76 0.32 3.048 2.235 1.52 0.76 0.053 0.081
4/14/2013 1.27 1.42 3.048 2.032 1.524 0.914 0.093 0.141
4/19/2013 11.94 8.6 5.334 4.572 3.962 3.505 1.263 5.006
4/20/2013 1.27 2.07 3.048 1.016 1.016 0.762 0.088 0.09
4/22/2013 0.76 3.68 3.048 1.829 1.016 0.508 0.045 0.046
4/23/2013 9.91 6.52 7.62 5.842 4.953 4.115 1.07 5.302
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Table A10 continued: 

 

 
 

4/24/2013 4.06 5.5 5.334 3.658 2.54 2.083 0.38 0.965
4/30/2013 3.3 1.43 5.08 4.267 3.251 2.591 0.332 1.079
5/1/2013 5.08 5 4.267 3.251 2.642 2.032 0.463 1.223
5/2/2013 8.89 3.77 7.112 5.486 4.445 4.115 0.983 4.369
5/8/2013 12.19 8.9 9.144 6.35 4.699 4.216 1.409 6.62
5/9/2013 6.35 8.15 10.668 8.467 5.893 3.048 0.771 4.543
5/10/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/11/2013 1.02 2.3 4.877 2.032 1.016 0.508 0.08 0.082
5/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/18/2013 0.76 3.43 3.048 1.829 1.016 0.508 0.045 0.046
5/20/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/20/2013 1.52 0.95 3.048 2.032 1.524 1.52 0.123 0.187
5/29/2013 11.68 3.73 15.24 10.16 9.313 7.366 1.615 15.038
6/5/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
6/7/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
6/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
6/16/2013 1.27 0.53 5.486 3.048 2.337 1.27 0.124 0.29
7/1/2013 1.52 1.72 5.334 4.064 2.54 1.27 0.144 0.367
7/5/2013 10.16 1.12 45.72 28.651 19.812 9.906 2.24 44.378
7/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/7/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/12/2013 3.05 3.62 18.288 9.144 4.572 2.286 0.468 2.14
7/13/2013 8.89 5.92 22.86 11.176 7.112 3.81 1.35 9.604
7/14/2013 8.13 10.17 10.668 9.144 5.588 3.048 1.001 5.593
7/18/2013 34.54 8.93 76.2 38.608 31.496 26.213 8.034 253.03 P
7/19/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/19/2013 0.51 2.17 3.048 1.016 0.508 0.254 0.021 0.011
7/20/2013 2.54 0.52 10.668 7.112 4.978 2.54 0.328 1.634
7/25/2013 0.76 2.98 3.048 1.016 1.016 0.508 0.044 0.045
7/25/2013 2.29 1.55 12.192 6.502 3.962 2.032 0.29 1.148
7/27/2013 1.02 4.68 3.048 2.032 1.016 0.508 0.067 0.068
7/28/2013 13.72 9.43 76.2 41.046 20.828 10.414 2.978 62.036
7/30/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/2/2013 4.06 6.58 10.16 6.096 3.556 2.286 0.456 1.622
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Table A10 continued: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

8/4/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/11/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/11/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/13/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/21/2013 2.54 6.98 9.144 5.08 3.556 2.032 0.28 0.997
8/22/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/23/2013 0.51 0.33 3.048 1.016 1.02 0.51 0.023 0.024
8/23/2013 11.43 0.63 76.2 41.453 22.047 11.43 2.792 61.562
8/24/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/25/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/26/2013 3.81 3.98 25.603 9.144 4.572 2.286 0.683 3.122
8/27/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/29/2013 2.29 0.32 10.668 8.331 4.58 2.29 0.329 1.507
8/30/2013 0.51 0.78 3.048 1.016 0.508 0.51 0.022 0.011
8/31/2013 2.29 0.22 18.288 9.16 4.58 2.29 0.405 1.853
9/6/2013 3.3 0.48 17.78 8.805 6.6 3.3 0.54 3.566
9/9/2013 252.99 89.18 45.72 33.528 26.924 23.622 42.415 1,141.98 P
9/13/2013 1.02 1.13 3.658 2.032 1.016 0.762 0.074 0.075
9/14/2013 41.66 45.93 10.668 9.652 8.128 6.858 4.875 39.623
9/18/2013 0.76 0.83 5.486 2.032 1.016 0.76 0.07 0.072
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Table A11:  Precipitation data from rain gage SLR1 

 

 
 

Date P (mm) Dur (hr) MI5 (mm hr-1) MI15 (mm hr-1) MI30 (mm hr-1) MI60 (mm hr-1) Energy (MJ ha-1) EI30 (MJ mm ha-1 hr-1) Produced sediment

8/5/2012 0.51 0.16 3.048 2.04 1.02 0.51 0.029 0.029
8/6/2012 1.52 1.16 6.096 4.47 2.54 1.27 0.153 0.388
8/7/2012 1.27 1.8 6.706 3.048 1.524 0.762 0.125 0.191
8/10/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/15/2012 0.76 0.08 9.144 3.04 1.52 0.76 0.147 0.224
8/16/2012 0.51 0.14 3.658 2.04 1.02 0.51 0.031 0.032
8/20/2012 4.57 1.86 42.672 17.272 8.636 4.318 1.097 9.475 P 
8/23/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/27/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/28/2012 1.27 0.23 9.754 5.08 2.54 1.27 0.161 0.409
8/30/2012 4.32 1.09 24.384 15.24 8.128 4.064 0.804 6.536 P
9/7/2012 1.52 1.83 4.877 3.251 2.032 1.016 0.136 0.276
9/11/2012 8.13 19.29 16.459 6.096 3.048 2.235 0.943 2.874
9/13/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/23/2012 0.51 0.08 6.096 2.04 1.02 0.51 0.074 0.075
9/25/2012 12.45 16.02 6.096 4.741 4.267 3.404 1.32 5.633 P
9/27/2012 1.52 0.79 5.08 3.454 2.337 1.52 0.137 0.32
9/27/2012 5.33 2.54 12.192 9.55 5.08 3.302 0.67 3.406 P
9/28/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/1/2012 1.02 2.57 3.048 1.016 1.016 0.508 0.065 0.067
10/5/2012 1.52 0.73 3.81 3.454 2.54 1.52 0.134 0.341
10/6/2012 0.76 2.57 3.048 1.016 1.016 0.508 0.044 0.045
10/12/2012 2.79 10.21 3.048 2.845 1.524 1.016 0.238 0.363
10/13/2012 0.76 0.39 3.048 2.032 1.52 0.76 0.05 0.076
10/13/2012 1.27 1.21 3.048 2.032 1.524 1.016 0.095 0.144
10/16/2012 1.27 1.8 3.048 2.032 1.016 0.762 0.092 0.093
10/24/2012 3.3 2.78 3.048 2.032 1.93 1.422 0.289 0.558
10/25/2012 0.76 4.8 3.048 1.016 0.508 0.254 0.042 0.021
10/26/2012 2.79 5.2 3.048 1.626 1.524 1.016 0.226 0.344
10/27/2012 6.35 5.64 7.925 4.064 3.048 2.286 0.643 1.96
10/28/2012 4.83 4.96 6.096 3.048 1.727 1.524 0.47 0.812
10/29/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/1/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/2/2012 0.76 0.2 4.877 3.04 1.52 0.76 0.065 0.099
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Table A11 continued: 

 

 
 

11/16/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/20/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/21/2012 1.52 3.21 3.048 1.016 1.016 0.762 0.11 0.112
12/22/2012 0.76 2.44 3.048 1.016 0.508 0.508 0.042 0.022
12/23/2012 0.51 1.91 3.048 1.016 0.508 0.254 0.021 0.011
12/24/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/25/2012 0.51 0.32 3.048 1.219 1.02 0.51 0.023 0.024
12/26/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/29/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/4/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/8/2013 0.51 4.4 3.048 1.016 0.508 0.254 0.021 0.011
1/10/2013 0.51 1.53 3.048 1.016 0.508 0.254 0.021 0.011
1/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/28/2013 1.02 3.16 3.658 2.032 1.016 0.508 0.072 0.073
2/9/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/11/2013 0.51 0.79 3.048 1.016 0.508 0.51 0.022 0.011
2/12/2013 0.51 2.32 3.048 1.016 0.508 0.254 0.021 0.011
2/14/2013 0.51 0.68 3.048 1.016 0.508 0.51 0.022 0.011
2/15/2013 3.05 3.23 3.81 3.048 2.54 1.778 0.274 0.697
2/16/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/21/2013 3.05 4.15 3.048 2.642 2.134 1.778 0.263 0.561
2/22/2013 0.76 1.69 3.048 1.016 0.508 0.508 0.043 0.022
2/25/2013 8.13 4.35 7.315 4.877 3.759 3.607 0.89 3.345
2/26/2013 1.27 2.9 3.048 1.219 1.016 0.762 0.088 0.09
2/27/2013 1.02 1.21 3.048 1.016 1.016 0.762 0.067 0.068
2/28/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/4/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/5/2013 0.51 0.39 3.048 1.016 1.02 0.51 0.023 0.023
3/9/2013 1.02 1.2 3.048 1.219 1.016 0.762 0.068 0.069
3/10/2013 2.03 2.33 3.048 2.032 1.524 1.473 0.166 0.254
3/12/2013 3.05 2.9 6.096 4.826 4.166 2.794 0.322 1.343
3/24/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/25/2013 3.81 6.14 3.048 2.438 2.032 1.727 0.326 0.662
3/26/2013 7.11 3.45 5.334 4.741 3.962 3.658 0.771 3.056
3/30/2013 1.27 0.45 6.096 3.861 2.54 1.27 0.122 0.311
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Table A11 continued: 

 

 
 

3/31/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/1/2013 3.81 4.72 6.096 4.267 4.064 3.099 0.403 1.638
4/2/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/2/2013 2.29 3.29 3.048 2.032 1.524 1.016 0.183 0.279
4/3/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/5/2013 0.51 5.51 3.048 1.016 0.508 0.254 0.021 0.011
4/7/2013 0.76 1.34 4.267 2.032 1.016 0.508 0.054 0.055
4/10/2013 7.62 6.48 6.096 5.08 4.47 3.556 0.763 3.412
4/11/2013 3.81 5.04 3.048 1.626 1.219 1.118 0.317 0.387
4/13/2013 8.13 2 12.192 10.16 8.636 6.553 1.086 9.38
4/16/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/18/2013 8.13 6.34 4.877 3.454 3.048 2.692 0.805 2.454
4/19/2013 8.38 3.53 6.096 5.334 4.775 4.064 0.91 4.343
4/22/2013 1.52 7.99 3.048 2.032 1.524 0.762 0.117 0.178
4/23/2013 12.7 6.96 12.192 8.467 6.773 5.842 1.528 10.349
4/30/2013 4.83 7.58 6.858 5.588 4.674 3.048 0.563 2.633
5/1/2013 6.6 6.81 3.048 2.032 1.727 1.524 0.586 1.012
5/2/2013 19.81 8.29 6.096 4.826 4.318 3.962 2.244 9.689
5/3/2013 2.79 1.87 3.048 2.642 2.54 2.032 0.253 0.641
5/7/2013 0.51 1.98 3.048 1.016 0.508 0.254 0.021 0.011
5/8/2013 10.16 9.84 10.668 8.382 6.223 4.064 1.153 7.173
5/9/2013 2.79 11.09 4.877 3.454 2.54 1.27 0.265 0.673
5/11/2013 0.51 0.13 4.267 2.04 1.02 0.51 0.032 0.033
5/18/2013 1.27 1.27 3.658 2.845 2.032 1.016 0.101 0.204
5/20/2013 0.76 1.18 3.048 1.422 1.016 0.508 0.045 0.046
5/20/2013 1.27 4.43 3.048 2.032 1.524 0.762 0.101 0.153
5/22/2013 1.02 0.09 12.192 4.08 2.04 1.02 0.219 0.447
5/30/2013 1.78 0.09 21.336 7.12 3.56 1.78 0.442 1.573
5/31/2013 1.78 1.11 12.192 4.064 2.032 1.016 0.389 0.791
6/4/2013 3.56 0.67 34.138 13.208 6.604 3.56 0.807 5.332
6/23/2013 0.76 0.42 4.877 2.032 1.52 0.76 0.059 0.09
6/28/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/1/2013 1.78 0.96 14.021 5.08 2.54 1.78 0.295 0.75
7/1/2013 2.29 1.42 8.128 5.588 4.064 2.032 0.26 1.055
7/5/2013 0.51 0.1 5.486 2.04 1.02 0.51 0.045 0.046



193 
 

Table A11 continued: 

 

 
 

7/5/2013 8.38 0.47 36.576 30.48 16.76 8.38 1.938 32.476 P
7/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/6/2013 0.76 0.12 7.925 3.04 1.52 0.76 0.108 0.165
7/7/2013 0.51 0.28 3.048 1.626 1.02 0.51 0.024 0.024
7/12/2013 23.88 2.12 85.344 62.992 40.64 23.368 6.097 247.763 P
7/13/2013 6.86 14.9 15.24 10.922 7.366 5.842 0.951 7.002
7/14/2013 29.72 9.15 91.44 76.2 52.222 26.162 7.545 394.04 P
7/18/2013 5.59 10.25 33.528 15.24 8.128 4.064 0.994 8.082
7/19/2013 0.51 5.98 3.048 1.016 0.508 0.254 0.021 0.011
7/20/2013 3.56 0.61 10.668 7.925 6.502 3.56 0.483 3.141
7/25/2013 0.76 1.72 3.048 1.016 0.508 0.508 0.043 0.022
7/25/2013 0.76 2.98 3.048 2.032 1.016 0.508 0.046 0.046
7/26/2013 0.51 0.11 4.877 2.04 1.02 0.51 0.041 0.041
7/27/2013 0.76 0.32 3.048 2.235 1.52 0.76 0.053 0.08
7/28/2013 12.19 10.72 77.724 30.48 15.748 7.874 2.466 38.834 P
7/30/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/1/2013 0.51 0.13 4.267 2.04 1.02 0.51 0.033 0.033
8/2/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/2/2013 5.08 4.95 22.86 10.16 5.08 3.048 0.911 4.626
8/5/2013 0.76 5.83 3.048 1.016 1.016 0.508 0.043 0.044
8/11/2013 2.03 12.6 3.658 2.032 1.524 1.016 0.166 0.253
8/13/2013 16.76 0.56 109.728 59.944 33.122 16.76 4.383 145.162 P
8/14/2013 1.52 1.74 7.315 3.048 1.524 0.762 0.208 0.317
8/18/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/19/2013 0.76 0.16 6.706 3.04 1.52 0.76 0.074 0.112
8/21/2013 1.78 0.48 13.411 5.08 3.56 1.78 0.28 0.996
8/22/2013 0.76 6.76 3.048 1.016 0.508 0.508 0.042 0.022
8/23/2013 3.56 7.43 21.336 8.128 6.096 3.048 0.575 3.507
8/23/2013 16.26 2.33 51.816 41.656 25.705 14.732 3.579 92.01
8/25/2013 0.51 0.65 3.048 1.016 0.508 0.51 0.022 0.011
8/26/2013 2.03 7.88 9.754 4.064 2.032 1.016 0.218 0.443
8/27/2013 2.54 1.36 12.192 7.112 4.166 2.286 0.322 1.343
8/29/2013 2.29 6.39 7.112 4.064 2.032 1.27 0.252 0.513
8/30/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/5/2013 0.51 5.15 3.048 1.016 0.508 0.254 0.021 0.011
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Table A11 continued: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

9/6/2013 17.78 1.2 48.768 32.004 23.622 17.018 3.888 91.831 P
9/8/2013 1.02 0.91 3.048 2.032 1.524 1.02 0.073 0.111
9/9/2013 10.92 22.61 24.384 12.531 7.112 3.556 1.365 9.709
9/10/2013 217.17 60.12 42.672 32.512 27.94 18.542 35.841 1,001.40 P
9/13/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/14/2013 33.02 37.24 18.288 14.224 12.827 6.858 4.05 51.946 P
9/16/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/17/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/18/2013 1.27 7.76 3.048 2.032 1.016 0.762 0.088 0.09
9/19/2013 1.27 1.19 10.363 4.064 2.032 1.016 0.188 0.383
9/22/2013 3.3 3.24 5.486 3.861 3.048 1.778 0.339 1.032
9/23/2013 5.08 3.69 5.08 5.08 4.267 3.454 0.529 2.257
9/27/2013 4.32 5.04 9.144 7.366 5.893 3.302 0.508 2.995
10/3/2013 13.97 18.72 8.128 6.435 5.385 3.81 1.449 7.805
10/5/2013 0.76 0.17 6.096 3.04 1.52 0.76 0.069 0.106
10/5/2013 0.76 0.17 6.096 3.04 1.52 0.76 0.069 0.106
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Table A12:  Precipitation data from rain gage SLR2 

 

 

Date P (mm) Dur (hr) MI5 (mm hr-1) MI15 (mm hr-1) MI30 (mm hr-1) MI60 (mm hr-1) Energy (MJ ha-1) EI30 (MJ mm ha-1 hr-1)

9/3/2012 0.51 2.94 3.048 1.016 0.508 0.254 0.021 0.011
9/7/2012 1.02 1.64 3.048 2.032 1.016 0.508 0.07 0.071
9/11/2012 6.86 19.33 3.658 3.048 2.438 2.184 0.636 1.552
9/13/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/25/2012 11.94 17.03 6.096 5.08 4.267 3.217 1.245 5.312
9/27/2012 1.78 0.79 6.096 4.267 2.946 1.78 0.173 0.51
9/27/2012 3.56 2.46 5.334 3.048 2.235 1.727 0.34 0.76
10/1/2012 0.76 1.8 3.048 1.829 1.016 0.508 0.045 0.046
10/5/2012 1.52 1.03 5.334 3.454 2.134 1.422 0.138 0.295
10/6/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/12/2012 2.03 10.24 3.048 2.032 1.016 0.762 0.156 0.158
10/13/2012 0.76 0.47 3.048 2.032 1.52 0.76 0.049 0.074
10/13/2012 1.02 0.58 3.048 2.032 1.524 1.02 0.074 0.112
10/16/2012 1.02 1.76 3.048 1.829 1.016 0.508 0.067 0.068
10/24/2012 3.05 2.72 3.048 2.032 1.524 1.27 0.259 0.395
10/25/2012 3.81 5.02 6.096 2.032 2.032 1.524 0.514 1.044
10/26/2012 1.02 2.01 6.096 2.032 1.016 0.762 0.116 0.118
10/27/2012 3.3 7.52 6.706 3.251 2.337 1.524 0.309 0.721
10/28/2012 5.59 4.43 3.048 2.032 2.032 1.778 0.506 1.028
11/2/2012 0.51 0.12 4.877 2.04 1.02 0.51 0.037 0.038
11/15/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/20/2012 1.02 1.61 3.048 1.016 0.914 0.762 0.066 0.06
12/25/2012 1.02 0.95 3.048 1.422 1.219 1.02 0.069 0.084
12/26/2012 1.78 2.92 6.096 2.032 1.93 1.016 0.219 0.422
12/30/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/28/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/9/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/11/2013 1.02 3.06 3.048 1.016 1.016 0.508 0.065 0.066
2/12/2013 0.51 1.1 3.048 1.016 0.508 0.254 0.021 0.011
2/14/2013 1.02 1.6 3.048 1.016 1.016 0.762 0.067 0.068
2/15/2013 1.02 2.61 3.048 1.016 1.016 0.762 0.066 0.067
2/21/2013 4.06 5.45 4.267 3.251 2.54 1.778 0.361 0.917
2/22/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/24/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
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Table A12 continued: 

 

 

2/25/2013 7.37 5.36 10.668 7.789 6.096 4.115 0.867 5.285
2/26/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/10/2013 2.54 3.6 3.048 1.016 1.016 1.016 0.202 0.205
3/11/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/12/2013 3.56 1.55 7.112 5.334 4.267 2.997 0.384 1.637
3/13/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/17/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/25/2013 7.87 5.97 7.112 5.334 4.369 3.353 0.804 3.512
3/26/2013 4.57 3.05 3.658 3.048 2.337 2.032 0.43 1.004
3/30/2013 1.02 1.91 3.048 2.032 1.016 0.762 0.068 0.069
4/1/2013 2.03 0.96 3.658 3.251 2.743 2.03 0.187 0.512
4/2/2013 2.03 9.47 3.658 3.048 2.032 1.016 0.171 0.348
4/3/2013 0.76 1.04 3.048 1.016 1.016 0.66 0.044 0.045
4/5/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/7/2013 0.51 0.17 3.048 2.04 1.02 0.51 0.028 0.028
4/10/2013 8.13 6.36 6.096 5.419 5.08 4.064 0.846 4.3
4/11/2013 4.06 7.69 3.048 2.032 1.321 1.016 0.335 0.442
4/12/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/13/2013 4.32 1.3 9.144 7.62 5.994 3.658 0.527 3.162
4/14/2013 1.02 6.7 3.048 1.016 1.016 0.508 0.065 0.066
4/16/2013 0.76 1.52 3.048 1.016 0.508 0.508 0.043 0.022
4/17/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/18/2013 1.27 4.75 3.048 1.016 1.016 0.508 0.086 0.087
4/19/2013 10.67 4.45 6.858 5.419 5.08 4.382 1.177 5.98
4/22/2013 1.52 4.11 3.048 2.032 1.626 1.016 0.117 0.19
4/23/2013 13.21 5.7 14.326 10.363 7.518 4.724 1.646 12.378
4/24/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/30/2013 3.81 1.46 6.096 5.419 4.445 2.997 0.41 1.823
5/1/2013 9.4 5.97 8.738 6.299 5.055 4.013 1.018 5.144
5/2/2013 19.05 6.94 7.62 6.435 5.927 5.144 2.252 13.345
5/7/2013 0.51 2.07 3.048 1.016 0.508 0.254 0.021 0.011
5/8/2013 9.91 9.4 10.16 8.128 6.35 4.064 1.136 7.216
5/9/2013 2.79 11.11 5.486 3.048 2.032 1.016 0.259 0.525
5/11/2013 0.51 0.14 3.658 2.04 1.02 0.51 0.031 0.032
5/18/2013 1.02 0.65 3.048 2.032 1.524 1.02 0.074 0.113



197 
 

Table A12 continued: 

 

 

5/20/2013 0.76 0.74 3.048 1.016 1.016 0.76 0.045 0.046
5/20/2013 1.78 4.83 7.925 3.251 2.032 1.016 0.185 0.376
5/29/2013 11.68 2.6 16.764 12.7 10.668 9.144 1.766 18.843
6/23/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/1/2013 0.51 0.3 3.048 1.422 1.02 0.51 0.024 0.024
7/1/2013 2.03 0.74 7.112 5.08 3.556 2.03 0.224 0.796
7/5/2013 7.62 0.36 42.672 28.448 15.24 7.62 1.783 27.177
7/6/2013 0.51 0.4 3.048 1.016 1.02 0.51 0.023 0.023
7/7/2013 0.51 5.66 3.048 1.016 0.508 0.254 0.021 0.011
7/12/2013 21.59 3.83 79.248 53.848 37.338 21.082 5.376 200.743
7/13/2013 6.86 8.87 16.764 10.77 7.451 5.842 0.935 6.967
7/14/2013 27.43 10.11 70.104 65.024 46.431 23.368 6.775 314.58
7/18/2013 3.3 12.23 18.288 7.112 3.556 1.778 0.458 1.629
7/20/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/20/2013 3.56 0.52 12.192 9.144 7.01 3.56 0.503 3.53
7/25/2013 0.51 1.21 3.048 1.016 0.508 0.254 0.021 0.011
7/25/2013 0.76 3.06 3.048 2.032 1.016 0.508 0.047 0.047
7/26/2013 0.51 0.11 5.486 2.04 1.02 0.51 0.044 0.045
7/27/2013 1.27 0.76 3.658 3.251 2.032 1.27 0.11 0.224
7/28/2013 12.7 11.12 73.152 32.106 16.256 8.128 2.558 41.583
8/1/2013 1.27 1.7 8.128 4.064 2.032 1.016 0.143 0.291
8/2/2013 4.32 2.74 24.384 10.16 5.08 2.794 0.764 3.882
8/5/2013 0.51 0.5 3.048 1.016 1.02 0.51 0.022 0.023
8/11/2013 0.76 0.35 4.267 2.032 1.52 0.76 0.058 0.088
8/11/2013 1.02 3.4 3.048 2.032 1.524 0.762 0.069 0.106
8/13/2013 11.18 0.45 64.008 38.608 22.36 11.18 2.741 61.282
8/14/2013 0.76 0.21 5.486 3.04 1.52 0.76 0.07 0.106
8/18/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/21/2013 1.27 0.48 10.973 4.064 2.54 1.27 0.194 0.494
8/22/2013 0.51 6.08 3.048 1.016 0.508 0.254 0.021 0.011
8/23/2013 2.03 0.56 15.24 6.096 3.658 2.03 0.3 1.098
8/23/2013 16.76 2.41 60.96 45.72 28.448 15.189 3.883 110.451
8/25/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/26/2013 1.52 3.9 9.754 4.064 2.032 1.016 0.178 0.361
8/27/2013 2.03 0.58 10.668 6.096 3.556 2.03 0.254 0.903
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Table A12 continued: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

8/29/2013 2.54 5.91 9.144 6.299 3.556 1.778 0.313 1.113
9/5/2013 0.51 0.36 3.048 1.016 1.02 0.51 0.023 0.023
9/6/2013 16 1.34 33.528 25.231 19.431 15.155 3.363 65.341
9/8/2013 1.27 3.7 4.267 3.048 2.032 1.016 0.107 0.217
9/9/2013 223.01 93.37 39.624 32.512 29.464 19.558 35.196 1,037.03
9/13/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/14/2013 9.14 10.52 13.716 9.483 8.128 5.08 1.174 9.541
9/15/2013 19.56 14.58 6.096 5.283 4.369 3.861 2.079 9.081
9/16/2013 0.76 7.44 3.048 1.016 0.508 0.254 0.042 0.021
9/18/2013 1.02 5.37 3.048 2.032 1.016 0.762 0.068 0.07
9/19/2013 0.51 0.14 4.267 2.04 1.02 0.51 0.032 0.033
9/22/2013 3.3 3.33 6.706 3.048 2.54 1.524 0.341 0.865
9/23/2013 4.57 2.01 6.096 5.334 4.369 3.505 0.489 2.134
9/27/2013 4.32 5.69 9.144 7.366 5.994 3.302 0.506 3.031
10/3/2013 6.6 7.03 7.62 4.877 3.048 1.778 0.637 1.943
10/4/2013 4.83 6.33 7.468 4.877 3.962 3.048 0.49 1.942
10/5/2013 1.52 1.73 7.925 3.658 2.54 1.27 0.179 0.455
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Table A13:  Precipitation data from rain gage SMR1 

 

 
 

Date P (mm) Dur (hr) MI5 (mm hr-1) MI15 (mm hr-1) MI30 (mm hr-1) MI60 (mm hr-1) Energy (MJ ha-1) EI30 (MJ mm ha-1 hr-1) Produced sediment

8/26/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/27/2012 1.02 1.77 3.048 1.829 1.321 0.762 0.068 0.09
8/28/2012 2.79 2.38 18.288 10.16 5.08 2.54 0.486 2.468
8/29/2012 0.51 0.1 5.486 2.04 1.02 0.51 0.049 0.05
8/30/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/2/2012 0.76 0.18 5.334 3.04 1.52 0.76 0.067 0.102
9/7/2012 1.78 1.47 9.144 5.08 2.54 1.27 0.212 0.539
9/8/2012 1.27 0.08 15.24 5.08 2.54 1.27 0.295 0.748
9/11/2012 6.35 18.87 3.658 3.048 2.134 2.032 0.584 1.246
9/12/2012 0.76 4.23 3.048 1.016 0.508 0.254 0.042 0.021
9/24/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/25/2012 11.68 12.72 7.62 5.893 4.572 3.302 1.297 5.928 P
9/27/2012 3.81 2.53 9.144 6.502 3.556 1.778 0.433 1.542
9/27/2012 6.1 1.12 12.192 9.144 7.366 5.842 0.864 6.363 P
9/30/2012 5.84 0.62 66.446 22.352 11.176 5.84 1.544 17.256 P
10/1/2012 1.27 2 4.267 2.235 1.524 0.762 0.1 0.152
10/5/2012 1.02 0.48 3.048 2.438 2.04 1.02 0.078 0.159
10/6/2012 1.27 1.95 3.048 1.016 1.016 0.762 0.089 0.091
10/7/2012 0.76 1.17 3.048 1.016 0.813 0.508 0.044 0.036
10/12/2012 5.08 10.25 12.192 9.144 5.08 3.048 0.639 3.246
10/13/2012 1.27 2.17 3.048 2.032 1.524 0.762 0.091 0.139
10/13/2012 1.02 0.35 3.658 3.048 2.04 1.02 0.084 0.171
10/16/2012 1.52 2.2 3.048 2.032 1.118 0.965 0.114 0.128
10/24/2012 2.29 2.15 3.048 2.032 1.524 1.27 0.187 0.285
10/25/2012 4.57 6.33 5.334 4.064 3.556 2.692 0.442 1.57
10/26/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/10/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/15/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/10/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/12/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/20/2012 4.32 2.55 9.144 5.842 4.166 2.794 0.462 1.926
12/21/2012 2.54 4.75 6.096 3.658 2.54 1.778 0.281 0.714
12/22/2012 0.76 4.57 3.048 1.016 0.508 0.254 0.042 0.021
12/25/2012 1.27 0.5 3.658 2.845 2.54 1.27 0.108 0.275
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Table A13 continued: 

 

 
 

12/26/2012 1.02 1.2 3.048 1.016 1.016 0.762 0.067 0.068
12/30/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/14/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/15/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
1/23/2013 0.51 0.08 6.096 2.04 1.02 0.51 0.074 0.075
1/28/2013 0.76 0.72 3.048 2.032 1.016 0.76 0.05 0.051
1/29/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/9/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/10/2013 1.78 1.7 3.048 2.032 1.524 1.27 0.142 0.217
2/11/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/12/2013 0.51 1 3.048 1.016 0.508 0.508 0.021 0.011
2/14/2013 0.76 1.02 3.048 1.016 0.914 0.711 0.044 0.04
2/15/2013 2.03 5.37 5.486 2.032 1.016 0.762 0.182 0.185
2/16/2013 1.02 3.47 3.048 1.016 0.508 0.508 0.064 0.032
2/21/2013 3.56 2.58 5.334 4.064 3.048 2.286 0.341 1.041
2/22/2013 1.02 2.13 3.048 2.032 1.016 0.762 0.069 0.07
2/23/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
2/25/2013 11.18 7.12 6.858 5.08 4.191 3.302 1.195 5.008
2/26/2013 0.51 0.52 3.048 1.016 0.914 0.51 0.022 0.02
2/27/2013 0.51 5.35 3.048 1.016 0.508 0.254 0.021 0.011
3/4/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/5/2013 1.02 3.22 3.048 1.016 0.711 0.508 0.065 0.046
3/10/2013 6.35 5.5 3.048 2.642 2.032 1.727 0.586 1.191
3/12/2013 4.32 1.85 12.192 8.382 5.994 3.556 0.538 3.222
3/17/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
3/24/2013 1.27 5.85 3.048 1.016 1.016 0.508 0.087 0.088
3/25/2013 6.86 6.95 4.267 2.845 2.54 2.235 0.645 1.639
3/26/2013 7.11 3.73 5.08 4.064 3.556 2.794 0.711 2.53
3/30/2013 1.02 3.83 3.048 1.422 1.016 0.762 0.066 0.067
3/31/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/1/2013 1.27 2.7 3.048 1.016 1.016 0.762 0.088 0.09
4/2/2013 2.29 3.73 3.048 2.032 1.524 1.016 0.181 0.276
4/3/2013 3.05 3.62 3.048 2.032 2.032 1.88 0.27 0.548
4/5/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/7/2013 0.76 5.77 3.048 1.016 1.016 0.508 0.043 0.044
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Table A13 continued: 

 

 
 

4/10/2013 6.6 7.15 3.048 2.235 2.134 1.778 0.587 1.252
4/11/2013 6.35 9.08 3.048 1.626 1.524 1.27 0.546 0.833
4/12/2013 0.76 2.55 3.048 1.016 0.508 0.254 0.042 0.022
4/13/2013 2.03 0.43 6.096 5.08 4.06 2.03 0.23 0.933
4/14/2013 4.57 3.48 6.096 2.642 2.032 2.032 0.468 0.951
4/17/2013 1.27 0.47 4.877 3.048 2.54 1.27 0.117 0.296
4/18/2013 8.64 5.85 6.096 5.419 4.826 4.128 0.936 4.516
4/19/2013 11.43 4.77 8.128 5.757 5.588 4.47 1.3 7.267
4/22/2013 2.03 6.03 3.048 2.032 1.524 1.016 0.164 0.25
4/23/2013 13.97 5.28 10.668 7.62 6.096 5.08 1.641 10.002
4/30/2013 3.05 1.37 5.334 3.251 3.048 2.235 0.303 0.924
5/1/2013 6.6 3.68 6.096 4.572 3.556 2.54 0.659 2.344
5/2/2013 9.65 4.4 6.096 5.283 4.064 3.2 1.015 4.127
5/8/2013 13.46 9.18 10.668 7.789 6.265 4.826 1.647 10.322
5/9/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/9/2013 7.11 5.43 10.668 7.789 7.112 4.826 0.891 6.334
5/10/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/18/2013 2.54 0.57 7.112 5.842 4.674 2.54 0.295 1.378
5/20/2013 1.52 1.22 3.048 2.032 1.524 1.27 0.119 0.182
5/20/2013 5.08 10.3 39.014 13.208 6.604 3.302 1.031 6.807
5/29/2013 15.49 7.5 24.384 19.812 14.224 11.43 2.508 35.67 P
6/23/2013 0.76 0.15 6.706 3.04 1.52 0.76 0.081 0.124
6/25/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/1/2013 0.51 1.38 3.048 1.016 0.508 0.254 0.021 0.011
7/1/2013 2.29 0.73 11.176 6.773 4.064 2.29 0.299 1.214
7/2/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/5/2013 9.14 0.58 27.432 22.352 17.78 9.14 1.904 33.852 P
7/6/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/7/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/12/2013 3.81 3.68 18.288 8.89 5.893 3.302 0.545 3.212
7/13/2013 11.68 11.73 24.384 13.716 9.144 6.604 1.982 18.124
7/14/2013 29.97 9.75 67.056 55.88 44.552 24.13 6.654 296.452 P
7/18/2013 13.46 8.52 51.816 33.122 20.828 10.668 2.748 57.226 P
7/19/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/19/2013 0.51 0.25 3.048 2.032 1.02 0.51 0.025 0.025



202 
 

Table A13 continued: 

 

7/20/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/20/2013 6.6 0.67 28.956 19.304 12.395 6.6 1.252 15.519
7/24/2013 0.76 0.22 4.267 3.04 1.52 0.76 0.061 0.092
7/25/2013 0.76 1.6 3.048 1.016 0.61 0.508 0.043 0.026
7/25/2013 1.27 3.13 3.658 2.032 1.016 0.762 0.098 0.099
7/26/2013 1.52 0.17 15.24 6.08 3.04 1.52 0.258 0.784
7/27/2013 2.03 7.4 3.048 2.032 1.524 1.016 0.158 0.241
7/28/2013 10.67 10.43 73.152 29.464 14.732 7.366 2.208 32.524 P
7/30/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/1/2013 0.51 0.53 3.048 1.016 0.813 0.51 0.022 0.018
8/2/2013 4.83 3.08 18.288 9.144 5.08 2.54 0.731 3.713
8/5/2013 1.52 3.57 3.048 2.438 1.524 0.762 0.122 0.186
8/9/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/11/2013 2.03 6.35 6.096 4.064 3.048 1.778 0.194 0.592
8/13/2013 1.27 0.35 6.706 4.064 2.54 1.27 0.129 0.328
8/14/2013 1.02 0.93 7.315 3.048 1.524 1.02 0.108 0.164
8/18/2013 0.76 0.43 3.048 2.032 1.52 0.76 0.05 0.076
8/21/2013 2.79 0.72 13.716 7.112 5.08 2.79 0.453 2.301
8/22/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/22/2013 0.51 0.22 3.048 2.04 1.02 0.51 0.025 0.026
8/23/2013 1.27 0.68 3.658 3.048 2.032 1.27 0.104 0.212
8/23/2013 16.51 0.92 57.912 41.656 26.755 16.51 3.734 99.897 P
8/25/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/26/2013 3.56 4.15 12.192 7.112 3.556 2.032 0.498 1.77
8/27/2013 3.3 0.65 21.336 10.566 5.791 3.3 0.545 3.153
8/28/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/29/2013 1.27 0.82 7.925 4.064 2.032 1.27 0.146 0.298
8/30/2013 0.51 0.38 3.048 1.016 1.02 0.51 0.023 0.023
9/5/2013 0.76 1.9 3.048 2.032 1.016 0.508 0.049 0.05
9/6/2013 24.89 2.15 45.72 29.972 24.892 18.542 5.491 136.676 P
9/8/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/9/2013 7.11 21.6 4.267 3.048 2.032 1.27 0.645 1.311
9/10/2013 218.19 62.35 51.816 32.173 24.892 20.32 35.81 891.379 P
9/13/2013 0.51 1.6 3.048 1.016 0.508 0.254 0.021 0.011
9/14/2013 35.81 45.2 9.144 7.451 6.096 5.283 4.073 24.832
9/18/2013 1.78 11.8 3.658 2.032 1.524 0.762 0.142 0.217
9/22/2013 3.81 4.4 7.315 4.064 3.302 2.337 0.417 1.377
9/23/2013 5.84 3.33 5.08 4.826 4.403 3.81 0.622 2.737
9/27/2013 0.76 2.33 3.048 1.016 0.508 0.254 0.042 0.022
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Table A14:  Precipitation data from rain gage SUR1 

 

Date P (mm) Dur (hr) MI5 (mm hr-1) MI15 (mm hr-1) MI30 (mm hr-1) MI60 (mm hr-1) Energy (MJ ha-1) EI30 (MJ mm ha-1 hr-1)

8/20/2012 1.27 0.38 8.128 4.064 2.54 1.27 0.143 0.363
8/23/2012 0.51 0.82 3.048 1.016 0.508 0.51 0.022 0.011
8/27/2012 1.02 1.08 4.267 2.642 1.524 0.762 0.079 0.12
8/28/2012 1.52 3.68 5.486 3.048 1.524 0.762 0.152 0.232
8/30/2012 1.27 1.27 3.658 2.032 1.524 0.762 0.1 0.152
9/2/2012 0.76 0.15 6.706 3.04 1.52 0.76 0.081 0.124
9/7/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/7/2012 0.76 2 3.048 1.016 0.508 0.508 0.043 0.022
9/11/2012 6.86 16.55 4.267 3.658 3.048 2.591 0.659 2.008
9/12/2012 0.76 5.18 3.048 1.016 0.508 0.254 0.042 0.021
9/25/2012 12.7 19.32 10.16 6.35 5.461 3.404 1.423 7.769
9/27/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/27/2012 1.52 1.38 3.048 2.032 1.422 1.27 0.117 0.167
9/27/2012 2.79 1.5 5.08 3.556 3.048 2.184 0.269 0.819
10/1/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/1/2012 0.51 1.13 3.048 1.016 0.508 0.254 0.021 0.011
10/5/2012 1.02 1.42 3.048 1.016 1.016 0.762 0.066 0.068
10/7/2012 3.56 4.95 6.096 3.048 2.235 1.524 0.334 0.746
10/8/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/12/2012 2.54 6.12 7.62 5.283 3.556 1.778 0.269 0.956
10/13/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/13/2012 1.78 4.38 3.048 2.032 1.524 1.168 0.139 0.212
10/14/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/16/2012 0.76 1 3.048 1.016 1.016 0.762 0.045 0.046
10/26/2012 0.76 0.15 6.706 3.04 1.52 0.76 0.081 0.124
10/28/2012 13.46 30.67 6.096 3.658 3.429 2.692 1.237 4.243
10/30/2012 0.76 4.33 3.048 1.016 0.508 0.254 0.042 0.021
11/9/2012 4.32 0.1 51.206 17.28 8.64 4.32 1.154 9.969
11/16/2012 0.76 -0.82 9.12 3.04 1.52 0.76 0.033 0.049
11/23/2012 3.81 0.12 44.501 15.24 7.62 3.81 0.982 7.481
11/28/2012 0.51 0.08 6.096 2.04 1.02 0.51 0.074 0.075
5/21/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/29/2013 7.11 9.42 6.096 4.674 3.556 2.286 0.736 2.618
6/5/2013 0.51 0.82 3.048 1.016 0.508 0.51 0.022 0.011
6/7/2013 0.51 0.3 3.048 1.422 1.02 0.51 0.024 0.024
6/17/2013 0.51 0.17 3.048 2.04 1.02 0.51 0.028 0.029
6/19/2013 0.51 0.1 5.486 2.04 1.02 0.51 0.001 0.001
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Table A15:  Precipitation data from rain gage SUR2 

 

 

Date P (mm) Dur (hr) MI5 (mm hr-1) MI15 (mm hr-1) MI30 (mm hr-1) MI60 (mm hr-1) Energy (MJ ha-1) EI30 (MJ mm ha-1 hr-1) Produced sediment

8/30/2012 1.52 1.71 4.877 2.032 1.524 1.016 0.128 0.196
9/7/2012 2.29 2.06 10.973 4.267 2.54 1.524 0.285 0.723
9/11/2012 8.89 11.16 9.144 6.096 4.369 3.556 0.943 4.119
9/12/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/25/2012 12.7 19.32 11.176 6.096 3.556 2.286 1.407 5.005 P
9/27/2012 2.03 1.92 3.048 2.845 2.032 1.321 0.171 0.348
9/27/2012 2.03 2.02 5.08 3.658 2.845 1.778 0.188 0.533
10/1/2012 0.76 3.7 3.048 1.016 0.508 0.254 0.042 0.021
10/5/2012 1.02 1.04 3.048 1.016 1.016 0.914 0.068 0.069
10/7/2012 3.3 4.35 3.048 2.032 1.727 1.524 0.278 0.48
10/8/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/12/2012 3.05 11.25 7.112 5.08 3.048 1.524 0.297 0.905
10/13/2012 0.51 0.54 3.048 1.016 0.711 0.51 0.022 0.016
10/13/2012 1.02 0.65 3.048 1.829 1.524 1.02 0.072 0.11
10/16/2012 1.52 5.92 3.658 2.845 1.524 1.016 0.121 0.184
10/25/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
10/26/2012 7.11 4.94 3.048 2.642 2.54 2.286 0.672 1.706
10/27/2012 1.27 2.51 3.048 1.016 1.016 0.508 0.087 0.089
10/28/2012 6.86 8.51 3.048 2.438 2.235 1.778 0.619 1.383
10/29/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/10/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/15/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
11/16/2012 0.51 -0.85 6.12 2.04 1.02 0.51 0 0.001
12/20/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/21/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/22/2012 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
12/29/2012 0.76 2.58 3.048 1.016 0.508 0.254 0.042 0.022
1/28/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
4/2/2013 1.27 4.49 3.048 1.016 1.016 0.508 0.086 0.088
4/3/2013 3.56 4.33 4.267 3.048 2.413 2.032 0.33 0.796
5/21/2013 0.76 0.17 6.096 3.04 1.52 0.76 0.098 0.149
5/28/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
5/29/2013 8.13 2.59 7.62 7.112 6.35 5.757 0.99 6.284
6/5/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
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Table A15 continued: 

 

 
 

6/17/2013 0.51 0.13 4.267 2.04 1.02 0.51 0.033 0.033
6/23/2013 0.51 0.94 3.048 1.016 0.508 0.51 0.021 0.011
6/29/2013 4.57 0.39 22.86 16.51 9.14 4.57 0.874 7.991
6/30/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/1/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
7/1/2013 2.03 3.36 9.144 5.893 3.556 1.778 0.236 0.838
7/2/2013 0.51 0.13 4.267 2.04 1.02 0.51 0.034 0.035
7/5/2013 9.91 0.45 57.912 37.795 19.82 9.91 2.507 49.696 P
7/7/2013 0.51 0.17 3.048 2.04 1.02 0.51 0.028 0.028
7/11/2013 0.51 0.1 5.486 2.04 1.02 0.51 0.049 0.05
7/12/2013 4.57 3.95 13.716 6.909 5.08 3.556 0.622 3.16
7/13/2013 7.11 5.29 24.384 13.818 8.805 6.807 1.152 10.145
7/14/2013 6.35 0.68 21.336 16.256 11.786 6.35 1.123 13.237
7/15/2013 1.27 0.79 3.658 2.845 2.032 1.27 0.103 0.209
7/18/2013 3.56 8.63 5.334 3.454 2.032 1.016 0.324 0.658
7/19/2013 0.51 0.24 3.048 2.04 1.02 0.51 0.025 0.025
7/20/2013 7.87 3.97 33.528 20.828 14.478 7.62 1.541 22.305 P
7/24/2013 1.02 0.61 4.572 3.048 1.524 1.02 0.084 0.127
7/25/2013 0.51 1.25 3.048 1.016 0.508 0.254 0.021 0.011
7/25/2013 1.52 3.21 3.658 2.235 1.524 0.762 0.126 0.192
7/26/2013 0.51 0.12 4.877 2.04 1.02 0.51 0.038 0.039
7/27/2013 2.03 9.48 3.658 3.048 2.032 1.016 0.171 0.348
7/28/2013 9.65 12.19 51.816 21.336 10.668 5.334 1.823 19.447
7/30/2013 1.02 6.09 7.315 3.048 1.524 0.762 0.115 0.175
8/2/2013 5.84 2.85 30.48 15.85 8.128 4.318 1.112 9.04
8/3/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/4/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/4/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/5/2013 1.52 2.9 4.572 3.556 2.54 1.27 0.142 0.361
8/8/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/9/2013 1.27 0.35 5.334 4.064 2.54 1.27 0.125 0.318
8/11/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/11/2013 2.29 0.86 4.267 3.048 3.048 2.29 0.226 0.689
8/13/2013 11.18 2.11 45.72 28.448 21.082 10.922 2.442 51.491 P
8/14/2013 1.52 1.05 7.315 5.08 2.54 1.372 0.173 0.44
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Table A15 continued: 

 

 
 

 

 

8/18/2013 1.27 0.59 3.658 2.845 2.032 1.27 0.107 0.217
8/21/2013 2.03 0.44 15.24 7.112 4.06 2.03 0.323 1.312
8/22/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/22/2013 0.76 1.29 3.048 1.626 1.016 0.508 0.045 0.046
8/23/2013 3.81 0.71 28.956 12.598 7.112 3.81 0.735 5.226
8/23/2013 12.7 7.19 36.576 25.739 15.621 9.271 2.45 38.275 P
8/24/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/25/2013 1.27 0.3 6.096 4.47 2.54 1.27 0.132 0.336
8/26/2013 1.02 1.64 4.877 3.048 1.524 0.762 0.083 0.127
8/27/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
8/27/2013 4.32 0.71 15.24 11.684 8.026 4.32 0.705 5.657
8/29/2013 3.3 6.1 16.764 7.451 5.08 2.54 0.456 2.318
8/30/2013 1.52 3.16 6.096 4.064 2.54 1.27 0.149 0.379
8/31/2013 0.76 3.79 3.048 2.032 1.016 0.508 0.046 0.047
9/2/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/5/2013 3.56 5.35 13.716 10.16 6.096 3.048 0.498 3.036
9/6/2013 28.45 1.7 51.816 42.672 34.036 27.093 6.728 229.003 P
9/8/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/8/2013 5.33 2.88 21.336 13.208 8.738 5.08 0.863 7.543
9/9/2013 227.59 99.37 30.48 23.368 19.304 15.24 34.497 665.938 P
9/14/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/14/2013 7.62 6.27 10.668 8.128 5.588 3.454 0.969 5.413
9/15/2013 17.53 17.62 7.62 6.35 4.775 3.658 1.882 8.989
9/16/2013 0.25 0.08 3.048 1 0.5 0.25 0.001 0.001
9/18/2013 4.06 13.08 6.096 3.861 2.032 1.27 0.41 0.833
9/22/2013 5.84 3.34 12.192 8.128 6.731 4.318 0.747 5.026
9/23/2013 4.32 1.74 5.08 4.318 3.861 3.2 0.447 1.727
9/27/2013 4.32 7.14 7.62 6.435 5.385 3.048 0.473 2.547
10/3/2013 5.33 5 5.334 3.454 2.337 1.676 0.497 1.161
10/5/2013 1.78 5.47 3.048 1.016 1.016 0.762 0.13 0.132
10/6/2013 4.57 5.57 3.048 2.032 1.524 1.524 0.396 0.604
10/10/2013 0.25 0.08 3.048 1 0.5 0.25 0 0.001
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Table A16:  Precipitation gage from outside sources (CoCoRaHS and NCDC): 

 

 
 

 

 

 

 

 

  

CO-LR-85 CO-LR-197 CO-LR-546 NCDC

Jul-12 28.70 NC 102.11 35.60 CO-LR-85 is from 7/16 onward
Aug-12 12.45 NC 1.52 17.30
Sep-12 30.23 NC 49.78 33.10
Oct-12 29.46 NC 16.51 24.70
Nov-12 0.00 NC 19.30 0.30
Dec-12 0.51 NC 10.41 19.10
Jan-13 1.78 NC 1.52 4.80
Feb-13 37.85 NC 10.41 27.90

Mar-13 14.73 NC 20.83 35.10
Apr-13 97.28 NC 62.23 82.80

May-13 39.62 NC 86.36 76.50
Jun-13 1.78 NC 22.35 5.90
Jul-13 96.27 148.08 44.70 116.10  

Aug-13 40.39 21.34 5.84 12.60
Sep-13 298.45 289.31 245.36 267.80
Oct-13 23.62 16.51 36.32 22.80
1990 NC NC NC 381.40
1991 NC NC NC 451.00
1992 NC NC NC 271.90
1993 NC NC NC 416.40
1994 NC NC NC 284.90
1995 NC NC NC 586.10
1996 NC NC NC 370.70
1997 NC NC NC 507.90
1998 NC 230.89 NC 310.00 Summer only
1999 NC 344.68 191.01 342.60 Summer only
2000 NC 277.37 202.44 323.60 Summer only
2001 NC 262.13 258.57 276.20 Summer only; CO-LR-197 missing Sept-Oct
2002 NC 243.08 181.86 243.50 Summer only; CO-LR-197 spotty
2003 NC 183.13 254.00 228.60 Summer only; CO-LR-197 missing May and Oct
2004 373.89 474.22 383.54 440.30 Summer only; CO-LR-85 missing half of May and june
2005 305.56 226.82 284.48 305.80 Summer only; CO-LR-197 missing May and Oct
2006 NC NC 219.71 270.40 Summer only
2007 NC NC 231.39 337.40 Summer only
2008 252.98 NC 315.98 379.00 Summer only; CO-LR-85 missing May
2009 245.36 NC 267.46 385.40 Summer only; CO-LR-85 missing much of may and june
2010 203.20 NC 178.56 277.10 Summer only
2011 359.16 NC 355.85 302.00 Summer only
2012 100.84 NC 169.93 175.80 Summer only; CO-LR-85 is missing most of June, first half July
2013 500.13 736.61 683.46 501.70 Summer only

Precipitation (mm)
NotesDate
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Figure A17a-f:  Scatterplots of univariate relationships between logSY data and a) slope length, b) slope angle, c) dNBR, d) sand content, e) width-

length ratio, f) average annual precipitation depth.  Open squares indicate data from 2012, solid diamonds from unmulched swales in 2013, and 

open diamonds from mulched swales in 2013. 
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Figure A17g-j:  Scatterplots of univariate relationships between logSY data and g) total annual erosivity, h) maximum annual MI30, i) percent 

surface cover by bare soil, and j) percent surface cover by live vegetation.  Open squares indicate data from 2012, solid diamonds from 

unmulched swales in 2013, and open diamonds from mulched swales in 2013. 


