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ABSTRACT

SINGLE PIXEL COMPUTATIONAL IMAGING

Microscopy has a long rich history of peering into life’s smallest mysteries. Ever since the

first microscope, the ability to see objects that would otherwise be impossible to see with the

naked eye have allowed new discoveries and modern technology has benefited tremendously.

There have been many improvements on microscopes over the centuries with each improve-

ment unlocking more knowledge as we go. Some of these advancements are the modern objec-

tive lens correcting for numerous optical aberrations, phase contrast imaging allowing nearly

transparent samples to have high contrast, the confocal pinhole allowing an easy method to get

optical sectioning, and super resolution microscopy surpassing the diffraction limit by several

orders of magnitude. One of the most amazing things about all these discoveries is that they all

rely on the same fundamental concepts.

This work focuses on expanding the capabilities of single pixel imaging. Single pixel imag-

ing is a class of imaging that encodes spatial information on a temporal signal using a single

element detector; having knowledge of the encoding allows the time signal to be reconstructed

to generate a spatial image. A canonical example of single pixel imaging is laser scanning mi-

croscopy (LSM). More complicated encoding systems have been developed but the basic idea

for reconstruction remains the same. There are several advantages conferred to single pixel

imaging such as image formation is resistant to scattering, very fast temporal response, flexibil-

ity in detector selection at a given wavelength, and exotic imaging information.

My research primarily utilizes two techniques, SPatIal Frequency modulated Imaging

(SPIFI) and Coherent Holographic Image Reconstruction by Phase Transfer (CHIRPT), both

are explained in detail. My research aims to expand the capability of SPIFI by providing a

method for homogenizing the anisotropic resolution observed in the higher orders, addition-

ally, I present a method of solving the inverse problem that allows the measurement matrix to
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more accurately represent to true image formation process thereby increasing the performance

of the reconstruction. I present research for CHIRPT which takes advantage of the encoded

coherent phase information of two interfering beams to measure the quantitative phase of an

object. I also present a new technique utilizing CHIRPT’s holographic phase information to

extend optical diffraction tomography to incoherent emitters which has long been an illusive

task.
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Chapter 1

Introduction to Imaging

1.1 Introduction

This chapter lays the groundwork upon which my subsequent research is built. It provides

a comprehensive introduction to essential imaging theory concepts, with an emphasis on intu-

itive explanations to facilitate comprehension. Light interference is the primary methodology

used to describe core concepts, with the goal of painting a cohesive portrait of the necessary

optical background for my research. I also discuss absorption and scattering using analogies to

further aid understanding of these fundamental concepts. Furthermore, refraction and diffrac-

tion are described from a wave-based perspective, in order to provide a more detailed account

of these phenomena. Finally, I finish this chapter off with an in-depth comparison of coherent

versus incoherent imaging.

1.2 Core Imaging Concepts

In imaging theory, there are several key concepts that repeatedly show up and the under-

standing of these concepts help explain the vast majority of imaging systems. The core concepts

will be briefly described below and referenced throughout this manuscript. The primary objec-

tive of an imaging system is to relay object information to a detection plane so that a spatial map

or image can be formed of the contrast mechanism of interest. The number of contrast mech-

anisms that can be probed are vast and many can be categorized as absorbing or scattering the

input illumination. Both categories may result in a change in the input illumination intensity,

wavelength, phase shift, or any combination of the three. The specific contrast mechanism

of interest depends on the sample and the information needed to answer questions about the

sample. In the following sections, I will describe these general categories and give some specific

examples to help solidify the concepts.
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The image formation process can be quite varied from one system to the next, however, all

imaging systems are going to act as a low pass filter of the object’s spatial frequency information.

This low pass filtering leads to blurring of the imaged object information, often referred to as

the diffraction limit. There are many clever techniques that have been developed to circumvent

the diffraction limit but even these super-resolution imaging systems still suffer from low pass

filtering. There are many great books that should be referenced if more detail is required such

as Mertz’ Introduction to Optical Microscopy [95], Barrett’s Foundations of Image Science [6] and

Wang’ Biomedical Optics Principles and Imaging [144], to name a few.

1.2.1 Absorption

Absorption is a light-matter interaction where excitation light excites or deposits energy into

an atom or molecule causing an increase in the energy of an electron. Then, depending on the

decay pathway of the electron, the absorption will be classified as radiative or non-radiative.

A radiative decay pathway will release light at a new optical wavelength such as fluorescence

or phosphorescence. A non-radiative decay pathway will convert the optical energy into vi-

brational energy in the atom/molecule or transfer energy into the surrounding environment as

heat. Figure 1.1 shows a simple Jablonski energy diagram of several absorption pathways where

both radiative and non-radiative pathways may occur.

1.2.2 Scattering

Now that we have taken a brief look at absorption, let us turn our attention to scattering.

Scattering, like most topics, is very broad in scope but can be categorized into several main

classes, coherent vs incoherent scattering, and elastic vs inelastic scattering. Here coherent

scattering means that there is a defined phase relationship between the input light and the out-

put light, and incoherent scattering means that there is a random phase relationship between

the incoming and outgoing light. Elastic scattering means that there is no change of energy of

the incoming and outgoing light, i.e. both photons have the same wavelength, and inelastic

scattering means the incoming and outgoing photons will have different energies such as in
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Figure 1.1: This figure shows the Jablonski energy diagram. The Jablonski diagram shows real atomic

energy levels of an atomic system, S0,S1,S2, and T1 with the y-axis representing energy and the x-axis

representing internuclear distance. The black U-shaped lines illustrate energy levels and the ladder of

black lines represent vibrational energy levels. The Blue arrows pointing up show absorption, the squig-

gly lines represent non-radiative pathways internal conversion (IC), vibrational relaxation (VR), or in-

tersystem crossing (ICS), the arrows pointing down show radiative pathways. This figure was borrowed

from [79].

3



Raman scattering. Scattering can be defined as a change in the propagation direction, phase,

or wavelength of incoming light by means of interacting with matter.

Simple linear elastic scattering derives its physical origin from the electric field of the in-

coming light causing electrons to oscillate in atoms or molecules. In the case of absorption, the

electron will get promoted to a higher energy state of the energy manifold of the atomic system.

In the case of scattering, an electron will be driven to oscillate at the same frequency as the inci-

dent light. The oscillating electron acts as a primary source, re-emitting radiation or scattering

the illumination light, causing a change in the phase and direction of the input illumination.

This description of absorption and scattering is only scratching the surface of a very large topic,

there are many books devoted to these topics (see resources [71, 83, 9, 21])

1.2.3 Diffraction and Refraction

Diffraction and refraction are key optical phenomena that play a significant role in the field

of optics, and a thorough understanding of these concepts is necessary to make sense of many

other related concepts. These phenomena can be best understood by considering the wave

nature of light. In essence, both diffraction and refraction involve the bending of light around or

off an object [71]. In the following section, I will provide a detailed account of both phenomena.

Diffraction

Diffraction is a complex phenomenon with several formulations of definition available [71].

For the purposes of this discussion, the definition of diffraction as the bending of waves around

the corners of an obstacle or aperture into the geometric shadow of that obstacle or aper-

ture will be utilized. One of the earliest optical diffraction models was proposed by Christi-

aan Huygens, a prominent Dutch mathematician and physicist of the 17th century. Huygens

hypothesized that a wavefront of light could be comprised of numerous spherical wavelets,

where a single wavelet could be represented as E = E0/r ′ exp
{

i (kr ′−ωt )
}

, with E denoting the

electric field, E0 representing the amplitude, r ′ representing the position (x,y), k = 2π/λ in-

dicating the wavenumber, and ω signifying the optical frequency. These wavelets would then
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propagate over a small distance, creating additional secondary/virtual sources, known as Huy-

gens wavelets [112], as shown in Fig. 1.2 (depicted as yellow dots). Huygens proposed that

the secondary spherical wavelets would interfere with one another to create the propagating

wavefront, E1 =C0

∫∫

exp
{

i (kr ′−ωt )
}

dr ′, where C0 is an overall constant (refer to the left side

of Fig. 1.2(a) for E1). Subsequently, Huygens envisioned the wavefront being partially ob-

structed or clipped by an obstacle, leading some of the spherical wavelets to no longer inter-

fere with the rest of the wavefront, thereby causing the spherical wavelets to disperse around

the corner of the object, resulting in diffraction. This can be represented mathematically as

E A = C0

∫∫

exp
{

i (kr ′−ωt )
}

dA, where dA refers to a differential area over the aperture [112].

While this formulation of diffraction has proven to be highly effective in practice, it should be

noted that it is only a model and does not reflect the manner in which the physical world func-

tions. A more accurate but less intuitive model of light propagation is described by Maxwell’s

equations, in which the ’wave equation’ can be formulated and solved, enabling diffraction to

be calculated directly. However, this approach entails a higher level of mathematical complexity

[95].

A classic example of diffraction is Young’s double slit experiment, shown in Fig. 1.2(b).

Young’s double-slit experiment allows coherent light to pass through two slits. Then some dis-

tance, L, from the slits is a screen or camera on which the light that passes through the slits is

observed. If light behaved as a particle or as a ray then one might expect to only see two thin

lines on the screen. However, this is not what is observed! What is actually observed is an in-

terference pattern that depends on the wavelength of light, the slit separation, and the distance

from the aperture to the screen. From these parameters, the interference pattern can be pre-

dicted from simple geometry and an assumption of spherical waves emanating from each slit.

The resulting illumination pattern will be that of two single slit sinc patterns interfering with

one another, illustrated in Fig. 1.2(b). The mathematical details are not shown here because

there are many great references that explain the calculations in extensive detail, [112, 95].
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a) b)

L

Figure 1.2: Depictions of Huygens wavelets in diffraction. Panel (a) shows Huygens wavelets on the left

propagating to the right. A spherical wave is produced at the yellow dots. The wavelets propagate forward

creating a wavefront, blue solid lines. The dashed arrows represent the direction of energy propagation.

The aperture clips part of the wavefront, leaving only the center of the beam. The spherical waves again

propagate out from the yellow dots, this time the wavefront is a curved, solid green line, due to the

interference of the remaining wavelets. Panel (b) depicts a similar scenario as (a) however this time there

are two slits that only allow two spherical waves to emanate, one for each slit. These spherical waves gain

interfere with each other causing the double-slit interference pattern.

Diffraction is observed regularly in optics. It plays an important role in determining a beam’s

spatial profile when passed through a pinhole or through a microscope’s back aperture [95].

Diffraction also occurs when light falls on an opaque sample causing light to ’scatter’. Diffrac-

tion is particularly important in Chapter 8.2.5, as Fluorescent Diffraction Tomography is capa-

ble of imaging highly scattering objects.
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Refraction

Refraction is a fundamental concept in optics that occurs when light changes direction as it

passes through an interface between two mediums with different refractive indices. This phe-

nomenon is commonly experienced in everyday life, such as the apparent bending of a pencil

when submerged in water. Refraction plays a critical role in imaging biological samples like

cells or tissues, which are often referred to as phase objects due to their minimal absorption

compared to their scattering, which is caused by refraction. In this chapter, I will present an

intuitive derivation of the effect of refraction on light propagation and explain why it is of par-

ticular importance in Sections 4.2 and 5.7 when discussing the measurement of quantitative

phase.

To start, let’s first define the refractive index of a material. There are rigorous derivations

of the refractive index, however, let it suffice for now to give a simple definition. The refractive

index, n, of a material is the ratio of the speed of light in a vacuum, c, compared to the speed of

light in a homogeneous (uniform) material, v , giving n = c/v . Now, let’s consider a plane wave

propagating in air, nai r = n1 = 1 toward a homogeneous flat surface such as glass, ng l ass = n2 =

1.5. When the plane wave crosses the boundary at some angle θ1, (see the left of Fig. 1.3), the

light will slow as it enters the glass. Due to the fact that the light is propagating more slowly the

wavefronts of the light will build up on each other, this will cause the wavelength of the light to

decrease with respect to the light propagating in the first medium, air. The phase of the electric

field must be continuous across the interface, i.e. where there is a peak in the first medium,

there will also be a peak in the second medium at the interface. With this reasoning, we see

why the wavefront must bend at the interface. In order for the light to propagate slower in

the second medium and the electric field to be continuous, the light must bend in towards the

surface normal of the interface when n1 < n2 and away from the surface normal when n1 > n2,

Fig. 1.3. As the difference between the two refractive indices increases the light will bend even

more, Fig. 1.3 (right). This brings up an interesting point, since scattering in biological samples

is primarily a function of refractive index difference, if the refractive index difference between
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surfaces is minimized the scattering will also be minimized. This technique is often referred to

as optical clearing and can be very useful when studying large biological samples.
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Figure 1.3: This figure shows a depiction of how Snell’s Law works. The red medium (left side) has a

refractive index n1 that is less than the right side medium n2 and n3. When a wavefront (red solid line)

impinges on the interface between the two media, the wavefront spacing will decrease causing the wave-

length to decrease (λ1 > λ2). In order to satisfy the continuity boundary condition the wavefront must

bend. The left image shows a small refractive index difference between n1 and n2. The right image shows

a large refractive index difference causing the wavefront to bend more.

The description of refraction above does provide sufficient information to gain an intuitive

understanding of why light bends due to refraction, additionally a formula of how much the

light bends could be derived, however, I want to present an argument based on the conserva-

tion of momentum because of its elegance. Note, optical momentum is a bit tricky to define, it

seems that there are at least two different formulations of optical momentum which both agree

with experiments depending on which experiment is performed [4, 13]. I will use the form of

optical momentum that seems to be related to kinetic momentum and ignore angular momen-

tum. Since there is no loss of photon energy across the interface, we can infer that there is no

momentum change either, p1 = p2. We can then use the definition for photon momentum,

p = ~k, here ~ is the reduced Planck’s constant and k = nk0 is the wavenumber (the wavenum-

ber is described later in Section 1.3). We can then use the fact that the wavenumber can be

decomposed into spatial frequency components (x, y, z), without loss of generality we can set
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y = 0 giving (x,0, z) = (x, z) plane, k = (kx ,kz) = nk0(sinθ,cosθ). Plugging in our decomposition

into the conservation of momentum expression and looking at the x-component we get

kx1 = kx2

n1k0 sinθ1 = n2k0 sinθ2.

Interestingly this equation can be interpreted as the wavenumber being conserved across an

interface. This yields the well-known ’law of refraction’ also known as ’Snell’s Law’

sin(θ1)

sin(θ2)
=

n2

n1
. (1.1)

Using the conservation of momentum, the direction of propagation, kx changes at the interface

due to the change in refractive index. In the next section, we will look at one of the most useful

mathematical tools in optics, the Fourier transform, and we will see that it can decompose our

signal into a powerful concept known as spatial frequencies.

1.2.4 Fourier Transform

The Fourier transform is one of the most powerful tools in mathematics. It will be very

useful in assisting in the analysis of optical theory and for understanding the concept of spatial

frequencies, which is described in greater detail in Section 1.3. The goal of this section is to give

an intuitive understanding of the Fourier transform and show its relevance in optics.

The idea of the Fourier transform is that any signal can be decomposed into a set of sinu-

soids, each with an amplitude, frequency, and phase. When the Fourier transform is applied to

a signal, the signal is said to be in the frequency domain (inverse domain or conjugate domain).

It is important to note that the frequency is not confined to just temporal signals, units [sec−1]

but rather it can have any inverse units such as inverse space, i.e. spatial frequencies, units
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[m−1]. Calculating the Fourier transform is fairly straightforward, defined as

f̂ (k) =
∫∞

−∞
f (x)e−i 2πxk dx (1.2)

where f̂ (k) is the Fourier transform of the real domain function, f (x), k is the frequency or

inverse domain variable which can be n-dimensional, x is the real domain variable such as

time or space, also n-dimensional, and ei 2πxk is called the Fourier kernel. One way to interpret

Eqn. 1.2 is by first considering only one frequency say k0 and plugging that frequency into the

Fourier kernel. Then by investigating the Fourier kernel, e−i 2πxk0 , we can interpret the result

as finding the center of mass of that frequency, k0, on the complex plane, a+ i b, where a and

b are some real values. This center of mass can be converted into amplitude and phase of the

sinusoid at the frequency k0. The amplitude can be calculated by finding the magnitude of the

complex number, r =
p

a2 +b2 and the phase/angle can be calculated using φ = atan2(a,b).

The atan2(·, ·) function is a computer science function that returns the true angle regardless of

the quadrant the vector resides [161]. Let’s suppose the amplitude at k0 was zero, this would

mean that there is no sinusoid at frequency k0 contained in the signal of interest. However, if

the amplitude is non-zero then the signal contains that ’amount’ of the sinusoid, and the angle

represents the starting phase. This can then be done for all frequencies resulting in the Fourier

transform.

Once the Fourier transform has been performed, and the signal is in the frequency domain,

it is very easy to apply mathematical operations such as low pass, high pass, or band pass filter-

ing or to perform a convolution of multiple signals. The frequency domain signal can be readily

converted back into the real domain signal by performing an inverse Fourier transform,

f (x) =
∫∞

−∞
f̂ (k)ei 2πxk dk. (1.3)

The inverse Fourier transform can be interpreted as summing up all the decomposed sinusoids

with the proper weighting (amplitude and phase) to reconstruct the original real domain signal,
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Figure 1.4: This figure shows how a time signal (red line) can be decomposed into a set of sinusoids

(light blue lines) as well as the resulting amplitude spectrum from the Fourier transform (dark blue

line). Figure obtained from https://www.ritchievink.com/blog /2017/04/23/understanding-the-fourier-

transform-by-example.

f (x). Said differently, the inverse Fourier transform is a phasor sum of complex numbers which

reconstruct the real domain signal. In this case, the ei 2πxk is known as the inverse kernel which

is weighted by complex coefficients, f̂ (k).

Equations 1.2 and 1.3 compute the Fourier transform pair for continuous signals, however,

in practice, most mathematics is going to be performed by a modern digital computer. This

means that a continuous signal from a detector such as a photodiode will have to be digitized so

that it can be operated by a computer. The digitization process turns a continuous signal into

a discrete signal, therefore, it is necessary to modify the above formulas to deal with discrete

signals. I will just give the discrete Fourier transform equations, however, a full derivation can

be found here [1]. The forward discrete Fourier transform (DFT) is

f̂k =
N−1
∑

n=0

fn e−i 2πkn/N (1.4)

The frequency variable, k, is evaluated on the domain k ∈ [0, N−1]. The DFT operates on a finite

number of samples, N , and the sampling frequency, ks , the signal is sampled on will determine

the maximum resolvable frequency.
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One interesting effect that arises from digitizing a signal is aliasing. Aliasing occurs when

part of the high frequencies ’wrap around’ into low-frequency components; this is not a prob-

lem that exists for continuous signals. The reason for this is beyond the scope of this introduc-

tion, however, it is useful to understand when it will occur and how to avoid it. Aliasing will

occur when the continuous signal contains frequencies that are greater than half the sampling

frequency, ks/2. Therefore, for a signal to be properly represented the digitized signal must

be band-limited so that any frequency greater than ks/2 is removed from the signal before the

signal is digitized. This criterion is known as the Nyquist sampling theorem.

The inverse discrete Fourier transform (IDFT) is computed using the following equation,

fn =
1

N

N−1
∑

k=0

f̂k ei 2πkn/N . (1.5)

The IDFT will return the original discrete function assuming Nyquist sampling was satisfied.

Figure 1.4 depicts the decomposition of a time signal (red) into sinusoids (light blue), each

with an amplitude (dark blue line) and relative phase. The loss or scrambling of phase infor-

mation results in significant distortion of the reconstructed signal in the real domain. If faced

with the choice of losing either amplitude or phase information in the Fourier transform, it is

advisable to always select the former. The significance of phase information as compared to

amplitude information is illustrated in Figure 1.5. The left panel of the figure shows a real do-

main image of a lion, while the middle panel shows the two-dimensional Fourier transform

information, including both magnitude and phase. The right column of the figure displays the

reconstructions of the lion using only the magnitude of the Fourier transform with the phase

set to zero (top right) and using only the phase with the magnitude set to one (bottom right).

From this illustration, it is evident that phase information is more important than amplitude in-

formation, as the phase-only reconstruction is recognizable as a lion, while the amplitude-only

reconstruction is not.
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Figure 1.5: This figure shows that magnitude and phase of the Fourier transform (center column) of the

lion (left). The right column shows the reconstruction of the lion when (top) only the magnitude is un-

changed and the phase is set to all zeros and (bottom) when the phase is unchanged and the magnitude

is set to all ones.

1.3 Spatial Frequencies

After discussing the Fourier transform, it is now pertinent to delve into the closely related

topic of spatial frequencies, which is considered one of the most important concepts in imaging

theory. Spatial frequencies offer a simple yet powerful means of describing an imaging system’s

response, filtering operations, tomographic reconstruction, image aberrations, and more. In

fact, spatial frequencies are used extensively in the following chapters: 5.7, 7.6, 8.2.5, and 9.6.2.

Its significance cannot be overstated, and it can be defined rather simply.

The idea of spatial frequencies, or angular spectrum representation of a field, posits that

any field can be broken down into a set of plane waves propagating at various angles with re-

spect to the optic axis. A plane wave is essentially a field that is uniform and extends infinitely

in the transverse directions. If a particular direction is assigned to the z-axis, then the plane

wave can be represented as E0ei (kx x+ky y)e±i |kz |z , where E0 is the amplitude, kx , ky , and kz are

spatial frequencies, and x, y , and z are spatial coordinates. The term e±i |kz |z is referred to as the

propagator in reciprocal space. It is noteworthy that the ’-’ sign indicates propagation in the

half-space z < 0, while the ’+’ sign signifies propagation in the half-space z > 0 [104].
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The wavevector k = (kx ,ky ,kz) has a length given by |k| = k = 2π/λ. Figure 1.6(a) shows the

wavevector in reciprocal space. We see that it can be decomposed into its spatial frequency

components. From geometry, we write down the well-known spatial frequency relationship,

kz =
√

k2 −k2
x −k2

y . (1.6)

From the above equation, we see that the kz will vary as the transverse spatial frequencies, kx

and ky , vary.

Spatial frequencies are defined as plane waves propagating at an angle with respect to the

optic axis. However, this definition lacks intuition in visualizing what a spatial frequency looks

like in real space. In order to gain a better understanding, let us consider a tilted plane wave,

(kx ,ky = 0), with a spatial frequency, k = k(sinθ,0,cosθ), where θ 6= 0, propagating to some

plane, p0. We place a camera at plane p0 and ask, "what will the camera see?" The camera

responds to the intensity, I (x) = |Eθ(x)|2, so the phase information in the field will be lost and

the camera will simply see a uniformly illuminated screen, similar to what we would expect if

the plane wave was propagating on the optic axis.

To visualize what a spatial frequency looks like, we need to introduce an additional compo-

nent. Let us introduce a second wave that propagates on the optic axis, EDC . This time, when

we ask what the camera sees with both waves at plane p0, the answer will yield the desired re-

sult. The camera will see the interference between Eθ(x) and EDC (x), resulting in an intensity

of I (x) = |Eθ(x)+EDC (x)|2 = 2I0

[

1+1/2cos
(

ωt +∆k ·x+φ
)]

. The cosine is the interference be-

tween the two fields, and the frequency of the cosine term is what a spatial frequency looks like

in real space, as shown in Fig. 1.5(b).

The depicted diagram underscores a critical aspect of the interference of spatial frequencies,

which facilitates the focusing of collimated laser beams to a minute point focus via a lens, or

the formation of an image of a sample using an imaging system. Notably, the image creation

process is fundamentally predicated on the interference of titled plane waves. Moreover, it is
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Figure 1.6: Panel a) shows the spatial frequency decomposition of the wavevector. Panel b) illustrates

what a spatial frequency looks like in 2D space. The shortest distance from peak to peak is the optical

wavelength, however, since the wavefront is propagating at some angle with respect to the x-axis, the

wavefront can be decomposed into constituent components. The blue lines show the line out of the x-

spatial frequency and the red lines show the z-spatial frequency. If the x-spatial frequency changes the

z-spatial frequency must also change according to the dispersion relationship, kz =
√

k2 −k2
x −k2

z

important to note that the maximum spatial frequency, which is determined by the numerical

aperture of the imaging system, will serve as the limiting factor for the image resolution.

1.3.1 Numerical Aperture

One of the most important optical parameters for microscopy is the numerical aperture.

The numerical aperture defines the highest spatial frequency that will be collected by an imag-

ing system, defined as

NA = n sin(θmax) (1.7)

where NA is the numerical aperture, n is the refractive index of the immersion media, (i.e. nai r =

1, nw ater = 1.3, noi l = 1.5), and θmax is the largest collected angle of light. The largest collection

angle can be easily determined geometrically by using the diameter of the lens, D , and focal
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length, f , of the objective with this equation, θmax = tan−1(D/2 f ). This equation is especially

useful if a non-standard objective is used in the microscope such that the numerical aperture is

not printed on the side of the lens housing.

1.4 Mathematical Description of Coherence

The concept of coherence can be defined as the correlation across time and space of an

electromagnetic wave. Simply put, coherence refers to how much temporal or spatial separa-

tion can exist between two waves before they no longer meaningfully interfere with each other.

It is important to note that all electromagnetic waves can interfere with one another, regardless

of whether they are classified as coherent or incoherent. Therefore, the statement "Coherent

waves interfere with one another, while incoherent waves do not" is false. The relevant question

is not whether waves interfere with one another, but over what range the interference occurs.

In this section, we will develop the mathematical formalism that is used to describe the

degree of coherence of a light source. This derivation follows the approach presented in [6].

The next section will use this formalism to describe the effects that coherence has on imaging

systems.

It is common to describe light as an ideal source such as a continuous wave (CW) laser,

E(t ) = E0(r)exp(−2πiν0t ), which is perfectly monochromatic, ν0, with uniform amplitude. This

type of light will be coherent across all time and space. However, natural light will have varia-

tions in amplitude and have a spectral bandwidth, E(r, t ) = Ẽ0(r, t )exp(−2πi ν̄t ), where Ẽ0(r, t )

is a complex amplitude that varies in time and space, and ν̄ is the center wavelength. By tak-

ing the normalized autocorrelation of the electric field the complex degree of coherence can be

determined, defined as

γ(r,r′,τ) =
〈Ẽ0(r, t +τ)Ẽ∗

0 (r′, t )〉
√

〈|Ẽ0(r, t )|2〉〈|Ẽ0(r′, t )|2〉
=

Γ(r,r′,τ)
√

〈|Ẽ0(r, t )|2〉〈|Ẽ0(r′, t )|2〉
. (1.8)

Where Γ(r,r,τ) = 〈Ẽ0(r, t +τ)Ẽ∗
0 (r′, t )〉 is the mutual coherence function. The complex de-

gree of coherence characterizes the ability of two space-time points to interfere with each other.
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Specifically, the degree of coherence, denoted by γ(r,r′,τ), quantifies the extent to which points

(r, t ) and (r′, t ′) can interfere at a third point (r′′,τ), where τ= t − t ′. This quantity can be readily

measured using an interferometer, additionally, the degree of coherence is a valuable tool for

analyzing the coherence properties of natural light. While the degree of coherence is a com-

plex function, it is often simplified to two coherence measures: coherence time and coherence

length. The coherence length is the full width at half max of γ(r,r′,τ) versus τ, and is denoted

by τc . The coherence length, or the distance over which the light source is temporally coherent,

can then be calculated by multiplying the coherence time by the speed of light, cτc .

For monochromatic light, the coherence length is infinite; however, for chaotic sources like

incandescent bulbs or fluorescent light, the coherence length is sharply peaked, with a coher-

ence time on the order of 1/∆ν, where ∆ν is the bandwidth of the source. To establish or im-

prove temporal coherence, broadband light can be filtered with a narrowband filter, resulting

in a quasimonochromatic light source. This occurs when the coherence time is greater than the

maximum time delay achievable by the optical system, denoted by τmax .

The second measurement commonly done is γ(r,r′,τ) vs. r′. Again using the full width

at half max measurement of the peak width will give the correlation length, Lc . For perfectly

spatially coherent light, the correlation length will be infinite. In the case of spatially incoherent

light the correlation length can be approximated as

γ(r,r′,τ) = Acδ(r− r′), (1.9)

where Ac is the coherence area approximately equal to L2
c . For temporally stationary light, τ= 0,

the degree of coherence function can be simplified to

γ(r,r′,0) = γ(r,r′). (1.10)

This equation is sometimes referred to as mutual intensity. Furthermore when r = r′ we get the

mean irradiance which is often referred to as intensity,
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Ī (r) = Γ(r,r) = 〈|Ẽ0(r, t )|2〉. (1.11)

Below we will also show that the mean irradiance is measured by a photodetector such as a

camera.

1.5 Coherent versus Incoherent Imaging

Imaging systems can be analyzed using linear shift-invariant (LSI) theory, which establishes

a relationship between the recorded image and the specimen being observed [95, 56]. Any LSI

system can be described through the convolution of an impulse response function with the in-

put signal. In an optical microscope, the impulse response function is referred to as the spread

function, which broadens every point in the object by an amount determined by the numerical

aperture of the system. In other words, all imaging systems act as low-pass spatial frequency

filters, with the spatial frequencies present in the object that are captured in the image dic-

tating the spatial frequency transfer function. The spatial resolution of an imaging process is

often characterized by a parameter that measures the width of the spread function, denoted

by δr , which is inversely proportional to a measure of the spatial frequency support’s width,

∆k ∼ 1/δr . Moreover, the coherence of the light affects the imaging performance. In this sec-

tion, we will discuss how coherence modifies the behavior of an imaging system.

1.5.1 Light Detection

Let us first look at how a detector/camera will respond to an incident electric field so that

we can better understand the measurement that is produced by a detector. A photodetector

responds to the time-averaged Poynting vector which is referred to as the irradiance. Following

the derivation in [111], the Poynting vector, defined as S = E×××B/µ0, is the flow of energy in free

space or in an isotropic medium, where

E(r, t ) =
1

2

[

E0ei(k·r−ωt ) +E∗
0 e−i(k·r−ωt )

]

(1.12)
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is the electric field vector and

B(r, t ) =
1

2

[

k×××E0

ω
ei(k·r−ωt ) +

k×××E∗
0

ω
e−i(k·r−ωt )

]

(1.13)

is the magnetic field vector, ××× is the cross product between the two vectors, and E0 is the am-

plitude of the electric field vector. The Poynting vector can be rewritten using Eqn. 4.1 and 4.2

giving,

S =
û

4µ0

[

k

ω
(E0 ·E0)e2i(k·r−ωt ) +

k

ω
(E0 ·E∗

0 )e−2 kω
c û·r + c.c.

]

(1.14)

where û is a unit vector in the direction of the energy flow and c.c. stands for the complex con-

jugate of the terms that came before it.

The Poynting vector can be used to describe the response of an optical detector. Notice

in Eqn. 1.14 that the first term oscillates at the optical frequency, ω, which is on the order

of 1015Hz. This frequency is way too fast for current optical detectors which have an optical

response of 106 − 109Hz. For this reason, it is often the case that the time-averaged optical

response is what is measured,

〈S〉t = û
nǫ0c

2
(E0 ·E∗

0 )e−2 kω
c û·r (1.15)

where 〈·〉t is the time average. Notice that the first term in Eqn. 1.14 has vanished, the reason

for this is that it oscillates symmetrically both positively and negatively, therefore, canceling out

with the time average. Interestingly, the time-averaged Poynting vector, often called irradiance,

includes the direction of energy flow, û. However, it has become common practice to refer to the

intensity rather than the irradiance, where the difference between the irradiance and intensity

is that the direction is dropped, giving intensity as

I =
nǫ0c

2
E0 ·E∗

0 . (1.16)
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It is common to take things one step further dropping the scaling constants and the vector

nature of the electric field leaving the well-known equation for intensity

I = 〈|E |2〉 = E0E∗
0 . (1.17)

Now we see what is meant when it is said "the optical detector responds to the intensity of

the field (the modulus squared) and not the field itself" [96, 115, 95, 111]. This fact of time

averaging is an important factor that drives the differences in imaging behavior of coherent

and incoherent imaging.

1.5.2 Coherent Imaging

For spatially coherent imaging, and assuming a monochromatic, spatially uniform, unity

amplitude illumination field, the image field is given by

Ei (r) = c(r)⊛hcoh(r), (1.18)

where c(r) is the complex object field transmission function that relates the incident field

to the exit surface wave emerging from the back face of the object, h(r) is the coherent spread

function, and ⊛ is the convolution operator, f (r )⊛ g (r ) =
∫∞
−∞ f (r ′)g (r − r ′)dr ′ = 〈 f (r ′)g (r −

r ′)〉r ′ , [95]. The coherent spread function is approximated to be shift-invariant by assuming the

object covers a small region over the pupil plane, tpupi l (ρ). The pupil serves to act as a spatial

filter in the frequency domain, ρ, therefore,

hcoh(r) =
m

λ2 f 2
F

{

tpupi l (ρ)
}

ρ =
m

λ2 f 2
Tpupi l

( r

λ f

)

. (1.19)

Here we see that the PSF is a scaled Fourier transform of the pupil function, and m is the system

magnification.

The convolution is much easier to calculate in the frequency domain; according to the

convolution theorem the spatial frequency domain representation of the imaged field is the
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product of the coherent transfer function and the field transmission function (object), Êi (k) =

H(k) ·Ccoh(k). Here Cc (k) =
〈

ccoh(r)exp(−ik · r)
〉

r where we utilize Dirac integral notation,

〈 f (r)〉r =
∫

f (r)dnr, where n is the dimension of the spatial coordinate vector r, Ccoh(k) is the

object spatial frequency spectrum given by the Fourier transform of the object. The coherent

spread and transfer functions are related by a Fourier transform H(k) =
〈

h(r)exp(−ik · r)
〉

r [95].

We see from the perfectly monochromatic and spatially coherent case that the imaged field

is linear in the field, however, to extend coherent imaging to incoherent imaging it is first neces-

sary to assume a quasimonochromatic source so that we can introduce our statistical descrip-

tion of light developed in Section 1.4. We will utilize linear superposition to describe the total

imaged field. To do this we will need to use the frequency domain description of the object

using the Fourier transform. The object field can be written as

Eob j (r, t ) = 〈Êob j (r,ν)exp(−2πiνt )〉ν. (1.20)

Plugging the object field into Eqn. 1.18 gives

Ei m(r, t ) =
〈

exp(−2πiνt )Êob j (r′,ν)hcoh(r− r′;ν)
〉

ν,r′
(1.21)

where hcoh now depends explicitly on the optical frequency, ν, because the PSF can vary with

frequency. The frequency dependant PSF can be written as

hcoh(r− r′;ν) =
m

λ2 f 2
exp

[

i 2πν
w(r,r′)

c

]∣

∣

∣

∣

Tpupi l

[

m

λ f
(r− r′)

]∣

∣

∣

∣

, (1.22)

where exp
[

i 2πνw(r,r′)/c
]

accounts for the phase of the pupil. In order to simplify this expres-

sion let’s set τp = w(r,r′)/c to be the time delay for light emanating from point r′ to point r.

Inserting these expressions into the Eqn. 1.21 yields

Ei m(r, t ) =
m

λ̄2 f 2

〈

exp(−2πiνt )Êob j (r′,ν)exp
[

i 2πντp

]

∣

∣

∣

∣

Tpupi l

[

m

λ̄ f
(r− r′)

]∣

∣

∣

∣

〉

ν,r′
. (1.23)
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Using the definition of the object Fourier transform with a shift from the pupil phase, we

can rewrite this equation as

Ei m(r, t ) =
m

λ̄2 f 2

〈

Eob j (r′, t −τp )exp
[

i 2πν̄τp

]

∣

∣

∣

∣

Tpupi l

[

m

λ̄ f
(r− r′)

]∣

∣

∣

∣

〉

r′
. (1.24)

Finally, we recognize that we have the coherent PSF at the mean frequency, dropping the

unimportant scaling constant in the front gives

Ei m(r, t ) =
〈

Eob j (r′, t −τp )hcoh(r− r′; ν̄)
〉

r′

= Eob j (r′, t −τp )⊛hcoh(r; ν̄).

(1.25)

At first glance, it may appear that we have not made much progress, however, with further

inspection, we see that the object field is now related to the image field by a retarded time of

t − τp which is the propagation time through the imaging system which allows for arbitrary

wavelength-dependent optical aberrations.

Now that we have developed what field is at the image plane, it follows naturally to ask ’what

do we measure at the image plane?’ To answer this question we can refer back to Eqn. 1.17

which showed that a photo-detector responds to the magnitude squared of the electric field.

We can plug in the imaged electric field, Eqn. 1.25, into Eqn. 1.17 which gives

Ii m(r) =
〈

Ei m(r)E∗
i m(r)

〉

t

=
〈

〈

Eob j (r′, t −τp )hcoh(r− r′; ν̄)
〉

r′
〈

E∗
ob j (r′′, t −τp )h∗

coh(r− r′′; ν̄)
〉

r′′

〉

t

(1.26)

If we rearrange the order of integration we get

Ii m(r) =
〈

〈

Eob j (r′, t −τp )E∗
ob j (r′′, t −τp )

〉

t hcoh(r− r′; ν̄)h∗
coh(r− r′′; ν̄)

〉

r′,r′′
(1.27)

We then use the definition of mutual coherence defined in, Eqn. 1.8,
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Ii m(r) =
〈

Γob j (r′,r′′;∆τ(r,r′r′′)hcoh(r− r′; ν̄)h∗
coh(r− r′′; ν̄)

〉

r′,r′′ (1.28)

The image irradiance is

Ii m(r) =
〈

γob j (r′,r′′)
√

Īob j (r′)Īob j (r′′)hcoh(r− r′; ν̄)h∗
coh(r− r′′; ν̄)

〉

r′,r′′
(1.29)

where Ī (r′) = 〈|Ẽob j (r′)|2〉 is the mean intensity emanating from the object, the degree of co-

herence of the light emanating from the object is described by γob j (r′,r′′), in the case of fully

coherent light γob j (r′,r′′) = 1.

1.5.3 Incoherent Imaging

In the case of spatially incoherent, quasimonochromatic (narrow band) illumination, we

can use the spatial incoherent approximation, Eqn. 1.9, which was

γ(r,r′) = Acδ(r′− r′′). (1.30)

We can plug this into Eqn. 1.29 giving

Ii m(r) =
〈

Acδ(r′− r′′)
√

Īob j (r′)Īob j (r′′)hcoh(r− r′; ν̄)h∗
coh(r− r′′; ν̄)

〉

r′,r′′
. (1.31)

The delta function allows us to use the sifting property when the integration on r′′ is per-

formed giving a much-simplified expression

Ii m(r) =
〈

Ac

√

Īob j (r′)Īob j (r′)hcoh(r− r′; ν̄)h∗
coh(r− r′; ν̄)

〉

r′

= Ac

〈

Īob j (r′)
∣

∣hcoh(r− r′; ν̄)
∣

∣

2
〉

r′
.

(1.32)

Eqn. 1.32 gives us an equation for spatially incoherent imaged intensity on a photodetector.

We have assumed that the object is planar and in focus however, this is a very useful formula
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that says the imaged intensity is equal to the emitted object intensity convolved with the mag-

nitude squared of the coherent spread function (CSF). We can define the incoherent spread

function or more commonly referred to as the point spread function (PSF) to be

hi ncoh(r− r′) = Ac

∣

∣hcoh(r− r′; ν̄)
∣

∣

2
, (1.33)

therefore we can rewrite Eqn. 1.32 as

Ii m(r) = Īob j (r)⊛hi ncoh(r). (1.34)

This gives the well-known convolution formula. It is common to say that spatially coherent

(quasimonochromatic) imaging is linear in the electric field and spatially incoherent (quasi-

monochromatic) imaging is linear in intensity, from the above derivation, we can see where

this expression comes from.

1.5.4 Comparison of Coherent vs. Incoherent Imaging

In the spatial frequency domain, the imaging process is described by Îi m(k) = H(k) · Îob j (k).

The spatial frequency spectrum of the spatial distribution of the object intensity is given by

the Fourier transform Îob j (k) =
〈

Iob j (r)exp(−ik · r)
〉

r
. It follows from the definition of the PSF

that OTF(k) = H(k)⋆ H(k), where ⋆ is the correlation operator, known as the optical transfer

function [95].

Taking the Fourier transform of the PSF will yield the optical transfer function (OTF). It is

common to refer to the modulation transfer function (MTF) interchangeably with the OTF, the

reason for this is that the MTF is simply the magnitude of the complex-valued OTF.

At this point, it would appear that incoherent imaging is far superior to coherent imaging

since the bandpass of the incoherent system is twice that of the coherent. However, this conclu-

sion is not so clear. The reason for this is that CTF pertains to the field while the MTF pertains

to the intensity. Therefore, these quantities can not be directly compared. In order to compare

24



FFT

AutocorrelationMag. Squared

FFT

a) b)

c) d)

Figure 1.7: This figure shows the relationship between the CSF (a), the CTF (b), the PSF (c), and the MTF

(d).

the two systems it is necessary that they both be compared on the same footing, i.e. intensity.

Goodman has a discussion that I will use as a guide for the following discussion, [56].

Let’s take a moment to explore the distinction between coherent and incoherent illumina-

tion, as it provides insight into the impact on image formation of these two types of light. Coher-

ent illumination refers to light rays that are highly correlated in amplitude and phase, such that

knowledge of the properties of one ray extends to its neighboring rays. Conversely, in the case

of incoherent light, the amplitude and phase of a single ray does not provide any information

about the surrounding light, which varies randomly over time and is therefore completely un-

correlated. This distinction has significant implications for imaging. If we imagine each point
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in the object to be imaged as having its own unique spread function with corresponding am-

plitude and phase, it’s easy to envision how these points may interfere with one another when

they overlap. The stability of these interference patterns is determined by the coherence of

the illumination. With coherent illumination, the interference pattern will be stable over time,

whereas in the case of incoherent illumination, the interference patterns will fluctuate rapidly

and average out over time. While this description is heuristic, it provides a useful framework for

intuitively grasping the distinction between the two types of illumination.

In order to compare coherent and incoherent imaging quantitatively, it is necessary to dis-

cuss on which grounds the comparison will be made. Since imaging systems readily image the

intensity and not the field, let us make the choice to compare the two modalities based on in-

tensity since that is what will be detected by the photodetector. I will briefly summarize the key

results from the above sections, the coherent imaged electric field is

Ei m(r) = h(r)⊛Eob j (r) (1.35)

where the detected intensity for coherent imaging is

Icoh(r) = |Ei m(r)|2 = |h(r)⊛Eob j (r)|2. (1.36)

Here we see that coherent imaging is linear in the field while it is nonlinear in intensity. In the

case of incoherent imaging, the intensity is

Ii ncoh(r) = |h(r)|2 ⊛ |Eob j (r)|2. (1.37)

We can see a major difference between incoherent imaged intensity compared to coherent im-

aged intensity. Equation 1.37 shows that incoherent imaging is linear in intensity.
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Figure 1.8: This figure shows the difference between mathematical operations in coherent and incoher-

ent imaging. Object A, Eob j (r) = cos
(

2π fo x
)

, amplitude spectrum (blue) verse the autocorrelation of the

object spectrum (red dotted line).

The difference in imaging performance becomes more clear when evaluated in the fre-

quency domain. Taking the Fourier transform of Eqn. 1.36 and Eqn. 1.37 yields,

Îcoh(k) = H(k)Êob j (k)⋆H∗(k)Ê∗
ob j (k) (1.38)

and

Îi ncoh(k) = [H(k)⋆H∗(k)][Êob j (k)⋆ Ê∗
ob j (k)]. (1.39)

Here we see that the coherent and incoherent spectral bandpass have the same cutoff fre-

quency, however, the order of operations is quite different which will have a profound impact on

imaging characteristics. Figure 1.8 shows the spectral content passed through the bandpass of

both coherent illumination (blue) and incoherent illumination (red dotted line) for a sinusoidal

object. For a coherent system, the field spectrum will be filtered by the imaging system, while

the autocorrelation of the object spectrum will be filtered by the incoherent imaging system.
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Note, then it is said that the spread function of an imaging system is convolved with the object.

We do not mean that there is an actual convolution of space reversals followed by a shifting of

the spread function across the object (unless it is point scanning), but rather we are referring

to a mathematical description of the outcome of the imaging system. However, if one wants

to try to locate where the physical operation is performed it is easiest to see this occurring in

the frequency domain where the object spectrum is multiplied by the transfer function. Again,

this statement can not be taken too literally either, as it ignores the detection process which is

a nonlinear operation in the field that gives rise to the autocorrelation function. It should be

reiterated that no physical autocorrelation is performed in the same manner that no convolu-

tion is performed, we must remember that this is a mathematical description of the result of

the detection of the field by nonlinear means and the result is a model that is best described as

an autocorrelation. It is also the case that we are able to detect spatial frequencies above the

bandpass of the physical optics by means of nonlinear detection. It is probably best to show a

couple of examples to illustrate the differences between coherent and incoherent illumination

imaging systems.

From the above equations, it is not clear which imaging modality will perform better than

the other. Before we go further let us define what we mean by better. An imaging system is

better if it has a higher cutoff frequency in the detected quantity (i.e. intensity) and has higher

contrast. So let us consider three examples of test objects to help shed some light on this issue.

A : Eob j (r) = cos
(

2π fo x
)

B : Eob j (r) = |cos
(

2π fo x
)

|

C : Eob j (r) = exp
{

iπ0.5cos
(

2π fo x
)}

where fo is fc /2 < fo < fc , fc is the cutoff frequency of the CSF. Starting with function A which is

a cosine with a frequency of fo ranging from [−1,1]. When this object is imaged it will transmit

through the low pass filter of the CSF so both coherent and incoherent modalities will form an

image of the object. However, since the intensity will be detected (as the magnitude squared of
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Figure 1.9: This figure shows several mathematical operations performed in the image formation of both

coherent and incoherent illumination imaging. Panel (a) shows the CTF (blue) of a coherent imaging

system, the filtered field spectrum of object A passed through the imaging system (red), and the auto-

correlation of the filtered spectrum detected at the image plane of object A (yellow). Panel (b) shows the

OTF of an incoherent imaging system (blue), the autocorrelation of object A’s spectrum (red), and the

filtered autocorrelation of object A’s spectrum detected at the image plane. Panel (c) compares the de-

tected spectral content of the coherent (blue) and incoherent (red) imaging systems of object A. Panel (d)

shows the true object (blue), the intensity image formed by the coherent system (red), and the intensity

image formed by the incoherent system (yellow).

the electric field) the effective imaged cutoff spatial frequency will be 2 fo . Figure 1.9 compares

the coherent illumination to the incoherent illumination with a series of images for the mathe-

matical operations involved in detecting the intensity. We see in the final image that coherent

illumination can be said to be better than incoherent since the depth of modulation is signif-

icantly better for coherent. Notice that the imaged spatial frequency is twice that of the true

object, the reason for this is that the object has negative values which are not possible when

detecting intensity.

Object B is a bit more straightforward as the periodic structure is 2 fo . Therefore, when this

object is imaged with coherent illumination the fundamental spatial frequency of the object will

not pass through the amplitude transfer function and the resulting image is of DC illumination,
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Figure 1.10: This figure shows several mathematical operations performed in the image formation of

both coherent and incoherent illumination imaging. Panel (a) shows the CTF (blue) of a coherent imag-

ing system, the filtered field spectrum of object B passed through the imaging system (red), and the

autocorrelation of the filtered spectrum detected at the image plane of object B (yellow). Panel (b) shows

the OTF of an incoherent imaging system (blue), the autocorrelation of object B’s spectrum (red), and the

filtered autocorrelation of object B’s spectrum detected at the image plane. Panel (c) compares the de-

tected spectral content of the coherent (blue) and incoherent (red) imaging systems of object B. Panel (d)

shows the true object (blue), the intensity image formed by the coherent system (red), and the intensity

image formed by the incoherent system (yellow).

as seen in Figure 1.10. However, in the case of incoherent illumination, the fundamental fre-

quency will be imaged, albeit with a low modulation depth. We see that in this case, incoherent

illumination is better than coherent. Figure 1.10 shows that the spatial frequency does not pass

through the CTF of the coherent imaging system (panel a) and therefore leads to an image that

has no object features (panel d, red), however, the incoherent imaging system will pass the first

order spatial frequency (panel b) but the OTF will attenuate the high spatial frequency leading

to a low contrast image (panel d, yellow).

Object C is a complex phase object with a fundamental period of fo which acts like a phase

grating. In the case of coherent imaging, the resulting images will be a modulated intensity

pattern at the fundamental spatial frequency of the object. In the case of incoherent imaging,
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Figure 1.11: This figure shows several mathematical operations performed in the image formation of

both coherent and incoherent illumination imaging. Panel (a) shows the CTF (blue) of a coherent imag-

ing system, the filtered field spectrum of object C passed through the imaging system (red), and the

autocorrelation of the filtered spectrum detected at the image plane of object C (yellow). Panel (b) shows

the OTF of an incoherent imaging system (blue), the autocorrelation of object C’s spectrum (red), and the

filtered autocorrelation of object C’s spectrum detected at the image plane. Panel (c) compares the de-

tected spectral content of the coherent (blue) and incoherent (red) imaging systems of object C. Panel (d)

shows the true object (blue), the intensity image formed by the coherent system (red), and the intensity

image formed by the incoherent system (yellow).

the resulting image will be DC illumination with no modulation. Clearly, in this case, coherent

imaging can be said to be better than incoherent imaging. Figure 1.11 shows that the coherent

imaging system will image the complex object resulting in a high contrast image at the object

spatial frequency (panel d, red). On the other hand, the incoherent imaging system will not be

able to image the complex object because the phase information is completely lost resulting in

an image of uniform intensity (panel d, yellow).

Here we have seen several examples of objects where coherent and incoherent imaging can

be said to be better than the other. The fact is that neither type of illumination is better than

the other, but rather it depends on what sample is being imaged and what the objective of the

imaging system is. However, if a general statement about performance is going to be made, it is
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generally accepted that incoherent imaging is going to be easier to work with and the results that

it produces will be straightforward to interpret since incoherent imaging is linear in intensity.

Then if incoherent illumination is not sufficient for the purposes of the imaging system then

coherent illumination should be used. See Appendix A for code that generated Figures 1.9, 1.10,

and 1.11.

So far I have described the mathematical representation of an imaging system, next I will

give some intuition into what the diffraction limit means and how spatial frequencies play a key

role. One way to define the diffraction limit would be the tightest point focus that is achievable

with a given wavelength and NA, δr = λ/2N A. What this means is that given a range of spatial

frequencies, ranging from [−N A/λ, N A/λ], with a perfect parabolic wavefront, will interfere so

that there is the tightest possible point focus at the focal plane of the lens. The wider the range

of spatial frequencies the tighter and more localized the point focus will be. Additionally, if there

is an optical aberration, such as a cubic phase across the wavefront, then at the focus there will

be some interference which will cause the point focus to spread out, no longer being diffraction

limited. Figure 1.12 shows a beam focus from a superposition of plane waves. The top row on

the left side shows a diffraction-limited focus from 41 plane waves interfering together where

the angles of the plane waves are uniformly spaced from [-20,20] degrees, giving an effective NA

of 0.34. We see that the focus of a lens is nothing more than an interfering tilted plane wave.

In the middle and right-hand side there is a spot focus from the same set of plane waves but

a cubic phase has been added with additional random noise. We see the cubic phase (phase

aberration) causes the focal spot to become distorted, no longer yielding a diffraction-limited

spot size since the interfering plane wave no longer has a flat phase. The bottom row of Fig. 1.12

shows the same thing as the top except the are 81 plane waves informally spaced from [-40,40]

degrees. This range gives an effective NA of 0.64. We see that the spot size is much smaller than

that of the top row. Again, a cubic phase was added to the plane wave to cause distortion on the

focal spot. The code used to generate Fig. 1.12 can be found in Appendix B.
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Figure 1.12: This figure shows plane wave interference which produces a focal spot. The top left figure

shows 41 plane waves with uniform spacing from [-20,20] degrees. The top middle figure is the same set

of plane waves with cubic and random phases. The added phase is shown on the top right. The bottom

row is the same as the top except 81 plane waves were used ranging from [-40,40] degrees.
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Chapter 2

Introduction to Single Pixel Imaging

2.1 Single Pixel Imaging

In this section, I describe some of the differences between camera-based imaging systems

compared to single-pixel imaging systems and describe the advantages of single-pixel imaging.

As discussed in the previous section, most imaging systems can be described by LSI theory. For

example, a small point object imaged by point scanning a beam focus and detecting the signal

light with a single pixel detector will have the same point spread function (PSF) as it would un-

der widefield coherent illumination, image relayed to a camera. The primary difference here is

that point scanning encodes the object information in time while camera-based imaging cap-

tures the spatial information in parallel simultaneously across space. It may seem at first glance

that camera-based detection is superior since it collects all the image data simultaneously, how-

ever, this is not the full story.

Camera-based imaging plays an important role in image acquisition but there are liabilities

that can be overcome with single-pixel imaging. Some of the advantages of single-pixel imag-

ing are scattering robustness in highly scattering samples [39, 75, 139]. The reason for this is

that the single-pixel detector only requires the signal light to fall on the detector (no need for

an imaging condition) so even if the signal light experiences multiple scattering through the

sample to the detector, an image can still be formed robustly. The question, of primary im-

portance, is how much the illumination beam distorted on transmission through the scattering

sample to the focal plane and how much signal light was collected. Single-pixel imaging is only

susceptible to scattering of the illumination beam. This can be a huge advantage, especially in

the case of multi-photon excitation imaging since longer wavelengths of light are used for the

illumination which experience far less scattering compared to shorter wavelengths [33]. The

second question is concerned with the SNR of the measurement. However, as long as a repre-
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sentative proportion of light from the field of view falls on the detector a reconstruction of the

object can be formed. This is due to the fact that in low signal regimes, photon counting can be

used which mitigates many noise sources such as thermal and electronic noise providing bet-

ter SNR. Additionally, the constraints on the collection optics can be relaxed from an imaging

condition which allows easy placement of multiple detection arms.

Another advantage is the temporal bandwidth is very high for a single pixel detector so a

large amount of information can be encoded in time, allowing very rapid imaging to be car-

ried out [59] or a large amount of spatial information to be encoded [46]. The final advantage I

will mention here is improved SNR under weak signals. This is often referred to as the multiplex

advantage, the idea is that if your signal is weak and barely above the noise floor then multiplex-

ing your signal together can allow the detected signal to rise above the noise floor, improving

the fidelity of the measurement [64]. This advantage can turn into a liability if there is a strong

source in the same field of view as a weak source. The reason for this is that the shot noise (white

noise) from the strong source will be multiplex across the entire field of view raising the noise

floor which may result in burying weak sources in the noise [64].

There are many approaches to single-pixel imaging, such approaches include point scan-

ning (Confocal,STED), line imaging (OCT,SPIFI), 2D imaging (Ghost imaging, Single-pixel cam-

eras), 3D imaging (Confocal, Tomography) to name a few. There are basically two configura-

tions for single-pixel imaging, the first is to structure the illumination light before the sample

and detect the signal light with a single-pixel detector after the sample. The second config-

uration is to use unstructured illumination light and structure the signal light after the sam-

ple, then detect the signal light with a single pixel detector. In this chapter, I will focus on the

first configuration because it is the most common and has advantages over the second con-

figuration such as less photo-damage and scattering robustness on collection [139]. Single-

pixel imaging techniques can be written in a standard form to be solved as an inverse problem.

The general idea is that the illumination intensity, Ii l l (r, t ) has a spatial structure and varies in

time. The illumination intensity excites the contrast distribution, c(r). The contrast distribu-
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tion can be any light-matter interaction, such as absorption, linear and nonlinear fluorescent

emission, second harmonic generation (SHG), phase contrast, etc. The illumination light is

projected onto the contrast distribution, the signal light can be modeled as a spatial multiplica-

tion, Isi g (r, t ) = Ii l l (r, t )c(r). The signal light is then collected by a single pixel detector (typically

a photodiode or PMT) which acts as a spatial integration, generating a continuous-time signal.

Therefore, a mathematical model of the detected signal can be written as

S(t ) = 〈Isi g (r, t )〉r = 〈Ii l l (r, t )c(r)〉r. (2.1)

where 〈·〉r is a spatial integral over the dimensions of r = (x, y, z). Note that Ii l l (r, t ) also has

dimensions of (x, y, z). This equation can be interpreted as a projection of the contrast distribu-

tion onto an illumination intensity distribution. Figure 2.1 shows several examples of various

types of illumination patterns that can be used for single-pixel imaging. Note, I have implicitly

assumed that the signal light collected on the detector is a representative portion of light col-

lected by the collection optics from the total signal generated by the sample. This assumption

means that it is not necessary to collect all of the signal light, it is only necessary to collect part

of the signal, as long as the part that is collected is an accurate proportion of the total signal

light.

Since the signal will be digitized and processed on a computer, a discrete model needs to

be formulated so that the image reconstruction can be performed on a computer. There are

numerous ways to formulate to discrete model, I will model all continuous objects (sample, il-

lumination patterns, and temporal signals) as discrete. In this way, the forward model can be

easily represented using linear algebra. A continuous to discrete mapping can be generated us-

ing this general function, fm =
∫b

a f (x)hm(x)dx, where fm is the mth component of the discrete

vector and hm(x) is a kernel such as a box car called the point response function, [6]. For exam-

ple, the continuous to discrete mapping to take place in a camera where ( f (x) is a continuous

image, the camera will discretely sample the image intensity with each pixel of the camera sen-

sor array. Therefore each pixel can be modeled as hm(x) = 1 on the interval of a −b at the mth
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LSM SPIFI Random Hadamard

Figure 2.1: This figure shows four different illumination strategies for single-pixel imaging. The first

column shows point scanning, the second shows spatial frequency illumination, the third shows ran-

dom speckle patterns, and the fourth shows 2D Hadamard matrices. The black and gray represents the

object or contrast function, c(r), the green represents the illumination intensity, Ii l l (r), and the orange

represents the fluorescent signal, S(t ).

pixel location and zero otherwise. Running the contrast distribution and illumination intensity

through a continuous-to-discrete mapping function yields a discretely sampled signal that can

be modeled using linear algebra, giving the well-known forward problem

S = A c+ǫ (2.2)

where S = [s1, s2, . . . , sNt ]T is the signal vector sampled by the single pixel detector with size [Nt ×

1], Nt is the number of sampled time points, A is the measurement matrix or sensing matrix of

size [Nt × Nx], where Nx is the number of discrete spatial points, c is the discretely sampled
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object vector of size [Nx × 1], and ǫ is the additive noise of size [Nt × 1]. The measurement

matrix A is a matrix that contains the vectorized illumination patterns. Once the signal has

been measured, the question then becomes given the measured data, S, and the measurement

matrix, A, how can one recover an estimate of the true object, c. This is known as an inverse

problem. There are many ways to solve the inverse problem in the following sections we will

explore several methods to solve an inverse problem

2.2 General theory of single pixel intensity imaging

In this analysis, we restrict our discussion to thin objects. Extension of this theory for single-

pixel imaging to three-dimensional objects is straightforward but requires that the spatial co-

herence of the illumination and collected light be specified. For planar single-pixel intensity

imaging of thin objects, the spatial coherence of the illumination and emitted light does not

alter the results, so a more straightforward interpretation is possible. Moreover, our discussion

of single-pixel phase imaging with DOPE is similarly focused on thin objects, although we note

that DOPE requires illumination with spatially coherent light to obtain the phase.

Single-pixel imaging exploits a time-sequence of spatially modulated illumination light,

Iill(ρ, t ), that is directed toward an object under study. Images are formed by first collecting

light from the object, Iobj(ρ, t ), and directing that collected light onto a single pixel (single el-

ement or bucket) detector. Here ρ is the two-dimensional transverse spatial vector, and we

assume that the object lies entirely in that plane. Assuming that the single pixel detector is large

enough in spatial extent to capture all of the light in the detection plane, the intensity distribu-

tion incident on the detector, Id (ρd , t ), is spatially integrated, i.e., the photocurrent generated

at each spatial point where the collected light impinges on the detector surface is summed at

the output of the photodetector.

A wide range of modulated illumination light patterns have been explored for single-pixel

intensity imaging. In each case, the illumination light produces light emerging from the object

that is recorded as a discrete sequence of coefficients proportional to the total photocurrent
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generated by the single pixel detector in response to each spatially structured illumination pat-

tern. Confocal microscopy is a limiting case of structured light single-pixel imaging where the

effective illumination light is a single point focus [94]. The illumination light can be focused to

a line [51] for one-dimensional, i.e. line imaging. One-dimensional modulation patterns can

be used for two-dimensional imaging by extruding a line modulation pattern to two dimen-

sions, allowing the object intensity to be recovered with lateral tomography [125] or a linear ar-

ray of photodetectors [62]. Moreover, two-dimensional modulation patterns can be employed

[121, 150], provided a large enough set of modulation patterns span the two-dimensional object

space.

2.2.1 Intensity-contrast single-pixel imaging theory

Assuming that the collection optics faithfully deliver the light emerging from the object onto

the single pixel detector, the temporal variation of the signal from the detector is given by

St = 〈Id (ρd , t )〉ρd
= 〈Iobj(ρ, t )〉ρ, (2.3)

where we have adopted Dirac’s integral notation, 〈b(ρ)〉ρ ≡
∫

b(ρ)d 2
ρ. The object intensity will

depend on whether we are recoding spatially coherent or incoherent light emerging from the

object. Note that we are not treating partially coherent light, as that description requires a more

complete theory that makes use of the cross-spectral density.

For the case of spatially incoherent light collection, the object intensity reads Iobj(ρ, t ) =

Iill(ρ, t )c(ρ), where c(ρ) is the relevant object spatial distribution, such as the intensity trans-

mission of the object under study or the variation in concentration of a fluorescent emitter.

In the case of spatially coherent illumination, we consider a modulated unity-amplitude

illumination field that passes through a modulator that produces the illumination field,

Eill(ρ, t ) = fmod(ρ, t ), where fmod(ρ, t ) is the field modulation function imparted by an SLM.

This modulated illumination field passes through (or is reflected off of) a thin object that dis-
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plays a complex field response, g (ρ). The intensity of the light exiting the object is

Iobj(ρ, t ) =
∣

∣Eill(ρ, t ) g (ρ)
∣

∣

2 =
∣

∣ fmod(ρ, t )
∣

∣

2
c(ρ). (2.4)

The intensity transmission of the object is denoted by c(ρ) =
∣

∣g (ρ)
∣

∣

2
, and the intensity modula-

tion is
∣

∣ fmod(ρ, t )
∣

∣

2
, leading to a modulated illumination intensity of Iill(ρ, t ) =

∣

∣ fmod(ρ, t )
∣

∣

2
.

While in general the spatio-temporal modulation can be applied to the electric field with

a suitable spatial light modulator, we will restrict our discussion to a modulation function of

the form fmod(ρ, t ) = 1+M(ρ, t ), where we assume that
∣

∣M(ρ, t )
∣

∣ ≤ 1. This imparts a spatially

and temporally varying modulation on the incident field that produces the illumination field

Eill(ρ, t ) = 1+M(ρ, t ). Under these assumptions, the modulated illumination intensity reads

Iill(ρ, t ) =
∣

∣1+M(ρ, t )
∣

∣

2 ≡ 1+MI(ρ, t ), (2.5)

where MI = 2M(ρ, t )+M 2(ρ, t ) defines the intensity modulation.

The temporal signal arising from the modulation of the illumination light, St , can be de-

composed into a sum of the average signal, S0, and a signal that fluctuates relative to the mean,

∆S(t ), such that: St ≡ S0 +∆S(t ). In that case, we write the average signal as S0 = 〈c(ρ)〉ρ, while

the fluctuating signal is

∆S(t ) = 〈MI(ρ, t )c(ρ)〉ρ. (2.6)

Here, we have assumed that the modulation function has a zero mean, i.e., 〈M(ρ, t )〉t = 0 and

〈MI(ρ, t )〉t = 0.

When the modulation masks, MI(ρ, t ), are drawn from an orthonormal basis, the object is

reconstructed by synthesizing the object from the projections weighting the superposition of

the basis functions

ĉ(ρ) = 〈∆S(t )MI(ρ, t )〉t . (2.7)
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Note that the unity bias in the modulation function is critical for this object reconstruction

because a set of non-negative modulation functions cannot be orthonormal, which motivates

adopting this approach.

2.2.2 Modulation of the illumination or collected light intensity is equiva-

lent

For the case of a thin object, the image synthesis is independent of when the illumination light

is modulated, either before or after interacting with the object. When the input illumination

light is modulated we denote this by fill(ρ, t ), or when the light exiting the object is modulated

we denote this by fex(ρ, t ). In the most general scenario, both the illumination and collected

light can be modulated, leading to a double modulation such that fmod(ρ, t ) = fill(ρ, t ) fex(ρ, t ),

producing a temporal signal given by

St = 〈
∣

∣ fill(ρ, t ) fex(ρ, t )
∣

∣

2
c(ρ)〉. (2.8)

Clearly, either modulation term in the expression above can be set to unity to reduce our ex-

pression to a pre- or post-modulation condition. The commutation of the pre and post-object

illumination is only possible in the limit of a thin object, where we assume that the illumination

light is not significantly modified during propagation in the object.

2.3 Closed Form Inverse Problems

Perhaps the simplest closed-form inverse problem is often referred to as the ’naive’ recon-

struction. It has the form

A−1S = ĉ (2.9)

where A−1 is the inverse of the A matrix. Eqn. 2.9 is equally valid for both standard imaging with

an arrayed detector and single-pixel imaging. The only difference between the two classes of

imaging is that the measured data, S, needs to be vectorized for standard imaging while single-
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pixel imaging reads out a vector of data. This solution is considered naive because it assumes

that A−1 exists and is well-posed. In general, this technique does not work well even in the

absence of noise. The reason for this is that the condition number of the measurement matrix is

typically very large which will have the effect of amplifying noise in the reconstruction resulting

in a very poor estimate of the object of interest. The condition number is the ratio between the

largest and smallest singular values of a matrix,

κ(A) =
σmax(A)

σmi n(A)
. (2.10)

The condition number can be thought of as describing the sensitivity of an input to its out-

put. That is if the condition number is small then a small change in the input will yield a small

change to the output and the mapping is said to be stable. If the condition number is large, a

small change in the input will yield a large change in the output. This means that if the mea-

surement matrix has a large condition number then when a solution is sought with the inverse

of the matrix the noise present in the measurement will cause large changes to the estimated

object, which results in a very poor reconstruction of the object [6, 99].

It is possible to improve the stability of the ’naive’ reconstruction algorithm by improving

the condition number of the measurement matrix. One such method, sometimes called the

low-rank approximation or truncated SVD method, works by calculating the singular value de-

composition of the measurement matrix, A = UΣV∗, then truncating the singular values of Σ to

give Σ̃ where Σ̃ is the same matrix as Σ except it contains only the first r largest values and all

other values are set to zero. This has the effect of filtering out all the singular vectors with small

singular values. Then a low rank approximation is formed by Ã = UΣ̃V∗. Finally, the pseudo-

inverse of Ã is calculated to yield an L2 norm solution

ĉ =
(

Ã∗Ã
)−1

Ã∗S, (2.11)
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where ∗ is the complex conjugate. The reconstruction often represents the true object of in-

terest much more accurately, however, it typically comes at the cost of filtering out high spatial

frequency information resulting in a blurred object estimation.

2.4 Iterative Inverse Problems

Alternatively, the inverse problem can be solved iteratively. There are several advantages to

solving the inverse problem with iterative methods. First, it is often the case that the inverse

of the measurement matrix does not need to be calculated, we will see this below. Second,

the full inverse problem may be so large that it is impractical/impossible to store in memory.

Finally, prior knowledge or assumption on the object can be enforced without having to find

a closed-form representation which may not exist. The iterative inverse problem will solve a

minimization problem where the best fit or estimate of the object is returned given by the choice

of error metric subject to regularization. This can be mathematically written as

ĉ = min.
ĉ

1

2
‖A ĉ−S‖n +γR{ĉ} (2.12)

where ‖·‖n = n
√

∑

|x|n is the Ln norm for an integer value n, ĉ is the estimated object vector

of size [Nx x 1] where n is the number of columns and m is the number of rows, γ is the reg-

ularization weighting coefficient, and R{·} is some regularization or constraint placed on the

object estimate. The measurement matrix must accurately represent the signal formation of

the imaging system which is a discretized representation of the effective illumination intensity.

There are many types of regularization constraints that can be applied in eqn. 2.12. Some

of the most common are L1 norm (total variation), L2 norm (Tikhonov), non-negativity con-

straint, and total energy constraints to name a few of the most common. The regularization

can be applied in combination with the various constraints. The first term is on the right-hand

side of eqn. 2.12 is a norm error between the estimated signal, A ĉ and the measured signal S.

Depending on the norm used to calculate the error, the norm will cause the solution to take
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on different characteristics. For example, if the L1 norm is used this is typically good for dis-

continuous objects and robust to outliers in the data. If the L2 norm is used as the measure

for error then typically smooth solutions will be found and will be more sensitive to outliers in

the data. Non-negativity and total energy constraints correspond to the real properties of the

object being imaged.

One of the major advantages of using regularization in eqn. 2.12 is that the first term on

the right-hand side is typically ill-posed resulting in an infinite number of equally good solu-

tions to the minimization problem. That is, there is an infinite set of estimated objects ĉ that

satisfy the minimization problem. Therefore, regularization is used to help constrain the set of

possible solutions. This is typically done by placing constraints that represent the underlying

physics such as non-negativity or energy constraints. Regularization can also be thought of as

improving the ill-posedness of the problem by artificially improving the rank of the problem.

Alternatively, regularization can be thought of as providing a place for the noise on the mea-

surement to be represented. Whichever form of regularization is used, the goal is to push the

solution toward a desirable solution and minimize the effects of noise in the measurement.

Eqn. 2.12 is related to a technique known as convex relaxation, [20, 143], where the inverse

problem is solved subject to a norm ball,

ĉ = min.
ĉ

||c||1 subject to ||Aĉ−S||2 < ǫ. (2.13)

The radius of the norm ball is set by the estimated or expected noise level, ǫ. The norm ball will

penalize any solution that falls outside the radius set by the noise level. This ensures that the

solution to the minimization problem does not "blow up" due to the noise present in the data.

This is especially relevant when the inverse problem is ill-posed and the solution is prone to the

amplification of noise [20].
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Chapter 3

Introduction to SPIFI and CHIRPT Imaging

3.1 Introduction to CHIRPT and SPIFI

Coherent Holographic Image Reconstruction by Phase Transfer (CHIRPT) and SPatIal Fre-

quency modulated Imaging (SPIFI) imaging are single-pixel imaging techniques that utilize

light sheet illumination to form an image. Both techniques have their respective advantages

and disadvantages which I will discuss at the end of this chapter, however, both modalities

share the same core idea for image formation which I will discuss here.

CHIRPT and SPIFI first got their inspiration from desiring to multiplex multiple spatial

points together instead of raster scanning a point around which is commonly done in confocal

microscopy. The motivation is that by multiplexing the spatial data there would be a subse-

quent decrease in acquisition time. The idea was then if each spatial location has a unique

temporal modulation frequency then the spatial information can be easily recovered with a

Fourier transform of the time signal. This then leads naturally to the modulator disk with a

pattern m(x, t ) = 1/2[1+ cos(∆κxt )] where each spatial location has a unique modulation fre-

quency set by the chirp rate, ∆κ, of the modulator. The modulator pattern can be image relayed

to the object and the signal light will be collected by a single pixel detector producing a time

signal. Figure 3.1 shows an example of a modulation mask with a chirp rate of ∆κ= 1.

An interesting fact about this imaging modality is that looking at the illumination in time

leads to the interpretation of each spatial location encoded by a unique temporal modulation

frequency and summed together by the single pixel detector. However, if instead of looking

at the illumination in time, the illumination is viewed as a snapshot in time when we see that

the illumination is actually a product of plane waves interfering with each other producing a

sinusoidal illumination pattern. This sinusoidal illumination pattern is exactly what is meant

by a single spatial frequency. Therefore, CHRIPT and SPIFI can be interpreted as projecting a
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Figure 3.1: This figure shows an example of a SPIFI/CHIRPT modulation mask, m(x, t ) = 1/2[1 +
cos(∆κxt )] where each spatial location has a unique modulation frequency set by the chirp rate, ∆κ =
1/mm, for this modulator

set of spatial frequencies onto a sample and the highest spatial frequency is set by the NA of

the objective. What is detected then are the Fourier coefficients, giving the interpretation that

the object is being detected in the spatial frequency domain. This will be shown in the sections

below.

3.1.1 Mathematical Description of CHIRPT

In CHIRPT [14, 44, 45, 47, 48, 136] and SPIFI [51, 125, 66, 46, 152, 137, 153] imaging, the

modulator disc is illuminated with a line focus, fig. 3.2(a). This can be written as E1(x, t ) =

E0(x)m(x, t ), where E1(x, t ) is the illumination beam directly after the modulation disc, E0(x) =

E0u0(x)eiω0t , where E0 is the amplitude of the electric field, u0(x) is the spatial profile, and ω0 is

the optical frequency. We can plug in our definitions into the above equation and rewrite cosine

46



(c)

L1 L2 L3 L4 L6

L5

Obj.

DM

Det.
Fluor.

Det.
Trans. 

LP

SFMD

E0

E1(t)

c(x, z)(b)

E0

E1(t)νr(a)

x

z

Figure 3.2: Schematic diagram of a CHIRPT microscope. Panel (a) shows the modulation disc, panel (b)

shows the spatial filter which selects the two illumination beams, and (c) shows the illumination intensity

profile at a snapshot in time.

using Euler’s identity gives,

E1(x) = E0u0(x)eiω0t 1

2
[1+cos(∆κxt )]

=
1

2
E0u0(x)eiω0t [1+

1

2
(ei∆κxt +e−i∆κxt )]

=
1

2
E0u0(x)+

1

4
E0u0(x)ei(∆κxt ) +

1

4
E0u0(x)e−i(∆κxt )

(3.1)

, where we have suppressed the optical frequency for compactness. From eqn. 3.1 we see that

the modulator disc produces three beams, a zero order time stationary beam, and positive and

negative first diffraction orders which vary in time. This result is expected as it is simple diffrac-

tion of a time-varying sinusoidal grating. CHIRPT imaging uses two beams for its illumination,

so the next step after the modulator mask is to filter out one of the first-order diffraction beams,

in practice, this is done by using a spatial filter as seen in fig. 3.2(b). Mathematically we can just
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drop one of the diffraction orders. The filtered illumination beam will then be relayed to the

object plane. At this point is it advantageous to rewrite some of the variables so that they will

be more physically meaningful. First, time, t, is going to vary from [−T /2,T /2] where T is the

period for one disc revolution. Next, we can define the angular spatial frequency as ∆κt = k1(t ),

the incident illumination beam on the modulation mask does not transmit through the center

of the mask as seen in fig. 3.2(a) therefore we can capture this offset by letting x = xc+∆x, where

xc denote the location of the centroid of the illumination beam and ∆x is the width of the illu-

mination beam on the mask. Now, let ϕc = k1(t )xc be the modulation carrier frequency. Now

the electric field reads as E1(x, t ) = 1
2

E0u0(x)+ 1
4

E0u0(x)ei(k1∆x+ϕc ).

The illumination beam will be focused to a line in the object region where the illumination

is a spatially coherent field with an intensity that varies in space and time. Now the illumination

intensity for CHIRPT is formed by the interference of two spatially coherent fields as described

in section 1.3, giving

Eill(r⊥, t ) = E0

[

u0(r⊥)eik0·r⊥ +µ(t )u1(r⊥)eik1(t )·r⊥eiϕc

]

(3.2)

with k-vectors k0 and k1(t ) indicating the direction of propagation of each beam, the transverse

plane denoted by the coordinates r⊥ = x êx + y êy , where ê j is a unit vector in the j th direction

(x, y, z), u j (r⊥) is the 2D spatial beam profile, µ(t ) is the fringe visibility or modulation contrast

(defined below), and ϕc is the carrier frequency. The angle of the incident beams with respect

to the optical axis of the imaging system, θ j , is defined through the projection onto the optical

axis, êz , which is normal to the plane of the thin object. Specifically, the angle of propagation for

each beam is k j · êz = k cosθ j , where k = 2π/λ is the vacuum wavenumber of the illumination

light with wavelength λ. The reference beam is denoted as j = 0 and is generally chosen to

propagate co-linearly with the optic axis. The angle of the second beam is scanned with time

so that the spatial frequency difference, ∆k(t ) = k1(t )−k0, between the beams varies with the

crossing angle of the beams with time, cos[∆θ(t )] = [k0 ·k1(t )]/k2.
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Figure 3.3: This figure illustrates CHIRPT intensity profile of two beams interfering at some crossing

angle. The yellow arrows illustrate the k-vectors from both illumination beams. This beam interference

simulation was generated using a wavelength of λ = 600nm and a crossing angle of 30 degrees, code in

appendix C, scale bar = 1 micron

In general, the wavevectors can be expressed by their transverse and axial components

as k j (t ) =
(

k j ,⊥(t ),k j ,z(t )
)

, where the transverse wavevector can be further decomposed to

k j ,⊥(t ) = k j ,x(t ) êx + k j ,y (t ) êy . The spatial frequency difference can thus be expressed in the

transverse and axial dimensions as ∆k(t ) = (∆k⊥(t ),∆kz(t )), where ∆k⊥(t ) = k1,⊥(t )−k0,⊥ and

∆kz(t ) = k1,z(t )−k0,z . Figure 3.3 illustrates two beam interference as seen in the object region

of the CHIRPT microscope.

Throughout this text it will be assumed that the j = 0 reference beam propagates along the

optic axis such that θ0 = 0 and k0 = (0,k) = k êz . In the transverse plane, the spatial frequency

difference is simply the spatial frequency of the scanning beam, ∆k⊥(t ) = k1,⊥(t ). In the axial

dimension, the spatial frequency difference becomes: ∆kz(t ) = k1,z(t )−k = k [cosθ1(t )−1]. This

can be expressed in terms of the familiar Ewald shell, which arises as a result of the dispersion

relation:

∆kz(t ) = k





√

1−
∣

∣k1,⊥(t )
∣

∣

2

k2
−1



 , (3.3)
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where
∣

∣k j ,⊥(t )
∣

∣= k sinθ j (t ), the derivation can be found here [45, 47].

Let’s look at the interference of light sheet beams that are focused to a diffraction-limited

line along the y-direction, and extend over a large transverse region along the x-direction. Un-

der these conditions, only the transverse spatial frequency of beam j = 1 varies along the x-

direction. The beam interference produces a sinusoidal modulation pattern that can be written

in the form

Iill(r⊥, t ) = |Eill(r⊥, t )|2 = Imax

(

u2
0(r⊥)

4
+
µ2(t )u2

1(r⊥)

4
+
µ(t )u0(r⊥)u1(r⊥)

2
cosΦ(x, t )

)

(3.4)

The maximum intensity of the line focus is Imax = 4 |E0|2.

The beams impart a sinusoidal modulation along the x-direction, with Φ(x, t ) =∆k⊥ ·r⊥+ϕc

describing the phase of the spatial frequency projection illumination patterns, where ϕc is the

phase shift that sweeps rapidly compared to the spatial frequency sweep, and thus acts like a

carrier modulation frequency and allows the separation of interference terms [45, 44].

The modulation depth of the spatial frequency along the x-direction is denoted by µ(t ). The

modulation depth is the relative amplitude of the fields in CHIRPT and determines the spatial

frequency support along the spatial frequency projection direction, and thus the OTF [47].

For the usual situation in which a standard microscope objective is used to focus the

CHIRPT illumination light to a line focus in the object where the illumination along the y-spatial

frequency direction in the pupil plane of the objective is overfilled, the spatial frequency sup-

port will depend on the instantaneous spatial frequency, k1(t ), of the scanning beam and the

unscanned beam, passes through the center of the objective pupil along the kx direction, we

find that the fringe visibility is given by the chord length of the pupil function along ky centered

at k1(t ) →∆k⊥(t ) = k⊥,1(t ) = k1,x(t ) êx

µ(t ) =

√

1+
[

k1,x(t )

k

]2

rect

[

k1,x(t )

2kc

]

(3.5)
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where kc = 2π fc ≈ NA/nλℓ is the coherent imaging cutoff spatial frequency for the illumination

objective with numerical aperture NA, an immersion medium with refractive index n, and an

excitation wavelength λℓ. Following the definition of the fringe visibility, u0(y) = sinc(2 fc y)

and u1(y, t ) = sinc[2 µ(t ) fc y] , where we have used sinc(x) = sin(πx)/πx.

The time signal is given by the projection of the illumination intensity onto the sample,

St = A〈Iill(r, t )c(r)〉r, (3.6)

where A = η
~ω f

(

Ωc

4π

)

is the collection efficient, η is the detector quantum efficiency, ω f is the an-

gular frequency of the fluorescent light, and Ωc is the collection solid angle. The spatial integral,

〈·〉x =
∫

·dx, is performed by the single pixel detector. This model is valid for linear detection for

both coherent and incoherent contrast mechanisms. It should be noted that the illumination

intensity can be generalized to be the effective illumination, see chapter 10.7 for details, which

allows the signal model to extend to nonlinear excitation, however, the forward model can still

be considered linear in the detection.

When (3.4) is plugged into (3.6), we get

St = S0 +∆S

= A

〈

Imax

(

u2
0(r⊥)

4
+
µ2(t )u2

1(r⊥)

4
+
µ(t )u0(r⊥)u1(r⊥)

2
cosΦ(x, t )

)

c(r)

〉

r

(3.7)

the first two terms evaluate to a constant value in time defined as S0 = AImax

(

u2
0(r⊥)

4 + µ2(t )u2
1(r⊥)

4

)

,

the temporally fluctuating portion of the signal is

∆S(t ) =
1

2
µ(t )A〈u0(y) u1(y, t )cosΦ(x, t )c(r⊥)〉r⊥ . (3.8)

The expression above gives a cosine transform of the object, c(r⊥). Notice that the mod-

ulation depth µ(t ) gives the relative amplitude of each spatial frequency cosine projection at

the instantaneous spatial frequency, k1,x(t ) = k⊥,1(t ) · êx , of the illumination pattern – serv-
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ing the role of the modulation transfer function (MTF) of the CHIRPT imaging system, where

MTF = |OTF| = µ(t ). The object is reconstructed by assembling the object from the measured

spatial frequency projections [49, 47, 48], which is obtained from the single sideband (SSB) term

from (3.12) where the object information has been shifted down to baseband (DC),

S̃(t ) =µ(t )e−iϕt 〈u0(y) u1(y)eiΦ(x,t )c(r⊥)〉r⊥ . (3.9)

Here the signal has been demodulated by e−iϕt so that the object can be recovered with a Fourier

transform (FFT) of the demodulated time signal. This will produce a line image of the object.

A 2D image of the object can be constructed by line scanning perpendicular to the modulation

direction and stacking the images. The data processing for CHIRPT is illustrated in figure 3.4.

CHIRPT has the remarkable ability to numerically refocus the object, known as digital

holography. Since the recovered object information is complex due to the isolated single side-

band. The signal in the spatial frequency domain needs a spatial propagator applied to the sig-

nal. Taking an inverse Fourier transform of the propagated signal will result in the focal plane of

the image being shifted to the new axial location, [45, 44]. This can be written mathematically

as

S̃(z, t ) = S̃(t )ei z∆kz (t )

= S̃(x, t )e
i zk

(√

1− |k1,⊥(t )|2
k2 −1

) (3.10)

CHIRPT allows incoherent emission such as fluorescence to be treated as if it came from a

coherent source. This is due to the encoded phase information from the illumination source.
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Figure 3.4: This figure illustrates the CHIRPT data processing procedure. Panel a) shows a CHIRPT time

trace. Panel b) shows the Fourier transform of the CHIRPT time trace. Panel c) shows the positive side-

band filtering operation done in the frequency domain. Panel d) shows the real portion of the complex

time trace recovered by taking the inverse Fourier transform of the filtered frequency domain informa-

tion. Panel e) shows the demodulated complex time trace where the object information has been shifted

to the baseband (DC). Panel f) shows the propagation phase applied to the filtered demodulated com-

plex time signal. Panel g) shows the numerically refocused object image in orange and the original object

image in blue.

53



3.1.2 Mathematical Description of SPIFI

SPIFI uses a three-beam interference, fig. 3.5, with a set of interfering spatially coherent

fields that produces the illumination intensity. By following the same procedure as outlined in

the above section, the SPIFI illumination intensity is found to be

Ii l l =
Imax

8

[

2u2
0 +µ2(t ) u2

1 +4µ(t ) u0 u1 cosΦ+µ2(t )u2
1 cos2Φ

]

. (3.11)

For SPIFI illumination there is an extra interference term from the j =−1 and j = 1 beams which

causes a second cosine modulation term that is at twice the modulation frequency of the j = 0

and j = 1 interference. Additionally, the second-order modulation contains twice the spacial

resolution since the spatial frequency projection has twice the crossing angle. Figure 3.5 shows

three-beam interference used in SPIFI microscopy.

The time-varying signal collected according to (3.6) for linear excitation will again yield a

cosine transform for each fluctuating signal. In the same manner as CHIRPT each image order

can be isolated as

S̃
(q)
t =µ|q|(t )ei q ϕt 〈ua(y)ub(y)e−i q Φ(x,t ) c(r⊥)〉r⊥ . (3.12)

Here u j (y) is the spatial amplitude of the two interfering beams, j ∈ {a,b}, that produce the

relevant signal order q ∈ {1,2}. Again, a Fourier transform can be applied to the demodulated

signal to recover an image of the object.

CHIRPT and SPIFI are normally arranged so that a linear sweep in spatial frequency is im-

parted so that ∆k(t ) = k1(t )êx with k1(t ) = γ t , where γ ≡ 2πκ. In this case, the phase shift is

ϕt = γxc t ≡ ωc t . For CHIRPT illumination, sidebands appear at only q = ±1 for an effective

cutoff spatial frequency of fc , and in the case of SPIFI, sidebands appear at both q = ±1 and

q = ±2. The second-order image has a cutoff spatial frequency of 2 fc , just as widefield inco-

herent imaging, however, the shape of the OTF has a larger amplitude at the higher spatial fre-

quencies which results in images with better contrast. Additionally, nonlinear excitation can be
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Figure 3.5: Example of 3 beam interference used in SPIFI systems taken at a snapshot in time. The

yellow arrows illustrate the k-vectors from the illumination beams. This beam interference simulation

was generated using a wavelength of λ = 600nm and a crossing angle of ±30 degrees, code in appendix

C. Scale bar = 1 micron

used, typically done with SPIFI, which results in 3r d and 4th order image bands which contain

spatial frequency cutoffs at 3 fc and 4 fc , respectively.

3.2 Pros & Cons

In general, single-pixel imaging has several advantages compared to its camera-based coun-

terparts, such as flexibility with high-quality detectors in many wavelength regimes, large tem-

poral bandwidth, scattering robustness, and relaxed imaging constraints for the collected signal

light. There are also several liabilities to consider as well, such as multiplexed shot noise and

sometimes slow computational reconstructions. The cost and benefits are general to all single-

pixel imaging techniques, but what about CHIRPT and SPIFI specifically?
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Figure 3.6: Schematic diagram of a SPIFI microscope.

CHIRPT’s primary advantage is that it encodes the coherent propagation phase from the

illuminations beam on incoherent contrast mechanisms, such as fluorescent emission, which

allows holographic refocusing [45]. This holographic information can be used for diffraction

tomography as discussed in chapter 8.2.5. This turns out to be a major advantage since it is

the first technique to allow for 3D tomographic reconstructions with a large field of view of

fluorophores without sacrificing spatial resolution. Another advantage of CHIRPT illumination

is that it permits single-pixel quantitative phase imaging as discussed in chapter 5.7. One of

the costs of CHIRPT is reduced illumination transmission efficiency due to the spatial beam

blocking that is required to generate the two-beam illumination.

SPIFI illumination has its own set of advantages. First, the transmission efficiency is higher

than CHIRPT since it does not require the blocking of diffracted beams. The increased effi-

ciency helps with SPIFI’s primary advantage which is multi-photon excitation to drive super-

resolution imaging as discussed in chapters 7.6 and 9.6.2.
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Chapter 4

Introduction to Quantitative Phase Imaging

4.1 Phase Contrast Imaging

Phase contrast imaging was first realized by Fritz Zernike in 1942 [160, 159]. Zernike realized

that image formation could be understood as interference from many tilted plane waves (spa-

tial frequencies), therefore, the amplitude and phase would play a critical role in the contrast of

image formation. It was this insight that allowed Zernike to come up with the idea of modifying

the phase of the unscattered portion of the illumination light (a ballistic component of the illu-

mination). When a phase shift is applied to the ballistic component then the contrast of a nearly

transparent object can be increased substantially. Zernike noted that a phase object could be

changed to appear as an absorbing object depending on how much phase was applied to the

ballistic light relative to the scattered light. One of the major drawbacks of Zernike’s technique

is that the mapping of the field phase to intensity is highly nonlinear. For example, if posi-

tive phase contrast is implemented (the ballistic component is delayed by a quarter wavelength

compared to the scattered light) then a thick, high refractive index object will appear darker

than the background, however, if the phase delay is too large the object will become bright, giv-

ing the impression that is has a lower refractive index compared to the background. This type

of behavior has led researchers to search for other phase contrast methods so that quantitative

values can be assigned to the acquired image.

4.2 Quantitative Phase Imaging

Quantitative phase imaging (QPI) deals with measuring the complex field produced by a

sample of interest. The sample is typically weakly scattering and weakly absorbing. The com-

plex field information is really the phase difference produced by interfering with the imaged

field with a reference field. The phase difference can be used to calculate the refractive index
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and optical path length. This information can be used to determine the thickness of a sample,

and/or the dry mass of a cell to monitor cell growth [96]. There have been a number of quan-

titative phase techniques that have been developed in the last two decades each with its own

strengths and weaknesses, however, they all ultimately aim to solve the same problem. The

problem is how one recovers the object’s absorption and phase function, E0(r)eiφ(r), despite the

fact that phase information is lost at detection.

Let us first look at how a detector/camera will respond to an incident electric field so that

we can better understand the problem of measuring the complex electric field. A photodetector

responds to the time-averaged Poynting vector which is referred to as the irradiance. Following

the derivation in [111], the Poynting vector, defined as S = E×××B/µ0, is the flow of energy in free

space or in an isotropic medium, where

E(r, t ) =
1

2

[

E0ei(k·r−ωt ) +E∗
0 e−i(k·r−ωt )

]

(4.1)

is the electric field vector and

B(r, t ) =
1

2

[

k×××E0

ω
ei(k·r−ωt ) +

k×××E∗
0

ω
e−i(k·r−ωt )

]

(4.2)

is the magnetic field vector, ××× is the cross product between the two vectors, and E0 is the am-

plitude of the electric field vector. The Poynting vector can be rewritten using eqn. 4.1 and 4.2

giving,

S =
û

4µ0

[

k

ω
(E0 ·E0)e2i(k·r−ωt ) +

k

ω
(E0 ·E∗

0 )e−2 kω
c û·r + c.c.

]

(4.3)

where û is a unit vector in the direction of the energy flow and c.c. stands for the complex con-

jugate of the terms that came before it.

The Poynting vector can be used to describe the response of an optical detector. Notice in

eqn. 4.3 that the first term oscillates at the optical frequency, ω, which is on the order of 1015Hz.

This frequency is way too fast for current optical detectors which have an optical response of
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106 −109Hz. For this reason, it is often the case that the time-averaged optical response is what

is measured,

〈S〉t = û
nǫ0c

2
(E0 ·E∗

0 )e−2 kω
c û·r (4.4)

where 〈·〉t is the time average. Notice that the first term in eqn. 4.3 has vanished, the reason for

this is that it oscillates symmetrically both positively and negatively, therefore, canceling out

with the time average. Interestingly, the time-averaged Poynting vector, often called irradiance,

includes the direction of energy flow, û. However, it has become common practice to refer to the

intensity rather than the irradiance, where the difference between the two is that the direction

is dropped, giving

I =
nǫ0c

2
E0 ·E∗

0 . (4.5)

It is common to take things one step further dropping the scaling constants and the vector

nature of the electric field leaving the well-known equation for intensity

I = 〈|E |2〉 = E0E∗
0 . (4.6)

Now we see what is meant when it is said ’the optical detector responds to the intensity of the

field (the modulus squared) and not the field itself’ [96, 115, 95, 111].

Returning to our objective of describing the challenge of detecting the complex field. We

will define the imaged field,

Ei (r, t ) = E0(r, t )h(r) (4.7)

where Ei is the imaged field, E0 is the amplitude of the imaged field, and h(r) = exp
(

iϕ(r)
)

is

the phase object of interest. This model for h(r) is only valid when the absorption in the sample

is negligible and the object acts as a phase object. The measured intensity, with unimportant
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scaling constants being dropped, would be

I (r, t ) = 〈|Ei (r, t )|2〉t

= 〈E∗
i Ei 〉t

= 〈E0(r, t )exp
(

−iϕ(r)
)

E0(r, t )exp
(

iϕ(r)
)

〉t

= E 2
0(r, t ).

(4.8)

Here we clearly see that the phase information is lost. In order to recover the phase, it is com-

mon to use the idea developed in holography for recovering the phase by the interference of the

imaged field with a reference field, Er (r), the resulting measured intensity is

I (r, t ) = 〈|Ei (r, t )+Er (r)|2〉t

= 〈(Ei (r, t )+Er (r))∗(Ei (r, t )+Er (r))〉t

= 〈|Ei (r, t )|2〉t +〈|Er (r)|2〉t +〈Ei (r, t )∗Er (r)〉t +〈Ei (r, t )Er (r)∗〉t

= Ii (r, t )+ Ir (r)+〈Ei (r, t )∗Er (r)〉t +〈Ei (r, t )Er (r)∗〉t

(4.9)

where Ii (r, t ) is the imaged intensity, Ir (r) is the reference intensity. The third and fourth terms

on the right-hand side contain the complex field that we are interested in recovering [115, 95].

The goal of QPI is to recover the third term in eqn 4.9, Ii r = 〈Ei (r, t )∗Er (r)〉t . There are two

common classes of methods for extracting this information from the measured interference.

The first class is referred to as phase stepping methods and the second class is off-axis methods.

Below we will consider how each of these classes of QPI solves the complex recovery problem.

4.2.1 Phase Stepping Methods

Phase-shifting methods for quantitative phase imaging rely on exploiting the relative phase

difference between the imaged field and the reference field. This is done by controlling the time

delay of either of the two fields, however, it is most common to delay the reference arm. We can

write the reference field as, Er (r)e−iφ where φ is a time shift or phase delay. Typically, phase
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shifting methods use a reference beam that propagates along the optic axis, i.e. kr = 0, this

allows eqn. 4.9 to be rewritten as

I (r, t ) = Ii (r, t )+ Ir (r)+〈Ei (r, t )∗Er (r)〉t e−iφ+〈Ei (r, t )Er (r)∗〉t eiφ. (4.10)

Phase shifting methods typically measure 3 to 5 phase steps in order to recover Ii r (r) [26, 95].

There are many methods used for producing the desired phase delay, φ, such as a moving mir-

ror, tilting a glass slide, rotating a half wave plate, or a spatial light modulator (SLM) among

many other techniques, [26, 155]. In general, it does not matter how the phase delay is pro-

duced but each technique will have trade-offs such as temporal stability, repeatability, eases of

implementation, and cost, however, these are simple technical issues that do not change the

fundamentals of recovering the phase of an object, [26].

While there have been many phase-stepping techniques and algorithms for recovering the

complex field, I will present the M-step method which involves M equal steps over one period of

the center optical wavelength, φm = 2πm/M , where m is stepped from 0 to M−1. The algorithm

used to recover the complex field is,

Ii r (r) =
1

M

M−1
∑

m=0

eiφm Iφm (r) (4.11)

where Iφm (r) is the measured interference intensity at phase delay, φm . For example, let K = 4,

Ii r (r) =
1

4

(

ei0I (0)(r)+eiπ/2I (π/2)(r)+eiπI (π)(r)+ei3π/2I (3π/2)(r)
)

=
1

4

(

I (0)(r)+ iI (π/2)(r)− I (π)(r)− iI (3π/2)(r)
)

=
1

4

(

I (0)(r)− I (π)(r)+ i
[

I (π/2)(r)− I (3π/2)(r)
])

.

(4.12)

The primary advantage of phase shifting techniques are noise robustness and retention of

spatial resolution. The noise robustness is due to the fact that multiple images are acquired and

some averaging can be employed to reduce the noise in the reconstruction. The spatial resolu-
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tion is generally retained due to the fact that no filtering operations are required to isolate the

information of interest, assuming proper sampling of the interference images typically 5-6 pix-

els per interference fringe. The primary cost is speed. Phase-stepping methods will necessarily

run 3x to 4x slower and possibly much more than that depending on the number of phase steps

needed for the particular method compared to off-axis methods, discussed below.

4.2.2 Off-axis Methods/Digital Holography

Off-axis methods for quantitative phase imaging derive their core inspiration from tradi-

tional holography [53, 55]. The idea of holography is that a field of interest can be interfered

with a reference field to encode the amplitude and phase on a photographic film. The holo-

graphic image is recovered by illuminating the film with a duplicate of the reference field. That

is, when the duplicated reference field scatters off the hologram, the transmitted field would

match the original total field on the holographic plate allowing the amplitude and phase of the

object to be recovered. In modern holography, the holographic plate has been replaced with

a CCD camera chip and the amplitude and phase are recovered by numerical propagation but

the core idea remains the same.

QPI off-axis methods could also be called digital holography. Off-axis methods refer to inter-

fering with the field of interest with a reference beam that is at some angle α with respect to the

optic axis, this is typically achieved in practice with a Mach-Zehnder interferometer, however,

there are many geometries that can be used, [115]. Returning to eqn. 4.9, we are interested in

recovering the third term which we are calling, Ii r (r). In phase-stepping, we utilized a control-

lable phase delay to recover the complex field that was aligned with the optic axis, with off-axis

QPI we will use a tilted plane wave for the reference that is at an angle to the optic axis. We can

write our reference field as, Er (r) = Er e−ikr ·r. Plugging this into eqn. 4.9 gives,

I (r) = Ii (r)+ Ir (r)+〈Ei (r, t )∗Er (r)〉t e−ikr ·r +〈Ei (r, t )Er (r)∗〉t eikr ·r (4.13)
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where |kr | = k0 sin(α), k0 is the center wavenumber of the reference beam. The first term is the

imaged intensity and if it were isolated it would look like a standard camera image of the object

of interest, the second term is a uniform intensity across the image plane, and the third and

fourth terms together give a sinusoidal modulation at the spatial frequency, kr .

The question becomes how can the phase information be separated from all the other in-

formation contained in the detected intensity. The key lies with kr which is the relative spatial

frequency of the fringes created from the interference of the imaged field and the reference

field. If the imaged field propagates along the optic axis of the imaging system then kr is simply

the spatial frequency of the reference field. The signal processing to recover the complex object

information consists of taking a 2D Fourier transform to the imaged intensity,

Î (k⊥) = Îi (k⊥)+ Îrδ
2(k⊥)+Er Ê∗

i (k⊥+k⊥r )+E∗
r Êi (k⊥−k⊥r ) (4.14)

where k⊥ = (kx ,ky ) is the transverse spatial frequency. Notice the second term is a 2D delta

at zero spatial frequency amounting to a large spike in the Fourier domain as a result of the

uniform plane wave used as the reference field. The third and fourth terms are shifted by, k⊥r ,

causing the complex object information to move left and right, respectively, in the Fourier do-

main. A bandpass filter to can be applied to isolate one of the complex side bands, typically the

positive side band, Îi r (k⊥) = E∗
r Êi (k⊥−k⊥r ). Finally, the isolated complex side band is shifted

down to baseband (DC), Î shifted
i r

(k⊥) = E∗
r Êi (k⊥−k⊥r +k⊥r ) = E∗

r Êi (k⊥). The complex object is

recovered using an inverse 2D Fourier transform applied to Î shifted
i r

(k⊥) [72]. Typically, the phase

unwrapping of the recovered object is the most challenging step of the entire processing due to

the fact that there are phase vortexes where the amplitude drops to zero.

The choice of kr is crucial to the success of off-axis methods as it allows the complex side-

band to shift so that it can be easily separated from the rest of the information contained in the

acquired intensity measurement. If kr = 0 then all the complex information will overlap in the

frequency domain causing the separation of the complex object information to be more chal-

lenging to recover. Note, it is possible to solve the phase retrieval problem when kr = 0 with
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single shot exposure, however, these solutions are iterative and come with new sets of obsta-

cles. Now, if kr 6= 0, this will cause the positive and negative sideband to shear in the spatial

frequency domain, if the shear is large enough the complex sideband can be cleanly separated

from each other. In practice, a good choice is kr ≥ 2kc , where kc is the cutoff spatial frequency

of the OTF imaging system. We can also relate the reference field angle, α, to the numerical

aperture and magnification of the collection system, giving α≥ sin−1(NA/n)/|M | is the numer-

ical aperture of the objective lens, n is the refractive index of the immersion medium, and |M |

is the magnification of the image relay system. This inequality simply states that the reference

field angle, α must be larger than or equal to the largest angle captured by the imaging system

falling on the camera.

The primary advantage of off-axis methods is the speed at which the data can be acquired.

Off-axis methods only need one image in order to recover the phase information, therefore,

they are only limited by the frame rate of the camera or the integration time needed to acquire

the desired SNR, whichever is greater. Depending on the particular optical design, (common-

path methods) these methods can be very stable both temporally and spatially. One primary

drawback is the increased sampling requirement placed on the camera to resolve the interfer-

ence pattern and the object structure. This can be seen in fig. 4.1 where the reference spatial

frequency shifts the sideband information out. If the detection bandwidth (size of the pixels) is

too small (pixels too large) then aliasing of the sideband information may occur. Therefore, it is

necessary to take into account both the increased optical bandwidth and the detection band-

width. Of course, there are many types of QPI techniques that recover complex object field in-

formation, the above descriptions are meant to give an idea of how complex field information

can be recovered. It is not meant to be exhaustive or suggest these are the only two methods for

recovering the complex field.
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Figure 4.1: Off-axis holography data processing. Panel a) shows the 2D Fourier transform of an off-axis

image. Panel b) filters the negative image sideband. Panel c) shows the shifted negative sideband of the

holographic image. Figured borrowed from https://www.wavefrontshaping.net/post/id/12.
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Chapter 5

Single pixel quantitative phase imaging with spatial

frequency projections

5.1 Summary

This chapter is a reproduction of the Methods publication [136]. We introduce a new single-

pixel imaging technique that automatically co-registers quantitative phase and incoherent im-

age modalities through the simultaneous acquisition of identical object spatial frequency in-

formation. The technique consists of using a time-varying groove density diffraction grating to

produce a reference and scan beam. The interference between the beams produce time-varying

spatial frequencies in the sample. The collected light on a single pixel detector produces a time

trace that allows easy recovery of coherent and incoherent contrast mechanisms. We derive

theory for the quantitative phase and show excellent agreement with experimental data and

the numeric model. Additionally, we derive a general theory of single-pixel quantitative phase

theory that can be applied broadly to general methods that use a sequence of modulated light

patterns for single-pixel phase imaging.

5.2 Introduction

Optical imaging is a powerful technique for probing the physical organization, chemical com-

position, and temporal dynamics of a wide range of objects, from biological specimens to preci-

sion metrology of nanomaching. Numerous scientific endeavors rely on collecting high-fidelity

images of the system under study – covering microscopic and macroscopic scales. Regardless

of the spatial scale involved in an optical imaging process, the light collected from an object is

re-imaged to a detector and recorded. When possible, it is advantageous to record light with

a segmented optical detector that serves as a camera detector chip, such as a charge-coupled
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device (CCD). To produce a high-quality image, the light emitted by the specimen must be min-

imally perturbed to prevent distortions of the image incident on the detector. This limits the

scope of optical microscopy with cameras to objects that are weakly scattering.

In many cases, specimens imaged in a microscope display weak absorption and small re-

fractive index changes, rendering them nearly transparent when illuminated by visible light.

Weak absorption becomes particularly problematic for thin tissue slices or cell cultures due to

the small interaction volume. Fluorescent and phase contrast modalities are the most common

methods to image transparent biological specimens [84, 98, 100] with high contrast. Fluores-

cence allows for visualization of cellular dynamics with high specificity, while phase imaging

probes endogenous contrast mechanisms [98, 146].

Fluorescence microscopy is a mature technology whose use in recent years has been pro-

pelled by high-sensitivity detectors that allow single-molecule detection. While some natively

expressed biochemicals display strong autofluorescence, the introduction of exogenous or

transgenic fluorescent labels has greatly expanded the impact of fluorescent microscopy by en-

abling particular biochemicals to be targeted and observed in biological specimens [133]. Yet

fluorescent imaging is limited because not all molecules fluoresce, and the broad optical ab-

sorption and emission spectra can make it difficult to distinguish particular target molecules. In

addition, fluorescent molecules are subject to photo-bleaching that can permanently degrade

the ability to image a specimen for long periods of time, thus limiting the ability to perform

long-term studies.

An alternative approach to fluorescence microscopy, which requires no external fluorescent

probes and yields complementary information, is phase contrast microscopy. Phase contrast

microscopy records spatial phase distortions of a light wave passing through a specimen due

to spatial variations in optical path length (OPL). The phase accumulated by the illumination

beam upon propagation through a specimen is proportional to the local index of refraction

variations of the sample integrated along the direction of propagation. The vast potential of
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extracting information from biological specimens without adding exogenous contrast agents

has motivated significant development in methods for quantitative phase imaging [115, 12].

Early phase imaging methods, such as Zernike phase contrast microscopy, provided only a

qualitative map of phase information because optical phase information is mapped nonlinearly

in intensity [159, 98]. However, the realization that the accumulated phase shift through a cell is

directly proportional to protein concentration [3] has motivated the development of quantita-

tive phase microscopy (QPM) techniques to quantitatively map the OPL difference introduced

by an object [98, 84]. There is strong motivation to quantitatively extract the spatial distribution

of the refractive index of biological specimens because the spatial distribution of the content

of cells – protein expression, cell membrane and vesicle distribution – changes during normal

cell behavior and cell cycles, as well as when a cell is diseased or invaded by a pathogen [28, 96,

120, 85, 54]. Thus, a quantitative map of refractive index variations in a cell can be used to infer

complex biomolecular interactions taking place within a cell.

Although optical detectors cannot directly record the rapid oscillations of the electric field,

and thus fail to record the optical phase, interference between two coherent fields can convert

phase differences into optical intensity variations – enabling the extraction of the phase with

the processing of a measured intensity map. In-line and off-axis holography [53, 86] and phase

shifting interferometry [26, 155] have been used for quantitative phase microscopy [27, 154].

Similarly, Hilbert phase microscopy is a hybrid of off-axis and phase-shifting holographies that

allows for high spatial resolution measurements with rapid (single-shot) measurements [72].

A common problem in these interferometric methods is that the two coherent fields – the

beam that passes through the specimen and the reference beam – traverse differing optical

pathways. Consequently, it is difficult to extract a stable phase of the object due to changing

OPL differences from systematic aberrations, e.g., mechanical vibrations and atmospheric tur-

bulence, causing the total accumulated phase difference between the two beams to vary with

time. In response, common-path QPM methods have been developed that counter this prob-

lem by negating the need for two sets of imaging optics. Shearing interferometry [15], trans-
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port of intensity equation [140, 7, 107, 5, 113], Fourier ptychography [106], diffraction phase

microscopy (DPM) [116, 108], spatial light interference microscopy (SLIM) [145], and use of a

partitioned detection aperture [109] are all methods for common-path QPM.

Other common-path QPM methods create interference patterns after image collection. This

can be done with, for example, a spatial light modulator (SLM) [117, 145], although this method

requires multiple measurements to synthesize a phase image, slowing down the net acquisition

rate significantly. Similarly, diffraction after image collection can be used to extract a reference

beam that enables off-axis interferometry to obtain a phase image [116]. However, this method

is a variation of self-referenced off-axis holography, and thus there is a tradeoff between the

spatial frequency bandwidth attainable with single-shot acquisition. Yet another variation, spi-

ral phase microscopy [10], uses a 2D Hilbert transform applied to an image collected with a

spiral phase plate applied in the collected object field Fourier plane, providing excellent phase

stability [97].

Despite the sustained development of QPM methods, camera-based QPM suffers several

drawbacks that limit its applicability under certain experimental conditions. For example,

speckle, common when imaging with monochromatic light, partially scrambles the image on

the camera. To circumvent this issue, broad bandwidth light can be used in place of monochro-

matic light to significantly reduce the speckle background [145, 11, 80].

Single-pixel imaging offers a unique solution to partially circumvent loss in image fidelity

due to a mismatch between the Si-detector bandgap and longer wavelengths. Whereas seg-

mented detectors in the short-wave infrared (SWIR), mid-infrared (MWIR), and THz regimes

can be quite expensive, offer poor performance, or simply not exist. Single-pixel detectors on

the other hand, such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), are

available with good quantum efficiencies at these longer wavelengths. Single-pixel imaging has

been demonstrated at THz [22], SWIR [125], and MWIR [123] spectral bands.

A wide range of single-pixel techniques have emerged over the years to address limitations

in both fluorescence microscopy and QPM. Common imaging methods that utilize single-pixel
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detection include laser-scanning confocal microscopy [94], multiphoton laser-scanning mi-

croscopy [31, 61], stimulated emission depletion microscopy [60], optical coherence tomog-

raphy [42], time correlated fluorescent lifetime imaging [8], pump-probe microscopy [50, 37],

ghost imaging [128], single-pixel camera methods [121], and spatial frequency projection mi-

croscopy for both linear [41, 51, 63, 34] and multiphoton imaging [66, 67, 46]. Single-pixel

imaging methods can be easily integrated into other optical systems, such as for monitoring

laser micromachining [14]. Each of these imaging modalities has shown superior performance

to conventional optical microscopes in the presence of optical scattering, imaging with high

fidelity in a scattering object by encoding information from the local region around the focal

plane, which has been shown even for linear optical contrast signals [63, 38].

The wide electronic bandwidth of single-pixel optical detectors also opens the capability of

multiplexing additional information into the temporal signal. Temporal multiplexing has been

used for simultaneously acquiring multiphoton images from multiple depths in a specimen

[66, 43]. Depth information can also be encoded into a linear fluorescent excitation process

by transferring the phase difference of a propagating optical modulation field to mark spatial

depth positions with a distinguishable temporal modulation pattern [45, 44]. Frequency mul-

tiplexing has been used for both spatial and fluorescent lifetime imaging of phosphorescent

emitters [67]. The nonlinear response of a contrast agent, such as a fluorescent probe or a co-

herent nonlinear scattering process, can be exploited for super-resolution imaging [46]. In addi-

tion, optical spectral information can be integrated with further illumination light modulations

for applications such as background-free absorption imaging [36, 35] and spectrally-resolved

single pixel diffuse optical imaging [142].

While single-pixel fluorescence microscopy methods are routine, single-pixel QPM meth-

ods are relatively new. In principle, a single-pixel QPM method that permits imaging at high

frame rates with automatically co-registered fluorescence intensity measurements would be

desirable for a wide range of biological measurements. The information provided by QPM is

complimentary to fluorescence microscopy and does not require external fluorescent probes –
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making it attractive for a variety of microscopy applications, particularly in biological studies.

Consequently, there has been significant effort in the past decade to develop single-pixel QPM

techniques that are compatible with fluorescence microscopy. While several methods for single

pixel QPM have been reported, they have relied on non-common path interference for extract-

ing quantitative phase, and thus inherit the phase noise problems of non-common path QPM

systems [73, 77, 25].

In this chapter, I introduce a new imaging technique dubbed direct optical phase extraction

(DOPE) to simultaneously record spatial frequency information from the spatial distribution of

three contrast modalities of an object – quantitative phase, absorption, and fluorescence. In this

method, we eliminate the need for a reference arm. By using a modulated illumination beam,

all of the light propagating through and collected from the object is nearly collinear – mitigating

optical phase noise. The modulation makes use of a sequential phase shift applied to the modu-

lated field that is exploited to isolate a complex term and thus obtain a complex object response,

from which the coherent field response of the object is obtained. The same modulation pattern

is used to recover a fluorescence image from the object. The phase, absorption, and fluorescent

intensity images are built from a time sequence of spatial frequency measurements due to the

modulated illumination beam, where the exact same spatial frequency information is sampled

at each time point on two detectors, one for the coherent image and one for the fluorescence

image. This ensures that the co-registered modalities automatically align in both position and

magnification. Additionally, we derive a general theoretical framework for single-pixel imaging

of both intensity- and phase-contrast imaging and utilize this framework to motivate the re-

sults of our DOPE QPM experiments. Finally, we compare DOPE QPM and absorptive imaging

in both the forward- and backward-scattered directions and provide a physical optics descrip-

tion of the image formation process.
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5.2.1 Single pixel imaging with spatial frequency projections

In the bulk of this chapter, I will restrict our discussion to modulation functions that impart a

linear sweep in a single transverse spatial frequency with time. The use of a sequence of sin-

gle spatial frequencies for the modulation function is a natural choice because plane waves are

eigenfunctions of the Helmholtz equation that governs scalar electromagnetic wave propaga-

tion in a medium with spatially homogeneous electrical properties, and thus allows for very

large field of view imaging [45, 44]. In the case of a complex modulation function with a linear

sweep of a single transverse spatial frequency, the modulation function reads

Mc(ρ, t ) = mt e−iϕt = exp
(

−ikt ·ρ
)

exp
(

−iϕt

)

. (5.1)

Here, kt is the time-varying sweep in transverse spatial frequency, and ϕt is a phase shift that

sweeps with modulation transverse spatial frequency. This is the modulation function for

CHIRPT microscopy [45, 44].

While modulation of the spatial frequencies can be imparted across the entire two-

dimensional transverse plane, ρ, our experimental implementation uses a beam brought to

a line focus on a spinning modulator disk that imparts a linear sweep in spatial frequency in the

x-dimension. Assuming that the modulation occurs along the x-dimension, the time-varying

spatial frequency becomes kt = 2π fx(t )êx , where êx is a unit vector along one dimension. The

modulator disk is designed to sweep through transverse spatial frequencies linearly in time,

fx(t ) = κ t , such that kt = 2πκ t , where κ depends on the spatial frequency of features on the

disk and the rotation rate [45]. In addition, a phase shift imparted by the disk shifts the in-

tensity fringes in the object region as the disk rotates, and thereby acts as a carrier frequency

imparted to the spatio-temporal modulation so that we may write ϕt = kt xc ≡ωc t , where xc is

the centroid of the line focus on the modulation mask [45]. Our complex modulation term now

reads

Mc (x, t ) = e−iωc t e−i2πκ t x . (5.2)
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For the one-dimensional modulation case, the single-sideband complex modulation using

Mc leads to signal fluctuation relative to the mean given by ∆S(t ) = S1 +S∗
1 , where

S1 = e−iωc t 〈e−i kt xc(x)〉x = e−iωc tC (kt ) (5.3)

is a complex single sideband (SSB) term that is centered at the carrier modulation frequency

ωc , called the first-order signal. The demodulated first-order SSB reads

S̃1 = e iωc t S1 =C (kt ), (5.4)

which is the spatial frequency projection of the object at the illumination spatial frequency kt –

the value of the spatial Fourier transform of the object intensity response C (kx) = 〈c(x)e−i kx x〉x

at the instantaneous modulation transverse spatial frequency, kx = kt .

Physically, we see that the combination of illumination with a single transverse spatial fre-

quency containing spatial-temporal modulation and the use of a single-pixel detector causes

the temporal signal of the photodiode to output a spatial frequency coefficient of the object at

the illumination spatial frequency kt . An inverse Fourier transform of the demodulated SSB

signal directly yields the intensity image of the object, s̃1(x) = 〈e i kt x S̃1〉kt
= c(x), which is our

desired image.

In the case of a purely real modulation function, the linear sweep in spatial frequency reads

Mre(ρ, t ) =
1

2
mt exp

(

−iϕt

)

+
1

2
m∗

t exp
(

iϕt

)

. (5.5)

In this case, the signal fluctuation becomes ∆S(t ) = S1 +S∗
1 +S2 +S∗

2 , which, in addition to the

first-order signal S1, also produces a second order signal S2 = e−i 2ωc t 〈e−i 2kt xc(x)〉x . The second-

order signal is an SSB term centered at 2ωc , leading to a demodulated second-order signal

S̃2 = e i 2ωc t S2 =C (2kt ). (5.6)
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Such a real-valued modulation function is used in SPIFI [51, 63, 66, 46], which is closely re-

lated to CHIRPT microscopy. Application of an inverse Fourier transform to the demodulated

signals extracted from the real modulation function used in SPIFI produces two intensity im-

ages: one from the first order signal, s̃1(x) = c(x), and another from the second order signal,

s̃2(x) = c(x). The image recovered from the second-order signal has twice the spatial resolution

of the first-order signal. This is because the interference structure for the second order signal is

formed with the pair of waves incident on the object that interferes at ±kt , creating an intensity

modulation structure at 2kt with twice the spatial frequency support of the first order, which is

limited to the spatial frequency cutoff of a coherent imaging system [46].

5.2.2 Phase information is lost in single pixel intensity imaging

The single-pixel imaging theory above shows that, in general, the projection coefficients

recorded by single-pixel detectors are given by ∆S(t ) = 〈c(ρ)MI(ρ, t )〉ρ. Since both the object,

c(ρ) =
∣

∣g (ρ)
∣

∣

2
, and the intensity modulation function, MI(ρ, t ), are real and positive functions,

and because the object is an intensity transmission function, all phase information is lost in the

imaging process. This phenomenon also occurs in conventional imaging.

Consider the specific case of single-pixel illumination of the object with a varying single spa-

tial frequency of the illumination beam. Then, the recovered object will be the autocorrelation

of the complex object spatial frequency distribution

C (kt ) = 〈mt g (x) g∗(x)〉ρ

= e−iϕt 〈G(k⊥) G∗(kt −k⊥)〉k⊥ , (5.7)

where G(k⊥) is the spatial frequency distribution of the complex object. We conclude that con-

ventional single-pixel intensity imaging is not able to image a complex object electric field re-

sponse, and thus obtains no phase information.
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5.3 DOPE microscopy – single-pixel QPM with spatial fre-

quency projections

Fluorescent and quantitative phase imaging provide complementary information about a spec-

imen under investigation. Several methods have been developed that allow for the sequential

acquisition of QPM and fluorescent images on the same microscope system [108, 2]. The indi-

vidual fluorescent and QPM images are taken from separate optical paths on the same micro-

scope.

Here a new single-pixel QPM method is demonstrated called direct optical phase extraction

(DOPE) microscopy. DOPE uses spatial frequency projections in a transmission geometry to

measure the quantitative phase of a specimen along one transverse dimension. Like CHIRPT,

DOPE utilizes complex SSB modulation as defined in Eq. (5.2). Since the DOPE modulation

and the CHIRPT modulation patterns are identical, DOPE and CHIRPT can be combined in a

single microscope to provide images of fluorescence intensity and quantitative phase that are

automatically co-registered.

5.3.1 Physical principle of DOPE QPM

With complex modulation, we can view the DOPE illumination scheme as decomposing the

line-focused electric field that illuminates a weakly scattering and thin object, Eill(x, t ) = 1+Mc

where Mc defined in Eq. (5.2), into two spatially coherent light beams, such that Eill = E0 +E1.

The first term, E0 = 1, is a reference field that is time stationary and co-propagates with the

optic axis. This field arises from the bias term in the modulation function. The second field

scans with time and reads E1 = e−iωc t e−i kt x . Both fields are incident on the specimen, with the

reference field at normal incidence with respect to the optic axis, and the scanning field at an

angle with respect to the optic axis that varies with time (Fig. 5.1).

Both incident beams are brought to a line focus in the vertical (y) dimension in the ob-

ject plane and are well approximated by plane waves in the lateral (x) dimension [45, 44]. In

this microscope, the scanning beam linearly sweeps through all lateral spatial frequencies sup-
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ported by the microscope objective (Fig. 5.1), providing diffraction-limited spatial resolution.

The transmitted light is collected by a low NA objective lens in a 2-F configuration with the

object and detector, and the detector is placed at the back focal plane of the 2-F optical sys-

tem. This optical design allows for the recording of spatial frequency information from multiple

modalities.

L4 L5Obj.

DM

Det.
Trans. QP

SF2EF

kt

kd

E0 E1(t)

g(x) G(kx)

Figure 5.1: Schematic representation of a DOPE transmission microscope. Two illumination beams, E0

and E1(t ), are brought to a line focus in the specimen, which has a complex contrast function, g (x). The

electric fields are spatially filtered by an aperture in the back focal plane of the collection lens, SF2, and

collected by a large area single-element detector. L4,5 - spherical lenses, DM - dichroic mirror, Obj. -

objective lens, EF - emission filter, SF2 - spatial filter, g (x) - complex object, G(kx ) - Fourier transform of

the complex object, kd - detector spatial location, kt - scan beam input spatial frequency. Figure from

[136].

The scanning beam spatially translates the object’s spatial frequency content in the detec-

tion plane as the incident scan angle is varied; this arises as a consequence of the Fourier shift

theorem. The spatial frequency content of the object over a narrow spatial frequency band is

isolated by placing a narrow slit in front of the detector to restrict the region of spatial integra-

tion across the detection plane (Fig. 5.1). For a sufficiently narrow slit, the light transmission is

functionally approximated by a Dirac-δ function, so that the transmitted field from the scan-

ning beam produces a temporal signal that reads out the object’s complex spatial frequency
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information. The reference beam enables recovery of the complex object spatial frequency in-

formation after numerical processing of the recorded temporal trace. A Fourier transform of

the recovered complex spatial frequency amplitude produces the complex object transmission

function, amplitude and phase.

DOPE is able to simultaneously record object spatial frequency information of specimen

phase and amplitude absorption, and can be combined with CHIRPT to image fluorescent

emission using two single-pixel detectors – producing automatically co-registered images. The

specimen must be adequately thin so that the field transmitted through the object is simply

the product of the incident field and the complex field transmission function, g (x), thus the

imaging theory can be described as a one-dimensional process along the x coordinate [40].

5.3.2 Theoretical analysis of DOPE QPM

The reference beam will carry the object spatial frequency information, written as E0 g (x) =

g (x), using the assumption that E0 is a line focus with unity amplitude spatially. The scan-

ning beam has a time-varying incident transverse spatial frequency, fx(t ) = n sin[θt ]/λ, that

spans the full transverse spatial frequency support of the illumination objective, i.e., λ fx(t )/n ∈

[−NA,NA]. Here n is the refractive index of the surrounding medium, λ is the wavelength of

the illumination beam, and the numerical aperture is defined as NA = n sinα, where α is the

largest angle supported by the lens. The scanning beam also contains a phase shift that imparts

a modulation carrier frequency to the beam, ωc , like the complex CHIRPT modulation function

in Eq. (5.2). This carrier frequency is critical for uniquely isolating the complex specimen field

transmission from the recorded signal. The carrier frequency serves as a temporal analog of off-

axis holography [86, 88, 45, 44]. Including the carrier frequency, the scanning field transmitted

through the object is E1(x, t ) g (x) = g (x) e−i kt xe−i ωc t .

Propagating the electric field incident on the front focal plane (FFP) to the back focal plane

(BFP) will yield a spatial Fourier transform of the electric field in the FFP [56]. Consequently,

the total object field in the BFP is a sum of the scaled Fourier transform of the reference and
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scanning fields transmitted through the specimen

Eobj(kx) =G(kx)+G (kx −kt )e−iωc t . (5.8)

We have suppressed unimportant scaling factors in the expression above for simplicity.

The single-pixel detector spatially integrates the total intensity incident on the detector sur-

face. We define the intensity transmission of a spatial filter placed in front of the detector as

T (x). Noting that the BFP spatial coordinate is linearly related to the spatial frequency via

xBFP = λF kx/2πn, where F is the focal length of the collection lens, we can integrate over the

spatial frequency coordinate to compute the photocurrent generated by the detector, which is

given by St = 〈T (kx)
∣

∣Eobj(kx)
∣

∣

2〉kx
. The demodulated SSB signal isolated near ωc , as defined in

Eq. (5.4), then reads

S̃1 = 〈T (kx)G∗(kx)G(kx −kt )〉kx
. (5.9)

The transmission aperture, T (kx), determines whether object phase information can be recov-

ered from the measured time trace. To make this point clear, let’s consider two limiting cases.

First, consider the case of an infinite collection aperture, i.e., T1(x) = 1. In this case, the

time signal of the positive frequency sideband is an autocorrelation of the specimen complex

transmittance function S̃1 = 〈G∗(kx)G(kx − kt )〉kx
. It follows that a Fourier transform of S̃1 is

simply the magnitude squared of the complex field transmittance. Thus, in the case of no re-

stricting aperture in the BFP, the recovered object is simply s̃1(x) =
∣

∣g (x)
∣

∣

2 = c(x). The intensity

transmitted is identical to the SPIFI and CHIRPT signals [51, 45, 46, 44], and no specimen phase

information can be recovered.

Next, consider the case in which the detection aperture in the BFP restricts the light col-

lected by the detector to a small range of spatial frequencies near zero. Such an aperture can be

approximated in the limiting case by a Dirac-δ function, i.e., Tδ(x) ≈ δ(kx). The demodulated
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SSB signal now represents the complex object’s spatial frequency as a function of scan time

S̃1 = 〈δ(kx)G∗(kx)G(kx −kt )〉kx
=G∗(0)G(−kt ). (5.10)

A Fourier transform of the isolated signal then gives the complex object field response, s̃1(x) =

G∗(0) g (x). A delta function transmission is achieved in practice with a small slit oriented along

the y-direction of the imaging system and aligned to the optic axis.

5.3.3 Automatic co-registration with CHIRPT and DOPE

An advantage to the DOPE microscope is that fluorescent emission from the specimen can

be imaged simultaneously with phase contrast and absorption. The illumination beams

used for DOPE interfere to form fringes with the illumination intensity given by Iill(x, t ) =

1 + MI(x, t ), with MI(x, t ) = cos[kt x +ωc t ]. Fluorescent molecules in the illumination re-

gion with a concentration denoted by cf(x) emit fluorescent light with a spatial distribution

of Iobj(x, t ) = cf(x)Iill(x, t ). The emitted fluorescence is collected in the epi-direction with

a second single-element detector (Fig. 5.2), producing a second-time trace, S(fl)
t = 〈cf(x)〉x +

〈cf(x)cos[kt x +ωc t ]〉x . The first-order demodulated SSB temporal signal from the fluorescent

detector provides a measure of the fluorescence intensity, S̃(fl)
1 = Cf(kt ), as noted in §5.2.1 [44].

This fluorescent time signal maps exactly the same transverse spatial frequency with scan time

as the DOPE signal. Consequently, the fluorescent time signal encodes a 1D Fourier transform

of the fluorophore distribution, s̃(fl)
1 (x) = cf(x), and a 1D image can be recovered in a similar

manner to the DOPE image.

5.3.4 Experimental validation of DOPE QPM

In order to validate the concept of DOPE, a spinning disk was used to generate two input

beams with an intensity transmission modulator [45, 44]. The mask was illuminated with a

continuous-wave 532-nm laser focused to a line. The zero- and first-order diffraction beams,

which serve as the reference and scan beams respectively, were isolated with a spatial filter in
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Figure 5.2: Schematic representation of a DOPE microscope. Two illumination beams the reference and

scan beams, E0 and E1(t ), respectively. The schematic shows three imaging modalities, forward and epi

single-pixel quantitative phase and fluorescent single-pixel imaging. (a) shows the modulator disc which

creates the reference and scan beams. (b) shows the spatial filter which blocks the negative diffraction

order. L1 - cylindrical lens, L2-7 - spherical lens, MD - modulator disc, SF0-2 - spatial filter, PBS - polarizing

beam splitter, DM - dichroic mirror, QWP - quarter-wave plate, Obj. - objective lens, EF - emission filter,

E0 - reference beam, E1(t ) - scan beam, kd - detection spatial frequency location, kt - scan beam input

spatial frequency, νr - modulator rotation frequency, g (x) - complex object, Det. - single-pixel detector.

Figure from [136].

the pupil plane of the objective lens, Fig. 5.2(b) [45]. The two line focus beams were re-imaged

to the specimen plane using a 250 mm focal length lens and a 0.9 NA objective (Mitutoyo M Plan

Apo HR 100×) configured as a 4-F imaging system. Light transmitted through the object was

collected with a 0.25 NA aspheric lens placed one focal length away from the specimen. The

Fourier plane, i.e., the BFP of the aspheric collection lens, was image relayed by a 4-F imaging

system, then spatially filtered by a variable width slit. The filtered light was measured with a

large area silicon photodiode detector (Thorlabs DET100A). Two-dimensional images were col-

lected by translating the specimen in the vertical dimension (y), perpendicular to the line focus.
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The positive SSB of the recorded signal was Fourier transformed and scaled by κ [51]. Quantita-

tive phase and absorption images were obtained by taking the imaginary argument and magni-

tude of the recovered complex specimen transmission, respectively. Fluorescence images were

recovered from the Fourier transform of the temporal signal collected with a PMT (Hamamatsu

H7422-40P) in the epi-direction, where a dichroic filter beamsplitter (Semrock FF562-Di03) and

an interference filter (Semrock FF01-593/40) isolated the fluorescent light [45, 44].

To demonstrate co-registration of the DOPE and CHIRPT images, we imaged 15 µm diame-

ter, shell-stained fluorescent beads (LifeTechnologies, FocalCheck Slide 1, Well A1), which con-

tains a thin layer of fluorescent molecules near the surface. The phase delay imparted to a

transmitted beam by a single bead exhibits a spherical cross-section, with the largest delay ap-

pearing at the center of the bead. Fig. 5.3(a) shows a composite image of two shell-stained

beads. The quantitative phase recovered from the DOPE measurement is shown in grayscale,

while the fluorescence intensity recovered from CHIRPT is shown in red. Fig. 5.3(b) shows a

line out of the absorbed intensity measured with DOPE compared with the fluorescence inten-

sity measured with CHIRPT near the equator of one bead. The excellent agreement in both the

shape of these profiles and their alignment is expected because the absorption is proportional

to cf(x) ≈ 1−|g (x)|2. Moreover, since the absorption image collected with DOPE is co-registered

with the fluorescence image collected with CHIRPT, it follows that the phase image extracted

from the DOPE measurement will be co-registered as well.

To validate that the DOPE phase image is quantitative, the phase extracted at the equator

of the bead was compared to a model of the theoretically expected phase delay. We computed

the expected phase delay from the OPL variation across the bead, which is the chord length of

the bead scaled by the index difference between the bead and the immersion media. The the-

oretical phase delay at the equator of a bead has the form φ(x) = 2π/λ {n1ℓ(x)+n0 [2r −ℓ(x)]},

where φ(x) is the phase difference, n1 is the refractive index of the bead, n0 is the refractive in-

dex of the immersion media, r is the radius of the bead, and the local chord length of the bead

is given by ℓ(x) = 2
p

r 2 −x2. Fig. 5.3(c) shows the phase measured with the DOPE microscope
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(green), compared with the modeled phase (blue). We fit the analytic model to the measured

data with the differential index of refraction, ∆n = n1 −n0, as the only free parameter. The best

fit produced a value of ∆n = 0.03.

Figure 5.3: Co-registered quantitative phase, absorption, and fluorescence emission of 15 µm shell

stained fluorescent beads. (a) Composite image of the phase and fluorescence image with gray and red

color scales, respectively. (b) Co-localized line outs of the absorbed intensity and fluorescent intensity

from the yellow line indicated in panel (a). These data show excellent alignment between modalities.

(c) Comparison of the theoretical phase (dashed blue) and the measured phase (green). The phase was

measured at the equator of the lower bead indicated by the yellow line in panel (a). Scale Bar: 5 µm.

Figure from [136].

We tested the ability to collect simultaneously co-registered images of quantitative phase

and fluorescent intensity in a biological sample by imaging fixed HeLa cells where tubulin was

labeled with Alexa 555. Figure 5.4(a) and Fig. 5.4(b) are QPM (DOPE) and fluorescent (CHIRPT)

images of a HeLa cell, respectively. Figure 5.4(c) is an overlay of the QPM and fluorescence

channels, demonstrating that there was no need to align the images in post-processing.

5.4 General theory of single pixel quantitative phase imaging

DOPE imaging demonstrates that quantitative phase and amplitude images of a thin, complex

object can be obtained simultaneously and can be automatically co-registered with a CHIRPT

fluorescence image by illuminating the object with two beams an on-axis reference beam and a
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Figure 5.4: Simultaneous quantitative phase and fluorescence images of a HeLa cell. (a) The DOPE phase

image. (b) The fluorescent image resulting from tubulin tagged with Alexa 555. (c) A composite of the

phase and fluorescence images. Scale bar: 10 µm, Color bar: [rad]. Figure from [136].

scanned beam with increasing transverse spatial frequency. In this section, a generalized theory

of phase-sensitive single-pixel imaging is presented. In order to obtain QP images with single-

pixel modulated imaging, several assumptions are made.

Firstly, it is assumed that the illumination is a spatially coherent optical beam that passes

through a thin object, with a complex response to the optical field (either in transmission or

reflection) given by g (ρ). Secondly, we assume the modulated object field emerging from the

specimen takes the form Eobj(ρ, t ) = g (ρ) fmod(ρ), where we can either modulate the field inci-

dent upon the object or after it exits the object, fmod(ρ) = fill(ρ, t ) fex(ρ, t ). Finally, we assume

that the signal is recorded from a photodiode placed behind a pinhole in the back focal plane

of a 2-F optical collection configuration, as shown in Fig. 5.1.

At the BFP, the field is the spatial Fourier transform of the modulated object field, E (k) =

〈e−i k·ρEobj(ρ)〉ρ. Thus, the signal detected by a single pixel detector with a pinhole centered at

kd is given by

S
(kd )
t = |E (kd )|2 =

∣

∣

∣〈e−i kd ·ρg (ρ) fmod(ρ)〉ρ
∣

∣

∣

2
. (5.11)
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Making use of the general form of the field modulation function of fmod(ρ, t ) = 1+M(ρ, t ), this

expression simplifies to read

S
(kd )
t =

∣

∣

∣G
(kd )
0 +G

(kd )
M

∣

∣

∣

2

=
∣

∣

∣G
(kd )
0

∣

∣

∣

2
+

∣

∣

∣

2G
(kd )
M

∣

∣

∣

2

+G
(kd )∗
0 G

(kd )
M

+G
(kd )
0 G

(kd )∗
M

, (5.12)

where E (kd ) is the value of the object spatial frequency distribution at kd , and we define pro-

jections of the object onto the modulation patterns as

G
(kd )
0 ≡ 〈e−ikd ·ρg (ρ)〉ρ (5.13)

G
(kd )
M

≡ 〈e−ikd ·ρg (ρ)M(ρ, t )〉ρ. (5.14)

Isolation of a single sideband term allows for recovery of the set of projections of the complex

object projections onto the modulation functions, M(ρ, t ).

For a weak phase object, where absorption and phase changes are small, the majority of

the energy in the diffracted field (i.e., the Fourier transform of the field) is contained at kd = 0.

Thus, the most efficient configuration for QPM is to place the detector on the axis, leading to a

simplified expression St = |E (0)|2 =
∣

∣〈 fmod(ρ, t )g (ρ)〉ρ
∣

∣

2
. This expression for single pixel QPM,

written in terms of the object field, i.e.,

St =
∣

∣

∣

∣

∫

Eobj(ρ, t )g (ρ)d 2
ρ

∣

∣

∣

∣

2

(5.15)

is quite different than that obtained for single pixel intensity imaging, where

St =
∫

∣

∣Eobj(ρ, t )g (ρ)
∣

∣

2
d 2

ρ. (5.16)
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For our usual case of fmod(ρ, t ) = 1+ M(ρ, t ), the total QPM signal expands to read St =

|G0|2+|GM |2+G∗
0 GM +G0G∗

M , where for this case on-axis detection case, G0 = 〈g (ρ)〉ρ and GM =

〈g (ρ)M(ρ, t )〉ρ. Assuming that M(x, t ) are members of an orthonormal basis, the object can

be synthesized from the measured temporal signal trace according to ĝ (x) = 〈M∗(x, t )St 〉t . The

complex spatial frequencies detected can, additionally, be expanded by using multiple slits and

detectors by placing the detection at ±kd 6= 0.

5.4.1 Single pixel QPM with spatial frequency projections

To validate the general single-pixel QPM analysis presented above, we use the theory to de-

rive the expressions for DOPE microscopy. In DOPE, we are interested in the complex mod-

ulation function, M(x, t ) = Mc(x, t ) = mt e−iωc t , which means that the projection term reads

GM0 = e−i kt xc G(kt ). This leads to the temporal signal that we found earlier, namely

St = |G0|2 +|G(kt )|2 +e−i kt xc G∗
0 G(kt )+e i kt xc G0G(kt ). (5.17)

An inverse Fourier transform of the signal produces

st = |G0|2δ(x)+ g (x)⋆ g∗(x)

+G∗
0 g (x −xc )+G0 g∗(−x +xc ). (5.18)

Selection of the the demodulated SSB term, S̃1 =G∗
0 G(kt ), gives us the desired complex object,

s̃1 = G∗
0 g (x) centered at x = 0. This strategy for DOPE is motivated by the ability of a lens to

perform a spatial Fourier transform of a complex optical field. Reconstruction through object

synthesis, ĝ (x) = 〈e i kt (x+xc )St 〉kt
, gives the same result.

The complex object is weighted by a complex number, G0. Writing the complex object as

a phasor, g (x) = gm(x)e iφ(x), lets us write the complex reference number in phasor form as

G0 = Ae iφ0 = Gr + iGi . Here, Gr = 〈gm(x)cos
(

φ(x)
)

〉x and Gi = 〈gm(x)sin
(

φ(x)
)

〉x so that the

magnitude is given by A2 = |Gr |2+|Gi |2 and the phase is defined by tanφ0 =Gi /Gr . In the weak
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phase approximation, A ≈ gm(x) and φ0 ≈ 〈gm(x)φ(x)〉x/〈gm(x)〉x is an amplitude-weighted

average object phase. This provides an interpretation of the final result recovered from the

single-pixel imaging process of s̃1 = Agm(x)e i [φ(x)−φ0].

5.5 Physical optics picture of single-pixel phase imaging

So far, we have presented a fairly general description of single-pixel QPM, describing the imag-

ing as a sequential acquisition of spatial frequency information. However, this description fails

to give an intuitive physical picture of how the illuminating electric fields interact with the sam-

ple, and how those interactions relate to scattering theory. Here we present a physical scattering

picture of DOPE microscopy.

As described above, DOPE uses two illumination beams. One beam is a reference, which

is stationary with time, while the other beam sweeps out all angles supported by the NA of the

illumination objective lens as a function of time. We begin by examining the scattering of the

reference beam from a small cylindrical rod with a diameter on the order of the illumination

wavelength. Given the relative size of the object with respect to the wavelength, the scattered

electric field distribution is readily computed with the Mie scattering theory. The magnitude

of the reference electric field scattered from a 1.5 µm diameter rod of infinite vertical extent is

shown in Fig. 5.5(a) (green line). Consider collecting the scattered field in the forward (transmis-

sion) and back-scattered (epi) directions. Due to the spatial filtering process of DOPE, only light

scattered to the optic axis will be detected, indicated by the thin yellow line in Fig. 5.5(a). The

yellow line is positioned with respect to the detector slit location, kd ; here we assume kd = 0.

In general, the yellow line will rotate if kd is non-zero and no longer lies on the optic axis. The

squares in Fig. 5.5(a) represent the collected complex scattering coefficients from the reference

beam that are isolated by the vertically-oriented slit used in DOPE QPM. The purple and orange

colored circles illustrate the direction of scattering, forward and back-scattering, respectively.

Next, consider the scanning illumination field, which illuminates the specimen with a time-

dependent angle θt , where sinθt = λκ t/n. Since the object, we consider here is cylindrical,
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the Mie scattering distribution for the scanning beam will be identical in shape to that of the

reference beam, but will be rotated by the incident angle θt with respect to the optic axis. This

field is represented by the blue line in Fig. 5.5(a). The maximum angle the scanning beam can

traverse is defined by the NA of the illumination objective, green shaded region of Fig. 5.5. The

collected complex scattering coefficients for the scanning beam at time t are represented by

the circles, Fig. 5.5(a). Note, that the resolution is independent of the NA of the detection optics

and is instead limited by the NA of the illumination objective.

Overall, the transmissive DOPE detector measures two scattering coefficients of the scat-

tered electric field, one for each illumination beam, while the epi detector measures two differ-

ent electric field amplitudes from the scattered field. The collected scattered light will interfere,

permitting the complex coefficients to be recovered. To further clarify what is being measured

by each detector, the collected coefficients can be mapped into the spatial frequency space. Fig-

ure 5.5(b) shows the mapping of the complex scattering coefficients into k-space of the object

spatial frequency information, where the colored points represent the spatial frequency col-

lected at a time t corresponding to the illumination angle in Fig. 5.5(a). As a function of time,

all the spatial frequencies supported by the illumination objective are mapped out along an arc

defined by the cross-section of the Ewald sphere determined by the illumination and scattered

k-vectors.

According to the physical arguments outlined above, DOPE measures the complex scatter-

ing function in either the transmission or reflection modes. In most cases, forward scatter is

stronger because back-scattering is only strong for spatial structures that are small compared

to the optical wavelength. As a consequence, the transmission geometry will produce more

reliable reconstructions with better SNR, since the majority of the scattered light is forward

scattered with a very small fraction being back-scattered.

To test the ability of DOPE to form quantitative phase-contrast images in the forward- and

back-scattered directions, we imaged a Fresnel lens in the transmissive and epi-directions si-

multaneously. We also collected intensity-contrast images (i.e., CHIRPT images) in both the
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Figure 5.5: Figure (a) shows the Mie scattering magnitude distribution for a 1.5µm diameter scattering

particle plotted on a log scale. The green line represents the scattering distribution of the reference

beam and the blue line represents the scattering distribution of the scan beam. The light green shaded

area represents all the scan angles that are swept out in a scan supported by the NA of the illumination

objective. The purple points are forward scattering coefficients and the orange points are back-scattering

coefficients collected at some time t on the optic axis, where the squares and circles are reference and

scanning beam scattering coefficients, respectively. The yellow region represents the collection cone

defined by the width of the spatial filter. Figure (b) shows the k-space which is collected during the

time scan. The green circle represents a conic section of the Ewald sphere with a radius defined by the

illumination wavelength. The colored points represent the spatial frequencies captured at some time t

corresponding to the scattering picture on the left. Figure from [136].

transmissive and epi-directed directions by removing the vertical spatial slit. Figure 5.6 com-

pares DOPE and intensity images collected in both directions, where it is clear that DOPE pro-

vides a reliable measurement of the OPL variation in the Fresnel lens. Conversely, the intensity

modality shows contrast in the phase image only where the amplitude of the intensity image

drops to near zero. According to the analyses presented above, CHIRPT is an intensity-contrast

modality, and thus should not provide any phase information, we, therefore, hypothesize that

the rings visible in the intensity phase images are due to diffraction of the illumination beams

from each successive Fresnel zone plate ring.
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Figure 5.6: Micro Fresnel lens. Top DOPE images in both transmission and epi scattering directions with

the spatial filter on the optic axis with a width of 15 µm. The bottom images are intensity images without

a spatial filter. Scale Bar: 10 µm. Figure from [136].

5.6 Discussion

Forming images with multiple optical modalities provide complementary information that en-

hances our understanding of a specimen under study. Any microscope can be adapted to collect

a set of images from multiple optical modalities; however, careful spatial alignment of the im-

ages is necessary to compare identical spatial features of simultaneously recorded coherent and

incoherent optical images. Here, we have introduced the capture of multiple optical modality

images through the simultaneous recording of identical spatial frequency content of quantita-

tive phase, optical field absorption, and fluorescent emission spatial distributions, allowing for

the automatic overlay of all three modalities.

The technique described in this chapter opens the path for greatly expanding the capabili-

ties of QPM and fluorescent imaging. Our new microscope uses single-pixel detectors to record

light from a specimen illuminated by a pair of interfering light beams. The illumination pattern
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carries a spatial frequency dictated by the difference in the incident k-vectors of the interfering

beams. The transmitted light fields are used to record the spatial frequency value of the com-

plex specimen transmittance at the frequency difference of the two illumination beams. Due to

the spatial filtering process, DOPE images are independent of the NA of the collection optics.

Simultaneously, the same spatial frequency is recorded from the concentration distribution of

fluorescing molecules excited by the intensity pattern from the interfering illumination beams.

The image formation process is general and can be extended to other coherent and incoher-

ent optical interactions, such as two-photon absorption, Raman scattering, coherent nonlin-

ear scattering, photothermal, and photoacoustic imaging modalities. Moreover, by exploiting

the large bandwidth of the single-pixel detector, additional information can be integrated into

the time signal. This offers the expansion of DOPE to recent single pixel-imaging advances for

multimodal hyperspectral imaging [36], super-resolution imaging [46], and new methods for

spectrally-resolved QPM.

One of the biggest advantages DOPE has compared to camera-based QPM is its versatility

in the wavelengths that can be used to image objects of interest. Traditional 2D array detectors

are largely limited to Silicon-based detectors due to their availability, low noise, and low cost.

However, when other wavelength ranges are desirable for probing the object of interest, such

as SWIR, MWIR, and THz wavelengths, single-pixel detection is likely the only choice available.

In recent years, improved SWIR 2D array cameras have become available. In the case of single-

pixel imaging, however, there is a large selection of detectors for these wavelengths, which are

widely available and comparatively inexpensive.

DOPE relies on a modulator disk that is easily scaled to high speeds. The cost of a modulator

disc is on the order of hundreds of dollars, depending on the quality of the print and the desired

resolution of the printed features. Using a modulator disk for DOPE imaging, the ultimate limit

in acquisition speed will be determined by how fast the modulator disc can spin, the beam

scanning speed across the sample (perpendicular to the line focus), or by incident laser power –
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whichever of these parameters is lowest will be the limiting factor. There are, however, strategies

to overcome each of these challenges that will permit high-speed DOPE imaging.

If the rotation speed of the modulator disk is the limiting factor, the printed patterns can be

multiplexed so that multiple patterns can be imaged in a single disc rotation. When the speed

of scanning the line focus is the limiting factor, resonant galvanometers or polygonal mirrors

can be used to rapidly acquire 2D images. Finally, when the laser power is limited, requiring

longer scan times to enhance SNR, PMTs and photon counting can be used to compensate for

the low photon flux.

Considering all of these factors that can limit acquisition speed in DOPE imaging, we argue

that high frame rates, up to 600 lines per second, can be achieved in our current configuration.

To date, we have operated at 30-180 seconds to obtain a 2D image using stop-and-hold stage

scanning to translate the specimen orthogonal to the line focus. This scheme is very slow com-

pared to scanning the line focus with, e.g., galvanometric mirrors, and we expect the acquisition

rate to scale to >50 Hz per 2D image with an appropriate modulator disc.

One drawback to DOPE QPM is that a large number of data points are required to temporally

resolve the measured data, which, as we show in Eq. (5.3), contains a carrier frequency ωc . In

the experimental configuration reported here, typical carrier frequencies are on the order of

10-100 kHz. In theory, a sampling rate of 2ωc must be used to fully resolve the time signal. In

practice, however, we have found better performance by setting the sampling rate to ∼ 6ωc -8ωc .

This becomes problematic when high speeds are to be achieved where the carrier frequency can

easily reach the MHz regime. On the other hand, such high sampling rates can be advantageous,

as 1/ f noise (pink noise) is significantly lower at these temporal frequencies [147]. We note that

it is possible to downmix the carrier frequency with a reference electronic signal so that high

sampling rates can be avoided, which will improve the efficiency of the acquisition. Note also

that this carrier frequency negates the need to acquire multiple images to extract a complex

SSB.
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Another drawback to DOPE QPM is that shot noise is multiplexed across all imaging bins,

causing the noise floor to vary depending on the light intensity impinging on the detector. Ad-

ditionally, the dynamic range of the detector is consequently divided between all image bins.

However, this problem is not unique to DOPE and is a general problem for all single-pixel imag-

ing techniques.

Finally, we note that the theory for DOPE imaging presented here relies on the assumption

of a Dirac-δ spatial filter in the detection plane. This is, of course, not realized in practice.

Rather, a slit ranging from 5-20 µm allows sufficient light transmission while serving as a good

approximation of a Dirac-δ spatial filter. The details of how the measured time trace transitions

from an intensity measurement when the spatial filter is unity to a phase measurement when

the spatial filter is an ideal Dirac-δ distribution is outside the scope of this work but will be

addressed in future works.

5.7 Conclusion

In this work, we have introduced a new imaging technique that simultaneously captures quan-

titative phase and fluorescence using single-pixel detection. We have described the theory for

DOPE and demonstrated its utility on several samples. We have also described a general theory

for single-pixel QPM for any arbitrary set of modulation patterns, provided that the set of pat-

terns spans the space of the object information, and a phase shift can be imparted to isolate the

relevant complex terms. This work opens new capabilities in the SWIR and MIR for quantita-

tive phase imaging. This new direction may prove particularly valuable for biomedical imaging

since the absorption cross-section of vibrational overtone spectral features in the SWIR region

are generally much larger than in the NIR and visible [148]. Since biologically relevant markers

such as collagen, water, and lipids appear at distinct wavelength regions, these spectral features

could be used for optical medical diagnostic instrumentation. The increased absorption cross

section in the SWIR spectral region, combined with the longer wavelength, indicates that the

phase shift introduced by these critical biological materials will be larger than in the NIR and
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the visible. Moreover, an extension of DOPE imaging to acquire hyperspectral single-pixel im-

ages [36] will enable the use of the complex spectral response of a tissue, which is anticipated

to improve the differentiation of the concentration of QP chromophores.
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Chapter 6

Introduction to Tomography

6.1 Introduction: Three-Dimensional Imaging

Considerable information can be obtained from 2-dimensional (2D) images, which is the

standard type of imaging with which nearly everyone is familiar. 2D imaging can be thought of

as a projection of 3-dimensional (3D) space onto a 2D surface, that is, one dimension (depth)

has been integrated along to form the 2D image. While depth information can be inferred when

the size of an object is known a priori or there are clues in a scene that suggests depth. In fact,

there are many ways to recover depth information such as engineered PSFs, [141, 110], stereo

vision [92], and lidar [69], to name a few. While these techniques give depth information, they

fail to recover the true 3D structure of the object. When the true 3D object is to be recovered it is

necessary to acquire 2D images from either many directions or many depths and computation-

ally reconstruct an estimate of the true 3D object. In this chapter, I will focus on tomographic

reconstructions where images are captured from many different angles to reconstruct the 3D

object. While there is a myriad of techniques that are capable of 3D reconstruction, such as

confocal, transport of intensity (TIE) methods, and localization methods, I will not devote any

space to these techniques as they are not of direct importance to the research that I present in

the following chapters. I only mention them here so that the reader is aware of other research

pertaining to the topic of 3D imaging.

6.2 Tomography

Tomography classically refers to reconstructing a 3D object from 2D images taken at various

angles. However, modern tomography has been broadened to refer to the reconstruction of a

higher dimensional space from images taken at lower dimensions using angular diversity to ob-

tain enough information to recover the higher dimensional object. The low-dimensional image
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is formed by integrating along one or more dimensions, this operation is known as a projection.

The first implementation of tomography was implemented with X-rays illumination where the

light that is used experiences minimal diffraction and can be approximated as traveling in a

straight line through the specimen to be imaged. In this type of imaging the 2D images are ac-

quired in transmission and are sometimes referred to as a radiogram or a shadowgram because

the 2D images are measuring the absorption or density through the specimen. The set of angu-

larly resolved radiograms is called a sinogram which refers to the sinusoidal shape that objects

traverse. The sinogram is the starting point for reconstruction algorithms. The goal is to recon-

struct the higher-dimensional object from the set of low-dimensional images. There have been

many different algorithms developed for reconstructing tomographic data, however, there are

two main classes of algorithms: filtered back-projection (FBP) and iterative reconstruction (IR)

algorithms, this is not to say that this is an exhaustive classification there are many other algo-

rithms that exist for solving tomographic imaging problems however I will not touch on them.

However, the IR methods typically have FBP steps for combining the radiogram data so I will fo-

cus on FBP algorithms in the following sections. The FBP algorithm assumes that no diffraction

of the illumination light occurs, however, if longer wavelengths are used, such as visible light,

then diffraction can no longer be ignored and must be accounted for in the reconstruction.

Methods that account for diffraction are known as filtered back-propagation algorithms which

refer to using the complex field information to back-propagate the measured field information

to properly account for diffraction.

In the following sections, I will give a brief overview of X-ray computed tomography and

equivalent methods as well as optical diffraction tomography. I will describe the core ideas for

both techniques and the assumptions that are used in the reconstruction. Next, I will lay out

how the reconstruction algorithms work. There are many great resources on the subject so I will

refer the reader to these texts if further details are required.
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6.2.1 X-ray Computed Tomography

X-ray computed tomography (CT) utilizes x-ray illumination, the x-rays penetrate straight

through the specimen with minimal diffraction. In addition, the penetration depth is extremely

good so that large specimens can be imaged. As the light propagates through the sample the

light will be attenuated/absorbed so that the measured transmission signal can be thought of

as a line integral of the sample density or a projection of the sample density onto the imaging

surface, this is often referred to as a Radon transform [119, 78]. With x-ray tomography, we

can consider the object as being sectioned into slices along the y-axis and each slice can be

considered independent of the neighboring slices. This assumption allows us to consider the

xz-plane at an arbitrary y location y0 giving x = (x, y = y0, z) −→ (x, z). When the full 3D object

is to be reconstructed a stack of xz 2D images can be assembled to recover the full 3D object.

Mathematically the projection can be written as,

S(x,φ) =
〈

Iill(Rφx)c(x)
〉

z
, (6.1)

where S(x,φ) is the measured signal or projection at rotation angle φ. The full angular set of

projections results in a stack of images which is known as a sinogram. Iill is the illumination

beam (typically assumed to be a uniform plane wave), Rφ is a rotation matrix which operates

on the spatial coordinates x = (x, z) −→ Rφx = (x cosφ− z sinφ, x sinφ+ z cosφ), and c(x) is the

object to be imaged. Here, Dirac integral notation is used, 〈·〉z =
∫

·d z, which represents a line

integral along the z-coordinate. Fig. 6.1(a) illustrates the projection of the sample onto a de-

tector at a rotation angle, φ0. The set of all projections is commonly referred to as a sinogram,

fig. 6.1(b). Eqn. 6.1 is commonly referred to as a Radon transform named after Johann Radon

who developed the transform in 1917 which is the mathematical operation that generates the

sinogram. Notice that most formulations of the Radon transform, eqn. 6.1, do not contain the

illumination beam profile, Iill, however, I use it here for several reasons, first, it serves as a con-

venient way to apply the object rotation; in principle, it does not matter if the object is rotated
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and the illumination is stationary or the illumination is rotated and the object is stationary,

so I have elected to rotate the illumination. Second, this formulation allows the beam to have

structure along the x-direction, although it is typically assumed to be uniform with unity, as I

have done here. Finally, this formulation allows for easy comparison to diffraction tomography

shown in the next section.

z

x
xφ0

zφ0

φ0

S(x,φ0)

kx

kz

P̂φ0
(kx)

F(·) φ0

a) b) c)

xφ0
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Figure 6.1: (a) shows the absorption profile of an object (green) when x-rays (blue) pass through the

material at some angle, φ0. (b) shows the sinogram for the green object in panel (a) where φ0 = [0,180]

degrees. (c) illustrates the Fourier slice theorem where the projection S(x,φ0) is Fourier transformed and

mapped into frequency space corresponding to the measurement angle.

The object, c(x), can be reconstructed from the sinogram with the use of a critical tool

known as the Fourier slice theorem [18, 103, 19]. The Fourier slice theorem states that the

Fourier transform of a projection P̂ (kx) at an angle, φ0, yields the same spatial frequency in-

formation as a straight line at an angle, φ0, through the origin of the Fourier space of the 2D

Fourier transform of the object, see fig. 6.1(c). The Fourier slice theorem can be written as,

P̂φ0 (kx) =F {S(x,φ0)} =
〈

S(x,φ0)e−i kx ·Rφ0 x
〉

x
=C (kxφ,0), (6.2)

where F is the Fourier transform operator, e−i kx ·Rφ0 x is the Fourier kernel, and C (kxφ,0) is the

Fourier transform of the object c(x) that lies on the line through the origin rotated by an angle

φ0. Alternatively, C (kxφ,0) can be interpreted as recovering the spatial frequency information
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of the object, c(x), in a rotated Fourier space where only the kx axis is recovered. The Fourier

slice theorem informs a method to reconstruct the original 2D object from the 1D line integral.

That is, given that the Fourier information can be recovered from the projections, the object

frequency information in the Fourier domain can be recovered by summing all measured angles

in the Fourier domain, applying proper weights/filters to the summed frequency information,

and finally computing the 2D inverse Fourier transform to reconstruct the object. This set of

steps is commonly referred to as filtered back-projection (FBP).

From fig. 6.1 (c) we see that we recover a thin slice of frequency information. It is possible

to maintain a Cartesian coordinate system, however, it would be necessary to perform interpo-

lation on some grid to assign the measured frequency information to the correct grid location.

This can be a slow and inaccurate process. A better strategy is to convert the Cartesian coor-

dinate system to a polar coordinate system. When this is done the frequency information can

readily be mapped to the correct location in frequency space. This comes at the small price of

having to apply the Jacobian to the transformation. We will calculate the Jacobian, but first, let’s

define the coordinate transformation

kx = kxφ cosφ

kz = kxφ sinφ.

The Jacobian is defined as

det J = det

∣

∣

∣

∣

∂(kx ,ky )

∂(kxφ,φ)

∣

∣

∣

∣

= det

∣

∣

∣

∣

∣

∣

∣

∂kx

∂kxφ

∂kx

∂φ

∂ky

∂kxφ

∂ky

∂φ

∣

∣

∣

∣

∣

∣

∣

= det

∣

∣

∣

∣

∣

∣

∣

cosφ −kxφ sinφ

sinφ kxφ cosφ

∣

∣

∣

∣

∣

∣

∣

= kxφ cos2φ+kxφ sin2φ= |kxφ|.

(6.3)

We see that the magnitude of the coordinate transform is simply a ramp, when applied to the

Fourier transform of the projection it behaves as a weighting/filtering of the frequency infor-

mation, which is where the filter comes from in filtered back-projection. Next, we can define
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the object in terms of its Fourier transform

c(x, z) =
〈

ĉ(kx ,kz)ei (kx x+kz z)
〉

kx ,kz

(6.4)

Plugging in eqn. 6.2 and eqn. 6.3 into eqn. 6.4 and integrating from φ = (0,180] allows us to

write the well-known FBP algorithm as

ĉ(x) =
〈

〈

|kx,φ|P̂φ(kx)ei kx ·Rφx
〉

φ

〉

kx,φ

, (6.5)

where ĉ(x) is an estimate of the true object, |kx,φ| is a ramp filter calculated as the magnitude of

the determinate also known as the Jacobian which arises from the matrix transformation from

a cylindrical coordinate system to a Cartesian coordinate system, ei kx ·Rφx is the inverse Fourier

transform kernel in rotated coordinates. The inner brackets sum the spatial frequency informa-

tion of the object in Fourier space and the outer brackets along with the inverse Fourier kernel

perform the inverse Fourier transform. The quality of the reconstruction is defined in eqn. 6.5

will be heavily dependent on the number of projections used to reconstruct the object. A typ-

ical number of projections is greater than 100 angular projections per 180 degrees of rotation.

Note, that in CT, it is only necessary to acquire data over 180-degree range, if the full 360 degrees

is acquired the second half yields no new information and is completely redundant to the first

half of the data.

Up to this point, we have only talked about computed tomography with x-ray illumination,

however, it is possible to use CT with longer wavelengths such as optical light. One of the pri-

mary methods that use the FBP algorithm with visible light is Optical Projection Tomography

(OPT) [29, 91, 30]. OPT takes advantage of the fact that in an imaging system, there is a region

about the focal plane that is well approximated by plane waves that can be considered diffrac-

tion free and everything in this region is in focus. This region is known as the Rayleigh range.

In the Rayleigh range of the focus, the illumination light travels in a straight line in a similar

manner to x-ray illumination. Provided that the object is contained within the Rayleigh range,
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standard CT algorithms can be used to produce 3D reconstructions of small objects such as

zebrafish and developing embryos. If the object lies outside the Rayleigh range blurring of the

reconstructed object will occur. This lead to the primary limitation of OPT which is a coupling

of the transverse resolution and the size of the object. That is, as the object gets larger, the

Rayleigh range needs to increase. In order to increase the Rayleigh range a weaker focus must

be used which leads to a decrease in spatial resolution. Algorithms have been developed to

help mitigate this problem so that larger objects can be imaged, however, there still exists this

fundamental coupling between the object size and spatial resolution.

6.2.2 Optical Diffraction Tomography

Optical Diffraction Tomography (ODT) [82, 127, 93], as the name suggests, takes into ac-

count the diffraction experienced by the illumination light used to image the sample. As dis-

cussed in section 1.2.3, diffraction is the scattering or spreading of light due to the wave nature

of photons. One of the key results of solving Maxwell’s equations is the wave equation, in par-

ticular, the dispersion relationship of the Helmholtz equation,

kz =
√

k2 −k2
x −k2

y . (6.6)

The dispersion relationship describes how the spatial frequencies in (x, y, z)-coordinates are re-

lated to each other and the wavelength of the illumination light, k = 2π/λ. Eqn. 6.6 describes

a spherical shell where the spatial frequencies at a given wavenumber reside in k-space, as de-

scribed in section 1.2.3. It is the job of ODT to measure the amplitude and phase of the spatial

frequency support of the object and stitch together the measured support. Note, this is the

same procedure that was taken in CT, however, the object spatial frequency information lay on

a straight line whereas in ODT the object spatial frequency lies on a semicircle. This is the key

difference between CT and ODT.

Optical diffraction tomography utilizes the first Born scattering approximation and the

Fourier diffraction theorem (derived below) to reconstruct an object illuminated by visible light.
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The light will experience diffraction as it travels through the specimen, the specimen is assumed

to be a phase object, weakly scattering and weakly absorbing. The scattered field will be de-

tected via holographic detection, interference of a plane wave at the detector plane, eqn. 4.9,

so that the complex field information can be recovered. Holographic detection is necessary so

that the back-propagation in the diffraction tomographic reconstruction can be carried out, as

we will see below. There are many excellent resources that cover ODT with detailed derivations,

I will refer the reader to these resources [78, 32, 56].

Following Goodman’s derivation of the time-independent Helmholtz equation, we start

with Maxwell’s equations, [56]. The four Maxwell equations are

∇∇∇×××E =−µ
dH

dt
(6.7)

∇∇∇×××H = ǫ
dE

dt
(6.8)

∇∇∇·E = 0 (6.9)

∇∇∇·H = 0 (6.10)

We see that the electric field, E, is coupled with the magnetic field, H, in the first and second

Maxwell’s equations, eqn. 6.7 and 6.8, respectively. We will assume the medium of interest

is a dielectric, nonmagnetic, linear, and isotropic in the region of propagation, the goal is to

manipulate the above equations so that we can decouple the two fields. This is done by first

taking the curl of 6.7 giving

∇∇∇×××∇∇∇×××E(x, t ) =−µ
d

dt
∇∇∇×××H(x, t ). (6.11)

Substituting the second equation, eqn. 6.8, into the above equation, we can get rid of the mag-

netic field giving

∇∇∇×××∇∇∇×××E(x, t ) =−µ
d

dt

(

ǫ
dE(x, t )

dt

)

=−µǫ
d2

dt 2
E(x, t ). (6.12)
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Using the vector identity ∇∇∇×××∇∇∇×××A =∇∇∇(∇∇∇·A)−∇∇∇2A, we can rewrite our above equation as

∇∇∇(∇∇∇·E(x, t ))−∇∇∇2E(x, t ) =−µǫ
d2

dt 2
E(x, t ). (6.13)

From Maxwell’s third equation, eqn. 6.9, we see that the first term on the left-hand side is equal

to zero gives

∇∇∇2E(x, t ) =µǫ
d2

dt 2
E(x, t ). (6.14)

It is common to use the identity for the speed of light in a medium, cm = (µǫ)−1/2, to rewrite

eqn. 6.14 giving,

∇∇∇2E(x, t )−
1

c2
m

d2

dt 2
E(x, t ) = 0. (6.15)

Using the assumption of a nonmagnetic material we know, µ = µ0, and the definition of the

refractive index, n = (ǫ/ǫ0)1/2 we can write the well known vector wave equation

∇∇∇2E(x, t )−
n2

c2

d2

dt 2
E(x, t ) = 0. (6.16)

Not surprisingly if we repeat this derivation where we instead isolate the magnetic field we ar-

rive at a similar result as the electric field,

∇∇∇2H(x, t )−
n2

c2

d2

dt 2
H(x, t ) = 0. (6.17)

So now we have wave equations for both the electric and magnetic fields no longer coupled

with the other field, respectively. If we can consider one component of the electric field we can

write a scalar wave equation

∇∇∇2Ex(x, t )−
n2

c2

d2

dt 2
Ex(x, t ) = 0. (6.18)

We note that we could write any component of the electric field or magnetic field and it acts in-

dependent of the other components so we can write the scalar wave equation without explicitly
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writing which component is being considered giving

∇∇∇2u(x, t )−
n2

c2

d2

dt 2
u((x, t ) = 0. (6.19)

Again this is valid for dielectric, nonmagnetic, linear, and isotropic media. Let’s write the com-

plex electric field as u(x, t ) = A(x)exp
{

i (2πνt +φ(x)
}

, where A(x) of the field amplitude, ν it the

optical frequency, and φ(x) is the phase. Substituting the electric field into eqn. 6.19 gives,

∇∇∇2 A(x)exp
{

i (2πνt +φ(x)
}

−
1

c2

d2

dt 2
A(x)exp

{

i (2πνt +φ(x)
}

= 0. (6.20)

Taking the time derivative gives

∇∇∇2 A(x)exp
{

i (2πνt +φ(x)
}

+
4π2ν2n2

c2
A(x)exp

{

i (2πνt +φ(x)
}

= 0. (6.21)

Using the definition of wavenumber, k = 2πnν/c, and since we are not interested in how the

field, u(x, t ), evolves in time we can separate the two variables allowing us to write the well-

known time-independent homogeneous Helmholtz equation,

(∇∇∇2 +k2)u(x) = 0. (6.22)

This equation is valid for homogeneous media, however, when light propagates through inho-

mogenous media (the refractive index varies in space), i.e.

[

∇∇∇2 +k2(x)
]

u(x) = 0, (6.23)

then our scalar Helmholtz equation becomes an approximation that experiences an error. This

is the result of the coupling of the vector components of the wave at the boundaries of the

refractive index change, [56]. However, it is known to be a good approximation when the size of

the refractive index change is larger than the wavelength of the wave.
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The scalar homogeneous Helmholtz equation, eqn. 6.22, can be rewritten in the form which

is commonly referred to as the inhomeogeous Helmholtz equation. This is done by adding zero

to the left-hand side and performing some simple algebra as shown below. Starting with the

homogeneous equation, let k(x) be the local wavenumber due to local changes of refractive

index from the presence of a sample. Making these changes and adding zero to eqn. 6.22 we get

[

∇∇∇2 +k2(x)
]

u(x)+k2
mu(x)−k2

mu(x) = 0, (6.24)

where km = 2πnm/λ be the wavenumber of the immersion media and nm is the refractive index

of the immersion media. Rewriting the above equation and moving several terms to the right-

hand side gives,

(∇∇∇2 +k2
m)u(x) = [k2

m −k2(x)]u(x) (6.25)

(∇∇∇2 +k2
m)u(x) =−k2

m[k2(x)/k2
m −1]u(x) (6.26)

where k(x) = 2φn(x)/λ is the local wavenumber and n(x) is the local refractive index of the

object. Plugging in the definitions of the wavenumbers, into the above equation, gives

(∇∇∇2 +k2
m)u(x) =−k2

m[n2(x)/n2
m −1]u(x). (6.27)

It is common to define c(x) = k2
m[n2(x)/n2

m −1] as the scattering potential, yielding the scalar

inhomogenous Helmholz equation

(∇∇∇2 +k2
m)u(x) =−c(x)u(x). (6.28)

ODT starts by solving the inhomogeneous Helmholtz equation,(∇∇∇2 +k2
m)u(x) = −c(x)u(x),

where km = 2πnm/λ is the wavenumber in the immersion medium, nm is the refractive index of

the immersion medium, c(x) is the sample to be imaged or the scattering potential, and u(x) is

the complex electric field. Note, the homogeneous Helmholtz equation is (∇∇∇2 + k2
m)u(x) = 0,
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which we will utilize below. There is no known analytical solution to the inhomogeneous

Helmholtz equation. The reason for this is that the electric field depends on both the input field

and scattered field, u(x) = u0(x)+us(x), however, the scattered field also depends on the scat-

tered field from secondary scattering which leads to a recursive solution to the wave equation.

For this reason, it is common to utilize an approximation known as the first Born approxima-

tion.

In order to derive the Born approximation, we start by plugging in the decomposed electric

field into the inhomogeneous wave equation gives,

(∇∇∇2 +k2
m)

(

u0(x)+us(x)
)

=−c(x)
(

u0(x)+us(x)
)

.

We recognize the first term on the left-hand side as the homogeneous Helmholtz equation

which is equal to zero, therefore, it will disappear. Rewriting the above equation gives,

(∇∇∇2 +k2
m)us(x) =−c(x)u(x). (6.29)

Now we clearly see that the scattered wave will depend on the object and the total electric field.

To find a solution to this equation we can plug in a Green’s function with a delta source

(∇∇∇2 +k2
m)G(x) = δ(x).

This equation says that there is some function G(x) that will give an impulse response to a

point object. Once we have that solution we can use the principle of linear superposition for

a general object. Solving this equation yields the well-known solution for a spherical wave,

G(x) =−ei 2πkx/4πx. Using the Greens function we can write the scattered field as

us(x) =−
〈

G(x−x′)c(x)u(x′)
〉

x′ . (6.30)
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What this solution says is that the scattered field, us(x), is a convolution of the Green’s func-

tion (impulse response) with the object and the total field. Therefore, the scattered field can be

calculated as an iterative equation. That is the first iteration the total field is simply the input il-

lumination, and the second iteration is the sum of the initial field with the previously calculated

scattered field, then repeated until the desired accuracy has been achieved. The first iteration

can be written as,

u(x) = u0(x)+
〈

G(x−x′)c(x)u(x′)
〉

x′ .

To arrive at the Born approximation we truncate the series at the first order. This means that we

replace the total field in the second term on the right-hand side with the initial field, yielding

the desired result,

u(x) = u0(x)+
〈

G(x−x′)c(x)u0(x′)
〉

x′ .

The first Born approximation simply states that only single scattering will be taken into account

and scattering does not perturb the input illumination (weak scattering) as the input illumina-

tion propagates through the scattering potential. By inspection of the above equation, we can

conclude the approximate scattered field is

uB (x) =
〈

G(x−x′)c(x)u0(x′)
〉

x′ (6.31)

where u0(x) = a0 exp(i k0x) is the input plane wave and the Greens function is a spherical wave

translated to position x′. An alternative form of the Green’s function can be written as

G(x−x′) =
i

4π

〈

1

kz
exp

(

i k|x−x′|
)

〉

kx

. (6.32)

Plugging in the input illumination field, the Green’s function into eqn. 6.31, and utilizing the

definition of the Fourier transform of the object as well as placing the object in a rotated frame

yields measured field

uB (Rφx) =
i a0

4π

〈

2π

kz
Ĉ (∆k)exp

(

i k ·Rφx
)

〉

kx

(6.33)
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where Rφx = (x cosφ− z sinφ, x sinφ+ z cosφ) −→ (xφ, zφ) is the rotated coordinate system and

Ĉ (k) = 1/2π
∫

c(x)exp(−i kx)dx is the Fourier transform of the scattering potential. Taking the

Fourier transform of eqn. 6.33 along Rφx along with some mathematical manipulations results

in the Fourier diffraction theorem,

ÛB ,φ0 (kx) =
i a0

kz

√

π

2
Ĉ (∆k)exp

(

i kz zφ
)

. (6.34)

The Fourier diffraction theorem is the x-ray analog to the Fourier slice theorem. The Fourier

diffraction theorem is nearly identical to the Fourier slice theorem except for the complex scalar

out front and the spatial frequency information lies on an arc, exp
(

i kz zφ
)

, defined by a semicir-

cle from the Ewald sphere, where kz =
√

k2 −k2
x , again coming from the dispersion relationship

from the Helmholtz equation.

∆k

−k0

kx

kz N
A

k1

Ĉ(∆k) ûs(k)

Figure 6.2: Frequency support of the scattered field and object information. The black dotted circle

shows the scattered frequency information. The blue dotted circle shows the measured object’s spatial

frequency information. The solid arcs represent the collected or observable spatial frequency in the for-

ward direction for a given optical system with some numerical aperture (NA). The blue arrow represents

the scattered spatial frequency, the green arrow represents the illumination spatial frequency, and the

red arrow represents the measured difference spatial frequency, figure adapted from [135]

107



Rearranging eqn. 6.34 to solve for the frequency representation of the scattering potential

gives some insight into the measured object spatial frequency information, rearranging gives,

Ĉ (∆k) =
kz

i a0

√

2

π
ÛB ,φ0 (kx)exp

(

−i kz zφ
)

. (6.35)

We see that the scattered field, ÛB ,φ0 , lies on a circular arc centered at the origin, fig. 6.2 il-

lustrates this with the black dotted circle and the green arc represents the collected spatial fre-

quency content. The second observation is that the object’s spatial frequency lies on a circular

arc as well, however, it is shifted to the left by, −k0, illustrated in fig. 6.2 by the dotted blue circle

and the solid blue arc represents the measured spatial frequency information.

Eqn. 6.34, [151], is used to develop a method for reconstructing the object from the ODT

projections. It is done by summing the complex spatial frequency information, information

on an arc, we will be able to recover the full object from the set of projections in an analogous

way to what was done for CT. Fig. 6.3(a) shows how the sum of spatial frequency information

in the frequency domain for CT, note that each colored line represents the spatial frequency

information obtained from one projection at an angle, φ0, which lies on a straight line through

the origin. Fig. 6.3(b) shows the sum of spatial frequency information for ODT, note that each

colored line represents the spatial frequency information from the same projection angle as in

CT but this time the information lies on a semicircle. Additionally, it can be seen that there is a

resolution enhancement from ODT compared to CT, in fig. 6.3 (a) and (b) both have the same

numerical aperture, NA of 1, however, (b) covers a larger area thereby having a higher cutoff

spatial frequency. In fact, the cutoff frequency of ODT is
p

2 times larger than that of CT at an

NA = 1.

The object, from a set of angular projections eqn. 6.34, can be reconstructed using the fil-

tered backpropagation (FBP) algorithm. In an analogous manner to the filtered back-projection

algorithm used in CT, ODT reconstructs the object by summing together the frequency space

with an appropriate filter. The key difference here is that diffraction must be accounted for

which causes the measured frequency information to lie on an arc instead of a straight line.
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kx

kz kz

kx

a) b)

Figure 6.3: Computed Tomography and Optical Diffraction Tomography comparison of measured fre-

quency space data for φ0 = [0,180] degrees. (a) illustrates the sampled spatial frequency information of

computed tomography (CT), where the information lies on a straight line. (b) illustrates the sampled

spatial frequency information of optical diffraction tomography (ODT), where the information lies on

semicircles due to diffraction. The gray dotted circles represent the spatial frequency cutoff for an imag-

ing system with some numerical aperture. Note that (b) has
p

2 larger frequency support when the NA

approaches 1 indicated by the black dotted circle. Figure adapted from [101]

The FBP algorithm can be written as

ĉ(x) =−
√

2

π

i

a0(2π)3/2

〈

|kx |ÛB ,φ(kx)exp
(

−i kz zφ
)

exp
(

i∆kRφx
)〉

kx ,φ
. (6.36)

Due to the use of Dirac integral notation, the limits to the integral are suppressed, however, it

is critical to note that the integral over dφ range from (−π,π]. These limits differ from that of

CT since they are not symmetric about the origin (fig. 6.3(b)), therefore, to fill out the frequency

space uniformly a full 360-degree rotation is necessary. The factor |kx | serves as the filter which

due to the Jacobian for the transformation from cylindrical to Cartesian coordinate system, the

exponent exp
(

−i kz zφ
)

causes the frequency information to reside on an arc.

Optical diffraction tomography allows 3D reconstruction of phase objects. It requires coher-

ent illumination so that a stable phase can be extracted from the intensity measurement from

holographic imaging at each angle, φ0. ODT does have some drawbacks, in the derivation the
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first Born approximation was used which turns out to be fairly restrictive on the properties of

the object, because of this the recovered object tends to have artifacts, [93, 58, 102]. This can be

mitigated by using the Rytov approximation allowing for a larger range of objects to be imaged

with few artifacts. Fortunately, the transformation from the Born approximation to the Rytov

approximation is fairly simple allowing the above derivation for FBP to still be valid. In order

to use the Rytov approximation, the complex field in the algorithm above need only substitute

for uR (x) = u0(x)[exp(uB (x)/u0(x)+1] [102]. With the Rytov approximation much larger objects

have been successfully reconstructed fewer aberrations compared to reconstruction done with

the Born approximation.

ODT, while a very useful technique, has one primary limitation which is that it can only

work with coherent illumination where the phase can be recovered. Because of this limitation,

ODT has not been able to be utilized on incoherent emission. In chapter 8.2.5, I discuss a new

technique that allows ODT to be extended to incoherent emission such as fluorescence, aptly

named Fluorescent Diffraction Tomography (FDT). This technique is built off of CHIRPT, dis-

cussed in section 5.2.1. We will see that FDT does not rely on any assumptions of the object so

the sample may be highly scattering and still reconstruct the object well.
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Chapter 7

Fourier Computed Tomography

7.1 Summary

This chapter introduces a new form of tomographic imaging that is particularly advanta-

geous for a new class of super-resolution optical imaging methods. This method of Fourier

computed tomography (FCT) operates in a conjugate domain to conventional computed to-

mography techniques. FCT is the first optical tomography method that records complex pro-

jections of the object’s spatial frequency distribution. From these spatial frequency projections,

the Spatial Slice Theorem is derived which is used to build a tomographic imaging reconstruc-

tion algorithm. The ability to enhance the spatial frequency support along a single spatial di-

rection to be isotropic in the entire transverse spatial frequency domain is demonstrated with

FCT. This fluorescent optical tomography technique opens a path for three-dimensional super-

resolution imaging with fluorescent light emission using spatial frequency projection methods.

7.2 Introduction

Optical microscopy is an indispensable tool in many fields of science. A major advantage

is that visible light is gentle on biological specimens and, in combination with fluorescent la-

beling, gives high-contrast images with excellent specificity. The information recorded in an

imaging system is limited by constraints of optical wavelength, propagation, and detection ge-

ometry. These constraints combine to limit the recorded information to a subset of the total

information potentially available to fully describe the object. More-complete object informa-

tion can be obtained from a sequence of measurements designed to add diversity and record

information from a set of measurements that more closely represent the true object. Imaging

systems that expand the recorded information through a sequence of measurements are known

as tomographic imaging methods. These methods measure a set of projections in a low-spatial
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dimension to recover objects in a higher-spatial dimension. The classic method of computed

tomography (CT) uses x-ray illumination to measure the object’s integrated absorption along

the x-ray beam propagation direction. High-quality spatial maps of x-ray absorption or object

density can be reconstructed from a set of projections measured at distinct angles [32, 78].

Tomography has been extended to visible light by taking into account photo-physics such

as optical diffraction [32, 125]. Each tomographic image reconstruction strategy exploits an un-

derstanding of the underlying physics, from which an image projection model is constructed.

A wide variety of tomographic imaging methods have emerged that provide detailed object in-

formation from a range of measurements, such as backscattered light gated by low-coherence

interferometry for optical coherence tomography (OCT) [68, 127], diffraction tomographic mi-

croscopy [58], the diffuse propagation of light in tissues [118, 93], phase nanoscopy [156], fluo-

rescent optical projection tomography [29, 30], white light diffraction tomography [81], limited

angle quantitative phase tomography [24], and forward scattered light [122].

Many of these optical tomographic imaging systems, use a camera-based optical micro-

scope to form images, while the object is rotated or translated along the optic axis or the illu-

mination angle is swept. While modern cameras are well developed and provide exceptional

imaging quality and speed, in applications where the sample exhibits optical scattering, the

illumination light, and recorded images are significantly distorted [65]. Single-pixel imaging

methods, such as confocal microscopy, multiphoton, and OCT are able to perform robust imag-

ing in scattering media; however, all of these methods record one spatial point at a time, and

sequential image acquisition significantly slows image acquisition rates. To address this limi-

tation, we have developed several single-pixel optical tomographic imaging techniques based

on mapping spatial position to distinct temporal modulation frequencies of illumination light

[125, 45, 136, 49]. These techniques fall into a class of imaging methods called Spatial Fre-

quency Projection (SFP) imaging, where images are formed by a series of spatial frequency pro-

jections enabled by periodically modulated illumination light. SFP gives a unique mapping of

temporal modulation frequency to points in space by linearly sweeping through all spatial fre-
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quencies supported by the imaging system. The idea of spatial frequency projections can be

extended to super-resolution by driving nonlinear optical interactions in the sample, which we

have demonstrated with Multi-Photon SPatIal Frequency Projection Imaging (MP-SPIFI) [46].

MP-SPIFI uses an intense ultrafast laser pulse brought to a line focus that drives a nonlinear

optical response in the sample to generate spatial frequency harmonics. The spatial frequency

harmonics driven by the nonlinear response produce signals that obtain information from spa-

tial frequencies outside of the diffraction-limited spatial frequency imaging bandwidth, thus al-

lowing super-resolution imaging. MP-SPIFI is the only general super-resolution technique that

is able to provide super-resolution images for both coherent and incoherent imaging modali-

ties. Although high-quality images are produced with this approach, to date, the improvements

in imaging resolution are limited to the modulated spatial direction (e.g., x). In principle, the

full spatial resolution of the SFP imaging process can be extended to the 2D lateral plane (x, y)

by using a previously reported method of lateral tomographic (LT) imaging [125], this approach

is not practical for MP-SPIFI because LT requires spatial expansion of the illumination beam,

reducing the peak illumination intensity and thereby shutting down the nonlinear optical pro-

cess.

In this work, we introduce a new 2-dimensional tomographic imaging technique that en-

ables nearly isotropic lateral resolution. This new Fourier Computed Tomography (FCT) tech-

nique, is based on collecting spatial frequency projections of the object in the x-y plane when

the illumination beam is brought to a tight line focus. The method is a conjugate domain analog

to computed and lateral tomography techniques. In CT and LT, line integrals along a coordinate

(zφ or yφ, respectively) are formed in the spatial domain. In the spatial frequency domain, these

projections are localized to a point and the sequence of projections form a line at the same ro-

tation angle, φ; see conceptual diagram Fig. 7.1(a). The formal mathematical description of

these projections lead to the Fourier Slice Theorem [78]. However, in FCT, the projection op-

erates in the conjugate domain to CT/LT by acquiring line images with SFP illumination in the

spatial domain. The tightly focused line in space is equivalent to recording a line projection in
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Lateral Computed Tomography

Fourier Computed Tomography

(a)

(b)

Figure 7.1: Panel (a) shows the data flow for lateral computed tomography (CT). The top three figures

show a series of snapshots in time of the illumination beam and the object at an illumination angle φ.

At each point in time a unique spatial frequency, fx (t ) = κt , is projected onto the sample. The detection

photodiode performs a 2D spatial integration and acts like a Fourier transform, sensing the object in the

spatial frequency domain. The bottom figures show the spatial frequencies probed as a function of time.

The projections are summed together and weighted with a radial filter. Rotating the illumination beam

180 degrees maps out the full frequency support of the microscope. An inverse Fourier transform yields

a reconstruction of the 2D object. Panel (b) shows the conjugate analog of Lateral CT called Fourier CT.

The top three figures show a series of snapshots in time of the illumination and object at an angle φ. The

bottom three figures show the corresponding spatial frequency support probed as a function of time.

The frequency support is summed together (bottom right). An inverse Fourier transform is taken and a

radial spatial filter is applied to yield a reconstruction of the object. Figure from [137].
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the spatial frequency domain for each instantaneous spatial frequency projection, fx(t ), of the

illumination pattern, Fig. 7.1(b). In FCT, we find an analogous Spatial Slice Theorem that moti-

vates the development of a spatial frequency-filtered back-projection reconstruction algorithm

to produce 2D images from measured FCT sinograms.

7.3 Theory

The single pixel tomographic imaging process uses an illumination light pattern that im-

parts a distinct temporal modulation frequency to each spatial position along a line of illumi-

nation, Ii (x, y, t ) = u(y)[1+cos(ωc t +2πκxt )]2. Here, we have suppressed unimportant scaling

coefficients and u(y) is the intensity profile along the y coordinate. Spatio-temporal modula-

tion parameters are set by the carrier frequency, ωc , and the modulation chirp parameter, κ, that

relates the modulation frequency of the illumination light to x position as ωm(x) = ωc +2πκx.

Light collected from the sample is detected on a photodiode or photomultiplier tube (PMT) and

the acquired temporal signal can be written as a spatial projection of the illumination intensity

onto the object, St =
〈

Ii (x, y, t )c(x, y)
〉

x,y . Here the Dirac integral notation, 〈·〉v̄ =
∫

d v̄ denotes

the spatial integral performed by a single pixel detector that sums the local photocurrent from

light intensity impinging across the detector surface. The object, c(x, y), is assumed to be thin,

however, the theory developed below can be extended to optically thick objects.

The object information is collected on the Fourier basis and can be easily isolated in a side-

band centered at the carrier frequency, ωc , with a simple discrete Fourier transform applied

to the collected signal. In order to develop the theory below, it is convenient to work with the

demodulated single sideband [46], S̃
(q)
t =

〈

u(y)c(x, y)e−i 2πqκt x
〉

x,y , where q = [1,2, ...] describes

the imaging order, fx(t ) = κt is the projected spatial frequency at a time, t , and e−i 2πqκt x is the

complex modulation; see conceptual diagram Fig. 7.1. Note that q scales the effective coherent

spatial frequency pass band of the imaging process allowing for lateral resolution enhancement

[136, 46]. To observe information corresponding to q > 2, intense illumination light can be

used to drive nonlinear processes, such that the illumination pattern with respect to the sam-
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ple becomes distorted. The distorted illumination can be described as an effective illumination

light pattern, Ieff = F [Ii ], where F [·] is some nonlinear function that models a physical process,

such as 2-photon, coherent nonlinear scattering, or saturated absorption. The effective illu-

mination contains modulation frequency harmonics of the temporal modulation, ωm(t ). The

modulation harmonics encode higher spatial frequency projections allowing for resolution en-

hancement along the modulated dimension. We have applied this technique to simultaneously

acquire super-resolution images of 2-photon absorption and second harmonic generation, i.e.,

Ieff = I 2
i

, which can produce spatial frequency harmonics up to 4× the diffraction limit [46].

Since resolution enhancement is restricted to one spatial dimension - along the modulated

spatial direction - we developed a new imaging tomography to homogenize the resolution en-

hancement across the lateral plane. By rotating the illumination, or equivalently the object, the

acquired signal can be expressed in a rotated frame as S̃
(q)

t ,φ =
〈

u(yφ)cφ(xφ, yφ)e−i 2πqκt xφ
〉

xφ,yφ
,

where xφ = cosφ x + sinφ y and yφ = −sinφ x + cosφ y . The function u(yφ) determines the

behavior of the projection, i.e. LT or FCT.

Lateral tomography is represented by uniform illumination along y (the direction perpen-

dicular to the modulation direction, x) where we consider the case u(yφ) −→ 1. With this il-

lumination pattern, we duplicate the formalism described in [125]. Inserting the spatial fre-

quency Fourier expansion of the object, cφ(xφ, yφ) =
〈

Ĉφ( fxφ , fyφ)e
−i 2π( fxφ

xφ+ fyφ
yφ)〉

fxφ
, fyφ

, and

the rotated frame, Ĉ (x, y) −→ Ĉφ(xφ, yφ), into the single sideband projection, we readily yield the

Fourier Slice Theorem, Eq. (7.1),

S̃
(q)

t ,φ( fxφ , fyφ) =
〈

Ĉφ(q fxφ , fyφ)δ( fyφ)
〉

fyφ
= Ĉφ

(

q fxφ ,0
)

(7.1)

after a few algebraic manipulations. This equation describes a projection of the object’s spatial

frequency distribution along the rotated coordinate system, fxφ , where the spatial frequency

points are sampled as a spatial frequency-angle pair, as represented in Fig. 7.1(a). Equation

(7.1) can also be written in the temporal frequency domain, S̃
(q)

ν,φ =
〈

cφ( ν
qκ

, yφ)
〉

yφ
, where it is

clear that the LT is performing a spatial integral along yφ as shown in the top row in Fig. 7.1(a).
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Figure 7.1(a) illustrates the concept of LT data acquisition where a modulated light illumina-

tion pattern is used for the projection operator. The top row shows the spatial projection with

an intensity modulation pattern at a particular time instance t and a spatial period given by

f −1
x (t ), while the bottom row shows the resulting spatial frequency support that is probed with

time. In the back-projection algorithm, the spatial frequency support is summed together and

a radial spatial frequency filter is applied, which is represented by the shaded gray radial ramp

in the last column in the second row. The object is recovered with an inverse Fourier transform,

the last column in the first row in Fig. 7.1(a). Note, the formalism for CT can be recovered by

substituting y −→ z and allowing q = 1.

Fourier Computed Tomography (FCT), by contrast, uses a line focus so that nonlinear op-

tical processes can be driven efficiently by the illumination light. The line focus spatial distri-

bution in yφ is modeled, in the limiting case, as a Dirac-δ function, i.e. u(yφ) −→ δ(yφ). It is

convenient to represent the time signal in the temporal frequency domain by taking the Fourier

transform of the signal with respect to time, S̃
(q)

ν,φ =
〈

u(yφ)cφ(xφ, yφ)δ(ν− qκxφ)
〉

xφ,yφ
. Here ν

is the reciprocal variable for time. The projections and spatial integral produce an analogous

Spatial Slice Theorem, given by

S̃
(q)

ν,φ

(

xφ

q
, yφ

)

=
〈

cφ

(

xφ

q
, yφ

)

δ(yφ)

〉

yφ

= cφ

(

xφ

q
,0

)

. (7.2)

FCT is a limiting case of a thin spatial illumination where the Spatial Slice Theorem is relevant.

In the Spatial Slice Theorem, S̃
(q)

ν,φ is a projection in a rotated frame defined by xφ = ν
κ

. Finally,

cφ(
xφ

q
,0) is a spatial slice of the object along yφ. The spatial slice is equivalent to performing the

projection operation along the spatial frequencies perpendicular to the modulation direction,

S̃
(q)

t ,φ =
〈

Ĉφ(qκt , fyφ)
〉

fyφ
, this is illustrated in the bottom row of Fig.7.1(b).

Once all the line images have been acquired with respect to φ, an FCT sinogram can be

formed in the spatial frequency domain. The spatial frequency sinogram leads to a filtered

spatial frequency back-projection algorithm which is a conjugate domain analog of the filtered

back-projection algorithm [32]. The filtered spatial frequency back-projection algorithm makes

117



use of a radial spatial coordinate filter, rather than the radial spatial frequency filter employed

in CT and LT. The filtered spatial frequency back-projection algorithm reconstructs images ac-

cording to the formula

Ĉ (q fx , fy ) =
Ï

S̃
(q)

ν,φe
−i 2πq fxφ

xφ |xφ|dxφdφ, (7.3)

where Ĉ (q fx , fy ) is the spatial frequency representation of the object, e
−i 2πq fxφ

xφ is the Fourier

transform kernel in polar coordinates, and |xφ| is the radial spatial filter due to the Jacobian in

the transformation from polar coordinates to Cartesian coordinates. A simple inverse Fourier

transform recovers the 2D object in the spatial domain.

The object information probed with FCT is illustrated in Fig. 7.1(b), where the top row shows

the spatial projections of the illumination onto the object and the bottom row is the resulting

spatial frequency support that is probed with time. The spatial frequency support is summed

together and the inverse Fourier transform is taken, bottom row last column of Fig. 7.1(b). In

this case, a spatial radial filter is applied in real space to recover the object, as shown by the

shaded gray radial ramp, top row last column of Fig. 7.1(b).

7.4 Experimental Setup

A schematic of the experimental setup is shown in Fig. 8.4(a). The specimen was illumi-

nated by a spatially modulated λ = 532-nm wavelength continuous-wave (cw) laser (Light-

house, Sprout). The spatial modulation on the line illumination is produced by bringing the

illumination beam to a line focus onto a spinning modulator disk with a cylindrical lens [45,

136]. The modulated line was image relayed to the object plane with a 4-f imaging system

constructed from lenses with focal lengths of 250 mm and 35 mm, respectively. The sample

was mounted on a rotation stage (Newport PR50CC) to allow full 360-degree rotation about the

optic axis. Transmitted light was collected with a 0.25 NA aspheric lens and the image was re-

layed to a photodiode detector (Thorlabs DET100A). Fluorescent light emitted by the object was

collected in the epi-direction and by relay imaging the object plane onto the surface of a PMT
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Figure 7.2: Panel (a) shows the FCT microscope schematic. The illumination beam is brought to a line

focus on the modulator disk. The modulator disk is imaged onto the sample. Both fluorescence (red

beam) and absorption are collected by single-pixel detectors. The sample is rotated on a rotation stage

from [0,2π]. Panel (b) shows the coordinate rotation of the beam with respect to the sample by an angle

φ. xφ and yφ represent the rotated coordinate system. The various beam colors represent unique rota-

tion angles with respect to the sample at a snapshot in time. fx (t ) is the projected spatial frequency and

u(y) is the intensity profile of the illumination beam in the y direction. Figure from [137].

(Hamamatsu H9305). The fluorescent light was isolated using a dichroic beamsplitter (Semrock

FF562-Di03) and an interference filter (Semrock FF01-593/40).

The 35 mm achromatic lens was chosen instead of an objective lens to minimize the effect

of the axial and transverse wobble of the rotation stage, which needs to be corrected in order to

obtain a properly aligned spatial frequency sinogram. The axial wobble was sufficiently small

so that the object stayed within the Rayleigh range of the focused beam throughout the entire

rotation. The transverse wobble was 25− 30µm over the rotation range, therefore a correc-

tion protocol was adopted to mitigate this problem; the details are described in the following

section.

Figure 8.4(b), illustrates the illumination pattern at a snapshot in time. The green, red, and

blue colors represent distinct rotation angles, φ, with respect to the sample. The width of the

illumination, u(y), in our experimental setup we calculated to be ∼6.7µm using the Gaussian

beam equations. The size of the beam in the back aperture was ∼5 mm by ∼3 mm in the x and
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y directions, respectively. The illumination numerical aperture (NA) was calculated to be ∼0.07

and ∼0.04, in x and y , respectively.
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Figure 7.3: Panel (a) shows a second order SPIFI image of fluorescent stained 15µm polystyrene beads.

The beads are elongated vertically because the resolution enhancement is only along the x coordinate.

Panel (b) shows the Fourier transform of panel (a), the x coordinate contains 2x higher spatial frequency

support than the y coordinate. Panel (c) shows the second-order FCT reconstruction of the fluorescent

stained 15µm polystyrene beads. The yellow boxes indicate a zoomed-in region of the images to illustrate

the resolution improvement between the two imaging types. Panel (d) shows the Fourier transform of

panel (c); the spatial frequency support is isotropic. The sharp cutoff in the spatial frequency is due to

the filtering used in the image reconstruction. Figure from [137].

7.5 Results and Discussion

Each FCT image was produced by using 360 uniformly spaced line images from angles rang-

ing from [0,2π]. In principle, only the line images are needed to perform an FCT reconstruc-

tion. However, the transverse wobble from the rotation stage caused the center of rotation to

migrate resulting in an error in the image center. To correct this transverse wobble, and thus to

enable demonstration of the FCT imaging method, 2D images at every angle, φ, were acquired
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by scanning the line focus vertically [52]. Every 2D image was numerically derotated by −φ. The

derotated images were aligned in the x− y coordinates by maximizing the cross-correlation be-

tween the images. The aligned images were then rotated back to their original rotation angle, φ.

Finally, the center line image was extracted from the aligned 2D images, which formed the set

of rotated line images required by the Spatial Slice Theorem. The image-centering protocol al-

lowed us to correct the transverse wobble of the rotation stage. With the corrected line images,

the FCT reconstruction using filtered spatial frequency back-projection in Eq. (7.3) was used

to reconstruct 2D images of the object. This alignment procedure could be avoided by using a

more precise rotation stage with a less severe wobble.

While FCT works with both absorption and fluorescence, we present the fluorescence re-

sults for brevity. Figure 7.3(a-d) shows a comparison between second-order fluorescent SPIFI

and second-order FCT using 15µm fluorescent stained polystyrene beads (LifeTechnologies,

FocalCheck Slide 1, Well A1). Figure 7.3(a) shows a second-order SPIFI image. The yellow box

shows a zoomed-in region to better see the asymmetry in the resolution due to the enhanced

resolution in the x direction. Figure 7.3 (b) shows the Fourier transform of Fig. 7.3 (a). The

frequency support shows the NA in the x coordinate extends to 0.13 while the NA in the y co-

ordinate extends to 0.04 which gives rise to the anisotropy in Fig. 7.3 (a). Figure 7.3 (c) shows

the second-order FCT reconstruction of the fluorescent stained beads. The yellow box shows a

zoomed-in region to better visualize the improvement in the resolution. Figure 7.3 (d) shows

the Fourier transform for Fig. 7.3 (c). The frequency support extends to 0.13 NA isotropically.

The dark ring is caused by the filtering applied in the FCT reconstruction.

We see that the resolution is radially enhanced in the second-order image in Fig. 7.3 (c).

This enhancement causes the fluorescent beads to appear elongated azimuthally. We also note

that on the edge of the reconstructed image, there is an azimuthal oscillation. This is a result of

deficient angular coverage causing a void in the acquired information.
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7.6 Conclusion

In this chapter, a new form of tomography, called Fourier Computed Tomography (FCT),

was derived and demonstrated to operate in the conjugate spatial and spatial frequency do-

mains as compared to conventional computed and lateral tomography. We showed mathemat-

ically that FCT is a conjugate analog to both Computed Tomography and Lateral Tomography.

By controlling the shape of the illumination along y via u(y), we can change the imaging modal-

ity and subsequent reconstruction algorithm, that is, for u(y) −→ 1, Lateral Tomography applies,

and for u(y) −→ δ, Fourier Computed Tomography applies. We derived the Spatial Slice theorem

and saw how the equivalent sinogram in the spatial frequency domain led to a filtered spatial

frequency back-projection algorithm. We have operated this new tomography in both absorb-

ing and fluorescent modes for second-order enhancement of imaging resolution. Finally, we

showed that FCT is capable of achieving nearly isotropic enhanced lateral resolution, mitigating

the anisotropic spatial frequency support of spatial frequency-modulated imaging. While only

three-beam spatial frequency illumination was reported, we also note that the FCT algorithm

is general so that other line imaging techniques could be used, such as Coherent Holographic

Image Reconstruction by Phase Transfer, to achieve holographic 3D volume information, [45],

or Direct Optical Phase Extraction for quantitative phase-contrast [136].

This new tomography is applicable to any computational imaging technique that forms im-

ages with line illumination and can combine anisotropic spatial resolution images together

to form a nearly isotropic high-resolution image. Additionally, this method opens a pathway

to extending spatial frequency projection super-resolution imaging from one dimension to an

isotropic-enhanced image of the object in the lateral plane.

In future work, we will be able to adapt FCT from a transverse 2D tomographic imaging pro-

cess to three dimensions through a careful analysis of projections recorded during the single-

pixel imaging process. We anticipate this method of single-pixel imaging will work well for

imaging deep inside scattering media (e.g., biological tissues). Finally, we note that SFP imag-

ing methods directly record and report aberrations in the imaging process in the form of phase
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modulation of the recorded signal [76]. This property of SFP imaging will be used in combina-

tion with generalized FCT imaging to permit super-resolution imaging in complex specimens

where phase distortions accumulated through refractive index variations in the tissue cause se-

vere errors and degradation of super-resolution imaging methods [16]. With SFP-based FCT

imaging, we will be able to record and correct these instruments and specimen-induced aber-

rations, because those aberrations are automatically encoded and can be removed in the re-

construction algorithm.
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Chapter 8

Single-Pixel Fluorescent Diffraction Tomography

8.1 Summary

Optical diffraction tomography is an indispensable tool for studying objects in three-

dimensions due to its ability to accurately reconstruct scattering objects. Until now this tech-

nique has been limited to coherent light because spatial phase information is required to solve

the inverse scattering problem. We introduce a method that enables the concept of optical

diffraction tomography to be applied to imaging incoherent contrast mechanisms such as fluo-

rescent emission. Our strategy mimics the coherent scattering process with two spatially coher-

ent illumination beams. The interferometric illumination pattern encodes spatial phase in tem-

poral variations of the fluorescent emission, thereby allowing incoherent fluorescent emission

to mimic the behavior of coherent illumination. The temporal variations permit recovery of the

propagation phase, and thus the spatial distribution of incoherent fluorescent emission can be

recovered with an inverse scattering model. A computational and experimental demonstration

of this new imaging method is performed showing isotropic resolution in the 3D reconstruction

of a fluorescent object.

8.2 Introduction

In fluorescence microscopy, light emitted from the specimen is spatially incoherent. Conse-

quently, 3D imaging techniques require some form of spatial gating to map detected photons to

the location from which they were emitted. This spatial gating is often achieved through some

combination of confining the illumination volume and detection volumes. Examples of such

strategies include selective plane illumination microscopy (SPIM) [70], where the illumination

volume is restricted to a thin axial plane, or laser-scanning confocal microscopy, where both

the illumination and detection volumes are restricted to a diffraction-limited spot in 3D [149].
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These strategies allow each detected photon to be mapped to a 3D location in the specimen

from which it was emitted and often involve high numerical aperture (NA) optics that tightly

focus the illumination light and/or restrict the volume over which light is detected.

Other strategies for 3D imaging rely on inverting a quantitative model of the illumination,

emitted, and collected light to estimate the concentration of fluorescent emitters from detected

intensity images. These computational imaging methods, such as optical projection tomogra-

phy (OPT) and deconvolution imaging (DI), require axially scanning or rotating the object to

collect a set of data to be reconstructed [91]. 3D computational imaging of a scattering object

with partially coherent illumination is possible within the Born approximation using the weak

optical transfer function [138]. However, the use of partially coherent illumination for fluores-

cent imaging requires the use of incoherent OPT or DI methods.

Conventional fluorescent imaging methods suffer from limitations such as photobleach-

ing and anisotropic spatial resolution between the axial and transverse directions [124]. While

SPIM can partially mitigate the effects of photobleaching, anisotropic spatial resolution is a

persistent problem [91]. In all of these methods, tissues must be optically cleared to reduce

distortions from optical scattering to suitably low levels [91]. A more stringent restriction on

SPIM and OPT microscopes is that the spatial resolution is coupled to the size of the object [91]

– leading to decreased spatial resolution for in increased imaging region.

Coherent imaging strategies enable 3D imaging by making use of the direction of the scat-

tered light. Emil Wolf recognized that the inverse scattering problem for coherent light propa-

gating in an object can be solved by recording the complex, spatially coherent, scattered field

[151]. Directional scattering allows the recording of spatial frequency components of an ob-

ject by exploiting knowledge of the complex amplitude of light scattered in a particular direc-

tion when illuminated by a spatially coherent input wave. This concept is illustrated schemati-

cally in Fig. 8.1(a), where the illumination field, E0, and scattered field, E1, have corresponding

wavevectors k0 and k1 respectively.
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Interferometric techniques, e.g., holography, are able to record the complex scattered field

that, within the Born approximation, can be mapped to an arc of spatial frequency informa-

tion defined by the Ewald sphere by applying the Fourier diffraction theorem [151] shown in

Fig. 8.1(b). The position in spatial frequency space is given by the wavevector difference,

∆k = k1 −k0. This sparse spatial frequency information is encoded by the complex scattered

field obtained in a single scattered field measurement. More complete object information

can be acquired by introducing a relative rotation between the illumination and the object to

fully sample the object’s spatial frequency distribution, yielding optical diffraction tomography

(ODT).

Optical holography, and thus ODT, normally relies on spatially coherent light to interfero-

metrically record the complex scattered field, allowing interior spatial frequency information

to be acquired. Coherent scattering data can be inverted to solve the scattering problem for

variations in the refractive index of the specimen. Using coherent illumination allows object

position to be encoded in the complex scattered field. The phase is critical since it encodes

the axial location of the scatterer, and it is this phase that is required to enable diffraction to-

mography to be extended to incoherent fluorescent light. ODT uses a rotation of the object or

illumination wave to capture a sequence of scattered fields that fill out the object’s spatial fre-

quency information. Then computational imaging tools are applied to invert the information

recorded in order to recover the object’s spatial frequency distribution, and thus the object’s

spatial information. ODT has the advantage of not being constrained to imaging objects in the

Rayleigh range of the illumination beam, as the light is allowed to diffract before encountering

the optical detector.

ODT is conventionally thought to be impossible with fluorescent light because, in the case

of incoherent emission, the phase is lost due to the random emission of the molecular emitters

and this unstable phase obscures the relationship between the location of the emitter and the

propagation direction and phase. If fluorescence is to be imaged in a similar manner as ODT,

it is necessary to encode the coherent illumination propagation phase onto fluorescent light so
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that the phase can be recovered. It is possible to exploit the fact that an incoherent emitter is co-

herent with itself to encode the spatial location of the emitter [132, 90], but a general adaptation

of coherent-like imaging methods to incoherent light remains elusive.
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Figure 8.1: ODT compared to FDT. (a) The standard optical diffraction tomography scattering picture.

(b) The spatial frequency support is probed by diffraction tomography. The thick blue arc is the mea-

sured spatial frequency information. (c) The FDT picture, with the signal light collected by a single-pixel

detector. (d) The spatial frequency representation of FDT. Figure from [135].

In this chapter, we introduce the first method that uses fluorescent light emission for diffrac-

tion tomographic imaging. As fluorescent light is spatially incoherent, it is necessary to mimic

the process of coherent scattering to enable optical diffraction tomography with fluorescence.

We mimic spatially coherent scattering by transferring the phase difference from a pair of spa-

tially coherent illumination beams [49] into a time-variation of fluorescent emission brightness,

enabling ODT with fluorescent light recorded on a single-element optical detector. By mimick-

ing the incident and scattered fields in the illumination of a fluorescent object, we are able to

perform optical diffraction tomography using fluorescent light. We refer to this method as Flu-

orescence Diffraction Tomography (FDT).
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The FDT concept is illustrated in Fig. 8.1(c) and (d). A pair of illumination beams substi-

tute for the incident and scattered waves in coherent scattering. The reference wave, E0, in Fig.

8.1(c), plays the role of the incident wave in coherent scattering and interferes with an illumina-

tion plane wave, E1, that represents the scattered wave. To map out the equivalent information

as in coherent scattering, the incident direction of E1(t ) is scanned in time, producing a mod-

ulation of the illumination intensity that depends on the relative phase of the two illumination

beams, ∆k(t )·x, where x = (x, z) is the spatial coordinate vector in the x−z plane. The difference

wavevector, ∆k(t ) = k1(t )−k0, behaves as the scattering vector in coherent scattering that is de-

fined as the difference between the k-vector of the scattered field, k1(t) = k
(

sin[θ(t )],cos[θ(t )]
)

,

and incident waves, k0 = k(0,1), where k = 2π/λ is the wavenumber of the illumination.

The collected fluorescence recorded with a single-pixel detector serves as the FDT time sig-

nal. These measurements imprint the relative phase of the two spatially coherent illumination

beams into an intensity modulation in space and time that allows the detected incoherent fluo-

rescent light power to be treated as if it came from a coherent source. Because fluorescent light

is incoherent, the detected fluorescent light power is equivalent to the overlap integral between

the spatial distribution of the fluorophore concentration – our object – and the illumination

intensity. Each measurement at time t samples the complex amplitude of the object spatial

frequency distribution at the different spatial frequency wavevector, ∆k(t ). The result is that

for each incident angle of E1(t ), a spatial frequency projection is recorded that exactly mimics

the complex spatial frequency information traditionally obtained through coherent scattering

measurements; compare Figs. 8.1(b) and (d).

The key aspect of FDT is coherent transfer mediated by the modulated illumination in-

tensity. The intensity arises from the interference of the reference and scanned fields, i.e.,

Iill ∝
∣

∣E0+E1[θ(t )]
∣

∣

2
[49], where θ(t ) denotes the incidence angle of E1 with respect to kz axis, or

equivalently the angle between k1 and k0, at time t . The model for the interference is written as

Ii l l (x, t ) = 1+µ(t )cos[∆Φ(x, t )], where µ(t ) is the fringe visibility and ∆Φ is the phase difference

between the reference and scanned fields in Fig. 8.1(c) [45, 48]. The phase difference between
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the illumination fields, ∆Φ(x, t ) =ωc t+∆k(t )·x, imparts a temporal modulation pattern at each

spatial position in the x − z plane. Here, ωc is a carrier frequency in the modulation, which is

critical for isolating the complex phase information in the time signal [45, 49], and ∆k(t ) ·x is

the spatial phase variation that encodes the location of the object in the x − z plane. The sta-

ble relative phase difference between the pair of illumination beams is critical to producing the

time-varying interference used to label fluorophores, disallowing the use of partially or fully

incoherent illumination in FDT.

The elements of ∆k(t ) = (∆kx(t ),∆kz(t )) are difference frequencies. In our work, we set

∆kx(t ) = kc t/T , corresponding to sinθ(t ) = t NA/T , where kc = k NA is the coherent imaging

cutoff spatial frequency for the illumination optics and t ∈ [−T,T ] with 2T denoting the total

collection time. For this choice, we have ∆kz = k (
√

1− (t NA/T )2 − 1). The spatio-temporal

intensity modulation encodes the relative spatial phase of the illumination fields as a temporal

modulation of the emitted fluorescent power from the object, thereby transferring coherent

propagation behavior to fluorescent emission [45].

The time trace is generated by detecting the collected fluorescent emission as the scanning

field sweeps through the range of incident angles supported by the NA of the illumination ob-

jective [45, 49, 48]. The temporal signal S(t ,φ) is the projection of the spatial distribution c(x)

of the fluorophore concentration onto illumination intensity at incidence angle φ:

S(t ,φ) = 〈Ii l l (Rφx, t )c(x)〉x (8.1)

where Dirac integral notation, 〈·〉x =
∫

· dx, denotes the spatial integration over x and z, per-

formed by the single-pixel detector, and Rφ is a rotation matrix by φ that yields the coordinate

transform x = (x, z) −→ Rφx = (x cosφ− z sinφ, x sinφ+ z cosφ). We have not included a mea-

surement noise term ε(t ) in writing (8.1) to keep subsequent equations simple in form, but it is

understood that an additive noise term is always present.

An equivalent representation of (8.1) is to write it in its complex-valued form, using Euler’s

identity, by including only a single sideband of the sinusoidal term in the illumination pattern.
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Figure 8.2: FDT sinogram and reconstruction. (a) Simulated FDT sinogram from a fluorescence distri-

bution where the object has been rotated over [−180◦,180◦]. (b), (d), (f), and (h) show the frequency

support that is measured and mapped onto the Ewald sphere and φ indicates the illumination angle in

degrees. (c), (e), (g), and (i) show the reconstructed object generated by applying the dual operator to the

FDT time signal, (8.3). The colored boxes around panels (b-i) correspond to the colored lines and boxes

in panel (a) and represent the measured information used in the reconstruction. Figure from [135].

This representation is given by

S̃(1)(t ,φ) = 〈Ψφ(x,∆k(t ))c(x)〉x (8.2)

where Ψφ(x,∆k(t )) = exp
[

i (∆k(t ) ·Rφx)
]

is the complex Fourier kernel in rotated coordinates

Rφx and we have assumed µ(t ) = 1 for simplicity. The procedure for obtaining this represen-

tation from the data is illustrated in supplementary material Fig. S4(a,b), [45]. The value of

this complex-valued representation in (8.4) is showing that each time sample corresponds to a
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complex amplitude of the object spatial frequency distribution – equivalent to the data in an

individual ODT line image, establishing (8.4) as the forward model for FDT, which is equivalent

to the Fourier Diffraction theorem [151, 32]. We refer to (8.4) as the forward model for FDT with

forward operator D{c(x)}(t ,φ) = 〈Ψφ(x,∆k(t ))c(x)〉x.

The spatial distribution of the data collected for each angle is referred to as a sinogram which

is computed from a Fourier transform of the single side band time signal, s(Rφx) =F {S̃(1)(t ,φ)}.

The least-squares estimate (minimum L
2 norm for error) of the fluorescent concentration, de-

noted by ĉ(x), is then computed by applying the inverse operator D
−1:

D−1{S̃(1)(t ,φ)}(x) = 〈Ψ̃†
φ(x,∆k(t ))S̃(1)(t ,φ)〉t ,φ = ĉ(x) (8.3)

where † denotes adjoint (complex-conjugate for Fourier kernel). The kernel of the inverse op-

erator, Ψ̃φ, forms a biorthogonal system with the kernel of the forward operator, Ψφ, at the

limit of high NA, as shown in Supplementary Material. In a noiseless case, this biorthogonality

leads to a perfect reconstruction of the object. The dual kernel is given by Ψ̃φ = γ(t )Ψφ, where

γ(t ) = |t |/T
√

1− (NA t/T )2 is the determinant of the Jacobian of the coordinate transformation

t −→∆k(t ). The estimate in Eq. (8.3) is formally equivalent to the ODT backpropagation recon-

struction [32].

A full simulation of the forward model, Eq. (8.4), and the reconstruction, (8.3), is shown

in Fig. 8.2. The FDT microscope was simulated using an illumination wavelength of 532 nm,

NA = 0.90, and a field of view of 20µm; the full time trace signal processing workflow to generate

the FDT sinogram is illustrated in Supplementary material Fig. S4. Panel (a) shows an FDT sino-

gram in the spatial domain where the scan angles range from [−180,180] degrees. The colored

lines and boxes represent the time trace(s) used to generate the corresponding figures on the

right of the sinogram. The first and third rows in Fig. 8.2 show the mapping of measured spa-

tial frequency support onto the Ewald sphere in the spatial frequency domain constrained by

optical diffraction generated by taking the Fourier transform of the second and fourth rows, re-

spectively. Panels (b) and (d) show the frequency support measured by a time trace when φ= 0
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and φ = 45 degrees, respectively. Panels (f) and (h) show the spatial frequency support when

multiple projections are used in the reconstruction, φ= [0,45] and φ= [−180,180) degrees, re-

spectively. Panels (c,e,g,i) show the reconstructed object. Notice that the object localization

improves as additional projection angles are used in the reconstruction.

The FDT microscope was experimentally implemented by using a spinning modulation

mask that behaves as a time-varying grating spatial frequency [52]. The mask is illuminated

by a line focus that is image relayed to the object region. At a snapshot in time, the mask ap-

pears as a static grating creating a zero-order beam, E0, as well as positive, E1(t ), and negative

order diffracted beams. The negative diffracted order is blocked by a spatial filter, leaving the

zero and positive diffracted order beams to be image relayed to the object plane [45]. Inter-

ference between the beams produces the desired spatio-temporally modulated illumination

intensity pattern. The object is rotated a full 360 degrees. At each rotation angle, a time trace is

acquired. Rotation in the spatial domain also causes the spatial frequency arc, Fig. 8.1(d), to ro-

tate. Once data from all illumination angles has been acquired, the full (kx−kz) frequency plane

will have been sampled so that we may estimate the object with isotropic spatial resolution. See

the supplementary information for details on the experimental apparatus and reconstruction

algorithm.

FDT imaging was demonstrated experimentally using an object fabricated from cotton

fibers stained with fluorescein. The stained fibers were mounted on an eight-axis stage, Fig.

S1(c). The mounting stage allowed for full 360-degree rotation of the sample as well as the abil-

ity to position the sample precisely in the microscope focus. Fig. 8.3 shows a 3D reconstruction

of fluorescein stained fibers using alpha blending from Volume Viewer in imageJ. The image

was generated with 200 evenly spaced x − z slices obtained by scanning along y . Due to the

mechanical instability of the y-axis stage, each x − z slice was shifted to align adjacent slices

to avoid object discontinuity in the 3D reconstruction. The sub-images in Fig. 8.3 are slices

from the 3D reconstruction and the colored frames correspond to the rectangular boxes in the
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3D image. An absorption contrast image was simultaneously acquired with the fluorescence,

however, for brevity, this image is not shown in the main text; see Fig. S5.

The FDT image of fluorescent stained fibers in air shown in Fig. 8.3 is an image obtained

with a highly scattering sample as the refractive index for cotton is 1.54. This strong scatter-

ing violates the Born approximation, yet we still recover a nearly exact image with FDT for the

fluorophore concentration. We do note that the scattering by the fibers does distort the illu-

mination patterns, and thus introduces image distortions that likely produce the artifacts seen

in the upper left panel of Fig. 8.3. The quantitative impact of illumination distortion on FDT

image reconstruction will be explored in future work.

Figure 8.3: 3D reconstruction of fluorescent stained cotton fibers. The blue, green, and red panels are

slices of the object from x− y , y −z, and x−z slices, indicated by the colored rectangle in the main figure

on the right. Scale bar equals 60µm. Figure from [135].
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There are several differences between standard optical diffraction tomography (ODT) and

FDT that should be noted. While ODT and FDT obtain the complex spatial frequency values

that follow the arc of spatial frequency information governed by diffraction as shown in Figs.

8.1(b) and (d), the physical origin of these data are remarkably different. ODT relies on the

spatial coherence of the light scattered by the spatial variation in the refractive index of the ob-

ject. As a result, ODT projection operation deviates from FDT by a complex scaling constant of

−2i∆kz . In contrast, FDT records information from the spatial variation of fluorophore concen-

tration from the interference of two spatially coherent illumination beams. Each method sam-

ples complex amplitudes that lie on the Ewald sphere, which naturally leads to recording data

in the kx −kz spatial frequency plane by relative rotation of the object and illumination beams

to spatially resolve the object in the x−z plane. However, in the derivation of the Fourier diffrac-

tion theorem for FDT the only assumption made is illumination by plane waves, and there is no

need to invoke the Born approximation or Rytov approximation. Therefore, FDT does not have

the same object size or object variation limitations that standard ODT experiences [82].

FDT mitigates the coupling between object size and spatial resolution typically seen in fluo-

rescence imaging. Comparatively, in optical projection tomography, where the fluorescent light

is detected with a camera, the object is restricted to the region of good focus (the Rayleigh range)

to avoid background blur from out-of-focus light [91, 29]. This causes the coupling of spatial

resolution and object size conventionally seen with incoherent imaging modalities. In FDT, in-

coherent light emission may be treated as a coherent source allowing the object to extend over

a much larger region not constrained by the Rayleigh range. Therefore, FDT decouples the need

to reduce the numerical aperture of the illumination as the object size increases.

In summary, we introduced a new tomographic imaging technique, Fluorescence Diffrac-

tion Tomography (FDT), that extends optical diffraction tomography to incoherent contrast

mechanisms, such as fluorescence and Raman scattering. We developed theory for both for-

ward and inverse models. The forward model uses CHIRPT illumination and detection as a

projection of spatial frequencies onto the sample [45, 49, 136, 48]. The projection uses mod-
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ulation transfer to encode the spatial phase of the illumination to allow phase transfer to in-

coherent sources. We demonstrate FDT reconstruction with dual functions that are biorthog-

onal to the intensity and illumination of the rotated Fourier elements in the forward model.

Additionally, we showed experimentally that FDT works for both coherent and incoherent con-

trast mechanisms. In principle, it can be used for any contrast mechanism including nonlinear

mechanisms. We expect this technique will expand the range of samples that can be imaged

and provide an easy method to co-register multiple contrast distributions simultaneously.

8.2.1 Experimental Setup

The experimental setup for Fluorescent Diffraction Tomography (FDT) is shown in Fig. 8.4.

A continuous-wave (CW) laser (Lighthouse, Sprout) wavelength, λ= 532-nm, is collimated and

brought to a line focus with a cylindrical lens on a spinning modulator disk, Fig. 8.4(a). The

modulator is a transmission mask designed to impart a unique modulation frequency as a func-

tion of disk radius [52, 45, 49, 47]. As the disk spins at a constant angular velocity, the transmis-

sion pattern presents a time-varying grating producing diffracted orders. A slit spatial filter is

placed in the back focal plane of a 2f optical system, see Fig. 8.4(b), and selects only the zero

and first diffracted orders [45] to produce a stationary reference beam and an angle scanning

beam, which act as the incident field and scattered field in a coherent scattering experiment,

respectively [151]. The filtered beams are image relayed to the sample region with a 4-f imaging

configuration with a tube lens, ftube = 250 mm, and objective lens, fob j = 35 mm. The sample

was mounted on a rotation stage (Newport, URB100CC) to allow full 360-degree rotation in the

x − z plane, Fig. 8.4(c). The transmitted light was collected by a 0.25 NA aspheric lens (New

Focus, 5725-A) and image relayed to a photodiode detector (Thorlabs, DET100A). The fluores-

cence was collected in the epi-direction and image relayed to a PMT (Hamamatsu H9305). The

fluorescence was separated from the illumination light with a dichroic beamsplitter (Semrock,

FF562-Di03) and an interference filter (Semrock, FF01-593/40).
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The objective lens, a 35 mm focal length achromatic lens (Thorlabs, AC254-035-A), was cho-

sen, instead of a typical high NA objective, to alleviate the transverse wobble seen by the mount-

ing stage, ∼30µm, which can lead to significant reconstruction distortions. In order to correct

the transverse wobble, a large field of view (FOV), ∼260µm, was used to ensure that the sam-

ple stayed in the central region of the FOV so the sample image could be shifted laterally in

post-processing to remove the effect of transverse wobble.

(c)

L1 L2 L3 L4 L6

L5

Obj.

DM

Det.
Fluor.

Det.
Trans. 

EF

SFMD

E0

E1(t)

c(x, z)(b)

E0

E1(t)νr(a)

Figure 8.4: Schematic of Fluorescence Diffraction Tomography microscope. Panel (a) modulator mask.

Panel (b) isolating spatial filter. Panel (c) sample mounting rotation stage. L1 - Cylindrical lens, L2−5 -

Spherical lens, MD - modulator disk, SF - Spatial filter, DM - Dichroic Mirror, Obj. - Objective lens, c(x, z)

- Sample, EF - Emission filter, Det. - single-pixel detector, νr - Rotation frequency, E0 - Zeroth order

illumination field, E1(t ) - Positive first order scan field. Figure from [135].

8.2.2 Mathematical description of FDT image formation

The forward operator D can be viewed as a map from L
2(R2), where the concentration

function c(x) lives, to L
2(R× (−π,π]), where S̃(1)(t ,φ) lives:

D{c(x)} = 〈Ψφ(x,∆k(t ))c(x)〉x = S̃(1)(t ,φ). (8.4)
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The kernel of this operator is the Fourier kernel in rotated spatial coordinates Rφx:

Ψφ(x,∆k(t )) = exp
(

i ∆k(t ) ·Rφx
)

,

where

Rφ =







cosφ sinφ

−sinφ cosφ







is a rotation matrix by φ ∈ [0,2π), and ∆k(t ) = (∆kx(t ),∆kz(t )) is the difference wavevector pa-

rameterized by time, with ∆kx(t ) = kc t/T and ∆kz = k (
√

1− (NA t/T )2 −1) for t ∈ [−T,T ]. Be-

cause of this parameterization, sampling in time is equivalent to sampling in spatial frequency

or wavenumber on a linear grid in ∆kx and a parabolic grid in ∆kz .

The forward operator in (8.4) is an inner product in L
2(R2). The adjoint operator is given

by

D
†
{

S̃(1)(t ,φ)
}

(x) =
∫2π

0

∫T

−T
Ψ

†
φ(x,∆k(t )) S̃(1)(t ,φ)d t dφ (8.5)

with the kernel

Ψ
†
φ(x,∆k(t )) = exp

(

−i ∆k(t ) ·Rφx
)

.

Applying the adjoint operator to S̃(1)(t ) is equivalent to doing correlation processing (matched

filtering) on the data and furnishes an estimate of c(x). However, this estimate in general does

not enjoy any sense of optimality.

The least-squares (minimum L
2-norm error) estimate is obtained by building the inverse

operator D
−1:

D
−1

{

S̃(1)(t ,φ)
}

(x) =
∫2π

0

∫T

−T
Ψ̃

†
φ(x,∆k(t )) S̃(1)(t ,φ)d t dφ. (8.6)

The kernel for D
−1, called the dual kernel, is given by

Ψ̃φ(x,∆k(t )) = γ(t )Ψφ(x,∆k(t )) = γ(t )exp
(

i∆k(t ) ·Rφx
)

,
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where

γ(t ) =
|t |/T

√

1− (NA t/T )2

is the determinant of the Jacobian of the coordinate transformation t −→∆k(t ).

As the numerical aperture NA goes to 1, this dual kernel forms a biorthogonal system with

the forward kernel, and at the limit we have

Q :=
∫2π

0

∫T

−T
Ψ

†
φ(x,∆k(t ))Ψ̃φ(x′,∆k(t ))d t dφ= δ2(x−x′), (8.7)

where δ2(·) denotes a bivariate Dirac delta. To see this, let us define ∆x = x−x′. Then, Q can be

written as

Q =
∫2π

0

∫T

−T
γ(t )exp

(

−i ∆k(t ) ·Rφx
)

exp
(

i ∆k(t ) ·Rφx′) d t dφ

=
∫2π

0

∫T

−T
γ(t )exp

(

−i ∆k(t ) ·Rφ∆x
)

d t dφ

= 2π

∫T

−T
γ(t )J0(‖∆k(t )‖2‖∆x‖2)d t .

where J0(·) is the Bessel function of the first kind in two dimensions and ‖ · ‖2 denotes 2-norm.

Substituting for ∆k(t ), this can be simplified to

Q =
4πNA

T

1
∫

0

τ
√

1− (NAτ)2
J0

(p
2k ‖∆x‖2

√

1−
√

1− (NAτ)2

)

dτ

where τ= t/T . Let ∆κ(τ) :=
√

2(1−
√

1− (NAτ)2). Then, the integral Q can be expressed in the

simplified form

Q =
4π

NAT

∆κc
∫

0

J0 (k ‖∆x‖2∆κ)∆κd∆κ,
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where ∆κc =∆κ(1) =
√

2(1−
√

1−NA2). The value of the above integral is

Q =
4πk ∆κc

NAT ‖∆x‖2
J1 (k ‖∆x‖2∆κc ) .

The biorthogonality property in (8.7) is satisfied when NA → 1 or equivalently when ∆κc →
p

2, whereupon Q → δ2(x−x′). However, physical constraints imposed by the experimental sys-

tem limit the maximum value of ∆κc . In the experiment, the illumination light is propagating

within the region of the object and can be described by the Helmholtz equation. The dispersion

relationship of the Helmholtz equation requires that a plane wave propagating with the trans-

verse spatial frequency kx carries an axial spatial frequency of kz =
√

k2 −k2
x . This condition

sets the difference axial spatial frequency to ∆kz =
√

k2 −k2
x −k. These restrictions enforce a

maximum value of the difference wavevector norm of ∆κc =
p

2 for NA = 1. This solution to

the integral (8.7) is plotted in Fig. 8.5. The horizontal axis is k ‖∆x‖2. In the limiting case, and

if there is no noise, this biorthogonality property results in the exact reconstruction of the ob-

ject through the inverse operator. For smaller numerical apertures, the width of Q limits the

reconstruction resolution.

k ‖∆x‖2

κc = 5

κc = 0.5

κc = 50

Q

Figure 8.5: Plots of the biorthogonal relationship of the relationship given in (8.7). In the limit asκc → inf,

the dual and forward model kernels become biorthogonal. Figure from [135].
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8.2.3 Data Processing

Equations (2) and (3) in the Letter describe the forward and inverse models for Fluorescence

Diffraction Tomography (FDT). Here we describe the detailed signal processing steps required

for processing experimental data and using that data for image reconstruction.

As a single scan is taken over one rotation of the modulator mask, the time trace, modeled

by Eq. (1), is generated by collecting the signal light on a single-pixel photodetector (Fig. 8.6(a)).

The complex demodulated sideband given in Eq. (2) is isolated by first taking a simple Fourier

transform of the time trace. The carrier frequency, ωc , causes the spatial distribution of the

projection, sφ(xφ), to be centered at +ωc and a conjugate image is centered at −ωc , as shown in

Fig. 8.6(b) [45, 46]. The carrier frequency plays a role that is analogous to the off-axis reference

beam for holography, avoiding the twin image problem [87].

In order to recover the complex object information, the positive single side band is isolated

by applying a bandpass filter in the frequency domain, shown as a red dotted line in 8.6(c).

Once the bandpass filter has been applied, the signal is converted back into the time domain

by taking the inverse Fourier transform. This operation results in a complex time signal that

contains the carrier frequency, i.e., the rapid oscillation of the real part of the time signal shown

in Fig. 8.6(d). This complex temporal data is then demodulated by the carrier frequency to bring

the line image information to the baseband (Fig. 8.6(e)). In total, these operations provide the

complex single sideband given by Eq. (2). At this point in the reconstruction workflow, known

optical aberrations can be corrected, such as spherical aberration and so-called wobble phase

imparted by an imperfectly mounted disc [45, 76, 49, 46].

The demodulated time signal is downsampled to reduce the data size and speed up the

reconstruction algorithm, thereby reducing data pressure. Since the time signal is already ban-

dlimited, it is not necessary to apply a lowpass filter in the downsampling operation. The fig-

ure in Fig. 8.6(e) shows the real part of the demodulated single sideband signal, S̃(1)(t ), which

is used in the FDT reconstruction algorithm (main text, Eq. (3)). Scanning the object over

θ ∈ (−180,180] degrees, processing the time traces as described above, and Fourier transform-
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ing the downsampled, demodulated, single side band, time trace results in the sinogram shown

in the main text, Fig. 2(a).

Each time point in S̃(1)(t ) is a measurement of the magnitude and phase of object spatial

frequency representation at the instantaneous projected spatial frequency pair (∆kx(t ),∆kz(t ))

[45, 49, 46]. The inlaid figures in Fig. 8.6(e), above the time trace, show the illumination in-

tensity at a snapshot in time, which is the interference between the reference beam, E0, and

the scanning beam, E1(t ), at a crossing angle, θ(t ), which produces a spatial frequency ∆k(t ).

The illumination intensity excites the fluorescent concentration distribution at the given spa-

tial frequency. The emitted fluorescent light is collected by a single-pixel detector, performing

a spatial integration along the spatial coordinates x and z, modeled by Eq. (1). Note that in

this work, we assume the detector is infinite in extent for simplicity in our forward model. This

large detector size is a good approximation to the experimental system that we have described

here; although it should be noted that there are cases in which the finite size of the detector and

point-spread-function of detection must be accounted for [48].

The measured spatial frequency information is mapped into the object’s spatial domain by

the inverse operator (8.6). The action of the inverse operator is illustrated by the inlaid figures

below the time trace in Fig. 8.6(e). These inlays illustrate how the measured spatial frequency

information is mapped into the object spatial distribution with (8.6). As the disc rotates, each

measured spatial frequency component is obtained from an arc that traverses the Ewald sphere

over the range of transverse spatial frequencies supported by the NA of the illumination objec-

tive. In this way all spatial frequencies supported by the illumination objective are sequentially

scanned as the field, E1, passes through the full spatial frequency support of the imaging system

[45, 47]. The green and orange points illustrate high and low spatial frequencies, respectively.

Due to the fact that we sample discrete time points, it is appropriate to express the inverse

operator, (8.6), as a Riemann sum. The time points, at time ti , sampled on a regularly spaced

grid with a time step ∆t . A fixed set of rotation angles, φ j , are acquired over an angular span of
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Figure 8.6: The signal processing procedure to generate the FDT sinogram using simulated data. (a) A

single time trace, S(t ), at an arbitrary angle collected by a photodiode. (b) The spectral density, F {S(t )},

displays conjugate symmetry about DC modulation frequency. (c) The spectral density is filtered to iso-

late the positive sideband, dotted red line. (d) The inverse Fourier transform (iFFT) of the filtered spec-

tral density encodes the spatial phase difference between the illumination beams. (e) The complex time

trace is demodulated by the carrier frequency to remove the linear phase ramp. The figures above the

time trace illustrate how each time point is generated by two-beam interference and spatial integration

by the single-pixel detector, x − z space. The figures below the time trace illustrate how each measured

time point represents the complex object spatial frequency, which is mapped to the Ewald sphere in the

FDT reconstruction, kx −kz space. Figure from [135].

2π with uniform angular spacing ∆φ, using the index j . This discrete representation leads us to

rewrite Eq. (3) in the main text as
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ĉ(x, z) =
T
∑

i=0

2π
∑

j=1

Ψ̃i , j S̃(1)
i , j

(8.8)

which can be written explicitly as

ĉ(x, z) =
T
∑

i=0

360
∑

j=1

γi exp
[

i (∆kxi
xφ j

+∆kzi
zφ j

)
]

S̃(1)
i , j

(8.9)

where γi = k|∆kxi
|/(

√

k2 − [∆kxi
]2) is the magnitude of the determinant of the Jacobian, and

∆kxi
and ∆kzi

are difference wavenumbers in x and z, respectively, xφ j
is the rotated x-

coordinate vector, and zφ j
is the z-coordinate vector. From (8.9), we see that the reconstruction

algorithm applied to discrete data is performed in the spatial domain by weighting the dual

operator kernel functions, that are sampled on the discrete reconstruction spatial grid, by the

complex, demodulated, single sideband time signal samples.

8.2.4 Absorption Contrast

FDT can be used for many contrast mechanisms (we demonstrate fluorescence and absorp-

tion), regardless of whether the light emerging from the specimen is coherent or incoherent.

While in the main text, we have primarily focused on FDT for fluorescent light, we also demon-

strate the ability to extend fluorescent diffraction tomography to simultaneously image light

lost to absorption or scattering in transmission. Here, we demonstrate the absorption contrast

mechanism, which was simultaneously acquired along with fluorescence on a separate single-

pixel detector. The absorption signal was acquired by collecting the transmitted excitation light,

532 nm, on a photodiode (Thorlabs, DET100A). Fig. 8.7 shows the 3D reconstruction of the ab-

sorption contrast. The left-hand columns show slices along the x − y , y − z, and x − z planes in

descending order, respectively.
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Figure 8.7: 3D reconstruction of absorption contrast of fluorescent stained cotton fibers. The blue panel

is an x − y slice of the object indicated by the blue rectangle in the main figure on the right. The green

panel is an y −z slice indicated by the green rectangle. The red panel is an x−z slice indicated by the red

rectangle. Scale bar equals 60µm. Figure from [135].

8.2.5 FDT Comparison with Backprojection

In the introduction of the main text, we mention one of the major limitations of Optical Pro-

jection Tomography (OPT) and Selective Plane Illumination Microscopy (SPIM) is the fact that

both techniques exhibit coupling between the object size and spatial resolution [58, 29, 70, 91].

That is, the object being imaged may not be larger than roughly twice the Rayleigh range of the

line focus [91]. The reason for this limitation is that both OPT and SPIM assume that the illumi-

nation light is approximately planar in the object region so that diffraction is negligible. These
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assumptions are only valid inside the Rayleigh range of a beam focus (or the focal region of the

point spread function). Therefore, larger objects require a thicker line focus of illumination for

SPIM to extend the Rayleigh range over the object, and in the case of OPT, a lower NA objective

is used so that the PSF is approximately collimated throughout the object thickness [91]. If this

assumption is violated, an out-of-focus blur will result in the final reconstructed image. It is

worth noting that several SPIM approaches have appeared that use virtual light sheets with PSF

engineering approaches to create diffraction-free light sheets to circumvent this coupling [114].

With FDT, we do not make an assumption of planar illumination since the propagation

phase is directly encoded in the measured temporal data. This allows FDT to numerically re-

focus the entire volume measured by the illumination beams in a similar manner to hologra-

phy. In previous work, we have demonstrated that the technique underlying FDT, CHIRPT mi-

croscopy, not only enables this holographic refocusing of fluorescent images but also exhibits a

depth-of-field up to 83× that of conventional imaging at the same NA without sacrificing spa-

tial resolution (∼440 µm) [49]. This DOF was measured to extend beyond 1 cm with the same

optical components but at the cost of a loss of spatial frequency support. In the reconstruction

presented here, it is not necessary to explicitly backpropagate or numerically refocus the line

image [49]. Instead, the reconstruction algorithm uses a dual operator to directly synthesize the

object in x − z. The sum over the kernel function of the inverse dual operator weighted by the

complex demodulated values of the time trace recorded for each rotation angle φ directly gives

the backpropagated object distribution for that measurement angle. The encoded propagation

phase allows objects to reside well outside the Rayleigh range of the focus of the illumination

light sheet. This allows FDT to effectively decouple the spatial resolution from the maximum

object size.

In order to illustrate the importance of encoding the propagation phase has on the recon-

struction and the effect it has on the maximum aberration-free field-of-view, we perform two

simulations. We start by simulating a sinogram using fluorescence as the contrast mechanism.

The sinogram was generated using an illumination wavelength, λ= 532 nm , a numerical aper-
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Figure 8.8: Comparison between computed tomography using fluorescence intensity and Fluorescence

Diffraction Tomography with phase encoding. Panel (a) shows the 2D spatial frequency support of com-

puted tomography measured at a 45-degree angle. Panel (b) is the 2D FFT of (a) resulting in a 2D image

of the object. Panel (c) shows the frequency support when the full sinogram is used in the computed

tomography reconstruction. Panel (d) shows the 2D reconstructed object when diffraction is not ac-

counted for in the reconstruction. Panel (e) illustrates how FDT, using modulation transfer, can extract

the complex phase information, even from fluorescence, to map the measured spatial frequencies onto

the Ewald sphere. Panel (f) shows the 2D object reconstruction using only one line image at a 45-degree

angle. Panel (e) shows the full spatial frequency support when the full sinogram is used in the FDT re-

construction. Panel (h) shows the 2D reconstructed object generated by taking the 2D FFT of panel (g).

Figure from [135].

ture, NA = 0.90, field of view, FOV = 20 µm, and 360 evenly spaced illumination angles ranging

from θ = [−180,180) deg, sinogram shown in the main text, Fig. 2(a).

Using the sinogram, two reconstruction strategies were tested. First, we reconstructed the

object without the phase information that we obtained from the complex spatial frequency val-

ues by using the magnitude of the sinogram, which is equivalent to the information that would

be obtained in OPT if the object size was much larger than the Rayleigh range. We reconstructed

this data with the filtered back-projection algorithm using an inverse Radon transform (iradon()

function in Matlab). The inverse Radon transform is relevant for line-projection tomographies

[126, 134]. The results of this reconstruction strategy are shown in Figs. 8.8(a-d). Fig. 8.8 (a)

is the 2D frequency support measured at θ = 45 deg. Notice, the frequency support lies on a

straight line in the (kx −kz) plane at a 45-degree angle, corresponding to the illumination angle,
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in agreement with the Fourier slice theorem [78]. Fig. 8.8(b) is the resulting 2D object recon-

struction in the x − z plane, generated by taking the 2D inverse Fourier transform of Fig. 8.8(a).

The reconstructed object does not exhibit diffraction, i.e., the objects appear as uniform lines

of constant magnitude rotated by 45◦, which is in accordance with the assumptions made by

OPT. Figure 8.8(c) is the frequency support using the full sinogram. The resulting 2D x − z ob-

ject reconstruction, Fig. 8.8(d), was generated by taking the 2D inverse Fourier transform of

Fig. 8.8(c). A radially dependent azimuthal blurring is evident in the reconstructed object. This

result is expected since the Rayleigh range of the simulated illumination beam was ∼ 0.365 µm,

while the reconstructed field of view was 20 µm.

By contrast, we compare these same conditions to the inverse operator using Eq. (3) from

the Letter. Figures 8.8(e-h) show those results. The reconstructed object using one angle of the

discrete algorithm in (8.9), here at θ = 45 deg, is shown in Fig. 8.8(f). Taking a two dimensional

FFT of this reconstructed object gives the measured spatial frequency support for the single

illumination angle of θ = 45 deg that is shown in Fig. 8.8(e). Notice that the frequency support

lines on a curve that is predicted by Fourier diffraction theory. The full object reconstruction

using a full 2π angles is shown in Fig. 8.8(h). The spatial frequency support obtained from the

2D FFT of the object estimate is shown in Fig. 8.8(g). We see that the reconstructed object does

not contain an azimuthal blur and the points localize the object position, only limited by the

diffraction limit set by the NA of the objective.

We note that this simulation considered planar illumination in the x − z-plane only, ne-

glecting effects caused by the DOF of the light sheets used for illumination in the orthogonal

(y) dimension. We have previously described that CHIRPT has two distinct DOF metrics – one

based on intensity modulations in the x − z plane, and the other dictated by the properties of

the focused illuminating light sheet [48]. While this DOF in the vertical dimension would ul-

timately place a practical limit on the spatial resolution in y , the fidelity of the reconstructed

image in the x − z-plane should not suffer. Further, we note that a variety of PSF engineering

147



strategies could be employed to maintain spatial resolution in the vertical dimension over the

full FOV [48].
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Chapter 9

Introduction to Super Resolution

9.1 Introduction

Optical imaging has played a key role in many biological discoveries due to its ability to

spatially resolve the dynamics and internal components of live cells and organisms. Until re-

cently, microscopes have only been able to resolve spatial features slightly smaller than half the

wavelength of light, ∼250 nm. This spatial diffraction limit has been shattered by the intro-

duction of super-resolution (SR) imaging [1, 2]. SR microscopy has transformed our ability to

probe intracellular dynamics on an extremely fine spatial scale. The list of discoveries from SR

microscopy studies are growing rapidly, which includes observations of the architecture of the

nuclear pore complex [3], the discovery of periodic actin-spectrin-adducin cytoskeletal rings

in neuronal axons [4], observation of the process of in situ aggregation and the aggregate mor-

phology of intracellular β-Amyloid Fibrils [5], observation of the structure of DNA at the end

of the linear chromosome [6], the discovery that shelterin complex protects chromosome ends

from unwanted DNA repair processes [7], and the measurement of nanostructures involved in

DNA replication [8].

The potential of SR imaging to uncover new mechanisms of signaling pathways and bio-

chemical interactions in healthy and sick organisms is vast. Such discoveries could lead to new

paradigms for treatments and new drug targets. Yet current SR microscope technology offers

only limited potential for the application of translating a new understanding of fundamental bi-

ological mechanisms to new targets for disease detection and treatment. A major impediment

is that the clear majority of studies using SR microscopy are with cultured cells grown outside of

their natural environment, i.e., in vitro 2D cultures [2]. In many cases 2D cell culture results fail

to translate into successful treatments [9]. Increasing attention has been directed to the use of

three-dimensional (3D) cell cultures and in vivo experiments due to the limitations of 2D cul-
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tures [10, 11]. SR microscopy methods rapidly fail when imaging in tissues and 3D cultures due

to strong optical scattering.

SR imaging techniques are routinely used for biomedical experiments in cells. The micro-

scopes are based on either localization microscopy (LM), such as photoactivated localization

microscopy (PALM) [12] and stochastic optical reconstruction microscopy (STORM) [13], or

spatially structured illumination, such as structured illumination microscopy (SIM) [14] and

stimulated emission depletion (STED) [15]. While each of these methods has achieved spatial

resolution down to tens of nanometers, these methods are not able to operate in optically scat-

tering specimens, such as uncleared biological tissues. This has largely prevented SR imaging

in live animals or in vitro organotypic tissue slices.

Imaging in tissues is challenged by light scattering, absorption, and specimen-induced op-

tical aberrations, limiting the penetration depth of optical SR imaging in tissue. Specimen-

induced aberrations degrade SR images even at depths of a few micrometers [16]. Both LM and

SIM rely on widefield microscopy. LM forms images by activating sparse groups of individual

fluorophores in a specimen. The centroid of the point-spread function (PSF) from each fluores-

cent spot is estimated, and the centroids are used to build a final image from a sequence of im-

ages, each with a random distribution of excited fluorophores. Similarly, nonlinear structured

illumination microscopy (NSIM) [14] achieves super-resolution through the measurement of

multiple widefield images with a sequence of periodic illumination intensity patterns. Unfor-

tunately, widefield imaging rapidly fails in tissues because scattering blurs the fluorescent light

as it exits the specimen. Optical aberrations further degrade these techniques [17].

Conversely, STED and related ground state depletion (GSD) [18] and REversible Saturable

Optical Linear Fluorescence Transitions (RESOLFT) [19] methods utilize single-pixel detection,

such as a photomuliplier tube (PMT), to collect super-resolved image data. STED uses two laser

beams. The excitation beam excites fluorophores in a diffraction-limited spot. A second deple-

tion beam that is shaped like a doughnut drives excited molecules back to the ground state,

producing a sub-diffraction-limited fluorescent emission spot. These beams are then simul-
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taneously scanned to form an image. STED image resolution is highly sensitive to the spatial

shape of the depletion beam, which degrades rapidly with optical aberrations and undergoes

significant distortion due to scattering in biological media, limiting imaging depth. Despite

these challenges, STED has been used for imaging dendritic processes in acute mouse brain

slices revealing previously unobserved dendritic spine morphologies up to 50 µm deep [19, 20],

and actin in dendritic spines at a penetration depth of up to 120 µm [21].

In this chapter, a unified theory is discussed to compare all major super-resolution tech-

niques on the basis of their optical transfer function (OTF) given the photo-physics utilized to

obtain super-resolution. Additionally, we develop theory for CHIRPT and SPIFI unrestricted

super-resolution (URSR) imaging which allows easy comparison to the other major super-

resolution techniques, namely STED, RESOLFT, and SAX.

One challenge for computing the PSF and OTF for CHIRPT, SPIFI, and SAX URSR imaging is

that the spatial frequency amplitudes must be determined for a set of harmonic orders gener-

ated by the nonlinear functions (either Saturated Absorption (SA) or RESOLFT). In this chapter,

I present expressions for the PSF and OTF of URSR spatial frequency imaging techniques. We

apply the same theory to both RESOLFT and SAX URSR imaging methods to facilitate a direct

comparison so that the relative advantages and disadvantages can be readily compared. For

periodic modulation of illumination intensity, the imaging properties can be readily computed

by making use of a cosine series expansion of the modulated illumination intensity.

9.1.1 Single pixel imaging of fluorescent probes

While conventional optical imaging generally produces a real optical image that is recorded

with a segmented optical detector, such as a camera chip, single-pixel imaging utilizes a se-

quence of measurements with a single optical detector surface so that the total incident optical

power is recorded for each measurement. The most common single-pixel imaging methods are

confocal and nonlinear laser scanning microscopies [100]. These methods have been widely

adopted for their ability to form three-dimensional images in addition to providing some im-
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munity to image contamination from optical scattering [66]. A full spatial image is produced by

sequentially scanning the object position, tailoring a sequence of illumination light intensity

spatial distributions, or a combination of the two.

In 2.1, a general framework for single-pixel imaging was described, here that framework will

be used to describe imaging with self-luminescent objects such as fluorophores. The key to

single-pixel imaging is that the object information is encoded in time rather than in space as

is the case when an image is formed on a camera. The single-pixel detector generates a pho-

tocurrent directly proportional to the light collected from the object. Considering a molecular

probe such as a fluorescent emitter, the emitted fluorescence is proportional to the population

of the electronically excited bright state |e〉. The emitted power for each excited molecule is

W f = ~ω f kr |e(r, t )〉, so that the emitted fluorescent intensity for a fluorophore concentration

distribution c(r) reads as:

I f (r, t ) = ~ω f kr |e(r, t )〉 c(r) (9.1)

Here, ω f is the fluorescent emission optical frequency, ~ is Planck’s constant divided by 2π,

and kr is the fluorescent (radiative) emission rate. Note that the excited state of the molecule

is denoted as a function of position and time. The positional dependence will be important

when structured illumination is introduced and the temporal dependence allows for temporal

saturation. It has also been assumed no interaction between the molecules.

In a weak excitation regime, the excited state population is directly proportional to illumi-

nation light intensity that drives the molecules into the excited state:

|e(r, t )〉 ≈
Iill(r, t )

Isat
≡α(r, t ) (9.2)

where Iill is the illumination intensity of the excitation beam, and the saturation intensity of the

transition reads Isat = ~ωa/σabsτe . The absorption transition frequency is ωa and the transition

displays an absorption coefficient of σabs with an excited state lifetime τe . In the linear regime,

α≪ 1.
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The signal collected by the single-pixel detector,

St =
η

~ω f

(

Ωc

4π

)

〈I f (r, t )〉r = A〈Iill(r, t )c(r)〉r, (9.3)

is a projection of the illumination intensity onto the object’s spatial distribution. The fluores-

cent intensity I f (r,t) depends on position and time. The positional dependence is due to the

object molecular concentration, c(r), and the molecular excited state population which is con-

trolled by the spatial variation of the illumination intensity. Here also, time, t , denotes a slowly

varying illumination intensity, which varies slowly compared to the timescale of the molecular

excitation kinetics. The proportionality constant, A, is determined by both the fluorophore ex-

citation coefficients in (9.1), and the fraction of collected light emitted by the object, (Ωc /4π),

where Ωc is the solid angle of the light collected on the detector, the detector efficiency, η, and

the fluorescent light photon energy, ~ω f . For convenience, we will set A = 1 in the expressions

that follow to simplify the presentation of the theoretical results. This scaling factor can be eas-

ily restored in the expressions when absolute signal levels and signal-to-noise ratio (SNR) values

need to be computed.

An object reconstruction estimate can be readily built from the measured projections and

the imaging point spread function can be derived from the object response and illumination

intensity, leading to the expression for the estimate of the object [45, 46, 47, 136]:

ĉ(r) = PSF(r)∗ c(r). (9.4)

Here, the reconstructed object is equal to the point spread function convolved with the object

concentration.

9.2 Population kinetics of electronic states

Superresolution imaging is benchmarked relative to the performance of conventional

diffraction-limited imaging techniques. In both cases, metrics are assigned to the spatial reso-
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lution of the imaging system or the spatial frequency support (passband) of the system. These

metrics are convenient, but fail to fully characterize spatially resolved structure in an image.

Imaging quality depends critically on the signal-to-noise ratio (SNR) of the image information

at each recorded spatial frequency, and the method that we present here enables higher-quality

image formation, even within the same spatial frequency band. Moreover, utilizing saturated

absorption theoretically allows unrestricted spatial resolution to be achieved.

Unrestricted super-resolution (URSR) imaging is based on nonlinear switching of the popu-

lation of energy states in a probe molecule. The light emitted by a fluorescent molecular probe

is proportional to the population of an excited energy level, |e〉, in a molecule with a high quan-

tum yield. In conventional fluorescent imaging, the spatial variation in the linearly excited state

population, |e(r, t )〉, is directly proportional to the spatial distribution of the illumination light

that excites the molecule, Iill(r), producing a diffraction-limited region of fluorescent emission.

In this linear limit, the spatial distribution of the emitted fluorescent light reads I f (r) =σ f Iill(r),

where σ f is the fluorescence emission cross-section. URSR imaging uses spatially modulated

control light to drive nonlinear switching of molecules to reshape the spatial distribution of the

excited molecules that are emitting fluorescent light – either by restricting the spatial region

where spatial information is captured or by expanding the recorded spatial frequency informa-

tion about the specimen. Optically controlled nonlinear switching is induced by driving stim-

ulated transitions between electronic states in molecules to manipulate electronic population

levels through laser control of the energy level population kinetics.

A number of photophysical and photochemical mechanisms have been developed for non-

linear switching of fluorescent emission to achieve sub-diffraction limited imaging with each

URSR strategy. It is the spatial-temporal excited state population of the molecules which dic-

tates the imaging properties of the fluorescent microscope. Here, we show that the disparate

strategies can be described in a unified manner by considering the process of saturation of

stimulated absorption. In Unrestricted Super Resolution (URSR) imaging, the excited state pop-

ulation of molecules are controlled using an excited bright state with a spatial dependence that
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allows microscope resolution to go beyond the diffraction limit. There are many methods of

achieving this with varying numbers of laser beams, however, all of these techniques can be de-

scribed by the excited state population. Using stimulated optical interactions, the spatial and

temporal variation of the population of fluorescing molecules is given by a nonlinear function

that depends on the illumination intensity, Iill(r), through a nonlinear mapping of the popula-

tion of the excited state in the molecule, |e(r)〉 = F [α(r)]. Here, we have defined the saturation

parameter for the resonant interaction as α(r) = Iill(r)I−1
sat , which depends on the saturation

intensity Isat = ~ω/(σabsτe ), the excited state lifetime, τe = (kr +knr)−1, the absorption cross-

section σabs at the absorption frequency ω, and the radiative kr and nonradiative knr relaxation

rates.

The behavior of URSR laser control kinetics can be understood by observing the saturation

of the excited state population behavior that follows from solving the population rate equations

for a three-level model of an atom or molecule,

d |e〉
dt

=−
d

∣

∣g
〉

dt
=−ki

∣

∣g
〉

+ (kr +knr) |e〉 , (9.5)

where the stimulated absorption rate driven by a resonant illumination light beam is ki =

α(r)/τi , Here, we have assumed a molecular system so that we can neglect stimulated emis-

sion of the illumination beam due to rapid relaxation on the excited state vibrational manifold.

URSR microscopies can be uniformly understood by considering the nature of the non-

linear saturation function for the simple molecular system kinetics given above. The excited

state population for a molecular absorber driven into saturation can be written as |e(r⊥)〉 =

F [Iℓ(r⊥)I−1
sat]. The nonlinear saturation function, F [·], can be readily described in the limiting

cases for both the case of steady-state (continuous wave – cw) excitation and pulsed excitation:

F [α(r, t )] =















α(r, t ) (1+α(r, t ))−1 cw case

1−exp(−α(r, t )T /τe ) pulse case

(9.6)
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where we define α= Iℓ(r, t )/Isat as the saturation parameter that is a function of space and time

driven by the illumination beam.

The CW approximation is valid for a pulse duration that is long compared to the excited

state lifetime. Alternately, for the pulsed case, we consider pulses with a temporal duration that

is short compared to the excited state lifetime. In general, the nonlinear population function

depends on the specific temporal shape of the pulse. For simplicity, in (9.6), we present the

result for a square pulse of duration T given by Iill(r, t ) = Iill(r)rect(t/T ).

When the illumination beam is well below saturation, then linear excitation is recovered,

where F ≈α(r) for CW illumination and F ≈ (T /τe )α(r) for pulsed excitation. At intensity levels

that exceed the saturation intensity, the single illumination beam switches molecules to the

excited on state more readily than in the linear excitation regime producing a larger spatial area

of fluorescent light emission. The saturated absorption mechanism has been used in various

imaging modalities [162, 57].

9.3 Super resolution through excited state population control

Controlling the spatial distribution of the excited state population is the mechanism that ad-

mits the feasibility of unrestricted super-resolution imaging. URSR imaging may be described

in terms of a linear translation invariant (LTI) model in the same matter as linear, diffraction-

limited imaging, however, we now define an effective PSF.

ĉ(r) = PSFeff(r)∗ c(r) (9.7)

where the effective PSF is defined as PSFeff = PSFc (r)η(r). The conventional point spread func-

tion, PSFc (r), is the diffraction-limited PSF defined by the Abbe limit and η(r) is the spatial

sharpening efficiency which depends on the specific super-resolution technique. The general

prescription for determining η(r) changes form depending on the nonlinear photon interac-
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tion, i.e. excitation or de-excitation.

η(r, t ) =















βF [α(r, t )] Switching ON

1−βF [α(r, t )] Switching OFF

(9.8)

The spatial sharpening efficiency is also going to depend on the photo-physics of the URSR

technique. β is a lifetime ratio, a type of efficiency, that is equal to 1 when there is only one

excited state, however, when there are multiple excited state β will be less than 1 and defined

as (1+ kt /ki sc )−1, where kt is the triplet decay rate and ki sc is the intersystem crossing rate.

Finally, the OTF can be determined by taking the Fourier transform of the effective PSF, OT F =

F {PSFe f f }. With these parameters defined the PSF of any URSR technique can be analyzed.

URSR imaging is accomplished through controlled population switching with the illumina-

tion light field, the spatial resolution is determined by the excited state population that remains

after the interaction with the excitation and depletion beams. The effective point spread func-

tion, PSFeff(r) can be physically understood by considering the final excited state population,

|e(r)〉∝ PSFeff(r).

9.4 REversible Saturable Optical Linear Fluorescence Transi-

tions (RESOLFT)

The majority of URSR methods make use of self-luminous light emission by an object, and

we focus our discussion on those techniques here that make use of single-pixel detection. The

techniques of REversible Saturable Optical Linear Fluorescence Transitions (RESOLFT) and Sat-

urated Absorption Excitation (SAX) are firmly established, and we will briefly review the theo-

retical description of these techniques as a point of comparison of our theory that we present

for URSR using CHIRPT and SPIFI imaging.

The general idea of RESOLFT imaging is point spread function engineering by control-

ling the excited state population of fluorescent molecular probes. This is typically accom-
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plished by an initial excitation set to operate well below the saturation intensity so that the

excitation is linear, and the initial excited state population is proportional to the diffraction-

limited point spread function, |e0(r)〉 ∝ PSFc(r). The efficiency of the depleted population,

ηD (r) = (1−β F [ID (r, t )]), describes the fraction of the initially excited population, |e0(r)〉, that

has been switched back to the dark state. It follows that the effective point spread function

for RESOLFT imaging is then defined by PSFeff(r) = PSFc(r)ηD (r) and is a factorable product

of PSFc (r), the image response function for conventional diffraction-limited imaging and the

efficiency of depletion, ηD (r). The effect of switching off the excited state molecules reduces

the spatial width of the excited fluorescent molecules – leading to a narrower spatial width of

the PSFeff, and a correspondingly broadened spatial frequency support. The calculation of the

PSFeff and the corresponding OTF are straightforward since we have a direct functional depen-

dence from the solution of the rate equations.

Using the above general theory of super-resolution, we will analyze several popular tech-

niques, namely STED, GSD, and SAX. In this way of demonstrating by example, we will be well

prepared to apply the theory to SPIFI and CHIRPT imaging allowing us to readily see how all

these URSR techniques are related.

9.4.1 STimulated Emission Depletion (STED)

Stimulated emission depletion (STED) was one of the first URSR techniques to be developed

and remains a dominant technique. Because of its dominance, there have been many improve-

ments or modifications to the technique, however, they all follow the same unifying principle so

we will focus on the vanilla technique, knowing that the general theory can be readily applied to

any of the variants. The initial excitation beam operates in a linear regime, and we will describe

that excited population by the parameter |e0(r)〉. For a CW laser beam, |e0(r)〉 = αe (r) where

we define the saturation parameter for excitation as αe (r) = Ie (r)I−1
sat,e where Ie (r) is the excita-

tion beam intensity and the saturation intensity for the excitation beam as Isat,e = ~ωe /(σeτe ),

where σe is the absorption cross section at the excitation beam frequency ωe . For a pulsed ex-
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citation intensity, Ie (r, t ) = Ie (r)ue (t ) for a square pulse with a duration Te and ue (t ) is the pulse

temporal profile, the excited state population in the linear regime reads |e0(r)〉 = (Te /τe )αe (r).

In this regime of linear excitation, the spatial region of the excitation beam is determined by

the size of the excitation beam intensity, Ie (r), and is thus diffraction-limited. To attain URSR,

a depletion beam intensity is co-focused with the excitation beam so that the edges of the ex-

cited molecules are switched off. While this depletion beam is also diffraction limited, the fact

that the switching is driven nonlinearly by saturating the depletion intensity allows the excited

molecules to be confined to a small region near the center of the excited molecules – enabling a

region of probe molecules much smaller than the diffraction-limited spatial spot to be imaged.

In STED, two lasers are used: an excitation laser and a depletion laser. The excitation laser

promotes electrons in the ground singlet state to the first excited singlet state. The depletion

beam is shifted to a longer wavelength and a stimulated emission interaction depletes the pop-

ulation in the excited state and sends it back to the ground singlet state. The excitation beam

is typically a diffraction-limited spot, we can assume that it is Gaussian, whereas the depletion

beam is shaped to spatially restrict the distribution of the fluorophores in the bright state to a

region much smaller than the excitation light distribution by virtue of the nonlinear switching

mechanism. With the application of these two laser fields, the population of the bright state in

the excited singlet state is given by

|e(r)〉 = |e0(r)〉 (1−β F [ID (r, t )]). (9.9)

Here, the nonlinear functions for de-excitation are given by the same nonlinear functional

forms as saturated absorption, (9.6) the saturation intensity used for the depletion interaction

is determined by the spectroscopic parameters at the depletion transition frequency ωD for an

absorption coefficient σD , leading to Is,D = ~ωD /σDτe . When the depletion beam is pulsed with

a form given by ID (r, t ) = ID (r)uD (t ).

The parameter β depends on the particular RESOLFT process employed for superresolution

imaging. In the case of STED and photoswitching, β= 1. These same functional forms are valid
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Figure 9.1: This figure shows the MTF of continuous-wave (CW) and pulsed (P) STED imaging at various

saturation levels (α). The dotted lines show the MTFs for pulsed illumination and the solid lines show

the MTFs for CW illumination. The code used for generating data for the plot can be found in appendix

D.

for photoswitching molecules, where the primary distinction is that the molecules are switched

between metastable states with long excited bright state lifetimes which allows for significantly

reduced illumination intensities of the excitation and depletion/switching beams.

The depletion beam is a doughnut beam produced in the focal plane with a peak intensity

of the sidelobes that are driven deep into saturation. The zero of the doughnut beam is centered

on the peak of the excitation beam, PSFc. The functional form of the depletion efficiency can be

approximated by a second-order Taylor expansion about the zero [60] so that ID (r⊥) ≈ a r2
⊥. For

the case of the imaging of a beam that has passed through a spiral phase plate, the parameter a

is given by [60]

a ≈ 0.429[ID (r⊥)]max

(

2π NA

λ

)2

. (9.10)
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Here, [ID (r⊥)]max is the maximum value of the doughnut beam lobes. The spatially varying

depletion efficiency is then computed by making use of the nonlinear saturation function given

in (9.6). For the case of pulsed excitation with a square pulse of duration T , the depletion is

given by ηD (r⊥) = exp
(

−(T /τe ) a r2
⊥
)

, and the effective point spread function reads

PSFeff(r⊥) = PSFc (r⊥)ηD (r⊥)

= PSFc (r⊥) exp
(

−(T /τe ) a r2
⊥
)

. (9.11)

The optical transfer function is found by a Fourier transform of PSFeff(r⊥).

The expressions above show that the nonlinear switching of URSR process can be fully char-

acterized by the nonlinear saturated absorption function given in (9.6). The shape of the mod-

ulation transfer function (MTF), the magnitude of the Fourier transform of the PSF, is shown in

fig. 9.1 for both continuous-wave (CW) and pulsed illumination for various levels of saturation.

It is seen in the figure that CW illumination outperforms pulsed illumination for the same sat-

uration level. In theory, the resolution enhancement is unlimited assuming the molecules can

be driven deep into saturation, however, in practice, there are restrictions on the level of satu-

ration that can be achieved which depends on how much power the molecules can take before

ionizing and getting destroyed by the illumination intensity.

9.4.2 Ground State Depletion (GSD)

Ground state depletion (GSD) imaging gets its inspiration from STED, however, it uses a

very different mechanism to control the electronic population. In GSD, the depletion beam

aims to promote ground-state electrons to a long-lived triplet state. The kinetics parameters

for involving the triplet state are the rate of spontaneous relaxation from the triplet state to the

ground state, kt , and the rate of inter-system crossing from the bright excited singlet state to the

triplet state, kisc. With these parameters, we may defined a GSD parameter β = (1+kt /kisc)−1.

This leads to the excited state lifetime τGSD = τe /(1−β), that is used to define the GSD satura-

tion intensity, Isat,e = ~ωe /(σabsτGSD). This saturation intensity is reduced by a factor of (1−β))
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compared to the saturation intensity for saturated absorption (SA), STED, or photoswitching

processes. The cost for this reduced intensity is slower population recovery dynamics microsec-

onds as compared to nanoseconds for saturated absorption and STED processes, slowing down

image formation.

The illumination intensity of the depletion beam, ID,GSD , has a donut profile that is identical

to STED depletion beam profile, so the same quadratic beam approximation can be used here.

However, in the case of ground state depletion (GSD), a resonant excitation beam is used to

place the molecule in the excited singlet state for some time. If the inter-system crossing rate

is higher than the triplet decay rate, then a significant population can be shuttled to the triplet

state and stored there (for µs - ms times). This is the "depletion beam" and is applied for some

initial time duration. Then, the remaining molecules are "read out" by exciting the molecules

(not in the triplet state) with a diffraction-limited illuminated field of the same frequency. This

is what we will compute, and we will distinguish the two fields as depletion (D) and illumination

(e). After turning off the depletion beam, the illumination beam can be turned on to excite the

remaining molecules not in the triplet state in the excited singlet state which relaxes back down

in a few nanoseconds.

The effective PSF can be computed as

PSFe f f (r⊥) = PSFc (r⊥)ηD (r⊥)

= PSFc (r⊥)
[

1−βF [IGSD ]
]

(9.12)

Here, again we make use the general theory to describe the specific case of GSD. The MTF can

be readily calculated by taking the magnitude of the Fourier transform of the effective PSF. Note

that the shape of the MTF for GSD is the same as that of STED; the only difference is that the

efficiency of the excitation is determined by the factor β.
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9.5 Saturated Absorption Excitation (SAX)

Saturated absorption methods are techniques that utilize harmonic distortion, either tem-

porally or spatially, to access spatial frequency information beyond the diffraction limit. Sat-

urated absorption also benefits from only needing a single illumination beam, however, the

saturation process switches more molecules on as the saturation parameter, α, increases. The

increased switching of molecules leads to a number of problems, in particular, increased pho-

tobleaching rates.

Saturated Absorption Excitation (SAX) imaging uses an illumination beam that is modulated

in time and focused to a point. This leads to a spatio-temporally modulated illumination inten-

sity of Iℓ(r, t ) = (Imax/2)[1+cos(Φt )] where the temporal modulation is described by Φt =ωm t .

For low modulation frequencies, ωm < 2π/τe , the excited state population depends on the il-

lumination intensity and the fluorophore concentration. When higher modulation frequencies

are used, super-resolved lifetime imaging is possible []. When the maximum intensity is on the

order of or larger than the saturation intensity, i.e., α = Imax/Isat & 1, the excited state popula-

tion of the fluorophore excited state population is given by |e(r)〉 = F [α{1+ cos(ωm t )}PSFc (r)].

In a SAX imaging experiment, the q th harmonic of the modulation frequency is detected – re-

sulting in increased spatial resolution due to a narrower PSF at the harmonic.

9.5.1 SAX cosine series expansion

SAX makes use of a temporally periodic illumination pattern to produce a signal that is

proportional to the nonlinear functional response to the periodic illumination pattern, i.e.,

S ∝ F [Iℓ(r, t )]. The super-resolution image signal is extracted from the harmonics of the pe-

riodic signal and can thus be represented by a cosine series expansion of the signal fluctuations

from the mean, ∆S =
∑

q bq cos
(

q Φ
)

. The cosine expansion coefficients are defined by

bq ≡
1

2π

∫π

−π
F [Iℓ(Φ)]cos

(

qΦ
)

dΦ (9.13)
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The nonlinear saturation and depletion functions can be expressed as a cosine series using

the same set of expansion coefficients for both processes that switch ON (+: saturated absorp-

tion and discrete nonlinear excitation) and switch OFF (-: RESOLFT, STED, GSD, photoswitch-

ing) the final population of the bright excited state

∣

∣e±(r)
〉

= |e0(r)〉
[

b±
0 ±2 bq

∞
∑

q=1

cos
(

q Φ
)

]

(9.14)

and there the DC level, b±
0 , shifts according to whether the URSR process switches molecules

ON or OFF, b+
0 = b0 and b−

0 = 1−b0. The positive term (+) is for saturated absorption and nonlin-

ear absorption of order m, where the molecules are switched ON, and (-) is reserved for deple-

tion where molecules are switched to an OFF state. In addition, RESOLFT mechanisms switch

OFF (-) the initial excited state population |e0(r)〉, whereas for processes that switch ON (+),

|e0(r)〉 = 1. We note that while some work has made use of a Taylor expansion using (9.6), we

find that the expansion diverges when α ≥ 0.5, making the cosine series expansion more ro-

bust. Note that the expansion coefficients do not depend on whether we are exploiting a URSR

process that switches ON or switches OFF excited state population. The consequence of this

property is that the magnitude of the super-resolution imaging is the same for both processes.

SA offers an easier experimental implementation as only one beam is required, but this exper-

imental simplicity comes at the expense of a greater background signal (b0) and more rapid

photobleaching than in the case of RESOLFT-like processes that switch OFF the excited state

population to restrict the spatial extent of fluorescent emission.

SAX imaging cosine series PSF and OTF

SAX imaging uses the harmonics of a pure sinusoidal modulation of the beam intensity

focused to a diffraction-limited focal spot. As the sample is driven into saturation, the si-

nusoidal modulation experiences harmonic distortion. Each harmonic in the detected sig-

nal can be extracted from the measurement. The extracted harmonics can be thought of

as a projection of the effective illumination onto the object spatial distribution, Ieff(r, t ) =
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Figure 9.2: This figure shows the MTF of continuous-wave (CW) SAX imaging at various harmonic or-

ders. This figure shows the MTF of pulsed (P) illumination SAX imaging at various harmonic orders. The

code used for generating data for the plot can be found in appendix D.

F [(α/2)(1+ cosΦt )PSFc (r)]. The resulting signal for a sequence where either the relative po-

sition of the object or illumination beam is scanned by a displacement vector rs , the sequence

of measurements reads SSAX(rs) = 〈Ieff(r, t )c(r− rs)〉r. Separate images at the q th harmonics of

the fundamental modulation frequency are then decomposed with the cosine series, leading to

the q th image as

I
(q)

SAX
(r) =

[

bSAX
q {α,r}∗ c(r)

]

r
(9.15)

The q th-order PSF for the SAX imaging process is readily identified as PSF
(q)

S AX
(r) = bSAX

q {α,r} in

the cosine series expansion, in which we explicitly write the SAX cosine expansion as

bSAX
q =

1

2π

∫π

−π
F

[

1

2
α (1+cosΦt )PSFc (r)

]

cos
(

qΦ
)

dΦ (9.16)
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The PSF is easily computed by numerically evaluating the integral (9.16). The OTF can then be

computed with the Fourier transform of the PSF. Figure 9.2 shows the MTF of SAX for 1st , 3r d ,

and 6th order harmonics for both CW and pulsed illumination. We see that pulsed illumination

has a greater frequency support that that of CW illumination for the same saturation level, α=

2.5.

9.5.2 CHIRPT and SPIFI

In the case of CHIRPT and SPIFI, when the illumination intensity drives a nonlinear re-

sponse in the medium, the signal strength, or excited state population in the case of real

transitions, is proportional to St ∝ |e(r⊥)〉 = F [Iℓ(r⊥, t )], where the illumination intensity for

CHIRPT and SPIFI are given by (3.4) and (3.11), respectively. We have previously demon-

strated super-resolution imaging with SPIFI by driving a nonlinear response in the medium

with a SPIFI illumination pattern []. In that work, the nonlinear response was second order,

or F [Iℓ(r, t )] = I 2
ℓ

(r, t ), and we demonstrated the application of super-resolution imaging to co-

herent nonlinear scattering as well as two-photon absorption. In general, we can use multiple

photons (MP) to drive a discrete nonlinear response with F [Iℓ(r, t )] = I m
ℓ

(r, t ), where m > 1 is

an integer describing the nonlinearity of the interaction. While MP-SPIFI and MP-CHIRPT are

capable of super-resolution imaging, the enhancement of the spatial frequency support is lim-

ited to twice the order of nonlinearity, 2m, for MP-SPIFI and m for MP-CHIRPT. However, SPIFI

and CHIRPT imagining can also be used with the SA or RESOLFT URSR mechanisms. In the

case of saturated absorption (SA), the population driven by a CHIRPT or SPIFI line illumination

intensity pattern will produce an excited state population |e(r)〉 = F [Iℓ(r, t )]. For a RESOLFT in-

teraction, a line focus excitation beam would be used to produce the initial population, where

|e0(r)〉 = Ie (r)I−1
sat,e , followed by a CHIRPT or SPIFI modulated depletion beam, which will pro-

duce a final excited state population of |e(r)〉 = |e0(r)〉 {1−F [Iℓ(r⊥, t )]}.
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CHIRPT and SPIFI imaging cosine series PSF and OTF

Both CHIRPT and SPIFI imaging make use of the cosine expansion given in (9.14) to build

the PSF and OTF for the USRS imaging process. However, in the case of spatial frequency

projection methods, the object’s spatial frequency information is directly obtained by the

measurement. This can be readily seen by considering (3.9) for y = 0, whereupon we ob-

tain S̃q (t ) = 〈exp
(

−i q kt x
)

c(x)〉x = C (kt ), where C (kx) = 〈c(x)exp(−i kx x)〉x defines the one-

dimensional spatial frequency transform of the object, c(x). In the two-dimensional plane

spanned by r⊥, each CHIRPT/SPIFI measurement produces a projection of the object c(r⊥)

onto the effective illumination intensity Ieff(r⊥, t )F [Iℓ(r⊥, t )] — producing a mixed representa-

tion projection onto an object (or illumination pattern line focus) that is scanned along ys to

build a two-dimensional image. This becomes clear when we insert (9.14) into the expression

for the SPIFI/CHIRPT signal given by (3.12), and we find that the SSB signal reads

S̃FP
q (kt , ys) = 〈bFP

q (kt , y)e−i q kt xc(x, y − ys)〉r⊥ . (9.17)

Here, we have defined a spatial frequency difference that is swept linearly in time, so

that ∆k(t ) = 2π κ t êx ≡ kt êx , and κ is the rate at which the transverse spatial frequency

is swept [] and assumed that the illumination beam is centered at point xc , which makes

ϕt = ωc t and ΦFP(x, t ) = ωc t +kt x. We may define a mixed representation of the object where

a Fourier transform is taken along the modulation direction, x, so that we write Ĉ (kx , y) =

〈c(x, y)exp(−i kx x)〉r⊥ . With this form, (9.17) is compactly expressed as

S̃FP
q (kt , y) =

[

bFP
q (kt , y)∗ Ĉ (kt , y)

]

y
. (9.18)

We immediately identify the optical transfer function, ˆOTFq (kx , y) = bFP
q (kt , y). The expan-

sion integral is given explicitly by inserting either (3.4) or (3.11) into the cosine expansion in

(9.13) to the case of SA and discrete harmonic CHIRPT and SPIFI imaging.
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Figure 9.3: This figure shows the MTF of SPIFI/CHIRPT imaging at various harmonic orders. The code

used for generating data for the plot can be found in appendix D.

In the case of RESOLFT CHIRPT/SPIFI imaging, the expansion coefficient gives a mixed

representation of the depletion efficiency, ηD (kx , y) = bFP
q (kt , y), with the full mixed represen-

tation OTF that reads ˆOTFq (kx , y) = u2
0(y)bFP

q (kt , y). The full OTF is obtained with a Fourier

transform of the mixed OTF along the y-direction, OTFq (kx ,ky ) = 〈 ˆOTFq (kx , y)exp
(

−i ky y
)

〉y .

Similarly, the full PSF is obtained with an inverse Fourier transform along the x-direction,

PSFq (x, y) = 〈 ˆOTFq (kx , y)exp(i kx x)〉kx
. Figure 9.3 shows the MTF of saturated SPIFI for the 1st ,

3r d , and 6th order harmonics for a saturation level, α = 2.5. Interestingly, the MTF is the same

for both pulsed and CW illumination, however, in practice, it is much easier to reach saturation

with a pulsed source.

9.6 Comparison of URSR imaging method

Perhaps the best way to compare imaging systems is through the PSF or equivalently the

MTF. The reason for this is that the PSF directly informs how the imaging system will perform
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and how much blurring will occur. Therefore, the narrower the PSF the better resolved the

final image will be. Alternatively, the MTFs can be compared which is simply the magnitude of

the Fourier transform of the PSF. By comparing the MTFs, one can immediately compare the

cutoff spatial frequency and the magnitude of all the spatial frequencies of the entire image. It

turns out that the magnitude is just as important, if not more important, than the cutoff spatial

frequency. The reason for this is that the magnitude or the shape of the MTF describes how

much of a particular spatial frequency will be represented in the image compared to the other

spatial frequencies. Additionally, the magnitude of each spatial frequency tells how robust to

noise that spatial frequency will be. That is, if the magnitude of a high spatial frequency is very

small, it is likely that it will be buried in the noise and will not be well represented well in the

final image, however, if that same frequency has a large amplitude then it is very likely going to

be well represented in the final image even in the presence of noise leading to better imaging

performance.

9.6.1 URSR OTF comparisons

Figure 9.4 compares the MTFs for STED, SAX, and Saturated SPIFI at a saturation param-

eter of α = 2.5. With the exception of CW STED all the other techniques have a cut-off spa-

tial frequency of approximately 4.5x that of the diffraction-limited cut-off. We can clearly see

that CW STED, purple line, has the highest spatial frequency cut-off of around 7.5x that of the

diffraction-limited cut-off. The MTF has a concave shape which causes the highest spatial fre-

quencies to be lost in noise fairly easily. However, it is regularly reported that STED can achieve

50 nm resolutions with the record being 10 nm. Notice, that all RESOLFT techniques (STED,

GSD, Photoswitching) have the same MTFs at a give saturation parameter, the primary differ-

ence is the photo-physics that drive the electronic populations will determine the efficiency of

the resolution enhancement. While CW STED has the highest cut-off frequency, the mid-band

frequency is lower than that of 6th order pulsed SAX, dashed blue line, and 6th order SPIFI,

green line. While pulsed SAX is only slightly better in the mid-band frequencies, one would not
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Figure 9.4: This figure compares the MTFs of STED, SPIFI, and SAX all with a saturation parameter of

α= 2.5. The code used for generating data for the plot can be found in appendix D.

expect the imaging performance to be better than that of CW STED. In practice, the 3r d har-

monic can be readily recovered, however, it is fairly typical for the 4th and higher harmonics to

be buried in the noise limiting the imaging performance. The 6th order SPIFI is significantly

higher amplitude for the mid-band frequencies and makes a big difference in the imaging per-

formance, see fig. 9.5. In practice, achieving high SNR for the 4th and higher orders has proven

to be quite an arduous task. In the next chapter, I discuss a computation approach that allows a

more consistent extraction of high-frequency information by solving the inverse problem with

regularization and joint estimation of the measurement matrix.

9.6.2 URSR imaging comparisons

Figure 9.5 shows noise-free simulations of the imaging performance of STED, SAX, and

SPIFI. This simulation used a numerical aperture (NA) of 1.1 with water immersion, nb = 1.33,

an illumination wavelength of λi l l = 500nm, and a saturation parameter of α = 2.5. Panel (a)
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shows the true object, (b) is CW STED, (c) is pulsed STED, (d-f) is 1st , 3r d , and 6th order har-

monics of SAX, and (g-i) is 1st , 3r d , and 6th order harmonics of SPIFI. We see that the imaging

quality for CW STED, panel (b), is well resolved and is expected to have significantly better imag-

ing performance compared to all the other image modalities presented here. Surprisingly, the

6th order SPIFI looks to have better contrast than that of CW STED. The reason for this is the

shape of the MTF of each respective imaging modality. Since SPIFI has superior mid-band sup-

port the overall image quality is comparable to a technique that has 66% higher cut-off spatial

frequency. This illustrates the importance of the shape of the MTF and not just the cut-off fre-

quency. SPIFI has the unique property of having a more convex MTF compare to that of most

imaging systems.

Using the above theory, it is very easy to directly compare the various super-resolution tech-

niques described above. It is worth noting here that the above theory is capable of holding

many of the variables constant to allow for direct comparison, however, in practice this is never

the case. That is, when it comes to implementing a given system there will be differences in the

absorption cross-sections, emission and collection efficiencies, signal-to-noise, ease of align-

ment, illumination wavelength, photobleaching, and imaging speed to name a few variables.

All of these details should be considered when implementing a real system, however, for the

sake of comparison the theory described above allows one to compare the imaging perfor-

mance for a given system where an illumination wavelength, saturation level, and numerical

aperture are all equal, this allows for straight forward comparison of expected imaging perfor-

mance between the various systems.
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Figure 9.5: This figure compares the simulated noise-free imaging performance of STED, SAX, and SPIFI.

Panel (aa is the true object, panels (b) and (c) are STED images with a saturation parameter of α = 2.5

illuminated with CW and pulsed light, respectively, panels (d-f) are images of SAX at harmonics 1, 3, and

6, panel (g-i) are images of SPIFI at harmonics 1, 3, and 6. The code used for generating data for the plot

can be found in appendix D.
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Chapter 10

Computational Super Resolution SPIFI with Joint

Estimation

10.1 Introduction

Optical microscopy is an indispensable tool for determining the spatial structure of mi-

croscopic samples. In recent years, there have been many major innovations for improving

the spatial resolution of microscopes well beyond the diffraction limit defined by the numeri-

cal aperture (NA) of the imaging system. These resolution improvements have primarily been

achieved by controlling the excited state population using nonlinear optical interactions, such

as photoswitching, stimulated emission, and saturated excitation to name a few.

In recent years, SPatIal Frequency modulated Imaging (SPIFI) and more broadly Spatial

Frequency Projection (SFP) imaging was developed as a way to access super-resolution infor-

mation of coherent and incoherent multi-photon (MP) contrast mechanisms such as second

harmonic generation or 2-photon fluorescence using single-pixel detection [125, 46]. SPIFI,

in contrast to laser scanning microscope, multiplexes spatial information together using line-

focus illumination. The object information is measured by illumination of the sample with

a narrow band of spatial frequencies where the measured spatial frequencies are varied lin-

early from [−N A/λ, N A/λ]. Using nonlinear excitation super-resolution information can be

accessed along the modulation direction. This leads to an anisotropic resolution in the 2D re-

constructed image. There have been several techniques developed to homogenize the resolu-

tion, SPIFI lateral tomography [52, 150] and Fourier computed tomography [137].

The primary advantage of SFP imaging is the improved modulation transfer function (MTF),

fig. 10.1(g), compared to other state-of-the-art techniques. The improved MTF allows the high
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spatial frequencies to be better represented in the reconstructed image leading to better con-

trast and imaging performance [130].

In this chapter, we demonstrate that solving the inverse problem (IP) with regularization

produces superior image quality compared to processing the data with a simple fast Fourier

transform (FFT). While processing of SFP data with an FFT is fairly robust to the model mis-

match between expected and experimental illumination patterns which may be introduced by

aberrations such as optical misalignment, modulator accelerations, and the specimen itself,

several disadvantages arise. Firstly, noise is distributed across the entire image in a multiplexing

imaging modality, [105, 64]. Secondly, SFP imaging contains multiple images with an increas-

ing range of spatial frequency support, but decreasing amplitude, which appears centered on

harmonics of the fundamental carrier frequency. Solving the IP allows integration of the infor-

mation contained in each of the imaging orders which results in a high signal-to-noise (SNR)

and a well-resolved image. Finally, through refinement of the model of the SFP illumination pat-

tern obtained through joint estimation of the model and the object, improved imaging quality

is demonstrated, even in the case of linear illumination, where super-resolution performance

is not anticipated.

10.2 Background

Imaging performance is usually evaluated with a single metric such as the spatial resolution

δr or the cutoff spatial frequency, fc [56, 127]. A single metric is not adequate for capturing the

imaging capabilities of a given microscopy modality, an assertion best illustrated by comparing

images. The differences in performance of a number of imaging modalities is shown in Fig.

10.1. The modulation transfer function (MTF), defined as the magnitude of the optical transfer

function, for a number of imaging methods are shown in Fig. 10.1(e), along with the true object

and simulated images for a number of modalities under noise-free conditions.

Fig. 10.1(b,c, and d) compares confocal imaging, pixel reassignment confocal microscopy

(PRCM), and second-order SPIFI which display a coherent cutoff spatial frequency of 4x, 4x, and
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Figure 10.1: a) True Object, b) 1 Airy diameter Confocal, c) Pixel Reassignment Confocal, d) 2nd order

SPIFI, f) 2-photon LSM, g) 4th order SPIFI, e) MTF. Code used for generating figures can be found in

appendix D.

2x set by the numerical aperture of the imaging system, fc = NA/λ, respectively. PRCM imaging

shows superior imaging performance compared to standard confocal because the amplitude of

the MTF is higher at the mid to high spatial frequencies at the cost of the low spatial frequency

amplitude [74]. Even the slight increases in the spatial frequency support of the MTF has gen-

erated great excitement for PRCM due to the increased imaging performance [129, 131]. We see

that the MTF for second order SPIFI, yellow in fig. 10.1(g), has a lower cutoff spatial frequency,

however, the amplitude of the overlapping spatial frequencies is higher than standard confocal

resulting in a sharper image compared to confocal. PRCM has superior frequency support at

high frequencies resulting in the best image of the three modalities.

Improvements in imaging quality for SFP for second order and higher are more striking with

SFP imaging due to the convex shape of the MTF support that significantly boosts informa-

tion obtained at the highest spatial frequencies. The MTF in SFP imaging is determined by

the fringe visibility of the projected spatial frequencies. Since the illumination pattern samples

a sub-aperture of the illumination objective lens pupil [135, 46], the fringe visibility is signifi-

cantly higher than what is present in laser scanning microscopes (LSM), where the full spatial

frequency support of the objective is focused simultaneously. The advantage of SFP is shown

in Figs. 10.1(e and f) that compare LSM for two photon excitation fluorescence (2PEF) imaging
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with 4th order SPIFI [46, 158] and LSM [31]. The improvements in MTF amplitude are evident

in figs. 10.1(e and f).

The key conjecture that motivates this work is that estimation of SFP images through solving

the inverse problem (IP) with regularization is able to exploit high SNR measurement regions

(at high photon flux levels) and extract high spatial frequency information content (at low pho-

ton flux regions). In addition, the use of the inversion problem automatically fuses informa-

tion from all SPIFI orders to combine the information across the full range of spatial frequency

support contained in the SFP illumination patterns. The challenge posed by early image recon-

struction using the FFT-based image processing is illustrated for two-photon excitation fluores-

cent SPIFI imaging in simulations shown in Fig. 10.3(a-d and f-i) with two different shot noise

levels. The multiplexed shot noise is evident in the reduced SNR for the dim objects but also

in the noise that bleeds across to the higher SPIFI orders, Fig. 10.3(d) and (i). The multiplexed

noise presents a serious restriction on the extraction of high spatial frequency information con-

tent from super-resolution SPIFI imaging systems. The problem with traditional processing is

that the higher image orders have significantly less power compared to the fundamental or-

der, this, coupled with the multiplexed shot noise, causes the highest orders to have a low SNR

making it challenging to recover high-quality super-resolution images.

10.3 Theory

The SPIFI implementation of an SFP microscope uses a modulated illumination intensity

pattern imaged from a spinning modulator disk [125, 49, 46] onto the object region which can

be modeled as Iill(x, t ) = I0ρ(x) [1+µ(t ) cos
(

ωc t + ft x
)

]2/4. This modulation is a sequence of

spatial frequency projections with the instantaneous spatial frequency ft = 2 fm M t/T , fm is

the highest spatial frequency on the modulator, and M is the magnification from the object

region to the modulator. The fringe visibility, µ(t ) = 2
√

1− ( ft / fc )2, determines the amplitude

of the MTF at time t where the scan time is limited by the coherent cutoff spatial frequency

of the illumination imaging system, fc = NA/λ, NA is the numerical aperture of the imaging
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system, and λ is the illumination wavelength. The modulation pattern spans time ranging from

[−T /2,T /2], where T is the modulator rotation period. The modulated intensity possesses a

carrier frequency ωc that plays a key role in image estimation [49, 47, 48]. The illumination

intensity beam profile is denoted by ρ(x) which is normalized to a maximum value of unity so

that |ρ(x)| ≤ 1.

The forward model is determined from the effective illumination intensity Ieff(x, t ) =

F [Iill(x, t )] that can be modified by the photophysics of the excitation that is modeled as a non-

linear function F [·]. In the case of a η-photon excitation in fluorescent imaging, F [I ] = Iη, where

η is the number of photons that participate in the excitation. The presence of the carrier fre-

quency enables the cosine series expansion of the effective illumination intensity,

Ieff(x, t ) =
N
∑

q=0

I
(q)
0 ρ(q)(x)bq (t ) cos[q ft x +ω(q) t ], (10.1)

where the sum contains N terms and we have defined the carrier frequency at order q as

ω(q) = q ωc . In the case of η-photon excitation, N = 2η. The cosine expansion coefficients,

bq (t ), determine MTFq ( fx) for the q th SPIFI order [46, 158]. Given the illumination intensity,

the signal model for fluorescent light emission is S(t ) = 〈Ieff(x, t )c(x)〉x, for a spatial variation

in fluorophore concentration, c(x), that represents the desired object. Here we are using Dirac

integral notation, 〈·〉x =
∫

· dn x, and n is the dimension of the image.

Data are acquired by sampling a fraction of the emitted fluorescent power measured on a

single element detector such as a photomultiplier tube (PMT) at sampling interval ∆t at a set of

discrete times, t j , that span [−T /2,T /2], with a total number of samples Nt = T /∆t . The data

signal vector y = S+n contains the elements sampled from the expected signal [S] j = ∆t S(t j )

and noise introduced in the measurement [n] j . An estimate of the object, ĉ, may then be

directly obtained from the signal data vector y. We focus on shot noise, which is given by

n = Poisson{S}−S.

By solving the inverse problem (IP), superior images can be obtained from the measured

data vector using joint estimation of the measurement matrix, [157, 17]. To do so, we form a lin-
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Figure 10.2: This figure shows the workflow for processing MP-SPIFI data with both the FFT-based

method and the iterative inverse problem. Panel (a) shows the FFT of the time trace with three different

noise levels, blue-noise free, green-shot noise with 100 counts, and orange-shot noise with 100 counts

plus 10% 1/f noise. Panel (b) shows the first-order FFT reconstruction, and (c) shows the fourth-order

FFT reconstruction. Panel (d) shows the measurement matrix on the left and the noise time trace on the

right. Panel (e) is the reconstruction using the iterative inverse solver, purple. The blue trace is the true

object, green is the first order, and orange is the fourth order.

ear model of the form y = A c+n. Solving the IP estimates the object for each line acquired from

the data vector at a given y position in the object. Implementation of this model requires that

we produce a discrete object vector c that is sampled on a spatial grid x with Nx samples spaced

by ∆x with spatial samples [x]i = i ∆x. The measurement matrix, A, is then constructed from

the sampled points of the effective illumination model given in Eq. (10.1) as [A]i , j = Ieff(xi , t j ).

Estimation of the object is obtained by solving the minimization problem

ĉ := argmin
ĉ, s.t. ĉ>0

∥

∥A c−y
∥

∥

2 +τR{c}. (10.2)

Here a regularization operator, R{·}, scaled by τ employs prior information to mitigate the im-

pact of noise in the estimated object. Figure 10.2 shows a brief data processing workflow for

both traditional MP-SPIFI and MP-SPIFI utilizing iterative solvers. Panel (a) show the FFT of

a simulated time trace with three different noise levels, the blue trace has no noise added and

serves as a reference for ideal performance, and the green trace has photon shot noise (poison

noise) added to it with a simulated average 100 photon counts, and the orange trace has the

same level of shot noise (100 counts) plus 1/f electronic noise was added with an amplitude of
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Figure 10.3: Top row has Poisson noise with a maximum photon count of 1000. (a - d) 1st − 4th FFT

based SPIFI orders, respectively. (e) IP-based reconstruction. The bottom row has Poisson noise with a

maximum photon count of 100. (f - i) 1st −4th FFT based SPIFI orders. (j) IP-based reconstruction. Scale

bar: 64µm. The code used for generating figures can be found in appendix E.

10% of the maximum signal level. Panels (b) and (c) show the recovered first and fourth im-

age order, respectively, of all three traces. Panel (b) illustrates the inverse problem where the

left-hand side shows an example of the measurement matrix and the right-hand side shows the

simulated time trace. Panel (e) shows a comparison of the performance of solving the iterative

inverse problem compared to the FFT-based method, where the blue trace is the true object,

the purple trace is the recovered object using the iterative solver, the green trace is the FFT first

order, and the orange trace is the FFT fourth order. We can see that the iterative solver has sig-

nificantly better performance than that of the FFT-based processing giving high SNR as well as

maintaining good spatial resolution.

Figure 10.3(e) and (j) show the results of solving the eqn. 10.2 with Tikhonov regularization.

We see that the SNR is improved compared to the FFT-based processing.

10.4 Experimental Setup

To demonstrate the advantage of the computational approach described above, a multi-

photon (MP)-SPIFI microscope was constructed. The microscope used an amplified ANDi laser

that was built in-house with a center wavelength of λ0 = 1035nm and a bandwidth of ≈ 50nm

FWHM producing a transform-limited pulse duration of 31.5 fs. The SPIFI modulator disc had

a ∆k = 35 [lines/mm]. The objective lens was a water immersion 1.10 NA 20x Nikon which was
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overfilled in the back aperture. The signal light (SHG or 2PF) was collected in the epi direction

and the fundamental light was filtered by a dichroic mirror (Semrock) and an interference filter

(Semrock). The signal light was detected by a PMT (Hamamatsu), and the signal was amplified

by a trans-impedance amplifier (Fempto) and digitized with a NI DAQ (NI PCIe).

The measurement matrix, A, must accurately represent the signal formation of the imaging

system otherwise the IP reconstruction is very likely to produce poor reconstructions. Sev-

eral calibration protocols were developed in order to obtain a quality measurement matrix that

would serve as the starting point for solving the inverse problem. In order to calibrate the MP-

SPIFI microscope so that quality reconstructions could be obtained it was necessary to a scan

small probe emitter across the line focus in the modulation direction. The emitter was trans-

lated along the line focus and a 2-photon fluorescent signal was collected along 200 x-positions.

From this calibration data, the measurement matrix was constructed. Additionally, with this

calibration protocol disc wobble and optical aberrations are automatically encoded in the mea-

surement matrix eliminating the need for aberration correction previously implemented, [46,

65].

Even with the calibration protocol described above, the IP reconstruction can be quite sen-

sitive to model mismatch of the measurement matrix and the true illumination patterns [23].

To further improve the IP performance, the measurement matrix was jointly estimated to adapt

to modulator acceleration instability, optical aberrations, and modulator aberrations. Provided

that the measurements contain sufficient redundancy, it is possible to jointly estimate the de-

sired object and the measurement matrix [141].

Joint estimation was done by first generating an initial estimate of the object using the mea-

sured A matrix from the calibration data and solving eqn. 10.2 with Tikhonov regularization.

Using the estimated object and measurement matrix, a time trace was estimated and compared

to the measured time trace to generate an error measure against the recorded data to enforce

data consistency. This quantifies the combined error of our model and object estimate. The

measurement matrix was parameterized with a set of variables ~α. These can represent natural
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Figure 10.4: Panels a) and b) are 2-photon MP-SPIFI images of fluorescent stained polystyrene beads

corresponding to the 1st and 2nd order images, respectively. Panel c) is the result of solving the inverse

problem before joint estimation. Panel d) is the resulting image solving the inverse problem with joint

estimation of the measurement matrix. Scale bar represents 10µm. The processing code used to process

the data using the inverse reconstruction algorithm can be found in appendix F

variables of the system i.e. (ωc ,γ...) or they can be used to describe the weighting coefficients

of an appropriate basis to build an arbitrary function that describes aberrations of the system.

For example, the chirp rate, γ, may vary in time in a stochastic way due to motor instability,

γ(t ) ≈
∑N

n=0 Hn(t )αn . By using a basis, these aberrations can be captured with a sparse set of

parameters ~α. The Zernike polynomials were used as the basis to estimate optical aberrations

to improve the measurement matrix. After parametrizing the matrix, the error is minimized

between the simulated data and the recorded data given the object estimate and initial guess

of the ~α parameters. A new image is then generated with the updated ~α and the process is

repeated until convergence. This process is shown as pseudo-code in algorithm 1. Joint es-

timation is carried out successively for each aspect of the system we wish to better estimate.
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Ultimately, the goal is that this procedure will lead to a more accurate model of the system and

therefore improve imaging performance.

Algorithm 1: Joint Estimation

Input: Function that generates A given parameters ~α, regularization parameter τ

Output: Updated estimate of image~cout and model parameters ~αout

Data: Measured time trace y

1 α̂0 = intial guess or from fit to measured A

2 ĉ0 := argmin
c, s.t.c>0

1
2

∥

∥A(α̂0)c−y
∥

∥

2 +τR{c} // Using FISTA

3 i = 1

4 while ‖~αi−1 −~αi‖2 > tol er ance do

5 α̂i := argmin
~α

1
2

∥

∥A(~α) ĉi−1 −y
∥

∥

2 // Using Levenburg-Marquardt

6 ĉi := argmin
c, s.t.c>0

1
2

∥

∥A(α̂i )c−y
∥

∥

2 +τR{c} // Using FISTA

7 i = i +1

8 ~cout = ĉi ~αout = α̂i

10.5 Experimental Results

Figure 10.4 shows object reconstructions of 2-photon fluorescence from 10µm fluorescent

stained polystyrene beads (Bang Labs, Envy Green). Figure 10.4 (a) and (b) show FFT recon-

struction of the 1st and 2nd order images, respectively, and fig 10.4(c) shows the IP before joint

estimation. Finally, 10.4(d) shows the resulting image for solving the IP with joint estimation.

From the figure, we see that the IP with joint estimation has better SNR and resolution com-

pared to the second-order FFT-based reconstructions and the IP before joint estimation. Ad-

ditionally, we see that we are able to take advantage of the high SNR data from the first order

and fuse the high spatial frequency information from the higher orders to generate an overall

improved image compared to any singular FFT order.

182



10.6 Discussion

In order to obtain a high-quality reconstruction, it was necessary to jointly estimate the

measurement matrix by first estimating the line object. Using the recovered object and the

initial measurement matrix, obtained from the system calibration, the forward problem was

solved to generate a simulated time trace. The simulated time trace was compared to the mea-

sured time trace to give an error. The measurement matrix was then adjusted using gradient

descent to minimize the error between the measured time trace and the simulated one. Once

the measurement matrix had been updated the inverse problem was solved once more. This

gives a new object estimation. This process was done until the process converged. While the

reconstruction procedure takes significantly longer than the FFT-based reconstruction, the im-

proved imaging performance is worth the added computation time.

One limitation of the reconstructing resolution is the fact that the resolution enhancement

only occurs along the modulation direction. This results in anisotropic resolution. Due to the

resolution anisotropy, the low-resolution experience in the direction perpendicular to the mod-

ulation causes blurring and a lose of overall resolution performance in the enhanced direction.

There have been techniques developed to solve this problem [52, 137]. If these methods are

utilized full isotropic resolution can be achieved.

10.7 Conclusion

In this chapter, it was shown that solving the joint estimation inverse problem with regu-

larization for multi-photon SPIFI allows for superior imaging performance compared to tradi-

tional FFT-based processing. Joint estimation was necessary so that the estimated measure-

ment matrix was able to more accurately represent the actual illumination pattern used to illu-

minate the sample. In addition, we showed through simulation that the convex-shaped MTF of

the SPIFI imaging system outperforms other comparable imaging techniques which all have a

concave-shaped MTF. Additionally, SPIFI is capable of imaging both coherent and incoherent

contrast mechanisms such as second harmonic generation (shg) and 2-photon fluorescence.
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Chapter 11

Future Research Possibilities

11.1 Broadband Direct Optical Phase Extraction (B-DOPE)

Direct optical phase extraction (DOPE) imaging has the potential to be extended to broad-

band illumination. Standard DOPE imaging systems operated using continuous wave (CW)

illumination to measure the quantitative phase of the object of interest. CW illumination is

an excellent choice for measuring phase in the forward direction to obtain the optical path

length through the object which can ultimately to converted into a refractive index using the

knowledge of the illumination wavelength. However, there are some drawbacks to CW illumina-

tion, such as speckle contaminating the overall quality of the image. Interestingly, speckle was

not observed in any DOPE images. Single wavelength illumination often will result in points

singularities where the phase is not defined resulting in an improperly defined phase. These

points of singularity will cause the unwrapped phase image to be significantly distorted at and

around the point of singularity. Finally, the collection of backscattered illumination light does

not have a clear interpretation of the meaning of the recovered phase, that is the recovered im-

age could be interpreted as a topography of the object’s first interface or it could be interpreted

as a confocal-like image that depends on the location of object’s z-position.

It is possible to minimize the effect or limitation of CW illumination by utilizing broadband

illumination. There are at least two primary advantages of broadband illumination. First, both

speckle and phase singularities are significantly reduced or eliminated with the use of broad-

band illumination. The second advantage and perhaps the most important advantage is the

information obtained in the backward (epi) direction. When broadband illumination is used

for DOPE imaging a large amount of spatial frequency information is obtained. The obtained

spatial frequency information is similar to that of optical coherent tomography (OCT) with the

exception that broadband epi-DOPE obtains transverse spatial frequencies, not just the on-
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Figure 11.1: Panel a) shows the spatial frequency support of optical coherence tomography from a

broadband source. Panel b) shows the spatial frequency support of epi-DOPE.

axis frequencies. This information should allow for optical sectioning with a z-resolution of

1/∆λ where ∆λ is the optical bandwidth of the illumination. The transverse resolution should

be equal to the optical resolution of the illumination objective lens. Figure 11.1(a) shows the

collected spatial frequency of OCT and fig. 11.1(b) shows the collected spatial frequencies of

broadband epi-DOPE. We see that the epi-DOPE collects significantly more information than

that of OCT. This increased information should allow for faster scan speeds compared to that of

OCT since only one transverse direction needs to be scanned.

11.2 Super Resolution

One potential research direction of SPIFI and/or Multi-photon SPIFI is to perform imaging

deep in scattering media. MP-SPIFI has several potential advantages that would lend itself to

performing well in scattering media. The first advantage is that SPIFI is a single-pixel detec-

tion technique. This advantage allows an image to be formed from the signal light regardless

of where the signal light falls on the detector’s surface. In other words, the signal light does not

need to be in an imaging condition that allows the signal light to experience multiple scattering

without degrading the quality of the reconstructed image. Another advantage of SPIFI is how

the signal light is encoded with the illumination beam interference. The encoded signal should
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allow for some rejection of signal light outside the interference region to be rejected allowing

for a background-free signal after signal processing, however, this light will still produce shot

noise which will be a problem that needs to be addressed. Additional background rejection

should be achieved when illumination light is scattered before it excites the sample. This effect

is due again to the fact that encoding of the signal light depends on the interference of two or

more beams, since it is unlikely that scattered light will have a coherent phase relationship with

surrounding illumination light, interference is not likely to occur. Finally, since there is a well-

defined phase relationship between the interfering illumination beams it should be possible to

correct phase distortions such as optical distortions, cover slip mismatch, and even phase dis-

tortion induced by the sample. Correcting such distortions should allow for even better imaging

performance deep in scattering media.

It may also be possible to use a beam propagator to recover the object and correct for object-

induced distortion. This idea is similar to that of the multi-slice ptychography, [89]. In this case,

CHIRPT absorption and fluorescence microscopy would likely be utilized. The idea would be

to numerically refocus the object to a plane near the surface where scattering is going to be

less prevalent. The object, both fluorescence and absorption, could be estimated at that plane,

zsur f ace , then the beam could be propagated a small distance, δz, and the object refocused

to that corresponding plane. The refocused object would serve as an initial object estimate

at that plane, then the beam-propagated absorption could be used to estimate the scattering

distortion. This process of joint estimation could be carried out several times. The result should

be that the phase distortion deep in the scattering medium should be systematically corrected

which should improve the image quality throughout the medium.
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Appendix A

Comparison of Coherent Verse Incoherent Imaging

Systems

%% Simulation of the Incoherant and Coherent Imaging comparison

clear a l l

close a l l

c l c

%%

set ( 0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’ )

set ( 0 , ’ fonts i z e ’ ,14)

%% Set Up Variables

mm = 10−3;

Nx = 2^12; % Number of s p a t i a l points

xmax = 1*mm; % Max s i z e of s p a t i a l grid

x = linspace(−xmax , xmax , Nx) ; % S p a t i a l vector

dx = mean( d i f f ( x ) ) ; % Sampling s i z e

f x = 1/(Nx*dx ) *[−Nx/ 2 :Nx/2−1]; % Frequency vector

fmax = 1/dx ;

fc = fmax * 0 . 0 1 ; % Cuttoff Frequency

MTF = abs ( f x ) <= fc ; % Modulation t r a n s f e r function , coh

203



CSF = ( f f t s h i f t ( f f t ( f f t s h i f t (MTF) ) ) ) ; % Coherent spread function , coh

PSF = CSF . * conj (CSF) ; % Point spread function , incoh

OTF = f f t s h i f t ( i f f t ( f f t s h i f t (PSF ) ) ) ; % Optical t r a n s f e r function , incoh

OTF = OTF/max(OTF) ;

f i g u r e ( 1 )

plot ( f x / fc , MTF, f x / fc , OTF/max(OTF) , ’ linewidth ’ , 2 )

t i t l e ( ’CTF and OTF ’ )

x label ( ’ Normalized Frequency [ f x / fc ] ’ )

y label ( ’ Amplitude ’ )

legend ( ’ Coherent CTF ( Field ) ’ , ’ Incoherent OTF ( I n t e n s i t y ) ’ , ’ location ’ , ’

southeast ’ )

xlim ( [ −2 . 5 , 2 . 5 ] )

f i g u r e ( 2 )

plot ( x/mm, r e a l (CSF) /max( r e a l (CSF) ) , x/mm, PSF/max(PSF) , ’ linewidth ’ , 2 )

t i t l e ( ’CSF and PSF ’ )

x label ( ’ Space [mm] ’ )

ylabel ( ’ Amplitude ’ )

legend ( ’ Coherent CSF ( Field ) ’ , ’ Incoherent PSF ( I n t e n s i t y ) ’ , ’ location ’ , ’

southeast ’ )

xlim ([−max( x ) /mm* 0 . 1 ,max( x ) /mm* 0 . 1 ] )

%%

fobj = fc * 0 . 8 5 ; % Frequency of the object

% obj = exp(−1 i * 0 . 5 * pi * cos (2* pi * fobj * x ) ) ; % Object vector
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% obj = abs ( cos (2* pi * fobj * x ) ) ; % Object vector

obj = cos (2* pi * fobj * x ) ; % Object vector

ftObj = 1/Nx* f f t s h i f t ( f f t ( f f t s h i f t ( obj ) ) ) ;

ftObjCor = autoCorr ( ftObj ) ;

fxx = linspace (2* f x ( 1 ) ,2* f x (end) ,2*Nx) ;

xx = linspace ( x ( 1 ) , x (end) ,2*Nx) ;

f i g u r e ( 3 )

plot ( f x / fc , abs ( ftObj ) /max( abs ( ftObj ) ) , fxx / fc , abs ( ftObjCor ) /max( abs (

ftObjCor ) ) , ’−− ’ , ’ l inewidth ’ , 2 )

t i t l e ( ’C( f x ) and C( f x ) * C( f x ) ’ )

x label ( ’ S p a t i a l Frequency [ f x / fc ] ’ )

y label ( ’ Amplitude ’ )

legend ( ’ Obj Spectrum ’ , ’ Autocorr of Obj Spectrum ’ )

xlim ( [ −2 . 5 , 2 . 5 ] )

% Coherent

HGg = MTF. * ftObj ;

f t Icoh = autoCorr (HGg) ;

Icoh = abs ( f f t s h i f t ( f f t ( i f f t s h i f t ( f t Icoh ) ) ) ) ;

% Incoherent

Gg_Gg = autoCorr ( ftObj ) ;

OTF_new = autoCorr (MTF) ;
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OTF_new = OTF_new/max(OTF_new) ;

f t I incoh = Gg_Gg . * OTF_new;

Iincoh = abs ( i f f t s h i f t ( i f f t ( f f t s h i f t ( f t I incoh ) ) ) ) ;

f i g u r e ( 4 )

plot ( f x / fc ,MTF, f x / fc ,HGg/max(HGg) , fxx / fc , f t Icoh /max( ftIcoh ) , ’ linewidth ’ , 2 )

t i t l e ( ’ Coherent Imaging ’ )

x label ( ’ S p a t i a l Frequency [ f x / fc ] ’ )

y label ( ’ Amplitude ’ )

legend ( ’MTF’ , ’ Coherent F i l t e r e d Spectrum ’ , ’ Coherent I n t e n s i t y Spectrum ’ )

xlim ( [ −2 . 5 , 2 . 5 ] )

f i g u r e ( 5 )

plot ( f x / fc ,OTF, fxx / fc , Gg_Gg/max(Gg_Gg) , fxx / fc , f t I incoh /max( ft I incoh ) , ’−− ’ ,

’ l inewidth ’ , 2 )

t i t l e ( ’ Incoherent Imaging ’ )

x label ( ’ S p a t i a l Frequency [ f x / fc ] ’ )

y label ( ’ Amplitude ’ )

legend ( ’OTF ’ , ’ Autocorr of Obj Spectrum ’ , ’ Incoherent I n t e n s i t y Spectrum ’ )

xlim ( [ −2 . 5 , 2 . 5 ] )

f i g u r e ( 6 )

plot ( fxx / fc , f t Icoh /max( ftIcoh ) , fxx / fc , f t I incoh /max( f t I incoh ) , ’ linewidth ’

, 2 )

t i t l e ( ’ I n t e s i t y Spectrum : Coherent Vs . Incoherent ’ )

x label ( ’ S p a t i a l Frequency [ f x / fc ] ’ )

y label ( ’ Amplitude ’ )
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legend ( ’ Coherent I n t e n s i t y Spectrum ’ , ’ Incoherent I n t e n s i t y Spectrum ’ )

xlim ( [ −2 . 5 , 2 . 5 ] )

f i g u r e ( 7 )

plot ( x/mm, r e a l ( obj ) , xx /mm, Icoh/max( Icoh ) , xx /mm, Iincoh /max( Iincoh ) , ’

linewidth ’ , 2 )

t i t l e ( ’ I n t e s i t y : Coherent Vs . Incoherent ’ )

x label ( ’ Space [mm] ’ )

ylabel ( ’ Amplitude ’ )

legend ( ’ True Object ’ , ’ Coherent I i n t e n s i t y Image ’ , ’ Incoherent I n t e n s i t y

Image ’ , ’ location ’ , ’ southeast ’ )

xlim ( [ −0 . 1 , 0 . 1 ] )

%%

function autocorr = autoCorr ( x )

Nx = numel( x ) ;

xPad = zeros ( 1 ,Nx*3) ;

xPad (Nx: 2 *Nx−1) = x ;

autocorr = zeros (1 ,2*Nx) ;

j j = 1 ;

for i i = 1 : 1 : 2 *Nx

autocorr ( j j ) = sum( x . * conj ( xPad ( i i : Nx+ i i −1) ) ) ;

j j = j j +1;

end

end
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Appendix B

Plane Wave Focal Spot Generation

%% Sum E l e c t r i c Field at Many Different Angle

noiseON = 0 ; % Switch for noise

lambda = 500e−9; % Illumination wavelength

k = 2* pi /lambda ; % Radial s p a t i a l frequency

res = 0.01e−6; % S p a t i a l resolution

fov_x = 10*500e−9; % Field of View in x

fov_y = 20*lambda ; % Field of View in y

nPnts_x = c e i l ( fov_x / res ) ; % Number of x points

nPnts_y = c e i l ( fov_y / res ) ; % Number of y points

y = linspace(− fov_y /2 , fov_y /2 , nPnts_y ) ; % y vector

x = linspace(− fov_x /2 , fov_x /2 , nPnts_x ) ; % x vector

[ yy , xx ] = meshgrid ( x , y ) ; % 2D x y grids

theta_max = 20; % Max angle of

i l lumination

theta = [ 0 : theta_max ] ; % Angles of i l lumination

i f noiseON == 1

phase_ab = linspace ( −1.5 ,1.5 ,2*numel( theta ) ) . ^ 3 ;

phase_ab = rand (1 ,2*numel( theta ) ) *0+phase_ab ;

else

phase_ab = zeros (1 ,2*numel( theta ) ) ;
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end

E_tot = zeros ( s i z e ( xx ) ) ; % I n t i a l E l e c t i c Field

for i = 1 :numel( theta )

% Add the on axis plane wave

i f i == 1

Ep = exp(−1 i * ( 2 * pi * t − k* sind ( theta ( i ) ) * yy + k* cosd ( theta ( i ) ) * xx ) )

;

E_tot = Ep ;

% Add the p o s i t i v e and negative angle plane waves

else

Ep = exp(−1 i * ( 2 * pi * t − k* sind ( theta ( i ) ) * yy + k* cosd ( theta ( i ) ) * xx +

phase_ab ( round (end/2)+ i ) ) ) ;

En = exp(−1 i * ( 2 * pi * t − k* sind(− theta ( i ) ) * yy + k* cosd(− theta ( i ) ) * xx

+ phase_ab ( round (end/2)− i +1) ) ) ;

E_tot = E_tot + Ep + En ;

end

f i g u r e ( 2 )

imagesc ( x/1e−6,y/1e−6,abs ( E_tot ) . ^ 2 )

t i t l e ( [ ’ I n t e n s i t y : \ theta = ’ , num2str ( theta ( i ) ) , ’ NA = ’ , num2str (

sind ( theta ( i ) ) ) ] )

x label ( [ ’ x [ \mum] ’ ] )

y label ( [ ’ z [ \mum] ’ ] )

daspect ( [ 1 , 1 , 1 ] )
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pause ( 0 . 1 )

set ( gca , ’ x t i c k ’ , [ −5 : 1 : 5 ] )

set ( gca , ’ y t i c k ’ , [ −5 : 2 : 5 ] )

end
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Appendix C

Plane Wave Interference for CHIRPT and SPIFI

% Plane Wave Interference

% This code defines 2 or more plane waves at some angle theta1 and theta 2

% then allows them to i n t e r f e r to demonstrate s p a t i a l frequencies

clear a l l

c l c

close a l l

%% Setup Parameters

S P I F I I l l = 0 ; % Switch between SPIFI and

CHIRPT Illumination

lambda = 600e−9; % Illumination wavelength

k = 2* pi /lambda ; % Radial s p a t i a l frequency

t = 0 ; % Time for temporal

propagation

res = 0.01e−6; % S p a t i a l resolution

fov_x = 100*500e−9; % Field of View in x

fov_y = 100*lambda ; % Field of View in y

nPnts_x = c e i l ( fov_x / res ) ; % Number of x points

nPnts_y = c e i l ( fov_y / res ) ; % Number of y points

y = linspace(− fov_y /2 , fov_y /2 , nPnts_y ) ; % y vector

x = linspace(− fov_x /2 , fov_x /2 , nPnts_x ) ; % x vector

[ yy , xx ] = meshgrid ( x , y ) ; % 2D x y grids

211



theta_0 = 0 ;

theta_1 = 30;

theta_N1= −theta_1 ;

widthX = fov_x / 5 ;

beamProfile0 = exp(−( sind ( theta_0 ) * xx + cosd ( theta_0 ) * yy ) . ^ 2 / ( widthX ) ^2) ;

beamProfile1 = exp(−( sind ( theta_1 ) * xx + cosd ( theta_1 ) * yy ) . ^ 2 / ( widthX ) ^2) ;

beamProfileN1 = exp(−( sind ( theta_N1 ) * xx + cosd ( theta_N1 ) * yy ) . ^ 2 / ( widthX )

^2) ;

i f S P I F I I l l == 1 % SPIFI Illumination

E0 = beamProfile0 . * exp(−1 i * ( 2 * pi * t − k* sind ( theta_0 ) * yy + k* cosd (

theta_0 ) * xx ) ) ; % 1 s t e f i e l d

E1 = beamProfile1 . * exp(−1 i * ( 2 * pi * t − k* sind ( theta_1 ) * yy + k* cosd (

theta_1 ) * xx ) ) ; % 2 s t e f i e l d

EN1 = beamProfileN1 . * exp(−1 i * ( 2 * pi * t − k* sind ( theta_N1 ) * yy + k* cosd (

theta_N1 ) * xx ) ) ; % neg 2 s t e f i e l d

else % CHIRPT Illumination

E0 = beamProfile0 . * exp(−1 i * ( 2 * pi * t − k* sind ( theta_0 ) * yy + k* cosd (

theta_0 ) * xx ) ) ; % 1 s t e f i e l d

E1 = beamProfile1 . * exp(−1 i * ( 2 * pi * t − k* sind ( theta_1 ) * yy + k* cosd (

theta_1 ) * xx ) ) ; % 2 s t e f i e l d

EN1= 0 ;

end

f i g u r e ( 1 )
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imagesc ( x/500e−9,y/lambda , abs ( E0+E1+EN1) . ^ 2 )

i f S P I F I I l l == 1

t i t l e ( [ ’ SPIFI I n t e n s i t y ) ] )

e lse

t i t l e ( [ ’CHIRPT I n t e n s i t y ] )

end

xlabel ( [ ’ x [ \ lambda = ’ , num2str ( lambda*10^9) , ’ nm] ’ ] )

y label ( [ ’ z [ \ lambda = ’ , num2str (500) , ’ nm] ’ ] )

daspect ( [ 1 , 1 , 1 ] )
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Appendix D

Unrestricted Super-Resolution Calculators

%% Unrestricted Super Resolution Calculator

% This code takes in imaging input parameters and c a l c u l a te s the PSF and

% Resolution

% −−− Set default properties for axes fonts −−−

font= ’ Helvetica ’ ;

set ( 0 , ’ defaultaxesfontsize ’ ,18) ;

set ( 0 , ’ defaultaxesfontname ’ , font ) ;

set ( 0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’ )

un = Units ( ) ;

%% Imaging Pararmeters

% I_max = 1e6 ; % Max il lumination i n t e n s i t y

lambda = 532*un .nm; % Illumination wavelength

NA = 0 . 1 5 ; % Numerical aperture

n = 1 ; % Immersion media r e f r a c t i v e index

%% Sample Parameters

tau = 0.2*un . ps ; % Excited s t a t e l i f e t i m e

sigma_abs = 10e−16; % Absorption cross−section [cm^2]
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h_bar = 1.0545718*10^−38; % Planks constant [ J s ] = [ kg *cm^2/s ^2]

v = 2.99 e8 ; % Speed of Light [m/ s ]

omega = 2* pi *n* v/lambda ; % Anglular frequency

I _ s a t = h_bar *omega/ ( sigma_abs * tau ) ; % Saturation I n t e n s i t y

I_max = I _ s a t *10; % Max I n t e n s i t y

%% Calculate E f f e c t i v e PSF

x = linspace (−250*un .um/4 ,250*un .um/4 ,2^10) ;

u = 2* pi * x *NA/lambda ;

PSF_c = ( sin (u) . / u) . ^ 2 ;

delta_r = lambda/(2*NA) ;

% [ PSF_c , width ] =

f i g u r e ( 1 )

c l f

hold on

plot ( x/un .um, PSF_c )

t i t l e ( ’ Convential PSF ’ )

x label ( ’ x−axis [ \mum] ’ )

ylabel ( ’ I n t e n s i t y [ Arb . ] ’ )

xlim ([−5* delta_r , 5 * delta_r ] /un .um)

%%

URSR = ’ sted ’ ; % Type of Microscope ’ sted ’ , ’ gsd ’ , ’

photoswithing ’ , ’ sax ’ , ’ s p i f i ’ , ’ chirpt ’

Illum = ’cw ’ ; % Type of il lumination ’ pulsed ’ , ’ cw’

Imaging_setup
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PSF_sted = PSF_c . * (1−beta *F( alpha ( I_max , I_sat ,NA, lambda , x ) ) ) ;

f i g u r e ( 1 )

plot ( x/un .um, PSF_sted/max( PSF_sted ) )

t i t l e ( ’ E f f e c t i v e PSF ’ )

x label ( ’ x−axis [ \mum] ’ )

ylabel ( ’ I n t e n s i t y [ Arb . ] ’ )

%% Generate OTFs

Nx = numel( x ) ;

dx = mean( d i f f ( x ) ) ;

f x = (−Nx/ 2 :Nx/2−1) *1/( dx*Nx) ;

f i g u r e ( 3 )

c l f

plot ( f x / (NA/lambda) , abs (FFT( PSF_c ) ) /max( abs (FFT( PSF_c ) ) ) )

hold on

plot ( f x / (NA/lambda) , abs (FFT( PSF_sted ) ) /max( abs (FFT( PSF_sted ) ) ) )

xlim ([ −10 ,10]) ;

%%

URSR = ’ gsd ’ ; % Type of Microscope ’ sted ’ , ’ gsd ’ , ’

photoswithing ’ , ’ sax ’ , ’ s p i f i ’ , ’ chirpt ’

Illum = ’cw ’ ; % Type of il lumination ’ pulsed ’ , ’ cw’

Imaging_setup
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PSF_gsd = PSF_c . * (1−beta *F( alpha ( I_max , I_sat ,NA, lambda , x ) ) ) ;

f i g u r e ( 1 )

plot ( x/un .um, PSF_gsd/max( PSF_gsd ) )

t i t l e ( ’ E f f e c t i v e PSF ’ )

x label ( ’ x−axis [ \mum] ’ )

ylabel ( ’ I n t e n s i t y [ Arb . ] ’ )

%% Generate OTFs

Nx = numel( x ) ;

dx = mean( d i f f ( x ) ) ;

f x = (−Nx/ 2 :Nx/2−1) *1/( dx*Nx) ;

f i g u r e ( 3 )

hold on

plot ( f x / (NA/lambda) , abs (FFT( PSF_gsd ) ) /max( abs (FFT( PSF_gsd ) ) ) )

xlim ([ −10 ,10]) ;

%%

URSR = ’ photoswitching ’ ; % Type of Microscope ’ sted ’ , ’ gsd ’ , ’

photoswithing ’ , ’ sax ’ , ’ s p i f i ’ , ’ chirpt ’

Illum = ’cw ’ ; % Type of il lumination ’ pulsed ’ , ’ cw’

Imaging_setup

PSF_photo = PSF_c . * (1−beta *F( alpha ( I_max , I_sat ,NA, lambda , x ) ) ) ;
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f i g u r e ( 1 )

plot ( x/un .um, PSF_photo/max( PSF_photo ) )

t i t l e ( ’ E f f e c t i v e PSF ’ )

x label ( ’ x−axis [ \mum] ’ )

ylabel ( ’ I n t e n s i t y [ Arb . ] ’ )

%% Generate OTFs

Nx = numel( x ) ;

dx = mean( d i f f ( x ) ) ;

f x = (−Nx/ 2 :Nx/2−1) *1/( dx*Nx) ;

f i g u r e ( 3 )

hold on

plot ( f x / (NA/lambda) , abs (FFT( PSF_photo ) ) /max( abs (FFT( PSF_photo ) ) ) )

xlim ([ −10 ,10]) ;

%% SAX

cl c

URSR = ’ sax ’ ; % Type of Microscope ’ sted ’ , ’ gsd ’ , ’

photoswithing ’ , ’ sax ’ , ’ s p i f i ’ , ’ chirpt ’

Illum = ’cw ’ ; % Type of il lumination ’ pulsed ’ , ’ cw’

Imaging_setup

omega_m = 2* pi *50*un . kHz ;

t = linspace (0 ,10/omega_m,1024) ;
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q = 2 ;

for i i = 1 :numel( t )

bq = @( phi ) F(1/2* alpha *(1+ cos (2* pi *omega_m. * t ( i i ) ) ) ) * cos (q* phi ) ;

PSF_sax ( i i ) = 1*(2* pi ) * i n t e g r a l (bq,−pi , pi ) ;

end

%% Convert 1D PSV vector into 2D PSF Matrix

PSF_c_2D = PSF_1Dto2D( PSF_c , x ) ;

PSF_sted_2D = PSF_1Dto2D( PSF_sted , x ) ;

PSF_gsd_2D = PSF_1Dto2D( PSF_gsd , x ) ;

PSF_photo_2D = PSF_1Dto2D( PSF_photo , x ) ;

% PSF_sax_2D = PSF_1Dto2D( PSF_sax , x ) ;

% PSF_spifi_2D = PSF_1Dto2D( PSF_6th , x ) ;

f i g u r e ; imagesc ( iFFT2 (FFT2(P . CI . OBJ) . * FFT2( PSF_sted_2D ) ) )

axis equal ; axis o f f

f i g u r e ;

histeq ( IDLSP6 )

%% Set up the s p a t i a l grid parameters

P . sw_plotassignment = 1 ;

%% Run the setup f i l e
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% pull the set up parameters structure

P = SPIFIImageCompareSetup ;

% set the imaging NA

P . ImagingParameters .NA = 0 . 1 5 ;

% cuto f f s p a t i a l frequency

P . fcut = P . ImagingParameters .NA/P . lambda0 ;

% Airy units

P . rAiry = 0.61/P . fcut ;

%% Set up imaging parameters : d i f f r a c t i o n−l imited coherent imaging

P . BeamParameters . beamchoice = ’ point ’ ; %

P . ImagingParameters . f i l t e r c h o i c e = ’ c i r c u l a r ’ ;

P . FilterParameters . aberchoice = ’ d i f f r a c t i o n l i m i t ’ ;

P . BeamParameters . z0 = 0 ; % image in focus

% d i f f r a c t i o n−l imited s p a t i a l y coherent image

Pc = P u p i l F i l t e r (P) ;

CohMTF = Pc ( f l o o r (end/2) , : ) ;

Eim = P . CI . OBJspatfreq . * Pc ;

eim = i f f t s h i f t ( i f f t 2 ( i f f t s h i f t (Eim) ) ) ;

OBJDL = eim ;

IDL = eim . * conj (eim) ;

IDL = IDL/max( abs ( IDL ( : ) ) ) ;
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% plot counter

P . p l t _ c t r = P . p l t _ c t r + 1 ;

% axis scal ing and l a b e l s

P . PlotVariables . xvar = P . x/P .um;

P . PlotVariables . yvar = P . y/P .um;

P . PlotVariables . xlab = ’ x (\mum) ’ ;

P . PlotVariables . ylab = ’ y (\mum) ’ ;

P . PlotVariables . fxvar = P . f x /P . fcut ;

P . PlotVariables . fyvar = P . fy *P .um;

P . PlotVariables . fx lab = ’ f_ \perp/ f_c ’ ;

P . PlotVariables . fy lab = ’ \kappa_y ( \mum^{−1}) ’ ;

% feed in the s p a t i a l freuqency support

P . PlotVariables . Support . Coh = CohMTF;

%P . PlotVariables . t i t l e 2 = ’Imaged Object ’ ;

P . PlotVariables . Panel1xlim = 4*[ −1 ,1] ;

P . PlotVariables . Panel1ylim = [ 0 , 1 . 0 1 ] ;

% feed in the o r i g i n a l object

P . PlotVariables . Object = P . CI . OBJ ;

P . PlotVariables . t i t l e 1 = ’ Object ’ ;

P . PlotVariables . Panel2xlim = 40*[ −1 ,1] ;

P . PlotVariables . Panel2ylim = 20*[ −1 ,1] ;

%% Set up imaging parameters : d i f f r a c t i o n−l imited incoherent imaging
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% incoherent input r e a l object image

I0 = abs (P . CI . OBJ) . ^ 2 ;

I0FT = f f t s h i f t ( f f t 2 ( i f f t s h i f t ( I0 ) ) ) ;

% d i f f r a c t i o n−l imited s p a t i a l y incoherent image

h = i f f t s h i f t ( i f f t 2 ( f f t s h i f t ( Pc ) ) ) ; %j coherent spread function

OTF = f f t s h i f t ( f f t 2 ( i f f t s h i f t ( abs (h) . ^ 2 ) ) ) ; % OFT FFT of | CSF|^2

OTF = OTF/max(max( abs (OTF) ) ) ;

IFTim = I0FT . *OTF;

Iim = i f f t s h i f t ( i f f t 2 ( i f f t s h i f t ( IFTim ) ) ) ;

IincDL = Iim ;

IincDL = IincDL/max( abs ( IincDL ( : ) ) ) ;

% feed in the d i f f r a c t i o n limited incoherent image

P . PlotVariables . InCohImg = IincDL ;

P . PlotVariables . Support . InCoh = OTF( f l o o r (end/2) , : ) ;

P . PlotVariables . Support . InCoh = P . PlotVariables . Support . InCoh/ . . .

max( abs (P . PlotVariables . Support . InCoh ) ) ;

%% l i n e a r SPIFI : f i r s t and second order

% t r a n s f e r function

mu = @( f t , fc , ord ) ( r e a l ( sqrt (1 − ( f t . ^ 2 ) / ( ord * fc ) ^2 ) ) ) .^ ord ;

% t r a n s f e r functions

% f i r s t order

SPOTF1 = mu(P . FRt , P . fcut , 1) ;
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SP1MTF = SPOTF1( f l o o r (end/2) , : ) ;

% second order

SPOTF2 = mu(P . FRt , P . fcut , 2) ;

SP2MTF = SPOTF2( f l o o r (end/2) , : ) ;

% simulate the images : f i r s t order

EimSP1 = P . CI . OBJspatfreq . * SPOTF1 ;

eimSP1 = i f f t s h i f t ( i f f t 2 ( i f f t s h i f t (EimSP1) ) ) ;

IDLSP1 = eimSP1 . * conj ( eimSP1 ) ;

IDLSP1 = IDLSP1/max( abs ( IDLSP1 ( : ) ) ) ;

% simulate the images : second order

EimSP2 = P . CI . OBJspatfreq . * SPOTF2 ;

eimSP2 = i f f t s h i f t ( i f f t 2 ( i f f t s h i f t (EimSP2) ) ) ;

IDLSP2 = eimSP2 . * conj ( eimSP2 ) ;

IDLSP2 = IDLSP2/max( abs ( IDLSP2 ( : ) ) ) ;

% feed in the d i f f r a c t i o n limited l i n e a r SPIFI images

P . PlotVariables . ISP1 = IDLSP1 ;

P . PlotVariables . Support . SP1 = SP1MTF;

P . PlotVariables . ISP2 = IDLSP2 ;

P . PlotVariables . Support . SP2 = SP2MTF;

%% SHG SPIFI : third and fourth orders

% t r a n s f e r functions

% third order
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SPOTF3 = mu(P . FRt , P . fcut , 3) ;

SP3MTF = SPOTF3( f l o o r (end/2) , : ) ;

% fourth order

SPOTF4 = mu(P . FRt , P . fcut , 4) ;

SP4MTF = SPOTF4( f l o o r (end/2) , : ) ;

% simulate the images : f i r s t order

EimSP3 = P . CI . OBJspatfreq . * SPOTF3 ;

eimSP3 = i f f t s h i f t ( i f f t 2 ( i f f t s h i f t (EimSP3) ) ) ;

IDLSP3 = eimSP3 . * conj ( eimSP3 ) ;

IDLSP3 = IDLSP3/max( abs ( IDLSP3 ( : ) ) ) ;

% simulate the images : second order

EimSP4 = P . CI . OBJspatfreq . * SPOTF4 ;

eimSP4 = i f f t s h i f t ( i f f t 2 ( i f f t s h i f t (EimSP4) ) ) ;

IDLSP4 = eimSP4 . * conj ( eimSP4 ) ;

IDLSP4 = IDLSP4/max( abs ( IDLSP4 ( : ) ) ) ;

% feed in the d i f f r a c t i o n limited SHG SPIFI images

P . PlotVariables . ISP3 = IDLSP3 ;

P . PlotVariables . Support . SP3 = SP3MTF;

P . PlotVariables . ISP4 = IDLSP4 ;

P . PlotVariables . Support . SP4 = SP4MTF;

%% SPIFI : s i x t h order

% t r a n s f e r functions
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% f i f t h order

SPOTF5 = mu(P . FRt , P . fcut , 5) ;

SP5MTF = SPOTF5( f l o o r (end/2) , : ) ;

% s i x t h order

SPOTF6 = mu(P . FRt , P . fcut , 6) ;

SP6MTF = SPOTF6( f l o o r (end/2) , : ) ;

% simulate the images : f i f t h order

EimSP5 = P . CI . OBJspatfreq . * SPOTF5 ;

eimSP5 = i f f t s h i f t ( i f f t 2 ( i f f t s h i f t (EimSP5) ) ) ;

IDLSP5 = eimSP5 . * conj ( eimSP5 ) ;

IDLSP5 = IDLSP5/max( abs ( IDLSP5 ( : ) ) ) ;

% simulate the images : s i x t h order

EimSP6 = P . CI . OBJspatfreq . * SPOTF6 ;

eimSP6 = i f f t s h i f t ( i f f t 2 ( i f f t s h i f t (EimSP6) ) ) ;

IDLSP6 = eimSP6 . * conj ( eimSP6 ) ;

IDLSP6 = IDLSP6/max( abs ( IDLSP6 ( : ) ) ) ;

% feed in the d i f f r a c t i o n limited higher order SPIFI images

P . PlotVariables . ISP5 = IDLSP5 ;

P . PlotVariables . Support . SP5 = SP5MTF;

P . PlotVariables . ISP6 = IDLSP6 ;

P . PlotVariables . Support . SP6 = SP6MTF;

%% make the plots !

SPIFIComparePlot (P)
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%% * * * * * * * * * * * * Functions * * * * * * * * * * * *

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

function f = j i n c ( x )

f = 2* b e s s e l j ( 1 , x ) . / x ;

J = find ( x==0) ;

f ( J ) = 1 ;

end

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

function PSF_2d = PSF_1Dto2D( PSF_1d , x )

r = x (end/2+1:end) ; % s t a r t s at zero , f a s t e r to j u s t interp

f i r s t quadrant then concatenate

input = PSF_1d (end/2+1:end) ;

M = sqrt ( r .^2+ r ’ . ^ 2 ) ; % dummy matrix of d i f f e r e n t r a d i i from

origin

M = M( : ) ;

PSF_2d = interp1 ( r , input , M, ’ spline ’ , 0 ) ; % interpolate onto 1D

l i s t

PSF_2d = reshape ( PSF_2d , [ length ( r ) , length ( r ) ] ) ; % make back into

array
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% put into a l l four quadrants

PSF_2d = [ rot90 ( PSF_2d ) ; PSF_2d ] ;

PSF_2d = [ rot90 ( rot90 ( PSF_2d ) ) PSF_2d ] ;

end

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% ImageSetup .m

% Note code below should be saved as a separate ’ .m’ f i l e to be cal led by

above code

% Setup S p e c i f i c Imaging Parameter for the Technique being used

switch Illum

case ’ pulsed ’

T = 2*un . ps ; % Pulse duration

F = @( alpha ) 1 − exp(−alpha . * T/ tau ) ; % alpha = I_max/ I _ s a t

case ’cw ’

F = @( alpha ) alpha . / (1+ alpha ) ;

otherwise

end

switch URSR

case ’ sted ’

beta = 1 ;
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alpha = @( I_max , I_sat ,NA, l , r ) 0.429*I_max * ( 2 * pi *NA/ l ) ^2* r .^2/

I _ s a t ;

switchingType = ’OFF ’ ;

case ’ gsd ’

k _ f l = 1 / ( 4 . 5 *un . ns ) ; % Decay rate from the r a d i a t i v e and

nonradiative 4.5 ns

k_isc = 1/(100*un . ns ) ; % Intersystem crossing rate 100 ns

k_t = 1/(20*un . us ) ; % Decay rate from the t r i p l e t s t a t e 1/(1

us to 1 ms)

beta = 1/(1+ k_t / k_isc ) ;

% beta = k_isc /( k_isc+ k _ f l )

alpha = @( I_max , I_sat ,NA, l , r ) 0.429*I_max * ( 2 * pi *NA/ l ) ^2* r .^2/

I _ s a t ;

switchingType = ’ON’ ;

case ’ photoswitching ’

beta = 1 ;

alpha = @( I_max , I_sat ,NA, l , r ) 0.429*I_max * ( 2 * pi *NA/ l ) ^2* r .^2/

I _ s a t ;

switchingType = ’OFF ’ ;

case ’ sax ’

beta = 1 ;

alpha = I_max/ I _ s a t ;

switchingType = ’ON’ ;

case ’ s p i f i ’

beta = 1 ;

switchingType = ’ON’ ;

case ’ chirpt ’
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beta = 1 ;

switchingType = ’ON’ ;

otherwise

end

switch switchingType

case ’ON’

% eta = beta *F( alpha ( I_max , I_sat ,NA, lambda , x ) ) ;

case ’OFF ’

eta = 1−beta *F( alpha ( I_max , I_sat ,NA, lambda , x ) ) ;

otherwise

end

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

function SPIFIComparePlot (P)

% coherent vs f i r s t order SPIFI

f i g u r e (P . p l t _ c t r ) ; c l f

Nrows = 2 ;

indx = 0 ;

% plot the MTFs

subplot (Nrows , 2 , 1)

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support . Coh) , ’ r ’ ) ;
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hold on

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support . SP1 ) , ’b ’ ) ;

x label (P . PlotVariables . fx lab ) ;

hold o f f

ylabel ( ’MTF’ ) ;

t i t l e ( ’ Coherent Widefield /1^s^ t Order ’ ) ;

xlim ( [ −1 . 2 , 1 . 2 ] )

ylim (P . PlotVariables . Panel1ylim )

V = get ( gcf , ’ position ’ ) ;

%plot the o r i g i n a l object

subplot (Nrows , 2 , 2)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , abs (P . PlotVariables .

Object ) ) ;

t i t l e ( ’ Original Object ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

% conventional l i n e a r coherent and incoherent images

% increment the index

indx = indx + 1 ;

% now plot the coherent image version

subplot (Nrows, 2 , 2 * indx + 1)
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imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables . CohImg) ,256) ) ;

t i t l e ( ’ Coherent Image ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

% f i r s t order

subplot (Nrows, 2 , 2 * indx + 2)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables . ISP1 ) ,256) ) ;

t i t l e ( ’ 1^s^ t Order Linear SPIFI ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

%%

% incoherent vs second order SPIFI

% s t a r t an second order f i g u r e

P . p l t _ c t r = P . p l t _ c t r +1;

f i g u r e (P . p l t _ c t r ) ; c l f

indx = 0 ;
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Nrows = 2 ;

indx = 0 ;

% plot the MTFs

subplot (Nrows , 2 , 1)

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support . InCoh ) , ’ r ’ ) ;

hold on

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support . SP2 ) , ’b ’ ) ;

x label (P . PlotVariables . fx lab ) ;

hold o f f

ylabel ( ’MTF’ ) ;

t i t l e ( ’ Incoherent Widefield /2^n^d Order ’ ) ;

xlim ( [ −2 . 3 , 2 . 3 ] )

ylim (P . PlotVariables . Panel1ylim )

V = get ( gcf , ’ position ’ ) ;

%plot the o r i g i n a l object

subplot (Nrows , 2 , 2)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , abs (P . PlotVariables .

Object ) ) ;

t i t l e ( ’ Original Object ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t
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% conventional l i n e a r coherent and incoherent images

% increment the index

indx = indx + 1 ;

% now plot the incoherent image version

subplot (Nrows, 2 , 2 * indx + 1)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables . InCohImg) ,256) ) ;

t i t l e ( ’ Incoherent Image ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

% plot the second order SPIFI image

subplot (Nrows, 2 , 2 * indx + 2)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables . ISP2 ) ,256) ) ;

t i t l e ( ’ 2^n^d Order Linear SPIFI ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t
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%%

% s t a r t an SHG f i g u r e

P . p l t _ c t r = P . p l t _ c t r +1;

f i g u r e (P . p l t _ c t r ) ; c l f

% LSM SHG

Nrows = 2 ;

indx = 0 ;

% plot the SHG MTFs

subplot (Nrows , 2 , 1)

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support .LSMSHG) , ’ r ’ ) ;

hold on

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support . SP4 ) , ’b ’ ) ;

x label (P . PlotVariables . fx lab ) ;

hold o f f

ylabel ( ’MTF’ ) ;

t i t l e ( ’SHG, TPEF/4^ t ^h Order ’ ) ;

xlim ( [ −4 . 3 , 4 . 3 ] )

ylim (P . PlotVariables . Panel1ylim )

V = get ( gcf , ’ position ’ ) ;

%plot the o r i g i n a l object

subplot (Nrows , 2 , 2)
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imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , ( abs (P . PlotVariables .

Object ) ) ) ;

t i t l e ( ’ Original Object ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

% SHG LSM & 4th order SPIFI images

% increment the index

indx = indx + 1 ;

% SHG LSM

subplot (Nrows, 2 , 2 * indx + 1)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables .LSMSHGImg) ,256) ) ;

t i t l e ( ’LSM SHG/TPEF ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

% plot the 4th order SPIFI image

subplot (Nrows, 2 , 2 * indx + 2)
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imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables . ISP4 ) ,256) ) ;

t i t l e ( ’ 4^ t ^h Order SPIFI ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

%%

% s t a r t an THG f i g u r e

P . p l t _ c t r = P . p l t _ c t r +1;

f i g u r e (P . p l t _ c t r ) ; c l f

% LSM THG

Nrows = 2 ;

indx = 0 ;

% plot the THG MTFs

subplot (Nrows , 2 , 1)

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support .LSMTHG) , ’ r ’ ) ;

hold on

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support . SP6 ) , ’b ’ ) ;

x label (P . PlotVariables . fx lab ) ;

hold o f f

ylabel ( ’MTF’ ) ;
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t i t l e ( ’THG, 3PEF/6^ t ^h Order ’ ) ;

xlim ( [ −6 . 3 , 6 . 3 ] )

ylim (P . PlotVariables . Panel1ylim )

V = get ( gcf , ’ position ’ ) ;

%plot the o r i g i n a l object

subplot (Nrows , 2 , 2)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , ( abs (P . PlotVariables .

Object ) ) ) ;

t i t l e ( ’ Original Object ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

% THG LSM & 6th order SPIFI images

% increment the index

indx = indx + 1 ;

% SHG LSM

subplot (Nrows, 2 , 2 * indx + 1)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables .LSMTHGImg) ,256) ) ;

t i t l e ( ’LSM THG/3PEF ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;
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colormap gray

axis equal

axis t i g h t

% plot the 6th order SPIFI image

subplot (Nrows, 2 , 2 * indx + 2)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables . ISP6 ) ,256) ) ;

t i t l e ( ’ 6^ t ^h Order SPIFI ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

%%

% s t a r t an confocal f i g u r e

P . p l t _ c t r = P . p l t _ c t r +1;

f i g u r e (P . p l t _ c t r ) ; c l f

% confocal

Nrows = 2 ;

indx = 0 ;

% plot the confocal MTFs

subplot (Nrows , 2 , 1)
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plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support .CONF0) , ’ r ’ ) ;

hold on

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support .CONF1) , ’b ’ ) ;

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support .CONFPR) , ’m’ ) ;

x label (P . PlotVariables . fx lab ) ;

hold o f f

ylabel ( ’MTF’ ) ;

t i t l e ( ’CONF_0, CONF_1, CONF_P_R ’ ) ;

xlim ( [ −4 . 3 , 4 . 3 ] )

ylim (P . PlotVariables . Panel1ylim )

V = get ( gcf , ’ position ’ ) ;

%plot the o r i g i n a l object

subplot (Nrows , 2 , 2)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables .CONF0Img) ,256) ) ;

t i t l e ( ’CONF_{ delta pinhole } ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

% THG LSM & 6th order SPIFI images

% increment the index

indx = indx + 1 ;
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% Cofocal image with 1 AU radius pinhole

subplot (Nrows, 2 , 2 * indx + 1)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables .CONF1Img) ,256) ) ;

t i t l e ( ’CONF_{ a i r y pinhole } ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

% P i x e l reassignment confocal

subplot (Nrows, 2 , 2 * indx + 2)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables .CONFPRImg) ,256) ) ;

t i t l e ( ’ P i x e l Reassignment Confocal ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

pause (0.0001)

%%
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% s t a r t an SHG f i g u r e

f i g u r e (10) ; c l f

% LSM SHG

Nrows = 2 ;

Ncols = 2 ;

indx = 0 ;

%plot the o r i g i n a l object

subplot (Nrows , Ncols , 1)

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , ( abs (P . PlotVariables .

Object ) ) ) ;

t i t l e ( ’ Original Object ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

axis o f f

% plot the SHG MTFs

subplot (Nrows , Ncols , [ 3 , 4 ] )

% plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support . InCoh ) ) ;

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support .CONF1) ) ;

241



hold on

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support .LSMSHG) ) ;

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support . SP2 ) ) ;

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support .CONFPR) ) ;

plot (P . PlotVariables . fxvar , abs (P . PlotVariables . Support . SP4 ) ) ;

x label (P . PlotVariables . fx lab ) ;

hold o f f

ylabel ( ’MTF’ ) ;

t i t l e ( ’SHG, TPEF/4^ t ^h Order ’ ) ;

xlim ( [ −4 . 3 , 4 . 3 ] )

ylim (P . PlotVariables . Panel1ylim )

V = get ( gcf , ’ position ’ ) ;

subplot (Nrows , Ncols , 2 )

% Cofocal image with 1 a i r y AU

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables .CONF1Img) ,256) ) ;

t i t l e ( ’CONF_{ a i r y pinhole } ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

axis o f f

f i g u r e (11)

% plot the second order SPIFI image
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subplot (Nrows , Ncols , 3 )

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables . ISP2 ) ,256) ) ;

t i t l e ( ’ 2^n^d Order Linear SPIFI ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

axis o f f

% SHG LSM

subplot (Nrows , Ncols , 1 )

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables .LSMSHGImg) ,256) ) ;

t i t l e ( ’LSM SHG/TPEF ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

axis o f f

% plot the 4th order SPIFI image

subplot (Nrows , Ncols , 4 )

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables . ISP4 ) ,256) ) ;
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t i t l e ( ’ 4^ t ^h Order SPIFI ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

axis o f f

% P i x e l reassignment confocal

subplot (Nrows , Ncols , 2 )

imagesc (P . PlotVariables . xvar , P . PlotVariables . yvar , histeq ( abs (P .

PlotVariables .CONFPRImg) ,256) ) ;

t i t l e ( ’ P i x e l Reassignment Confocal ’ ) ;

x label (P . PlotVariables . xlab ) ;

y label (P . PlotVariables . ylab ) ;

colormap gray

axis equal

axis t i g h t

axis o f f

end
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Appendix E

Simulated Computational SPIFI Reconstruction

%% MP−SPIFI Simulation

% This code simulates the signal , noise , and data processing for Mult−

photon

% SPIFI . This code w i l l be used to develop the f u l l processing

% algorithm for the r e a l data . The goal i s to improve SNR and s t i t c h the

% harmonic orders together .

% Goals : Simulate the time trace with a continuous model

% Generate PSFs and OTFs for Starndard SPIFI , Comp SPIFI , and

thoery

%% −−− Set default properties for axes fonts −−−

font = ’ Helvetica ’ ;

set ( 0 , ’ defaultaxesfontsize ’ ,14) ;

set ( 0 , ’ defaultaxesfontname ’ , font ) ;

set ( 0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’ )

% −−− units −−−

un = Units ( ) ;

%% Setup Parameters

% Optical parameters

lambda = 1035*un .nm; % Optical i l lumination wavelength

k0 = 2* pi /lambda ; % Wavenumber

NA = 0 . 1 ; % Numerical Aperture
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kc = k0*NA; % Cutoff Radial S p a t i a l Frequency

fxc = NA/lambda ; % Cutoff S p a t i a l Frequency

% SPIFI Parameters

dk = 35/un .mm; % Highest s p a t i a l frequency

nu_r = 33*un .Hz; % Rotation Frequency

xc = 20*un .mm; % Beam center on modulator

wb = 2.5*un .mm; % Beam width

wc = nu_r * xc *dk ; % Carrier frequency

fmin = nu_r * ( xc−wb/2) *dk ; % Minimum modulation frequency

fmax = nu_r * ( xc+wb/2) *dk ; % Maximum modulation frequency

T = 1/nu_r ; % Acquisition period

% Nt = round(2^13*(1+5/17) ) ; % Number of sampled points

Nt = round (1.717*T* ( 2 * ( fmax *4) ) ) ;

% Nt = 2^14

t t = linspace(−T/2 ,T/2 ,Nt ) ; % Time vector

dt = mean( d i f f ( t t ) ) ; % Sampling period

d f t = 1/ dt ; % Sampling frequency

f t t = 1/(Nt* dt ) *(−Nt / 2 : Nt/2−1) ;% Frequency vector

Nx = 512;

Dx = 256*un .um; % Field of View

x = linspace(−Dx/2 ,Dx/2 ,Nx) ; % S p a t i a l vector
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xObj = x ;

dx = mean( d i f f ( x ) ) ; % S p a t i a l resolution

f x = 1/(Nx*dx ) *[−Nx/ 2 :Nx/2−1];

Ny = 363;

Dy = 180*un .um; % Field of View

y = linspace(−Dy/2 ,Dy/2 ,Ny) ; % S p a t i a l vector

yObj = y ;

dy = mean( d i f f ( y ) ) ; % S p a t i a l resolution

fy = 1/(Ny*dy ) *[−Ny/ 2 :Ny/2−1];

kappa = ( fmax−fmin ) /Dx ; % Mapping from modulation frequency to space

% kappa = 5e7 ; % Mapping from modulation frequency to

space , value comes from experiment

fxObj= 1/(Nx*dx ) *(−Nx/ 2 :Nx/2−1) ;% S p a t i a l frequency vector

dfx = mean( d i f f ( fxObj ) ) ; % Sampling s p a t i a l frequency

dxc = lambda/(2*NA) ; % D i f f r a c t i o n Limited Resolution

M = wb/Dx/ 2 ;

%% Create the Object

% Simulate Object

load ( ’ c e l l . mat ’ ) ;

% obj = data ;

% clear data ;
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f i g u r e ( 1 )

imagesc ( x/un .um, y/un .um, obj )

colormap gray

axis equal

% xlabel ( ’ x ( \mum) ’ )

% ylabel ( ’ Ampiltude ’ )

% t i t l e ( ’ Object ’ )

% xlim ([ −13.75 ,3])

set ( gca , ’ y t i c k ’ , [ ] )

set ( gca , ’ x t i c k ’ , [ ] )

axis o f f

%% SPIFI modulation anonymous function

f x t = @( t ) dk*M* t . / ( T/2) ;

tc = fxc *T/(2* dk*M) ; % Cut−o f f time

mu = @( t ) 2* sqrt (1−( t / tc ) . ^ 2 ) . * ( t >−tc ) . * ( t <tc ) ; % Pupil function

mu_x = @( fx , fc ) 2* sqrt (1−( f x / fc ) . ^ 2 ) . * ( fx >−fc ) . * ( fx < fc ) ; % Pupil function

I2 = @( t , x ) (1/16 + 3/ pi ^2*mu( t ) .^2 + 6/ pi ^4*mu( t ) . ^ 4 ) . . .

+ (1/ pi *mu( t ) +12/ pi ^3*mu( t ) . ^ 3 ) . * cos (2* pi * f x t ( t ) . * x + 2* pi *wc* t ) . . .

+ (3/ pi ^2*mu( t ) .^2 + 8/ pi ^4*mu( t ) . ^ 4 ) . * cos (4* pi * f x t ( t ) . * x + 4* pi *wc* t )

. . .

+ (4/ pi ^3*mu( t ) . ^ 3 ) . * cos (6* pi * f x t ( t ) . * x + 6* pi *wc* t ) . . .

+ (2/ pi ^4*mu( t ) . ^ 4 ) . * cos (8* pi * f x t ( t ) . * x + 8* pi *wc* t ) ;
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%%

% A − measurement matrix −− A i s going to contain a l l the temporal

% frequencies on the medium, i . e . rep . rate freq . and harmonics

Nphoton = 2 ; % Number of photons in the nonlinear process

A = zeros (Nx, Nt ) ; % I n i t i a l i z e measurement matrix

t i c

% Generate Measurement matrix

for i i = 1 :Nx

A( i i , : ) = I2 ( t t , x ( i i ) ) ;

end

A = A/max(max(A) ) ;

toc

%%

wy = lambda/(2*NA) / 4 ;

uy = @( y ,wy) exp(−y .^2 / (2 *wy. ^ 2 ) ) ;

N y _ i l l = round_odd (4*wy/dy ) ;

y _ i l l = linspace (−2*wy, 2 *wy, N y _ i l l ) ;

% Zero pad object for the y scanning

objPad = zeros (Ny+round(3/2* N y _ i l l )−1,Nx) ;

objPad ( round ( N y _ i l l /2) : end−Ny_il l , : ) = obj ;

%%
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Axy = repmat (A, 1 , 1 , N y _ i l l ) ;

for i i = 1 : N y _ i l l

Axy ( : , : , i i ) = Axy ( : , : , i i ) *uy ( y _ i l l ( i i ) ,wy) . ^ 2 ;

end

%%

f i g u r e ( 2 )

imagesc ( t t , x/un .um, A)

t i t l e ( ’ Ideal Il lumination ’ )

x label ( ’Time ’ )

ylabel ( ’ Space ’ )

ylim ([ −5 ,5])

%% Create Time trace from A matrix

t i c

for j j = 1 :Ny

for i i = 1 : Nt

sigA ( i i , j j ) = sum(sum( squeeze ( Axy ( : , i i , : ) ) . * objPad ( j j : j j +Ny_il l

−1 , : ) ’ ) ) ;

end

end

toc

%% Trim Harmonics

Sp_t_demod = zeros ( Nt , Ny, 4 ) ;
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for j j = 1 :Ny

for i i = 1:4

Sp_t ( : , j j , i i ) = SpifiTrimHarmonic ( t t , sigA ( : , j j ) ’ , i i *wc, i i * 2 . 5 *un .

kHz) ;

demodVec = exp(−1 i *2* pi *wc* t t * i i ) ;

Sp_t_demod ( : , j j , i i ) = squeeze ( Sp_t ( : , j j , i i ) ) . * demodVec . ’ ;

end

end

%%

f i g u r e ( 3 ) ;

c l f ; hold on ;

for i i = 1:4

subplot ( 2 , 2 , i i )

imagesc ( f t t /un . kHz , y/un .um, f l i p l r ( abs ( iFFT ( squeeze ( Sp_t_demod ( : , : , i i ) )

, 1 ) ) ’ ) )

t i t l e ( [ ’ SPIFI Order ’ , num2str ( i i ) ] )

xlim ([ −1.45 ,1 .425]* i i )

axis o f f

colormap gray

end

%% Second order SPIFI image

indxMin = nearest (−1.45*4 , f t t /un . kHz) ;

indxMax = nearest (1 .425*4 , f t t /un . kHz) ;

tmp = f l i p l r ( abs ( iFFT ( squeeze ( Sp_t_demod ( : , : , 4 ) ) , 1 ) ) ’ ) ;

obj4 = tmp ( : , indxMin : indxMax ) ;
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f i g u r e ( 4 )

c l f

imagesc ( obj4 )

colormap gray

axis o f f

%% Down Sample Signal

% T = 1/nu_r ; % Acquisition period

% Nt = 2^14; % Number of sampled points

Nt = round (1.015*T/ ( 1 / ( 2 * ( fmax *4) ) ) ) ;

t = linspace(−T/2 ,T/2 ,Nt ) ; % Time vector

dt = mean( d i f f ( t ) ) ; % Sampling period

d f t = 1/ dt ; % Sampling frequency

f t = 1/(Nt* dt ) *(−Nt / 2 : Nt/2−1) ; % Frequency vector

Nx = 2^9;

x = linspace(−Dx/2 ,Dx/2 ,Nx) ; % S p a t i a l vector

dx = mean( d i f f ( x ) ) ; % S p a t i a l resolution

dxLim = lambda/(2*NA) ;

dfxLim = 1/dxLim ;

% kappa = dt /dx ; % Mapping from modulation frequency to

space

% kappa = 5e7 ; % Mapping from modulation frequency to

space , value comes from experiment
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f x = 1/(Nx*dx ) *(−Nx/ 2 :Nx/2−1) ; % S p a t i a l frequency

vector

dfx = mean( d i f f ( f x ) ) ; % Sampling s p a t i a l frequency

clear sigDS

for i i = 1 :Ny

sigDS ( : , i i ) = interp1 ( t t , sigA ( : , i i ) , t , ’ spline ’ ) ;

end

%% New A matrix on large grid

Ads = zeros (Nx, Nt ) ; % I n i t i a l i z e measurement matrix

% Generate Measurement matrix

for i i = 1 :Nx

Ads ( i i , : ) = I2 ( t , x ( i i ) ) ;

end

%% Add Noise

% sigN = addNoise ( sigDS ’ , 0 . 0 0 , 1 0 0 0 0 , ’ ’ ) ’ ;

c lear sigN

for i i = 1 :Ny

sigN ( : , i i ) = addNoise ( abs ( sigDS ( : , i i ) ) +0.02 ,0.0 ,100 , ’ ’ ) ’ ;

end

f i g u r e ( 5 )
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c l f

plot ( f t /un . kHz , log ( abs (FFT( sigDS ( : , 2 0 0 ) ) ) ) , ’ linewidth ’ , 1 . 5 )

hold on

plot ( f t /un . kHz , log ( abs (FFT( sigN ( : , 2 0 0 ) ) ) ) , ’ linewidth ’ , 1 . 5 )

t i t l e ( ’ ’ )

t i t l e ( ’FFT of Time Trace ’ )

x label ( ’ Frequency [kHz] ’ )

% xlim ( 1 * [ 2 1 . 7 5 , 2 3 . 7 5 ] )

% % xlim ( [ 3 9 , 4 3 . 5 ] )

% % ylim ( [ 0 , 0 . 0 3 5 ] )

% set ( gca , ’ yt ick ’ , [ ] )

% set ( gca , ’ xt ick ’ , [ ] )

%% Trim Harmonics

Sp_N = zeros ( Nt , Ny, 4 ) ;

for j j = 1 :Ny

for i i = 1:4

Sp_tN ( : , j j , i i ) = SpifiTrimHarmonic ( t , sigN ( : , j j ) ’ , i i *wc, i i * 2 . 5 *un .

kHz) ;

demodVec = exp(−1 i *2* pi *wc* t * i i ) ;

Sp_N ( : , j j , i i ) = squeeze ( Sp_tN ( : , j j , i i ) ) . * demodVec . ’ ;

end

end
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%%

f i g u r e ( 6 ) ;

c l f ; hold on ;

for i i = 1:4

subplot ( 2 , 2 , i i )

imagesc ( f t /un . kHz , y/un .um, f l i p l r ( abs ( iFFT ( squeeze (Sp_N ( : , : , i i ) ) , 1 ) ) ’ ) )

t i t l e ( [ ’ SPIFI Order ’ , num2str ( i i ) ] )

xlim ([ −1.45 ,1 .425]* i i )

axis o f f

colormap gray

end

%% Second order SPIFI image

indxMin = nearest (−1.45*2 , f t /un . kHz) ;

indxMax = nearest (1 .425*2 , f t /un . kHz) ;

tmp = f l i p l r ( abs ( iFFT ( squeeze (Sp_N ( : , : , 2 ) ) , 1 ) ) ’ ) ;

obj2N = tmp ( : , indxMin : indxMax ) ;

f i g u r e ( 7 )

imagesc ( obj2N )

colormap gray

axis o f f

%% F i s t a Reconstruction with noise

% A i s the measurment matrix

% Trace i s the recorded data from photodiode
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[ ob1 , info ] = I R f i s t a ( Ads ’ , sigN , s t r u c t ( ’ x0 ’ , ’none ’ , ’ MaxIter ’ ,20 , ’

x_true ’ , ’none ’ , . . .

’ NoiseLevel ’ , ’none ’ , ’ eta ’ , 1 . 0 1 , ’ NE_Rtol ’ ,1e−12, ’ I terBar ’ , ’ o f f ’ ,

. . .

’NoStop ’ , ’ o f f ’ , ’RegParam ’ ,10 , ’xMin ’ ,0 , ’xMax ’ , Inf , ’ xEnergy ’ , ’

none ’ ) ) ; % i n i t i a l object estimate

%%

f i g u r e ( 8 )

imagesc ( x/un .um, y/un .um, ob1 ’ /max(max( ob1 ) ) )

colormap gray

%% Plot the MTF

f i g u r e ( 9 )

c l f

plot ( linspace (−1 ,1 , s i z e ( obj , 2 ) ) ,mean( abs (FFT( obj−mean(mean( obj ) ) , 2 ) ) , 1 ) /

max(mean( abs (FFT( obj−mean(mean( obj ) ) , 2 ) ) , 1 ) ) )

hold on ;

plot ( linspace (−1 ,1 , s i z e ( obj2N , 2 ) ) ,mean( abs (FFT( obj2N−mean(mean( obj2N ) ) , 2 ) )

, 1 ) /max(mean( abs (FFT( obj2N−mean(mean( obj2N ) ) , 2 ) ) , 1 ) ) )

plot ( linspace (−1 ,1 , s i z e ( obj4 , 2 ) ) ,mean( abs (FFT( obj4−mean(mean( obj4 ) ) , 2 ) ) , 1 )

/max(mean( abs (FFT( obj4−mean(mean( obj4 ) ) , 2 ) ) , 1 ) ) )

plot ( linspace (−1 ,1 , s i z e (obN, 2 ) ) ,mean( abs (FFT(obN−mean(mean(obN) ) , 2 ) ) , 1 ) /

max(mean( abs (FFT(obN−mean(mean(obN) ) , 2 ) ) , 1 ) ) )
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plot ( linspace (−1 ,1 , s i z e ( objInv2D ’ , 2 ) ) ,mean( abs (FFT(objMed−mean(mean(

objInv2D ’ ) ) , 2 ) ) , 1 ) /max(mean( abs (FFT( objInv2D’−mean(mean( objInv2D ’ ) ) , 2 )

) , 1 ) ) )

%% Useful Functions

function [ obj ] = objGen ( x )

%% Make object

Nx = numel( x ) ; % Number of sample point

on orginal grid

obj = zeros ( 1 ,Nx) ;

% Gaussian

obj = 0.4* exp(−(x−x ( round (Nx* 0 . 2 8 ) ) ) . ^ 2 / ( x (end) * 0 . 1 ) . ^ 2 ) ;

% + 0.5* exp(−(xx−xx ( round (Nxx* 0 . 3 5 ) ) ) . ^ 2 / ( xx (end) * 0 . 0 4 )

. ^ 2 ) ;

% % Three bars

% obj ( round (Nx*0.400) : round (Nx*0.402) ) = 1 ;

% obj ( round (Nx*0.404) : round (Nx*0.406) ) = 1 ;

% obj ( round (Nx*0.408) : round (Nx* 0 . 4 1 ) ) = 1 ;

%

% % Three bars d i f f e r e n t heights

obj ( round (Nx* 0 . 4 ) : round (Nx* 0 . 4 2 ) ) = 1 ;

obj ( round (Nx* 0 . 4 5 ) : round (Nx* 0 . 4 7 ) ) = 0 . 5 6 4 ;

obj ( round (Nx* 0 . 5 ) : round (Nx* 0 . 5 2 ) ) = 0 . 8 2 ;
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% Delta function

% obj ( round (Nx*0.499) : round (Nx*0.501) ) = 1 ;

% obj ( round (Nx*0.539) : round (Nx* 0 . 5 4 ) ) = 0 . 5 ;

% obj ( round (Nx* 0 . 3 9 ) : round (Nx*0.392) ) = 0 . 3 1 ;

% obj ( round (Nx* 0 . 1 9 ) : round (Nx*0.192) ) = 0 . 1 ;

% obj = obj +0.02;

end

%%

function [ dataOut , tOut ] = PreProcessing ( dataIn , t , f t , f0 , fw , ds , order )

% F i l t e r time traces , trimming out the frequence of i n t e r e s t / image

band

f i l t e r = exp(−(2* pi * ( f t−f0 * order ) . / ( fw* order ) ) . ^ 6 ) ;

% Sum a l l the time sequences

% f i g u r e ; plot ( f t , f i l t e r )

% hold on ; plot ( f t , abs (FFT( dataIn ) ) /max( abs (FFT( dataIn ) ) ) )

ftData = FFT( dataIn ) . * f i l t e r ;

% Demodulate

dataDS = iFFT ( ftData ) . * exp(−2 i . * pi . * ( f0 * order ) . * t ) ;

%

% % Time domain and downsample

dataOut = downsample ( ( dataDS ) , ds ) ;

tOut = downsample( t , ds ) ;
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end

%%

function [ y ] = round_odd ( x )

y = 2* f l o o r ( x /2) +1;

end
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Appendix F

Computational SPIFI Reconstruction

%% MP_SPIFI_Data_Processing_Inverse_Reconstruction

% This code used an estimated A matrix to reconstruct the object

% I use Randy ’ s maximum likelyhood code and IRFista to estimate the object

% Author : Patr ick Stockton

% Date : 03/25/2021

ccc

%% −−− Set default properties for axes fonts −−−

font = ’ Helvetica ’ ;

set ( 0 , ’ defaultaxesfontsize ’ ,14) ;

set ( 0 , ’ defaultaxesfontname ’ , font ) ;

set ( 0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’ )

% −−− units −−−

un = Units ( ) ;

%% −−−−−− [ load data ] −−−−−−

display ( ’ loading data . . . ’ ) ;

% f i l e . Path = ’D: \ ets01173 \HD−WHU3\ Patr ick \ Dissertation \Data Processing \MP

−SPIFI \data ’ ;
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f i l e . Path = ’D: \ ets01173 \My Book\ Patr ick \MP_SPIFI\ data ’

f i l e . Date = ’ 20210819 ’ ;

f i l e .Name = ’ beads ’ ;

f i l e .Number = ’ 02 ’ ;

f i l e . Ful l = s t r c a t ( [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ / ’ , f i l e .Name, ’ _ ’ , f i l e .Number,

’ . mat ’ ] ) ;

data = load ( f i l e . Ful l ) ;

% Load A Matrix Data

% A = load ( s t r c a t ( [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ / measurementMatrix . mat ’ ] ) ) ;

% A = load ( s t r c a t ( [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ / Amaxtrix_slitScan . mat ’ ] ) ) ;

% % load kappa c a l i b r a t i o n

% kData = load ( s t r c a t ( [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ / c a l i b r a t i o n _ f i l e . mat ’ ] ) ) ;

% % load kappaY c a l i b r a t i o n

% gData = load ( s t r c a t ( [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ / cal ibrat ion_galvo . mat ’ ] ) )

;

% load disk aberration phase

% wcData = load ( s t r c a t ( [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ / disk_aberration . mat ’ ] ) ) ;

% load time trace to al ign to

% align = load ( [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ / alignmentTrace . mat ’ ] ) ;

%%
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Algorithm = ’ FistaEnet ’ ; % ’ Fista ’ , ’EM’ , or ’FFT ’ ’ Tik ’

A . alignmentTrace = sum(A . A, 1 ) ;

% f i g u r e out what kind of data set t h i s i s

% data . Y_t0 = data . Y_t0 ( 3 0 : 8 0 , : , : ) ;

[ i , j , k ] = s i z e ( data . Y_t0 ( : , : , : ) ) ;

% TODO: Wil l have to modify t h i s to handle r a s t e r scans at some point . . .

i f i == 1

% data set consists of j traces at a s i ngle position

imageType = ’ nTraceAverage ’ ;

e l s e i f j == 1

% data set consists of a s i ngle time trace for numerous positions ,

% i . e . , a s i ngl e image with no averaging

imageType = ’ normalImage ’ ;

e l s e i f i ~= 1 && j ~= 1

% data set i s an image with averaging

imageType = ’ averagedImage ’ ;

end

switch imageType ;

case ’ nTraceAverage ’

% want to average the temporal traces by making them a l l conform

to

% the average r o t a t i o n a l frequency

display ( [ ’ averaging ’ , num2str ( j ) , ’ images . . . ’ ] ) ;

display ( ’ ’ ) ;
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% the data i s a simple matrix , so remove the superfluous index

Y_t0 = squeeze ( Y_t0 ) ;

% s h i f t temproal f r i n g e s

Y_t0 = chirpedTimeShiftingNew ( data . t0 , Y_t0 , . . .

A . alignmentTrace ) ;

Yt = mean( Y_t0 ) ;

switch Algorithm

case ’ F i s t a ’

[ obj info ] = I R f i s t a (A . A1 ’ , Yt ’ , s t r u c t ( ’ x0 ’ , ’none ’ , ’

MaxIter ’ ,50 , ’ x_true ’ , ’none ’ , . . .

’ NoiseLevel ’ , ’none ’ , ’ eta ’ , 1 . 0 1 , ’ NE_Rtol ’ ,1e−12, ’

I terBar ’ , ’ o f f ’ , . . .

’NoStop ’ , ’ o f f ’ , ’RegParam ’ ,1 , ’xMin ’ ,0 , ’xMax ’ , Inf , ’

xEnergy ’ , ’none ’ ) ) ; % i n i t i a l object estimate

case ’EM’

fseed = ones ( 1 , s i z e (A . A, 1 ) ) ;

i t e r = 50; % number of i n t e r a t i o n s for MLE

[ obj , delta , gk ] = EM_Bartels (A . A’ , Yt ’ , fseed , i t e r ) ;

case ’FFT ’

error ( ’Not in s c r i p t yet ’ )

end
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f i g u r e ;

plot (A . x , obj )

t i t l e ( [ Algorithm , ’ MP−S p i f i ’ ] )

print ( ’−dpng ’ , [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ \ ’ , f i l e .Name, ’ _ ’ , f i l e .

Number , . . .

’ _ ’ , Algorithm , ’ . png ’ ] ) ;

case ’ normalImage ’

display ( ’ processing a si ngl e image . . . ’ ) ;

display ( ’ ’ ) ;

% the data i s a simple matrix , so remove the superfluous index

Y_t0 = squeeze ( Y_t0 ) ;

[Nz, Nt ] = s i z e ( Y_t0 ) ;

% s h i f t temproal f r i n g e s

Yt = chirpedTimeShiftingNew ( data . t0 , Y_t0 , . . .

A . alignmentTrace ) ;

obj = zeros ( s i z e (A . A, 1 ) ,Nz) ;

for i i = 1 :Nz

switch Algorithm

case ’ F i s t a ’
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[ ob1 info ] = I R f i s t a (A . A’ , Yt ( i i , : ) ’ , s t r u c t ( ’ x0 ’ , ’none ’

, ’ MaxIter ’ ,100 , ’ x_true ’ , ’none ’ , . . .

’ NoiseLevel ’ , ’none ’ , ’ eta ’ , 1 . 0 1 , ’ NE_Rtol ’ ,1e−12,

’ I terBar ’ , ’ o f f ’ , . . .

’NoStop ’ , ’ o f f ’ , ’RegParam ’ ,1 , ’xMin ’ ,0 , ’xMax ’ , Inf

, ’ xEnergy ’ , ’none ’ ) ) ; % i n i t i a l object

estimate

case ’EM’

fseed = ones ( 1 , s i z e (A . A, 1 ) ) ;

i t e r = 5 ; % number of i n t e r a t i o n s for MLE

[ ob1 , delta2 , gk2 ] = EM_Bartels (A . A’ , Yt ( i i , : ) ’ , fseed

, i t e r ) ;

case ’FFT ’

error ( ’Not in s c r i p t yet ’ )

end

obj ( i i , : ) = ob1 ;

end

f i g u r e ;

imagesc ( data . Z , A . x , obj )

t i t l e ( [ Algorithm , ’ MP−S p i f i ’ ] )

print ( ’−dpng ’ , [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ \ ’ , f i l e .Name, ’ _ ’ , f i l e .

Number , . . .

’ _ ’ , Algorithm , ’ . png ’ ] ) ;

case ’ averagedImage ’
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% average each image in the s p a t i a l domain

display ( [ ’ averaging ’ , num2str ( j ) , ’ images ’ ] ) ;

display ( ’ ’ ) ;

A . A2 = A . A ( : , end/2−8192:end/2+8193) ;

obj = zeros ( s i z e (A . A2 , 1 ) , i ) ;

for i i = 1 : i

% s h i f t temproal f r i n g e s

Y_t0 = squeeze ( data . Y_t0 ( i i , : , : ) ) ;

Yt = chirpedTimeShiftingNew ( data . t0 , Y_t0 , . . .

A . alignmentTrace ) ;

% remove disk phase

% wcPhase = exp(−1 i . * wcData . phi_wc ) ;

% wcMat = repmat ( wcPhase , [ Nz, 1 ] ) ;

% Yt = Yt . * wcMat ;

Yt = mean( Yt ) ;

% Yt = c i r c s h i f t ( Yt ,100) ;

Yt = Yt (end/2−8192:end/2+8193) ;

% the data i s a simple matrix , so remove the superfluous index

[Nz, Nt ] = s i z e ( Yt ) ;

switch Algorithm
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case ’ F i s t a ’

[ ob1 info ] = I R f i s t a (A . A2 ’ , Yt ’ , s t r u c t ( ’ x0 ’ , ’none ’ , ’

MaxIter ’ ,50 , ’ x_true ’ , ’none ’ , . . .

’ NoiseLevel ’ , ’none ’ , ’ eta ’ , 1 . 1 , ’ NE_Rtol ’ ,1e−12, ’

I terBar ’ , ’ o f f ’ , . . .

’NoStop ’ , ’ o f f ’ , ’RegParam ’ , . 1 , ’xMin ’ ,0 , ’xMax ’ ,

Inf , ’ xEnergy ’ , ’none ’ ) ) ; % i n i t i a l object

estimate

case ’EM’

fseed = ones ( 1 , s i z e (A . A, 1 ) ) ;

i t e r = 5 ; % number of i n t e r a t i o n s for MLE

[ ob1 , delta , gk ] = EM_Bartels (A . A’ , Yt ’ , fseed , i t e r ) ;

case ’FFT ’

error ( ’Not in s c r i p t yet ’ )

case ’ Tik ’

i f i i == 1

% [U , S , V] = svd (A . A2 ’ ) ;

% s = diag ( S ) ;

lambda = 10;

end

ob1 = V* ( S ’ * (U’ * Yt ’ ) . / ( s .^2+lambda) ) ;

case ’ Truncated ’

i f i i == 1

%% −−− truncate the singular values of A −−−

% [U, S , V] = svd (A . A2) ;

%%
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Strim = zeros ( s i z e ( S ) ) ;

% . . . or set the number of modes d i r e c t l

nModes = 75;

for i i =1:nModes

Strim ( i i , i i ) = S ( i i , i i ) ;

end

Atruncated = U * Strim * V ’ ;

end

ob1 = Yt * pinv ( Atruncated ) ’ ;

case ’ FistaEnet ’

initObj = sum(A . A2 . * Yt , 2 ) ;

opts . lambda = 0 . 0 0 1 ;

opts . lambda2 = 0 . 2 5 ;

ob1 = f i s t a _ e n e t ( Yt ’ , A . A2 ’ , initObj , opts ) ;

end

obj ( : , i i ) = ob1 ;

f i g u r e (10)

imagesc ( abs ( obj ) )

drawnow ;

end

f i g u r e ;
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imagesc ( data . Z , linspace (A . x ( 1 ) ,A . x (end) ,800) , obj ’ )

t i t l e ( [ Algorithm , ’ MP−S p i f i ’ ] )

% daspect ( [ 1 ,A . x (end) / data . Z(end) , 1 ] )

print ( ’−dpng ’ , [ f i l e . Path , ’ \ ’ , f i l e . Date , ’ \ ’ , f i l e .Name, ’ _ ’ , f i l e .

Number , . . .

’ _ ’ , Algorithm , ’A . png ’ ] ) ;

end

%%

function [ rec , delta , gk ] = EM_Bartels (A , s , objInit , Niter )

% Expectation Maximization

% min | | g−Af | | ^ 2

% Assuming Poisson noise i s dominant

%

% i t e r a t i v e Expectation Maximization algorithm

% ( cal led Richardson−Lucy in image processing )

% finds t h i s fixed−point by i t e r a t i o n :

% f_ ( k+1) = f_k /(A^T 1) * . A^T( g / (A^T f_k ) )

% S t a r t i n g guess for the object

% f = 3e−2*ones ( s i z e (A ( 1 , : ) ) ) ;

f = o b j I n i t ;

269



for kk = 1 : Niter

% compute the kth signal estimate

% in the blurring case , the convolution of the object

gk = A* f ( : ) ;

% residual

r = s − A* f ( : ) ;

% correction f a c t o r

CF = (A ’ ) * ( s . / gk ) ;

% f i g u r e (101)

% c l f

% plot (CF)

% t i t l e ( num2str ( kk ) )

% pause ( 0 . 0 0 1 )

% updated object estimate

fnew = abs ( f ( : ) . * CF) ;

df = ( fnew ( : ) − f ( : ) ) ;

delta ( kk ) = max( abs ( df ) . ^ 2 ) ;

% update the r e s u l t

f = fnew ;

end
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rec = f ;

% rescale the object

rec ( find ( isnan ( rec ) ) ) =0;

end
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Appendix G

License

Colorado State University LaTeX Thesis Template

by Elliott Forney – 2017

This is free and unencumbered software released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in

source code form or as a compiled binary, for any purpose, commercial or non-commercial,

and by any means.

In jurisdictions that recognize copyright laws, the author or authors of this software dedicate

any and all copyright interest in the software to the public domain. We make this dedication for

the benefit of the public at large and to the detriment of our heirs and successors. We intend

this dedication to be an overt act of relinquishment in perpetuity of all present and future rights

to this software under copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-

PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN

ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-

TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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