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Abstract

Improved estimation and prediction for computationally expensive

ecological and paleoclimate models

In this dissertation, we present statistical methods to evaluate estimation and prediction

performance for applied ecological problems. We explore a variety of applied problems

and, within this context, we investigate how each method performs. We evaluate empirical

performance of a model-based estimator of mean percent canopy cover using a representative

United States Forest Service Forest Inventory and Analysis dataset. For two paleoclimate

reconstructions, we develop novel modeling methodologies and evaluate model performance

using both resampling and simulation methods. In each application, we use proper scoring

rules while leveraging parallel computing and computational techniques, that allow fitting

of complex models in a finite amount of time.
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CHAPTER 1

Introduction

In statistics, the goal is to estimate or predict an unobserved value: a population mean,

variance, effect size, unknown variable, etc. For any quantity of interest, there are a variety

of potential methods available, thus it is of interest to evaluate which methods perform

well. The true values of interest are generally unknown, presenting a fundamental challenge.

When the truth is unknown, model comparison is difficult. Therefore, the evaluation and

selection among competing methods is important. Model comparison becomes even more

difficult when the models are computationally costly to fit, such as Bayesian hierarchical

models, or rely on a number of assumptions, such as independence and normality of the

data.

1.1. Model Evaluation - The Two Cultures

Statisticians commonly use two methods to evaluate model performance, broadly clas-

sified as resampling methods and simulation methods. Examples of resampling methods

include bootstrapping, partitioning the data into test and validation datasets, and cross-

validation. Resampling methods are meant to approximate model performance on future,

unobserved data that are similar to the currently observed data and are, therefore, commonly

used to prevent model overfitting (Hastie et al., 2009, Chapter 7.10). In simulation methods,

one simulates data from processes believed to be close to the true data-generating process

and then evaluates predictive performance of the model fit using these simulated data. Sim-

ulation studies help the researcher gain a better understanding of the scientific processes

that could generate the observed data and can, therefore, improve model understanding.

Simulation studies also allow for exploration of model performance across a wide range of
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scenarios that may not be included in the observed data but could be seen in other similar

data. In addition, simulation studies are often computationally cheap when compared to

resampling methods.

Both resampling and simulation methods have their challenges and trade-offs. Resam-

pling methods are computationally costly, have the potential to be influenced by outlying

observations, can be unstable in sparse data scenarios, and, for cases like paleoclimate re-

constructions, the predictions that one wants to evaluate (e.g., historical temperature and

precipitation) have no data available for resampling. In the case of simulation studies, the

performance of the model on simulated data is only valuable if the simulated data are close

to the observed data, and for many problems it is not clear how to rigorously define or

evaluate closeness. In fact, assumptions made during data simulation can greatly influence

how different models perform. For example, if the true data are temporally correlated but

the simulated data are temporally independent, the simulation experiment will be less valu-

able. When viewed from the perspective of choosing between model evaluation methods, the

statistician must weigh the costs and benefits associated with each method.

1.2. Keeping Score

1.2.1. The Decision Theoretic Approach. To see the connection between the eval-

uation of survey sampling estimators and the scoring of model predictions, we take a decision

theoretic approach. In what follows, we provide a review of the mathematical framework

that makes explicit the link between evaluation of survey estimates and model predictions.

We begin by defining the set of all possible events or outcomes of an experiment Ω, commonly

called the sample space. A set of outcomes E ∈ Ω is called an event. The next component

needed to formally define a probability space is a σ-algebra E that contains subsets of Ω
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that are of interest (practically, these are the outcomes that one could actually observe). Fi-

nally, we need a probability measure P : E → [0, 1] that assigns probabilities to the different

outcomes in E . Within this framework, we represent the probability of observing the event

E ∈ E as P (E). Taken together, the triple (Ω, E ,P) formally define a probability space

(Grimmett and Stirzaker, 2001). To simplify notation, we use F to represent the class of

probability distributions associated with the probability measure P and associated σ-field E .

A real-valued continuous random variable Y = Y (ω) : Ω → R is a measurable E func-

tion that maps from the sample space Ω to the real numbers R. Hence, we write probability

statements P (Y = 1) and P (−1 ≤ Y ≤ 1) which formally mean P ({ω ∈ Ω : Y (ω) = 1})

and P ({ω ∈ Ω : −1 ≤ Y (ω) ≤ 1}), respectively. Then, assuming a probability density func-

tion fY : R → R exists (we assume the usual measurability conditions are met) and defining

y as the observed value of the random variable Y , we can write our probability statement

as P ({ω ∈ Ω : Y (ω) ∈ EF}) =
∫
EF
fY (y) dy (Billingsley, 2008).

In the decision theoretic framework, one wants to take actions in the presence of un-

certainty. In practice, one assumes there is a state in nature θ that can take one of a set

of possible values denoted by Θ (commonly called the parameter space). Often, θ is an

unknown quantity of interest (a parameter or prediction) that one wishes to make inference

about. The inference is formally called an action and the set of possible actions A is called

the action space, where we denote a particular action as a. If we assume that the random

variable Y depends on the parameter θ (and hence, the underlying probability measure P

depends on the unknown state of nature θ), we can write the probability of event E as

Pθ (E) =
∫
E
fY (y| θ) dy, for probability density function fY (·|θ) ∈ F that depends on the

unknown θ, where the dependence is suppressed in the notation for compactness. For most

3



estimation and prediction problems, it is assumed that the action space A is equal to the

parameter space Θ, and we make this assumption in what follows.

To evaluate an action under a state of nature, there must be a function that maps actions

and states of nature to the real numbers. In other disciplines, these functions are called utility

or objective functions, but statisticians call these functions loss functions. The loss function

is a non-negative function that generally increases as the distance between a and θ increases

to represent the fact that if a is close to θ, there is little loss incurred and if a is far from θ a

large loss is incurred. Common forms of loss functions include squared-error (L2) loss where

L (a, θ) = (a− θ)2 and absolute error (L1) loss where L (a, θ) = |a− θ|.

The final element of the decision theoretic framework is the functional called the decision

rule m (y) that maps the sample space of y (which is a random function with probability

distribution FY ∈ F) to the action a. Thus, after a loss function is chosen, the decision

theoretic problem is to choose m (y) such that the risk (or expected loss) is minimized. In

other words, one chooses the functional

m̂ (y) = argmin
m(y)

EFY
L (m (y) , θ) ,(1)

that minimizes the risk. Because the decision is made under uncertainty about the true state

of nature θ with the goal of minimizing risk, the correct action is the Bayes rule m̂ (y) in (1).

Hence, given a loss function L (m (y) , θ), we find the estimator m̂ (y) satisfying the Bayes

rule (given the Bayes rule exists and is unique, which is frequently true for most practical

problems).

1.2.2. Estimation. Evaluation of survey sampling estimators often occurs within a

decision-theoretic framework (Casella and Berger, 2002). For example, Lehmann and Casella
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(1998, p.157) define the concept of risk-unbiasedness as a criteria for evaluating estimators.

An estimator m (y) is said to be risk-unbiased if

EFY
L (m (y) , θ) ≤ EFY

L (m (y) , θ′)(2)

for all θ 6= θ′. In other words, an estimator is risk-unbiased if the expected loss of the

estimator is minimized at the true, unknown value of θ.

In survey sampling estimation problems, squared-error loss is commonly used to evalu-

ate estimators. There are many reasons for the popularity of squared-error loss including:

evaluating unbiased estimators (where comparisons on squared-error loss simplify to choos-

ing the unbiased estimator with the smallest variance), the similarity of squared-error loss

to classical least squares theory, and the ease of calculations in a decision theoretic frame-

work. One can argue that the reasons for squared-error loss above have little merit, in that

squared-error loss might not reflect the loss function that is truly of interest (Berger, 2013,

Chhapter 2).

Instead of starting by choosing a loss function to evaluate an estimator, the statistician

often starts by considering a class of potential estimators and then evaluating the perfor-

mance of estimators within this class. One such class of estimators is the class of unbiased

estimators of the mean. Among this class of estimators, a common criterion is to choose the

estimator that has minimum variance. For the class of unbiased estimators of the mean, the

risk-unbiased estimator under squared-error loss is the estimator with minimum variance and

therefore squared-error loss is implicitly chosen to evaluate estimator performance (Särndal

et al., 2003, Chapter 2.7).

We can also view the problem of evaluating estimators from a different perspective; we

can ask what loss function is consistent with the functional we aim to evaluate. First,
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we define what is meant by a statistical functional (or more simply a functional). For our

purposes, we define a functional as a set of mappings from a class of probability distributions

F to the real numbers R. For example, if θ is the population parameter of interest for the

probability distribution function FY , then θ can typically be written in the form θ = M (FY )

for some unknown, continuous functional M (Horowitz and Manski, 2006). Extending this

idea to a sample y with empirical probability distribution function Fn and given the limit

of Fn exists, the functional

M (FY ) = lim
n→∞

M (Fn) ,(3)

where FY is the true underlying distribution of the observation y. A functional meeting the

condition in (3) is called Fisher consistent at FY (Huber and Ronchetti, 2011). Murphy and

Daan (1985, p.391) extend this idea further, where a loss function L (·, ·) is called consistent

for the functional M with respect to the class of probability density functions F if

EFY
L (m (y) , θ) ≤ EFY

L (t, θ)(4)

for all probability distributions FY ∈ Fθ, all functions m (y) ∈ M(FY ), and t ∈ R, the

support of θ. If the loss function in (4) holds with equality only when t ∈ M(FY ), then the

loss function L (·, ·) is called strictly consistent (Gneiting, 2011). Noorbaloochi and Meeden

(1983) demonstrate a duality between risk unbiasedness and consistency, arguing that the

problem of evaluating estimators (risk-unbiasedness) and finding optimal estimators (Bayes

rule) are connected in a dual nature.

For example, if we consider an estimator of the mean that is in the class of estimators of

the mean that are asymptotically normal, then any estimator in this class is asymptotically
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risk-unbiased under squared error loss. Hence, squared-error loss functions are asymptoti-

cally consistent for each memberm (y) ∈ M of the class of asymptotically normal estimators

of θ. Many survey estimators have some form of central limit theorem, where, for large sam-

ple sizes, the distribution of the estimator is asymptotically Gaussian (Madow et al., 1948;

Erdös and Rényi, 1959; Hájek, 1960, 1964; Rosen, 1972; Holst, 1973).

For survey sampling estimators that assume asymptotic Gaussian distributions, use of

squared-error loss is asymptotically consistent for evaluation of estimators of the mean, and

use of absolute-error loss is asymptotically consistent for evaluation of estimators of the

median, where consistency is defined in (4).

Thus, instead of finding the theoretically best Bayes rule (1), we can instead choose a

consistent loss (4) for the class of estimators of interest and appeal to the duality between

risk-unbiasedness and finding optimal estimators (1). For estimators of the mean, it can

be shown that the class of consistent loss functions is the Bregman loss, of which squared-

error loss is a special case (Williams and Hooten, 2016). Thus, the problem of choosing an

optimal estimator can be replaced by choosing a consistent loss for the functional of interest

and demonstrating the estimator is risk-unbiased, providing some rigor in the choice of loss

function and avoiding the concern over the arbitrariness of squared-error loss expressed by

Berger (2013).

1.2.3. Prediction. The evaluation of predictive performance can also be framed within

the decision theoretic framework presented in Section 1.2.1. Given data y and unobserved

random variable Z drawn from the probability distribution FZ on which we desire prediction,

we define a scoring function S (m (y) , z) : R → [0,∞) which maps the prediction-observation

domain (the real numbers R for our real-valued random variable Z) to the positive real

numbers. Thus, S (m (y) , z) represents the penalty incurred when the statistician predicts
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m (y) and the observation z is realized. Note that we assume the statistician is using observed

data y in formulating the prediction m (y). Similar to the Bayes rule in (1), the optimal

prediction under the probability distribution FZ ∈ F for the unobserved value Z is

m̂ (y) = argmin
m(y)

EFZ
S (m (y) ,Z) ,(5)

which depends on the scoring function S (m (y) ,Z) and the unknown probability distribution

of the unobserved random variable Z. In general, one is free to choose any scoring function

(just as one is free to choose any loss function), but (5) has two fundamental flaws. First,

it must be the honest belief of the statistician who the optimal prediction is probabilistic

whereas m̂ (y) is a point prediction (Dawid, 1984; Gneiting, 2008). Secondly, the statistician

is incentivized to express different predictions when presented with different scoring func-

tions, regardless of the statisticians true belief about nature. Thus, the Bayes prediction in

(5) is unsatisfactory because use of the Bayes prediction causes a statistician to deviate from

her true belief about nature (the predictive probability distribution function) to minimize

the loss function under consideration.

Fortunately, there are properties of scoring functions which are direct analogs of the

properties of risk-unbaisedness in (2) and consistency in (4) that are considered desirable. In

particular, a statistician who wants to optimize predictive performance would like a class of

scoring functions which guarantees, under expectation, that the prediction with the best score

is optimal. Additionally, it is desirable to have a scoring rule that evaluates a probabilistic

prediction rather than point prediction. Many commonly used scoring functions, including

mean square prediction error and mean absolute prediction error, do not meet the two

previous criteria.
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Following the definition in (4) and Gneiting (2011), we call the scoring function S con-

sistent for the functional M with respect to the class of probability densities F if

EFZ
S (m (y) ,Z) ≤ EFZ

S (z,Z)(6)

for all probability distributions F ∈ F , all m (y) ∈ M(FZ), and all realizations z of the

unobserved random variable Z. The scoring function S is called strictly consistent if it is

consistent and equality in (6) implies z ∈ M(FZ).

As in Section 1.2.2, there is a duality between a scoring function being consistent and a

prediction being an optimal point forecast (Bayes). From Theorem 1 in Gneiting (2011), we

obtain the result that the class of scoring functions that are consistent for a given functional

is the same as the class of loss functions under which that functional is an optimal point

forecast.

With the definition of a consistent scoring function, we can find an optimal point pre-

diction, but our stated goal is to predict probabilistically and honestly. Thus, we need to

define a proper scoring rule. Within our decision theoretic framework, a proper scoring rule

is a function R : F ×R → R such that

EFZ
R (FZ ,Z) ≤ EFZ

R (GZ ,Z)(7)

for all probability distributions FZ , GZ ∈ F , assuming that the expectations are well defined.

Thus, a proper scoring rule assigns a score R(FZ , z) when the prediction is the probability

distribution FZ and the observation z is realized. Thus, if a statistician believes that the

true data generating distribution for the random variable Z is FZ , the statistician minimizes

her expected loss by following her true beliefs. Hence, use of proper scoring rules satisfies the
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two goals of predictive inference by allowing for evaluation of probabilistic predictions and

reinforcing honest beliefs. Theorem 3 of Gneiting (2011) states that any scoring function

S induces a proper scoring rule R in a straightforward manner. Thus, one can evaluate

any probabilistic prediction using a proper scoring rule that results from a proper scoring

function.

Propriety is essential for any practical application of a scoring rule; without propriety a

researcher can (under expectation) reach incorrect conclusions about predictive skill. When

evaluating predictions using improper scoring rules, one is not optimizing expected predictive

performance, nor is it entirely obvious what one is optimizing; this can result in overly

optimistic beliefs of predictive performance by researchers using improper scoring rules.

Therefore, in practical applications, much care is needed to evaluate model performance and

this has led to development of scoring rules that are proper in general (see Gneiting and

Katzfuss (2014) for a review). For continuous data, the log score and the continuous ranked

probability score (CRPS) are proper scoring rules, and for binary data, scores like the Brier

and Quadratic score are proper (Gneiting and Raftery, 2007). Most often, scoring rules are

negatively oriented; thus, the goal is to minimize the score, a convention I use throughout

the dissertation.

1.3. Computation

Model comparison using proper scoring rules is useful only if one can compute the model

fit and scoring rules in a reasonable amount of time. Modern central processing units are

not experiencing the exponential increase in clock speeds seen in the past few decades, but

are instead being developed with multiple cores that can run many processes in parallel. To

take advantage of the changing computing environment, utilization of parallel computing
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resources is quickly becoming essential to any large statistical analysis. Many statistical

problems are trivial to parallelize. For instance, resampling methods that do not depend on

previous samples, like bootstrapping and cross-validation, can be done in parallel, resulting in

computational speedups that are nearly linear in the number of processors used. Thus, under

modern computing architectures, many computational problems associated with resampling

methods are ameliorated with parallel computing. Many of the applications presented in

this dissertation use Bayesian models that are fit using Markov Chain Monte Carlo (MCMC)

methods. There is no generic way to parallelize an MCMC algorithm, although it is possible

to parallelize each independent MCMC chain, combining the results after model fitting for

use in diagnostics, predictions, and evaluation. Rather than trying to improve MCMC

performance through parallelization, one can increase the performance of each independent

MCMC chain by using compiled code, like C++, to perform estimation. By switching

to compiled code, computational speed can be increased by up to 50-100 fold relative to

code in scripting languages like R. For many of the computations in this dissertation, I use

both parallel computation and compiled C++ code to reduce computation time, allowing

exploration of models that would otherwise be too computationally expensive.

1.4. Overview

In this dissertation, I explore the statistical properties of different statistical models ap-

plied to a variety of environmental and ecological problems. In Chapter 2, I explore survey

sampling methods that improve estimation of landscape-level forest quantities using United

States Forest Service Forest Inventory Analysis data. I start by fitting a number of models

to predict percent canopy cover using Geographic Information System and environmental
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covariates. Using the predictions from the models to construct stratified estimators of per-

cent canopy cover over the study region allows investigation into the empirical consequences

of model choice and type of stratification used to construct the estimator. Evaluation of esti-

mator performance is achieved through a resampling experiment, treating the entire dataset

as a population and constructing estimates using samples from the population. Designing

the experiment in this way allows for comparison of model estimates to the true values in

the population while retaining the correlations and interrelationships in the data. Each of

the stratification methods result in estimators of the mean that are are unbiased, hence the

focus is on the statistical properties of the variance estimator. Performance of the variance

estimator is evaluated by comparing the mean variance estimate from the resampling exper-

iment to the simulation variance of the mean estimates. By using the resampling experiment

design, I explore the empirical properties of many different estimators based on complicated,

real-world data, gaining insight into which methods perform well and which methods severely

underestimate the variance, resulting in overly optimistic and unrealistic inference for the

end user.

In Chapter 3, I use a biologically motivated model of tree ring growth to link climate

variables (temperature and precipitation) to observed tree ring growth. The fitted model is

then used to predict unobserved temperature and precipitation for the years 1450-1895 using

tree ring width data over the period 1450-2010 and observed climate data from 1895-2010.

Because the target for prediction is past, unobserved climate, there is no population dataset

from which to resample climate before 1895 to validate the predictions. As an alternative, one

could hold out the last few years of observed climate and test the reconstruction method’s

ability to predict these years; however, this is only a proxy for the true target of a long

temporal backcast and one can only leave out a relatively small number of observation years
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before parameter estimation is affected. Often, paleoclimate reconstructions hold-out the last

10 or 20 years of the training data and evaluate predictive performance using scores like the

coefficient of efficiency (CE) and relative efficiency (RE) (Cook et al., 1994; Rutherford et al.,

2005; Tingley and Huybers, 2010a,b), but the use of such short-term validation methods is

fraught with problems. First, one could easily imagine a scenario where a model that can

accurately reconstruct 10-20 years of climate could diverge from the unknown true climate

values (i.e., a high order polynomial regression model). Also, many of the scoring rules

commonly used in the paleoclimate literature, like CE and RE, are improper; thus, these

scoring rules are not statistically optimal (Gneiting and Raftery, 2007). Therefore, I validate

the reconstruction method using a simulation study. Simulating data as close as possible to

the process that grows tree rings given climate allows for evaluation of the reconstruction

method’s ability to predict far backward into the past. The simulation experiment allows

me to investigate how well the model estimates simulated parameters and learn about the

mechanisms linking tree growth to climate.

In Chapter 4, I perform a spatio-temporal reconstruction of mean July temperature for

the Upper Midwestern United States using compiled historical data. The data consist of

measurements made at United States military forts over the years 1820-1893. Over these

73 years, there are a small number of fort locations at which non-standardized records of

temperature were recorded (two to 36 observations per year), whereas there are approxi-

mately 20,000 spatial locations at which temperature predictions are desired. To perform

the reconstruction, I use a set of 110 mean July temperature model interpolated surfaces

over the study region to create a basis of possible temperature surfaces. Using the basis in

a Bayesian hierarchical regression, the model generates spatial predictions over the spatial

domain. I use model selection and hierarchical pooling priors to improve predictive skill. In
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addition, I extend traditional principal component analysis to a framework that accounts for

noisy observation of the principal components and is robust to the presence of outliers, using

both simulation and resampling methods to evaluate model performance. In the simulation

study, direct comparisons are made between different models using proper scoring rules, pro-

viding evidence as to which models predict with skill on the synthetic data. To validate the

reconstruction using the historical data, I apply a computationally efficient approximation

to leave-one-out cross-validation to investigate model performance and diagnose outlying

observations.

By applying rigorous statistical model validation techniques using both resampling and

simulation methods, I present a general framework for evaluating model performance in

applied statistical problems, developing and evaluating novel statistical methodologies that

allow for principled inference for practical environmental and ecological applications.
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CHAPTER 2

Properties of the Endogenous Post-Stratified

Estimator Using a Random Forests Model

2.1. Introduction

Post-stratification is used in survey estimation as a method to improve the precision

of estimates by calibrating to known population quantities (Särndal et al., 2003, Ch. 7.6).

The calibration is done by classifying survey observations into two or more categories called

post-strata, where the population counts within each of these categories are known at the

population level from some source, census or other register outside the survey. The sample

stratum weights are then matched to the known population stratum weights and an estimator

is constructed using the updated weights. Traditional post-stratification requires the variable

on which the data are being stratified be known without error at the population level.

Post-stratum categories can be any category of interest, but are often demographic vari-

ables for surveys of human populations or land cover classes in natural resource surveys. In

the United States Forest Service Forest Inventory and Analysis Program (FIA), the stratum

categories are often landcover or other classes where the population counts are obtained

using remote sensing data (see Bechtold and Patterson (2005) for details). In the FIA sur-

vey, field data are collected annually and used to produce estimates for a wide variety of

forest attributes. The estimators are calculated as post-stratified estimators based on strata

defined by landcover and other forest related categories determined from maps maintained

in a geographic information system (GIS).

The maps of forest variables are often estimated from models that use reflectance values

from sensors such as the Landsat Enhanced Thematic Mapper Plus (ETM+) or the Moderate
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Resolution Image Spectroradiometer (MODIS), as well as bioclimatic and other ancillary GIS

layers to map vegetation over a large geographic area. Each pixel of the map corresponds

to a useable class, such as forest type, stand height, or crown cover. The classification

is obtained by training a classification algorithm on satellite and ancillary data and then

predicting the category membership for each pixel in the study area. The relationships

between variables are often highly complex and non-linear, therefore motivating the common

use of classification algorithms such as neural networks and Random Forests (Moisen and

Frescino, 2002; Gislason et al., 2006). The end product is a digital map representing category

membership for each pixel in the study area. These maps are often used by scientists and

land managers for a variety of purposes, including management decisions and estimation.

In many cases, it is not realistically possible to know post-stratum counts at the pop-

ulation level, but it is possible to use a model to predict post-stratum membership us-

ing covariates and then stratify on these predicted values over fixed stratum boundaries.

The approximating of post-stratification using model predictions is called Endogenous Post-

Stratification Estimation (EPSE) and the theoretical properties of the EPSE approximation

to traditional post-stratification have been discussed in Breidt and Opsomer (2008) for a

parametric estimator and in Dahlke et al. (2013) for a nonparametric estimator. In tradi-

tional post-stratification, it is assumed the category membership counts over which post-

stratification is performed are known without error, and the stratum membership counts are

ancillary to the survey sample used for estimation. In the EPSE framework, both of these as-

sumptions are relaxed. First, the category membership counts over which post-stratification

is performed are estimated using a classification algorithm. The algorithm classifies the data,

but the classification is performed with errors that result in an unknown amount of misclas-

sification. The post-stratification categories are classified with error violates an assumption
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of post-stratification, and the consequences for violating this assumption are in need of in-

vestigation. In constructing the classification algorithm, data from the survey sample are

used to train the classifier, which is then used to post-stratify the sample, violating the

second assumption of post-stratification that the categories over which post-stratification is

performed are ancillary to the survey sample.

The use of FIA data to construct maps, and then the subsequent use of these maps as a

basis for constructing post-stratified estimates, has raised questions about the appropriate-

ness of their use based on the relaxation of the assumptions of post-stratification (Scott et al.,

2005). The FIA maps are created from sample observations that are used for estimation,

and the categories from the map are not without errors, violating the two assumptions of

traditional post-stratification described previously. Despite the fact that EPSE violates the

assumptions of post-stratification, it is useful in practice because the EPSE method makes

it possible to take advantage of the considerable work that has been applied in creating good

classifiers for satellite imagery and land-use mapping. When applied properly, EPSE results

in significant improvements in precision for the survey estimators, thus it is of interest to

continue to investigate the validity of the approach in realistic settings.

The EPSE estimator is an approximation to traditional post-stratification. In the EPSE

approximation to post-stratification, the stratification variable is used to build a model

based on covariates, the model is used to predict the values of the stratification variable

for the entire population, and then the sample is post-stratified based on these predictions.

Throughout this chapter, I focus on the EPSE approximation to post-stratification using

model predictions of the stratification variable to approximate the true values of the strati-

fication variable. A note of caution is that using the true values of the stratification variable

for post-stratification of the sample is incorrect and violates the validity of this method;
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when calculating sample and population stratum weights, only the modeled counts should

be used. From the post-stratification approximation, I apply the post-stratification to other

variables of interest. If there is a correlation between the stratification variable and the new

variable of interest, the post-stratification (using the weights from the stratification variable)

will increase the precision of the estimate for the new variable of interest.

Currently, the properties of the EPSE variance estimator have been investigated using

fixed stratum boundaries, for example, defining strata by taking a continuous tree canopy

cover layer and dividing the canopy cover values into 10 percent increments. However,

it is conceptually attractive to be able to use adaptive stratum boundaries (e.g., sample

quantiles in EPSE), thus guaranteeing a better spread of the sample across the categories

and in particular, avoiding empty strata. In this chapter, I investigate the use of estimated

stratum boundaries set as the quantiles of the model predictions in addition to the fixed

boundary case. Other stratification methods are of interest but were not considered in this

chapter.

Since the publication of Breidt and Opsomer (2008), there have been a number of studies

that have applied an EPSE estimator explicitly stating that the assumptions of traditional

post-stratification are violated. For instance, McRoberts et al. (2005) used a logistic model

based on sample and ancillary information to create strata, and then used those strata for

post-stratification. A similar process was performed in McRoberts (2010) and McRoberts

et al. (2013). A logistic model meets the assumptions in Breidt and Opsomer (2008) and

Dahlke et al. (2013) of a monotone model, but many commonly used models do not, including

spline models, Random Forests, and k-nearest neighbors, a technique used in McRoberts

et al. (2012). Because the EPSE estimator has been shown to be effective in reducing

variance estimates, a simulation study is needed to show the conditions under which the
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EPSE variance estimator is accurately estimating the true variance. For example, McRoberts

et al. (2012) use a complex optimization scheme and stratum boundaries not set a priori. The

empirical and theoretical properties of the EPSE variance estimator under these conditions

have not been previously explored. As shown in the simulation, the EPSE variance estimator

with an optimization step can result in underestimation of the variance. Due to the potential

for underestimation of the variance, verification that the variance estimator is reliable is

important in applying an EPSE estimator.

This chapter has three objectives: first, to investigate the EPSE variance estimator prop-

erties using a linear model, a spline model, and Random Forests; second, to investigate the

effects of using estimated stratum boundaries instead of fixed stratum boundaries on the

EPSE variance estimator; third, to investigate the effects of optimizing the stratum bound-

aries to minimize the variance estimate on the EPSE variance estimator. The linear model

and the spline models are chosen because the theoretical properties for the EPSE estimator

using these models have been investigated under simple conditions and their performance

in a complex data set is of interest. Random Forests is chosen for two reasons. First, the

Forest Service FIA is currently using Random Forests to create a nationwide map of percent

tree canopy cover for the whole United States at a resolution of 30m×30m pixels (Coulston

et al., 2012). Because the canopy cover map will likely be used as a basis for constructing

post-stratified estimates, the properties of estimates constructed using this map are directly

relevant to forest scientists. Second, Random Forests is a powerful and flexible tool and can

easily be applied to different problems and data sets with little input from the user (Liaw

and Wiener, 2002).
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2.2. Endogenous Post-Stratified Estimator

Following the EPSE framework described by Breidt and Opsomer (2008), a sample s of

size n is taken from a population U ≡ {1, ..., i, ..., N} of size N according to a probability

design p(·), where p(s) is the probability of drawing the sample s. For each i ∈ U a vector

of covariates xi and a response yi are observed. There is assumed to be a true relationship

between xi and yi denoted by m(·) where

(8) E (yi|xi) = m(xi),

and m(xi) is estimated by m̂(xi) when fit on the sample data and m̃(xi) when fit on the

population data. The EPSE approximation to post-stratification is as follows. The model

predictions for the stratification variable m̃(xi), for i ∈ U , are an approximation to the true

values of the stratification variable m(xi), for i ∈ U . The m̃(xi), for i ∈ U , are further

approximated by the values m̂(xi), for i ∈ U , where the model m̂ is fit on the sample, and

hence is endogenous to the sample.

The relationships m̂ and m̃ used in this chapter will assume four different forms; a linear

model, two different penalized spline models that I will differentiate as the spline model and

the thin-plate spline model, and Random Forests. The linear model is of the form

(9) yi = xi
′β + εi

where εi is an independent and identically (iid) mean 0 random variable and β is to be

estimated by ordinary least squares. Model selection for the linear model is performed using

backward stepwise model selection based on Akiake’s Information Criterion (AIC) to choose

the variables (Akaike, 1974).
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The spline model is of the form

(10) yi =
P∑

p=1

Jp∑

j=0

βj,pφj,p(x
p
i ) + εi

where the φj,ps are orthonormal basis functions at the jth knot for the pth variable, Jp is the

number of knots for the pth variable, xpi is the value of the pth variable for the ith element

in the sample, and the βjps are the associated coefficients to be estimated using penalized

iteratively re-weighted least squares subject to a smoothness penalty (Ruppert et al., 2003).

For this chapter the two spline models are fit using R and the package mgcv (R Core Team,

2015; Wood, 2006). The spline model is fit with a penalty on the integral of the square of the

second derivative of the fit, thereby limiting the “wiggliness” of the fit. The thin plate spline

model uses a thin plate spline basis to represent the P predictors with the effective degrees of

freedom for the smoothness penalty estimated through generalized cross-validation (Wood,

2006). The thin plate spline model uses a modified smoothing penalty that causes small

coefficients to be penalized to zero, thereby acting as a model selection step and reducing

the effects of overfitting the data (Wood, 2003). The different spline models imply different

levels of smoothness and are considered to the determine the effects of model smoothness on

the EPSE variance estimator.

Random Forests is implemented in R using the randomForests package and fit using 4

predictors for the number of parameters to choose at each nodemtry and the default number

of trees ntree of 500 (Liaw and Wiener, 2002), corresponding to defining a subset of four

predictors for each node in each tree. For details about Random Forests see Breiman (2001)

and Liaw and Wiener (2002).

In EPSE with fixed stratum boundaries, the predictions m̂(xi), i = 1, . . . , N are sorted

into H fixed strata based on the stratum boundaries τ0, τ1, ..., τH where m̂(xi) is in the hth
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stratum if I(τh−1 < m̂(xi) ≤ τh) = 1. The estimated sample counts in stratum h are given

by n̂h where

(11) n̂h =
∑

i∈s
I{τh−1<m̂(xi)≤τh}.

The estimated population counts in stratum h are given by N̂h where

(12) N̂h =
∑

i∈U
I{τh−1<m̂(xi)≤τh}.

The stratum mean µ̂h is calculated for each stratum h by

(13) µ̂h =
1

n̂h

∑

i∈s
yiI{τh−1<m̂(xi)≤τh}.

The EPSE estimator µ̂y for the population mean is calculated by

(14) µ̂y =
1

N

H∑

h=1

N̂hµ̂h.

The estimator V̂ (µ̂y) for the variance Var (µ̂y) is calculated using the post-stratified formula

in Särndal et al. (2003, Chapter 7.6),

(15) V̂ (µ̂y) = (1−
n

N
)
1

N2

H∑

h=1

N̂2
h

s2h
n̂h

,

where s2h = 1
n̂h−1

∑
i∈s[(yi − µ̂h)

2I{τh−1<m̂(xi)≤τh}], the sample variance for stratum h. In

the simulation study, I first consider fixed stratum values τh following Breidt and Opsomer

(2008). Also, estimated stratum values τ̂h based on quantiles of the model predictions for

the set of population covariates xi, for i ∈ U , will be considered.
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2.3. Empirical Properties of the Estimator

The data used in this study are from a pilot study for the 2011 National Land Cover

Data (NLCD) set canopy cover map conducted in Utah (Coulston et al., 2012). The study

areas consisted of 4151 sites in Utah. At each location, an aerial photograph is interpreted to

estimate the values for percent canopy cover. The aerial photographs are considered highly

accurate because there was a very high level of agreement among independent observers

used to create the estimates (Jackson et al., 2012). I treat the aerial photograph interpreted

percent canopy cover as the variable of interest. I am not claiming that the aerial interpreted

estimates represent truth on the ground, only a reasonably accurate approximation to the

truth on the ground. I treat these data as a population of percent canopy cover variables and

ignore any discrepancies between the measured value in the pilot study and values measured

in the field, allowing evaluation of the performance of the EPSE variance estimator in a

population that reasonably approximates a true population with complex inter-relationships

between variables. The covariates used for this study, which include a mixture of Landsat

TM reflectance values, Tasseled Cap transformations (Crist and Cicone, 1984), and topo-

graphic values, are summarized in Table 2.1. Decisions about sampling intensity and variable

selection for these data are described in Tipton et al. (2012).

I use two simulation studies to evaluate the effectiveness of the EPSE estimator. The

first simulation in Section 2.3.1 addresses the first two goals of the chapter; the effectiveness

of using Random Forests in the EPSE framework relative to other models in a realistic

setting, and the effects of fixed versus estimated stratum boundaries. The second simulation

in Section 2.3.2 addresses the final goal of this chapter, investigating the effects on the EPSE

variance estimator due to minimizing the variance estimates by allowing the number of strata
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Table 2.1. Remote sensing and topographic covariates used in the simulation
study.

Landsat TM Band 1
Landsat TM Band 2
Landsat TM Band 3
Landsat TM Band 4
Landsat TM Band 5
Landsat TM Band 6
First Tasseled Cap Transformation of TM Bands 1-6
Second Tasseled Cap Transformation of TM Bands 1-6
Third Tasseled Cap Transformation of TM Bands 1-6
Normalized Difference Vegetative Index (NDVI) Transformation
Average Slope over 90m×90m pixel
Average value of Compound Topographic Index over 90m×90m pixel
Average value of Digital Elevation Map over 90m×90m pixel
Average value of Slope Aspect in degrees over 90m×90m pixel
sin Transformation of Slope Aspect
cos Transformation of Slope Aspect

Figure 2.1. Image of the study region in Utah where the 4151 plots are located.

to vary. The minimization is performed by choosing the number of strata that produces the

smallest variance estimate.
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2.3.1. Comparison of Fixed vs. Estimated Stratum Boundaries. The first

simulation study is designed to address two questions: First, how does the variance estimator

performance compare with the linear model EPSE, the two spline model EPSEs, and the

Random Forests EPSE? Second, how do the EPSE variance estimators perform when the

stratum boundaries are fixed (this is the case where the theory is well known) versus when the

stratum boundaries are estimated by sample quantiles? For notation, I define the sample-

level predictions ŷs as the vector of all predictions ŷi = m̂(xi) where i ∈ s , and the

population level predictions ŷU as the vector of all predictions ŷi = m̂(xi) for i ∈ U . For

i ∈ s the two predictions are identical (i.e., ŷsi = ŷUi
for all i); this is important because

otherwise the method is not EPSE and is not valid. I also need the vector of fitted values

ỹU , where the values ỹi = m̃(xi), for i ∈ U , are fit using the full population data. Unlike ŷU ,

the values ỹU are not dependent on the sample and are therefore fixed. Hence, splitting the

sample into post-strata based on ỹU can be viewed as the reference post-stratification that

I am approximating when applying the EPSE estimator based on ŷU . Note that, as sample

size increases, I assume that the predictions ŷU are converging to the predictions ỹU .

In this investigation, I consider two stratification schemes. For both of these strata

definitions the behavior of the variance of the EPSE estimator Var (µ̂y) and its variance

estimator V̂ (µ̂y) are investigated for the four different estimation methods at different sample

sizes n. The first stratification scheme of fixed stratum boundaries consists of the quartiles

Qi(ỹU) of ỹU , where Qi(ỹU) is the
25∗i
100

quartile of fitted values for m̃, where the method of

interest is fit on the full population data. The strata for the fixed simulation are set as

(16) (−∞, Q1(ỹU)], (Q1(ỹU), Q2(ỹU)], (Q2(ỹU), Q3(ỹU)] and (Q3(ỹU),∞).
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These strata allow for values outside of the range [0,1] because the methods used to predict

percent tree cover are not constrained to predict values between 0 and 1. Note that these

quartiles are not sample dependent, hence they are fixed relative to the sample.

The second stratification scheme uses estimated stratum boundaries defined by the quar-

tiles of the predicted tree canopy cover m̂ fit using the sample data. The estimated strata

are defined by the boundaries below which Q̂i(ŷU) is the i
th quartile of ŷU . Note that quan-

tiles are dependent on the sample s through the fitting of m̂ on the sample. The estimated

stratum boundaries are defined as

(17) (−∞, Q̂1(ŷU)], (Q̂1(ŷU), Q̂2(ŷU)], (Q̂2(ŷU), Q̂3(ŷU)], and (Q̂3(ŷU),∞).

Random Forests has two different methods for calculating predictions for covariates in

the sample: In Bag (IB) and Out of Bag (OOB). For the simulation using Random Forests,

the predictions ŷs for the sample are set to equal the OOB predictions. Random Forests

is then used to predict the percent tree cover for the observations not in the sample ŷU\s,

defined as the vector of elements ŷi where i ∈ U \s. These predictions are combined with the

OOB sample predictions ŷs to create predictions at the population level ŷU . The need to

combine predictions is necessary because the Random Forests predictions for the population

use the IB predictions by default and therefore ŷs 6= ŷU for the set {i ∈ s}, causing the

EPSE estimator to fail. To ensure that the predictions for observations in the sample agree

with population level predictions, predictions are made for the sample values based on the

model fit (using OOB predictions for the Random Forest model) and are combined with the

predictions for the elements not in the sample for all of the different EPSE methods.

For each iteration of the simulation, a simple random sample is taken from the population

of 4151 sites, the model of interest is fit, and µ̂y and V̂ (µ̂y) are calculated using equations
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(14) and (15). The process is repeated for 1000 iterations, each with a different simple

random sample, and the mean of the simulation variance estimates E
(
V̂ (µ̂y)

)
are compared

to the simulation variance of the post-stratified estimator Var (µ̂y). The 1000 iterations

for the simulation were chosen to balance quality of the estimates with computation time.

The relative bias is computed to allow a comparison between the different sample sizes and

models by the formula

(18) Relative Bias =
E
(
V̂ (µ̂y)

)
− Var (µ̂y)

Var (µ̂y)
.

Relative bias is a measure of the relative difference between the expectation of the variance

estimator, E
(
V̂ (µ̂y)

)
, and the variance of the estimator, Var (µ̂y). The relative bias allows

comparison between the average of the target value and its estimator on a scale relative to

the magnitude of the target value. For instance, a relative bias value RB = 0.05 indicates

that the estimated value is 0.05 times greater than the true value on average.

As seen in Table 2.2, for the smaller sample sizes and both stratification schemes, the

EPSE estimators using the spline model and Random Forests generally have the smallest

variances among the four EPSE estimators, the linear model and thin plate spline model

EPSE estimators also have similar variances, but are generally slightly larger. For larger

sample sizes and for both stratification schemes, the EPSE estimator using Random Forests

has the smallest variance most often, the spline model EPSE estimator generally has the

next smallest variances, and the linear model and thin-plate spline EPSE estimators have

the largest variances.

In Figure 2.2, all four EPSE methods appear to have relative biases that are reasonably

small across all sample sizes and across both stratification schemes, except for small sample

sizes for the spline model, indicating that the EPSE framework is relatively robust. The
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Table 2.2. Table of variances for the four EPSE estimators for the fixed
(Fix) and estimated (Est) stratification schemes. The linear model is abbre-
viated LM, the spline model is abbreviated SM, the thin-plate spline model is
abbreviated TPS, and Random Forests is abbreviated RF. The values of the
variances in the table are scaled by a factor of 10−5. The NA for Random
Forests with fixed stratum boundaries comes from having empty strata when
Random Forests was fit on a sample of size 100.

n LM Fix SM Fix TPS Fix RF Fix LM Est SM Est TPS Est RF Est
100 41.35 50.30 41.77 NA 41.95 47.88 41.37 41.86
200 19.87 18.74 19.66 19.86 19.80 18.73 19.82 19.44
300 13.29 11.63 13.44 11.37 13.15 11.34 13.16 11.27
400 9.470 8.302 9.605 8.419 9.394 8.326 9.297 8.251
500 7.470 6.382 7.480 6.470 7.289 6.386 7.390 6.308
1000 3.095 2.766 3.250 2.589 3.067 2.788 3.232 2.571
1500 1.820 1.576 1.777 1.317 1.823 1.595 1.797 1.321
2000 0.953 0.953 1.191 0.840 0.938 0.965 1.179 0.829
2500 0.663 0.543 0.639 0.572 0.664 0.542 0.643 0.579
3000 0.374 0.340 0.382 0.314 0.373 0.337 0.381 0.321
3500 0.191 0.169 0.192 0.155 0.191 0.168 0.192 0.156
4000 0.037 0.031 0.035 0.029 0.037 0.031 0.035 0.029

linear model EPSE shows evidence of a symmetric distribution of relative bias about 0. For

the spline EPSE, it can be seen that the relative bias appears to be skewed to negative

values, especially for small sample sizes, suggesting that the variance estimate is underes-

timating the variance of the estimator. In some of these scenarios, underestimation of the

variance by as much as 40% occurs. The plot of relative bias for thin plate spline EPSE

shows some evidence of underestimation of the variance, as the estimate seems to be skewed

toward negative values. For the Random Forests EPSE, the relative bias appears to have a

symmetric distribution of positive and negative values, suggesting that the variance estima-

tor is unbiased for the variance of the estimator. The underestimation of the variance by the

variance estimator for the two spline model EPSEs is a problem because underestimation of

the variance can cause reduced coverage of confidence intervals and overly optimistic results

in hypothesis testing situations.
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Figure 2.2. Plot of Relative Bias for EPSE variance estimators. Subplot
(a) is for EPSE estimates constructed using a linear model, subplot (b) is for
EPSE estimates constructed using a spline model with B-spline basis, subplot
(c) is for EPSE estimates constructed using a spline model with a thin-plate
spline basis, and subplot (d) is for EPSE estimates constructed using Ran-
dom Forests. Circles represent the EPSE estimates constructed using 4 fixed
strata, and triangles represent the EPSE estimates constructed using 4 strata
estimated by the quartiles of the model predictions.

For a given EPSE method and sample size, the variance of the EPSE estimator for

the fixed stratum boundaries stratification scheme appears quite similar to the variance of

the EPSE estimator for the estimated stratum boundaries stratification scheme (Table 2.2).

These similarities in EPSE variances suggest that the estimated quantiles are accurately

estimating the population quantiles. That the variance of the EPSE estimator using the
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estimated quantiles appears to be approximating the variance of the EPSE estimator using

the population quantiles is reasonable because it has been shown that sample quantiles of

a distribution converge to the true population quantiles under mild assumptions (Bahadur,

1966).

In light of the results from Table 2.2 and Figure 2.2, I summarize the findings as follows.

The best EPSE estimator in the simulation is the Random Forests EPSE due to having small

variances and having relative biases of the variance estimator distributed evenly around 0.

The spline model EPSE estimator has small variance, but the variance estimator appears

to be underestimating the variance, thus calling into question the spline model EPSE’s

validity. The linear model EPSE’s variance estimator appears not to be biased, but the

EPSE estimator has larger variance than either the spline model or Random Forest EPSE.

The thin plate spline EPSE variance estimator appears to be only slightly underestimating

the variance, but with a variance comparable to the linear model EPSE.

The EPSE estimator appears to be relatively robust for the different methods and under

estimated stratum boundaries as long as care is taken to ensure that ŷs and ŷU agree for

all i ∈ s. The simulation supports that the class of methods used to construct the EPSE

estimator can be extended to include Random Forests. The simulation also supports the

use of the EPSE estimator when the stratum boundaries are estimated quantiles from the

model predictions instead of fixed stratum boundaries. One benefit of using quantiles from

the predicted values is that the construction guarantees non-empty strata.

2.3.2. Properties of Minimization of EPSE Variance Estimates. For the sec-

ond simulation, I address the third goal of this chapter. The question of interest is whether

one can use the EPSE variance estimates to optimize the number of EPSE strata to mini-

mize the variance estimate. This is done by selecting the number of strata to construct the
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smallest variance estimate V̂ (µ̂y). The aim is to determine whether it is still acceptable to

use the minimized variance estimate as a valid estimate of the variance. For computational

efficiency, the predictions for the EPSE method of interest are split into strata of equal num-

ber of elements based on the quantiles of the model predictions using the covariates for the

sample. Minimization of the variance estimate is then performed by selecting the number

of strata that results in the smallest estimate V̂ (µ̂y). Other ways of dividing the predictions

into strata are possible but not considered in this chapter. For instance, McRoberts et al.

(2012) and McRoberts et al. (2013) divided model predictions into 100 equally spaced bins

and then collapsed these bins into between one to six strata requiring at least 10 plots per

stratum. The collapsing of the bins into strata was done to minimize the variance estimate.

A future extension of the work in this chapter would be to consider the EPSE variance

estimator under the previous optimization scheme.

I begin the second simulation experiment as before, taking a random sample of size n

from the population of 4151 sites in the Utah data set. For each sample, I fit a linear model,

the two spline models, and Random Forests using the covariates described previously. Using

predictions generated from the model fits, I combine the predictions with the stratification

scheme to construct the classifiers used in constructing the EPSE estimators. To ensure

that the predictions for observations in the sample agree with population level predictions,

predictions are made for the sample values based on the model fit (using OOB predictions

for the Random Forest model) and are combined with the predictions for the elements not

in the sample, as described in Section 2.3.1.

After computing the predictions from the methods of interest for the population, the

strata over which optimization is to be performed can be created. Let k denote the number

of strata being considered. For k = 1, there is one stratum and the estimator is equivalent
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to simple random sampling. For k = 2, the stratification scheme is equivalent to stratifying

the data based on the median of the predicted values. For arbitrary k, k = 1, . . . , 10, define

the quantiles over which stratification will be performed as

(19) Q̂h,k(ŷU) =

[
h

k

]th
percentile of ŷU for k = 1, 2, ..., 10, h = 1, ..., k.

I count the number of population-level prediction counts in each stratum and define

(20) N̂h,k =
∑

i∈U
I(i ∈ stratum h out of k strata).

By stratifying the sample-level predictions ŷs based on (19) I count the number of sample-

level predictions in each stratum and define

(21) n̂h,k =
∑

i∈s
I(i ∈ stratum h out of k strata).

The stratum means for the hth stratum out of a total of k strata are defined as

(22) µ̂h,k =
1

n̂h,k

∑

i∈s
yiI(i ∈ stratum h out of the total k strata).

The estimator µ̂y,k for the population mean based on k strata is defined as

(23) µ̂y,k =
1

N

k∑

h=1

N̂h,kµ̂h,k.

The variance estimator for each stratum is similar to (15), but has been adapted to reflect

the notation that allows for different numbers of strata. The variance estimator for k strata
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is defined as

(24) V̂ (µy,k) = (1−
n

N
)
1

N2

k∑

h=1

N̂2
h,k

s2h,k

n̂h,k

,

where

(25) s2h,k =
1

n̂h,k − 1

∑

i∈s
(yi − µ̂h,k)

2I(i ∈ stratum h out of k)

is the sample variance in stratum h out of a total of k strata.

For each iteration in the simulation, choose the minimum variance estimate across the 10

possible strata choices, V̂ (µ̂y,k∗), where V̂ (µ̂y,k∗) = mink V̂ (µ̂y,k), k = 1, . . . , 10. In addition,

select the EPSE estimator of the mean µ̂y,k∗ for the optimal number of strata k∗. After

1000 iterations, I compute the mean of the simulation variance estimates E
(
V̂ (µ̂y,k∗)

)
and

the simulation variance of the EPSE estimates Var (µ̂y,k∗). The relative bias of the variance

estimator is defined as

(26) Relative Bias =
E
(
V̂ (µ̂yk∗)

)
− Var (µ̂y,k∗)

Var (µ̂y,k∗)
.

The procedure is repeated for each of the four EPSE methods considered and for various

sample sizes. The results for the variance Var (µ̂y,k∗) are summarized in Table 2.3 and the

results for the relative bias are summarized in Figure 2.3.

From Table 2.3 I can rank the EPSE estimator methods based on their variances. For

sample sizes less than 500, the spline model EPSE has the smallest variance, the Random

Forests EPSE has the next smallest variance, the linear model EPSE has the next smallest

variance, and the thin-plate spline EPSE has the largest variance. For sample sizes over 500,

the Random Forests EPSE has the smallest variance, followed by the spline model EPSE
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Figure 2.3. Plot of Relative Bias for optimized EPSE estimates. Subplot
(a) is for EPSE estimates constructed using a linear model, subplot (b) is for
EPSE estimates constructed using a spline model with B-spline basis, subplot
(c) is for EPSE estimates constructed using a spline model with a thin-plate
spline basis, and subplot (d) is for EPSE estimates constructed using Random
Forests. Crosses represent the EPSE estimates constructed optimizing up to 10
strata, and triangles represent the EPSE estimates constructed using exactly
4 strata estimated by the quartiles of the model predictions.

with the next smallest variance, and then both the thin-plate spline model EPSE and the

linear model EPSE appear to have similar variances.

For comparison, the variances for the four EPSE methods using the estimated boundary

stratification scheme from the first simulation are also listed in Table 2.3. For sample sizes

less than 500, the optimized EPSE methods have variances larger or about the same as
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Table 2.3. Table of variances for the four EPSE estimators for the optimized
(Opt) stratification scheme and the estimated (Est) stratification scheme from
the first simulation. The linear model is abbreviated LM, the spline model is
abbreviated SM, the thin-plate spline model is abbreviated TPS, and Random
Forests is abbreviated RF. The values of the variances in the table are scaled
by a factor of 10−5.

n LM Opt SM Opt TPS Opt RF Opt LM Est SM Est TPS Est RF Est
100 54.26 48.29 52.58 56.25 41.95 47.88 41.37 41.86
200 23.41 19.32 23.61 20.96 19.80 18.73 19.82 19.44
300 12.97 11.06 14.94 11.52 13.15 11.34 13.16 11.27
400 9.596 8.137 8.990 8.110 9.394 8.326 9.297 8.251
500 6.588 6.013 7.226 6.263 7.289 6.386 7.390 6.308
1000 2.893 2.553 2.811 2.432 3.067 2.788 3.232 2.571
1500 1.739 1.255 1.558 1.249 1.823 1.595 1.797 1.321
2000 0.965 0.842 0.929 0.714 0.938 0.965 1.179 0.829
2500 0.588 0.470 0.575 0.456 0.664 0.542 0.643 0.579
3000 0.316 0.275 0.325 0.256 0.373 0.337 0.381 0.321
3500 0.164 0.131 0.175 0.128 0.191 0.168 0.192 0.156
4000 0.034 0.029 0.034 0.026 0.037 0.031 0.035 0.029

the EPSE variances using the estimated strata boundaries, suggesting that optimizing the

EPSE stratum boundaries for small sample sizes can actually increase the variance of the

estimates in ways not accounted for in the variance estimator. The presence of unaccounted

for variance explains why the optimized EPSE variance estimators are underestimating the

true variance for small sample sizes. For sample sizes greater than 500, the optimized EPSE

variances are smaller than the EPSE estimators using four strata, but it is questionable if

the gain in precision is large enough to offset the concerns over the potential for negative

bias in the variance estimator.

From Figure 2.3 I see that the optimization step introduces a negative bias into the

four EPSE variance estimators for small sample sizes that is not seen when using a fixed

number of strata, suggesting that optimizing the EPSE estimator has the consequence of

underestimation of the variance for small sample sizes. For sample sizes greater than 500,

Figure 2.3 suggests that the optimized linear model, the optimized thin-plate spline model,
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and the optimized Random Forests EPSE variance estimators appear to be symmetrically

distributed around a relative bias of 0. The spline model EPSE variance estimator appears

to be negatively biased across all sample sizes.

The second simulation study examines the use of Random Forests, two spline models,

and a linear model in constructing an optimized EPSE variance estimator, suggesting that

the EPSE variance estimator has potential to underestimate the variance when optimization

is performed. From the results discussed above, I rank the methods used for constructing

the EPSE estimates. If the goal is to have the best trade-off between bias of the optimized

EPSE variance estimator and a minimum variance for the optimized EPSE estimator, the

Random Forests EPSE variance estimator performs the best overall, followed by the linear

model EPSE variance estimator, the thin-plate spline EPSE variance estimator, and then

the spline model EPSE variance estimator.

2.4. Conclusion

I have shown that the use of complex multivariate parametric, semiparametric, and non-

parametric classifiers in the EPSE framework appears to be relatively robust in constructing

variance estimates, but some cautions are raised to avoid underestimating the variance. This

study lends strength to the idea that EPSE can be applied to stratum boundaries that are

estimated quantiles of the predictions rather than fixed stratum boundaries, although only

the latter case of fixed stratum boundaries has been supported by theory. The theory ex-

ploring the effects on the EPSE estimator using estimated stratum boundaries is an area for

further research, as in practice, it is often attractive to use estimated stratum boundaries

not fixed a priori. Investigation into using estimated stratum boundaries in a theoretical
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context would provide more justification of the use of estimated quantiles as post-stratum

boundaries.

The best performing, most robust method throughout the study has been the Random

Forests EPSE variance estimator with the strata boundaries set as the quantiles of the model

predictions. The next best performing EPSE method has been the linear model EPSE

variance estimator with the strata boundaries set as the quantiles of the model predictions.

From the results in simulation two, I see that optimization of the EPSE variance estimates

can have the unintended consequence of introducing negative bias into the EPSE variance

estimator.

The EPSE variance estimator using Random Forests performed well in each simulation

and across all sample sizes, except for the optimized EPSE small sample sizes. This is

a practically important result in that there is almost no tuning needed by the user to fit

Random Forests, thus supporting the FIA’s use of maps of landcover and percent tree cover

created by Random Forests as a basis for using Endogenous Post-Stratification as a way to

increase precision of FIA estimates.
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CHAPTER 3

Reconstruction of late Holocene climate based on

tree growth and mechanistic hierarchical models

3.1. Introduction

Statistical estimation of past climate is important for understanding climate change in a

historical context and for predicting how climate will respond in the future (Stocker et al.,

2013). Ideally, one would model climate with a long time-series of spatially explicit, highly

precise instrumental measurements. However, the instrumental record only spans the last

one to two hundred years; perhaps less in many areas. Paleoclimate reconstructions allow for

investigation of climate dynamics at longer time scales than instrumental records and serve

as a test bed to evaluate performance of complex modern climate models. In the absence of

a dense network of instrumental observations, we must rely on climate proxy data to gain

a better understanding of climate history. Evans et al. (2013) describe a conceptual model

for how proxy processes integrate physical, chemical, biological, and geological climate in-

formation to yield the observed data. Their work calls for the development of mechanistic

proxy system models to describe how climate influences the proxy observations. Among

available proxy data sources, many late Holocene paleoclimate reconstructions focus on tree

ring widths because tree ring width data are widely available on a regional or hemispheric

scale, can contain hundreds or thousands of years of observations, are sensitive to tempera-

ture, precipitation, and drought, and have a very clear annual to seasonal resolution (Jones

et al., 1998; D’Arrigo et al., 2004; Moberg et al., 2005; Mann et al., 2008; Christiansen and

Ljungqvist, 2011; Griffin et al., 2013). Our contribution is to improve current statistical
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models for reconstructing late Holocene climate from annually resolved tree ring proxy data

and develop a framework for future model development.

The statistical reconstruction of paleoclimate histories from tree ring width data poses

many challenges (Jones et al., 2009). First, tree rings are formed through a broad range of

climatic, ecological, and growth allocation factors that make them noisier than instrumental

records. Dendrochronologists typically process the tree ring width data in an attempt to

remove the non-climate factors influencing growth (Cook and Kairiukstis, 1990). After re-

moving most of these non-climatic effects, the dendrochronologist aggregates the many tree

ring widths at a site into a tree ring chronology. The final filtered tree ring chronology con-

sists of one time series derived from a number of tree cores of a particular species exhibiting

a coherent signal (Cook and Kairiukstis, 1990). The tree ring standardization procedures

have been thoroughly discussed in the literature and, as such, we treat the chronologies as

observed data (Melvin and Briffa, 2008).

One challenge in the reconstruction of paleoclimate from tree ring width data is that

the climate signal influencing tree growth occurs in continuous time whereas we typically

summarize climate and tree ring widths in discrete time. A tree growth increment represents

the integrated response of the tree to climate conditions over a growing season(s), collapsing

sub-annual climate information into a univariate value, annual tree ring width (Fritts, 1976;

Bradley, 2011; Carbone et al., 2013). The model of tree rings we develop considers climate

on a monthly time step. However, there is only one tree ring observation per year, leading

to a temporal change of support problem (Gotway and Young, 2002).

Another factor to consider is that climatic influences on tree ring growth are multivariate,

typically involving temperature and precipitation. The joint estimation of temperature and

precipitation from a univariate tree ring width observation requires inverting a multivalued
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functional which has an infinite number of equally likely solutions (Tolwinski-Ward et al.,

2014). Without additional information or constraints, it is impossible to overcome this

loss of climate information. Further complicating a multivariate climate reconstruction is

the development of site-selection techniques in dendrochronology that select for univariate

climate signals in tree ring chronologies, resulting in a nonrandom sample of chronologies

(Cook and Kairiukstis, 1990).

The problem of reconstructing climate using univariate tree ring chronologies has been

addressed in the literature using a variety of methods. Many authors have attempted to

solve the climate reconstruction problem with linear statistical methods that allow for esti-

mation in the presence of a rank deficient design matrix, including regularized expectation-

maximization algorithms, truncated total least squares, and multivariate calibration methods

including partial least squares (Rutherford et al., 2003; Zhang et al., 2004; Rutherford et al.,

2005; Mann et al., 2008; Steig et al., 2009). These methods all assume a linear relation-

ship between the observed climate and tree ring chronologies. More recently, investigators

have developed new methods using correlated spatial random effects (Guillot et al., 2015)

or non-linear processes (Tolwinski-Ward et al., 2014) to link climate and proxy data. Other

statistically rigorous work has been done to investigate the environmental mechanisms of

tree growth using dendrochronological data (Hooten and Wikle, 2007). To develop the best

methodology for paleoclimate prediction, Tingley et al. (2012) recommend collaboration

between climate scientists and statisticians to develop a Bayesian hierarchical framework

that combines scientifically motivated processes with flexible spatio-temporal methods. Our

contribution is to bridge the gap between the linear multivariate calibration and regular-

ized expectation-maximization methods and the more mechanistic, ecologically motivated
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methods. Thus, we approach the problem of multivariate climate reconstruction in a novel

way.

Our work is based on Tolwinski-Ward et al. (2014), where we make many computational

and methodological improvements. First, we propose different forms of the deterministic

growth function linking climate observations to tree ring widths within a framework that

allows for a statistically principled evaluation of the effects of different growth model forms.

Next, we constrain the multivariate climate predictions by modeling a differential growth

response for each tree species, as is common in multispecies ecological modeling. The mul-

tispecies approach ameliorates the multivalued inverse problem while gaining the additional

benefit of inferring niche climate response of each tree species. We propose a computation-

ally efficient calibration model to link observed tree ring widths to the deterministic growth

model output speeding algorithmic convergence and improving mixing during parameter es-

timation. We use an upscaling data model that links monthly scale climate to annual scale

observed tree ring chronologies and propose a dynamic model for downscaling annual tree

ring observations to monthly climate anomalies. To facilitate climate backcasting, we pro-

pose a novel model for temperature and precipitation using a dynamic, flexible, multi-scale

process. Finally, we conduct a simulation experiment to validate the model’s predictive abil-

ity using a proper scoring rule that selects the optimal predictive model. We do not include

a direct comparison of our model to that of Tolwinski-Ward et al. (2014) for a number of

reasons. First, Tolwinski-Ward et al. (2014) models soil moisture, a nonlinear function of

temperature and precipitation, instead of precipitation, making a direct comparison difficult.

In addition, the model of Tolwinski-Ward et al. (2014) was fit to a reconstruction period

of 50 years and took approximately 350 CPU hours to fit in a high performance computing
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environment. We aim to reconstruct 456 years thus our model needs to be computationally

feasible for longer time scales.

We introduce the climate data in Section 3.2.1, detailing the transformation of the climate

data to anomaly space. In Section 3.2.2, we propose a calibration model to align the observed

tree ring data with output from a deterministic tree ring growth model, thereby assimilating

the climate and tree ring data. We describe the deterministic link function that takes climate

inputs and grows synthetic tree ring widths in Section 3.2.3 and present a dynamic, multi-

scale model that facilitates backcasting at a monthly scale in Section 3.2.4. Finally, we

formulate the posterior distribution on which inference is desired and outline the sampling

algorithm used for estimation in Section 4.4.

Ultimately, our modeling effort is successful if accurate predictions of historical climate

are obtained along with associated uncertainty. In Section 3.3, we discuss a scoring rule

commonly used in dendrochronology and describe an alternative that is proper. In Section

4.6, we present the pseudoproxy simulation study and interpret the results of this experi-

ment. We conclude by presenting our reconstruction of temperature and precipitation for

the Hudson Valley data in Section 3.5 and discuss these results in Section 3.6.

3.2. The Model

3.2.1. Climate Data Model. Our Instrumental period climate data are monthly PRISM

(Parameter-elevation Relationships on Independent Slopes Model) gridded data products

from 1895 to 2005 (PRISM Climate Group, Oregon State University). From PRISM, we

obtain temperature and precipitation at I = 16 sites within the Hudson Valley of New York,

USA. Monthly temperature Tts and log total precipitation Pts represent regional averages
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across the I sites for year t and month s. For our data, there are no months with zero pre-

cipitation and the log transform is well defined, although this is not true in general. Within

a given month, the temperature and log precipitation measurements are approximately nor-

mally distributed, hence, we model them using Gaussian distributions. It is common to

model the climate dynamics in anomaly space, resulting in standard normal temperature

and log precipitation anomalies

wTts =
Tts − T̄s

sTs

(27)

wPts =
Pts − P̄s

sPs

,(28)

where T̄s, P̄s, sTs
, and sPs

are the sample means and standard deviations of tempera-

ture and log precipitation for month s, respectively. We define the monthly scale anom-

aly temperature and log precipitation vectors for year t, wTt ≡ (wTt1, . . . , wTt12)
′ and

wPt ≡ (wPt1, . . . , wPt12)
′, the bivariate climate anomaly vector for year t, wt ≡ (w′

Tt,w
′
Pt)

′,

and the vector of all climate anomalies, w ≡ (w′
1, . . .w

′
τ )

′, for years t = 1, . . . , τ .

3.2.2. Tree Ring Data Model. The 34 tree ring chronologies contain measurements

from J = 12 different tree species in the Hudson Valley region of New York, shown in Table

3.1. Each of the tree ring chronologies are at least 160 years long and three chronologies

date back to 1453. Further details about how the tree ring chronology data were collected

and processed can be found in Pederson et al. (2013).

The tree ring observation yitj represents the annual observed tree ring width from the ith

location for species j at time t. We model the tree ring width data as arising from a mixture

of two distributions that depend on different forms of a deterministic growth model response
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Table 3.1. Species used in the reconstruction.

Species Number of Chronologies

T. canadensis 3
L. tulipifera 3
J. virginiana 1
C. glabra 3
Q. stellata 1
B. lenta 2
P. rigida 1
Q. montana 5
Q. rubra 4
Q. alba 5
Q. velutina 3
C. ovata 1
C. thyoides 2

to climate:

yitj|wt,θ
V S
j ,θPro

j , zj,β0,β1,σ
2 ∼





N
(
β0j + β1jf

(
wt,θ

V S
j

)
, σ2

j

)
if zj = 0

N
(
β̃0j + β̃1j f̃

(
wt,θ

Pro
j

)
, σ̃2

j

)
if zj = 1,

(29)

where f(wt,θ
V S
j ) and f̃(wt,θ

Pro
j ) are deterministic link functions that “grow” tree rings

given the climate anomaly wt and species specific model parameters θV S
j and θPro

j for the

two different growth models denoted as V S and Pro to be discussed in more detail later.

In Sections 3.2.3, 3.2.3.1, and 3.2.3.2, we describe the structure of the growth link function

and the growth model parameters θj. The stochastic indicator variable zj selects the growth

model form appropriate for species j. Examination of the posterior distribution of z provides

a statistically principled method for comparing proposed growth model forms. For j =

1, . . . , J , we specify a binomial prior on zj with prior probability 0.5 to allow each growth

model to be equally likely a priori.

In contrast with Tolwinski-Ward et al. (2014), where they standardize the tree ring

growth model output to have the same mean and standard deviation as the observed tree
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ring chronology, we use (29) to calibrate the tree ring growth model output to the observed

chronology. The growth model specific parameters β0j and β1j (β̃0j and β̃1j) center and

scale the synthetic tree ring growth model output to be coherent with the observed tree ring

widths up to an error with variance σ2
j (σ̃2

j ), where the (∼) distinguishes the growth model

form. We specify priors for the V S growth calibration model parameters, with those for

the Pro being defined similarly. For each species j = 1, . . . , J , we specify a hierarchically

pooled prior across species β0j ∼ N(µβ0 , σ
2
β0
) and β1j ∼ N(µβ1 , σ

2
β1
) with hyperpriors µβ0 ∼

N(1, 1), σ2
β0

∼ IG(1, 1), µβ1 ∼ N(1, 1), and σ2
β1

∼ IG(1, 1). For the j = 1, . . . , J calibration

standard deviation parameters we define the prior σj ∼ logN(µσ2 , σ2
σ2) with hierarchical

pooling hyperparameters µσ2 ∼N(0, 10) and σ2
σ2 ∼IG(1, 1). where N, logN, and IG refer to

the normal, lognormal, and inverse Gamma distributions.

3.2.3. Process Model. The statistical learning about past climate is achieved through

a deterministic tree ring growth model that uses monthly temperature and precipitation as

inputs. Formation of tree ring widths occur periodically throughout the growing season,

with the rate of growth influenced by the prevailing weather. However, the data and the for-

ward model are in the form of monthly climate variables and annual tree growth increments.

The monthly temporal scale of the temperature and precipitation presents a change of sup-

port problem because the observed tree ring data occur at annual, not monthly, resolution.

Hence, prediction of climate at a monthly scale involves downscaling the annual resolution

tree ring information into monthly increments. In years without climate observations, we

use (27) and (28) to accomplish the downscaling by imposing the observed monthly climate

patterns. The downscaling assumes that the monthly patterns and dynamics of tempera-

ture and precipitation within a given year are estimable from the observational period and

that these patterns are representative of the reconstruction period. For example, because
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temperature is strongly seasonal, the pattern of warm temperatures in summer and cold

temperatures in winter will be the same regardless of the absolute magnitude of the annual

or decadal temperature patterns. Precipitation is less consistent, but annual variability in

these patterns allows for realistic downscaling. To align the different data sources occurring

at different scales, we use a discrete time approximation of the continuous growth process

on a monthly scale, thus aligning tree growth with the PRISM data. We then aggregate

the monthly growth increments to an annual resolution, thereby upscaling the continuous

growth from temperature and precipitation for year t, species j, and month s into the growth

increments. Thus, the representation of annual tree ring growth under the V S model form

(the Pro model form is defined similarly, replacing θV S
j with θPro

j , f with f̃ and g with g̃) is

f
(
wt,θ

V S
j

)
=

12∑

s=1

χs min
(
g
(
wTts

,θV S
j , T̄s, sTS

)
, g
(
wPts

,θvs
j , P̄s, sPS

))
,(30)

a weighted sum of monthly growth function responses to temperature and precipitation where

the weights χs are the monthly average length of daylight scaled to the unit interval (0, 1).

Thus, χs scales growth to the known average amount of sunlight in a month, mimicking the

physiology of tree growth. The monthly-scale function g (g̃) downscales the marginal annual

climate anomaly to a monthly value and “grows” a monthly tree ring increment given the

marginal climate. These marginal monthly growth functions then are combined by taking the

minimum, allowing each month’s growth to be either temperature or precipitation sensitive.

Hence the tree ring growth model follows the “principle of limiting factors,” which states

that tree growth is constrained by the climatic variable that is limiting (Fritts, 1976). In

the next sections, we describe the two forms of g and g̃ used in our model, which we call

“VS-Lite,” representing the growth model form used in Tolwinski-Ward et al. (2014), and

“probit.”
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Biologically, all tree species in the tree ring network have a similar response to climate.

For example, all tree species in the network have more similar climatological needs than,

say, a tropical tree, which requires an entirely different climate. One explanation for what

allows many tree species to grow in the same region are that different species occur in niche

deviations from the overall mean response to climate. Hence, recent research in climate

reconstruction methods demonstrates that inclusion of multiple tree species improves climate

reconstruction skill (Garćıa-Suárez et al., 2009; Cook and Pederson, 2011). Allowing for

species-specific climate responses ameliorates the difficulties of inverting the multivalued

functional relationship between climate and tree ring widths by placing multiple constraints

on the set of possible climate scenarios. Using multiple species is beneficial because it

provides more constraints on climate and may allow for more precise estimation than in

Tolwinski-Ward et al. (2014). However, separate growth parameters for each species increases

the number of model parameters to be estimated, therefore we borrow strength by modeling

the growth parameters hierarchically to improve parameter estimation and predictive skill

(Gelman and Hill 2006, Chapter 12.2; Hooten and Hobbs 2015; Hobbs and Hooten 2015,

Chapter 6.2). By treating each tree species’ response to climate as a random draw from a

pooled distribution, the model shares information among tree species. This borrowing of

strength among species is easily incorporated into the probit growth model framework, but

is not straightforward in the VS-Lite framework.

3.2.3.1. VS-Lite tree ring growth model. The “VS-Lite” model represents a statistical

approximation to the Vaganov-Shashkin-Lite model that has been shown to create reasonable

tree ring width chronologies given climate (Shashkin and Vaganov, 1993; Vaganov et al.,

2006; Tolwinski-Ward et al., 2011). The VS-Lite tree ring growth model uses the linear
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Figure 3.1. Example VS-Lite and probit ramp functions. The black dots on
the VS-Lite plot represent the locations of Tminj

and Tmaxj
, the temperatures

below which growth is zero or above which growth is optimal (equivalently
Pminj

and Pmaxj
for precipitation). The black dot on the probit plot represents

the probit mean growth response to temperature µTj
(µPj

for precipitation) and
the line shows the probit standard deviation of growth response to temperature
σTj

(σPj
for precipitation).

ramp function

Ψ (η) =





0 if η ≤ 0

η if 0 < η < 1

1 if η ≥ 1,

as a link between climate and tree ring width growth shown in Figure 3.1. The monthly tree

ring growth functions for temperature and precipitation using VS-Lite are

g
(
wTts

,θV S
j , T̄s, sTs

)
= ψ

(
wTts

sTs
+ T̄s − Tminj

Tmaxj
− Tminj

)
(31)

g
(
wPts

,θV S
j , P̄s, sPs

)
= ψ

(
exp {wPts

sPs
+ P̄s} − Pminj

Pmaxj
− Pminj

)
,(32)
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and are combined according to the principle of limiting factors using (30). The growth

parameters for the VS-Lite tree ring growth model are θV S
j ≡

(
Tminj

, Tmaxj
, Pminj

, Pmaxj

)′

for each species j = 1, . . . J . For temperatures below Tminj
, there is no tree ring growth.

For monthly temperatures between Tminj
and Tmaxj

, tree ring growth increases linearly over

the unit interval (0, 1). When the monthly temperature exceeds Tmaxj
, growth occurs at a

maximum rate, taking a value of 1. The interpretation for Pminj
and Pmaxj

is similar.

To complete the VS-Lite growth model parameterization, we specify priors for the growth

parameters θV S
j using a four parameter Beta(α, β, L, U) distribution, a Beta(α, β) distribu-

tion that has been shifted and scaled to have lower endpoint L and upper endpoint U . These

prior models require expert knowledge to specify, hence we follow the recommendations of

Tolwinski-Ward et al. (2013), recognizing that the previous work modeled soil moisture in-

stead of precipitation under a different climate scenario than the Hudson Valley. We chose

informative priors that place a majority of the probability mass in the center of the support

that result in growth model priors that are reasonable given the climate of the Hudson Valley.

For j = 1, . . . , J , the VS-Lite parameter priors are Tminj
∼ Beta(9, 5, 0, 9), Tmaxj

∼ Beta(3.5,

3.5, 10, 24), Pminj
∼ Beta(3.5, 3.5, 65, 85), and Pmaxj

∼ Beta(3.5, 3.5, 85, 105). Despite

existing knowledge of tree response to climate, the VS-Lite tree ring growth model could be

sensitive to prior specification, especially if the true growth parameter values lie outside the

range of prior support. In this case, the posterior probability of correctly estimating the true

parameter value is exactly zero. Therefore, climate reconstruction using the VS-Lite growth

model formulation has the potential to be highly influenced by misspecification of the prior

support.

3.2.3.2. Probit tree ring growth model. An alternative to the VS-Lite tree ring growth

model is the probit growth model, which was not examined in Tolwinski-Ward et al. (2014).
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The probit growth model replaces the linear function ψ(η) in the VS-Lite growth model

by the infinitely differentiable inverse normal cumulative distribution function Φ−1(η). The

probit growth model parameters have infinite support and are parameterized as θPro
j ≡

(
µTj

, σ2
Tj
, µPj

, σ2
Pj

)′
. There are only slight differences in the shape of the VS-Lite and probit

growth model functions, as seen in Figure 3.1. The probit ramp function produces a smoother

response to climate than the VS-Lite ramp function, but other than smoothness, the two

shapes are quite similar, hence it seems likely that the shape of the growth function alone

will not significantly improve predictive performance. The motivation for the probit growth

function is that our model framework takes advantage of statistical properties not available

in the VS-Lite framework. First, the prior support for the probit growth model is the real

line, in comparison to the VS-Lite prior support that is restricted to compact support. In

practice, if the true growth model in the VS-Lite framework is not in the range of prior

support, the posterior probability of correctly estimating this parameter is exactly zero,

regardless of the amount and quality of data. The probit growth function does not suffer

from this problem. Additionally, the probit model can be easily extended to a hierarchical

pooling framework. We propose the probit growth model form to evaluate the influences

of these desirable statistical probabilities on the climate reconstruction. If the predictive

performance of the two models is equivalent, the probit model will be preferred due to these

properties.

The monthly probit growth increments due to temperature and precipitation are

g̃
(
wTts

,θPro
j , T̄s, sTs

)
= Φ−1

(
wTts

sTs + T̄s − µTj

σTj

)
(33)

g̃
(
wPts

,θPro
j , P̄s, sPs

)
= Φ−1

(
exp {wPts

sPs + P̄s} − µPj

σPj

)
.(34)
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where the parameters µTj
and µPj

represent the species-specific temperature and precipita-

tion probit mean growth rate, and the parameters σTj
and σPj

control the effective range

where tree growth responds to climate, the probit standard deviation. A species with a

higher value of µTj
will experience better growth under warmer weather than a species with

a lower value of µTj
and a species with a larger σTj

will have a larger range of temperatures

in which that tree species will grow than a species with a smaller σTj
. The interpretation of

these growth model parameters is similar for precipitation.

For j = 1, . . . , J , we specify the probit growth model parameter distributions for the

species as: µTj
∼ N

(
µµT

, σ2
µT

)
, σTj

∼ logN
(
µσT

, σ2
σT

)
, µPj

∼ N
(
µµP

, σ2
µP

)
, and σPj

∼

logN
(
µσP

, σ2
σP

)
. The pooling of these effects occurs by adding one more level in the hier-

archical model by defining a hyperprior model for each of the prior parameters above with

µµT
∼ N(13, 4), σ2

µT
∼ IG(2, 0.5), µσT

∼ N(0, 1), σ2
σT

∼ IG(2, 0.5), µµP
∼ N(85, 16), σ2

µP
∼

IG(2, 0.5), µσP
∼ N(0, 2), σ2

σP
∼ IG(2, 0.5). These prior values represent likely values that

cover the range of growing season temperature and precipitation values seen in the Hudson

Valley while being highly flexible, thus allowing the model to estimate the growth parameters

more flexibly than the VS-Lite growth model.

3.2.4. Dynamic multi-scale climate process. We model temperature and log pre-

cipitation anomalies jointly with a dynamic, multi-scale model, allowing prediction of un-

observed temperature and precipitation when combined with the tree ring chronology data.

The model is a temporal vector autoregressive process among years, given a propagator ma-

trix A, and a correlated autoregressive process among months determined by the structure

of a covariance matrix Σ. To account for trend in the temperature anomaly time series

during the observational period 1895-2010, we include an intercept ∆0 and slope ∆1 in the

model for years after t∗ = 1895. In years before t∗, we do not have observational data and
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thus we do not model a trend. Using these assumptions, we model the dynamic de-trended

process



wTt −∆0J − (t− t∗)∆1J

wPt


 ∼ N


A



wTt−1 −∆0J − (t− t∗)∆1J

wPt−1


 ,Σ


 if t ≥ t∗,

(35)



wTt −∆0J

wPt


 ∼ N


A



wTt−1 −∆0J

wPt−1


 ,Σ


 if t < t∗.(36)

The propagator matrix A =



φ1, 0

0, φ2


 ⊗ I defines the annual scale autocorrelation for the

temperature and log precipitation anomalies, where φ1 and φ2 are the annual autocorrelation

parameters. In these expressions, I is the identity matrix, J is a 12× 1 vector of ones. We

model the inter-annual covariance Σ with a temporal multivariate conditionally autoregres-

sive (MCAR) structure, a generalization of the conditionally autoregressive (CAR) structure

in time that allows for the within year temperature and precipitation anomalies to have their

own temporal autocorrelation parameters while also including a temporally explicit cross-

correlation between the anomaly measurements (Mardia, 1988; Carlin and Banerjee, 2003;

Gelfand and Vounatsou, 2003; Jin et al., 2005). We found the MCAR model to be the best

predicting among a set of candidate models for temporal autocorrelation.

To construct the temporal MCAR covariance matrix Σ, we first define a temporal CAR

precision matrix that will be used as component in building Σ. The particular precision

matrix we use, Q(ω), specifies a process identical to an autoregressive process of order one

in the time series literature if |ω| < 1 (Cressie and Wikle, 2011, p. 170). We define the

monthly temperature CAR precision matrix Q(ωT ) with autocorrelation parameter ωT , and
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the monthly log precipitation CAR precision matrix Q(ωP ) with autocorrelation parameter

ωP allowing each climate variable to have its own monthly autocorrelation. We decompose

Q(ωT ) = LTL
′
T and Q(ωP ) = LPL

′
P with a Cholesky decomposition (one could also use a

spectral decomposition) and construct the MCAR precision matrix as

Σ−1 =
1

σ2
w



L′

T 0

0 L′
P


 (Λ⊗ I12)



LT 0

0 LP


(37)

where the matrix Λ =



1 ρ

ρ 1


 is a correlation matrix with ρ representing the atemporal

cross-correlation between temperature and precipitation, σ2
ω is a global variance parameter,

and ⊗ represents the Kronecker product. Thus using (37), we model intra-annual autocor-

relation, monthly autocorrelation, and cross-correlation in the climate process.

To significantly reduce computation time, we employ an empirical Bayes approach to

process the climate data (Casella, 1985). We estimate the propagator matrix A, the intra-

annual covariance matrix Σ, and the trend parameters ∆0 and ∆1 offline using a hybrid

Metropolis-Hastings and Gibbs MCMC sampling algorithm using uniform(−1, 1) priors for

the parameters ρ, ωT , and ωP and an Inverse Gamma(1, 1) prior for the variance σ2
w. After

fitting the model, we use posterior median values of each parameter as estimates of the true

processes parameters, thus our posterior predictions do not include climate model parameter

uncertainty and our corresponding credible intervals will be overly optimistic.

3.2.5. Posterior. We desire inference on the posterior distribution and quantities de-

rived from the posterior distribution. The posterior we seek to approximate with our Markov
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Chain Monte Carlo (MCMC) algorithm is

[
w,β0,β1,θ

V S,θPro, σ2, z
∣∣y,T ,P

]

∝

I∏

i=1

J∏

j=1

τ∏

t=1

[
yitj
∣∣β0j , β1j ,wt,θ

V S
j , σ2

j

](1−zj)

×
[
yitj

∣∣∣β̃0j , β̃1j ,wt,θ
Pro
j σ̃2

j

]zj

× [wt|wt−1,A,Σ,∆0,∆1] [β0] [β1]

×
[
θV S

] [
θPro

] [
σ2
]
[z] ,

where the parameter models for the VS-Lite and probit growth model are represented as

[
θV S

]
and

[
θPro

]
, respectively. Implementation of a hybrid Metropolis-Hastings and Gibbs

MCMC algorithm allows for estimation of the posterior distribution (Banerjee et al., 2004;

Carlin and Louis, 2011). Our model was implemented using R (R Core Team, 2015), while

leveraging significant portions of C++ code using RcppArmadillo (Eddelbuettel and Sander-

son, 2014) to increase computation speed. The MCMC algorithm for each candidate model

was run for 15,000 iterations with the first half discarded as burn-in and thinning every 5

observations, for three parallel chains, resulting in 4,500 posterior samples for a total compu-

tation time of one hour on a dual core 2.6 GHz laptop with 8GB memory. Convergence was

assessed using Gelman-Rubin’s R̂ statistic (Gelman and Rubin, 1992) and visual inspection

of the trace plots.

3.3. Model Evaluation

Traditional paleoclimate reconstructions evaluate predictive performance with out-of-

sample data using the coefficient of efficiency (CE) (Cook et al., 1994; Rutherford et al., 2005;

Tingley and Huybers, 2010a,b). Despite the accepted use of this scoring statistic, Gneiting
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and Raftery (2007) suggest that skill scores like CE are improper in general. Impropriety

implies that it is possible to have predictions that, under expectation, have better CE skill

scores than a model that is optimal. Therefore, use of improper scoring rules can lead to

incorrect inference about predictive skill among a set of predictive models. Thus, we use

a proper scoring rule. Proper scoring rules guarantee that, under expectation, the optimal

predictive model will have the best predictive score (Gneiting et al., 2007; Gneiting, 2011;

Hooten and Hobbs, 2015).

Our model produces a probabilistic forecast, hence, we use the continuous ranked prob-

ability score (CRPS), a proper scoring rule that accommodates both probabilistic and point

forecasts. Several recent papers on late Holocene climate reconstructions have made use of

the CRPS (Barboza et al., 2014; Werner and Tingley, 2015). Given a forecast with cumu-

lative distribution function, Ft, at time t and out-of-sample observations yoos, the CRPS is

defined as

CRPS({Ft}
τ
t=1,yoos) = −

τ∑

t=1

∫ ∞

−∞

(
Ft(y)− I{y≥yoos,t}

)2
dy.(38)

Gneiting et al. (2007) show how (38) can be written alternatively as

CRPS({Ft}
τ
t=1,yoos) =

τ∑

t=1

(
EFt

|yt − yoos,t| −
1

2
EFt

|yt − y′t|

)
,(39)

where yt and y
′
t are independent copies of a linear random variable with distribution function

Ft and the expectation E is with respect to the probability density induced by Ft. The first

expectation in the above equation measures calibration, the absolute error of the prediction

relative to the out-of-sample value and the second expectation rewards predictions that are
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sharp (i.e., narrow prediction intervals). Hence, the CRPS rewards probabilistic predictions

that are accurate and precise.

In a Bayesian context, the CRPS can be estimated after obtaining posterior samples.

First, sample ỹ(k) from the posterior predictive distribution
[
ỹ(k)

∣∣∣y,θ(k)
]
at each post burn-

in iteration k. Then, the expression in (39) is approximated by

ĈRPS({F̂t}
τ
t=1,yoos) =

τ∑

t=1

(
1

K

K∑

k=1

∣∣∣ỹ(k)t − yoos,t

∣∣∣− 1

2K2

K∑

k=1

K∑

ℓ=1

∣∣∣ỹ(k)t − ỹ
(ℓ)
t

∣∣∣
)
.(40)

We use the CRPS score in the simulation study to select the best model based on predictive

performance. The CRPS is a negatively oriented scoring rule, therefore the model with the

lowest ĈRPS is the best scoring model, and under expectation, the best predicting model.

3.4. Simulation Study

We consider three variants of the model presented above to conduct a reconstruction

experiment. First, we consider the VS-Lite tree ring growth model, modifying the work

of Tolwinski-Ward et al. (2014) to be consistent with our modeling framework using our

climate model and multi-species approach. Second, we use only the probit tree ring growth

model. Lastly, we use the mixture model described in (29) that allows for choice of tree ring

growth model. We evaluate predictive performance of these candidate models over nine total

simulation scenarios, using each of the tree ring growth models to simulate pseudoproxy data

and fitting each growth model to each of the three simulated datasets.

We simulate the data as follows. First, we estimate A and Σ from the instrumental

climate data using (35). Using these estimates, we simulate a realization of the climate

process with 446 years of pre-instrumental simulated climate variables while adding a trend

with slope of 1
110

to the 110 years of temperature observations in the observation period,
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Figure 3.2. Simulated and observed tree ring width chronology for Hudson Valley

producing a current day increase of one degree Celsius. For the VS-Lite tree ring growth

model simulation we sample the growth parameters from uniform distributions. For each

species j, Tminj
∼ U(0, 9), Tmaxj

∼ U(10, 24), Pminj
∼ U(65, 85), and Pmaxj

∼ U(85, 105).

For the probit tree ring growth model we sample the growth parameters µTj
∼ N(16, 4),

σTj
∼ log N(log(1), 0.5), µPj

∼ N(85, 16), and σPj
∼ log N(log(2), 1) for each species j =

1, . . . , J .

Next, we use each tree ring growth model to produce a noiseless tree ring chronology,

standardizing each chronology to have mean 1 and standard deviation of 0.2, as in the

Hudson Valley dataset. Adding in noise representing measurement and processing error, we

simulate observed chronologies

ysimtj ∼ N

(√
(1− σ2

noise)f(wt,θ
sim
j ), σ2

noise

)
.(41)
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The parameter σ2
noise controls the signal to noise ratio in the simulated tree ring chronology,

values of σ2
noise near zero represent a high signal to noise ratio while values near one represent

a low signal to noise ratio. We let σ2
noise = 0.75, representing a signal to noise ratio of 0.58,

which is at the high end of what is realistic for many tree ring chronologies (Smerdon, 2012).

Figure 3.2 shows a realization of the simulated chronology and the observed chronology from

Hudson Valley, demonstrating that our simulation methodology produces realistic tree ring

chronologies. We apply the same structure of missingness to our simulated data as in the

observed chronology, producing simulations as close as possible to the observed data.

Table 3.2. Table of CRPS scores for annual temperature, growing season
temperature, annual precipitation, and growing season precipitation for data
simulated with the VS-Lite growth model.

ĈRPS Climatology VS-lite probit mixture
Annual temperature 531.29 455.71 455.75 455.98
Growing season temperature 486.52 462.71 463.93 464.45
Annual log precipitation 98.53 85.20 85.16 84.86

Growing season log precipitation 130.92 91.65 92.20 90.63

Table 3.3. Table of CRPS scores for annual temperature, growing season
temperature, annual precipitation, and growing season precipitation for data
simulated with the probit growth model.

ĈRPS Climatology VS-lite probit mixture
Annual temperature 571.92 446.90 446.99 446.72

Growing season temperature 482.51 450.02 451.15 451.04
Annual log precipitation 101.06 90.61 90.36 90.69
Growing season log precipitation 129.34 93.25 93.59 93.61

Table 3.4. Table of CRPS scores for annual temperature, growing season
temperature, annual precipitation, and growing season precipitation for data
simulated with the mixture growth model.

ĈRPS Climatology VS-lite probit mixture
Annual temperature 540.23 438.65 438.33 438.80
Growing season temperature 489.36 440.66 441.17 440.60

Annual log precipitation 97.82 85.28 85.40 84.49

Growing season log precipitation 126.33 90.51 91.02 90.04
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The model characteristic most important to us in climate reconstruction is predictive

ability. The reconstruction temperature and precipitation ĈRPS values are shown in Table

3.2 for data simulated with the VS-Lite growth model, Table 3.3 for data simulated with the

probit growth model, and Table 3.4 for data simulated with the mixture growth model. For

each of the simulated datasets ĈRPS was estimated for both an annual and growing period

reconstruction, with bold scores highlighting the model that performs best for each simulated

dataset and time period. As a baseline comparison, the ĈRPS scores for a climatological

prediction are included. The ĈRPS values suggest all three models are similar in predictive

ability, although there might be a slight preference for the mixture growth model. Hence,

we discuss the mixture growth model in what follows. Although the probit growth model is

often not the best scoring model, the mixture growth model indicator variable, z, suggests

an even split between the VS-lite and probit tree ring growth model (the probit models is

selected about 53% of the time) within the MCMC chain. An example reconstruction using

the mixture tree ring growth model on the simulated data, Figure 3.3, demonstrates that

the reconstruction performs quite well for log precipitation, but is rather uninformative for

temperature. Note that, during approximately 1650-1700, the uncertainty intervals for log

precipitation reconstruction increase in width and predictive skill decreases due to increasing

numbers of missing chronologies as well as the amount of replication within a given chronol-

ogy decreasing. This uncertainty provides information about when the reconstruction is

performing well and over what time periods the predictions are no better than climatology

without relying on calibration skill measures like CE.

In addition to producing accurate climate reconstructions, all growth model types re-

cover the simulated growth model parameters when the model is applied to data simulated
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Figure 3.3. Reconstruction of Temperature and Log Precipitation from data
simulated with the mixture growth model and fit with the mixture growth
model. The gray shading is proportional to the posterior predictive density,
the dotted gray lines show the 95% posterior predictive credible interval, and
the black line is the simulation truth.

with the same structure, showing that all of the models are capable of estimating the sim-

ulated growth model parameters. This result validates the growth model’s usefulness for

investigation of climatological niches for different tree species as well as providing accurate

predictions of climate. Yet, despite accurately estimating the temperature growth param-

eters, the temperature reconstruction is not much more informative than a climatological

prediction. Hence, the simulation suggests the failure to predict temperature patterns is not

due to poor estimation of the simulated growth parameters. To further illuminate why the

model is unable to reconstruct temperature, Figure 3.4 shows the observed monthly temper-

ature and precipitation patterns with the probit growth model parameters shaded showing

the range over which the model is sensitive to climate. We obtain very little learning about

temperature at an annual scale, as the model is sensitive to temperature for, at best, two to

four months of the year and only in the spring/fall with no learning about temperature during
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the winter (when temperature is most variable) and summer months. In fact, the effective

learning about temperature occurs in much less than four months due to the multiplicative

interaction between temperature and precipitation in (30). Therefore, any learning about

temperature from the growth model is dominated by monthly variability in temperature. In

contrast, the reconstruction of precipitation is quite accurate, especially in the near past,

because the model is sensitive to precipitation values for all months of the year, illustrating

that the change of support from monthly to annual scale causes few problems for precipita-

tion. An investigation of climate scenarios with more significant overlap of the climate and

tree growth sensitivities in simulations (not shown in these results) demonstrates potential

for reconstruction of both temperature and precipitation patterns, presenting opportunities

for further applications to other datasets.

3.5. Hudson Valley Results

Based on the predictive results in the simulation study, we applied the mixture tree ring

growth model to the Hudson Valley data. Using our simulations and expert priors, the most

obvious characteristic of the reconstruction is that we obtain only minimal learning about

temperature, while the precipitation reconstruction performs well. To validate our predictive

model, we translate and scale the reconstruction of Palmer Drought Severity Index (PDSI)

in Pederson et al. (2013), a reconstruction that uses the same Hudson Valley dataset but

very different methods, and compare this result to our reconstruction of log precipitation.

Figure 3.5 shows that our log precipitation reconstruction strongly correlates (r = 0.74) with

the previous PDSI reconstruction effort for the near past, while having the added benefit of

explicitly accounting for uncertainty. It is reasonable that PDSI would be correlated with

log precipitation because PDSI is a measure of drought severity and, because there is little
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Figure 3.4. Reconstruction of annual temperature depends on the growth
parameters. The shaded area shows where the growth parameters are sensitive
to climate and the gray lines are observed climate. The vertical lines in the
temperature plot show that annual reconstruction is only dependent on four
or fewer months. Thus, annual scale information about temperature is hard
to recover from only a few months while precipitation information can be
extracted across all months.

inter-annual variability in temperature, the primary driver of drought (and tree growth) in

the Hudson Valley is the amount of precipitation (Martin-Benito and Pederson, 2015).

The uncertainty estimates for the reconstruction of log precipitation provide insight for

the prediction’s reliability. As we backcast in time, the 95% credible interval size approaches

the size of predictive intervals derived using the observational data only, suggesting that the

reconstruction lacks predictive ability before approximately 1650-1700. This loss of predictive

ability, as seen in the simulation study, occurs during a time period where many tree ring

chronologies are lacking enough replication to be included in the ring network. As such,

deviations between our log precipitation reconstruction and the previous reconstruction of

PDSI in Figure 3.5 before 1650-1700 can be explained in the context of prediction uncertainty.
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In addition to the climate reconstructions, it is possible to obtain inference about the

climatological niches different tree species occupy from the growth parameters. Many tree

species in the Hudson Valley dataset are represented in only one or two chronologies, there-

fore, inference is limited due to the relatively small sample size and associated overlap in

uncertainty intervals. For the VS-lite growth model, the posterior samples show little abil-

ity to discern different ecological niches, but the posterior samples from the probit growth

model posterior show many species have statistically different mean response to climate,

demonstrating that the probit growth model can be easily adapted for ecological learning

in a richer dataset where climatological prediction is not of interest. Also important is the

posterior distribution of the indicator of model importance z. We find a slight preference

for the probit growth model using the Hudson Valley data, with a posterior probability

P (z = 1) = 0.54. This is not substantially different than the prior probability of 0.5, which

is expected because the two growth functions have very similar shapes. The slight preference

for the probit growth occurs because of improved parameter estimation through the use of

a hierarchically pooled prior model.

3.6. Discussion

We presented a methodological framework for reconstructing paleoclimate using a mech-

anistic Bayesian hierarchical model motivated by the work of Tolwinski-Ward et al. (2014).

We proposed a novel probit tree ring growth model that takes advantage of the biology of

tree growth and pools tree growth parameters to improve estimation and decrease sensitivity

to prior specification. This new growth function was proposed in a framework that rigor-

ously evaluates the growth model influence. Our extension to multispecies modeling of tree

response to climate constrained predictive backcasts to a climate scenario consistent with
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Figure 3.5. Climate reconstruction from the Hudson Valley chronology. The
gray shading is proportional to posterior predictive density, the dotted lines
show the 95% credible intervals and the solid black line in the precipitation
plot is a translated and scaled reconstruction of drought (PDSI) from Pederson
et al. (2013).

the data, thereby improving predictive skill over models that do not explicitly incorporate

multiple species. The introduction of a calibration model reduced computation time and

improved MCMC convergence over previous standardization methods. We developed an

upscaling and downscaling model to align the different data sources on the same scale and

proposed a novel dynamic joint process model for temperature and precipitation account-

ing for temporal correlation and cross-correlation. Our pseudoproxy simulation experiment

evaluated predictions with a proper scoring rule that uses the full probabilistic forecast. The

simulation study provided insight about model performance and provided feedback that can

be used to interpret results from the Hudson Valley data.

By using a biologically motivated Bayesian hierarchical model for reconstructing climate

processes from tree rings widths, we combine statistical techniques with scientific models de-

veloped in dendrochronology. Our modeling framework explicitly accounts for uncertainties,
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in comparison to many previous climate reconstructions that use linear statistical methods

and rely on asymptotic assumptions or bootstrap algorithms to estimate uncertainties, as dis-

cussed in Tingley and Huybers (2010b). An added benefit to using a biologically motivated

model is the ability to adapt this modeling framework to make inference about ecological

niches that different tree species occupy from the growth model parameter estimates.

By outlining the model shortcomings in detail, we gain a better understanding of the

problem of multivariate climate reconstructions and can develop new ideas for improvement.

Tree ring growth models are simplifications of the true biological process and more scientific

realism can be added. For instance, at very warm temperatures, tree growth is inhibited

due to water lost by transpiration. Including more accurate biology in the growth model

will increase the number of months that are sensitive to the growth process and alleviates

the change of support problem for the prediction of temperature. Another option to im-

prove temperature predictions is to modify the limiting factor approach in (30) to allow

more months to contribute to the reconstruction of temperature. Generalizing the multi-

scale climate process model will allow more complicated dynamics to be incorporated into

the model, either through a statistical effort by allowing time-varying, non-stationarity pro-

cesses, or by assimilating deterministic climate forcings in the mean of the reconstruction,

as in Li et al. (2010) and Barboza et al. (2014). The introduction of a spatially explicit

model could lead to spatially explicit climate field reconstructions, but would require a more

computationally efficient method of fitting Bayesian models, like Hamiltonian Monte Carlo,

variational Bayes, or integrated nested Laplace approximations. These and other potential

improvements present opportunities for collaboration with dendrochronologists, climate sci-

entists, ecologists, and statisticians to increase understanding of the relationship between

climate and tree growth.
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CHAPTER 4

Reconstruction of spatio-temporal temperature

processes from sparse historical records using

probabilistic principal component regression

4.1. Introduction

There is a need for accurate estimates of paleoclimate to better understand the impacts

of climate change, especially temperature and precipitation. Scientific measurements of tem-

perature and precipitation have been recorded for the last few hundred years, and in many

locations for a much shorter time. Historical weather data are often unreliable, sparse, and

noisy because these data were recorded before widespread adoption of scientific measure-

ment standards. As such, historical weather data are not widely used for rigorous statistical

reconstructions of climate. To supplement the short record of direct human observations of

temperature and precipitation, there are ongoing efforts to collect data that are indirect mea-

surements of paleoclimate. These data, broadly classified as paleoclimate proxy data, consist

of measurements of environmental, biological, geological, or other processes that incorporate

climate information in an archive (Evans et al., 2013). Examples of paleoclimate proxy

archives used for climate reconstruction include tree ring widths, ice cores, lake sediments,

pollen, and compilations of historical records. After collection of these data, paleoclimate

proxies are used for statistical learning about the relationships between the proxy data and

climate, resulting in estimates of paleoclimate.

There are many challenges when modeling paleoclimate data. Each proxy archive has

unique characteristics that present different modeling challenges. For example, uncertainty
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in temporal resolution may vary among proxy archives. Tree ring widths are annually re-

solved (one tree ring is assumed to be one year) whereas the temporal resolution of lake

sediments, created by landscape scale depositional processes that depend on precipitation,

surrounding soil structure, fire events, and other processes that occur on varying timescales,

present uncertainty in dating that must be accounted for (Blaauw and Christen, 2011; Pa-

ciorek and McLachlan, 2009; Blaauw and Christen, 2005). Proxy data can respond to slowly

varying decadal or centennial time scales (pollen records or lake sediments), annual time

scales (tree ring widths or annual coral growth), or daily time scales (compilations of his-

torical measurements of temperature and precipitation). In addition, the observational data

used to train statistical models can be hourly, daily, monthly, or even annual measurements

of temperature and precipitation. Therefore, there is often a change of temporal support

between the observed climate data and the paleoclimate proxy data. Thus, any statistical

model must account for the change of support (Gotway and Young, 2002). Also, paleo-

climate data are often sparse, contain many missing values, occur at irregular spatial and

temporal locations, and are correlated in time. These challenges make it difficult to create

generic statistical algorithms for analysis. Further complicating matters, the true target that

one wishes to predict (the historical, unobserved climate) is never available to evaluate the

predictive performance of our modeling efforts. To address the lack of data for predictive

validation, skill scores to evaluate and rank model performance have been developed (Cook

and Kairiukstis, 1990).

One source of paleoclimate data are historical records. Because humans have always

been interested in weather, there are vast nonscientific records of weather. However, many

reconstructions of paleoclimate using compiled historical records are not subject to direct

statistical analysis because they often consist of less than precise measurements of weather
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reported in letters, newspapers, books, and other documentary evidence (Bell and Ogilvie,

1978; Ogilvie, 1984; Kastellet et al., 1998; Brázdil et al., 2006). In addition, the data are

often of unknown or varying reliability and are typically sparse, sometimes involving only a

few locations per year. There is potential to extend our scientific understanding of climate

back in time with the use of these historical weather records. Thus, there is a need for a

statistical framework that can model historical data compiled from a variety of disparate

sources by leveraging high quality climate data from the recent past.

For our reconstruction, we utilize two datasets we call the historical period dataset and

the observational period dataset. The historical dataset consists of temperature observations

from 1820-1893 from military records kept at United States forts in the Upper Midwestern

United States. These data were compiled as part of the Climate Database Modernization

Program (Andsager et al., 2004; Climate Database Modernization Program). At these forts,

measurements were recorded with time and date, however, measures of time were often

imprecise (e.g., “midday” or “early morning”). We focus on the month of July because tree

growth in the study region has been shown to be highly influenced by July temperature, and

the predictions from our work will be used for modeling forest stand dynamics in response to

climate (Goring et al., 2013). As there was no standardized protocol for collection of these

data, there are many data irregularities. July temperature measurements were obtained

by a variety of methods: some records report daily minimum and maximum temperatures,

others hourly measurements, and sometimes there are days or weeks without measurements.

In addition, the number and locations of forts change through time, containing between

two and 36 fort locations per year due to historical events including the Civil War and the

westward expansion of the United States in the late 19th century. Therefore, our model must

align data sources through time and space, reconstructing temperature at approximately
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(b) Observational period PRISM temperatures.

Figure 4.1. Plot of four representative years of the two data sources.

20, 000 spatial locations. An example of four representative years of historical fort data is

shown in Figure 4.1a.

Because the historical data are sparse, we cannot use traditional spatial statistical meth-

ods such as Kriging, because these methods require larger sample sizes to be computationally

stable. Thus, we rely on an auxiliary dataset to facilitate our reconstruction. For the obser-

vational period data, we used the Parameter-elevation Relationships on Independent Slopes

Model (PRISM) monthly average temperature surfaces created by interpolation of the United

States Historical Climate Network data over the period 1895-2010 (PRISM Climate Group,

Oregon State University). The PRISM data include 115 years of average July tempera-

tures occurring over approximately 20, 000 spatial locations of interest, as shown in Figure

4.1b. We use the observational data as a basis to learn about temperature in the historical

period. Unlike the historical observations, the PRISM data are compiled from the United

States Historical Climate Network (USHCN) and consist of high quality model interpolated

temperature records.
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To enable learning about climate in the historical period, we need to align the two

data sources to common spatial and temporal scales. We align each fort location with the

nearest grid cell in the PRISM data, thus accounting for any potential spatial misalignment.

Aligning the data sources in time is more complicated because the fort data are highly

irregular, whereas the PRISM data are monthly mean temperatures. We model the historical

July temperature using cyclic cubic splines that are highly flexible, able to accommodate

the irregular nature of the historical data, and constrained to reconstruct diurnal patterns

(Wood, 2006). The linear mixed model for daily July temperature is

yits = B(s)υit + εits,(42)

where yits is the temperature observation at location i for year t and hour s. The matrix

B(s) is a cyclic cubic spline basis expansion of order 4 over the 24 hour daily cycle with

associated random effects υit for each site i and year t in the historical period, imposing a

diurnal pattern on temperature. The model is completed by the inclusion of independent,

uncorrelated Gaussian error εits, giving rise to interpolated daily temperature curves for

July at each fort location i and year t. From the daily temperature curves, we are able to

estimate mean July temperature, aligning the sparse, irregular historical data to the monthly

time scale of the observational data. To facilitate parameter estimation in the presence of

sparse data, our model borrows strength among days within the month of July, reducing the

influence of measurement error and improving prediction of the mean diurnal temperature

curve. By borrowing strength across sites within a year, our model produces a mean estimate

that has less variability than the raw observations. We fit our model to the historical data

using using the R package mgcv (Wood, 2011).
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After aligning the two data sources to a common temporal scale, we need a modeling

framework with which to perform our reconstruction. One method commonly used for

the reconstruction of paleoclimate is principal component regression (PCR), often called

empirical orthogonal function (EOF) regression in the paleoclimate literature (Preisendorfer,

1988). In PCR reconstructions, the climate proxy observations are regressed on a set of

patterns created from direct observations of the climate process. After learning about the

regression parameters, the model is used to predict climate at the unobserved locations.

The use of PCR for the statistical reconstruction of climate has a long tradition, dating

back to Lorenz (1956). To build our spatio-temporal predictive model, we use traditional

principal component regression (PCR) as well as probabilistic principal component regression

(pPCR) that assumes the empirical principal components are a noisy measure of the true,

latent principal components (Tipping and Bishop, 1999). We explore the temporal PCR and

pPCR models in a Bayesian hierarchical framework using regularization methods to select

important principal components for each year’s reconstruction. Within this framework, we

assign hierarchical pooling priors to improve parameter estimation. We also develop robust

versions of PCR and pPCR models that are flexible to the presence of potentially outlying

measurements of mean July temperature that may arise from the non-standardized data

collection.

We introduce traditional PCR in Section 4.2.1, develop a temporal extension that allows

for flexibility between years while borrowing strength among years to improve estimation

in Section 4.2.2, and define a probabilistic extension (pPCR) of the PCR that accounts for

measurement error in Section 4.2.3. In Section 4.3, we introduce the robust specification of

our PCR and pPCR models that better accommodate outlying observations, and in Section

4.4, we show how to improve computation by integrating out the latent principal components
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in the pPCR model. We describe three scoring rules to validate model performance in

Section 4.5, and we describe the simulation study in Section 4.6, where we evaluate predictive

performance in a synthetic data scenario. In Section 4.7, we apply our models to reconstruct

historical average July temperature in the Upper Midwestern United States, choosing the

model that performs best based on our scoring rules.

4.2. Model Statement

4.2.1. Principal Component Regression. A common statistical approach for recon-

struction of historical climate using calibration period data is to regress the partially observed

historical climate observations onto the observed climate. For a given reconstruction year,

we start with the regression model

yi = µ+ x′
iα+ ǫi,(43)

where yi is an observation of the m-dimensional historic climate field at location i. The

full observation vector y consists of the m observations of the temperature field, where we

observe only n out of the m locations. The columns of the m × d matrix X contain d

replicates of the observational period climate field at the m locations, forming a basis set

of patterns for the regression. The d-dimensional vector of regression coefficients α link the

historical observation y with the set of possible climate patterns X in the observation period,

allowing for climate fields that are linear combinations of observed climate patterns, up to

uncorrelated model error. Thus, we can model temperatures that are warmer or cooler than

the observational period. The uncorrelated model error ǫi is assumed to be independent and

identically distributed Gaussian with variance τ 2. Because the likelihood is unaffected if µ

is integrated out, we assume that the data y are centered and assume µ = 0 in what follows.
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In (43), the matrix X is highly multicollinear. Multicollinearity inflates the coefficient

estimate variance and, in cases of severe multicollinearity, the least squares solution is nearly

singular, causing algorithm instability and unreliable estimation. Because we are interested

in prediction of the dependent variable y and not interpretation of the regression coefficients,

we are free to manipulate the form of X to improve statistical learning. We begin by taking

the singular value decomposition (SVD) of X = UΛV′, where the columns of U are the left

singular vectors of X, the diagonal matrix Λ has the singular values in descending order on

the diagonal, and the columns of V are the right singular vectors. The principal components

regression (PCR) model using the SVD is

yi = u′
iΛV′α+ ǫi

= u′
iΛ

1
2β + ǫi

= z′iβ + ǫi,

where ui is the i
th row of U. If the regression coefficient is given the usual prior model α ∼

N(0, σ2
αI), then β = Λ

1
2V′α ∼ N(0, σ2

αΛ). The columns of U are the eigenvectors of X′X,

the diagonal elements of Λ are the eigenvalues of X′X, and zi = uiΛ
1
2 , the scaled principal

component at location i. In practical applications of PCR, one often performs dimension

reduction by retaining only the first p eigenvectors of U in the m×p matrix Up and the first

p eigenvalues in the p× p matrix Λp. After truncation, the truncated PCR design matrix is

Zp = UpΛ
1
2
p . Typically, p is chosen by cross-validation or by choosing the smallest p so that

the proportion of variability explained in the model is 0.85 (or some other similarly high

value). Because truncation removes the most variable eigenvectors, the truncation implies

a prior belief that shrinks the regression coefficients and provides an implicit regularization
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on the model (Hastie et al., 2009, Chapter 3.6). Performing truncation, (43) becomes

yi = z′iβ + ǫi,(44)

where the regression coefficients β ∼ N(0, σ2
βΛp). Although truncation of lower order prin-

cipal components disregards small-scale variability and therefore can only reduce the theo-

retical minimum prediction error, the truncated model is often more computationally stable

than (43) and can improve prediction in practice.

Preexisting research suggests that truncation of the trailing principal components is not

always appropriate because the higher variability components are often important predictors

(Hadi and Ling, 1998; Jolliffe, 1982). In our paleoclimate reconstruction method, inclusion

of lower order principal components is important, especially if there are climate signals

that are slowly varying or show up occasionally (i.e., every decade or century). If these

slow varying or uncommon processes appear in the lesser eigenvectors of the observational

period data (which is likely because they are not the primary contributors to the annual-

scale variability in climate), these signals would be discarded by truncation. Ideally, one

chooses the truncation p to be as large as computationally possible and then performs a

variable selection or regularization method to select important principal components. Wang

(2012) approaches the problem of choosing the important principal components through the

Bayesian model selection technique known as stochastic search variable selection (SSVS;

George and McCulloch (1993), see Hooten and Hobbs (2015) for a review). The SSVS
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Figure 4.2. Plot of regularization priors. Both priors shrink the regression
coefficients toward zero but the SSVS prior has heavier tails.

variable selection assumes the hierarchical prior on the jth regression coefficient

βj ∼





N(0, σ2
βj
) if ξj = 1

N(0, σ2
βj
κ−1) if ξj = 0,

where the variables ξj are indicators of the importance of the jth latent principal component

in the regression and have independent Bernoulli(Ψj) priors. The prior regression coefficient

variance σ2
βj

could be assigned a prior if desired, but the shrinkage value κ > 1 must be fixed.

A large κ produces a mixture distribution of a broad, relatively uninformative prior with

“large” variance σ2
βj

(the “slab”) and a highly informative prior at a small neighborhood

around zero (the “spike”). This is commonly called the “spike and slab” prior and provides

shrinkage by truncating less important principal components using probabilistic learning,

thus reducing the chance of omitting important principal components while avoiding the

computationally expensive task of exploring all 2p possible model configurations. An example

prior with σ2
βj

= 1, κ = 250, and Ψi = 0.5 is provided in Figure 4.2.
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An alternative to variable selection methods like SSVS is penalized regression (Hastie

et al., 2009). Common forms of penalized regression include ridge regression (Tikhonov or

L2 shrinkage (Hoerl and Kennard, 1970)), where one minimizes

n∑

i=1

(yi − ziβ)
2 + γ

p∑

j=1

β2
j

with respect to β, and the least angle subset selection operator (LASSO or L1 shrinkage,

Tibshirani (1996)), which minimizes

n∑

i=1

(yi − ziβ)
2 + γ

p∑

j=1

|βj|

with respect to β given the penalty term γ. These methods of variable selection work by

penalizing large coefficients in the likelihood. The L2 penalty shrinks the coefficients non-

linearly toward zero and the L1 penalty shrinks large coefficients linearly but in a way that

the coefficients can equal zero exactly. When viewed from this perspective, the LASSO can

be viewed as a compromise between regularization and variable selection methods because,

as the coefficients in the LASSO model approach zero, there is nonzero probability that the

LASSO shrinks the covariate estimates to zero, thereby removing that variable from the

model (Efron et al., 2004). We apply both SSVS and LASSO shrinkage methods to explore

the empirical consequences of the choice of regularizer. One drawback to regularization

methods is the need to estimate the penalty parameter γ. Often, the optimal γ is determined

by cross-validation using predictive skill. In the Bayesian framework, the shrinkage can be

estimated by cross-validation or by assigning a prior distribution and performing a fully

Bayesian inference (Park and Casella, 2008; Hooten and Hobbs, 2015).
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The L2 penalty implies the a prior on the regression coefficients β ∼ N(0, γI) and

the L1 LASSO penalty assigns a Laplace (also called a Double Exponential) prior β ∼

∏d
j=1

γ

2
√
τ2

exp {−
γ|βj |√

τ2
} (Figure 4.2). The LASSO prior can also be specified using the more

computationally efficient hierarchical scale mixture of Gaussian distributions with exponen-

tial mixing distribution by assigning the prior

β ∼ N(0, τ 2Dγ)

γj ∼ Exp

(
λ2

2

)
,

where Dγ = diag(γ1, . . . , γp) (Park and Casella, 2008). To perform a fully Bayesian regu-

larization that properly accounts for parameter uncertainty, we assign the hyperprior λ2 ∼

Gamma(αλ2 , βλ2) on the shrinkage parameter.

4.2.2. Temporal model. Thus far, we have considered reconstruction of only a single

year in our model. In this section, we extend our model to account for the temporal nature

of our data. We propose a model that is flexible and lets each year have its own parame-

ters to capture temporal variation in climate, but also pools information hierarchically to

improve parameter estimation in our sparse data scenario. Allowing the important principal

components in the regression to vary with time, the model is capable of detecting slowly

varying changes in temperature. For example, the irregular, but periodic, cycles of the Pa-

cific Decadal Oscillation and the Atlantic Multidecadal Oscillation are slowly varying and

likely do not explain a large portion of the variability in the temperature records (Schlesinger

and Ramankutty, 1994; Mantua et al., 1997). Therefore, these and other similar climate sig-

nals could be removed through the truncation of the principal components. In fact, there

are many such climate patterns that could be lost during truncation. Allowing the model
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to learn about the important principal components on a year by year basis, we gain greater

flexibility.

We extend the data model (44) by allowing the regression relationship to be time varying,

giving the temporal regression model

yit = z′iβt + ǫit(45)

where the observation yit is the historical observation at site i for year t. The temporally

varying regression coefficients βt correspond to the influence of the latent principal compo-

nents Z on the mt historical observations yt. The time varying, independent Gaussian error

ǫt ∼ N(0, τ 2t It) has variance τ
2
t with It the mt-dimensional identity matrix.

For the SSVS PCR model, we assign the “spike and slab” prior, where for each j =

1, . . . , p,

βtj ∼





N(0, σ2
βt
λpj) if ξj = 1

N(0, σ2
βt
κ−1
j λpj) if ξj = 0,

(46)

where λpj is the j
th diagonal element of Λp. The SSVS prior for the pPCR model is similar,

but does not include the λpj terms. We then pool across years by assuming the hierarchical

pooling model σβt
∼ logN(µσβ

, σ2
σβ
) with hyperpriors µσβ

∼ N(0, 100) and σσβ
∼ U(0, 100).

For the LASSO PCR model, we hierarchically pool the error standard deviation by

assigning the hyperprior τt ∼ logN(µτ , σ
2
τ ) with hyperparameters µτ ∼ N(0, 100) and στ ∼

U(0, 100), where learning across years is achieved by updating µτ and στ . Each year’s regres-

sion coefficients βt are assigned independent LASSO priors β ∼ N(0, τ 2t Dγt) where, for each

j = 1, . . . , p, γtj ∼ Exp
(

λ2
t

2

)
. The shrinkage parameters are assigned λ2t ∼ Gamma(αλ, βλ)
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priors to allow for differential regularization through time. We assign the hierarchical pooling

prior by modeling the parameters αλ and βλ, reparameterizing the Gamma distribution us-

ing its mean µλ = αλ

βλ
and variance σ2

λ = αλ

β2
λ

and assigning the hyperpriors µλ ∼ logN(0, 100)

and σλ ∼ U(0, 100).

4.2.3. Probabilistic Principal Component Regression. PCR assumes the data,

and therefore the principal components, to be observed without measurement error. The

assumption that data are observed without error is not valid for our observational data.

Our climate data are model interpolated, and therefore, the principal components have

unaccounted for measurement error. Hence, the eigenvectors in U can be thought of as

estimates of the true eigenvectors Z under an appropriate probabilistic model. As a remedy,

probabilistic principal component models assume the data matrix X is a noisy measurement

of the true process (Tipping and Bishop, 1999). Letting xi be the ith row of X, the model

for the noisy observations is

xi = m+Kzi + ηi,(47)

where m is d-vector of means, K is a d× p rotation matrix, zi is a p-vector that represents

the latent eigenvectors of the process of interest, and ηi is zero mean, independent Gaussian

error with variance σ2. Note that m can be integrated out of the above equation without

changing the likelihood, thus we assume that the data X have centered rows, and we set

m = 0. Because principal component vectors are orthonormal, we complete the principal

component model specification by assigning independent priors zi ∼ N(0, I), for i = 1, . . . , p.

A more general model is the factor analysis model, where the error term η has a generic

diagonal covariance matrix Σ (Tipping and Bishop, 1999). Thus, the probabilistic principal
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component model can be viewed as a special case of factor analysis where the error term η

is constrained to be diagonal with variance σ2.

Tipping and Bishop (1999) showed the maximum likelihood estimate (MLE) of the ro-

tation matrix K with p components under the pPCR model is

K̂ = Up

(
Λp − λ̄Ip

) 1
2 R,

where Up is a d×p matrix with the first p columns containing the leading eigenvectors, Λp is

a p×p diagonal matrix with the associated eigenvalues λ1 ≥ . . . ≥ λp of X
′X on the diagonal,

the matrix Ip is the p× p identity matrix, λ̄ =
∑d

j=p+1 λj

d−p
is the average variance contribution

for the truncated eigenvectors, and R is an arbitrary orthogonal rotation matrix (which we

choose to be Ip). We set K at the MLE and rewrite (47) as

xi = K̂zi + ηi.(48)

After accounting for the measurement uncertainty in our predictor matrix X, by esti-

mating the unknowns Z and η in (48), we link the historical and modern observations by

regressing yt onto the latent eigenvectors Z

yit = z′iβt + ǫit,(49)

and estimate the unknown regression coefficients βt in (49). We complete the model by

assuming uncorrelated measurement error ǫit ∼ N(0, τ 2t ) and assigning the hierarchical prior

τt ∼ logN(µτ , σ
2
τ ) with hyperpriors µτ ∼ N(0, 100) and στ ∼ U(0, 100).
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4.3. Robust Regression

Because the fort data were collected using non-standard methods, there is likely more

variability in the data than can be explained by assuming a Gaussian distribution. Thus, we

propose extending (49) to a model that is robust to outliers. The robust pPCR data model

using the Student’s-t distribution is

yit ∼ t(z′iβt, τ
2
t , νt),

an over-dispersed regression model that accommodates outliers in the data. The νt parameter

is the degrees of freedom of the Student’s-t distribution. A common choice of prior for the

degrees of freedom νt is to model the inverse degrees of freedom with a U(0, 0.5) distribution.

We generalize the prior to pool across years, assigning the inverse degrees of freedom the prior

1
νt

∼ Beta(αν , βν , 0, 0.5) where the four parameter Beta(α, β, L, U) prior is a Beta(α, β) prior

scaled to the interval [L,U ]. To hierarchically pool the prior model, we reparameterize the

model with αν = µνην and βν = (1− µν)ην for µν ∈ [0, 1] and ην ∈ [0,∞). We complete the

pooling by assigning the Jeffrey’s hyperprior µν ∼ Beta(0.5, 0.5) and assigning the hyperprior

ην ∼ Gamma(1, 1). To regularize the robust data model, we modify the LASSO prior for

the regression coefficients using the variance of the Student’s-t distribution, resulting in the

prior

βt ∼ N

(
0, τ 2t

νt

νt − 2
Dγt

)
,

where the parameters have the same priors as introduced previously.
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4.4. Posterior Distribution

The latent principal components zi are high dimensional (approximately 20, 000 × p),

thus we aim to avoid the computational burden of sampling this parameter. Therefore, we

integrate out the latent principal components

∫
[yit|zi,βt, τ

2
t , νt][xi|zi, σ

2][zi] dzi,(50)

but this integral does not have an obvious analytical solution. We could attempt to numer-

ically integrate out zi, but at great computational cost. Instead, we write our Student’s-t

data model as a scale mixture where

yit ∼ N(z′iβt, v
2
it),

v2it ∼ inv-χ2(νt, τ
2
t ),

and

[yit|zi,βt, τ
2
t , νt] =

∫
[yit|zi,βt, v

2
it][v

2
it|τ

2
t , νt] dv

2
it.

Then, we write the integral (50) as

∫
[yit|zi,βt, τ

2
t , νt][xi|zi, σ

2][zi] dzi =

∫ (∫
[yit|zi,βt, v

2
it][v

2
it|τ

2
t , νt] dv

2
it

)
[xi|zi, σ

2][zi] dzi

(51)

=

∫ (∫
[yit|zi,βt, v

2
it][xi|zi, σ

2][zi] dzi

)
[v2it|τ

2
t , νt] dv

2
it(52)

=

∫
[yit|µyit , σ

2
yit
][v2it|τ

2
t , νt] dv

2
it,(53)
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where the integral in (51) is evaluated in MCMC by first sampling v2it ∼ inv-χ2(νt, τ
2
t ) then

evaluating the density [yit|µyit , σ
2
yit
]. These modifications result in the integrated data model

(see Appendix for details)

yit ∼ N(µyit , σ
2
yit
),(54)

where

µyit =
xiK̂M−1

p βt

σ2
,

σ2
yit

= v2it + β′
tM

−1
p βt,

with M−1
p = (Λp

σ2 + Ip)
−1, a diagonal matrix that can be inverted efficiently. For our data,

integration results in a significant computational savings because we avoid sampling p vectors

of length m ≈ 20, 000. The cost for not sampling the latent principal components Z is the

loss of conjugacy for the regression coefficients βt in the MCMC sampler, necessitating the

use of Metropolis-Hastings updates. The posterior distribution from which we sample (for

the robust pPCA model with LASSO regularization) using MCMC is

T∏

t=1

∏

i∈Ht

[
βt, v

2
it, τt, µτ , στ , νt, µν , ην , σ,γt, λ

2
t , µλ, σλ

∣∣yit,X
]
∝

T∏

t=1

(∏

i∈Ht

[
yit
∣∣βt, σ, v

2
it

]
[vit|νt, τt]

)
[βt|γt, τt, νt] [τt|µτ , στ ]

× [µτ ] [στ ] [σ]
[
γt

∣∣λ2t
] [
λ2t
∣∣µλ, ηλ

]
[µλ] [ηλ] ,

where Ht is the set of locations where there are observations for year t.
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4.5. Scoring Rules

To evaluate model performance, we use scoring rules. A highly desirable property of a

scoring rule is propriety (Gneiting, 2011). A scoring rule is proper if the expected score of

the optimal prediction is less than the expected score of any other prediction (Bernardo and

Smith, 2009). Hence, a proper scoring rule, on average, chooses the best prediction from

a set of candidate predictions (Gneiting et al., 2007). Often, paleoclimate reconstructions

evaluate predictive performance by holding out some of the training set data for use in

cross-validation, using scores like the coefficient of efficiency (CE) and relative efficiency

(RE) (Cook et al., 1994; Rutherford et al., 2005; Tingley and Huybers, 2010a,b). Although

these scoring rules are common in the paleoclimate reconstruction community, Gneiting and

Raftery (2007) suggest that scoring rules like CE and RE are improper. Because CE and

RE are improper, it is possible that the optimal prediction can, on average, have a better

score than a sub-optimal prediction, leading to incorrect inference. Therefore we focus on

three proper scoring rules: mean square prediction error (MSPE), the continuous ranked

probability score (CRPS), and a computationally efficient approximation to leave-one-out

cross-validation (LOO). In general, MSPE is not proper, but because our data models are

Gaussian and Student’s-t, MSPE is proper for this case.

The use of MSPE as a scoring rule implies an L2 loss function on the predictive score,

therefore our predictions are the posterior predictive means

E(ỹt|yt) =

∫
ỹt[ỹt|yt] dỹt,
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where [ỹt|yt] =
∫
[ỹt|θt][θt|yt] dθt is the posterior predictive distribution for model parame-

ters θt. Given out-of-sample observations yoos,t the MSPE is

1

T

T∑

t=1

1

m−mt

∑

i/∈Ht

(E(ỹit|yt)− yoos,it)
2
.

The MSPE uses the posterior predictive mean, a point summary, instead of the full posterior

distribution. Hence, MSPE ignores much of the information in the posterior distribution

gained by performing Bayesian inference. Therefore, MSPE is not an ideal scoring rule for

a probabilistic prediction such as a posterior predictive distribution, even when MSPE is

proper. For example, consider two models that give rise to posterior predictive distributions

with the same posterior predictive mean but different posterior predictive variances. The

smaller variance model should be preferred (if both predictions are equally accurate), but

MSPE would score the two models identically, demonstrating how MSPE loses information

by collapsing the posterior distribution into a point estimate.

An alternative to MSPE is the CRPS scoring rule. CRPS is proper, utilizes the full

posterior predictive distribution, and allows for a direct comparison of point predictions

and probabilistic predictions. In our previous example, CRPS would score the prediction

with smaller posterior predictive variance as the better predictive model when both models

have the same posterior predictive mode (which is equivalent to the posterior predictive

mean in symmetric distributions where MSPE is proper). Several recent papers on climate

reconstructions have made use of the CRPS for these reasons (Barboza et al., 2014; Werner

and Tingley, 2015; Tipton et al., 2016).
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Given a prediction with cumulative distribution function, Fit, at location i and time t

and out-of-sample observations yoos,t, the CRPS is defined as

CRPS({Fit}
T
t=1,yoos,t) = −

T∑

t=1

∑

i/∈Ht

∫ ∞

−∞

(
Fit(y)− I{y≥yoos,it}

)2
dy.(55)

Gneiting and Raftery (2007) show that (55) can be written alternatively as

CRPS({Fit}
T
t=1,yoos) =

T∑

t=1

1

mHt

∑

i/∈Ht

(
EFit

|yit − yoos,it| −
1

2
EFit

|yit − y∗it|

)
,(56)

where yit and y
∗
it are independent copies of a random variable with distribution function Fit

and the expectation E is with respect to the probability density induced by Fit. The first

expectation in (56) measures calibration (the absolute error of the prediction relative to the

out-of-sample value) and the second expectation rewards predictions that are precise (i.e.,

narrow prediction intervals).

We can estimate the CRPS after obtaining posterior samples ỹ
(k)
t from the posterior

predictive distribution
[
ỹ
(k)
t

∣∣∣yt

]
at each post burn-in iteration k. Then, (56) is approximated

by

ĈRPS({F̂it}
T
t=1,yoos) =

T∑

t=1

(
1

mHt

∑

i/∈Ht

(
1

K

K∑

k=1

∣∣∣ỹ(k)it − yoos,it

∣∣∣− 1

2K2

K∑

k=1

K∑

ℓ=1

∣∣∣ỹ(k)it − ỹ
(ℓ)
it

∣∣∣
))

.

(57)

A major disadvantage of both MSPE and CRPS is the need for out-of-sample validation

data. For our simulation study, MSPE and CRPS are straightforward to calculate because

we simulated the out-of-sample validation data; in practical paleoclimate reconstructions

there are no out-of-sample data. Therefore, MSPE and CRPS must be approximated using

cross-validation methods, even though these methods can be costly computationally and
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time consuming to implement. An alternative is to use the approximate leave-one-out cross-

validation method LOO (Vehtari et al., 2016). LOO uses a proper scoring rule, the log score,

to evaluate predictive skill (Geisser and Eddy, 1979; Gneiting and Raftery, 2007; Hooten and

Hobbs, 2015). The target score to be approximated is the expected log pointwise predictive

density for new data

elpd =
T∑

t=1

∑

i∈Ht

∫
(log[ỹit|yt]) [ỹit] dỹit(58)

where [ỹit] is the unknown distribution of the true data generating process. Because the true

data generating distribution in (58) is unknown in practice, we cannot use (58) as a measure

of model performance. Instead, we can estimate elpd using the log pointwise predictive

density (Celeux et al., 2006; Watanabe, 2010)

lpd =
T∑

t=1

∑

i∈Ht

log[yit|yt] =
T∑

t=1

∑

i∈Ht

log

∫
[yit|θt][θt|yt] dθt.(59)

From our posterior samples, we approximate the integral in (59) using Monte Carlo

integration (Gelman et al., 2014)

l̂pd =
T∑

t=1

∑

i∈Ht

log

(
1

K

K∑

k=1

[yit|θ
(k)
t ]

)
.(60)

There is a problem with using (60) as a predictive score because the observed data yt are

used twice; to estimate a posterior density [θt|yt] and to evaluate the density [yit|θ
(k)
t ]. Thus,

use of (60) is an overestimate of the predictive ability and unsatisfactory as a predictive score

(Gelman et al., 2014; Hobbs and Hooten, 2015). Instead, we can eliminate using the data
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twice by defining the leave-one-out log pointwise predictive density

lpdloo =
T∑

t=1

∑

i∈Ht

log[yit|y(i)t](61)

=
T∑

t=1

∑

i∈Ht

log

∫
[yit|θt][θt|y(i)t] dθt,(62)

where y(i)t are the data yt at time t without the ith location. One can calculate (61) directly

by cross-validation at a high computational cost, or one can approximate (61) from post

burn-in posterior samples using the full data as described below.

Following Gelfand et al. (1992) and Gelfand (1996) where each observation is condition-

ally independent given model parameters θt, we express the integral in (61) using importance

ratios rit ≡
[θt|y(i)t]

[θt|yt]
∝ 1

[yit|θt]
as

T∑

t=1

∑

i∈Ht

log

∫
[yit|θt]

[θt|y(i)t]

[θt|yt]
[θt|yt] dθt ∝

∑T
t=1

∑
i∈Ht

log
∫
[yit|θt]rit[θt|yt] dθt∑T

t=1

∑
i∈Ht

log
∫
rit[θt|yt] dθt

(63)

Then, using MCMC samples we can approximate (63) using sampled importance ratios

r
(k)
it as

l̂pdloo =
T∑

t=1

∑

i∈Ht

log

(∑K
k=1 r

(k)
it [yit|θ

(k)
t ]

∑K
k=1 r

(k)
it

)
=

T∑

t=1

∑

i∈Ht

log


 1

1
K

∑K
k=1

1

[yit|θ(k)
t ]


 ,(64)

where the posterior using the full data [θt|yt] is likely to have lower variance and thinner

tails than the posterior using leave-one-out data [θt|y(i)t], implying that the importance

ratios could have large or potentially even infinite variances. Importance ratios with high

variance can cause the estimate in (64) to be highly unstable and unreliable, and are therefore

of practical concern. To test for the presence of large variance of the importance ratios,

Koopman et al. (2009) proposed fitting the generalized Pareto distribution to the upper tail
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of importance ratios and examining the empirical estimates of the tail shape parameter. The

generalized Pareto distribution function

[x|µ, σ, ξ] =
1

σ
(1 + ξ(x− µ))−

1
ξ+1 ,(65)

is commonly used to model the tails of distributions to investigate extreme behavior by

fitting (65) to the largest M of the K posterior importance sampling weights r
(k)
it . If the

estimated tail parameter ξ̂it is less than 1
2
, the variance of the importance ratio is finite

and the importance ratios approximating the log posterior score holding out yit can be used

directly to approximate LOO by setting the importance weights w
(k)
it = r

(k)
it . If the estimated

tail parameter 1
2
< ξ̂it < 1, the variance of the importance ratios is infinite, but the mean

of the importance ratios exists. Hence, Vehtari and Gelman (2015) propose smoothing the

importance ratios by fitting the generalized Pareto distribution to the largest M = 0.2K

importance weights {r
(k)
it , k = 1, . . . , K} and generating the smoothed importance ratios

w̃
(k)
it =





r
(k)
it if r

(k)
it is in the bulk of the distribution

F−1
(

q− 1
2

M

)
if r

(k)
it is in the tail of the distribution,

where F−1 is the inverse CDF of the generalized Pareto distribution (65) and q = {1, . . . ,M}

are the order statistics of theM largest importance ratios. To guarantee finite variance of the

importance sampling weights, Vehtari and Gelman (2015) propose truncating any smoothed

importance weights w̃
(k)
it larger than K

3
4 w̄it, where w̄it = 1

K

∑K
k=1 w̃

(k)
it is the mean of the

smoothed importance weights {w̃
(k)
it , k = 1, . . . , K}, resulting in the smoothed and truncated

importance weights w
(k)
it . The smoothed importance ratios now have finite variance and can

be used to approximate the leave-one-out cross validation, although the approximation LOO
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converges to the true cross-validation at a slower rate than if not smoothed. If the estimated

tail parameter ξ̂it > 1, the mean and variance of the importance ratios likely do not exist

but the variance of the smoothed importance ratios is finite, but large, and the use of LOO

is sensitive to the held out observation. Using the smoothed importance weights, we obtain

the Pareto-smoothed importance sampling approximation

êlpdPSIS =
T∑

t=1

∑

i∈Ht

log

(∑K
k=1w

(k)
it [yit|θ

(k)
t ]

∑K
k=1w

(k)
it

)
.(66)

We use the deviance scale and set L̂OO = −2êlpdPSIS to make LOO a negatively oriented

score (the best model is the one with the lowest score).

4.6. Simulation

The nature of paleoclimate data makes it difficult to verify the predictive ability of our

model using cross-validation. With only a handful of observations available for each year we

aim to reconstruct, cross-validation techniques could be highly biased due to the effects of

unusual observations in small sample sizes. The potential for bias is especially important

given we expect noisy and potentially outlying observations due to the data collection proce-

dure. Additionally, the high dimensionality of the field we aim to reconstruct, and the use of

computationally intensive MCMC estimation, make cross-validation costly. Instead of eval-

uating model performance with cross-validation, we conduct a simulation study to explore

different models for the historical fort data and evaluate model performance using the scoring

rules above. Although we do not simulate from the model that is used for estimation, we

believe the simulated data provide a reasonable approximation to the true generating process

for average July temperature, providing an environment for model testing and exploration

of empirical properties.
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(b) Latent temperature patterns.
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(c) Noisy principal components.
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(d) Latent principal components.

Figure 4.3. Plot of simulated data showing latent climate process, observed
noisy data, latent principal components, and noisy, observed principal compo-
nents.

We simulate mean July temperature in one spatial dimension (this is easily extended into

two dimensions using the real data), allowing for faster computation and easier graphical

exploration of the spatio-temporal process. We simulate T = 50 realizations from the model

st = Wβt + ηt,
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where the matrix W represents fixed influences on climate, such as latitude, elevation, and

other covariates that explain much of the temperature surface as well as time varying com-

ponents that represent slowly varying global scale climate processes. To construct patterns

that might be seen in climate observations, we simulate temporally varying regression coef-

ficients at different periodicities to represent global scale climate processes like the Pacific

Decadal Oscillation and Atlantic Multidecadal Oscillation that influence mean July temper-

ature. We do not claim our simulation behaves like any climatological process, only that the

toy problem facilitates exploration of interesting patterns potentially seen in climatological

data.

We include a spatially correlated random effect ηt ∼ N
(
0, σ2

ηtR (φ)
)
that smooths the

patterns, generating realizations of a one-dimensional climate field. A common choice for

the form of R (φ) is the Matérn class of correlation functions. For our simulation, we use the

exponential correlation function, a member of the Matérn family. In the exponential corre-

lation function, the i, jth element Rij(φ) = exp {−dijφ} where dij represents the Euclidean

distance between the ith and jth spatial locations and φ is the spatial range parameter.

To create observations that match the temporal irregularities and spatial clustering be-

havior in the historical fort data, we sample the one-dimensional spatial field using weighted

probabilities that generate clustered observations in space, storing the simulated temperature

observations at the mt locations in the vector yt. Using our sampling design, we generate

noisy samples for the historical period years t = 1, . . . , 25 with

yit = sit + ǫ̃it,(67)

where ǫ̃it is independent Gaussian error with variance σ̃2 = 1.5 that represents the uncer-

tainty in historical temperature measurements at the fort locations and sti is the latent
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temperature at location i in year t. To generate the set of patterns X that will be used in

our regression model, we sample for t = 26, . . . , 50

xt = st + ǫ̈t,(68)

where, by adding uncorrelated, independent Gaussian noise ǫ̈t with variance σ̈2 = 0.75 we ac-

count for the measurement error of the temperature process during the observational period.

The measurements from the observational period are PRISM model interpolated data and

have measurement error, but the measurement error should be less than that of the historical

period, hence σ̃2 > σ̈2. We then combine the simulated values into the noisy pattern matrix

X ≡ (x26, . . .x50) that is used in our model framework. The noiseless matrix of temperature

patterns S ≡ (s1, . . . s25) is the unobserved target for our reconstruction. Note that in the

real data, S are unavailable, therefore our scoring rules can use only the noisy observations

yt, limiting the ability to improve reconstruction skill. Figure 4.3a shows the simulated noisy

temperature realizations and Figure 4.3b shows the simulated latent temperature field that

is the target of our reconstruction, with the x-axis representing spatial location. The noisy

principal components are plotted in Figure 4.3c with the latent principal components shown

in Figure 4.3d showing the effect of measurement error on the principal components. Thus,

we have a situation that is analogous to the errors-in-covariates framework, where noisy

observations of the covariates (in our case the principal components) can lead to bias in the

regression coefficients, inflated residual variance, and a reduction in prediction skill (Fuller,

2009; Buonaccorsi, 2010; Carroll et al., 2006).

We compare the performance of each model specification using MSPE, CRPS, and LOO

scoring rules in our simulation where the best model is the one with the smallest score. We

fit the PCR and pPCR models using SSVS and LASSO methods of regularization with both
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Table 4.1. Simulation experiment scores. Smaller values indicated better
model performance.

(a) MSPE.

Gaussian Robust
PCR pPCR PCR pPCR

SSVS 0.8430 0.8450 0.8433 0.8441
LASSO 0.8383 0.8469 0.8386 0.8469

(b) CRPS.

Gaussian Robust
PCR pPCR PCR pPCR

SSVS 271.5 272.8 271.8 272.9
LASSO 270.8 273.6 270.9 273.4

(c) LOO.

Gaussian Robust
PCR pPCR PCR pPCR

SSVS 9897 9910 9898 9911
LASSO 9889 9908 9888 9907

the Gaussian and robust Student’s-t data models. Thus, we compare eight models, with

the results displayed in Table 4.1. Across scores, the models perform similarly, with the

PCR and robust PCR models slightly outperforming the pPCR and robust pPCR models.

The Pareto tail parameter estimates of the LOO importance sampling weights provide an

additional diagnostic of model performance. Pareto tail parameter estimates for a data

point greater than 0.5 show the model is not adequately predicting that data point, and tail

parameters greater than one show severe problems with the model. Examining the Pareto

tail parameters for each of the models fit to the simulated data shows the robust models have

slightly less evidence of model misspecification (fewer tail parameters greater than 0.5) than

the traditional Gaussian data model. Visual examination of reconstructions not shown in this

manuscript for therobust PCR and robust pPCR show that, like the tables of scoring rules

(Table 4.1), there is little difference among the methods. All models do not reconstruct the

fine scale, within year variability, which is expected given the small sample sizes. However,

the models are able to reconstruct the large-scale, inter-annual differences, which are one of

the main features of the simulated data.
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4.7. Fort Data Reconstruction

Now that we have explored our model framework using a simulation study, we apply our

models to the historical measurements of temperature. We fit the eight models used in the

simulation study to the data and present the results in Table 4.2a. With respect to the LOO

scores, the PCR models outperform the pPCR models, which is expected given the smaller

sample sizes in the reconstruction than in the simulation. In addition, the Gaussian data

model outperforms the robust Student’s-t data model. When we examine the LOO Pareto

tail parameter plots in Figure 4.4a we see evidence of misspecification because many of the

tail parameter estimates are greater than 0.5, and every model has some tail parameter

estimates greater than one. The LOO Pareto tail parameter plots give us the added benefit

of identifying a severe outlier, occurring at data point 549 in Figure 4.4a, corresponding to

an average July temperature measurement of 47 degrees F, an unrealistic observation. After

removing the outlier and refitting the models, we see improved fit because the LOO values

have decreased (Table 4.2b), and the plots of the Pareto tail parameter values in Figure 4.4b

have fewer values greater than 0.5. After removing the outlier, the best performing model is

the robust PCRmodel, with the Gaussian PCRmodel also performing well. The performance

of the robust pPCR model also improves with removal of the outlier, while the Gaussian

pPCR model shows evidence of misspecification due to the presence of two large Pareto tail

parameter estimates, possibly additional outlying observations the Gaussian model cannot

accommodate. All models still show evidence of misspecification because some Pareto tail

parameter estimates are greater than 0.5, but the removal of the outlier has improved model

fit.

To visualize our results, we plot reconstructions of four representative years of the his-

torical temperature surfaces using the robust PCR model (Figure 4.5) and the robust pPCR
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Table 4.2. Fort historical reconstruction scores. Smaller values indicate bet-
ter model performance

(a) LOO.

Gaussian Robust
PCR pPCR PCR pPCR

SSVS 5117 5231 5122 5250
LASSO 5163 5226 5181 5250

(b) LOO with outlier removed.

Gaussian Robust
PCR pPCR PCR pPCR

SSVS 5093 5325 5008 5156
LASSO 5138 5318 5050 5150
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(b) With outlier removed.

Figure 4.4. Plot of fort data LOO Pareto shape estimates. Values less than
0.5 show good model performance and values over 1.0 show poor model per-
formance.

model (Figure 4.6). Visual comparison of these reconstructions illustrates the differences in

the two models. The robust PCR model assumes the climate patterns in the observational

data are without error; the influence of these patterns is seen in the posterior predictive mean

surface Figure 4.5a. In comparison, the robust pPCR model shows less influence of these

climate patterns in the posterior predictive mean (Figure 4.6a) because the model includes

the assumption that some of the pattern is noise, producing reconstructions with less spatial

variability. Differences in posterior predictive standard deviations are also evident (Figures
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(b) Posterior predictive standard deviation.

Figure 4.5. Plot of fort temperature reconstruction using robust PCR model.

4.5b and 4.6b). The robust PCR model shows reduction of uncertainty in the spatial loca-

tions near observations and higher uncertainty away from the observations while the robust

pPCR model has posterior predictive standard deviations that are more spatially diffuse and

perhaps more realistic. Overall, both the robust PCR and the robust pPCR models perform

well, but the best performing model according to our scoring rule is the robust PCR model,

due to low LOO scores and the least evidence of model misspecification in the estimated

Pareto tail parameter plots.

4.8. Conclusion

There are many challenges inherent in modeling paleoclimate data. Due to the lack

of direct measurements of climate, paleoclimate reconstructions must rely on sparse, noisy

proxy measurements of climate. The nuances of paleoclimate data often require specialized

modeling techniques and careful investigation into modeling assumptions and performance.
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(b) Posterior predictive standard deviation.

Figure 4.6. Plot of fort temperature reconstruction using robust probabilis-
tic PCR model.

In addition, careful investigation is needed to validate paleoclimate reconstruction skill. We

presented a framework to explore rigorous climate reconstruction methods. We extended

principal component regression methods, applying regularization techniques to choose impor-

tant principal components, generating robust models to account for the presence of outliers,

and exploring the use of a probabilistic principal component model to account for measure-

ment uncertainty in the observed temperature patterns. By evaluating the predictive skill

of our models in a statistically rigorous manner, we were able to explore our extensions of

PCR for climate reconstruction, laying the groundwork for exploration of richer datasets

better suited to these techniques. Future research using more complex climate data than

the PRISM monthly mean temperatures is warranted, especially for climate variables that

are far from stationary Gaussian processes (e.g., wind speed or precipitation).

We also presented a framework for evaluating paleoclimate reconstructions using simu-

lation studies and proper scoring rules. By using proper scoring rules and exploring model

99



performance in a simulation framework, we have stronger support for our predictions. We

presented three scoring rules developed in the statistics literature and explored their strengths

and weaknesses. MSPE is a commonly used and easy to understand scoring rule, but is not

proper in general and only uses a point prediction, ignoring the probabilistic inference that is

gained by using Bayesian techniques. The CRPS is proper and allows for direct comparison

of point predictions and probabilistic predictions, but requires out-of-sample validation data

or computationally expensive cross-validation. The use of MSPE and CRPS scoring rules

allowed for exploration of the empirical properties of the novel and computationally efficient

LOO approximation to leave-one-out cross-validation. Our use of LOO to score the histor-

ical fort model predictions not only enabled us to perform model selection, but also aided

in diagnosing an outlying observation and refining model fit. Thus, based on our results in

simulation and application, the use of LOO in uncorrelated Bayesian models is promising.

Ultimately, our temperature reconstructions extend the climatological record in the upper

Midwestern United States further into the past. These temperature reconstructions, with

their associated uncertainties, can be used to gain better understanding of the influences of

climate on the biological and ecological processes observed in the region. Because previous

work has suggested that average July temperature is a good predictor of tree species assem-

blage, our climate reconstruction can be used to learn about forest ecology in the region.

By extending the average July temperature records into the past with our models, we gain

the potential to better understand how forest ecology has changed with climate change and

improve future climate reconstructions.
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CHAPTER 5

Conclusion

5.1. Overview

In this dissertation, I presented several statistical models applied to ecological and en-

vironmental data. In each of these applications, a primary goal was the evaluation and

improvement of estimation and/or predictive skill. Each modeling effort is unique to its

respective application, thus I developed model frameworks and evaluated predictive perfor-

mance using scoring rules appropriate for the data and question at hand. In the previous

chapters, I investigated estimator performance for survey sampling estimators, developed

predictive hierarchical models with non-linear, mechanistic components, and constructed a

Bayesian probabilistic principal component model with data driven variable selection for a

pattern matching predictive model.

In Chapter 2, I explored the empirical properties of the EPSE estimator under a variety

of situations where the theoretical properties are unknown. Using United States Forest

Service Forest Inventory Analysis data to examine the empirical performance of the EPSE

variance estimator, I demonstrated that the EPSE variance estimator is biased when the

strata are chosen in such a way as to minimize the variance estimate. In addition, the

resampling study showed that setting the EPSE stratum boundaries at fixed quantiles a

priori produces variance estimates that are empirically unbiased, thus demonstrating that

use of fixed quantile EPSE stratum boundaries can serve as a default choice. The simulation

study provided valuable insights into which stratum boundary scenarios deserve further

theoretical exploration and have been used as default settings for improving predictions for

the 2011 National Land Cover Database (Fry et al., 2011).
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In Chapter 3, I developed a novel method for reconstructing climate using a deterministic

model that approximates tree ring growth given monthly climate. By conducting a simula-

tion study in which data were generated to be as similar to the observed data as possible

using the mechanistic model, I showed that the model accurately reconstructs paleoclimate

with appropriate uncertainties, especially precipitation. The simulation study also revealed

strengths and limitations of the model, especially a lack of precision in the temperature

reconstruction. Because the model accurately estimated the associated temperature growth

parameters, this demonstrates that the lack of learning about temperature arises from an

interaction between the change of temporal support and the mechanistic growth model. The

use of proper scoring rules allowed exploration into the statistical consequences of different

modeling assumptions on the reconstruction skill. Additionally, an unexpected benefit aris-

ing from the mechanistic model framework is the ability to estimate ecological climate niches

(i.e., which tree species are drought tolerant, etc.), providing a tool for future exploration of

ecology through dendrochronological samples.

In Chapter 4, I presented a framework for reconstructing historical climate using compiled

historical data. The historical data are sparse in both time and space and include poten-

tially outlying observations that result from non-standardized data collection. Because of the

challenges that the data present for modeling, it was important to explore the consequences

of modeling assumptions on predictive ability through a simulation study. Comparing pre-

dictive ability in the simulation study using proper scoring rules demonstrated that the

computationally efficient approximation to leave-one-out cross-validation (LOO) using the

proper log score can be applied for efficient model evaluation within our study framework.

In addition, the use of LOO to score model predictions using the fort data identified outlying

observations, resulting in improved predictions and better model fit.
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5.2. Extensions of Current Work

The research initiated in this dissertation is ongoing; there is potential for improvement,

especially in improving fidelity to the underlying ecological process. For example, the growth

functions used in Chapter 3 are monotonically increasing in both temperature and precip-

itation. Clearly, this is only a simple approximation of how trees respond to climate; for

example, at high temperatures evapotranspiration results in water loss and reduced growth.

Additionally, there is no reason to suspect that trees respond to climate uniformly through-

out the year. In fact, it seems likely that the ideal climate for tree growth changes throughout

the year. Generalizing the growth functions to accommodate more realistic ecology should

improve the model and possibly produce more precise temperature reconstructions. Another

potential improvement in the tree ring model presented in Chapter 3 involved constructing a

better algorithm for sampling the climate state-space model. Sampling the latent state-space

jointly with a Kalman filter (Cressie and Wikle, 2011, Chapter 8) or approximating the latent

state-space with a particle filter (Andrieu and Roberts, 2009) embedded within the MCMC

algorithm could improve mixing, reduce computation cost, and allow for parallelizing the

model for fitting in a high performance computing environment.

Currently, the bivariate climate reconstruction from tree ring widths in Chapter 3 is not

spatially explicit, thus the model would need to be extended to properly account for spatial

autocorrelation if this model is to be applied to a large spatial domain. By extending the

model to have a spatio-temporally correlated precipitation and temperature reconstruction,

the model can borrow strength among nearby locations and possibly improve reconstruction

skill, but at an increased computational cost. One way to reduce the computational burden

is to allow each subregion to have independent mechanistic growth model parameters and

to fit each of these growth models in parallel given the spatio-temporal multivariate climate

104



field. The proposed model would thereby produce a spatio-temporal multivariate climate

reconstruction without significantly increasing computational burden in a high performance

computing environment.

In Chapter 4, I considered a reconstruction of mean July temperature. A natural exten-

sion of this work is to generalize the model framework to model all twelve months, resulting

in a state-space model for the latent climate. Within the state-space context, I could better

explore the effects of slowly varying climate patterns on the reconstruction effort. Also, the

addition of temporal information could improve model performance by borrowing strength

across months in the year. Finally, I could exploit state-space methods like including a

Kalman filter or particle filter embedded within the MCMC algorithm to improve mixing

and parallelize model fitting.

5.3. Concluding Remarks

In this chapter, I have discussed ways to improve the ecological applications presented

in the dissertation and proposed statistical extensions for future work. Fundamentally, ex-

tension of the work in this dissertation requires close collaboration between statisticians

and scientists, not only to include better ecological realism within the statistical models,

but also to disseminate statistical ideas to the wider scientific community. By bridging the

gap between the statistical and scientific communities, both disciplines benefit and many

interesting questions can be addressed.
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APPENDIX A

Supplementary Material for Chapter 3

Supplementary Material, including code, can be found at GitHub at

http://github.com/jtipton25/Mechanistic-Tree-Ring.
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APPENDIX B

Supplementary Material for Chapter 4

B.1. Marginal distribution

Conditional on the unobserved latent principal components, we can write the robust

Student’s-t pPCR likelihood as
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To further simplify this equation, we use the Morrison-Woodbury matrix inversion formula
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Then, letting Bt = M
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B.2. Robust PCR Model Posterior Mean July Temperature
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B.3. Robust PCR Model July Temperature Posterior Standard Deviations
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B.4. Robust Probabilistic PCR Model Posterior Mean July Temperature
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B.5. Robust Probabilistic PCR Model July Temperature Posterior

Standard Deviations
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