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ABSTRACT 

EFFECT OF LARGE-SCALE ANISOTROPY ON THE SMALL-SCALE STRUCTURE OF 

TURBULENCE 

 

Even though the small-scale structure of turbulence has been hypothesized to be locally isotropic 

with universal properties, numerous studies document the departure from local isotropy and 

universality in the presence of strong mean shear (or large-scale anisotropy). The goal of this work 

is to elucidate the effects of strong shear on the small-scale structure with emphasis on the physical 

mechanism through which mean shear deviates local structure from isotropy. Two dimensional 

time-resolved particle image velocimetry (PIV) experiments were performed in a stationary 

turbulent flow past a backward facing step at Reynolds numbers 13600 and 5500 based on the 

maximum velocity and step height. Large-scale anisotropic properties of the flow along with local 

turbulence characteristics were quantified in detail. Special points of interest distributed within the 

measurement domain for varying large-scale anisotropic characteristics were probed to analyze 

small-scale structure. Results show that velocity structure functions and their scaling exponents 

systematically align with the principal directions of deformation of the mean flow field. 

Furthermore, the probability density function (PDF) of the instantaneous dissipative scales indicate 

a potentially universal mechanism of how mean shear affects the distribution of dissipative scales 

captured through a local Reynolds number based on mean shear and dissipation rate. PDFs of the 

instantaneous dissipative scales in all directions demonstrate that mean shear strength and local 

principal axis directions dictate the behavior of structure functions, correlation functions, thereby 

influencing the dissipative scale PDFs in a directionally dependent manner.  
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Chapter 1 

INTRODUCTION  

1.1 Introduction 

Turbulent flow is present everywhere, in our everyday life we get the opportunity to observe 

turbulent flows i.e. smoke from the chimney, waterfalls, flow around aircraft, flow around building 

etc. Turbulence can happen both in internal flows (i.e. diffusers, combustion chambers) and 

external flows (i.e. flow around aerofoil, atmospheric flows)(Khandakar Niaz Morshed, 2010; 

Khandakar Niaz Morshed, Rahman, Molina, & Ahmed, 2013). Leonardo da Vinci depicted the 

details of turbulence by a realistic sketch around five hundred years ago. But it has been only 

hundred years since scientist seriously started thinking about the fascinating complexity of 

turbulent flows. Till today the “problem of turbulence” remains unanswered in classical physics. 

Understanding of turbulent flow is also very important for engineers, as turbulent flows are present 

in most of the engineering applications ranging from air fuel mixtures in engines cylinders, boilers 

& furnaces, flow through pipes, pumps, compressors, flow around airplanes, automobiles, marine 

vessels. From an engineering perspective the goal is to understand the nature of turbulence, predict 

the nature of the turbulence and control it to obtain maximum benefit. From a physical standpoint 

some interesting questions are: is there any universal small-scales structure for turbulent flows? Is 

there any boundary effect on the local turbulent structures?  Is turbulence independent of the nature 

of the fluid or geometry (i.e. large-scale) of the problem? These questions remain unanswered in 

turbulence research and have become exciting research topics for engineers, physicists and 
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mathematicians with the ultimate goal of developing robust turbulence modeling approaches to 

tackle problems in energy (e.g. fuel efficiency) as well as healthcare (e.g. better medical devices 

such as heart valves.   

In this study, we ask the question: what happens to the local structure in a strong shear zone? Given 

that kinematics of shear is fundamentally anisotropic with principal axis representing pure 

stretching and contraction of fluid elements (with no shear in these directions), how would the 

structure functions behave along these directions? Are the impacts of anisotropy different at 

different scales and different directions? To address these questions, we utilize a classical 

anisotropic turbulent flow presented by the flow past the backward facing step. The intense shear 

layer introduced into the turbulent channel flow is an ideal problem to probe the impacts of non-

monotonic spatial anisotropy. Given that most previous studies investigating the small-scale 

structure of anisotropic flows limited their observations to cases where there was at least one 

direction of homogeneity, we believe that the complex non-monotonic and inhomogeneous field 

downstream of the backward facing step provides an ideal test bed to address the mechanistic 

questions that we have posed. 

1.2 Hypothesis  

The overall hypothesis is that large-scale shear fundamentally influences the small-scale even 

within the dissipative regions of the scale distribution. To test the influence of large-scale shear 

the following tasks will be addressed in this dissertation: 

Task 1: Characterize structure function effects in the dissipative and non-dissipative regions for 

varying local mean shear strength. 
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Task 2: Characterize the behavior of local energy dissipation rate signal and the fluctuating 

dissipative scale probability density functions for varying local mean shear strength 

Task 3: Relate the principal deformation directions to the anisotropic characteristics of structure 

functions and two point correlation functions for varying local mean shear strength 

Task 4: Characterize local principal deformation properties to the local dissipative scales in all 

directions and their probability density function. 
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Chapter 2 

LITERATURE REVIEW  

Physicists, engineers and mathematicians are fascinated by the interesting nature of turbulence, 

and sense a huge challenge to solve the “unsolved” nature of turbulence. Since the inception of 

Navier-Stokes equations, a considerable extent of research has been conducted on turbulence over 

the last 150 years. Researchers have contributed to the knowledge base of turbulence by 

performing numerical studies, experimental studies and theoretical research. This chapter is 

organized to give a brief history on turbulence research covering from “classical era” (until the 

1960s) to “modern era”. This literature review will solely focus on the large-scale anisotropy of 

turbulent flows, small-scale structure of turbulent flows and dissipative scales in turbulent flows.   

2.1 Turbulence research in “classical era” 

Osborne Reynolds was the first to distinguish between laminar and turbulent flow, conducting his 

famous pipe-flow experiment (Reynolds, 1883, 1895). In his experiment he injected dye streak 

into the center of a flow through pipe while the flow transitioned from laminar to turbulent. From 

his experiment he proposed a non-dimensional number, widely known as Reynolds number, and 

depending upon this non-dimensional number flow can be categorized. Reynolds number is denote 

by Re, 

𝑅𝑒 =
𝜌𝑈𝑑

𝜇
                                    (2.1) 
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Where ρ = density of fluid, U = velocity (typically average velocity), d = diameter of the pipe 

(characteristics length) and μ = dynamic viscosity of fluid. Reynolds observed that in his pipe-flow 

experiment when the Re is less than 2300 the fluid velocity does not change with time and 

streamlines remain parallel to the axis of the pipe. And dye that was injected at center of the pipe 

keep the streak long with little increasing diameter at the downstream. This flow is known as 

laminar flow. On the other hand, when the Re is more than 4000 the flow is turbulent. The dye 

streak is jiggled by the turbulent motion. Dye eventually mixes with the water and is no longer 

visible in the downstream. This mixing phenomenon is very important in turbulent flows. He also 

noticed that when inlet disturbance is minimized flow remains laminar up to Re ~ 13,000. 

Reynolds introduces statistical methods in fluid turbulence by splitting the fluid velocity into 

fluctuating velocity and mean velocity. He also identified the non-linear terms in Navier-Stokes 

equations, now widely known as “Reynolds stress”. Reynolds equations created “closure problem” 

in turbulent research. Even though Navier-Stokes equations are closed but incorporated with 

Reynolds equations, number of unknowns is more than number of equations. One has to make 

smart assumptions to equal the number of unknowns and number of equations.   

𝑈𝑖 =< 𝑈𝑖 > + 𝑢𝑖                                         (2.2) 

𝑃 =< 𝑃 > + 𝑝                                                              (2.3) 

𝜕<𝑈𝑖>

𝜕𝑡
+ < 𝑈𝑗 >

𝜕<𝑈𝑖>

𝜕𝑥𝑗
=  −

1

𝜌
 
𝜕<𝑃>

𝜕𝑥𝑖
+  

𝜕

𝜕𝑥𝑗
 (𝜈 

𝜕<𝑈𝑗>

𝜕𝑥𝑗
− < 𝑢𝑖𝑢𝑗 >)                 (2.4) 

Equation 2.2 and 2.3 shows mean velocity and pressure decomposed into ensemble average and 

fluctuating component. Equation 2.4 is the incompressible Navier-Stokes equations incorporated 

with Reynolds equations. In the above equations second order moment term <uiuj> is known as 

“Reynolds stress” 
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2.1.1 Phenomenological model- Kolmogorov’s theory 

Richardson introduced the idea of energy cascade for turbulent flows (Richardson, 1922).  In 

energy cascade process kinetic energy is transferred from larger to smaller scales until energy is 

totally dissipated by viscosity. Turbulent flow comprised of different size eddies. Larger eddies 

are unstable and continuously undergo breaking process to become smaller eddies, these smaller 

eddies break up into even smaller eddies. As eddies break up to smaller eddies, energy is 

transferred. This process continues till Reynolds number becomes sufficiently small so that the 

eddy motion is stable and viscosity dominates the dissipation of kinetic energy. Scale of dissipation 

rate, ε can be calculated as  
𝑢0

2

𝜏0
=

𝑢0
3

𝑙0
 , where 𝑢0 is the maximum velocity fluctuations,  𝑙0 is the 

length scale for the largest eddy and 𝜏0 is the time scale for largest eddy. Experimental observation 

in free shear flows indicates similar time scale for ε (Pope, 2000) . Since introduction of energy 

cascade, several questions remain unanswered, like what is the smallest eddy size? Does 

characteristic length l have any impact on velocity and time scale?  Kolmogorov postulates three 

hypotheses to answer some of the questions mentioned above (A. Kolmogorov, 1941). This is 

widely known as K41.  

In the first hypothesis Kolmogorov argued that during energy transfer process from larger scale to 

smaller scale directional basis is lost, only energy is transferred to smaller eddies. Therefore small-

scale motions become isotropic even though large-scale motions are anisotropic. The concept of 

isotropic turbulence was first introduced by Taylor(Taylor, 1935). He assumed turbulent flows as 

isotropic and homogeneous to simplify the complexity of turbulent problem. But in reality 

turbulent flows are always anisotropic and inhomogeneous. Kolmogorov also argued that other 
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information like mean velocity field, boundary condition are also lost during the cascading 

process; as a result statistics of small-scale motion is universal.  

In the first similarity hypothesis Kolmogorov postulates motions of small-scale is universal at 

higher Reynolds number and truly becomes a function of viscosity, ν and dissipation rate, ε. 

Therefore, characteristics such as length scale and velocity length scale become function of ν and 

ε. Following scales can be derived based on the hypothesis.  

             𝜂 ≡  (𝜈3/𝜀)1/4                                                          (2.5) 

     𝑢𝜂 ≡ (𝜀𝜈)1/4      (2.6) 

     𝜏𝜂 ≡ (𝜈/𝜀)1/4      (2.7) 

Where η is the Kolmogorov length scale (characteristic length scale),  𝑢𝜂 is the velocity scale and 

𝜏𝜂 is the time scale. Reynolds number calculated based on Kolmogorov length scale is unity 𝑅𝑒𝜂 =

𝜂𝑢𝜂/𝜈 = 1.  

A new range named “inertial sub-range” was introduced to postulate second similarity hypothesis. 

According to the hypothesis, at higher Reynolds number there exists a sub range (𝜂 ≪ 𝑟 ≪ 𝐿) 

where small-scale motions are universal and function of ε only, independent of ν. In the sub-range 

r, both viscous effects and anisotropic effects are negligible due to large-scale. Based on the second 

similarity hypothesis two ranges were proposed that lie in between dissipation range and integral 

length scale (Pope, 2000). Universal equilibrium range, 𝑙𝐷𝐼 lies between dissipation range and 

inertial sub-range while energy containing range lies between integral sub-range and integral 

length scale. Relations between the two can be established as: 
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     𝜂 < 𝑙𝐷𝐼 < 𝑟                                                            (2.7) 

     𝑟 < 𝑙𝐸𝐼 < 𝐿                 (2.8) 

Since the inception of K41 several experimental investigations have been carried out to validate 

the concept of universal structure of small-scale motion in turbulent flows. For the first few 

moments, there exists a universal scaling law. As the magnitude of order increases strong 

deportation was observed, which indicated wrong assumptions in K41 theory. Obukhov realized 

that intermittency changes in large-scales, causing the fluctuations in dissipation rate are the reason 

for K41 failure (Obukhov, 1962). Later in 1962 Kolmogorov refined his similarity hypothesis, 

which is known as “refined similarity hypothesis” or K62 (A. N. Kolmogorov, 1962). In refined 

similarity hypothesis he stated that at higher Reynolds number small-scale motions are universal 

and isotropic, truly is a function of 𝜀𝑟 and ν. Where 𝜀𝑟 is local average dissipation rate. One key 

change with K41 is he replaced ε with 𝜀𝑟, also added 𝜀𝑟 fluctuation is log-normal distribution.  

There is no connection between K41 and Navier-stokes equations for incompressible flow. In 

classic era turbulence, research was totally focused on validating similarity hypothesis.  

2.2 Turbulence research in “modern era”  

Modern era of turbulent research began in early sixties. In this section we will cover research 

conducted after the K62 or RSH (refined similarity hypothesis) was proposed. Beginning of the 

modern era it was obvious that fluctuating large-scale motions are responsible for temporal 

dissipation rate fluctuation, while highly intermittent small-scales motions are responsible for 

spatial dissipation fluctuations. Backed by several observations small-scale statistics proposed by 

Kolmogorov in his K62 agrees well for longitudinal structure functions. Later it was observed by 
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simulations that when the order is greater than 10, longitudinal structure functions show significant 

deviations (Katepalli R Sreenivasan, 1998) and when the order is greater than 5, transverse 

structure function shows devastations in scaling exponents. However, K62 did not provide any 

explanation on directional dependency of scaling exponents.  

In refined similarity hypothesis Kolmogorov replaced energy dissipation rate by local average 

dissipation rate, 𝜀𝑟. He also assumed that this 𝜀𝑟 fluctuation in time follows log normal distribution. 

Lot of effort has been made to find the log normal distribution of local average dissipation, but till 

date disagreement prevails on log-normal conjecture. Gurvich et al. derived a mathematical model 

of energy cascade process of turbulent eddies break downs validated by experimental evidence 

(Gurvich & Yaglom, 1967). They observed that log normal distribution of local average dissipation 

rate can be achieved at higher Reynolds number along with scale similarity hypothesis. Others 

claimed log-normal conjecture as invalid (Mandelbrot, 1974; Novikov, 1971). 

2.2.1 Recent advancement in turbulence research  

Chen, Sreenivasan et al. observed that if they use local average enstrophy (square vorticity) instead 

of local dissipation rate, 𝜀𝑟 scaling of transverse structure function shows better correlation (Chen, 

Sreenivasan, Nelkin, & Cao, 1997). They confirmed this by performing numerical simulations of 

Navier-Stokes equations at moderate Reynolds number. Hence they proposed refined similarity 

hypothesis for the transverse direction (RHST) and this RHST is valid for transverse structure 

function only in inertial range. This closes the gap of original RSH that only tells about exponents 

of longitudinal structure function. Several researches were performed on small-scale intermittency 

mainly focusing on dissipation intermittency and inertial range intermittency (K. R. Sreenivasan 

& Antonia, 1997). This will be discussed later sections in this chapter.  
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Large-scale coherent structure is another fascinating area in turbulence research and brought new 

excitement to the fluid mechanics community. Coherent structures are well organized random 

motions naturally happening in fluid turbulence (Katepalli R Sreenivasan, 1999). Hussain provided 

a well-developed definition of coherent structure, according to him “a coherent structure is 

connected, large-scale turbulent fluid mass with a phase-correlated vorticity over its spatial extent. 

That is, underlying the three dimensional random vorticity fluctuations characterizing turbulence, 

there is an organized component of the vorticity which is phase correlated (i.e. coherent) over the 

extent of the structure ” (Hussain, 1983). In fluid flow coherent structure plays vital role 

transporting mass, heat and momentum. Kline et al. first recognized the coherent structure in fully 

developed turbulent shear flows using flow visualization technique. (Kline, Reynolds, Schraub, & 

Runstadler, 1967) Liepmann (Liepmann, 1952) and Favre et al. (Favre, Gaviglio, & Dumas, 1967) 

experimentally measured the correlation functions that confirm the evidence of existence of 

coherent structures. Several theories (Holmes, Lumley, Berkooz, Mattingly, & Wittenberg, 1997; 

Kovasznay, Kibens, & Blackwelder, 1970) have been proposed regarding the coherent structure, 

basically indicating how they maintain coherence. Despite all findings and theories the community 

is still waiting for clear solutions to be proposed (Katepalli R Sreenivasan, 1999).  

2.3 Probability Density Functions (PDFs) 

Castaing et al. experimentally studied probability density functions (PDFs) of velocity differences 

between two successive points (Castaing, Gagne, & Hopfinger, 1990). Velocity differences were 

calculated using, 𝑢𝑟 = 𝑢(𝑥 + 𝑟) − 𝑢(𝑥) where r is very short distances namely close to 

Kolmogorov dissipative scale. They performed their study at higher Reynolds number for two 

different experiments; jet flow (𝑅𝑒𝜆 = 852) and wind tunnel (𝑅𝑒𝜆 = 2720). They observed that 
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PDFs are non-Gaussian with exponential tails. From their experiments they developed two 

parameters PDF model closely following Kolmogorov’s log normality ideas. They claimed when 

r is small, tails of experimental PDFs deviate from exponential behavior that clearly agrees with 

their proposed model. Kailasnath et al. measured PDFs of velocity increments in atmospheric 

boundary surfaces for a wide range of separation distances (Kailasnath, Sreenivasan, & 

Stolovitzky, 1992). They used hot-wire technique to measure the velocity fluctuations. Later they 

used Taylor’s frozen hypothesis to convert the time intervals into space intervals. Stretching 

exponents were 0.5 when a separation distance was in dissipation range and 2, while the dissipation 

range in integral scale. Measured PDFs of velocity increments showed well agreements with 

theoretical multi-fractal notions.  PDFs of longitudinal velocity increments in low temperature 

helium gas were experimentally measured for a wide range of Reynolds number (𝑅𝑒𝜆 = 150 to 

5040) (Tabeling, Zocchi, Belin, Maurer, & Willaime, 1996). PDFs are independent of Reynolds 

number at higher 𝑅𝑒𝜆 at inertial range of scale. Skewness and flatness of the velocity derivatives 

increase with the Reynolds number up to 𝑅𝑒𝜆= 700 and after that seems to remain same.  

2.3.1 PDFs of fluctuations velocity 

Probability density functions (PDFs) of single point velocity fluctuations are fundamental to 

understanding turbulent. Previously much attention has given to study PDFs of velocity 

differences. However, focus has shifted toward velocity fluctuations. It was believed that velocity 

fluctuations are Gaussian (Batchelor, 1953; Kendall & Stuart, 1977). The conclusion was drawn 

depending upon the turbulent data available at that time. Batchelor incorporated center limit theory 

with Fourier transformation of velocity fluctuations to explain Gaussian behavior of PDFs 

(Batchelor, 1953). Recently new measurement technique has revealed that velocity fluctuations 
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are not Gaussian. This was confirmed by several experiments. Flatness factor, 𝐹𝑢 = 〈𝑢4〉/〈𝑢2〉2 

can be calculated to test the Gaussianity of velocity fluctuations. When 𝐹𝑢 < 3 velocity 

fluctuations becomes sub-Gaussian, 𝐹𝑢 > 3 velocity fluctuations are hyper-Gaussian (Hideaki 

Mouri, Takaoka, Hori, & Kawashima, 2003). 

Mouri et al. studied PDF of turbulent velocity function in grid turbulence. They observed that near 

to the gird the shape of the PDF was sub-Gaussian as opposed to the Gaussian shape in the fully 

developed region of the turbulence. The shape of the PDF later was found to be hyper-Gaussian in 

the decaying turbulence far downstream of the grid (H. Mouri, Takaoka, Hori, & Kawashima, 

2002). In a separate study they measured PDFs of single point velocity fluctuations in a rough wall 

boundary layer using Fourier coefficients focusing in the energy containing range (Hideaki Mouri 

et al., 2003). Velocity fluctuations are Gaussian where the energy containing motions are random 

and independent i.e. ideal turbulence. Velocity fluctuations become sub-Gaussian where various 

sizes of eddies are generated and hover around randomly and independently. In the rough wall 

boundary layer where the wavy wakes is contaminated with the roughness of the wall, velocity 

fluctuations are hyper-Gaussian.  

Ishirara et al. studied one point statistics of velocity gradients using DNS and observed the 

Reynolds number dependence of their PDFs. They considered the skewness and flatness factor to 

quantify the anisotropy in the fluctuating velocity gradient (Ishihara, Kaneda, Yokokawa, Itakura, 

& Uno, 2007). 

2.3.2 PDFs of dissipative scale 

The concept of calculating probability density functions in turbulent flow is half century old. 

Attempts were made to calculate PDFs of velocity increments, velocity fluctuations and log normal 
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PDFs of dissipation fluctuations. Several literatures can be found on this topic including 

experimental data to calculate PDFs of dissipation fluctuations.  (Kurien & Sreenivasan, 2001; 

Yakhot, 2001). Yakhot derived dissipation scale η using Mellin’s transformation combined with 

Gaussian large-scale boundary condition. He also calculated PDFs of dissipative scale 𝑄(𝜂) 

(Yakhot, 2006). Later several attempts have been made to find the universality in local dissipation 

scale in wide range of flows, i.e. homogeneous isotropic turbulence, buoyancy-driven turbulence, 

turbulent pipe flows, channel flows, channel with backward facing step. Biferale (L Biferale, 2008) 

used multifractal technique to predict the fluctuation of local dissipation scale, η using multifractal 

relation provided by Paladin and Vulpiani (Paladin & Vulpiani, 1987). Predictions were compared 

for both intense velocity fluctuations and smooth velocity fluctuations; both trends are in 

agreements with DNS (Schumacher, 2007) study. It was suggested that refinements may be 

necessary if someone wants to distinguish between longitudinal and transverse dissipation scales. 

Previously it was found that longitudinal and transverse structure functions possess different 

scaling properties in isotropic turbulence (Gotoh, Fukayama, & Nakano, 2002). 

Schumacher performed direct numerical simulations (DNS) of homogeneous isotropic turbulence 

(HIT) to investigate sub-Kolmogorov scale fluctuations. (Schumacher, 2007) Three dimensional 

Navier-Stokes equations for an incompressible flow were solved using pseudospectral method 

incorporating fast Fourier transformation. Spectral resolutions were one order of magnitude higher 

than standard simulations in order to capture fine-scale structures. Small-scale intermittency 

increases with Reynolds number causing increase of local dissipation range. Theoretical 𝑄(𝜂/𝜂0) 

derived by Yakhot (Yakhot, 2006) was compared with numerical results for three different 

Reynolds number (𝑅𝑒𝜆 = 107, 𝑅𝑒𝜆 = 65 and 𝑅𝑒𝜆 = 10). Numerical results of PDFs (left tail) 

show Reynolds number dependence. In a separate DNS study HIT was performed at relatively 
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lower Reynolds number (𝑅𝑒𝜆=10, 24, 42 and 64) (Schumacher, 2007). Instead of 𝜂0 , 𝜂𝑘 was used 

to normalize η. PDFs, 𝑄(𝜂/𝜂𝑘) agrees qualitatively with theoretical results. It was observed while 

𝜂 > 𝜂𝑘 tails agree better with theoretical results, 𝜂 < 𝜂𝑘 tails starts to depart from theoretical 

predictions.  

 Bailey et al. conducted turbulent pipe flow experiment using Princeton University/ONR superpipe 

facility (Zagarola & Smits, 1998) for a wide number of Reynolds number (𝑅𝑒𝜆 = 35 to 𝑅𝑒𝜆 =

135)(Bailey et al., 2009). Hot wire anemometer technique was used to measure streamwise 

velocity. They calculated local dissipation scales at center of the pipe, where the turbulence can be 

considered isotropic and at logarithmic layer of pipe wall, where turbulence becomes anisotropic. 

PDFs of 𝜂/𝜂0 , 𝑄(𝜂/𝜂0) was calculated both at near the wall and center of the  pipe, agree well 

with DNS study performed by Schumacher (Schumacher, 2007). Although deviation was observed 

for both tails with theoretical PDFs derived by Yakhot (Yakhot, 2006). This may be due to the 

saddle-point approximation used in Mellin transformation. Similar deviation was observed for 

DNS study by Schumacher (Schumacher, 2007). From the pipe flow experiment and pervious 

DNS results it was concluded that PDFs are independent of both Reynolds number and degree of 

anisotropy, although 𝑅𝑒𝜆 for super pipe experiment was at moderate range.  

Focusing on the same methodology and ideas (Bailey et al., 2009; Schumacher, 2007; Yakhot, 

2006) Zhou and Xia conducted experimental investigation of local dissipation scale, η for 

buoyancy driven turbulence to confirm the concept of universality of PDFs of local dissipation 

scales(Q. Zhou & Xia, 2010). Particle image velocimetry (PIV) experiments were performed for 

convection cell (Sun, Ren, Song, & Xia, 2005) using water as working fluids. Spatial resolutions 

were reported 0.59 mm with hollow glass spheres seeding particles with mean diameter 10 μm. 

From the experiments it was observed that PDFs of η is independent of turbulent intensity, large-
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scale inhomogeneity and anisotropy of the flow. 𝑄(𝜂/𝜂0) was measured at three different 

locations; at center cell (flow is homogeneous and isotropic), near the sidewall (plume dominated 

region, in presence of coherent structures) and near bottom plate. One interesting phenomenon was 

observed in PDFs, on plume dominated region 𝑄(𝜂/𝜂0) exhibit less steep tail comparing with 

𝑄(𝜂/𝜂0) measured at cell center. It was argued that near wall coherent structure may be the reason 

for such deviations. Measured 𝑄(𝜂/𝜂0) was compared with 𝑄(𝜂/𝜂0) of HIT box turbulence 

(Schumacher, 2007) and turbulent pipe flows (Bailey et al., 2009). Buoyancy-driven turbulence 

𝑄(𝜂/𝜂0) shows good agreement with right tails but deviated towards left for left tails. It explains 

that higher probabilities are due to increased small-scale intermittency caused by thermal 

turbulence.  

Hamlington et al performed high-resolution DNS study in channel flow for higher Reynolds 

number. Friction Reynolds numbers, 𝑅𝑒𝜏 was reported 180, 381 and 590. (P. E. Hamlington et al., 

2012). Fourier-Chebyshev pseudospectral method was used to solve three dimensional 

incompressible Navier-Stokes equations. Resolutions of the study were improved approximately 

factor of five in spatial direction comparing with other recent DNS studies.(Hoyas & Jiménez, 

2006; Kim, Moin, & Moser, 1987; Moser, Kim, & Mansour, 1999) 𝑄(𝜂/𝜂0) was calculated at 

various y+ locations and compared with previous studies. At center of the channel where y+=90 

PDFs shows good agreements in HIT case and pipe flow experiment. Interestingly it was observed 

for higher Reynolds number, 𝑅𝑒𝜏 = 590 the peak locations of 𝑄(𝜂/𝜂0) shifted towards rightward 

as y+ locations move from center to wall of the channel. Near the wall, flow is highly anisotropic 

and flow is dominated by shear. They argued that this is due to the extended coherent vortices 

present near the wall, explained earlier by Adrian (Adrian, 2007). Despite the peak deviations near 

wall they optimistically concluded there may be universal behavior in dissipation scales.  
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2.4 Structure functions (SFs) 

Turbulent flows in nature are inherently anisotropic due to the presence of mean shear as the 

primary mechanism of turbulent production. While there is a considerable body of literature 

focused on understanding the small-scale phenomenology of isotropic turbulence, the relative 

number of studies focused on characterizing the small-scale structure of turbulence in anisotropic 

flow is lower. Most of these studies addressing the small-scale structure of anisotropic flows have 

focused on testing the applicability of scaling predictions derived from either the refined similarity 

hypothesis, or the multi-fractal phenomenology of turbulence, both of which predict a universal 

small-scale structure. Nevertheless, it is well documented in literature that these classical 

predictions often appear to break down in most practical turbulent flows, particularly in those 

which possess strong anisotropy. 

2.4.1 SO(2) and SO(3) decomposition  

With respect to strongly anisotropic turbulence, one approach that has come forth, probes and 

dissects the small-scale structure in these flows by utilizing the concept of applying the special 

orthogonal decomposition of SF tensors in 2 or 3 dimensions, denoted as SO(2) and SO(3) 

respectively (L. Biferale, Calzavarini, Lanotte, Toschi, & Tripiccione, 2004). SFs refer to the 

statistical moments of fluctuating velocity differences across spatial separations and have been an 

integral statistical object to depict the spatial organization of turbulent eddies across varying 

lengths scales. Biferale et al. applied the  SO(3) decomposition of SFs to turbulent channel flows 

to elucidate anisotropic and isotropic fluctuations at all scales (L. Biferale, Lohse, Mazzitelli, & 

Toschi, 2002) and uncovered that the coherent vortical structures cause strong effects of 
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anisotropic fluctuations near the channel wall. In a separate study Biferale et al. found that at the 

large-scale, forced system anisotropic fluctuations are anomalous in contrast to the intermediate 

and small-scales where these anisotropic fluctuations were found to be universal, and that such 

small-scale dynamics are originated from inertial evolution (L. Biferale et al., 2004).  

2.4.2 Second order structure functions 

Weitao et al studied the turbulent cylinder wake (as the source of anisotropy) to understand the 

scaling of longitudinal and transverse SFs. They found that the transverse velocity increments were 

more intermittent than the longitudinal velocity increments and that the transverse scaling 

exponents were smaller (i.e. more saturated) than longitudinal scaling exponents (Bi & Wei, 2003). 

Apart from the above studies using the SO(2) and SO(3) decomposition techniques, classical 

studies include the study of probability density functions and whole SFs in anisotropic flows. Arad 

et al. studied the anisotropic contributions in the turbulent atmospheric boundary layer. Second 

order SFs in both longitudinal and transverse directions were calculated and it was found that the 

anisotropic effect in the transverse direction was far more pronounced than in the longitudinal 

direction (Arad et al., 1998). Zhou and Antonia conducted another study investigating the small-

scale structure in grid generated turbulence. By calculating the second and third order moments of 

spatial velocity differences, their study showed that the anisotropy at the small-scales decreased 

with increase in the Taylor Reynolds number, Re(T. Zhou & Antonia, 2000). Tsuji conducted 

experiments to study the flow over a rough wall and examine the effect of large-scale anisotropy 

on small-scale statistics in a turbulent boundary layer (Tsuji, 2003). They investigated the effects 

of strong mean shear on the range of dissipation rate fluctuations and its spectrum in addition to 

analyzing the behavior of SFs. It was also observed that second order SFs do not exactly follow a 
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power law profile, and rather show a convex profile in the non-dissipative range implicating the 

significant presence of large-scale anisotropy in the transverse direction. Garg and Warhaft studied 

small-scale structure in homogeneous shear flow for Reλ between 156 to 390(Garg & Warhaft, 

1998). Based on the calculated skewness and kurtosis of the velocity derivative and probability 

density functions (PDFs) of velocity increments, the researchers reported strong anisotropic effects 

both in the inertial as well as dissipative scales.  

Huang et al. studied second order SF in fully developed turbulent flow and found that the large-

scale has a great influence in SFs (Y. X. Huang et al., 2010). They estimated the large-scale 

contribution at about 79%. Kaneda and Ishihara studied the turbulence using DNS neglecting the 

effect of small-scale turbulence statistics and realized that turbulence is not remote from the 

boundary hence there is some effect on small-scales that needed to be revealed(Kaneda & Ishihara, 

2009).  

2.5 Turbulence research on backward facing step 

Separations and reattachments are very important in turbulent flows. These phenomenon are 

present in engineering applications like combustion chambers, diffusers, flow around airfoils and 

buildings. To understand above mentioned complicated flows one needs to understand and predict 

the nature of reattaching shear layers. Both separations and reattachments can be observed in 

simple channel flow with a backward facing step. Backward facing step became popular as 

laboratory experiments for its geometrical simplicity. Till date notable amount of experiments and 

numerical study have been performed on backward facing step(Alam, Walters, & Thompson, 

2011; B. Armaly, Li, & Nie, 2003; B. F. Armaly, Durst, & Pereira, 1983; Sbra Jovic & Driver, 
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1994; S Jovic & Driver, 1995; Kim et al., 1987; Walters, Bhushan, Alam, & Thompson, 2013). In 

backward facing step flow experiences adverse pressure gradients causing boundary layer 

separating from wall. At the sharp step corner upstream boundary layer separates and forms shear 

layers. Figure 2.1 shows schematic of backward facing step with intense shear zone immediately 

after the step. Separated shear layer in backward facing step can be compared with ordinary plane 

mixing layer (J. Eaton & Johnston, 1981). In other literature it was argued that reattaching shear 

layer is different from plane mixing layer (Chandrasuda, 1975; Chandrsuda, Mehta, Weir, & 

Bradshaw, 1978). As moving away from the step the width of the share layer increases and 

intensity of shear decreases, it takes sometimes 50h distance from the step to fully recover from 

shear layer (Bradshaw & Wong, 1972; Smyth, 1979). Beneath the shear layer a big recirculation 

zone is formed. Often times a backflow of over 20% of free stream velocity is observed in this 

region (Chandrasuda, 1975; J. K. Eaton & Johnston, 1980).  

 

Figure 2.1: Schematic of backward facing step 
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Armaly et al. conducted both experimental and theoretical investigation on channel flow with 

backward facing step (B. F. Armaly et al., 1983), served a wide range of Reynolds number (ReD 

from 70 to 8000) representing laminar, transitional and turbulent flows. Air was used as working 

fluids in two-dimensional backward facing step with 1:1.94 expansion ratios. Laser Doppler 

measurement technique with forward scattered light was used. Silicone-oil particle with mean 

diameter of 2 μm was used as seeding particles. Recirculation length immediately after the 

backward step depends on Reynolds number. Separation length increase with Reynolds number 

when the flow is laminar, during transition from laminar to turbulent initial strong decrease in 

separation length was noticed. It was observed when Re > 1200 flow remains laminar, when 1200 

< Re < 6600 flow is transitional and when Re > 6600 flow becomes fully turbulent. In the 

experiments at least three re-circulation regions was observed after the step. Numerical prediction 

showed good agreement with experiments up to Reynolds number 400. When Re ≥ 400 numerical 

results start deviating from experiments.  

2.6 Large-scale anisotropy  

Le, Moin et al. performed direct numerical simulations on backward facing step at Reh=5100 

(Reynolds number based on step height). (Le, Moin, & Kim, 1997) Expansion ratio for the channel 

was 1.20. DNS results validated their results with Jovic & Driver’s experiments (Sbra Jovic & 

Driver, 1994) performed almost at similar flow conditions with Reh=5000. Le et al. was the first 

to report three dimensional DNS on backward-facing step. From simulation reattachment length 

was found to be 6.28h. which agrees within 3% of Jovic and Deiver’s experimental measurements. 

Higher negative skin friction was observed in the recirculation region at lower Reynolds number. 

This was also confirmed by a different experiment by Jovic and Driver. (S Jovic & Driver, 1995). 
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In recovery region, they observed that mean velocity profile shifted downwards from universal 

log-law profile, which contradict previous findings. They argued that this is the combined effect 

of lower Reynolds number and adverse pressure gradient. Turbulent kinetic energy production and 

dissipations is peak in the shear layer after the step. Velocity pressure gradient and viscous 

diffusion was found to be negligible in the shear layer, but dominating close to the wall. At the 

exit of the computational domain x=20h, the flow was not fully recovered.  

Earlier day’s measurement in backward facing step was challenging specially in recirculation and 

reattachment region since hot wire anemometer was not suitable for reverse flow measurement. 

With development of image based measuring techniques (PIV, PTV, LDV) researchers got the 

momentum to perform more experiments at higher Reynolds numbers Piirto estimated turbulence 

energy in a backward facing step using three component (three dimensional) PIV experiments (M. 

Piirto, Saarenrinne, Eloranta, & Karvinen, 2003). Expansion ratio for their experiment was 1.5 and 

water was used as working fluid with 5 microns mean diameter polyamide seeding particles. 

Reynolds number for their experiments was reported 15000 (Reh). They reported that peak values 

of rms and Reynolds stress are 20% less compared to DNS study (Le et al., 1997). This reduction 

is the effect of low pass filtering inherited in PIV algorithm. Higher expansion ratio causes 

turbulent energy budget peak shift towards the wall. Several literatures are available (B. Armaly 

et al., 2003; Kasagi & Matsunaga, 1995; Kostas, Soria, & Chong, 2002; Mika Piirto, Karvinen, 

Ahlstedt, Saarenrinne, & Karvinen, 2007; Pilloni, Schram, & Riethmuller, 2000; Tinney & 

Ukeiley, 2009) on backward facing step that experimentally studied large-scale at different 

configurations i.e. expansion ratio, aspect ratio, with double steps.  
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2.7 Summary  

In summary, a brief description of turbulent research from classical era to modern era was provided 

in this chapter. Details and in-depth literature review on instantaneous dissipation scales, 

probability density functions of velocity fluctuations,  second order structure functions, SO(2) & 

SO(3) decompositions were discussed.  Separation and reattachment flow phenomenon observed 

in a channel flow with a backward facing step were also discussed. Due to its simple and easy 

experimental setup and capability to produce inhomogeneous and anisotropic turbulence in 

vicinity of the backward facing step, it became popular for turbulent research.  
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Chapter 3 

EXPERIMENTAL METHODS 

3.1 Introduction 

To study the small-scale structure of turbulent flows in presence of strong mean shear, experiments 

were performed in channel flow with backward facing step. Backward facing step is a widely used, 

classical method to study the fluid flow (B. F. Armaly et al., 1983; Bradshaw & Wong, 1972; Sbra 

Jovic & Driver, 1994; Le et al., 1997). In backward facing step strong shear is generated 

immediately after the step. To capture the velocity fluctuations in channel particle image 

velocimetry (PIV) technique was used. 2D time-resolved experiment was performed at higher 

Reynolds number to capture the smallest scale behavior in turbulent flows. This chapter provides 

an overview of experimental setup, details of particle image velocimetry systems, advantages of 

PIV technique, data processing and error calculation.  
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  3.2 Experimental Setup  

 

 

3.2.1 Backward facing step 

Two dimensional time-resolved particle image velocimetry (PIV) experiments were conducted to 

capture the turbulent velocity field along the centerline of a rectangular channel flow with a 

backward facing step. The step size, h, was 5 mm with the total channel length being 172h. The 

inlet and outlet cross sections of the rectangular channel were 6h×13h and 7h×13h respectively. 

The fetch length upstream of the backward step was 120h. A honey-comb section at the inlet 

conditioned the flow to break away large-scale cross stream eddies. The honey comb section was 

a plastic section of approximate length 5h and cell size of approximately 1h. The expansion ratio 

Figure 3.1: Perspective schematic of the experimental setup 
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(ER) defined as (H+h)/H, was 1.172 with an aspect ratio (AR) defined as b/H, equal to 2.24, where 

b is the channel width and H is the channel height. The acrylic channel was transparent thereby 

allowing high resolution PIV measurements. 

3.2.2 Flow facility  

Figure 3.1 shows a schematic of the flow facility that enabled PIV measurements in the above 

described rectangular channel with a backward facing step. Water at room temperature was 

circulated through the acrylic channel driven by a submersible pump in a closed loop manner. A 

bend-meter connected to a manometer recorded pressure difference that was pre-calibrated to 

obtain the bulk flow rate in the channel. Experiments were performed corresponding to two 

Reynolds numbers, Reh, based on the step height h, and maximum free-stream velocity Uo namely: 

13600 and 5500. The corresponding Reynolds numbers based on channel inlet height H, or 

hydraulic diameter of the inlet, D = 2bH/(b+H) are provided in Table 3.1. Table 3.1 also reports 

Reynolds numbers based on the upstream shear velocity, denoted Reτ. The table also includes 

comparison to Reynolds numbers of the most relevant backward facing step data from literature.  
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Table 3.1: Reynolds number comparison 

  

Reynolds 

number 

based on 

inlet height, 

ReH 

Reynolds 

number based 

on step 

height,       

Reh 

Reynolds 

number based on 

inlet hydraulic 

diameter,        

ReD 

Reynolds 

number based on 

upstream shear 

velocity,          

Reτ 

Case I 78880 13600 108800 2055 

Case II 31900 5500 44000 870 

Jovic & Driver (1994) - 5000 - - 

Le et al (1997) - 5100 - - 

 

3.3 Particle Image Velocimetry (PIV) 

Particle image velocimetry (PIV) is a non-intrusive and indirect velocity measurement technique 

which allows measuring the fluid motions by illuminating a two dimensional thin light sheet. 

Camera captures the motions of “seeding particles” and estimates the kinematics of local fluid. 

“Seeding particles” are required to be neutrally buoyant and to efficiently scatter light. This optical 

technique provides accurate measurement of instantaneous velocity field. In the last 20 years PIV 

technique has developed and gained popularity among the fluid mechanics community(Adrian, 

2005). Certainly PIV techniques provided more degree of freedom than other velocity measuring 

techniques (i.e. hot wire anemometer, classical Pitot tube, laser doppler velocimetry (Albrecht, 

2003; Goldstein, 1996)). Pressure probes or hot wires are inserted in flow field to measure the flow 

data for hot wire anemometer method, the flow experience disturbed by presence of external 

elements. In PIV technique flow can be measuree without disturbing the flow, and most 

importantly, instead of a single point (for hot wire anemometer) velocity data is available for the 

whole region. On the other hand pointwise measurement techniques are fully developed and 
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capable of capturing tiny or rapid changes of flow. Using an array of single point probes one can 

get a good idea about the entire flow field. Citriniti and George used 138 synchronized hot wire 

anemometers to study the large-scale and coherent structure of a round jet nozzle (Citriniti, 2000). 

Using an array of single point probes is always cumbersome. It not only increases the complexity 

of the experiment but also other issues like locations of the probes, cost and calibration issues need 

to be taken care of.  

Local velocity data is very important for turbulent research; additionally having the data of global 

velocity field is also very exciting to turbulent researchers and applied research & development 

community. PIV helps to understand the complex flow behavior by visualization and helps 

designers to quickly adjust their fluid machinery to gain desired output. PIV experiments can be 

very quick compared to conventional flow measurements methods that can save resources due to 

running expensive flow facility. Image post processing and image analysis can be done separately 

at convenience. With PIV systems images can be captured at very higher temporal and spatial 

resolutions. Recent developments in high speed lasers, camera and powerful lenses are making 

PIV system more and more appropriate for any flow visualization.  

Seeding particles or tracer particles in PIV system should be tiny enough so that it has no effect 

on flow dynamics and it should have better light scattering efficiency so that video sensors can 

easily capture the motion of the particle. A thin laser sheet, generated by passing double pulsed 

laser beam with optical arrangement, caused tiny seeding particles to be illuminated twice with a 

very small time gap in between. A high speed CCD camera is placed perpendicular to the laser 

sheet. The time of particle displacement is recorded as either a single image exposed twice or a 

pair of two single exposed images. Time difference between two pulses is chosen depending upon 

the flow velocity and magnification of the camera. Later on velocity vector is calculated from 
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known pulse difference and seeding particles displacements. In order to calculate velocity vector 

PIV images are divided into small subsections – commonly known as “interrogation windows”. 

Auto-correlation, a statistical correlation technique is used to calculate local velocity vectors at 

each interrogation window. The size of the interrogation window needs to be chosen dexterously 

so that all the particles move homogenously in the same direction and same distance and also there 

should be sufficient number of particles in each interrogation window.  

3.3.1 Laser and Camera 

Time resolved PIV experiments measured the instantaneous turbulent 2D velocity field in the 

streamwise (x) × wall normal (y) directions along the channel centerline immediately downstream 

of the step. The PIV system used was built by LaVision Inc., equipped with a diode-pump Q-

switched Nd:YLF laser (Photonics Industries, Bohemia, NY) coupled with external spherical and 

cylindrical lenses to illuminate the measurement region with a thin laser sheet. The 1/e2 thickness 

of the laser sheet was estimated at < 0.1 mm. A mirror was used to position the laser sheet aligned 

with the channel centerline as shown in Figure 3.1. Raw PIV images were captured using a 

synchronized high speed camera (Photron, San Diego, CA,Model: FASTCAM SA3) with a 50 mm 

Nikon lens. Figure 3.2 shows Photron FASTCAM SA3 camera used in the experiments. Figure 

3.4 shows raw image capture by high speed camera. The camera was equipped with a 12-bit CMOS 

sensor of 1024 x 1024 pixel resolution with each pixel physically measuring 17 x 17 m2. For each 

of the two Reynolds number cases (Table 4.1), double frame images were captured at a sampling 

rate of 2 kHz. The total number of samples obtained was 4,215 per case. 
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3.3.2 Seeding Particles 

The fluid was seeding with polyamide seeding particles (Dantec Dynamic Inc.) with a mean 

particle size of 20 m. The distribution of particles was such that 5% of the particles had a diameter 

less than 10 µm, and another 5% with diameter greater than 30µm. The laser pulse separation was 

in the range of 50 to 300 µs in order to obtain a gross particle displacement in the range of 5 to 10 

pixels. The resulting spatial resolution after in-situ calibration of the images was 27.8 μm/pixel.  

3.3.3 Resolutions  

In order to assess the influence of large-scale anisotropy on the small-scale structures, we 

demonstrate that the above described measurements of the instantaneous turbulent velocity field 

do resolve at least a sizeable portion of the dissipative regime. Note that this study does not aim to 

resolve the Kolmogorov scale or sub-Kolmogorov features within the measured instantaneous 

Figure 3.2: Photron high speed camera (Model: FASTCAM SA3) used in experiment 
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turbulent fields. Given that the objective of this study is to investigate how the effects of strong 

anisotropy (mean shear) influence the dissipative regime of second order structure functions, it is 

required that current measurements at least resolve well below the Taylor micro-scale, which is 

regarded as the conventional cut-off length scale separating the dissipative regime and the scales 

where inertia is more dominant (non-dissipative scales). As demonstrated below, it was shown that 

current experiments not only resolve the Taylor micro-scale but also capture a sizeable portion of 

the dissipative regime. This is done through the analysis of the probability density function of the 

instantaneous dissipative scale fluctuations derived from our dataset at each of the points of interest 

chosen in this study. 

Table 3.2 lists the Taylor micro-scale in microns calculated from the longitudinal 2-point 

correlation function at each point of interest for all Reynolds number cases. As can be seen, the 

magnitude of the Taylor micro-scales is far greater than the velocity resolution (one vector every 

four pixels).  
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Table 3.2: Taylor micro-scale (λ), integral length scale (L), Taylor Reynolds number (Reλ), Reynolds number based on integral length 

scale (ReL) at seven different location for all three cases 

Position  
Case I   Case II 

 λ (µm)  L (mm) τ0 (mS) Reλ ReL   λ (µm)  L (mm) τ0 (mS) Reλ ReL 

1 628.8 5.9 2.18 142 1339   1117.1 6.6 6.03 89 529 

2 715 5 1.84 105 733  1068.1 5 4.55 70 329 

3 490.7 4.3 1.57 131 1142  623.3 2.7 2.44 64 277 

4 545.2 4.4 1.63 122 996  1072.6 6.8 6.21 96 608 

5 639.2 6.9 2.55 162 1759  915.4 5.8 5.31 96 611 

6 409.6 4.5 1.67 166 1839  713.2 5.4 4.87 113 848 

7 501.4 5 1.84 150 1491   864 5.4 4.94 94 594 
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Figure 3.3: Schematic diagram of backward facing step. Red dashed line indicating the 

measurement region 

 

 
Figure 3.4: Raw image of flow passed the backward facing step captured by PIV 
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To address resolution issues related to the size of the seeding particles, it is noted here that the 

particles are indeed quite a bit smaller compared to the Taylor micro-scale thus again supporting 

the argument that the experiments can indeed resolve some portion of the dissipative scales. In 

addition, the neutrally buoyant characteristic of polyamide particles satisfies the most ideal 

conditions noted in Ref. (Mei, 1996)  . Another parameter to confirm minimal interference by the 

seeding particles in affecting turbulence characteristics relates to the mass loading ratio (defined 

as the ratio of the seeding mass flow rate to the working fluid mass flow rate) (Raffel, Willert, & 

Kompenhans, 1998). Fluid mass ratio estimate is 4.8 × 10-4 based on the total mass of polyamide 

particles introduced into the flow circuit. This is very low to have a physical effect on turbulence 

characteristics based on earlier work by Longmire et al (Longmire & Eaton, 1992). 

3.3.4 Image post processing 

The measurement field-of-view was a rectangular region of size 5h in the streamwise direction 

and 2.6h in the wall normal direction. Figure 3.3 shows a diagram of the field of view relative to 

the step position. This field of view was specifically chosen to capture the intense free shear region 

that exists downstream of the step. The Figure also shows seven interrogation points (numbered 1 

through 7) the local structure of turbulence through the calculation of probability density functions 

(PDFs) and second order SFs were probed. These points of interest correspond to regions of 

varying characteristics of the large-scale anisotropy.  

This raw image sequences were pre-processed prior to vector calculations by subtracting a sliding 

background image, conducting particle intensity normalization, and performing high-pass 

filtering. This enhanced the image contrast and nearly eliminated spurious vectors. It was found 

that there were occasional spurious vectors without the pre-processing, which were absent with 
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the presence of pre-processing. The percentage of accepted vectors was > 95%. Cross-correlation 

and multi-pass iterative algorithms were chosen to yield a final interrogation window size of 8×8 

pixels with 50% overlap to calculate the turbulent 2D time-resolved instantaneous velocity vectors. 

An in-house Matlab code was developed to post-process these raw velocity measurements to 

derive statistical properties, specifically PDFs, second order SFs and dissipative scales.   

3.4 Error calculations  

To further address the issue about how sizeable is the dissipative regime resolved in current 

experiment, take a look at the probability density function of the local dissipative scale η defined 

as {η: such that the local Reynolds number uηη/ ~ 1) at each of the points of interest in this 

experiment for all cases. These computed PDFs, Q(η) were then compared to published PDFs 

available for shear flows and homogenous turbulence. Figure 3.5 shows normalized PDFs of 

Q(η/ηpeak) calculated at each of the seven interrogation points for all Reynolds number cases, where 

ηpeak is the mode of the distribution. The methodology to compute the PDF was identical to that 

described by Bailey et al. (Bailey et al., 2009) . Detailed descriptions are also provided later in this 

chapter. Also included in this figure are published PDFs of the dissipative scales normalized by 

ηpeak for homogenous isotropic turbulence by Schumacher (Schumacher, 2007)  and those in pipe 

flow experiments (Bailey et al., 2009). As can be seen, the PDFs measured in current experiment 

agree well with the known behavior of dissipative scales, further demonstrating that the 

experiments presented in this work does capture the physical nature of dissipative scales. We also 

note that when the PDFs are normalized with 𝜂𝑂 = 𝐿𝑅𝑒𝐿
−0.72 (𝐿 being the local integral length 

scale and  𝑅𝑒𝐿 = 𝑘1/2𝐿 𝜈⁄ ,  where k is the measured turbulent kinetic energy), we observed that 
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the location of the peak consistently scaled with mean shear. Details will be discussed in later 

chapters. 

 Table 3.3: Percent error associated with the second-order structure function in the streamwise 

direction at various r distances 

  % Error  

  r1(0.4 mm) r2(2.7 mm) r3(4.9 mm) r4(7.1 mm) 

Position 1 1.5 2.7 2.82 2.32 

Position 2 2.55 3.68 1.63 1.6 

Position 3 1.01 1.78 2.17 1.17 

Position 4 1.17 0.65 2.53 2.94 

Position 5 2.25 0.86 2.66 2.53 

Position 6 4.16 3.5 3.14 3.99 

Position 7 1.28 2.63 3.07 2.09 
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Figure 3.5: Local dissipation scale PDF Q(η/ηpeak) presented at the seven  interrogation points for 

all three Reynolds number cases. Red circle represents Case I, green inverted triangle represents 

case II, and blue diamond represents case III. Solid line 
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With respect to errors from statistical convergence based on the finite size of velocity ensembles 

measured, Table 3.3 lists the percent error in the second order SF in streamwise direction evaluated 

at four different separations, for each of the seven interrogation points, based the standard deviation 

of the arithmetic mean of randomly selected sub-set of ensembles. As shown in the Table, the 

maximum error in the structure function due to statistical convergence is estimated to be less than 

5 percent. 

3.5 Limitations  

Two dimensional particle image velocimetry (PIV) experiments were carried out for current 

research. To explain more elaborately, in channel with backward facing step fluid was flowing in 

three dimensional spaces. Two dimensional high speed images were captured at the middle of z-

axis of the channel. Even though flow dynamics in the channel is three dimensional, two 

dimensional measurements were performed. These measurements meet the goal of current project, 

to study the velocity co-relations in x and y directions.  

3.6 Probability Density Functions (PDFs) 

3.6.1 Introduction to PDFs 

Probability density function (PDF) is continuous random variable that describes the statistical 

behavior of fluctuating velocity differences. In other words it tells us the probability of a random 

variable at a certain value range. PDF of a random variable is integral of random variables density 
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function over a given range. PDF of random variable X can be calculated by using equation no 3.1. 

X has range −∞ < 𝑋 >  ∞ . Probability of X was calculated over the interval [a,b]. 𝑓(𝑥) is the 

density function is derivative of cumulative density function (CDF).  

   𝑃𝐷𝐹(𝑎 < 𝑋 > 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
          (3.1) 

3.6.2 Methodology  

Probability density function of streamwise velocity, U and wall normal velocity, V was calculated. 

Streamwise velocity, (U-<U>)/σ
U and wall normal velocity, (V-<V>)/σ

V
 were normalized using 

their respective ensemble average and standard deviation. Where <U> and <V> are the ensemble 

average; σ
U 

and σ
V
 are respective standard deviation. PDF was calculated at seven interrogation 

points to understand the influences at varying large-scale anisotropy. A matlab code was developed 

to calculate PDFs.  

3.7 Structure Functions (SFs) 

3.7.1 Introduction to SFs 

Structure function can be defined in terms of velocity increments between two points. Second 

order structure function covariance is the velocity difference between two successive 𝑥 + 𝑟 and 𝑥 

(Pope, 2000). Structure function is widely used to understand the scaling exponent of turbulent 

flows (Y. Huang et al., 2010; K. R. Sreenivasan & Antonia, 1997) since Kolmogorov’s hypothesis 

(A. Kolmogorov, 1941). Equation 3.2 shows nth order structure function at streamwise direction.  

   ∆𝑢𝑛 =  (𝑈(𝑥 + 𝑟) − 𝑈(𝑥))𝑛                                                                 (3.2) 
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3.7.2 Methodology  

The second order SFs calculated are defined by the following equation: 

                          〈∆𝑢′
𝛼𝛽
2 〉(𝑟) = 〈(𝑢′(𝑝⃗ + 𝑟𝑒̂𝛽) ∙ 𝑒̂𝛼 − 𝑢′(𝑝) ∙ 𝑒̂𝛼)

2
〉                                             (3.3) 

Where 𝑝⃗ is the position of any of the seven interrogation points, 𝑟𝑒̂𝛽 is the separation vector from 

the interrogation point to a point 𝑟 distance away in the 𝑒̂𝛽 direction. The dot product with 𝑒̂𝛼 

denotes the velocity component utilized for the SF. Thus 〈∆𝑢′
𝛼𝛽
2 〉(𝑟) is the second order SF of the 

𝛼 component of the fluctuating velocity in the 𝛽 direction.  

Second order SFs as defined above were computed at the seven interrogation points along four 

directions namely i, j, e1, and e2, where i and j are the unit vectors in the x and y directions, while 

Figure 3.6: Measurement region in Backward facing step with all seven interrogation position. 

Position 7 shows direction of where second order structure functions were calculated. 
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e1 and e2 represent the calculated principal directions of the symmetric 2D strain rate tensor. Thus 

eight SFs per interrogation point for each of the Reynolds numbers cases were computed. The 

logarithmic derivative for each of the SF, defined as 𝜁𝛼𝛽 = 𝑟
𝑑 𝑙𝑛 〈∆𝑢′

𝛼𝛽
2

〉

𝑑𝑟
 was also calculated to 

represent the spatial variation of the “exponent” characteristics of the calculated SF. Figure 3.6 

shows four directions of  i, j, e1, and e2 for position 7.   

Second orders SFs were also calculated in 360° directions at all seven interrogation positions. 

Figure 3.7 shows schematic of backward facing step and 360° directions where second order 

structure functions were calculated. Structure functions at 360° directions were only calculated for 

higher Reynolds number case (Case I) and were calculated for Vr and Vθ velocity component, 

where r indicates parallel direction of β while θ indicates perpendicular direction of β. β range 

from 0° to 360°.  

 

Figure 3.7: Schematic of backward facing step showing position 6 and 360° directions where 

second order structure functions and two point correlation functions were calculated. 
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3.8 Two Point Correlation Functions (TPCFs) 

3.8.1 Introduction to TPCFs 

Two point correction functions is the simplest statistic containing turbulent information on the 

spatial directions of the random field (Pope, 2000). Attempts were made (De Karman & Howarth, 

1938; Taylor, 1935) using two point correlation to understand the energy cascade process in 

Navier-Stokes equations. Second order structure functions, 〈(𝑢1 −  𝑢2)
2

〉 can be derived shown in 

equation 3.4, if we observe the right hand side of the equation 3.4 first two terms,  〈𝑢1
2〉 and  〈𝑢2

2〉 

has impact on large-scale anisotropy. The remaining part is 〈𝑢1𝑢2〉, that is two point correlation 

functions. To understand the influence of small-scale contribution it is necessary to calculate the 

two-point correlation functions.                                              

   〈(𝑢1 −  𝑢2)
2

〉 =  〈𝑢1
2〉 +  〈𝑢2

2〉 − 2〈𝑢1𝑢2〉                                           (3.4) 

3.8.2 Methodology  

Two point correlations functions are defined by following equations:  

                                𝜌𝛼𝛽(𝑚) = 〈(𝑢′(𝑝 + 𝑚𝑒̂𝛽) ∙ 𝑒̂𝛼 . 𝑢′(𝑝⃗) ∙ 𝑒̂𝛼)〉                                                (3.5) 

Where 𝑝⃗ is the position of any of the seven interrogation points, 𝑚𝑒̂𝛽is the separation vector from 

the interrogation point to a point 𝑚 distance away in the 𝑒̂𝛽 direction. The dot product with 𝑒̂𝛼 

denotes the velocity component utilized for the structure function. Thus 𝜌𝛼𝛽(𝑚) is the two point 

correlation of the 𝛼 component of the fluctuating velocity in the 𝛽 direction.  
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Two point correlation functions were also calculated in 360° directions at all seven interrogation 

positions. Figure 3.7 shows schematic of backward facing step and 360° directions where two 

point correlation functions were calculated. Two point correlations functions at 360° directions 

were only calculated for higher Reynolds number case (Case I) and were calculated for Vr and Vθ 

velocity component, where r indicates parallel direction of β while θ indicates perpendicular 

direction of β. β range from 0° to 360°.  

3.9 Lacunarity & Intermittency  

3.9.1 What is Lacunarity?  

Lacunarity, Λ(λ) means gap or pool, which was derived from the word “lake”. The distribution of 

gap size has been termed as lacunarity by Mandelbrot (Mandelbrot, 1983) . Measurement of 

“gappiness” or “hole-iness” in geometric structure is lacunarity (Kaye, 1989). A geometric 

structure is considered more lacunar if the gap sizes are distributed over a greater range (Plotnick, 

Gardner, & O'Neill, 1993). Lacunarity analysis is a multi-scaled method for describing patterns of 

spatial dispersion that can be used for both binary and quantitative data set in one dimension, two 

dimensions or even three dimensions. For this current study lacunarity was calculated for one 

dimensional data set of turbulent kinetic energy dissipations, ε.  Lacunarity analysis is applicable 

for both non-fractal and multi-fractal distributions (Plotnick, Gardner, Hargrove, Prestegaard, & 

Perlmutter, 1996). Low lacunarity means objects are homogeneously and translationally invariant 

as the gap sizes are same, whereas higher lacunarity means objects are heterogeneous and not 

translationally invariant as gap sizes are wide (Gefen, Meir, Mandelbrot, & Aharony, 1983). 

Lacunarity is scale dependent measurements technique; a heterogeneous object at small-scales can 
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be homogenous when the scale is large. Alternately a homogenous object can turn to 

heterogeneous when the scale is decreased.  

 Several methods have been proposed for lacunarity calculations by Mandelbrot (Mandelbrot, 

1983), Gefen et al(Gefen et al., 1983) , Lin and Yang (Lin & Yang, 1986), Allain & Cloitre (Allain 

& Cloitre, 1991). Among all the methods gliding-box algorithm method is most straightforward 

which was proposed by Allain & Cloitre.  This method was adapted for current study to calculate 

lacunarity of instantaneous dissipation rate signals. Sliding-box methods can be easily described 

for one dimensional data set. Let’s assume we have a data set x that has 10 variables. λ is the radius 

(here length, as 1D) of the box, the values can be 1, 2, 3…… . C = mean × standard deviation of 

series x. Later on, a new binary series qualifying criteria is >= C was established. From that series 

sum all the binary inside each radius. This new series is m or mass series. Then calculating standard 

deviation and mean of the mass series lacunarity can be calculated using equations 3.4. The ratio 

of second moment to the square of the average of the spatial mass-distribution function is defined 

as lacunarity. Similarly, lacunarity can be calculated varying the λ sizes. Later on lacunarity, Λ can 

be plotted at varying box radius, λ. For current study the raw dissipation signal is converted into a 

binary signal via a pre-set threshold. Given a box radius (time scale) λ, the mass signal is obtained 

as the integral of the binary signal within the window. As the window slides across the entire time-

series, the mass signal fluctuates. Lacunarity Λ(λ) is then calculated using equation 3.4. Physically, 

Λ(λ) reflects the level of inhomogeneity and intermittency in the signal.  

                                       𝛬(𝜆) =  
∫ 𝑚2 𝑝𝑑𝑓𝜆(𝑚)𝑑𝑚

∞
𝑚=0

(∫ 𝑚2 𝑝𝑑𝑓𝜆(𝑚)𝑑𝑚
∞

𝑚=0 )2
= 1 +

𝜎𝑚
2

𝜇𝑚
2                                              (3.6)                   

Where, σ is the standard deviation and μ is the mean of mass series.  
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3.9.2 What is Intermittency?  

A signal becomes intermittent when it stops from time to time and starts again. It can be also 

defined as irregular alternation of phases of signals. Intermittency is very common in turbulent 

flows and also one of the most challenging problems in turbulence. Physically lacunarity, Λ(λ) 

reflects the level of inhomogeneity and intermittency in signals. Lower lacunarity means mass 

signal fluctuates less relative to its mean and alternately higher lacunarity means mass signal 

fluctuates more relative to its mean in higher lacunarity case.  

3.9.3 Intermittency in turbulent flows 

Intermittent spatio-temporal fluctuations of the instantaneous velocity gradient field are canonical 

to all turbulent flows.  Probability density function of velocity gradient in turbulent flow is not 

Gaussian, tails of PDF becomes stronger with increase of Reynolds number (Jiménez, 2007; Lohse 

& Grossmann, 1993). Intermittency of turbulent flows is not only limited to velocity gradient but 

also present in the turbulent kinetic energy dissipation rate field ε. Intermittency of energy 

dissipation rate can also be described in terms of a corresponding instantaneous fluctuating 

dissipation scale η. Detailed description of dissipation scale is provided in the next section. Several 

techniques like cascade model, breakdown coefficient model can be used to describe intermittency 

in turbulent flows (Jiménez, 2007). Cascade model includes multi-fractal model, (She & Orszag, 

1991) multiplicative models, (Benzi, Biferale, & Toschi, 2003) limiting distribution model. 

Imperfect multiplicative process (Jiménez, 2000; Jiménez & Wray, 1998) can be an example of 

breakdown coefficient models (Meneveau & Sreenivasan, 1991).    
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Intermittency of velocity differences increases in turbulent channel flow traveling from center to 

wall of the channel where vertical structure and strong mean shear are present. This was confirmed 

by Toschi et al, they studied direct numerical simulation of channel flow (Toschi, Amati, Succi, 

Benzi, & Piva, 1999). In their study they used scaling exponents of longitudinal streamwise 

structure function as quantitative indicator of intermittency. Characteristic length scale Ls was 

proposed.  Ls can be defined as square root of the mean energy dissipation and the mean shear rate. 

Intermittency increases when scales r ≥ Ls compared with homogeneous isotropic turbulence. 

Intermittency of shear dominated flows was also observed by Gualtieri et al. (Gualtieri, Casciola, 

Benzi, Amati, & Piva, 2002) . They proposed a new approach to classical  Kolmogorov-Obukhov 

refined similarity hypothesis (A. N. Kolmogorov, 1962) that was able to predict the intermittency 

in dissipation field.  Instantaneous production of turbulent kinetic energy is solely responsible for 

intermittency of velocity increments in shear-dominated flows.  

Intermittency generation is observed in three dimensional Navier-Stokes turbulence, which can be 

well defined using cascade model (Jiménez, 2007). Different systems are available either to 

qualitative understanding or quantitative understanding of the physical process of intermittency 

behavior. Intermittency is also observed in turbulent mixing of a passive scalar. Turbulent mixing 

is pretty common phenomenon in turbulent heat transfer and in atmospheric pollutants dispersion.  

3.10 Dissipative scales 

3.10.1 Overview 

Intermittency of energy dissipation rate can also be described in terms of a corresponding 

instantaneous fluctuating dissipation scale η. This fluctuating dissipation scale may be defined as 
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η. This fluctuating length scale η as the cut-off scale is different from the classical dissipative scale 

η
K
 = (ν3/<ε>)1/4 proposed by Kolmogorov (A. Kolmogorov, 1941). Where ν is kinematic viscosity 

of fluid and <ε> is the mean kinetic energy dissipation energy rate. Physically, η is the 

instantaneous cut-off scale where viscosity overwhelms inertia. Paladin and Vulpiani proposed 

dissipation length scale η to bridge connections between dissipative scales and localized turbulent 

flows (Paladin & Vulpiani, 1987). The local Reynolds number corresponding to dissipative scale 

η is 1:  Reη = ηδηu/ν ≈ 1; where δηu = |u(x + η) − u(x)| is the longitudinal velocity increment 

(Yakhot, 2006; Yakhot & Sreenivasan, 2005). 

3.10.2 Methodology 

Two paradigms can be used to capture the dynamics of dissipative structures: (1) through a 

continuous distribution of dissipative scales represented by its probability density function (PDF) 

Q(η), or (2) of a single dissipative scale η
K
; both predict a form of universal structure of turbulence 

at the small-scales provided that the intermittency characteristics of ε is universal (i.e., independent 

of the large-scale). Equivalently, the small-scale structure of turbulence is universal if the 

distribution Q(η) has a form independent of the large-scales. Identifying this universal form has 

been the quest of the statistical theory of turbulence for sufficiently large Reynolds numbers. 

Yakhot derived an analytical form for Q(η) by applying the Mellin transform properties to the 

structure function exponent relationships for moments of δηu, combined with the Gaussian 

assumption (Yakhot, 2006, 2008).  This analytical estimate for high Reynolds number was 

constructed by utilizing an experimental fit to the measured behavior of the scaling exponent, ξn(n) 

in isotropic flows, where n is the order of the moment. η range was proposed  0 < η < L to calculate 

probability density function Q(η) of η, where L is the integral length scale of turbulence. 
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Established methodology published previously was closely followed to calculate PDF of 

dissipative scale, η (Bailey et al., 2009; P. E. Hamlington et al., 2012; Schumacher, 2007; Q. Zhou 

& Xia, 2010) . Qualification criteria were set 0.9 ≤
(𝑢𝑟−𝑢0)(𝑥𝑟−𝑥0)

𝜈
≥ 2  to calculate η, where ur-u0 

 

is velocity differences and xr-x0 is spatial differences. Once this criteria was satisfied η = xr-x0 was 

calculated. 𝜂0 = 𝐿𝑅𝑒𝐿
−0.72 was calculated to normalized η, where  𝑅𝑒𝐿 is the Reynolds number 

based on integral length scale. Following series of equations were used to calculate𝑅𝑒𝐿.  

    𝜆𝑓 =  [
𝑓(𝑥0)−𝑓(𝑥2)

4∆𝑥2 ]
− 

1

2
                                                                (3.7) 

    𝜆𝑔 =  
𝜆𝑓

√2
                                                                                    (3.8) 

    𝑅𝑒𝜆 =  
√𝑘 𝜆𝑔

𝜈
                                                                              (3.9) 

    𝑅𝑒𝐿 =  
3𝑅𝑒𝜆

2

20
                                           (3.10) 

Where 𝜆𝑓 is longitudinal Taylor microscale, ∆𝑥 is spatial grid distance, 𝜆𝑔 is transverse Taylor 

mixrocalse, 𝑅𝑒𝜆 is Taylor Reynolds number, k is turbulent kinetic energy. With this 𝜂0 probability 

density function Q(η /𝜂0) was calculated to measure the intermittency effect in presence of strong 

mean shear, this is described in detail in chapter 6.  

3.11 Summary  

In summary, experimental details performed for current study were discussed. Two dimensional 

particle image velocimetry experiments were performed for two different Reynolds number cases. 

Polyamide seeding particles were used with mean diameter of 20 μm. Image post processing 
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technique was discussed briefly. Error calculation was performed and PDF of dissipative scales 

was compared with previous published results to boost the confidence of current experiment. 

Introduction and details methodology of Probability density functions, Structure functions, and 

dissipations scales were discussed. Dissipation scales were calculated using Yakhot’s derived 

(Yakhot, 2006) analytical forms that uses Mellin transformation. Lacunarity measures the 

homogeneity of any signals. Gliding box method was used to calculate the lacunarity of turbulent 

kinetic energy dissipation. Lacunarity measurement provides the physical understanding of 

intermittent nature of turbulent flows. Intermittency nature of turbulent flow was discussed and 

short literature review on intermittency in turbulent flows was provided in this chapter.  
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Chapter 4 

MEAN FLOW & ANISOTROPY 

4.1 Introduction 

As mentioned earlier, classical case of turbulent flow past a backward facing step was utilized for 

current study. While this case has been utilized primarily to study and model separated turbulent 

flows, the simplicity of the geometry and its strong anisotropic nature particularly in the free shear 

layer downstream of the step provides an opportunity to interrogate the local properties of the 

small-scale structure of turbulence. The experiments described in Chapter 4 provide a well-defined 

strongly anisotropic turbulent flow over a modest range of Reynolds numbers. In this chapter mean 

flow characteristics of backward facing step along with anisotropy behavior of large-scale were 

discussed.  

4.2 Mean flow characteristics 

4.2.1 Mean velocity 

Figure 4.1 shows the comparison of the normalized mean streamwise velocity profiles extracted 

at 𝑥/ℎ = 4 for both Reynolds numbers with those from the previous work of Jovic and Driver 

(Sbra Jovic & Driver, 1994) and Le, Moin et al.(Le et al., 1997). As can be seen, the agreement is 

good, and any deviation observed may be attributed to the difference in Reynolds number. Figure 
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4.2 and 4.3 compare the corresponding standard deviation profiles of the streamwise and wall-

normal velocity components again depicting reasonable agreement.  

  

 

 

 

 

 

 

 

 

<U>/ U
0

y
/
h

-1 0 1 2
0

1

2

3

Case I

Case II

Jovic, Driver 1994

Le, Moin 1997

Figure 4.1: Mean streamwise velocity profile comparison at x/h = 4. Profiles are shown for Case 

I (Red square) , Case II (blue triangle) of current study. Profiles are compared  with  revious 

published results of Jovic and Driver  (1994)(Reh = 5,000) (Black circle) and Le et al. (1997)  (Reh 

= 5,100)  (pink diamong) 
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Figure 4.2: RMS streamwise velocity profile comparison at x/h = 4. Profiles are shown for Case 

I (Red square),  Case III (blue triangle) of current study. Profiles are compared with previous 

published results of Jovic and  Driver (1994) (Reh = 5,000) (Black circle) and Le et al. (1997)  

(Reh = 5100) (pink diamond) 
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Figure 4.3: RMS wall-normal velocity profile comparison at x/h = 4. Profiles are shown for Case 

I (Red square),  Case III (blue triangle) of current study. Profiles are compared with previous 

published results of Jovic and Driver (1994) (Reh = 5,000) (Black circle) and Le et al. (1997) (Reh 

= 5,100) (pink diamond) 
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To better define the upstream conditions for the three Reynolds number cases, Figure 4.4 shows 

the mean streamwise velocity profiles extracted immediately upstream of the backward step (at 

𝑥/ℎ = −0.3). These profiles correspond to fully developed channel flow profiles with a well-

developed logarithmic layer (Figure 4.5). Based on these profiles and application of the Clauser 

plot technique to determine shear velocity, we report the boundary layer Reynolds number, 𝑅𝑒𝜏 

corresponding to each of both cases in Table 3.1.  From the near wall velocity profile (Figure 4.5) 

it was observed that both the Reynolds number cases clearly follow log-law profile at inner layer.  
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Figure 4.4: Mean streamwise velocity profile comparison before the step at x/h = -0.3. Profiles 

are shown for Case I (Red square), Case (blue triangle) of current study 
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Figure 4.5: Near wall velocity profile comparison before the step at x/h = -0.3. Profiles are shown 

for Case I (Red square), Case II (blue triangle) of current study and compares with theoretical 

study, channel flow DNS done by Hoyas et. al. at comparable Reτ. Black line indicates theoretical 

profile, green circle indicates Reτ =2003(Hoyas et. al. 2008) and pink triangle indicates Reτ =950 

(Hoyas et. al. 2008) 

 



 

 

53 

 

 

 

 

4.2.2 RMS of fluctuation velocity 

Figure 4.6 shows mean velocity contour plots of the streamwise and wall-normal and figure 4.7 

shows root mean square (rms) of the velocity components for both Reynolds number cases. As 

seen in the figure, the maximum measured streamwise velocity, U occurs in the free-stream region 

above the step while the maximum wall-normal velocity, V occurs in the recirculation region. As 

expected, the shear layer starts at the edge of the step and increases in its wall-normal extent in the 

streamwise direction. 
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Figure 4.6: Mean velocity contours presented for all Reynolds number cases 
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The region between the wall and the shear layer contains a large primary vortex region. While the 

mean flow showed a large vortex region, instantaneous time-resolved measurements showed a 

highly unsteady recirculation region with many coherent vortices. This is consistent with previous 

work of Huang et al. (Y. X. Huang et al., 2010). Increase in Reynolds number intensifies the 

recirculation region. From all two Reynolds number measurements, the reattachment length is 
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Figure 4.7: RMS velocity contours presented for all Reynolds number cases 
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found to be >  5ℎ distance consistent with the findings from previous researchers (Sbra Jovic & 

Driver, 1994). 
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Figure 4.8: Mean vorticity contours presented for all Reynolds number cases 

Figure 4.9: Mean vorticity contours presented for all Reynolds number cases 
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From the contours of rms fluctuations velocities U' and V' (Figure 4.7), it can be easily seen that 

the turbulent fluctuations are most intense in the shear layer and the width of shear layer increases 

in wall-normal span in the downstream direction. At both Reynolds number cases U' and V' possess 

higher values towards the reattachment region. This phenomenon was also found by Le, Moin et 

al. (Le et al., 1997) and is attributed to large-scale fluctuations associated with the highly unstable 

nature of the re-attachment region expected due to adverse pressure gradient resulting from the 

channel expansion. Figure 4.8 represents mean vorticity contours for both Reynolds number cases. 

It can be observed clearly that at higher Reynolds number vorticity intensity is more pronounced 

than at lower Reynolds number.  
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Figure 4.10: Principal axis along stretch (solid line) and contraction (dashed line) at the 

seven interrogation points. 
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Table 4.1: Magnitude of eigenvectors (λ1) in s-1 

  Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 

Case I 80.56 70.00 428.68 67.57 193.14 319.06 45.73 

Case II 54.49 17.41 153.71 41.88 69.40 118.69 35.35 

 

 

  
Position 1 

  
Position 2 

  
Position 3 

  
Position 4 

  
Position 5 

  
Position 6 

  
Position 7 

       

  e1 e2   e1 e2   e1 e2   e1 e2   e1 e2   e1 e2   e1 e2 

Case I 45.68 -44.32   -45.36 44.64   47.80 -42.20   48.96 -41.04   49.74 -40.25   47.88 -42.12   45.56 -44.43 

Case II 49.39 -40.61   -52.15 37.84   48.42 -41.57   47.05 -42.95   50.59 -39.41   47.94 -42.06   46.28 -43.72 

 

 

 

    Table 4.2: Angle in degrees of e1 and e2 unit vectors with respect to x axis 
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4.3 Large-scale anisotropy 

4.3.1 Mean shear effects on deformation axis 

To characterize the large-scale anisotropy, we rely on the characteristics of local mean shear field. 

Given that the measurements are along the channel centerline, the mean shear only exists in the 

measurement plane from symmetry arguments. Presence of mean shear imposes a local 

deformation through the pure shear in action as well as rotation of the turbulent eddies. The eigen 

vectors of the mean strain rate tensor therefore define the principal axis of stretching and 

contraction of the advected turbulent eddies. Figure 4.9 shows the calculated principal directions 

of the mean strain rate tensor at the seven positions for the three cases. The solid line (e1 direction) 

represents the stretching direction while the dashed line (e2 direction) represents contraction. 

Notice that the direction of principal axis is consistent between the six positions 1, 3, 4, 5, 6 & 7 

for the three Reynolds numbers. Given that position 2 is located in the separated vortex region, 

stretching occurs along the azimuthal direction of the vortex. The magnitude of the eigen values 

is Reynolds number dependent with increasing magnitude noted for increasing Reynolds number. 

Table 4.1 provides the magnitude of the eigen value corresponding to the principal stretch 

direction. In addition, Table 4.2 provides the angles e1 direction and e2 direction make with respect 

to the x axis. As noted in the table the greatest stretching occurs at position 3 and 6 relative to the 

other five positions for any Reynolds number. It may therefore be hypothesized that the turbulent 

eddies passing through these shear layers undergo the most influence of the mean deformation 

fields than at any of the other points. Comparing position 2 and 5, position 5 experiences the more 

stretch which can be explained by its proximity to the much wider nature (in the wall-normal 

direction) of the shear layer at its corresponding streamwise location. 
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4.4 Summary  

In summary, Mean flow characteristics and large-scale anisotropy in channel flow with a backward 

facing step were investigated and explained. Velocity profile shows very good agreement with 

previous DNS (Le et al., 1997) and experimental results (Sbra Jovic & Driver, 1994). At upstream 

of the channel fully developed turbulent flow was observed. Well-developed log-law profile was 

observed at the same location. Primary vortex region is located beneath the intense shear region, 

this was inconsistent with previous literature (Y. X. Huang et al., 2010). Principal axes directions 

of seven interrogations positions were calculated and found consistent with each other except 

position 2. This position is located in the recirculation region.  
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Chapter 5 

STRUCTURE FUNCTIONS AND TWO POINT CORRELATION FUNCTIONS 

5.1 Introduction 

The goal of this chapter is to elucidate variations in the local structure of turbulence, through 

second order structure functions and two point correlations functions, in the presence of strong 

large-scale anisotropy. The large-scale anisotropic properties of the measured flow fields followed 

by the local structure of turbulence at the seven points of interest shown in Figure 3.6 was described 

in details. Emphasis is on characterizing the variations in the local structure as described by second 

order structure functions in the dissipative as well as non-dissipative length scale regime. 

Exponents of second order structure functions were also analyzed at all seven interrogation 

positions.  

5.2 Probability density function (PDFs) 

Normalized probability density functions of velocity components for the seven positions for both 

Reynolds numbers were calculated and are shown in Figure 5.1. Figure also shows the normal 

distribution. As can be seen, a subtle difference was observed in PDFs in relation to the skewness 

in the tails. While it is clear that the shape of velocity PDFs are influenced by varying large-scale 

anisotropy, understanding the mechanism behind this effect requires closer investigation with 

respect to the local structure via structure functions. 
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5.3 Second order structure function (SFs) 

Figure 5.2 – 5.4 show the second order structure functions (SFs) in the i and j directions for the 

seven interrogation points. Figure 5.5 – 5.7 show the corresponding second order SFs in the e1 and 

e2 directions for the same points. All plots include the Taylor micro-scale as well as another length 

scale based on energy dissipation rate, 𝜀 and mean shear rate, 𝑆, denoted 𝐿𝑆,𝜀 = (〈𝜀〉 𝑆3⁄ )1/2. The 

dissipation rate was estimated as 𝜀 ≅ 〈3𝜈(𝑠11
2 + 𝑠22

2 ) + 12𝜈𝑠12
2 〉, with the isotropic assumptions 

〈𝑠13
2 〉 = 〈𝑠23

2 〉 = 〈𝑠12
2 〉, and 〈𝑠33

2 〉 = 0.5(〈𝑠11
2 〉 + 〈𝑠22

2 〉). This length scale has been previously 

implicated to play a role in anisotropic contributions from the large-scale to the small-scale 

(Khandakar Niaz Morshed, Venayagamoorthy, & Dasi, 2013; Toschi et al., 1999). All functions 

in general increase with spatial separation distance at the small-scales as expected for SFs. The 
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Figure 5.1: Normalized probability density function of streamwise velocity (a) and wall-normal 

velocity (b). Solid line indicates normal distribution. 𝜎𝑈 and 𝜎𝑉 correspond to the respective 

standard deviation 
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variations at larger spatial separations however appear dependent between different points 

presumably due to growing impacts of discrepancies from the anisotropic effects. Nevertheless, it 

is clear that increasing Reynolds number increases the overall magnitude of the SFs due to 

increased turbulence intensities as would be anticipated.  

 

 

 

Figure 5.2: Second-order structure function in streamwise and wall normal directions. Black 

square represents 〈∆𝑢𝑖𝑖
2 〉, green triangle represents 〈∆𝑢𝑗𝑖

2 〉, blue inverted triangle represents 

〈∆𝑢𝑖𝑗
2 〉,  and orange circle represents 〈∆𝑢𝑗𝑗

2 〉. Red solid line corresponds to Taylor micro-scale, λ 

while black dash line corresponds to 𝐿𝑆,𝜀. 
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Figure 5.3: Second-order structure function in streamwise and wall normal directions. Black 

square represents 〈∆𝑢𝑖𝑖
2 〉, green triangle represents 〈∆𝑢𝑗𝑖

2 〉, blue inverted triangle represents 

〈∆𝑢𝑖𝑗
2 〉,  and orange circle represents 〈∆𝑢𝑗𝑗

2 〉. Red solid line corresponds to Taylor micro-scale, λ 

while black dash line corresponds to 𝐿𝑆,𝜀. 
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5.3.1 SFs & their exponents of points in free stream 

The second order SFs in i and j directions of the streamwise and wall-normal velocity component 

are roughly unchanged between points 1, 4, and 7 (Figure 5.2 ). For each of these points, the SF 

for the streamwise component is noted to be of higher magnitude than the wall-normal SF. For 

separations above the Taylor micro-scale there appears to be a power law scaling as seen by the 

approximately linear variation on the logarithmic axes. The corresponding logarithmic derivative 

Figure 5.4: Second-order structure function in streamwise and wall normal directions. Black 

square represents 〈∆𝑢𝑖𝑖
2 〉, green triangle represents 〈∆𝑢𝑗𝑖

2 〉, blue inverted triangle represents 〈∆𝑢𝑖𝑗
2 〉,  

and orange circle represents 〈∆𝑢𝑗𝑗
2 〉. Red solid line corresponds to Taylor micro-scale, λ while 

black dash line corresponds to 𝐿𝑆,𝜀 
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which represents the scaling exponent as a function of separation distance is shown in Figure 5.8. 

The scaling exponent is noted to decrease from a value of 2 at the smallest resolvable scale and 

appears to reach a constant value < 0.5 at a separation distance ~1 mm. With respect to Reynolds 

number, the SF exponents appear significantly different at the smallest separation distance with an 

exponent value close to 3. The difference in exponents with respect to Reynolds number variation 

is not apparent for separations above the Taylor scale.  

. 

Figure 5.5: Second-order structure function along principal deformation axis. Black square 

represents 〈∆𝑢𝑒1𝑒1
2 〉, green triangle represents 〈∆𝑢𝑒2𝑒1

2 〉, blue inverted triangle represents 〈∆𝑢𝑒1𝑒2
2 〉,  

and orange circle represents 〈∆𝑢𝑒2𝑒2
2 〉. Red solid line corresponds to Taylor micro-scale, λ while 

black dash line corresponds to 𝐿𝑆,𝜀. 
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The SFs in e1 and e2 directions of the e1 and e2 velocity components are shown in Figure 5.5. Note 

that the e2 component SFs has a higher magnitude than the corresponding e1 component SF. The 

SFs in the direction toward the shear layer are noted to depart from the typical monotonic behavior. 

These functions that cross through a region of strongly space dependent shear increase in 

magnitude through the shear layer followed by a decrease after crossing over the shear region.  

. 

 

 

 

Figure 5.6: Second-order structure function along principal deformation axis. Black square 

represents 〈∆𝑢𝑒1𝑒1
2 〉, green triangle represents 〈∆𝑢𝑒2𝑒1

2 〉, blue inverted triangle represents 

〈∆𝑢𝑒1𝑒2
2 〉,  and orange circle represents 〈∆𝑢𝑒2𝑒2

2 〉. Red solid line corresponds to Taylor micro-

scale, λ while black dash line corresponds to 𝐿𝑆,𝜀. 
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This is clearly evident from the local maxima in the SF with the approximate width of this feature 

proportional to the distance the function takes to traverse through the shear layer in its given 

direction. The SF in this direction for point number 7 does not traverse long enough to cross over 

and thus terminates before a local maxima is reached. SFs in the e1 direction that do not traverse 

the shear layer are void of this behavior. The exponents for these SFs(Figure 5.11) have a slightly 

higher magnitude than those in the i and j direction for separation distances < Taylor micro-scale. 

Figure 5.7: Second-order structure function along principal deformation axis. Black square 

represents 〈∆𝑢𝑒1𝑒1
2 〉, green triangle represents 〈∆𝑢𝑒2𝑒1

2 〉, blue inverted triangle represents 〈∆𝑢𝑒1𝑒2
2 〉,  

and orange circle represents 〈∆𝑢𝑒2𝑒2
2 〉. Red solid line corresponds to Taylor micro-scale, λ while 

black dash line corresponds to 𝐿𝑆,𝜀. 
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In this regime a noticeable inflection of the exponent curve is seen for exponent values between 

0.5 and 1.0. Reynolds number dependence is consistent with that observed in the i and j direction 

SFs. 

 

5.3.2 SFs & their exponents of points in the shear layer 

Figure 5.3 shows the SFs in the i and j directions of the streamwise and wall-normal velocity 

components for interrogation points 3 and 6 that are located within the intense free shear layer. As 

with the other interrogation points, the magnitude of the SF increases with increasing Reynolds 

number. In addition, the magnitude of these SFs is significantly higher than the corresponding SFs 

at points in the free stream as anticipated from the higher turbulence levels of the shear layer 

relative to the free stream (Figure 4.6 and 4.7). Also the SF of the streamwise velocity component 

is of higher magnitude than the respective SF of the wall-normal component consistent with the 

same observation for the interrogation points in the free stream. While the SFs in the streamwise 

direction are monotonic, those in the wall-normal direction are noted to be non-monotonic. At 

point 3, the wall-normal direction SF of both the velocity components have a local maxima at the 

separation distance ~0.35 mm with no observable Re dependence in the location of the maxima. 

At point 6, however, the corresponding maxima occurs consistently only in the wall-normal 

component SF at a larger separation distance ~ 1 mm. The streamwise component has a local 

maxima only observed for the lower Reynolds number case. Based on the non-monotonic trends 

in SFs and the differences in characteristics of the SF between points 3 and 6, it is clear that local 

non-homogeneous shear with the imposed spatial variation in turbulence intensities significantly 

influences the SF characteristics in the small-scale regime. Wall normal SFs at point 3 traverses 
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the intense shear layer out into the free stream. The distance to cross the shear layer is significantly 

lesser at point 3 than at point 6 thus correlating with the shift in the local maxima of the wall-

normal SFs. SFs in the i direction also have significantly different characteristic when compared 

between points 3 and 6. At point 3, the streamwise SFs appear convex and asymptotes to a constant. 

However at point 6, the streamwise SFs are monotonically increasing and do not approach a 

constant.   

 

 

 

 
Figure 5.8: Log derivative of second-order structure function in streamwise and wall-normal 

direction. Black square represents 𝜁𝑖𝑖  , green triangle represents  𝜁𝑗𝑖, blue inverted triangle 

represents  𝜁𝑖𝑗, and orange circle represents  𝜁𝑗𝑗 . Red solid line corresponds to Taylor micro-

scale, λ while black dash line corresponds to 𝐿𝑆,𝜀 
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Figure 5.9: Log derivative of second-order structure function in streamwise and wall-normal 

direction. Black square represents 𝜁𝑖𝑖  , green triangle represents  𝜁𝑗𝑖, blue inverted triangle 

represents  𝜁𝑖𝑗, and orange circle represents  𝜁𝑗𝑗 . Red solid line corresponds to Taylor micro-

scale, λ while black dash line corresponds to 𝐿𝑆,𝜀 
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The scaling exponents of the SFs at points 3 and 6 in i and j direction are shown in Figure 5.9. 

When compared with the scaling of SFs located in the free stream, the exponents at the smallest 

resolvable separation distances are significantly lower. The exponent for the highest Re case 

begins around a value of 1.5, roughly 0.5 lower than the exponents for the highest Re case in the 

free stream (position 1, 4, or 7). When compared between corresponding velocity components, at 

the smallest separation distance the exponent for the streamwise velocity component SFs is 

Figure 5.10: Log derivative of second-order structure function in streamwise and wall-normal 

direction. Black square represents 𝜁𝑖𝑖  , green triangle represents  𝜁𝑗𝑖, blue inverted triangle 

represents  𝜁𝑖𝑗, and orange circle represents  𝜁𝑗𝑗 . Red solid line corresponds to Taylor micro-scale, 

λ while black dash line corresponds to 𝐿𝑆,𝜀 
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significantly lower than that of the wall-normal velocity component. This significant difference 

between velocity components switches to a significant difference between SF directions with 

increasing separation distance (particularly prominent at point 3). The exponent for the streamwise 

direction SF for both velocity components approaches a positive constant for separation distances 

~ 0.5 mm. However, SF exponents for those in the wall-normal direction approach a constant lesser 

than that of the streamwise direction SF exponents. At point 3 this value is negative. A comparison 

of exponents of SFs between point 3 and any point in the free stream shows that the exponent for 

the streamwise direction SF at point 3 is higher than when the wall normal direction SF is 

decreased. This separation in exponents in the presence of strong shear is slightly diminished at 

point 6. The stark difference in characteristics between the SF exponent at point 3 and those in the 

free stream are significantly diminished at point 6 particularly at separation distances around 0.5 

mm. Here the significant difference in exponent values between streamwise direction and wall-

normal direction at point 3 is no longer as significant.   

The SFs in the e1 and e2 directions for the points in the shear layer are shown in Figure 5.6. As 

noted for the SFs in the free stream, the e2 component SFs has a higher magnitude than the 

corresponding e1 component SFs. The SFs in the e2 direction are clearly non-monotonic with a 

peak corresponding to the relatively shorter distance to cross the shear layer in this direction. The 

function in the e1 direction appears relatively less non-monotonic. The e1 direction functions at 

point 3 appear to saturate rapidly while that at point 6 have a nearly power law variation.  

The exponents of the SFs in e1 and e2 direction are shown in Figure 5.12. At the smallest resolvable 

scale the exponent for the e2 component SF is significantly smaller than the e1 component SF. With 

increasing scale size, the exponent shows the same behavior as that with the corresponding SFs in 

the i and j directions. However the switch to significant difference with respect to direction is not 
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achieved as prominently. The inflection of these curves occurs between for exponent values 

between 0 and 0.5.  

  

 

 

 

 

Figure 5.11: Log derivative of second-order structure function in streamwise and wall-normal 

direction. Black square represents 𝜁𝑒1𝑒1
 , green triangle represents 𝜁𝑒2𝑒1

, blue inverted triangle 

represents 𝜁𝑒1𝑒2
, and orange circle represents 𝜁𝑒2𝑒2

. Red solid line corresponds to Taylor micro-

scale, λ while black dash line corresponds to 𝐿𝑆,𝜀 
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5.3.3 SFs & their exponents of points in the separated vortex 

Figure 5.4 shows the i and j direction SFs of the streamwise and wall-normal velocity components 

for points 2 and 5 that are located within the separated region of flow downstream of the backward 

facing step. The SF at point 2 has similar characteristics at the small-scales to the functions in the 

free stream. However for scales greater than 1mm the functions begin to depart from the behavior 

Figure 5.12: Log derivative of second-order structure function in streamwise and wall-normal 

direction. Black square represents 𝜁𝑒1𝑒1
 , green triangle represents 𝜁𝑒2𝑒1

, blue inverted triangle 

represents 𝜁𝑒1𝑒2
, and orange circle represents 𝜁𝑒2𝑒2

. Red solid line corresponds to Taylor micro-

scale, λ while black dash line corresponds to 𝐿𝑆,𝜀 



 

 

76 

 

seen in the free stream. The SFs in the wall-normal direction have distinct peaks as they traverse 

through the strong shear layer. The streamwise SFs do not have peaks but show a concave up 

profile. The wall-normal SF at point 5 has similar characteristics with the distinct peak 

corresponding to the shear layer location. The peak is broader, consistent with the broader shear 

layer. The streamwise SFs do not appear concave up as those for point 2.  Comparison of the 

corresponding SF exponent (Figure 5.10) shows that the small-scale structure at point 2 is similar 

to that in the free stream. However the SF exponent profile for point 5 shows similarity to the 

small-scale structure within the shear layer. This is evident from the significantly lower magnitude 

of the exponent and the characteristically similar profile of the exponent profile at point 5, which 

is similar to that at point 6. 

Figure 5.7 shows the e1 and e2 direction SFs at points in the separated vortex region. The SFs at 

point 2 are all concave up. SF at point 5 has a peak corresponding to the traversing of the shear 

layer. Again, exponent behavior of these SFs (Figure 5.10) confirms stronger shear influences at 

point 5. 
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5.4 Second order structure functions in 360° directions 

Second order structure functions in r and θ directions are shown respectively in figure 5.14 and 

figure 5.15.  Structure functions were normalized with their initial turbulent kinetic energy, k. 

Turbulent kinetic energy can be represented as 𝑘 =
1

2
 (〈𝑢′(𝑝⃗)〉2 +  〈𝑣′(𝑝⃗)〉2), where 𝑢′ and 𝑣′ are 

the fluctuation velocity in the x and y direction respectively. Principal axis of stretching and 

Figure 5.13: Log derivative of second-order structure function in streamwise and wall-normal 

direction. Black square represents 𝜁𝑒1𝑒1
 , green triangle represents 𝜁𝑒2𝑒1

, blue inverted triangle 

represents 𝜁𝑒1𝑒2
, and orange circle represents 𝜁𝑒2𝑒2

. Red solid line corresponds to Taylor micro-

scale, λ while black dash line corresponds to 𝐿𝑆,𝜀 
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contraction were also plotted at each interrogation position. Contours at individual positions were 

plotted only in the dissipative regions. Direction of principal axis and magnitude of Taylor micro 

scale, λ can be found in chapter 4. Contours scales for both r and θ directions are the same. At two 

interrogation positions located in the strong shear region (position 3 and position 6), it was 

observed that contours level are not circular, rather their shape is elliptical. Whereas three 

interrogation positions located in the free stream (position 1, position 4 and position 7), indicates 

that difference between major and minor axis of contours level decreases, hence shapes tends to 

be circular. These infer that in the strong shear flow is not isotropic even in the dissipative range, 

this is mere contrast with Kolmogorov’s local isotropy hypothesis(A. Kolmogorov, 1941). In the 

free stream where magnitude of mean shear is relatively lower, flow is close to homogeneous 

isotropic turbulence expectations (Khandakar Niaz Morshed, Subhas Karan Venayagamoorthy, et 

al., 2013).   SFs contours are connected in the dissipative region and in non-dissipative regions 

they are not connected. Smallest ellipse are aligned with principal axes, the deviation from the 

principal axis of larger ellipses are obvious in presence of strong mean shear.  A similar pattern 

was observed for both r and θ directions. Comparing with contours in r and θ directions, they are 

orthogonal with each other.  
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Figure 5.14: Second order velocity  structure function of 〈∆𝑢′
𝑟𝛽
2 〉(𝑚), where β range from 0°to 

360° and r indicates parallel direction of β. Solid line indicates principal axis along stretch 

direction while dashed line indicates principal axis contraction direction.  

 

Figure 5.15: Second order velocity structure function of 〈∆𝑢′
𝜃𝛽
2 〉(𝑚), where β range from 0°to 

360° and θ indicates perpendicular direction of β. Solid line indicates principal axis along stretch 

direction while dashed line indicates principal axis contraction direction 
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5.5 Two point correlation functions in 360° directions 

Two point correlation functions in r and θ directions are plotted in figure 5.16 and figure 5.17 

respectively. Correlation functions were normalized with their individual coefficient, c. 

Coefficient can be represented as 
〈𝑢′(𝑝⃗).𝑢′(𝑝⃗+𝑚𝑒̂𝛽)〉

〈𝑢′2(𝑝⃗)〉1/2.〈𝑢′2(𝑝⃗+𝑚𝑒̂𝛽)〉1/2  . Contours of the two point correlation 

functions were also plotted only in the dissipative region. Solid line indicates the stretch direction 

while dashed line indicates contraction directions. Contours of two point correlation functions are 

connected in the dissipative regions and not connected in the non-dissipative regions. In the free 

stream regions (position 1, position 4 and position 7) contours looks like circular, with very subtle 

difference between major and minor axis. Elliptical contour shapes were observed at position 3 

and position 6, these positions experiences strong mean shear. Smallest ellipse are aligned with 

principal axis for all locations, this alignment differ in presence of strong shear. While comparing 

the contours of two point correlation at  r and θ directions, they are orthogonal to each other.  

An additional position, position 8 was considered closer to the backward step. Position 8 is located 

in between the backward step and position 3. y position is same for both position 3 and position 8. 

Position 8 is h/2 distance (x direction) downstream from the tip of backward facing step. Position 

8 experiences higher magnitude of shear than position 3. Figure 5.18 shows two point correlation 

function at 360° directions for position 8 and position 3 in r direction. Likewise previous figures 

the contours are showing only in the dissipative regions. Contours are elliptical in the for position 

8, similar observation with other positions with strong mean shear.  



 

 

81 

 

 

 

Figure 5.16: Two point correlation function of ρ
𝑟𝛽

 (𝑚), where β range from 0°to 360° and r 

indicates parallel direction of β. Solid line indicates principal axis along stretch direction while 

dashed line indicates principal axis contraction direction.  

Figure 5.17: Two point correlation function of  𝜌𝜃𝛽(𝑚), where β range from 0°to 360° and θ 

indicates perpendicular direction of β. Solid line indicates principal axis along stretch direction 

while dashed line indicates principal axis contraction direction.  
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5.6 Summary  

Normalized probability density functions of velocity components were observed. PDFs are 

normally distributed for both Reynolds number cases. A subtle difference was observed in PDFs 

in relation to the skewness in the tails. Second order structure functions and their exponents were 

calculated in four different directions. From SFs it was observed that at dissipative regions they 

remain unchanged at low shear, but with increase of shear the changes can be noticed. Streamwise 

SFs show higher magnitude compared to SFs in wall normal directions. Exponents of second order 

SFs saturated in the non-dissipative region in presence of strong mean shear. Second order 

Figure 5.18: Two point correlation function of ρ
𝑟𝛽

 (𝑚), where β range from 0°to 360° and r 

indicates parallel direction of β for position 8 and position 3. Solid line indicates principal axis 

along stretch direction while dashed line indicates principal axis contraction direction.  
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structure functions in 360° directions reveal that in dissipative region SFs contours are influenced 

by presence of strong mean shear, similar phenomenon was observed investigating two point 

correlation functions in 360° directions.  
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Chapter 6 

INTERMITTENCY AND DISSIPATIVE SCALE 

6.1 Introduction 

Instantaneous velocity gradients are highly intermittent both in spatial and temporal direction for 

turbulent flows. This hints about highly intermittent nature of instantaneous turbulent kinetic 

energy dissipation. In this chapter lacunarity analysis was discussed to describe the intermittency 

nature of dissipation rate signal. Probability density functions of dissipative scale, 𝑄(𝜂/𝜂0)  was 

calculated to understand the anisotropic behavior in presence of strong mean shear. The backward 

facing step flow is an anisotropic turbulent flow with a strong free shear region presumably devoid 

of the peculiar characteristics of coherent structures found in the near wall channel flow turbulence. 

A family of universal forms for 𝑄(𝜂/𝜂0) was proposed in this chapter that can be parameterized 

by a local mean shear-dissipation Reynolds number defined as 〈𝜀〉/(𝑆2𝜈). Also, physical reasoning 

to support this argument was described. In this chapter analysis was performed only for higher 

Reynolds number case i.e. Case I. Position 1 was omitted from consideration as position 4 and 

position 7 both represent free stream location.  
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6.2 Intermittency 

Lacunarity of the instantaneous dissipation rate signals at the six interrogation points was 

calculated. Instantaneous ε was calculated using the two-dimensional surrogate approach 

described in Ref. (Tanaka & Eaton, 2007) as 𝜀 =  〈3𝜈(𝑠11
2 + 𝑠11

2 ) = 12𝜈𝑠12
2 〉, with the isotropic 

assumptions 〈𝑠13
2 〉 =  〈𝑠23

2 〉 =  〈𝑠12
2 〉 and 〈𝑠33

2 〉 = 0.5(〈𝑠11
2 〉 + 〈𝑠22

2 〉). Figure 6.1 shows 

Instantaneous turbulent kinetic energy dissipation rate, ε for case one at six interrogation positions. 

From the plots assumptions can be made about the intermittency nature of the dissipation signal. 

Lacunarity is a fractal measure that characterizes the temporal homogeneity in a multi-fractal 

signal. It is particularly sensitive to the pattern of intermittent signal bursts occurring at varying 

time scales, see Refs. (L. P. Dasi, Schuerg, & Webster, 2007; Plotnick et al., 1996). First, the raw 

dissipation signal is converted into a binary signal via a pre-set threshold. Given a window size 
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Figure 6.1: Instantaneous turbulent kinetic energy dissipation rate, ε over time at higher Reynolds 

number case (Case I) for six interrogation positions. 
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(time scale) λ, the mass signal is obtained as the integral of the binary signal within the window. 

As the window slides across the entire time-series, the mass signal fluctuates. Lacunarity (λ) is 

then evaluated using Equation 3.4. Physically, 𝛬(𝜆) reflects the level of inhomogeneity and 

intermittency in the signal. Figure 6.2 shows the lacunarity of 𝜀 for three different thresholds 

namely 〈𝜀〉 , 〈𝜀〉 +  𝜎  and 〈𝜀〉 +  2𝜎  for each of the six locations, where σ is the standard deviation 

of the fluctuating dissipative scale ε. The lacunarity functions have been shifted up by one decade 

up for 〈𝜀〉 +  𝜎 and two decades up for〈𝜀〉 + 2𝜎. The graphs show that the dissipation rate 

lacunarity for position 3 and position 6 is consistently lower than at other locations that have lower 

local mean shear. Lower lacunarity implies that the mass signal fluctuates less relative to its mean. 

This translates to smaller but more frequent bursts in the dissipation rate signal. This is in stark 

contrast with the large but not so frequent bursts measured at the low mean shear locations. Notice 

how this is true at all time scales, λ. The above fractal analysis shows a measurable shift in the 

geometric properties of the dissipation rate signal with increasing shear. Gaps between bursts are 

smaller with increasing shear and the bursts are not so large relative to the mean (although the 

average dissipation rate is higher). Strikingly, these are the same conclusions from the dissipation 

statistics analyzed within the strong shear dominated near wall region of pipe flow DNS study(P. 

E. Hamlington et al., 2012). 
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Figure 6.2: Lacunarity of the instantaneous dissipation rate signal measured at each of the six 

positions downstream of the backward step for three threshold levels. The data corresponding to 

thresholds of 1 and 2 standard deviations above the mean have been shifted up by 1 and 2 decades, 

respectively. 

 

Figure 6.3: Local dissipation scale PDF 𝑄(𝜂/𝜂0)  measured at each of the six positions 

downstream of the backward step Data points have been shifted down by 2 decades to aid 

comparison with previously reported 𝑄(𝜂/𝜂0) in HIT, (Schumacher, 2007) and wall bounded 

flows. (Bailey, Hultmark, Schumacher, Yakhot, & Smits, 2009; P. E. Hamlington, D. Krasnov, T. 

Boeck, & J. Schumacher, 2012) (𝜂/𝜂0)𝑝𝑒𝑎𝑘 plotted as a function of 𝑅𝑒𝑆 for each of the six 

positions downstream of the backward step 
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6.3 Dissipative scale PDFs 

Probability density functions of the local dissipation scale, 𝑄(𝜂) was calculated for each of the six 

interrogation points. The approach is identical to that described in Refs. (Bailey et al., 2009; P. E. 

Hamlington et al., 2012; Q. Zhou & Xia, 2010) was described more details in chapter 3. Figure 7.3 

shows 𝑄(𝜂/𝜂0) for the six locations along with previously published results of Refs.(Bailey et al., 

2009; P. E. Hamlington et al., 2012; Schumacher, 2007). From the figure, it is clear that the peak 

location for position 3 and position 6 in the intense shear layer significantly shifts to values higher 

than that for the case of HIT (shown more clearly in Figure 6.4). The location of the peak appears 

similar to those in Ref. (P. E. Hamlington et al., 2012) for 30 < y+ < 90 at 𝑅𝑒𝜏 = 590. To confirm 

that these shifts are indeed significant, uncertainty in the PDFs was calculated. Given that the PDF 

is derived from the histogram of the occurrence of η, and that the measured variable in the above 

inequality is 𝛿𝑛𝑢, it is straightforward to propagate the percent error in the instantaneous velocity 

of the PIV measurements to the uncertainty in the PDF. Our uncertainty of 2.5% in velocity 

translates to an uncertainty of 2.8% in 𝛿𝑛𝑢. Given that the inequality is the only qualifying criteria, 

the uncertainty in the PDF may be achieved by perturbing the upper and lower limits of the 

inequality. To be conservative, the PDFs by incorporating a 10% variation in the limits was 

recalculated and found that the resulting PDFs with this additional 10% uncertainty in 

𝛿𝑛𝑢 insignificantly influenced the shape and position of the peak (same histogram bin with 

maximum counts). The error in 𝜂0 was estimated at 2.5% based on statistical convergence. Thus, 

the overall error in the normalized peak location is roughly 2.5%.  
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Figure 6.4: (𝜂/𝜂0)𝑝𝑒𝑎𝑘 is being compared to the corresponding relationship in channel flows at 

two different Reynolds numbers. (𝜂/𝜂0)𝑝𝑒𝑎𝑘 for HIT (Schumacher, 2007)  and pipe flow y/R = 0.1 

(Bailey et al., 2009) are depicted as  constant levels.6.4 Influence of mean shear  

As seen in both Figures 6.2 and 6.3, the intermittent fluctuations of ε and the corresponding 

distribution of η are clearly dependent on the strong mean shear. While this does not debunk the 

notion of universality of small-scale turbulent fluctuations, it does indicate the need to refine the 

description of the small-scale structure by including local anisotropy parameters to further refine 

the theoretical model of the distribution of η. In this direction, here we provide dimensional 

arguments to elucidate how strong mean shear can physically alter the small-scale structure. Given 

that mean shear S regulates turbulence production, it must define a range of production length 

scales that represent the injection of turbulent kinetic energy or stirring. These production length 

scales ranging from the large-scale to the smallest scale may be defined as: 

    𝐿𝑆,𝜀 = (〈𝜀〉/𝑆3)1/2      (6.1) 

    𝐿𝑆,𝜈 = (𝜈/𝑆)1/2      (6.2) 
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While (〈𝜀〉/𝑆3)1/2 is a turbulent length scale, which phenomenologically represents the cut-off 

representing the dominance of mean shear driven energy production as opposed to the transfer via 

the energy cascade, (𝜈/𝑆)1/2 is not. Physically, given a stationary mean shear flow, 

(𝜈/𝑆)1/2 gauges the size of a ball surrounding a point in the fluid domain whose Reynolds number 

is one. Thus, it is the dissipative scale, similar to the definition of η, but of the mean flow. Another 

physical interpretation is that it is the length scale across which the turbulent dissipation rate at 

that length scale ~ 𝜈3/𝐿𝑆,𝜈 
4  is equal to the viscous dissipation rate of the smooth mean flow, ~ 𝜈𝑆2. 
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Figure 6.5: Profiles of 𝑅𝑒𝑆 along the wall normal direction y/h at two distances downstream of the 

backward step 
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Figure 6.6: Representing 𝑅𝑒𝑆 profile along the wall normal direction y+ derived from channel 

flow DNS simulations (Hoyas & Jiménez, 2008) at three Reynolds numbers. 

It is evident from these dimensional constructions that the above shear derived scales tend to 

infinity as S→0, indicating that production at low shear occurs at the large-scale. It also indicates 

that as the local shear magnitude increases, both (〈𝜀〉/𝑆3)1/2 and (𝜈/𝑆)1/2 can begin to overlap 

with the range of the fluctuating η. Notice that the ratio of the squares of (〈𝜀〉/𝑆3)1/2 to (𝜈/𝑆)1/2 

defines the mean shear-dissipation Reynolds number 𝑅𝑒𝑆 given by, 

    𝑅𝑒𝑆 = 〈𝜀〉/(𝑆2𝜈)      (6.3) 

which → 0 with increasing magnitude of S. It is also easy to see that the ratio of (〈𝜀〉/𝑆3)1/2 to the 

Kolmogorov scale is 𝑅𝑒𝑆
3/4

 . Furthermore, 𝑅𝑒𝑆 can be either expressed in terms of the turbulence 

Reynolds number as 𝑅𝑒𝑆 = 𝑅𝑒𝐿(𝑆𝑇𝐿)−2, where 𝑇𝐿 =
𝑘

𝜀
    is the turbulence time scale, or in terms 

of the Kolmogorov time scale as 𝑅𝑒𝑆 =  (𝑆𝜏𝑛)−2, where 𝜏𝑛 is the Kolmogorov time scale (𝜈/𝜀)1/2. 

The dimensionless time-scale ratio 𝑆𝑇𝐿 thus emerges as being truly independent. Given that the 
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presence of mean shear adds an independent dimension to the dimensionless formulation of scales; 

the influence of mean shear may be hypothesized as: 

(1) Shear flow turbulence can have the same structure and dynamics as isotropic turbulence 

provided both ReL and ReS are large (i.e., when STL → 0);  

(2) For large ReL but ReS of O(1) (i.e., STL  ≫ 0), the structure of turbulence significantly departs 

from the isotropic picture;  

(3) There exists a family of universal structure of small-scale turbulence defined by the parameter 

ReS or more independently by STL for very large ReL.  
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Figure 6.7: Local dissipation scale PDF 𝑄(𝜂/𝜂0)  measured at downstream of backward facing 

step at position 3 at various directions (angle ranging from 0° to 90°).  Local dissipation scale 

was calculated from 𝑉𝑟 , where r indicates parallel direction to β. β range from 0° to 90° (for this 

figure only, typically β range from 0° to 360°) . Red dash line represents 𝑄(𝜂/𝜂0) at 0°, green 

long dash line represents 𝑄(𝜂/𝜂0) at 30°, blue dash dot line represents𝑄(𝜂/𝜂0) at 60° and black 

line represents 𝑄(𝜂/𝜂0) at 90°.  
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6.5 Dissipative scale PDFs in 360° directions 

Probability density functions of local instantaneous dissipation scale at position 3 are calculated 

and shown in figure 6.7. Position 3 located in the strong mean shear region. 𝑄(𝜂) is normalized 

with 𝜂0. 𝑄(𝜂/𝜂0) distributions are plotted for four different directions ( i.e. 0°, 30°, 60° and 90°) 

for Vr velocity component, where r indicates the parallel direction to β. β range from 0° to 90°. 

Similar kind of distribution pattern was observed at four different directions, with extended right 

tail. This is comparable with previous study of 𝑄(𝜂/𝜂0) (Bailey et al., 2009; Peter E. Hamlington, 

Dmitry Krasnov, Thomas Boeck, & Jörg Schumacher, 2012; Khandakar Niaz Morshed, Subhas 

Karan Venayagamoorthy, et al., 2013; Schumacher, 2007; Q. Zhou & Xia, 2010) at different 

turbulent flows. However, the peak location of 𝑄(𝜂/𝜂0)shifted toward rightward from 0° to 60° 

directions. But for 90° direction 𝑄(𝜂/𝜂0)slightly offset left from 60° direction. Figure 6.8 shows 

𝑄(𝜂)distribution at all directions (angle ranging from 0° to 360°) for position 3. 𝑄(𝜂) was 

normalized with 𝜂0. Figure shows Vr velocity component, where r indicates the parallel direction 

to β. β range from 0° to 360°. Contours of the plots is colored by 𝑄(𝜂), with  𝐿𝑜𝑔 𝜂𝑥/𝜂0 in the x-

axis, 𝐿𝑜𝑔 𝜂𝑦/𝜂0 in the y-axis and 𝐿𝑜𝑔 𝑄(𝜂/𝜂0)in the z-axis. Distribution of local instantaneous 

dissipation scale has similar type of pattern observed earlier with extended right tail. If we observe 

the peak location at varying directions their shape looks like ellipse. This type of behavior can be 

observed more clearly in figure 6.9, shows the PDFs of 𝑄(𝜂/𝜂0) at all seven interrogation positions 

at all directions (angle ranging from 0° to 360°). Distribution of velocity component is plotted for 

Vr velocity component. Peak locations of 𝑄(𝜂/𝜂0)distribution at position 1, 4 and 7 (located in the 

free stream region) are circular shape, while peak location of 𝑄(𝜂/𝜂0)distribution at position 3 

and 6 (located in the strong mean shear region) are elliptical shape and peak location of 
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𝑄(𝜂/𝜂0)distribution at position 2 and 5 (located in the recirculation region) are almost circular 

shape. Although, position 5 located in the recirculation zone but this position experience higher 

magnitude of shear comparing with position 2. Peak location shape stands between circular and 

elliptical shape for position 5. Comparing with position 3 and position 6, position 3 has larger 

major and minor axis comparing with position 6. Figure 6.10 shows the 𝑄(𝜂/𝜂0) distributions for 

all seven interrogation positions for Vθ, where θ indicates the perpendicular direction to β. β range 

from 0° to 360°. Likewise Vr distributions, in the strong mean shear region (position 3 and position 

6) the peak shapes of peak locations are elliptical, whereas in the free stream and recirculation 

region the peak shapes look from circular to almost circular. To understand the influence of mean 

shear one additional position (i.e. position 8) was interrogated. Position 8, located h/2 closer to the 

backward facing step and experience much stronger shear than position 3. y locations are similar 

for both position 3 and position 8. Figure 6.11 shows 𝑄(𝜂/𝜂0) distributions for position 3 and 

position 8 at all directions (angle ranging from 0° to 360°) for Vr velocity component. As predicted, 

the peak shape of 𝑄(𝜂/𝜂0) distributions look elliptical. While comparing with position 3, the major 

and the minor axis of the ellipse formed by the peak location is bigger than position 8. Similar 

phenomenon was observed, while comparing 𝑄(𝜂/𝜂0) distributions at position 3 and position 6. 

Position 3 experiences stronger mean shear comparing with position 6. Ellipse formed by the peak 

locations of position 3 has larger major and minor axis comparing with ellipse formed by the peak 

locations of position 6.  
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Figure 6.8: Local dissipation scale PDF 𝑄(𝜂/𝜂0) measured at downstream of the backward facing 

step at position 3 at all directions (angle ranging from 0° to 360°).  Local dissipation scale was 

calculated from 𝑉𝑟 , where r indicates parallel direction to β. β range from 0° to 360°.  

Figure 6.9: Local dissipation scale PDF 𝑄(𝜂/𝜂0) measured at downstream of backward facing 

step at seven positions at all directions (angle ranging from 0° to 360°).  Local dissipation scale 

was calculated from 𝑉𝑟 , where r indicates parallel direction to β. β range from 0° to 360°.  
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Figure 6.10: Local dissipation scale PDF 𝑄(𝜂/𝜂0) measured at downstream of the backward 

facing step at seven positions at all directions (angle ranging from 0° to 360°).  Local dissipation 

scale was calculated from 𝑉𝜃 , where θ indicates perpendicular direction to β. β range from 0° to 

360° .   

Figure 6.11: Local dissipation scale PDF 𝑄(𝜂/𝜂0)  measured at downstream of the backward 

facing step at position 8 and position 3 at all directions (angle ranging from 0° to 360°).  Local 

dissipation scale was calculated from 𝑉𝑟 , where r indicates parallel direction to β. β range from 

0° to 360° . Position 8 has higher magnitude of shear comparing with position 3.  
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We measured 2.5% uncertainty in velocity measurement and 2.8% uncertainty in 𝛿𝜂𝑢. 2.5% error 

was estimated in 𝜂0calculation based on statistical convergence. These all translate that, roughly 

there is 2.5% overall uncertainty in each normalized positions. From the 𝑄(𝜂) distribution with 𝜂0 

normalization, it was obvious that mean shear, S has strong influence on distribution of small scale. 

This may disprove the universality of small-scale turbulent fluctuations. Therefore, a new 

normalization factor 𝜂𝑝𝑒𝑎𝑘was introduced. Figure 6.12 shows  𝑄(𝜂) distribution at position 3 in 

all directions for Vr velocity component. In this figure normalization factor 𝜂𝑝𝑒𝑎𝑘was used instead 

of 𝜂0. 𝜂𝑝𝑒𝑎𝑘 was calculated for individual 𝑄(𝜂) at all directions. Previously it was observed at 

position 3 peak locations form elliptical shape, however with new normalization parameter no 

elliptical shape was observe. Figure 6.13 and 6.14 shows distribution of dissipation scales 𝑄(𝜂) at 

all seven positions in all directions for Vr and Vθ velocity component respectively, normalized with 

𝜂𝑝𝑒𝑎𝑘. From this two figures it can be observe clearly that all the peak locations form circular 

shape, irrespective of presence of strong mean shear. An addition position (position 8) was taken 

to examine the influence of stronger shear. Position 8 is located h/2 closer to the step, therefore 

experiences stronger mean shear than position 3. Distribution of dissipation scales of position 3 

and position 6 are shown in figure 6.15. The peak locations shape look circular for both the PDFs 

with almost no difference. Therefore it can be propose 𝜂𝑝𝑒𝑎𝑘 as normalization parameter for 

calculating local instantaneous dissipation scales distribution 𝑄(𝜂).  

Figure 6.16 shows contours of two point correlation functions (in red) for all seven positions in r 

direction. Contours of 𝑄(𝜂) was plotted on the top of the two point correlation functions contours 

shown in black. From the contours of 𝑄(𝜂) at position 3 and position 6 it is obvious that major 

and minor axis of 𝑄(𝜂) does not coincide with abscissa and ordinate, neither with principal axes.  
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Figure 6.12: Local dissipation scale PDF 𝑄(𝜂/𝜂𝑝𝑒𝑎𝑘)  measured at downstream of the backward 

facing step at position 3 at all directions (angle ranging from 0° to 360°).  Local dissipation scale 

was calculated from 𝑉𝑟 , where r indicates parallel direction.  

Figure 6.13:  Local dissipation scale PDF 𝑄(𝜂/𝜂0)  measured at downstream of  the backward 

facing step at seven positions at all directions (angle ranging from 0° to 360°).  Local dissipation 

scale was calculated from 𝑉𝑟 , where r indicates parallel direction.  
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Figure 6.14: Local dissipation scale PDF 𝑄(𝜂/𝜂𝑝𝑒𝑎𝑘)  measured at downstream of  the backward 

facing step at seven positions at all directions (angle ranging from 0° to 360°).  Local dissipation 

scale was calculated from 𝑉𝜃 , where θ indicates perpendicular direction. 

Figure 6.15: Local dissipation scale PDF 𝑄(𝜂/𝜂𝑝𝑒𝑎𝑘)  measured at downstream of  the backward 

facing step at position 3 and position 8 at all directions (angle ranging from 0° to 360°).  Local 

dissipation scale was calculated from 𝑉𝑟 , where r indicates parallel direction. Position 8 has 

higher magnitude of shear comparing with position 3.  
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6.5 Analytical derivation of Q(η) 

In this section theoretical derivation of Q(η) will be provided for both homogeneous isotropic 

turbulence (HIT) and inhomogeneous anisotropic turbulence (IHAT) and an expression of η
peak 

will be provided as well. Let’s assume a fluctuating turbulent velocity field in an Eulerian frame 

of reference. For a given position and direction 𝑟̂, the integral length scale  𝐿, the directional 

gradient to quantify local large scale inhomogeneity 𝛾 and kinematic viscosity 𝜈.  

                                                            𝛾 =
𝑑𝑢′

𝑑𝑟
                                                                            (6.3) 

                                                         𝑅𝑒𝐿 =
𝑢′𝐿

𝜈
                                                                         (6.4) 

Figure 6.16: Red contours indicates two point correlation function of ρ
𝑟𝛽

 (𝑚), where β range from 

0°to 360° and r indicates parallel direction of β. Solid line indicates principal axis along stretch 

direction while dashed line indicates principal axis contraction direction. Contours of Q(η) are 

shown in black for 𝑉𝑟 velocity component at all seven positions.  
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        𝐶𝐼 =
𝛾𝐿

𝑢′
                                                                              (6.5) 

Where 𝑅𝑒𝐿 is the local turbulence Reynolds number and 𝐶𝐼is the dimensionless local 

inhomogeneity parameter. Analytical distribution of Q(η) can be expressed as function of above 

non-dimensional parameters and can be expressed as follows:  

𝑄(𝜂) = 𝐹(𝜂, 𝑅𝑒𝐿 , 𝐶𝐼)                                                    (6.6) 

Now analytical form of F can be derived assuming the Eulerian fluctuating velocity signals are 

Gaussian (L Biferale, 2008; Yakhot, 2006). With Gaussian assumptions velocity distribution 

𝛿𝜂𝑢, simplified to normally distributed and variance is equal to:    

                                    𝑢′2(𝑥⃗ + 𝜂𝑟̂) + 𝑢′2(𝑥⃗) − 2𝜌𝑢′(𝑥⃗ + 𝜂𝑟̂)𝑢′(𝑥⃗)                                        (6.7) 

For homogeneous isotropic turbulence (HIT), the variance can be simplified to:    

  2𝑢′2(1 − 𝜌)                                                                 (6.8) 

With following assumption (equation 6.9), the folded Gaussian distribution can be express using 

equation 6.10  

            
2𝑢′2

𝛾2 =
𝑅𝑒𝐿

2

𝐿2                                                                      (6.9) 

                                        𝑓 (|
𝛿𝜂𝑢 𝜂

𝛾
| ;

𝜂

𝐿
) =  

1

𝑅𝑒𝐿√𝜋(1−𝜌)
 

𝐿

𝜂
 𝑒

−
|
𝛿𝜂𝑢 𝜂

𝛾
|

2

4𝑅𝑒𝐿
2(1−𝜌)(

𝜂
𝐿

)2
                                 (6.10) 

By considering the profile only at |𝛿𝜂𝑢|𝜂/𝜈 = 1, assuming C as an appropriate normalization 

parameter the final form of the analytical Q(η) distribution for homogenous isotropic turbulence 

(HIT) can be expressed as :  
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         𝑄 (
𝜂

𝐿
) =  

𝐶

𝑅𝑒𝐿
𝜂

𝐿
√(1−𝜌)

𝑒
−

1

4𝑅𝑒𝐿
2(

𝜂
𝐿

)2(1−𝜌)                                               (6.11) 

The longitudinal two point correlation function ρ for small η can be obtained as follows:  

     𝜌 =
𝑢+ 𝜂

𝑑𝑢

𝑑𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

√𝑢2√(𝑢+ 𝜂
𝑑𝑢

𝑑𝑟
)2

                                                          (6.12) 

Applying homogeneity the above equations can be simplified as: 

      𝜌 =
1

√1+(
𝜂

𝜆𝑟
)2

                                                                  (6.13) 

Where 𝜆𝑟 is a generalization of the Taylor micro-scale which closely relates to the classical Tylor 

micro-scale 𝜆𝑔 as 𝜆𝑟 = 𝜆𝑔/2 for the case of homogeneous isotropic turbulence (HIT).  

Equation 6.11 and 6.13 are the analytical form respectively for Q(η) and 𝜌 for homogeneous 

isotropic turbulence (HIT), with similar assumptions this derivation can be extended for 

inhomogeneous anisotropic turbulence (IHAT). Again considering the local fluctuating velocity 

in an Eulerian frame of reference and assuming the velocity signals are Gaussian, the variance of 

velocity increments 𝛿𝜂𝑢 given by similar as equation 6.7.  This can be simplified by expressing 

𝑢(𝑥⃗ + 𝜂𝑟̂) with its first order Taylor approximation 𝑢(𝑥⃗)(1 +
𝜂

𝐿
𝐶𝐼). The variance equation for 

inhomogeneous anisotropic turbulence becomes:  

𝑢′2 [(2 − 2𝜌) (1 +
𝜂

𝐿
𝐶𝐼) + (

𝜂

𝐿
𝐶𝐼)2]                                            (6.14) 

The analytical distribution for Q(η) for the inhomogeneous anisotropic turbulence (IHAT) can be 

expressed as:  
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                 𝑄 (
𝜂

𝐿
; 𝐶𝐼) =

𝐶∗(
𝜂

𝐿
)−1

𝑅𝑒𝐿√(2−2𝜌)(1+
𝜂

𝐿
𝐶𝐼)+(

𝜂

𝐿
𝐶𝐼)2

𝑒
−

1

2𝑅𝑒𝐿
2(

𝜂
𝐿

)2[(2−2𝜌)(1+
𝜂
𝐿

𝐶𝐼)+(
𝜂
𝐿

𝐶𝐼)2]                          (6.15) 

The two point correlation function corresponds to inhomogeneous anisotropic turbulence (IHAT) 

using Taylor approximation for small η can be simplified as:  

                                                                 𝜌 =
1+

𝜂

𝐿
𝐶𝐼

√1+2
𝜂

𝐿
𝐶𝐼+(

𝜂

𝜆
)2

                                                      (6.16) 

When there is no inhomogeneity is turbulence (or 𝐶𝐼 = 0 ), equation 6.16 can be decomposed to 

equation  6.13, two point correlation function expression for homogeneous isotropic turbulence 

(HIT) . Expression for 𝜂𝑝𝑒𝑎𝑘 using equation 6.15 can be obtained as follows:  

                       𝜂𝑝𝑒𝑎𝑘 =
𝐿

𝑅𝑒𝐿√(2−2𝜌)(1+
𝜂

𝐿
𝐶𝐼)+(

𝜂

𝐿
𝐶𝐼)2

                                            (6.17) 

Comparing the above equation with 𝜂𝑝𝑒𝑎𝑘 = 𝐿𝑅𝑒𝐿
−𝛼 the exponent 𝛼 =  

log(𝜂𝑝𝑒𝑎𝑘/𝐿)

log(𝑅𝑒𝐿) 
 .  

 

6.6 Summary  

From lacunarity analysis of the instantaneous dissipation rate signal, lower lacunarity was 

observed at higher shear positions (position 3 and position 6).  Lower lacunarity indicates that the 

mass signal fluctuates less relative to its mean. PDFs of instantaneous dissipation rate indicate 

peak shifted towards right in presence of strong mean shear. Hamlington et al. (P. E. Hamlington 

et al., 2012) observed similar kind of shift in near wall of channel flow DNS study. Three 

hypotheses were proposed by observing influence of shear on local dissipative scales. PDFs at 
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360° directions of instantaneous dissipation scale shows that positions located in the strong mean 

shear exhibit elliptical peak shape, while positions located at relatively lower mean shear exhibit 

circular peak shape. A new normalization parameter 𝜂𝑝𝑒𝑎𝑘 was proposed to normalize the 

distribution of instantaneous dissipation scale, η. Analytical derivation for Q(η) and 𝜂𝑝𝑒𝑎𝑘 was 

shown for homogeneous isotropic turbulence (HIT) and inhomogeneous anisotropic turbulence 

(IHAT).   
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Chapter 7 

DISCUSSION & CONCLUSION  

7.1 Summary 

Second order structure functions and log derivative of second order structure functions were 

evaluated in four different directions (streamwise and wall normal directions and principal axis 

directions) in a channel flow with backward facing step. Interrogation positions were chosen such 

that they represent free stream region, shear zone and separated region. Anisotropic characteristics 

effect of both dissipative scales and non-dissipative scales were discussed in this study. Magnitude 

of exponent decreases with increase of Reynolds number, indicating intermittency effect due to 

increased shear at higher Reynolds number. Some interesting phenomenon regarding separation 

of exponents in both dissipative and non-dissipative scales observed due to increased shear was 

discussed in details in this chapter. Three hypotheses that were proposed in chapter 7 were 

validated with experimental evidence and previously published papers in this chapter.  

7.2 Mean flow & Anisotropy 

In what follows the variations in the small-scale structure of turbulence in the presence of strong 

anisotropy has been elucidated based on current observations outlined in the chapter 6. This is 

done at the smallest resolvable scale (the dissipative scale) and the intermediate scales (non-

dissipative scales). It should be noted that this study is not an attempt to test the validity of the 

scaling behavior predicted by the refined similarity hypothesis. While from the turbulence theory 
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standpoint, knowledge of the applicability of the similarity hypothesis or the multi-fractal 

framework is important, it is also important to understand how large-scale anisotropy affects the 

local structure from the mechanistic perspective. The second order SF is closely related to the 

power spectrum as is implied in the classical turbulence theory and therefore the results and 

insights presented here are relevant to spectral filter modeling of anisotropic separated turbulent 

flows. Previous studies similar to this exercise include Toschi (Toschi et al., 1999) who studied 

the variations in scaling exponents in a channel flow. The present study is a more robust test of 

conclusions drawn previously as the flow has a free shear region embedded within the channel 

flow through the placement of the backward facing step. Therefore the physical mechanics 

between wall-generated turbulence are presumed to be different than that in free shear. 

7.2.1 Effect of shear on the small-scale structure 

The data presented in this work includes a collection of SFs and their exponent profiles in a 

turbulent shear flow at points experiencing varying levels of anisotropy through the non-

homogenous mean shear imposed by the backward facing step geometry. Points 1, 4, and 7 (Figure 

3.6) lie in the free stream with relatively mild levels of mean shear as evident from the deformation 

eigen value magnitudes presented in Table 4.1. Points 3 and 6 however lie in an intense free shear 

layer, while points 2 and 5 lie in the separated vortex with mean deformation directions 

characteristically different (see Figure 4.7 and Table 4.2). Effects of these anisotropic 

characteristics on the SFs in the dissipative scales (smallest resolved scales, < Taylor micro-scale) 

and the non-dissipative scales (> Taylor micro-scale) are presented below: 
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7.2.2 Reduction in exponent magnitude with increasing shear 

As seen in Figures 5.2 and 5.3, all the 𝑢𝛼𝛽
′2  profiles show a significant reduction in magnitude (so 

called saturation of exponent) throughout the dissipative scales for regions corresponding to high 

shear (points 3, and 6). Some of these reductions are also noticeable at point 5 that lies within the 

edge of the diffusing shear layer. The exponent however does not appreciably change in the non-

dissipative scales. This is consistent with many of the previous findings that correlate intermittency 

in the dissipative scales with decreased or saturated scaling exponents(K. R. Sreenivasan & 

Antonia, 1997; Yakhot & Sreenivasan, 2005). The results also show a Reynolds number dependent 

reduction in the exponent magnitude. In particular the exponent is lower with increasing Reynolds 

number. These results clearly implicate an increase in intermittency in the dissipative regime due 

to the large-scale shear with increasing Reynolds number. They also show that the effects of large-

scale are more pronounced in the dissipative scales as opposed to the non-dissipative scales. 
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7.2.3 Separation of exponent in the dissipative scales with increasing shear 

As seen in Figure 5.4(b) the exponents in the dissipation regime differ with respect to the velocity 

component utilized in the SF. The wall-normal velocity component SF has an exponent 

significantly higher than the streamwise velocity component SF irrespective of the SF direction. 

Increase in Reynolds number appears to pronounce this effect as seen in the Figure. The same 

observation also goes with the SFs along the principal directions (seen in Figure 5.5b). Here the 

SF exponent of velocity component along the mean stretch direction (e1) is higher than that 

corresponding to the e2 direction. These observations show that the anisotropic effects on 

dissipative scaling characteristics occur through the anisotropic nature of velocity fluctuations. A 

Figure 7.1: Scatter plots of fluctuation velocity at position 3 
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picture of the scatter plot of the velocity fluctuation at point 3, representing a point in the shear 

layer is shown in Figure 7.1. As can be seen, the i component of the velocity is expected to have a 

greater rms than the j component. While in the e1 and e2 direction, it can be noted that the e2 

component of the velocity has a greater rms than the e1 component. This can be inferred as the 

scatter plot of velocity may be also regarded as the relative lagrangian displacement of fluid 

elements per unit time, thus justifying the superposition of the SF directions onto the scatter plot. 

Combining this observation with that seen in Figures 5.4b and 5.5b, it may be inferred that 

saturation of the scaling exponent profile is higher corresponding to the velocity component with 

the greater rms magnitude (regardless of what direction the SF is in). 

 

7.2.4 Separation of exponent in the non-dissipative scales with increasing shear 

As seen again in Figure 5.4(b), the exponents in the non-dissipative scales differ with respect to 

SF direction. This is in contrast to the separation of exponents with respect to velocity component 

in the dissipative regime. The wall-normal direction SFs has a lower exponent magnitude than the 

streamwise direction SF irrespective of the velocity component. This observation shows a clear 

directional dependence of SFs in scales above the dissipative scales. This is consistent with some 

observations related to transverse SFs in literature reported and discussed in Ref.(Dhruva, Tsuji, 

& Sreenivasan, 1997) about reduced magnitudes of exponents of SFs in the transverse directions. 

With respect to e1 and e2 directions, Figure 5.3(b) however shows that this separation in exponent 

in the non-dissipative scales is greatly diminished. This combined observation shows that the 

exponent magnitude above the dissipative scales is sensitive to shear along a given direction. Given 

that by construction, e1 and e2 are directions where shear vanishes and the deformation is purely 
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stretch or contraction, the difference in exponents is insignificant. This can be observed in the 

agreement of exponents seen in Figure 5.5(a-c).  

7.3 Dissipative Scale 

Three hypotheses have been presented in chapter 6 that describes the influence of mean shear on 

dissipative scales. Hypotheses (1) and (2) were in fact anticipated by Corrsin (Corrsin, 1958) who 

argued on the basis of competition between the local energy transfer time scale and the normalized 

mean shear time scale captured by 𝑆𝜏𝑛. It was also noted that the above dimensional arguments 

can also be formulated on the fluctuating turbulent velocity field. It is easy to see that 𝑅𝑒𝑆 can be 

expressed in terms of the fluctuating dissipation scale η as 𝑅𝑒𝑆 ~ 〈(𝑆𝜂2/𝜈)−2〉 Thus, one may pose 

the same arguments as above without invoking dimensional analysis, by defining an alternative 

shear-dissipation scale Reynolds number as a moment defined over 𝑄(𝜂) given by 

∫ (𝑆𝜂2/𝜈)𝑄(𝜂)𝑑𝜂
𝐿

0
. Thus, the local dissipation dynamics departs from the isotropic expectation if 

instantaneously the number 𝑆𝜂2/𝜈 ≫ 1. Physically, this represents the cut-off where locally 𝑆𝜂 ≫

 𝛿𝑛𝑢. With regards to hypothesis (3), it indicates the possible existence of a more general 

universality class for the small-scale structure of turbulence that is applicable for all shear flows 

as long as the mechanism of turbulence production is purely shear driven, and that the classical 

picture is only a special case when shear vanishes. Now, the existence of a universal structure that 

is shear dependent may sound like an oxymoron given that mean shear has classically been 

associated with the large-scale. But it could be true if and only if the very mechanism of shear 

driven turbulence production itself were to be universal. In other words, the turbulent production 

mechanisms in the strong shear region of a free jet is statistically identical to turbulent production 
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in a mixing layer or even a boundary layer provided the relevant dimensionless numbers (i.e., 𝑅𝑒𝐿 

and 𝑅𝑒𝑆 as suggested above) are matched. Combining this notion of a universal turbulence 

production structure with the underlying universal multi-fractal structure, the nature of the small-

scale structure is hypothesized to obey a new class of universality that is dependent on precisely 

the relative position of the production scales (defined by 𝑅𝑒𝑆) with respect to the separation of 

turbulent scales. These ideas extend the classical notion of universality, which still holds as a 

special case at vanishing shear and, as discussed in the context of the data presented in the 

remainder of this letter, remains to be a very good approximation for 𝑅𝑒𝑆 ≥ 40.  

Using current data and previously published data, a preliminary test for hypothesis (1) through (3) 

was performed. This was done by recasting both our data and the shear flow data from Refs. 

(Bailey et al., 2009; P. E. Hamlington et al., 2012) to analyze the departure of 𝑄(𝜂/𝜂0)from the 

HIT expectation as a function of 𝑅𝑒𝑆. Figure 6.4 shows a plot of the peak location of 𝑄(𝜂/𝜂0), 

(𝜂/𝜂0)𝑝𝑒𝑎𝑘 as a function of 𝑅𝑒𝑆 for the six locations. The figure also shows the predicted curves 

for turbulent channel flows for 𝑅𝑒𝜏 ∼ 550 and 𝑅𝑒𝜏 ∼180. These predictions were based on 

(𝜂/𝜂0)𝑝𝑒𝑎𝑘 presented in Ref. (P. E. Hamlington et al., 2012) combined with 〈𝜀〉/(𝑆2𝜈) calculated 

from the freely distributed channel flow data of Ref.(Hoyas & Jiménez, 2008). Pipe flow data at 

y/R = 0.1 in Ref. (Bailey et al., 2009) is also included, along with the level corresponding to HIT. 

It is clear from this composite data-set that at large 𝑅𝑒𝑆, (𝜂/𝜂0)𝑝𝑒𝑎𝑘 approaches the HIT level, 

partially supporting hypothesis (1). The data also show a significant departure for 𝑅𝑒𝑆 < 40 with 

(𝜂/𝜂0)𝑝𝑒𝑎𝑘 increasing in magnitude. There appears to be an inflection for 𝑅𝑒𝑆  ∼1 and a rapid 

increase in (𝜂/𝜂0) peak for 𝑅𝑒𝑆  <1. The significant deviation from HIT for 𝑅𝑒𝑆  < 40 supports 

hypothesis (2). All the data show reasonable collapse. The significantly higher (𝜂/𝜂0)𝑝𝑒𝑎𝑘 for 𝑅𝑒𝑆 

∼30 in the PIV data was examined closer, and can be explained through the inherent limitation of 
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defining the integral length scale in strongly anisotropic flows (which is the next challenge to 

address before testing these hypotheses in much stronger anisotropic flows). This data point 

corresponds to position 2, which lies within the separated zone. The point is within 0.3 mm of the 

strong shear layer and thus, the longitudinal two-point correlation function inevitably traverses 

from low to high shear. It can be noted that if the position of this data point recalculated by revising 

the mean shear at this location as the average over the integral length scale, the data point shifts to 

the left and exactly falls in line further improving the collapse of data. It was also observed here 

that the (𝜂/𝜂0)𝑝𝑒𝑎𝑘 level corresponding to pipe data at y/R = 0.1 (Bailey et al., 2009) agrees more 

with the collapsed data than the HIT prediction. All of these observations with a reasonable data 

collapse seem to support hypothesis (3) with respect to the existence of a family of universal 

structures of turbulence. However, more studies are necessary to study this behavior in multi-

directional anisotropy with a more general definition of integral length scale. To illustrate how 𝑅𝑒𝑆  

significantly varies in space and can therefore play a significant role in the variation in local 

structures, Figure 6.5 shows profiles of 𝑅𝑒𝑆  as a function of y/h at x ≈ h and x ≈ 3h. From this 

figure, it is clear that the shear layer indeed significantly reduces 𝑅𝑒𝑆 particularly along y/h = 0. 

Figure 6.6  shows profiles of 𝑅𝑒𝑆 as a function of y+ in channel flows based on Ref. (Hoyas & 

Jiménez, 2008) for very high 𝑅𝑒𝜏. This figure clearly shows that roughly at y+ ∼ 90, 𝑅𝑒𝜏 ∼ 40. 

This further explains the departure of 𝑄(𝜂/𝜂0) from the HIT behavior for y+ < 90.6 It also explains 

the departure observed in our data for regions with large mean shear in the free shear layer 

downstream of the backward step. 
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7.4 Dissipative scales, SFs and TPCFs at 360° 

Distribution of dissipation scales 𝑄(𝜂) at the different interrogation positions with varying shear 

intensity indicate that when normalized by 𝜂0, results show that they are greatly influenced by the 

intensity and the direction of local mean shear. Contour lines corresponding to the peak of 𝑄(𝜂) 

look elliptical for strong shear, while the shape is more circular for low shear intensity. A new 

normalization parameter 𝜂𝑝𝑒𝑎𝑘was proposed in this paper. After using this new normalization 

parameter, no difference was observed in the peak location shapes between low shear positions 

and high shear positions.  

 

The Major and the minor axis of elliptical shape contours indicate that velocity fluctuation 

correlations are more correlated along the minor axis and less correlated along the major axis. 

When their difference between major and minor axis decreases and contours looks like circular, 

indicating velocity fluctuation relations are similar in both directions. Non-connected contours in 

the non-dissipative region are due to negative correlations between two successive positions, while 

in dissipative regions successive values are close to each other. Contours in the strong shear 

position is sandwiched (or contracted), while moving towards the downstream less evidence of 

contraction, that means as shear decreases the velocity fluctuation correlations tends to be similar 

in all directions.  
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7.4 Conclusion  

Second-order SFs in a strongly anisotropic flow was studied, namely the canonical backward 

facing step using time-resolved particle image velocimetry technique. The large-scale anisotropic 

field presented is non-monotonic with an intense shear layer embedded between a free stream 

channel flow and a separated vortex. The second-order SFs were observed to be highly impacted 

by the non-monotonic variations in turbulence intensities. These impacts could be traced down to 

the dissipative regime through analysis of the logarithmic derivatives of second-order SFs. It was 

shown that presence of shear separates the exponent profile in the dissipative regime with respect 

to anisotropic fluctuations of the velocity component. Specifically, the velocity component that 

fluctuates most corresponds to saturated exponent in the dissipation regime while not necessarily 

saturating the exponent in the non-dissipative regime. Another key observation is that the scaling 

exponents for SFs along the principal directions of deformation do not separate with respect to SF 

direction. Thus the transverse scaling exponent would be saturated if it is not oriented along the 

principal axis of mean flow deformation. 

The above observations are unique and provide more insight into the mechanism of how anisotropy 

can impact SF scaling behavior. It was also shown that the kinematic deformation of the mean 

flow, characterized through the principal axis of deformation, present varying levels of mean shear 

influence with respect to the direction of the SF as well as the velocity component of the SF.  

This study has shown the relevance of considering local anisotropic parameters such as the mean 

shear in tackling the problem of understanding the departure of small-scale structure of turbulence 

in strongly anisotropic yet high Reynolds number flows from that observed for the case of HIT. 

Through physical arguments, it was proposed that there may exist a family of universal structures 
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of turbulence through the introduction of the mean shear Reynolds number 𝑅𝑒𝑆 or equivalently the 

ratio of mean shear time scale to turbulence time scale 𝑆𝑇𝐿. Alternatively, it can also be described 

by the Reynolds number ∫ (𝑆𝜂2/𝜈)𝑄(𝜂)𝑑𝜂
𝐿

0
. Our high-resolution PIV measurements in the 

backward facing step not only shows that the fluctuation in dissipation rate becomes relatively less 

intermittent in the presence of strong shear (through fractal analysis), but also that the peak location 

of 𝑄(𝜂/𝜂0) shifts to the right. This shift is consistent with near wall 𝑄(𝜂/𝜂0) in channel flows 

where mean shear is high. By combining current data and performing meta-analysis of previous 

data in channel flow turbulence, it was shown that 𝑅𝑒𝑆 <40 significantly marks the shift for the 

small-scale structure from HIT behavior. Partial evidence was shown that this shift may still be 

universal as current data, which consist of free-shear turbulence, agree with the wall-bounded 

turbulence and HIT when parameterized with 𝑅𝑒𝑆. However, further detailed investigations of 

increasingly complex anisotropic turbulent flows with strong principal shear as well as a 

generalized definition of integral length scale independent of the two-point correlation functions 

are needed.  

Probability density functions of the instantaneous dissipative scales at 360° directions indicates 

that local mean shear dominate the peak locations shape when 𝑄(𝜂) was normalized with 𝜂0. 

While introducing new normalization parameter 𝜂𝑝𝑒𝑎𝑘, shear dominances in peak locations can be 

overcome. Therefore, probability density functions of the instantaneous dissipative scale can be 

universal. However, more investigation is required.  
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Chapter 8 

ORIGINAL CONTRIBUTION 
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10.1371/journal.pone.0105357 (Khandakar Niaz Morshed, Bark Jr, Forleo, & Dasi, 

2014) 

2.  Khandakar Morshed, Subhas K Venayagamoorthy, Lakshmi P Dasi (2013) 

"Intermittency and local dissipation scales under strong mean shear ". Physics of Fluids, 

Volume 25, 011701, DOI: 10.1063/1.4774039  (Khandakar Niaz Morshed, Subhas Karan 

Venayagamoorthy, et al., 2013) 
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4. Ian May, Khandakar Morshed, Subhas Venoyagamoorthy, and Lakshmi Dasi, (2014) 
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8.3 Conference Presentations 
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regulates the intermittency of energy dissipation rate " 65th Annual Meeting, Division of 



 

 

118 

 

Fluid Dynamics, American Physical Society, San Diego, California, USA. (November 

18-20, 2012) (K. Morshed, Venayagamoorthy, & Dasi, 2012) 
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