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ABSTRACT

INFERENCE FOR CUMULATIVE INTRADAY RETURN CURVES

The central theme of this dissertation is inference for cumulative intraday return (CIDR) curves

computed from high frequency data. Such curves describe how the return on an investment evolves

with time over a relatively short period. We introduce a functional factor model to investigate the

dependence of cumulative return curves of individual assets on the market and other factors. We

propose a new statistical test to determine whether this dependence is the same in two sample

periods. The statistical power of the new test is validated by asymptotic theory and a simulation

study. We apply this test to study the impact on individual stocks and Sector Exchanged-Traded

Funds (ETF) of the recent financial crisis and of trends in the oil price. Our analysis reveals

that the functional approach has an information content different from that obtained from scalar

factor models for point-to-point returns. Motivated by the risk inherent in intraday investing, we

propose several ways of quantifying extremal behavior of a time series of curves. A curve can

be extreme if it has shape and/or magnitude much different than the bulk of observed curves.

Our approach is at the nexus of Functional Data Analysis and Extreme Value Theory. The risk

measures we propose allow us to assess probabilities of observing extreme curves not seen in

a historical record. These measures complement risk measures based on point-to-point returns,

but have different interpretation and information content. Using our approach, we study how the

financial crisis of 2008 impacted the extreme behavior of intraday cumulative return curves. We

discover different impacts on shares in important sectors of the US economy. The information

our analysis provides is in some cases different from the conclusions based on the extreme value

analysis of daily closing price returns. In a different direction, we investigate a large-scale multiple

testing problem motivated by a biological study. We introduce mixed models to fit the longitudinal
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data and incorporate a bootstrap method to construct an false discovery rate (FDR) controlling

procedure. A simulation study is implemented to show its effectiveness.
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Chapter 1

Introduction

Functional data analysis (FDA) has established itself as an important field of statistics over

the past two decades. It has found extensive applications in many areas such as biology, physics,

geophysics, climate science, psychology, finance and economics. This field has become broad with

many specialized directions of research. Functional time series, as a special subfield of functional

data analysis, offers effective new tools in finance and economics research. In this dissertation,

special attention is devoted to making inference for cumulative intraday return curves, introduced

by [1] as a way of transforming the daily price curves into a stationary time series of functions.

This dissertation consists of three main parts. Chapters 2 and 3 are concerned with statistical

modeling and inference for the commutative intraday return curves, which are the central themes

of the whole dissertation, justifying the title. To illustrate the usefulness of our methodologies, a

comprehensive application is made to common financial assets, especially to their behavior with

respect to the 2008 financial crisis. Chapter 4 presents a stand alone study of a large scale cross

correlation testing problem motivated by a biological experimental study. Before diving into details

of each individual research topics, we describe in the rest of this chapter some relevant concepts

as a preliminary, and give general introductions to the main ideas of each chapters, as well as

highlighting some useful findings in each study.

Many financial data sets form functional time series. Cumulative intraday return curves (CIDRs)

are data of this form that can be used to study dynamic performance of financial assets. Suppose

Pn represent the closing price of a given financial asset on day n. Then the daily closing return is

defined as

rn = 100(lnPn − lnPn−1).

This is exactly the definition of the point-to-point return which is commonly used in conventional

financial models such as the Capital Asset Pricing Model (CAPM). Now suppose Pn(t) is the price
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of a financial asset at time t within day n. Then the CIDRs are defined as functions

Rn(t) = 100(lnPn(t)− lnPn(0)).

One can clearly see that the CIDR is a counterpart of the point-to-point return, but instead of

selecting one point to represent the return over a whole day, the CIDR contains some information

about the evolution of the return within a day. It may be expected to provide additional information

contained in the function that is not available from application of traditional methods. As we

will see, inference based upon CIDRs is often more robust than its scalar counterpart, because it

averages out random influence on each single point and focuses on the overall influence of the daily

curves as a whole. Another main strength of CIDRs is that, in contrast to traditional high-frequency

data analysis, there is no concern about serial dependence among repeated measurements because

we treat the whole CIDR curve as a single statistical entity. The aforementioned merits inspire us

to use CIDRs as a new tool to reexamine many existing results or conclusions in financial research.

At the theoretical level, we rigorously define CIDRs as a special example of the functional time

series, and develop theory grounded in the Hilbert space formalism. For more rigorous definition

and basic assumptions imposed upon CIDRs, the reader is referred to Section 2.3.

The first important problem in finance we examined under the new functional data framework

is the study of asymmetric correlations/betas. In finance, beta is a term that tells us how the ex-

pected return on an asset changes as the expected market returns change. It is a slope of a specific

regression line. For example, assume the S&P 500 is the index summarizing “the market" and a

stock’s beta is 1.2, it means, theoretically, the stock is 20% more volatile than “the market". So

understanding how the betas change is very useful for understanding the riskiness of the underly-

ing assets. Correlation is another important measure closely related to beta. The term “asymmetric

correlations" refers to imbalanced correlations of an asset during market downturns and upturns.

More details about this issue are provided in Section 2.1. To study this asymmetric beta/correlation

problem with CIDRs, we need to bring in a functional regression model, which extends the classi-

cal capital asset pricing model (CAPM). In Chapter 2 we introduce a functional regression model
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with CIDRs of individual asset as the responses and CIDRs of the market and/or other factors as

predictors. The regression coefficients, or betas for consistency with the scalar context, are inter-

preted in a similar way to their point-to-point return based counterparts. We use the mathematical

formalism developed by [2], who proposed a way of estimating betas in a functional regression

model by combining least square and the method of moments approaches. Our major challenge

is to find a way of comparing betas estimated from two independent samples. A main contribu-

tion of our work is to propose a statistical two-sample test associated with a functional regression

model. The testing procedure has an elegant and simple form, and only a few weak assumptions are

needed. The null distribution of the test statistic is asymptotically Chi-square with a known num-

ber of the degrees of freedom. There are at least twofold contribution of this work. Even though

it is motivated by a specific question of asymmetric correlation of CIDRs, the test procedure can

be applied to comparing betas for any stationary functional time series based factor model given

all the assumptions are satisfied. On the other hand, the conventional scalar tests are essentially

a special case of our test, so, we offer a unified framework to study the asymmetric correlation

problems. As an illustration of the proposed methodology, an extensive application is made to

a selection of financial assets such as individual US stocks and Sector ETFs (Exchange-Traded

Funds) of the periods before, during and after the 2008 crisis. Details of the data analysis are well

documented in tables in Chapter 2 along with elaborations on the findings.

As noted above, CIDRs are essentially normalized/standardized intraday price curves. A CIDR

curve has both shape and magnitude which contain much more abundant information than a point-

to-point return. For example, the shape can reflect how a stock return evolves over time in a day

while the magnitude reflects the overall daily volatility/momentum of the stock return. Dealing

with CIDRs represents a change in philosophy towards the handling of financial data. The primary

objective in Chapter 3 is to quantify extremal behaviors of a time series of curves in the context of

CIDRs. Imagine you are a quantitative researcher investing in intraday prices and the valuations

of your position might be impacted by the shape of the daily price curves. It will be useful for

you to know the probability of observing some unusual shapes ahead of time. One of the major
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accomplishments we achieved in Chapter 3 is to develop a procedure of creating a region for

extreme curves based on past data. Back to the day trader example, suppose one day you observe

a CIDR curve falling in the predicted extremal region with an upper tail probability of 0.001, you

may be aware of that this is a rare curve shape that should be only observed once every four years.

In Chapter 3, we rely on two important statistical techniques to achieve our goal of quantifying

extremal curves. The first one, also a core technique in functional data analysis, is called Func-

tional Principal Component Analysis (FPCA). It is an important dimension reduction tool that can

be used to investigate the dominant modes of variation of functional data. Specifically, by choosing

a set of orthonormal eigenfunctions as the eigenbasis in a Hilbert space, a random function can be

represented in the most parsimonious way, that is, one can satisfactorily approximate a random

function which lives in a infinite dimensional space using a small number of coefficients. In ap-

plications, without losing much information, this is an efficient way of transforming a functional

data problem into a multivariate vector problem. The reader is referred to Section 3.2.1 for more

details about definitions and properties of FPCA related concepts. In our study, FPCA reveals

some interesting findings about the shape of the CIDRs. By using functional principal component

analysis, we can tell what types of shape form/dominate the daily variation of an intraday price

curve. We note here the recent approach of [3] who develop principal components specifically

tailored to the study of extremes. Their approach may also be useful in the study of risk. The other

important statistical tool used in this study is called peak-over-threshold (PoT), which is one of

the two related methods in the extreme value theory (EVT). The basic idea of PoT is to model the

distribution of exceedances over a certain threshold as a Generalized Pareto Distribution (GPD).

The other major EVT method is called block-maxima-method (BMM). This method models the

distribution of the maxima of each pre-specified block (or period), which is a more traditional way

of of identifying extremes in seasonal data. However, [4] argue that the PoT method is superior

in financial applications. In Chapter 3, we choose the PoT method as a better fit for our data for

a similar reason after a preliminary exploratory study of the data. Another strength of using GPD

instead of nonparametric methods is that it allows us to depict possible shapes of extreme curves
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that may never be observed in sample curves. The reader is referred to Section 3.2.2 for a detailed

summary of PoT method. Again, a practical application is presented to nine major Sector ETF

CIDRs. In particular, extreme regions of specified tail risk measures are created for one index as

an illustration of the proposed method.

Lastly, Chapter 4 addresses an unrelated large scale multiple testing problem. Problems of this

type originate from genomic and genetic research, where usually tens of thousands of individual

hypotheses are tested simultaneously. A major difficulty comes from a simple fact that when the

number of individual tests becomes large, it will be very hard to control the overall family-wise

error rate at a certain level as well as maintaining a good power. In most of the recent research

on this topic, the focus is on controlling the false discover rate (FDR), which is defined to be the

expected proportions of false positives among all the rejections. The objective of our project is to

simultaneously test the hypotheses

H0pg : λpg = 0 versus H1pg : λpg 6= 0 for 1 ≤ p ≤ P, 1 ≤ g ≤ G,

where λpg represents the cross correlation between gth gene and pth protein. This is a typical large

scale cross correlation testing problem as the number of genes and proteins G and P are large

while the sample size is rather small. For details of the special data structure, see Section 4.2.1. A

contribution most closely to Chapter 4 is [5] who developed a new scheme for large scale multiple

testing of cross correlations with the assumption of the sparse true significant alternatives. On one

hand, in order to fit this idea in the longitudinal-like data structure, we use a mixed model based

coefficient instead of the standard correlation coefficient to construct the individual test statistic.

A specialized bootstrap procedure is utilized to estimate each marginal null distributions for the

sake of the longitudinal-like data structure and small sample size. Finally, an algorithm based on

the newly proposed testing procedure is established and a simulation study is presented to show its

effectiveness. According to the simulation results display in tables, the major flaw in the proposed

method is its reliance on the assumption of sample size being sufficient big. Unfortunately, this

assumption is not true for the data we have at present.
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Chapter 2 has been published as the following paper “Kokoszka, P., Miao, H. and Zheng,

B. (2017). Testing for asymmetry in betas of cumulative returns: Impact of the financial crisis

and crude oil price. Statistics & Risk Modeling, 34.1-2:33-53". Chapter 3 has been accepted as

the following paper “Kokoszka, P., Miao, H., Stoev, S. and Zheng, B. (2018). Risk analysis of

cumulative intraday return curves. Journal of Time Series Econometrics". Chapter 4 is a third joint

project with authors Wen Zhou, Piotr Kokoszka and Ben Zheng, which remains in progress.
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Chapter 2

Two Sample Inference in a Factor Model for

Cumulative Intraday Return Curves

2.1 Introduction

The contribution of this paper is twofold. At the methodological level, we propose a statistical

inferential tool to test the equality of functional regression betas between two samples. At the

empirical level, we utilize the new tool to investigate the impact of the 2007 to 2009 financial

crisis and the regime of increasing or decreasing oil prices on suitably defined betas of intraday

cumulative returns. Our analysis uses cumulative intraday return (CIDR) curves computed from

high frequency data. Such curves describe how the return on an investment evolves with time over

a relatively short period.

The study of asymmetric correlations, a term referring to different correlations between secu-

rity returns during market downturns and upturns, is important for at least two reasons. First, hedge

ratios rely crucially on the correlations between the assets to be hedged and the associated financial

instruments. The presence of asymmetric correlations can impact hedging effectiveness. Asym-

metric correlations require dynamic changing of hedge ratios conditional on market conditions.

Second, portfolio diversification is the center piece of standard investment theory. Studies find that

correlations between stocks tend to be much higher as the market falls. Thus, the effectiveness of

diversification might be questionable, particularly during bear markets. Asymmetric correlations

of point-to-point stock returns with market indexes are well documented in the finance literature.

Beta is the product of the correlation and the volatility of an asset relative to the volatility of

the benchmark (the market). Therefore, asymmetric correlations and asymmetric beta are similar.

Betas are closely related to asset pricing theories, and useful in understanding the riskiness of the

associated assets.
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Using three alternative definitions of bull and bear markets, [6] find that the betas were not

significantly different in the two types of markets for most of the 700 stocks studied (all the stocks

traded at NYSE at that time). [7] show that most of the tested 322 securities exhibited betas which

were not significantly different in up and down markets. [8] revisit the [6] procedures for new sam-

ples. Unlike the findings of [6], they find statistically different betas for stocks over bull and bear

markets. More recently, [9] use a logistic smooth transition market (LSTM) model to investigate

whether ‘bull’ and ‘bear’ market betas for Australian industry portfolios differ. Their results indi-

cate that ‘bull’ and ‘bear’ betas are significantly different for most industries, and that up-market

risk is not always lower than down-market risk. Other studies discover asymmetric betas on port-

folios based on different criteria, such as, size based portfolios ([10], [11] and [12]), risk based

portfolios ([13] and [11]) and past performance based portfolios ([11] and [14]).

[15] find strong asymmetric correlations between stock portfolios and the US market. [16],

[17], [18] and [19], among others, document asymmetries in betas of stock returns, but provide

no formal statistical tests. [20] develop a model-free test for asymmetric correlations and provide

formal tests for asymmetric betas and covariances. They sort stocks by size, book-to-market,

and momentum and find strong evidence of asymmetries for both size and momentum portfolios,

but no evidence for book-to-market portfolios. They also show that incorporating asymmetries

into investment decisions can be of substantial importance for an investor with disappointment

aversion. All the above studies use monthly closing price return data.

While point-to-point returns using closing monthly or daily prices, have been extensively stud-

ied, there is no work we are aware of that pertains to cumulative intraday returns. While two sample

problems are among the most thoroughly studied of statistical issues, there is relatively little re-

search that examine samples of curves, and none in the context of functional regression analysis.

Functional regression analysis is the regression of cumulative return curves for individual assets

against cumulative return curves of the market and/or other factors.

Although two sample problems are considered by [21], [22], [23], [24] and [25], two sample

inference in the context of functional regression models has not been previously studied.
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We propose a statistical test in the context of functional data analysis. The test can be broadly

used to examine the statistical equality of the regression coefficients of the same model estimated

from two samples. Under suitable asymptotic assumptions, the properties of the statistical test

are established and proved. Then the statistical test is used to investigate whether the betas of

individual assets are different before, during and after the financial crisis. The 30 components of

the Dow Jones Industrial Average and the 9 Selected Sector ETFs are the assets used in the study.

The results show that roughly one third of the individual stocks have statistically significantly

different market betas before and during (10 stocks), during and after (11 stocks) and before and

after (12 stocks). For the ETFs, only one has a different beta before and during the crisis, five have

different betas during and after, and five have different betas before and after the financial crisis.

To further show the empirical power of the test, a crude oil price factor is added to the functional

regression model. Studies in the finance literature have shown that crude oil prices is an impor-

tant factor that impacts the economy as well as the equity markets. [26] examined the correlation

between the price of crude petroleum and U.S. recessions. He finds that oil shocks were a con-

tributing factor in at least some of the U.S. recessions prior to 1972. [27] use change in the monthly

average U.S. dollar price per barrel of crude oil as a factor for cross-sectional expected returns. [28]

document that in the postwar period, the reaction of the United States and Canadian stock prices to

oil shocks can be completely accounted for by the impact of these shocks on real cash flows. After

the financialization of commodity futures markets in 2004–05, oil volatility has become a strong

predictor of returns and volatility of the overall stock market. Furthermore, stocks’ exposure to oil

volatility risk now drive the cross-section of expected returns. [29] investigated the impact of daily

oil price changes on the stock returns of a wide array of industries and found that in addition to

the stock returns of industries that depend heavily on oil, stock returns of some industries that use

little oil are also sensitive to oil prices perhaps because their main customers are impacted by oil

price changes.

First, the impact of the crude oil factor is studied by using it as an additional factor in the

comparison of the before, during and after financial crisis functional factor models. The results
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show that when the crude oil factor is added to the models, the test shows that betas for five, seven

and nine out of the nine sector ETFs are different for the three paired samples, respectively. For

the individual stocks, the number of significantly different betas are also dramatically increased for

all of the three paired subsamples. Since the test is a joint test, and in the above mentioned results,

we already tested the significance of the asymmetric market beta, the increases in the number of

significantly different betas are due to the impact of the crude oil factor.

Subsequently, different samples conditional on the trend of the crude oil prices are used to in-

vestigate the impact of the crude oil factor from a different angle. The test results show that during

“bull” and “bear” crude oil prices, the betas for ETFs are different for five out of the nine sectors.

For the individual stocks, the results show that the betas for most of the stocks are insignificant

during the “bull” oil price subsample, and positive and significant during the “bear” oil price sub-

sample. That is, negative crude oil price movements have a negative impact on intraday cumulative

equity returns.

Furthermore, a comparison is made of the results of the functional factor model with the results

of the point-to-point return model. The results show that the functional factor models which con-

siders intraday behavior, or in other words how the price moves within trading days, reveal new

information content regarding the relationships between equity price movement and the factors.

The remainder of the chapter is organized as follows. Section 2.2 introduces the model struc-

ture. After a general background has been established, Section 2.3 describes the test procedure

and the properties of the test. Section 2.4 presents its application to cumulative intraday returns

on blue chip stocks and sector ETF’s, and a comparison of the findings to those obtained using

point-to-point returns. Section 2.5 utilizes Monte Carlo simulations to examine the empirical size

and power of the test and Section 2.6 concludes the paper and proposes future research directions.

2.2 A Functional Factor Model

We study the behavior of a time series of financial asset returns from a functional data analysis

perspective. We view the series of Cumulative Intra-Day Returns (CIDRs) as a time series of
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functions. Since this concept has not been widely used in the finance literature, its definition is

now shown.

Suppose P (t0) is the price of an asset at time t0, a conveniently selected time within a trading

day. For instance, t0 can be the NYSE opening time, i.e. 9:30am EST. The cumulative intraday

return is defined as R(t) = logP (t)− logP (t0), t0 < t ≤ t0 + T , where, T is number of sample

unit time (i.e. minute, second) during a trading day. Thus, the object of the study is a set of

Cumulative Intraday Returns (CIDRs) defined by

Rn(t) = logPn(t)− logPn(t0), t0 < t ≤ t0 + T, (2.1)

where n indexes the trading day, t0 is the opening time of the trading day, and T is the number of

time units in a trading day. One minute is used as the sample frequency, so T = 390 minutes for

a typical NYSE trading day. The CIDR curves Rn(t) have shapes almost identical to the intraday

price curves. This follows from the approximation that Rn(t) ≈ (Pn(t) − Pn(t0))/Pn(t0) and the

observation that for any day n, Pn(t0) is a fixed number. The curves Rn(t) start from zero. Even

though for each n, the curve Rn(t) is a realization of a nonstationary stochastic process, basically

a Brownian motion, the sequence of curves is stationary in a function space (c.f. [30]). This is the

main reason for studying the CIDR’s instead of the price curves. At the methodological level, this

allows us to focus on the intraday behavior of price curves.

To investigate the relationship between the cumulative intraday return curves of an asset and

some factors, such as the intraday cumulative return curves of the market, [2] postulate the follow-

ing model:

Rn(t) = β0(t) +

p∑

j=1

βjFnj(t) + εn(t), (2.2)

in which β0 is an asset dependent intercept curve, Fnj is the CIDR curve of factor j, (e.g. CIDR on

a market index or oil price), and the εn are error curves. This model is analogous to the commonly

used factor models, i.e. the Capital Asset Pricing Model (CAPM), but the independent and the

dependent variables are curves instead of scalar time series. The focus of this work is on the
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coefficients βj which describe the dependence of the CIDR’s of an individual asset on the factors

Fnj . The rationale for such a focus is that the intraday price curves of individual assets are generally

proportional to the market index price curves. In the spirit of the CAPM, this proportionality should

be even more pronounced when considered in the context of cumulative returns. In the application,

the interest is in whether the betas βj in (2.2) are different over different periods. This is not trivial

since the dependent and independent variables are curves, and the standard t-test does not apply.

Thus, in the next section, a two sample statistical test is developed applicable to the new functional

settings.

2.3 Two Sample Inference Test

Two periods of time are considered, the first period includes N trading days, the second M

trading days. The two samples are assumed to be independent. However, since each sample

generally consists of data on consecutive trading days, serial independence within each sample is

not assumed. Instead, a general nonparametric form of dependence is assumed.

2.3.1 Dependence Structure

We assume a very general form of dependence which has been extensively employed in time

series research for over a decade. It relies on the representation of a stationary time series in an

abstract space as a Bernoulli shift of independent and identically distributed (i.i.d.) errors. See

Chapter 16 of [31] for historical background, detailed discussion and additional references. Our

results could also be proven using different dependence notions.

Suppose H is a separable Hilbert space, as shown by [32]. Let p ≥ 1 and let Lp
H be the space

of H–valued random elements X such that

νp(X) =
(
E‖X‖p

)1/p
< ∞.

In our application, the Hilbert space in question is the space of square integrable functions on the

interval [0, 1], and so the norm is defined by ‖X‖2 =
∫ 1

0
X2(t)dt.

12



Definition 1. A sequence {Xn} ∈ Lp
H is called Lp–m–approximable if each Xn admits the repre-

sentation

Xn = f(un, un−1, . . .), (2.3)

where the ui are i.i.d. elements taking values in a measurable space S , and f is a measurable

function f : S∞ → H . Moreover, we assume that if {u′
i} is an independent copy of {ui} defined

on the same probability space, then letting

X(m)
n = f(un, un−1, . . . , un−m+1, u

′
n−m, u

′
n−m−1, . . .) (2.4)

we have
∞∑

m=1

νp
(
Xn −X(m)

n

)
< ∞. (2.5)

The gist of Definition 1 is that the dependence of f in (2.3) on the innovations far in the

past decays so fast that these innovations can be replaced by their independent copies. Such a

replacement is asymptotically negligible in the sense quantified by (2.5). The reader will notice

that if f(un, un−1, ...) =
∑∞

j=0 cjun−j , a dependent linear model is recovered. A nonlinear f

allows a fairly general nonlinear form of dependence.

2.3.2 The Test Statistic

For simplicity, we use the superscript “∗” to denote the observations taken in the second period.

Thus, the first sample follows model (2.2), and the second sample follows the model

R∗
m(t) = β∗

0(t) +

p∑

j=1

β∗
jF

∗
mj(t) + ε∗m(t), m = 1, 2, . . . ,M. (2.6)

We wish to test the null hypothesis H0 : β = β∗, where

β = [β1, . . . , βp]
T , β∗ = [β∗

1 , . . . , β
∗
p ]

T .
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We want to determine whether the vectors of the coefficients of the factors are different over the

two sample periods. In the simplest case of a single factor, which is the CIDR on a market index,

this corresponds to checking whether the asset betas are statistically the same. We emphasize

that even in this case our approach provides information which has not been available so far since

we study the dependence of the shape of the intraday price curve of an asset on the shape of the

intraday price curve of a market index, whereas previous research only considers point-to-point

returns. In other words, we care about how and how much the price moves whereas the traditional

model only concerns how much the price changes.

The test is based on the comparison of suitable estimators β̂ and β̂
∗
. We now define the

estimator β̂ introduced by [2], β̂
∗

is defined analogously. To simplify formulas, all functions

(e.g. Rn, Fnj) appearing below are assumed to be defined on the unit interval (0, 1]. Thus, before

performing the test, t ∈ (t0, t0 + T ] must be replaced by (t − t0)/T . In other words, the CIDR

functions are rescaled to the unit interval. To further lighten the notation, we introduce the inner

product

〈f, g〉 =
∫ 1

0

f(t)g(t)dt. (2.7)

With this notation, we define

F̂ =

[
N−1

N∑

n=1

〈
Fnj − F̄j, Fnk − F̄k

〉
, j, k = 1, 2, . . . , p

]
(p× p), (2.8)

R̂ =

[
N−1

N∑

n=1

〈
Rn − R̄, Fnj − F̄j

〉
, j = 1, 2, . . . , p

]T
(p× 1), (2.9)

where R̄(t) = N−1
∑N

n=1 Rn(t) and F̄j(t) = N−1
∑N

n=1 Fnj(t), (j = 1, . . . , p). The matrix

F̂ includes cross–sectional sample covariances of the factor curves, the vector R̂ consists of the

sample covariances of the CIDRs on the asset of interest with the factor CIDRs. The estimator

of [2] is defined as

β̂ = F̂−1R̂. (2.10)
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It is a hybrid method of moments/least squares estimator which is consistent and asymptotically

normal. The intercept function is estimated by

β̂0(t) = R̄(t)−
p∑

j=1

β̂jF̄j(t). (2.11)

A natural tests statistic would be ‖β̂ − β̂
∗‖2 =

∑p
j=1(β̂j − β̂∗

j )
2, but its asymptotic distribution

is very complex, and even a Monte Carlo test based on it would be extremely time consuming to

implement. However, a quadratic form of β̂ − β̂
∗

can be constructed whose limit distribution,

as N,M → ∞, is the standard chi–square distribution with p degrees of freedom. To define

this quadratic form, we first introduce the long–run covariance matrices which describe serial

dependence within each sample. We again focus on the first sample, with the understanding that

everything is defined analogously for the second sample.

For j = 1, . . . , p, set µj(t) = EFnj(t), and introduce the vectors

ξn = [ξn1, . . . , ξnp]
T = [〈εn, Fn1 − µ1〉 , . . . , 〈εn, Fnp − µp〉]T . (2.12)

Denote by Γ their long–run covariance matrix defined by

Γ =
∞∑

h=−∞
E[ξ0ξ

T
h ]. (2.13)

Let Γ̂ be a consistent estimator of Γ. Many estimators are implemented in statistical packages. In

our empirical application, we used the R function lrvar (with default tuning parameters) in the

package sandwich. An estimator must be applied to sample versions of the unobservable vectors

ξn. The jth component of ξ̂n is defined by

ξ̂nj =
〈
ε̂n, Fnj − F̄j

〉
, (2.14)

ε̂n(t) = Rn(t)− β̂0(t)−
p∑

j=1

β̂jFnj(t). (2.15)
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Once estimators Γ̂ and Γ̂
∗

have been computed, we can calculate the matrix

D̂M,N :=
N +M

N
F̂−1Γ̂F̂−1 +

N +M

M
(F̂∗)−1Γ̂

∗
(F̂∗)−1. (2.16)

The test statistc is then defined as the quadratic form:

TM,N := (N +M)(β̂ − β̂
∗
)T (D̂M,N)

−1(β̂ − β̂
∗
). (2.17)

2.3.3 Derivation of the Test Statistic and its Properties

The previous subsection established a quantity to test the hypothesis. This subsection provides

the properties of the test. For simplicity, we only state the assumptions and results for one sample,

with the understanding that the same assumptions and results hold for the second sample with

index m and superscript “∗” added. Assumption 2 states that the factor and error functions are

general nonlinear moving averages of some abstract errors. Assumption 3 states usual moment

and independence assumptions in the context of random functions.

Assumption 2. Suppose there exist independent sequences {δn} and {ηn} consisting of i.i.d.

random variables taking values in measurable spaces Sδ and Sη, respectively. Assume there are

measurable functions fj and e defined on the appropriate product spaces, such that

Fnj = fj(δn, δn−1, . . .), εn = e(ηn, ηn−1, . . . ).

Assumption 3. The factors {Fnj, j = 1, . . . , p} and the errors {εn} are random elements of the

space L2([0, 1]) which satisfy E ||Fnj||4 < ∞, E ||εn||4 < ∞, and Eεn = 0. Moreover, for each n,

the error functions {εn} are independent of the vector factors {Fn}.

Under Assumptions 2 and 3, letting Fn = [Fn1, Fn2, . . . , Fnp]
T , it follows that the vector

factors {Fn} and the errors {εn} are stationary random elements of the spaces, respectively, (L2)p

and L2.
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The above assumptions must hold for both samples. Intuitively, these assumptions require

that the CIDR’s Rn and the factors Fnj form stationary sequences of functions (for each sample

separately). As noted in the Introduction, the above stationarity has been verified using the tests

of [30] which are implemented in the R package ftsa. Examination of the graphs, c.f. Figure 2.1,

provides a visual justification.

Our last assumption requires the sample sizes to be comparable, that is:

Assumption 4. Assume that as N,M → ∞,

N

N +M
→ θ, for some 0 < θ < 1. (2.18)

The following Lemma, which follows from Theorem 1.2 in [2], provides the first step in the

derivation of the asymptotic distribution of the test statistic TN,M .

Lemma 1. Suppose Assumptions 2 and 3 hold, the sequences {εn} and {Fn} are L4–m–approxim-

able, and the matrix F defined by

F = [E 〈Fnj − µj, Fnk − µk〉 , j, k = 1, 2, . . . , p] (p× p). (2.19)

is nonsingular. Then,
√
N(β̂ − β)

d→ F−1W (2.20)

where W is a p–dimensional mean zero Gaussian distribution with covariances Var(W) = Γ, and

Γ is the long run covariance matrix defined by (2.13).

Relations leading to (2.20) also hold for the second sample. This is achieved by replacing all n

by m and adding the superscript ∗. We thus have

√
M(β̂

∗ − β∗)
d→ (F∗)−1

W∗, (2.21)

where W∗ is a p–dimensional mean zero Gaussian distribution with covariances Γ∗.
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The next theorem establishes the asymptotic distribution of TN,M under H0.

Theorem 5. Suppose that Assumptions 2 to 4 hold, the sequences {εn} and {Fn} are L4–m–

approximable, the matrix (2.19) is nonsingular, and the long–run covariance matrix Γ is nonsin-

gular and is consistently estimated by Γ̂. Also assume that the second sample satisfies analogous

assumptions. Then, under H0,

TN,M := (N +M)(β̂ − β̂
∗
)T (D̂M,N)

−1(β̂ − β̂
∗
)

d→ χ2(p). (2.22)

Proof. See Section 2.7.1.

Theorem 5 states that under suitable assumptions the asymptotic distribution of the statistic

TM,N converges to the χ2(p) distribution, if H0 is true. We now establish the consistency of the

testing procedure.

Theorem 6. Suppose the Assumptions of Theorem 5 hold, and β∗ = β + η for some nonzero

vector η. Then, TN,M
P→ ∞.

Proof. See Section 2.7.2.

Theorem 6 implies that the power of the test approaches unity, as N,M → ∞. That is, for

large N and M , the probability of rejection of the null hypothesis if alternative is true converges

to 100%.

2.4 Empirical Application

In this section, we apply the test introduced in Section 2.3 in several settings. First the data, the

assets, and factors are summarized. Next, Subsection 2.4.2 presents the results of the application

of our test to periods before, during and after the financial crisis. Subsection 2.4.3 reports a similar

analysis for the “bull” and “bear” crude oil price periods. Finally, in subsection 2.4.4, the results are

compared with those obtained by applying a simplified form of our test to point-to-point returns
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on the same assets and over the same time periods to compare the information contents of the

cumulative return curves and the point-to-point returns.

2.4.1 Data

We are interested in examining whether the betas for individual stocks and “portfolios” are

time-varying. We also want to show that our approach extracts different information than the clas-

sic factor models. Thus, our approach is applied to the 30 stocks from the Dow Jones Industrial

Average Components during the study period. As proxies for “portfolios”, the nine Select Sec-

tor SPDR ETFs are used. The nine Select Sector SPDR ETFs are Exchange Traded Funds that

tracks the nine S&P 500 sector indexes. The ETFs hold individual stocks within the corresponding

sectors. For ease of reference, Table 2.1 lists the companies and the Select Sector SPDR ETFs.

The factors include the market factors and the crude oil factor. The Dow Jones Industrial

Average (DJ) is used as the market factor for individual stocks, and the S&P 500 Index (SP) as a

proxy for the market for the ETFs. The crude oil factor is represented by the nearest term crude oil

futures contract (CL). To construct continuous time series, we roll the nearest contracts to the next

contract 20 calendar days before the expiration of the contracts (roughly at the beginning of each

month). The Crude Oil Futures contracts are traded at the CME group.

The one minute frequency stock and ETF price data is obtained from Quantquote whereas the

price data for the indexes and futures is from TickData.

2.4.2 Asymmetric CIDR Betas around the Financial Crisis

In this section, we apply the statistical test to responses and factors listed in Section 2.4.1

around the recent financial crisis. Our objective is to determine whether there are pair-wise sta-

tistically significant differences for betas during periods before and during, during and after, and

before and after the financial crisis, respectively. Comparing betas for periods around the finan-

cial crisis is particularly interesting, as it allows us to determine whether the crisis has changed

the relationships between the factors and individual assets reflected by the betas defined in this

paper. The periods are defined as: “Before” (06/13/2006 – 09/27/2007), “During” (11/01/2007 –
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02/27/2009), and “After” (01/04/2010 – 12/30/2011) the financial crisis. The number of sample

days for the three periods are 326, 328 and 503 days, respectively. The sample periods are selected

after a preliminary analysis. 1

We first run the one factor model and apply the test to the models for the three periods. The

model is of the following form:

Rn(t) = β0(t) + β1Mn(t) + εn(t), (2.23)

where Rn(t) is the CIDR (a function of t) on day n, Mn(t) is the CIDR of the S&P 500 index for

the ETFs, and the CIDR of the Dow Jones Industrial Average Index for individual stock.

Table 2.2 presents the estimated results of the model of Equation (2.23) for the three periods.

The Table includes the estimated betas, the standard error of the beta estimates and the P-values

of the pair-wise difference tests using the above developed statistic test. The results show that all

the betas are highly significantly differently from zero as indicated by the fact that the ratios of

the estimators and the corresponding errors are between 5.00 (XLP for the “During” period) and

16.25 (XLE for the “After” period). In general the curve betas are consistent with common sense.

For instance, for all the three periods, the economically sensitive sectors of XLE (energy), XLB

(materials), XLI (industrials), XLF (financials), and XLK (technology) have higher betas for all

periods than the other sectors.

The P-values show that for eight out of the nine sector ETFs, only XLK has significantly

different betas before and during the financial crisis (0.86 vs 0.61). For the other ETFs, although

the estimated betas are much higher for XLF during the financial crisis (0.83) then before (0.62),

the difference is not statistically different. For all the others, even the magnitudes of the betas are

very similar before and during the financial crisis. In summary, the results show that the curve

betas of the sector ETFs do not increase during the market downward or bear market.

1We also apply the models to different periods. The different sample selection does not influence the conclusions

materially.
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Comparing the betas during and after the financial crisis, the picture is quite different. For five

XLB, XLE, XLK, XLU (utilities) and XLY (discretionary) out of the nine sector ETFs, the betas

after the crisis are statistically significantly smaller than during the crisis at the 10% level. That

is, the correlations between the asset and the market cumulative return curves generally decrease

after the downward market.

Similarly, the results show that for five out of the nine sectors, the curve betas are significantly

smaller after the financial crisis than before. For instance, the betas for XLB, XLK, and XLU

are 0.87, 0.86 and 0.49 before the financial crisis. The corresponding betas are only 0.61, 0.47

and 0.28 during the “After” period. Interestingly, these are 30%, 45% and 43% smaller although

the market conditions were similar during the two periods. However, betas for those sectors are

dramatically different. It might indicate that investors’ behavior changes or may simply due to the

portfolios holding different assets before and after the financial crisis. This issue might be partially

revealed by testing individual stocks.

Table 2.3 reports the results for the 30 components of the Dow Jones Industrial Average Index.

First, notice that all but one are statistically significantly different from zero with the estimate to

standard error ratio ranging from 2.29 to 19.33 (the Beta of PG for the “Before” period has an

estimate of 0.18 with standard error of 0.11). Second, 10 stocks have significantly different betas

before and during the financial crisis. Among the 10 stocks, only two (AXP and BAC) have higher

betas whereas the other eight have significantly lower betas during than before the financial crisis.

This is consistent with the results for the ETFs. Third, one stock (MMM) has a significantly higher

curve beta in the “After” period than the “During” period, 10 stocks have significantly lower curve

betas in the “After” period than the “During” period whereas betas for the other 19 do not show

statistically significant differences between the “After” and “During” periods. Fourth, a direct

comparison of the “before” and “after” periods show that only one stock (GE) has a higher beta,

10 stocks have lower betas and betas of the other 19 are not significantly different between the two

periods. In summary, the results for both the ETFs and the individual stocks indicate that the betas

for most of those assets do not increase during the financial crisis. However, the betas of some of
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the assets do decrease after the financial crisis. Therefore, the results are partially different from

those reported in the literature for point-to-point returns.

Next we introduce the crude oil factor into the model and run a two factor model of the follow-

ing form:

Rn(t) = β0(t) + β1Mn(t) + β2Cn(t) + εn(t), (2.24)

where, Cn(t) is the CIDR of the Crude Oil Factor (CL).

Table 2.4 reports the results for the nine sector ETFs. In the “Before” period, the crude oil

betas are only significantly different from zero for five ETFs. Except the beta for XLE (the Energy

Sector ETF) which is 0.45, betas for all the other three ETFs are very small, even though they

are statistically significantly different from zero (0.06, -0.04, -0.04, and -0.04 for XLB, XLP, XLV

and XLY, respectively). For the “During” period, betas of the crude oil factor are significant for

6 sectors. The crude oil beta for XLE (0.44) is almost the same as for the “Before” period. The

magnitudes of the other significant crude betas are much higher than before (0.21, 0.16, 0.07, 0.12

and 0.09 for the XLB, XLF, XLI, XLK and XLU). For the “After” period, all the crude oil betas

are significant. The P-values of the pairwise joint tests show that jointly, 5, 7 and 9 ETFs have

different betas for the three pair periods, respectively.

Comparing the results with Table 2.2, we observe that the additional significance is due to the

significant differences of the crude oil factor. After introducing the crude oil factor, the number of

significant P-Values for the “Before” and “During” periods increases from 1 to 5. This means that

at least for four of the ETFs (XLB, XLF, XLP and XLU), the crude oil betas are different between

the two periods. On the other hand, crude oil Betas for XLK are different (-0.03 with standard error

0.02 for the “Before” period and 0.12 with standard deviation of 0.04 for the “During” periods.)

Since the test is a joint test and the test is significant in the one factor model setting, we can not

directly conclude that the crude oil betas for XLE are different for the two periods. However, con-

sidering that the crude oil beta is not significant for the “Before” period and it is significant for the

“During” period, we can safely conclude that the crude oil betas for the two periods are statistically

different. Similarly, comparing the results for the other two paired periods, the results show that
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adding the crude oil factor increases the number of significant results for all two paired periods.

Interestingly, the crude oil betas for XLE are all significantly different from zero and consistent

across all periods at roughly 0.44 – 0.45. The tests show they are not statistically different for all

the paired periods. Broadly specking, however, the results confirm that crude oil is an important

factor for the sector ETFs and crude oil betas are time varying for most of the sectors.

Table 2.5 presents the results for the individual stocks. The results are consistent with the

results for the ETFs. In general, observe that for most of the individual stocks except the three

Energy stocks (AA, CVX, XOM), the crude oil betas are insignificant for the “Before” period. For

the majority of the stocks, the crude oil betas are positive and significant for the “During” period.

For the “After” period, the magnitudes of the crude oil betas increase further from the “During”

period. The number of significant P-values of the test increased from 9, 11, 11 to 21, 13 and 29

and these findings support the conclusions obtained from the ETFs.

In summary, tests of the one factor and two factor models show that, for the ETFs and indi-

vidual stocks, some have time-varying market betas and some have time-varying crude oil betas.

However, in general, the results are not consistent with the findings in the literature that correla-

tions between individual assets and the market increases during crisis periods. For most of the

tested assets, market betas do not increase during the crisis period. We emphasize that the betas

we study refer to intraday cumulative returns which can be impacted differently by a bear market

than daily or monthly returns.

2.4.3 Asymmetric CIDR Betas for Bull and Bear Oil Price Periods

In this section, we consider only two samples corresponding to periods of increasing and de-

creasing oil prices. The two periods are based on crude oil price trends and are defined as: “Bull”

(05/01/2007 – 06/30/2008) and “Bear” (07/01/2008 – 01/30/2009). These two periods are mostly

occur during the financial crisis period and thus reduces the confounding of the two effects. The

purpose of this section is to provide further insights on the effect of oil prices on cumulative intra-

day returns and demonstrate our methodology in a different context.
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Table 2.6 exhibits the estimated results for the ETFs. Panel A presents the results for the one

factor model of Equation (2.23). The P-Values of the test show that for all the ETFs, the market

betas are not significantly different. When the oil factor is added, the P-values for six ETFs (XLF,

XLI, XLK, XLP, XLU and XLV) are significantly different. For XLV, the crude oil beta for the

first period is significant and negative, whereas for the second period it is insignificant. For the

other five ETFs, β̂O2 is positive and statistically significantly different from zero whereas β̂O1 is

statistically insignificant. For XLE, the crude oil factor is positive, stable and not different for the

two periods (β̂O1 = 0.46 and β̂O2 = 0.47). For XLB, β̂O1 = 0.14 and β̂O2 = 0.24 and both of them

are statistically different from zero, but are not statistically different from each other.

Table 2.7 shows analogous results for the individual stocks. Similarly, these results show that

without the crude oil factor, only seven out of the 30 stocks have statistically asymmetric market

beta during the two periods. When the crude oil factor is added, the number of significant P-Values

increases to 23. For most of them, the crude oil price betas are negative and insignificant for the

first period but positive and significant for the second period. The magnitudes of the oil factor also

increase dramatically. For instance, for BAC, β̂O1 = −0.07 and β̂O2 = 0.45.

The results show that the crude oil beta for the majority of the assets is asymmetric for the

two periods. For the “Bear” crude oil period, most of the crude oil betas are positive, significant

with larger magnitudes than the “Bull” period. Since both of the “Bull” and “Bear” periods are

within the downward stock market, the tests show that the crude oil factor is more important than

the stock market. However, it can also be the case that during the second period, both the stock

market and the crude oil price trended downward. Plausibly, the correlation between the crude oil

and market factors are higher, leading to the higher crude oil betas.

2.4.4 Comparison to Point to Point Betas

Traditional financial models deal with point-to-point returns. Factor models for such returns are

essentially scalar regression models. Our functional factor model reveals characteristics of intraday

price curves which cannot be inferred using traditional factor models. It has a different information
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content which focuses on the behavior of price curves within a trading day. The objective of

this section is use a quantitative analysis to show that the information contained in point-to-point

returns is often quite different from that obtained using the CIDR’s and our functional approach.

Therefore, in this section, betas obtained from point-to-point returns are estimated and compared

with the CIDR betas. We consider the scalar model

Rn = β0 +

p∑

j=1

βjFnj + εn, (2.25)

where the intercept β0, factors Fnj’s and errors εn are all scalars. It can be verified that the entire

test procedure described in Section 2.3 still holds for the scalar model (2.25), with obvious modi-

fications. Two types of point-to-point returns are used. The first type are returns between the open

and close of the market. These returns ignore the intraday evolution of the price curves and the

overnight price change. The second type are the usual daily returns based on closing prices, i.e.

returns between the close of trading day n − 1 and the close of trading day n. These returns take

into account the overnight price change. To keep the length of the paper within limits, we report

the results of the test for the ETFs only.

Table 2.8 reports the results for the one factor model. Comparing the results with Table 2.2,

it is observed that the CIDR curve betas are smaller than the corresponding open-to-close betas

which are smaller that the close-to-close return betas. For instance, for XLB, β̂M1 is 0.87, 0.91,

and 1.23, for the curve, the open-to-close returns, and the close-to-close returns, respectively. This

observation is consistent across all periods and for all the ETFs. Second, for some ETFs the pair-

wise test P-values for the estimated betas are different. For instance, for the “Before” and “During”

periods, the test show that only one ETF has a statistically different CIDR beta (β̂M1 6= β̂M2), for

the open-to-close return, three ETFs have different betas, and for the close-to-close beta, eight

ETFs have significantly different betas. However, for the other two pair of periods, the differences

are not that dramatic. For the “During” and “After” periods, the number of significant P-values are

five for all three different return measures. Third, for some ETFs, the results with different returns
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can be very different. For instance, the P-values of the Curve beta for XLI for all the three pair-

wise periods are insignificant. The close-to-close betas are statistically different for the “Before”

and “During” as well as the “During” and “After” periods.

Table 2.9 reports the results for the two factor models for the three periods around the financial

crisis. The results show similar patterns as the one factor model.

In general, the comparisons show that cumulative intraday returns and functional factor mod-

els reveal features different from point-to-point returns. Analysis based on functional regression

models considers the relationships between the intraday prices of individual assets and factors.

Consequently, these models are more relevant to investors taking positions within a trading day,

i.e. day traders or high-frequency traders.

2.5 Finite sample performance

This section examines the test’s finite sample performance using sample sizes similar to those

encountered in Section 2.4.2, and data generating processes that produce curves similar to the

CIDR. The correct empirical sizes and sufficiently high power lend confidence to the findings

reported in Section 2.4. The data generating processes are described and the empirical rejection

rates are displayed.

The building block of artificial data is Brownian motion. Brownian motion is the standard

model for price curves over short time intervals. In the simulations, Brownian motion is used to

imitate the general shape of the CIDRs, as well as the error curves. We use Bn or B∗
m to denote

the Brownian motions that are used to generate factors, and εn, ε
∗
m to denote the Brownian motions

used to generate errors. Serial and cross–sectional dependence is generated by forming linear

combinations of these processes. Specifically, we consider the case of p = 2, and set:
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Fn1(t) = B(1)
n (t) + 0.5B

(1)
n−1(t) + 0.25B

(1)
n−2(t), (2.26)

Fn2(t) = B(2)
n (t) + 0.5B

(2)
n−1(t)− 0.25B

(1)
n−2(t), (2.27)

F ∗
m1(t) = B∗(1)

m (t) + 0.5B
∗(1)
m−1(t) + 0.25B

∗(1)
m−2(t), (2.28)

F ∗
m1(t) = B∗(2)

m (t) + 0.5B
∗(2)
m−1(t)− 0.25B

∗(1)
m−2(t), (2.29)

where the superscript “(1)" and “(2)" on Bn and Bm represent different Brownian motions. The fac-

tors are thus both serially and cross–sectionally dependent. Letting β0(t) = 0, which corresponds

to the empirically observed value for most assets, we generate Rn and R∗
m using the following

equations:

Rn(t) = β1Fn1(t) + β2Fn2(t) + εn(t), (2.30)

R∗
m(t) = β∗

1F
∗
m1(t) + β∗

2F
∗
m2(t) + ε∗m(t). (2.31)

Under H0, we set β1 = β∗
1 and β2 = β∗

2 . Under HA, the data generation process for the second

sample is modified by setting β1 6= β∗
1 and β2 6= β∗

2 . To obtain relevant values of these parameters,

three ETF’s: XLB, XLK and XLU are selected to be used in model (2.24). Crude oil prices are

used as the additional factor for the comparison between the during and after the crisis periods. For

each of the three ETFs, we generate 328 market factor curves MG
n , 328 crude oil factor curves CG

n

and 328 error curves ε̂Gn such that they have approximately the same magnitude as the empirical

curves Mn, Cn and ε̂n for the period during the crisis, where ε̂n is the residual function that can

be calculated from the data. Analogously, 503 MG
n , CG

n and ε̂Gn curves are generated for the period

after the crisis. To assess the the empirical size of test, we generate the ETF curves as

RG
n = β̂0(t) + β̂ave

1 MG
n (t) + β̂ave

2 CG
n (t) + ε̂Gn (t) (2.32)

for each period, where β̂ave
1 and β̂ave

2 are the average of the coefficient estimates for the two periods.

To assess the empirical power, we use the data generation process
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RG
n = β̂0(t) + β̂1M

G
n (t) + β̂2C

G
n (t) + ε̂Gn (t) (2.33)

for each period. We replicate this procedure R = 3000 times and obtain Monte Carlo empirical

size and power. The simulation results exhibited in Table 2.11, demonstrate that the test exhibits

excellent calibration size and has a very high power in practically relevant settings.

The empirical size evaluates the performance of a test when the null hypothesis is true, i.e. if

there is no difference between the two samples. To illustrate, if we set the significance level at 5%,

then for a perfect test we expect acceptance of the null in 95% of the simulation runs and rejection

in 5% of them. This is never the case in practice. The actual percentage of rejections of the null is

called the empirical size or the empirical type I error. Our test has a slight tendency to over reject,

i.e. the probability of a type I error is generally slightly higher than the nominal level of the test.

Due to the slightly overinflated empirical size, when interpreting the P–values, one may expect

that the true P–value may be slightly larger that the computed P–value. This distortion is, however,

very small. For example, if a computed P-value is 0.045, the actual P–value can be slightly above

0.05. It must, however, be kept in mind that the traditional cut–off percentages, like 5% or 10%,

are merely conventions; there is practically no difference between the statistical interpretation of

a P-value of 4.5% or 5.5%. Comparing this test to other tests for complex data structures, the

empirical size is remarkably close to the nominal size, and the computed P–values can be trusted.

The power of the test evaluates its performance if an alternative is true. In our case, power is

evaluated for data simulated in such a way that the regression coefficients are different in the two

samples. Power is the probability of rejecting the null hypothesis if an alternative is true. It depends

on the alternative and on the significance level used to perform the test. If the difference between

the samples is smaller, power will be smaller. If the significance level decreases, it becomes more

and more difficult for the test to reject the null, so the power declines. We would like the power to

be as close to 100% as possible. This is never the case in theory, because there is always a positive

probability of accepting the null due to chance. If only a finite number of simulations are used to

assess power, one can observe empirical power of 100% (the null is not accepted in any simulation
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run). Our test has excellent power. If it is applied at the usual significance level of 5%, one can be

almost certain to detect the difference between the two samples, if it exists.

2.6 Concluding Remarks

We propose functional factor models to study the relationship between the cumulative intraday

return curves of individual stocks and factor curves that may drive price movement. To examine

whether the betas change from period to period, we develop a statistical test. Based on general as-

sumptions, we prove that the asymptotic distribution of the test statistic is a Chi-square distribution.

We also prove theoretically that the power of the test approaches 100% asymptotically.

We apply the test to empirically investigate whether asymmetric betas exist for downward

versus upward market conditions. We use the 30 stocks of the Dow Jones Industrial Average index

and the Select Sector ETFs as the base assets. The tests on the one factor model show mixed

results. For some assets betas are time varying and market betas of most assets do not increase

during the financial crisis. However, most of the assets have lower market betas after the financial

crisis.

When crude oil prices is added in the model, some assets exhibit asymmetric crude oil factor

betas. Interestingly, the crude oil betas are not time varying for energy stocks and XLE, the energy

ETF. This means that these assets are very strongly tired to the underlying commodity, and this

connection is not influenced by the trends in the factor. We further examine the betas for the “Bull”

and “Bear” crude oil price periods and the results also show that some assets have asymmetric crude

oil factor betas.

A comparison of the results of the functional analysis model to scalar models using point-

to-point returns show that the different return measures contain different information about the

relationships between individual assets and the market factors. Considering the nature of the return

curves, the models we propose and the results of our analysis are more useful for day traders and

other higher frequency traders.
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Table 2.1: List of Tickers

This table presents the tickers of the assets used in this study.

Ticker Company/Sector Ticker Company/Sector

Panel A: Individual Stocks

AA Alcoa Inc. AXP American Express Company

BA Boeing Co. BAC Bank of America Corp.

CAT Caterpillar CSCO Cisco Systems Inc.

CVX Chevron Corporation DD E.I. Du Pont De Nemours & Co.

DIS Walt Disney Co. GE General Electric Company

HD Home Depot Inc. HPQ Hewlett-Packard Company

IBM International Business Machines Corp. INTC Intel Corporation

JNJ Johnson & Johnson JPM JPMorgan Chase & Co.

KFT Kraft Foods Inc. KO The Coca-Cola Co.

MCD McDonald’s Corporation MMM 3M Co.

MRK Merck & Co., Inc. MSFT Microsoft Corporation

PFE Pfizer PG Procter & Gamble Co.

T AT&T Inc. TRV Travelers Companies Inc.

UTX United Technologies Co. VZ Verizon Communications Inc.

WMT Wal-Mart Stores, Inc. XOM Exxon Mobil Corporation

Panel B: Sector ETFs

XLY Consumer Discretionary XLP Consumer Staples

XLE Energy XLF Financials

XLV Health Care XLI Industrials

XLB Materials XLK Technology

XLU Utilities
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Table 2.2: Asymmetric Beta around the Financial Crisis (One Factor) – ETFs

This table presents the estimation results for the model: Rn(t) = β0(t) + βMiMn(t) + εn(t) for the sector ETFs.

Here, i is the ith periods. 1, 2, and 3 refer to the Before, During and After financial crisis periods, respectively. The

periods are defined as: Before (06/13/2006 – 09/27/2007), During (11/01/2007 – 02/27/2009), and After (01/04/2010

– 12/30/2011) the financial crisis. SEMi refers to the standard error of the estimates. Pi,j is the P-value of the

statistical test with H0: βMi = βMj . The superscripts ∗∗∗,∗∗ ,∗, and ⋆ indicate significant at 0.1%, 1%, 5% and 10%,

respectively.

Symbol β̂M1 SEM1 β̂M2 SEM2 β̂M3 SEM3 P1,2 P2,3 P1,3

XLB 0.87 0.07 0.76 0.05 0.61 0.04 0.21 0.02∗ 0.00∗∗∗

XLE 0.78 0.09 0.81 0.07 0.65 0.04 0.78 0.04∗ 0.17

XLF 0.62 0.10 0.83 0.12 0.62 0.04 0.17 0.10 0.97

XLI 0.68 0.07 0.66 0.05 0.62 0.04 0.83 0.56 0.48

XLK 0.86 0.08 0.61 0.05 0.47 0.03 0.01∗∗ 0.02∗ 0.00∗∗∗

XLP 0.37 0.05 0.30 0.06 0.23 0.03 0.35 0.23 0.01∗∗

XLU 0.49 0.07 0.45 0.07 0.28 0.03 0.66 0.03∗ 0.00∗∗∗

XLV 0.45 0.06 0.38 0.05 0.38 0.03 0.38 0.98 0.30

XLY 0.64 0.07 0.66 0.09 0.49 0.04 0.89 0.08⋆ 0.05∗
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Table 2.3: Asymmetric Beta around the Financial Crisis (One Factor) – Stocks

This table presents the estimation results for the model: Rn(t) = β0(t) + βMiMn(t) + εn(t) for the 30 Stocks. Here,

i is the ith periods. 1, 2, and 3 refer to the Before, During and After financial crisis periods, respectively. The periods

are defined as: Before (06/13/2006 – 09/27/2007), During (11/01/2007 – 02/27/2009), and After (01/04/2010 –

12/30/2011) the financial crisis. Pi,j is the P-value of the statistical test with H0: βMi = βMj . The superscripts
∗∗∗,∗∗ ,∗, and ⋆ indicate significant at 0.1%, 1%, 5% and 10%, respectively.

Symbol β̂M1 SEM1 β̂M2 SEM2 β̂M3 SEM3 P1,2 P2,3 P1,3

AA 0.94 0.12 0.83 0.14 0.71 0.06 0.55 0.42 0.09⋆

AXP 0.76 0.10 0.99 0.09 0.56 0.06 0.08⋆ 0.00∗∗∗ 0.08⋆

BA 0.77 0.10 0.51 0.09 0.66 0.04 0.05⋆ 0.10 0.33

BAC 0.41 0.09 0.90 0.21 0.56 0.09 0.03∗ 0.14 0.23

CAT 0.79 0.10 0.65 0.07 0.73 0.06 0.24 0.42 0.55

CSCO 0.68 0.10 0.58 0.07 0.52 0.04 0.45 0.41 0.14

CVX 0.46 0.09 0.62 0.05 0.46 0.04 0.11 0.01∗∗ 0.99

DD 0.69 0.15 0.59 0.06 0.58 0.05 0.55 0.94 0.51

DIS 0.61 0.12 0.76 0.06 0.56 0.04 0.29 0.01∗∗ 0.68

GE 0.49 0.05 0.64 0.14 0.62 0.05 0.29 0.89 0.05⋆

HD 0.68 0.09 0.62 0.09 0.37 0.06 0.64 0.01∗∗ 0.00∗∗∗

HPQ 0.68 0.08 0.47 0.07 0.57 0.06 0.04∗ 0.25 0.26

IBM 0.39 0.08 0.49 0.06 0.38 0.03 0.31 0.10 0.94

INTC 0.74 0.08 0.51 0.08 0.41 0.04 0.04∗ 0.26 0.00∗∗∗

JNJ 0.26 0.05 0.24 0.05 0.28 0.04 0.84 0.62 0.79

JPM 0.65 0.12 0.60 0.20 0.56 0.05 0.83 0.83 0.46

KFT 0.41 0.11 0.21 0.05 0.23 0.05 0.10 0.84 0.14

KO 0.23 0.07 0.29 0.06 0.28 0.04 0.43 0.82 0.50

MCD 0.52 0.11 0.35 0.05 0.19 0.03 0.17 0.00∗∗∗ 0.00∗∗∗

MMM 0.56 0.09 0.36 0.06 0.58 0.03 0.06⋆ 0.00∗∗∗ 0.84

MRK 0.59 0.07 0.42 0.06 0.41 0.04 0.08⋆ 0.85 0.03∗

MSFT 0.44 0.06 0.52 0.06 0.37 0.04 0.36 0.04∗ 0.34

PFE 0.60 0.08 0.35 0.06 0.36 0.04 0.01∗∗ 0.88 0.01∗∗

PG 0.18 0.11 0.31 0.04 0.20 0.03 0.26 0.03∗ 0.87

T 0.47 0.07 0.61 0.06 0.29 0.03 0.13 0.00∗∗∗ 0.02∗

TRV 0.49 0.14 0.32 0.14 0.30 0.04 0.37 0.90 0.18

UTX 0.72 0.09 0.54 0.06 0.56 0.04 0.08⋆ 0.76 0.09⋆

VZ 0.48 0.11 0.56 0.06 0.22 0.03 0.53 0.00∗∗∗ 0.02∗

WMT 0.54 0.10 0.31 0.07 0.17 0.04 0.07⋆ 0.08⋆ 0.00∗∗∗

XOM 0.50 0.09 0.47 0.07 0.41 0.04 0.75 0.47 0.33
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Table 2.4: Asymmetric Beta around the Financial Crisis (Two Factors) – ETFs

This table presents the estimation results for the model: Rn(t) = β0(t) + βMiMn(t) + βOiCLn(t) + εn(t) for the sector ETFs. Here, i is the ith periods. 1, 2,

and 3 refer to the Before, During and After financial crisis periods, respectively. The periods are defined as: Before (06/13/2006 – 09/27/2007), During

(11/01/2007 – 02/27/2009), and After (01/04/2010 – 12/30/2011) the financial crisis. SE refers the standard error. Pi,j is the P-value of the statistical test with

H0: βi = βj . The superscripts ∗∗∗,∗∗ ,∗, and ⋆ indicate significant at 0.1%, 1%, 5% and 10%, respectively.

Symbol β̂M1 SEM1 β̂O1 SEO1 β̂M2 SEM2 β̂O2 SEO2 β̂M3 SEM3 β̂O3 SEO3 P1,2 P2,3 P1,3

XLB 0.86 0.07 0.06 0.03 0.68 0.05 0.21 0.04 0.47 0.04 0.34 0.04 0.01∗∗ 0.00∗∗∗ 0.00∗∗∗

XLE 0.71 0.07 0.45 0.04 0.65 0.06 0.44 0.05 0.46 0.03 0.44 0.03 0.76 0.01∗∗ 0.00∗∗∗

XLF 0.62 0.10 -0.01 0.02 0.77 0.12 0.16 0.07 0.51 0.04 0.27 0.04 0.01∗∗ 0.13 0.00∗∗∗

XLI 0.68 0.07 0.01 0.02 0.63 0.05 0.07 0.03 0.54 0.04 0.21 0.04 0.15 0.01∗∗ 0.00∗∗∗

XLK 0.86 0.08 -0.03 0.02 0.56 0.06 0.12 0.04 0.40 0.03 0.17 0.03 0.00∗∗∗ 0.02∗ 0.00∗∗∗

XLP 0.38 0.05 -0.04 0.02 0.28 0.06 0.07 0.04 0.19 0.03 0.09 0.02 0.02∗ 0.42 0.00∗∗∗

XLU 0.49 0.07 0.00 0.03 0.41 0.07 0.09 0.03 0.24 0.03 0.10 0.03 0.07⋆ 0.07⋆ 0.00∗∗∗

XLV 0.46 0.06 -0.04 0.01 0.37 0.06 0.02 0.03 0.32 0.03 0.13 0.03 0.19 0.05∗ 0.00∗∗∗

XLY 0.65 0.07 -0.04 0.02 0.64 0.09 0.06 0.06 0.40 0.04 0.20 0.04 0.19 0.05∗ 0.00∗∗∗
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Table 2.5: Asymmetric Beta around the Financial Crisis (Two Factors) -Stocks

This table presents the estimation results for the model: Rn(t) = β0(t) + βMiMn(t) + βOiCLn(t) + εn(t) for the sector ETFs. Here, i is the ith periods. 1, 2,

and 3 refer to the Before, During and After financial crisis periods, respectively. The periods are defined as: Before (06/13/2006 – 09/27/2007), During

(11/01/2007 – 02/27/2009), and After (01/04/2010 – 12/30/2011) the financial crisis. SE refers the standard error. Pi,j is the P-value of the statistical test with

H0: βi = βj . The superscripts ∗∗∗,∗∗ ,∗, and ⋆ indicate significant at 0.1%, 1%, 5% and 10%, respectively.

Symbol β̂M1 SEM1 β̂O1 SEO1 β̂M2 SEM2 β̂O2 SEO2 β̂M3 SEM3 β̂O3 SEO3 P1,2 P2,3 P1,3

AA 0.93 0.12 0.18 0.05 0.71 0.12 0.43 0.07 0.53 0.06 0.48 0.06 0.01∗∗ 0.40 0.00∗∗∗

AXP 0.76 0.10 0.01 0.03 0.94 0.09 0.16 0.07 0.46 0.06 0.26 0.05 0.04∗ 0.00∗∗∗ 0.00∗∗∗

BA 0.77 0.10 0.03 0.04 0.47 0.09 0.14 0.06 0.57 0.05 0.25 0.04 0.07⋆ 0.02∗ 0.00∗∗∗

BAC 0.41 0.10 0.00 0.03 0.80 0.21 0.36 0.11 0.38 0.09 0.48 0.07 0.00∗∗∗ 0.17 0.00∗∗∗

CAT 0.79 0.10 0.09 0.04 0.59 0.07 0.23 0.05 0.58 0.06 0.38 0.05 0.04∗ 0.06⋆ 0.00∗∗∗

CSCO 0.68 0.10 0.03 0.04 0.55 0.07 0.14 0.05 0.43 0.04 0.23 0.05 0.19 0.30 0.00∗∗∗

CVX 0.44 0.08 0.40 0.04 0.53 0.05 0.33 0.04 0.33 0.03 0.33 0.03 0.29 0.00∗∗∗ 0.05⋆

DD 0.69 0.15 -0.01 0.03 0.55 0.06 0.15 0.04 0.48 0.05 0.29 0.04 0.01∗∗ 0.08⋆ 0.00∗∗∗

DIS 0.61 0.12 -0.04 0.04 0.72 0.06 0.12 0.04 0.52 0.04 0.11 0.04 0.01∗∗ 0.02∗ 0.01∗∗

GE 0.49 0.05 -0.02 0.03 0.60 0.14 0.15 0.06 0.53 0.05 0.25 0.04 0.00∗∗∗ 0.38 0.00∗∗∗

HD 0.67 0.09 0.01 0.04 0.60 0.09 0.06 0.06 0.28 0.06 0.22 0.05 0.69 0.01∗∗ 0.00∗∗∗

HPQ 0.68 0.08 0.01 0.04 0.43 0.07 0.14 0.05 0.51 0.06 0.15 0.05 0.02∗ 0.57 0.04∗

IBM 0.39 0.09 -0.01 0.03 0.45 0.06 0.13 0.04 0.33 0.04 0.14 0.03 0.00∗∗∗ 0.13 0.00∗∗∗

INTC 0.74 0.08 -0.04 0.04 0.47 0.08 0.14 0.06 0.35 0.05 0.17 0.05 0.01∗∗ 0.37 0.00∗∗∗

JNJ 0.26 0.05 -0.04 0.02 0.24 0.05 0.03 0.02 0.24 0.04 0.10 0.03 0.09⋆ 0.10 0.00∗∗∗

JPM 0.65 0.12 -0.02 0.03 0.56 0.21 0.17 0.09 0.42 0.05 0.36 0.05 0.14 0.19 0.00∗∗∗

KFT 0.41 0.11 -0.01 0.04 0.19 0.05 0.07 0.03 0.19 0.06 0.11 0.03 0.05⋆ 0.78 0.01∗∗

KO 0.23 0.07 -0.05 0.03 0.29 0.06 0.02 0.03 0.25 0.04 0.08 0.03 0.16 0.38 0.00∗∗∗

MCD 0.52 0.11 -0.01 0.03 0.34 0.05 0.03 0.03 0.14 0.03 0.12 0.03 0.28 0.00∗∗∗ 0.00∗∗∗

MMM 0.56 0.09 0.01 0.04 0.34 0.06 0.06 0.04 0.51 0.03 0.19 0.04 0.10 0.00∗∗∗ 0.00∗∗∗

MRK 0.59 0.07 -0.07 0.04 0.41 0.06 0.05 0.04 0.35 0.04 0.17 0.04 0.04∗ 0.12 0.00∗∗∗

MSFT 0.44 0.06 0.02 0.03 0.49 0.06 0.08 0.04 0.31 0.04 0.16 0.05 0.31 0.05⋆ 0.01∗∗

PFE 0.60 0.08 -0.06 0.03 0.32 0.07 0.09 0.04 0.30 0.04 0.16 0.04 0.00∗∗∗ 0.41 0.00∗∗∗

PG 0.18 0.11 -0.04 0.03 0.30 0.04 0.03 0.03 0.19 0.04 0.03 0.03 0.06⋆ 0.08⋆ 0.14

T 0.47 0.07 -0.03 0.04 0.57 0.06 0.17 0.05 0.25 0.03 0.09 0.03 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

TRV 0.49 0.14 0.02 0.04 0.29 0.14 0.09 0.07 0.25 0.04 0.14 0.03 0.43 0.81 0.01∗∗

UTX 0.72 0.09 0.01 0.04 0.51 0.06 0.10 0.04 0.51 0.04 0.15 0.04 0.04∗ 0.71 0.01∗∗

VZ 0.48 0.11 -0.01 0.04 0.52 0.07 0.12 0.04 0.18 0.04 0.10 0.03 0.07⋆ 0.00∗∗∗ 0.01∗∗

WMT 0.54 0.10 -0.08 0.03 0.31 0.07 0.01 0.04 0.16 0.05 0.04 0.03 0.04∗ 0.19 0.00∗∗∗

XOM 0.49 0.08 0.38 0.03 0.39 0.07 0.28 0.04 0.31 0.04 0.27 0.03 0.04∗ 0.46 0.00∗∗∗
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Table 2.6: Bull vs. Bear Oil Price Periods: ETFs

This table presents the estimation results for the ETFs. The periods are defined as: Bull oil price (05/01/2007 –

06/30/2008), and Bear oil price (07/01/2008 – 01/30/2009). The number of sample days for the two 294 and 145

days, respectively. P1,2 is the P-value of the statistical test with H0: β
1
= β

2
. ∗∗∗,∗∗ ,∗, and ⋆ indicate significant at

0.1%, 1%, 5% and 10%, respectively.

Symbol β̂M1 SEM1 β̂O1 SEO1 β̂M2 SEM2 β̂O2 SEO2 P1,2

Panel A: Single Factor Model

XLB 0.73 0.06 0.77 0.06 0.64

XLE 0.67 0.06 0.82 0.08 0.15

XLF 0.80 0.10 0.77 0.15 0.86

XLI 0.60 0.07 0.65 0.06 0.55

XLK 0.68 0.07 0.59 0.07 0.35

XLP 0.26 0.04 0.30 0.08 0.67

XLU 0.31 0.07 0.49 0.09 0.11

XLV 0.38 0.06 0.37 0.07 0.93

XLY 0.65 0.07 0.64 0.11 0.96

Panel B: Two Factor Model

XLB 0.73 0.07 0.14 0.04 0.68 0.06 0.24 0.06 0.43

XLE 0.66 0.05 0.46 0.04 0.64 0.08 0.47 0.07 0.95

XLF 0.80 0.10 -0.10 0.06 0.67 0.16 0.24 0.10 0.01∗∗

XLI 0.60 0.07 -0.02 0.03 0.61 0.07 0.10 0.04 0.01∗∗

XLK 0.68 0.07 -0.03 0.04 0.52 0.07 0.18 0.06 0.01∗∗

XLP 0.26 0.04 -0.04 0.04 0.26 0.08 0.10 0.05 0.03∗

XLU 0.31 0.07 -0.01 0.04 0.45 0.09 0.11 0.04 0.06⋆

XLV 0.38 0.06 -0.09 0.03 0.34 0.07 0.07 0.05 0.01∗∗

XLY 0.65 0.07 -0.07 0.04 0.60 0.12 0.10 0.08 0.11
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Table 2.7: Bull vs. Bear Oil Price Periods: Individual Stocks

This table presents the estimation results for the individual stocks. The periods are defined as: Bull oil price

(05/01/2007 – 06/30/2008), and Bear oil price (07/01/2008 – 01/30/2009). The number of sample days for the two

294 and 145 days, respectively. P1,2 is the P-value of the statistical test with H0: β
1
= β

2
. ∗∗∗,∗∗ ,∗, and ⋆ indicate

significant at 0.1%, 1%, 5% and 10%, respectively. To save space, only the significant results are reported.

Symbol β̂M1 SEM1 β̂O1 SEO1 β̂M2 SEM2 β̂O2 SEO2 P1,2

Panel A: Single Factor Model

CVX 0.50 0.06 0.65 0.07 0.09⋆

DIS 0.50 0.07 0.83 0.08 0.00∗∗∗

HD 0.80 0.13 0.51 0.10 0.08⋆

INTC 0.72 0.07 0.43 0.10 0.01∗∗

MMM 0.53 0.07 0.26 0.07 0.01∗∗

PFE 0.48 0.06 0.30 0.08 0.07⋆

PG 0.15 0.06 0.34 0.05 0.02∗

Panel B: Two Factor Model

AA 0.93 0.08 0.23 0.07 0.57 0.15 0.46 0.09 0.03∗

AXP 1.07 0.12 -0.08 0.06 0.81 0.12 0.26 0.10 0.01∗∗

BAC 0.63 0.14 -0.07 0.07 0.61 0.24 0.45 0.15 0.00∗∗∗

CAT 0.66 0.08 0.07 0.05 0.50 0.10 0.25 0.06 0.05⋆

CSCO 0.58 0.08 -0.04 0.06 0.48 0.09 0.21 0.07 0.01∗∗

DIS 0.50 0.07 -0.03 0.04 0.78 0.08 0.19 0.06 0.00∗∗∗

GE 0.63 0.05 -0.08 0.04 0.51 0.18 0.24 0.09 0.00∗∗∗

HD 0.80 0.13 -0.08 0.06 0.47 0.11 0.13 0.07 0.04∗

HPQ 0.60 0.07 -0.00 0.06 0.38 0.09 0.19 0.07 0.03∗

IBM 0.49 0.08 -0.03 0.04 0.39 0.07 0.17 0.05 0.01∗∗

INTC 0.72 0.07 -0.05 0.05 0.37 0.10 0.20 0.07 0.00∗∗∗

JNJ 0.19 0.04 -0.07 0.03 0.24 0.07 0.05 0.03 0.01∗∗

JPM 0.72 0.13 -0.13 0.07 0.41 0.28 0.27 0.13 0.02∗

KFT 0.34 0.07 -0.01 0.04 0.15 0.06 0.12 0.04 0.03∗

KO 0.23 0.06 -0.10 0.04 0.29 0.07 0.05 0.05 0.04∗

MMM 0.53 0.07 -0.05 0.03 0.23 0.07 0.11 0.05 0.00∗∗∗

MRK 0.38 0.07 -0.07 0.05 0.41 0.08 0.13 0.06 0.03∗

MSFT 0.47 0.06 -0.04 0.04 0.50 0.09 0.14 0.06 0.01∗∗

PFE 0.48 0.05 -0.10 0.03 0.25 0.08 0.17 0.05 0.00∗∗∗

PG 0.14 0.06 -0.07 0.03 0.32 0.05 0.04 0.04 0.00∗∗∗

T 0.58 0.07 -0.05 0.04 0.54 0.08 0.23 0.07 0.00∗∗∗

VZ 0.54 0.09 -0.05 0.05 0.48 0.08 0.17 0.06 0.01∗∗

WMT 0.35 0.08 -0.10 0.04 0.24 0.09 0.04 0.05 0.08⋆
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Table 2.8: Two Sample Test Results – ETFs -Point to Point

This table presents the estimation results for the point to point return series of the ETFs. The periods are defined as:

Before (06/13/2006 – 09/27/2007), During (11/01/2007 – 02/27/2009), and After (01/04/2010 – 12/30/2011) the

financial crisis. The number of sample days for the three periods are 326, 328 and 503 days, respectively. Pi,j is the

P-value of the statistical test with H0: βi = βj . ∗∗∗,∗∗ ,∗, and ⋆ indicate significant at 0.1%, 1%, 5% and 10%,

respectively.

Symbol β̂M1 SEM1 β̂M2 SEM2 β̂M3 SEM3 P1,2 P2,3 P1,3

Panel A: Open to Close Return

XLB 0.91 0.07 0.88 0.03 0.83 0.04 0.66 0.39 0.34

XLE 0.94 0.07 0.99 0.06 0.82 0.04 0.62 0.02∗ 0.13

XLF 0.86 0.07 1.19 0.10 0.92 0.04 0.01∗∗ 0.01∗∗ 0.53

XLI 0.79 0.05 0.76 0.03 0.76 0.03 0.56 1.00 0.57

XLK 0.89 0.06 0.74 0.03 0.60 0.03 0.02∗ 0.00∗∗∗ 0.00∗∗∗

XLP 0.50 0.03 0.43 0.04 0.35 0.02 0.19 0.09⋆ 0.00∗∗∗

XLU 0.74 0.07 0.57 0.04 0.41 0.03 0.04∗ 0.00∗∗∗ 0.00∗∗∗

XLV 0.57 0.04 0.54 0.04 0.50 0.03 0.51 0.46 0.13

XLY 0.79 0.05 0.83 0.07 0.67 0.04 0.56 0.02∗ 0.04∗

Panel B: Close to Close Return

XLB 1.23 0.05 1.08 0.03 1.25 0.02 0.01∗∗ 0.00∗∗∗ 0.76

XLE 1.11 0.06 1.27 0.07 1.25 0.03 0.08⋆ 0.78 0.04∗

XLF 1.22 0.04 1.57 0.10 1.35 0.03 0.00∗∗∗ 0.03∗ 0.02∗

XLI 1.02 0.03 0.92 0.02 1.15 0.01 0.01∗∗ 0.00∗∗∗ 0.00∗∗∗

XLK 1.02 0.04 0.93 0.02 0.94 0.01 0.04∗ 0.59 0.07⋆

XLP 0.68 0.02 0.57 0.03 0.57 0.01 0.00∗∗∗ 0.96 0.00∗∗∗

XLU 0.91 0.06 0.72 0.05 0.64 0.02 0.02∗ 0.08⋆ 0.00∗∗∗

XLV 0.73 0.03 0.66 0.03 0.76 0.02 0.06⋆ 0.00∗∗∗ 0.42

XLY 1.05 0.03 1.01 0.03 1.02 0.02 0.29 0.77 0.32
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Table 2.9: Two sample test for the comparison two Factor Models -ETFs- Point to Point

This table presents the estimation results for the point to point return series of the ETFs. The periods are defined as: Before (06/13/2006 – 09/27/2007), During

(11/01/2007 – 02/27/2009), and After (01/04/2010 – 12/30/2011) the financial crisis. The number of sample days for the three periods are 326, 328 and 503 days,

respectively. Pi,j is the P-value of the statistical test with H0: βi = βj . ∗∗∗,∗∗ ,∗, and ⋆ indicate significant at 0.1%, 1%, 5% and 10%, respectively.

Symbol β̂M1 SEM1 β̂O1 SEO1 β̂M2 SEM2 β̂O2 SEO2 β̂M3 SEM3 β̂O3 SEO3 P1,2 P2,3 P1,3

Panel A: Open to Close Return

XLB 0.90 0.07 0.05 0.03 0.83 0.03 0.15 0.04 0.70 0.04 0.27 0.04 0.10 0.02∗ 0.00∗∗∗

XLE 0.87 0.07 0.39 0.04 0.88 0.06 0.33 0.05 0.65 0.03 0.34 0.03 0.67 0.00∗∗∗ 0.00∗∗∗

XLF 0.87 0.07 -0.03 0.02 1.16 0.10 0.10 0.06 0.83 0.05 0.17 0.04 0.00∗∗∗ 0.02∗ 0.00∗∗∗

XLI 0.79 0.05 0.00 0.02 0.75 0.03 0.02 0.03 0.69 0.04 0.13 0.03 0.75 0.02∗ 0.00∗∗∗

XLK 0.90 0.06 -0.04 0.02 0.72 0.03 0.06 0.03 0.55 0.03 0.10 0.03 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

XLP 0.51 0.03 -0.04 0.02 0.43 0.04 0.02 0.03 0.33 0.03 0.04 0.02 0.14 0.15 0.00∗∗∗

XLU 0.74 0.07 0.00 0.03 0.56 0.04 0.04 0.03 0.38 0.03 0.07 0.03 0.06⋆ 0.00∗∗∗ 0.00∗∗∗

XLV 0.58 0.04 -0.04 0.01 0.55 0.04 -0.03 0.03 0.46 0.03 0.08 0.03 0.79 0.01∗∗ 0.00∗∗∗

XLY 0.80 0.05 -0.05 0.02 0.83 0.07 0.00 0.05 0.60 0.04 0.13 0.04 0.34 0.02∗ 0.00∗∗∗

Panel B: Close to Close Return

XLB 1.22 0.06 0.05 0.02 1.01 0.03 0.12 0.03 1.19 0.03 0.07 0.02 0.00∗∗∗ 0.00∗∗∗ 0.86

XLE 1.04 0.06 0.40 0.03 1.08 0.07 0.35 0.04 1.06 0.03 0.20 0.02 0.58 0.00∗∗∗ 0.00∗∗∗

XLF 1.23 0.05 -0.06 0.02 1.65 0.10 -0.15 0.04 1.40 0.04 -0.05 0.02 0.00∗∗∗ 0.01∗∗ 0.00∗∗∗

XLI 1.02 0.03 -0.02 0.01 0.93 0.02 -0.02 0.02 1.16 0.02 -0.01 0.01 0.05⋆ 0.00∗∗∗ 0.00∗∗∗

XLK 1.03 0.04 -0.06 0.01 0.93 0.02 0.00 0.01 0.97 0.02 -0.03 0.01 0.01∗∗ 0.12 0.35

XLP 0.68 0.02 -0.04 0.01 0.60 0.03 -0.05 0.01 0.59 0.02 -0.02 0.01 0.03∗ 0.31 0.00∗∗∗

XLU 0.91 0.07 0.00 0.02 0.72 0.05 0.01 0.03 0.62 0.02 0.01 0.01 0.06 0.17 0.00∗∗∗

XLV 0.74 0.03 -0.05 0.01 0.69 0.03 -0.06 0.02 0.78 0.02 -0.02 0.01 0.31 0.00∗∗∗ 0.03∗

XLY 1.06 0.03 -0.05 0.01 1.04 0.03 -0.06 0.02 1.06 0.02 -0.04 0.01 0.77 0.61 0.95
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Table 2.10: Bull vs. Bear Oil Price Periods: ETFs -Point to Point

This table presents the estimation results for the point to point return series of the ETFs. The periods are defined as:

Bull oil price (05/01/2007 – 06/27/2008), and Bear oil price (07/01/2008 – 01/30/2009). The number of sample days

for the two 294 and 145 days, respectively. P1,2 is the P-value of the statistical test with H0: β
1
= β

2
. ∗∗∗,∗∗ ,∗, and

⋆ indicate significant at 0.1%, 1%, 5% and 10%, respectively. To save space, only the significant results are reported.

Symbol β̂M1 SEM1 β̂O1 SEO1 β̂M2 SEM2 β̂O2 SEO2 P1,2

Panel A: Single Factor Model–OC

No Significant Estimate

Panel B: One Factor Model–CC

XLB 1.17 0.05 1.07 0.03 0.06⋆

XLE 0.99 0.05 1.34 0.07 0.00∗∗∗

XLF 1.50 0.04 1.54 0.12 0.79

XLI 0.99 0.02 0.90 0.02 0.01∗∗

XLK 1.00 0.03 0.91 0.03 0.03∗

Panel C: Two Factor Model–OC

XLF 1.12 0.07 -0.10 0.05 1.10 0.12 0.16 0.09 0.03∗

XLK 0.80 0.04 -0.03 0.03 0.69 0.04 0.08 0.04 0.05⋆

Panel D: Two Factor Model–CC

XLB 1.17 0.05 0.19 0.03 0.99 0.04 0.12 0.03 0.00∗∗∗

XLI 0.99 0.02 -0.01 0.01 0.92 0.03 -0.03 0.03 0.05⋆

XLK 1.00 0.03 -0.03 0.02 0.90 0.03 0.01 0.01 0.04∗

XLV 0.60 0.03 -0.06 0.02 0.71 0.04 -0.06 0.02 0.09⋆

XLY 1.03 0.03 -0.11 0.02 1.03 0.04 -0.04 0.03 0.06⋆
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Table 2.11: Monte Carlo Simulation Results of the test statistics TM,N

This table presents the Monte Carlo Simulation Results using three ETFs as examples.

Sig. Level XLB XLK XLU

Panel A: Empirical Size

10% 11.3% 9.8% 11.3%

5% 5.9% 5.6% 5.4%

2.5% 2.8% 2.7% 2.6%

1% 1.0% 1.2% 1.2%

Panel B: Empirical Power

10% 100.0% 100% 97.4%

5% 100.0% 99.8% 94.4%

2.5% 100.0% 99.7% 90.8%

1% 100.0% 99.2% 85.3%
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Figure 2.1: Ten Consecutive CIDRs on JP Morgan Chase Stock. This figure shows ten consecutive days

CIDR on the JP Morgan Chase Stock. While each curve is a realization of a non-stationary stochastic

process, the sequence of curves can be assumed to be a realization of a stationary time series. The curves

have approximately the same distribution as the Brownian motion.

41



2.7 Proofs

2.7.1 Proof of Theorem 5

Proof. Since we assume that the two samples are independent, the limits in (2.20) and (2.21) are

independent. Combining (2.20), (2.21) and (2.18), we obtain

√
N +M(β̂ − β̂

∗
) =

√
N +M

N

√
N(β̂ − β)−

√
N +M

M

√
M(β̂

∗ − β)

d→ 1√
θ
F−1W +

1√
1− θ

(F∗)−1W∗. (2.34)

Define

D̂N,M =
N +M

N
F̂−1Γ̂F̂−1 +

N +M

M
(F̂∗)−1Γ̂

∗
(F̂∗)−1

It was shown in [2], Lemma 4, that F̂
a.s.→ F. By assumption, Γ̂

P→ Γ. With analogous relations for

the second sample, we thus obtain

D̂N,M
P→ 1

θ
F−1ΓF−1 +

1

1− θ
(F∗)−1Γ∗(F∗)−1. (2.35)

Observe that W and W∗ are two p−dimensional random vectors satisfying



W

W∗


 ∼ N

(
0,




Γ 0

0 Γ∗



)
. (2.36)

Since the matrices F and F∗ defined by (2.19) are nonsingular, we can conclude that

1√
θ
F−1W +

1√
1− θ

(F∗)−1W∗ ∼ N
(
0,

1

θ
F−1ΓF−1 +

1

1− θ
(F∗)−1Γ∗(F∗)−1

)
, (2.37)

where the variance matrix of 1√
θ
F−1W + 1√

1−θ
(F∗)−1W∗ has rank p, also Γ and Γ∗ are assumed

to be full rank.

Now Let

Yp :=
1√
θ
F−1W +

1√
1− θ

(F∗)−1W∗
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and

Σp :=
1

θ
F−1ΓF−1 +

1

1− θ
(F∗)−1Γ∗(F∗)−1,

where Σp is nonsingular. Then (2.37) becomes Yp ∼ N(0,Σp). This follows from the identity

YT
p Σ

−1
p Yp ∼ χ2(p). By Slutsky’s Theorem, the claim of the theorem follows by combining (2.34)

and (2.35).

2.7.2 Proof of Theorem 6

Proof. Let

BN,M :=

√
N +M

N

√
N(β̂ − β)−

√
N +M

M

√
M(β̂

∗ − β∗),

B :=
1√
θ
F−1W +

1√
1− θ

(F∗)−1W∗,

D :=
1

θ
F−1ΓF−1 +

1

1− θ
(F∗)−1Γ∗(F∗)−1,

then by (2.34) and (2.37), BN,M
d→ B, where B ∼ N(0,D). Since β∗ = β + η, we have

√
N +M(β̂ − β̂

∗
) =

√
N +M

N

√
N(β̂ − β)−

√
N +M

M

√
M(β̂

∗ − β∗ + η)

=

√
N +M

N

√
N(β̂ − β)−

√
N +M

M

√
M(β̂

∗ − β∗)−
√
N +Mη

= BN,M −
√
N +Mη. (2.38)

Let T̃N,M := BT
N,MD̂

−1

N,MBN,M , then by Theorem 5, T̃N,M
d→ χ2(p). Now we have

TN,M = (N +M)(β̂ − β̂
∗
)T (D̂M,N)

−1(β̂ − β̂
∗
)

= (BN,M −
√
N +Mη)T (D̂M,N)

−1(BN,M −
√
N +Mη)

= BT
N,M(D̂M,N)

−1BN,M − 2
√
N +MηT (D̂M,N)

−1BN,M

+(N +M)ηT (D̂M,N)
−1η

= T̃N,M − 2
√
N +MηT (D̂M,N)

−1BN,M + (N +M)ηT (D̂M,N)
−1η.

(2.39)
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It follows that

(N +M)−1TN,M = (N +M)−1T̃N,M − 2(
√
N +M)−1ηT (D̂M,N)

−1BN,M

+ηT (D̂M,N)
−1η

d→ (N +M)−1χ2(p)− 2(
√
N +M)−1ηTD−1B+ ηTD−1η

d→ ηTD−1η, (2.40)

where ηTD−1B ∼ N(0,ηTD−1η). This implies TN,M
P→ ∞.
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Chapter 3

Risk Analysis of Cumulative Intraday Return Curves

3.1 Introduction

A fundamental concept of quantitative finance is the point–to–point return. For example, daily

returns are defined as

rn = 100(lnPn − lnPn−1) ≈ 100
Pn − Pn−1

Pn−1

, (3.1)

where Pn is the closing price on trading day n. The unit of time can be day, month, or year, with

the classical finance theory initiated by [33], [34], [35] and [36] pertaining to annual returns. This

Chapter is concerned with daily curves of the cumulative intraday returns defined as follows.

Definition 7. Suppose Pn(t), n = 1, . . . , N , is the price of a financial asset at time t on trading

day n. The functions

Rn(t) = 100[lnPn(t)− lnPn(t0)], n = 1, . . . , N,

are called the cumulative intraday returns (CIDRs).

In practice, the CIDRs can be computed only at discrete time points, but the resolution can be

very fine for frequently traded assets and indexes. In this research, we use one-minute resolution

with t0 corresponding to the first minute after the market opening; Pn(t) is the average of the

maximum and minimum price within the minute. For illustration, five consecutive CIDR curves

are displayed in Figure 3.1. These curves show how the return accumulates throughout a trading

day. Since Rn(t) ≈ 100(Pn(t) − Pn(t0))/Pn(t0), with Pn(t0) being a constant for a given day n,

the price and the CIDR curves look very similar. However, the CIDR curves are scale and level

normalized, so they form a stationary sequence in a function space, [30]. We view CIDR curves
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as a time series of functions, and focus is on the analysis of their shapes. For this reason, we adopt

the general framework of functional data analysis. While a substantial body of work on various

aspects of time series of functions has accumulated, as we discuss below, we are not aware of any

work on the extremes of such time series. This paper is an attempt to provide a possible definition

of extreme curves and study their properties in the context of CIDRs. Extreme value analysis of

point–to-point returns occupies a prominent place in econometric research due to its direct relation

to risk analysis, but no work has been done on the extreme shapes of the CIDR curves.
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Figure 3.1: Five Consecutive CIDRs (sector ETF XLF). The noisy curves are the raw CIDRs, the super-

imposed thick curves are the corresponding CIDRs reconstructed from the first three FPCs. Details are

explained in Section 3.2.

The CIDR curves describe how the return on an investment evolves with time over a relatively

short period. The information contained in them is different than the information provided by

minute-by-minute or trade-by-trade returns, and may be more relevant in situations where positions

are held for a period of few hours within a trading day. Risk measures computed for point–to–

point returns may be not sufficient for evaluating risks for portfolios held by such trades. For

example, valuations of certain options are impacted by the shape the price curve may take over

some interval, and knowing the probabilities of pre-specified unusual shapes may be useful. The

type of risk we study is different from risk related to micro–structure noise. The latter is relevant

to high frequency trades executed within seconds. The risk inherent in the shapes of cumulative

returns is relevant to positions held at least for several hours. Micro-structure noise is relevant

to professional traders, whereas smooth within day price evolution is relevant to a broader, and
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growing, group of investors owning, for example, Exchange Traded Funds, which can be bought

or sold within a trading day. This time horizon is in turn shorter than that of longer term investors,

holding, for example, positions in Mutual Funds.

Our objective is to develop a possible general framework, we do not develop any asymptotic

theory at this stage, but rather focus on illustrating the concepts by means of various graphical

displays.

The paper is organized as follows. In the remainder of the introduction, we cite a few selected

monographs and papers related to the themes of our work: functional data analysis and risk anal-

ysis of returns. These fields of research are large, so our small review is necessarily selective and

focused on work most relevant to our research. Section 3.2 presents statistical preliminaries, in-

cluding the most relevant methodology of functional data analysis and extreme value theory. Using

these tools, we conduct a risk analysis of several aspects of CIDRs in Section 3.3. We focus on the

impact of the financial crisis of 2008 on the extremal behavior of the CIDR curves. Large tables

and graphical displays are collected in Section 3.4, so that they do not interrupt the narrative.

General introductions to functional data analysis (FDA) are given in [37] and [38]. Methodol-

ogy based on functional principal components, which we use extensively here, is the focus of [31].

Early results on linear functional time series, including their prediction are presented in [39]. Ideas

of FDA have been applied to inference for CIDRs by [40], [41], [2], [42], [43] and [44].

Extreme value theory (EVT) with a view toward risk analysis is presented in [45] and [46],

monographs which define and study the value-at-risk (VaR) and the expected shortfall (ES) (we

review these concepts in Section 3.2). Extreme behavior of point–to–point returns has been studied

in many papers. For example, [47] applied univariate EVT techniques to a series of daily exchange

rates of Canadian/U.S. dollars over a 5-year period (1995-2000), [48] compared the performance

of the extreme value theory in VaR calculations to other well-known modeling techniques and

concluded that the EVT provides an approach which is robust and easy to implement. [4] used the

extreme value theory to compute VaR and ES and related confidence intervals of several major

stock market indices for the period 1960–2004. [49] investigated VaR and ES for several market
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indexes during the 2008 financial crisis. Other papers discussing the tail behavior of financial se-

ries include [50], [51], [52], [53], [54] and [55]. [56] provides a critical review of the theoretical

underpinnings of extreme value theory and a survey of some major applications of extreme value

theory to finance. Intraday VaR was initially discussed by [57] who estimates a conditional para-

metric VaR in which intraday volatility is modeled using different specifications of GARCH, and

RiskMetrics models on 15- and 30-minute returns of three stocks traded on the New York Stock

Exchange. More recently, [58] proposed an approach to estimate intraday Value at Risk (IVaR) us-

ing tick-by-tick data. Value-at-risk or Conditional Value-at-risk using intraday price data contains

richer information than the traditional daily data based measures and are proper for shorter term

portfolios. Our analysis is different, it focuses on extreme shapes of the intraday return curves.

3.2 Statistical Preliminaries

This section introduces the requisite statistical background in FDA and EVT. Readers familiar

with these fields may scan this section to become acquainted with the notation we use.

3.2.1 Background on Functional Data Analysis

Square integrable functions We assume that all functions are defined on a compact interval,

which, for simplicity, we take to be the unit interval [0, 1]. A function f is said to be square

integrable if
∫ 1

0
f 2(t)dt < ∞. We denote the set of all the square integrable functions by L2. It is

a Hilbert space with the inner product

〈f, g〉 =
∫ 1

0

f(t)g(t)dt, f, g ∈ L2.

We say that functions f and g are orthogonal if 〈f, g〉 = 0. The inner product also allows us to

define the norm as

‖f‖ =
√

〈f, f〉 =
{∫ 1

0

f 2(t)dt

}1/2

.
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Basis expansions play an important role in FDA. We say that functions {e1, e2, . . . } form a basis

in L2 if every function f ∈ L2 admits a unique expansion f(t) =
∑∞

j=1 ajej(t). The basis is

orthonormal if 〈ej, ej′〉 = 0 whenever j 6= j′ and ‖ej‖ = 1. In that case, Parseval’s identity yields

‖f‖ =

{ ∞∑

j=0

a2j

}1/2

, aj = 〈f, ej〉 .

In the statistical FDA framework, the observations are functions. In our setting, we treat the

CIDR curve Rn as a realization of a random function R, a random process showing how the return

stochastically evolves within a trading day. This means that the norm ‖R‖, is a random variable.

If E‖R‖2 < ∞, we say the random function R is square integrable.

The Karhunen-Loéve decomposition Consider a random curve X = {X(t), t ∈ [0, 1]} in

the space L2. We define the mean and covariance functions by µ(t) = EX(t) and c(t, s) =

E[(X(t) − µ(t))(X(s) − µ(s))]. The Karhunen-Loéve decomposition states that every square

integrable function X can be represented as

X(t) = µ(t) +
∞∑

j=1

ξjvj(t). (3.2)

The functions vj are the eigenfunctions of c, i.e. they are the solutions to the equation

∫
c(t, s)v(s)ds = λv(t),

where the corresponding λj are called the eigenvalues of X (or c). They are usually arranged in

non-increasing order: λ1 ≥ λ2 ≥ . . . . The random variables ξj , called the scores, are given by

ξj = 〈X − µ, vj〉 =
∫
(X(t)− µ(t))vj(t)dt.

Decomposition (3.2) is optimal in a sense that X can be well approximated using only very few

initial vj , in many applications 2 or 3 of them. The functions vj form an orthonormal basis and are
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also called the Functional Principal Components (FPCs) of X . It can be shown that

Eξj = 0, Eξ2j = λj, Cov(ξj, ξk) = 0, if j 6= k

and

E‖X − µ‖2 =
∞∑

j=1

λj. (3.3)

The interpretation of the above formula is that λj is the variance of the random function X in the

principal direction vj . The sum of these variances is the total variance of X . Relation (3.3) is thus

the decomposition of variance corresponding to (3.2).

The above expansions have sample analogs. If X1, X2, . . . , XN is a sample of functions, we

define

ĉ(t, s) =
1

N

N∑

i=1

(
Xi(t)− µ̂(t)

)(
Xi(s)− µ̂(s)

)
, µ̂(t) =

1

N

N∑

i=1

Xi(t)

and ∫
ĉ(t, s)v̂j(s)ds = λ̂j v̂j(t). (3.4)

If the functions Xi form a stationary, weakly dependent time series in L2, the approximation

Xi(t) ≈ µ̂(t) +

p∑

j=1

ξ̂ij v̂j(t), ξ̂ij = 〈Xi, v̂j〉 ,

is generally very accurate for small p. In Section 3.3, we will see that for the CIDR curves p = 2 or

p = 3 is sufficient. The above sample approximation allows us to reduce the analysis of statistical

properties of curves to the analysis of statistical properties of vectors of reasonably low dimension.

3.2.2 Background on Extreme Value Theory

Peaks-over-Threshold methodology The peaks-over-threshold (PoT) analysis of univariate time

series has been widely used since the seminal paper of [59]. They advocated the use of the asymp-

totically motivated Generalized Pareto distribution as a model for the distribution of exceedances

over a certain high threshold. Let Y1, Y2, . . . , YN be a sequence of scalar observations with a com-
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mon marginal distribution F , F (y) = P (Y ≤ y). We are interested in estimating the conditional

excess distribution function

Fu(y) = P (Y ≤ u+ y | Y > u) =
F (u+ y)− F (u)

1− F (u)
, y > 0,

over the threshold u. For large enough u, under mild conditions,

Fu(y) ≈ Gγ,σu
(y) := 1−

(
1 +

γ

σu

y

)−1/γ

+

, (3.5)

where γ is called the shape parameter and 1/γ the tail index. The distribution Gγ,σu
is called the

Generalized Pareto Distribution (GPD). Relation (3.5) can be equivalently stated, for x > u, as

P (Y > x | Y > u) ≈ 1−Gγ,σu
(x− u) =

[
1 + γ

(
x− u

σu

)]−1/γ

+

.

It follows that

P (Y > x) ≈ P (Y > u)

[
1 + γ

(
x− u

σu

)]−1/γ

+

, u → ∞.

The tail index 1/γ quantifies the heaviness of the tail. Namely, if γ > 0, then the asymptotic

distribution of the excesses is unbounded and has heavy, Pareto-like tail, P (Y > x) ∼ x−1/γ, x →

∞. The larger the index γ, the heavier the tail. The case γ < 0 corresponds to excesses with finite

upper bound. Observe that the condition 1 + γ(x − u)/σu ≥ 0 means that x ≤ u + σu/|γ| < ∞.

Finally, the boundary case γ = 0 corresponds to the exponential distribution since

lim
γ→0

[
1 + γ

(
x− u

σu

)]−1/γ

+

= exp

{
−x− u

σu

}
, x ≥ u.

The PoT method involves threshold selection, namely, how large should u be so that the ap-

proximation in (3.5) is accurate. Usually, one can assess the stability of parameter estimates, based

on fitting of models across a range of threshold values. Alternatively, this can be done by drawing

51



a mean residual life plot. We produce the mean residual life plot which estimates the function

u 7→ E
(
Y − u | Y > u

)
. If Y follows a GPD, then the above function should be linear in u. More

specifically, if u0 is a threshold, E
(
Y − u0 | Y > u0

)
= σu0

/(1− γ) exists, if γ < 1. Then for any

u > u0,

E
(
Y − u | Y > u

)
=

σu

1− γ
=

σu0
+ γ(u− u0)

1− γ
. (3.6)

When plotting empirical estimates of the sample means excesses against a range of thresholds,

the threshold is chosen to be the lowest level where all the higher threshold based sample mean

excesses are consistent with a straight line, once the sample uncertainty is accounted for.

Other traditional ways of choosing threshold involve some values pre-determined by physical

considerations or some simple fixed quantile rule, like the upper 10% rule.

Parameter Estimation Having determined a threshold, the parameters can be estimated by the

maximum likelihood approach. Suppose that the total number of observations is N , and Nu of

them exceed the threshold u. We denote them by the order statistics x(N−Nu+1), . . . , x(N). Then

the log-likelihood derived from (3.5) is

l(σu, γ) = −Nu log σu −
(
1 +

1

γ

) Nu∑

i=1

log

(
1 +

x(N−i+1) − u

σu

γ

)
, (3.7)

provided (1 + σ−1(x(N−i+1) − u)γ) > 0, for i = 1, . . . , Nu. Closed form maximization of the log-

likelihood is not possible, so numerical techniques are utilized. Standard errors and confidence

intervals for the corresponding parameters are obtained from the likelihood theory. The required

asymptotic normality of the maximum likelihood estimators holds for γ > −1/2. In our context,

γ is close to zero.

In practice, the estimation of the parameters γ and σ can be done using the function gpd.fit

in the R package ismev. Estimating P (Y > u) by Nu/N , with the ML estimates γ̂ and σ̂u

obtained from the above procedure leads to

F̂ (x) ≈ 1− Nu

n

[
1 + γ̂

(
x− u

σ̂u

)]−1/γ̂

+

(3.8)
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for any x > u such that 1 + γ̂(x− u)/σ̂u > 0.

VaR, return level, and expected shortfall Value-at-Risk (VaR) is one of the most frequently used

risk measures in finance. It involves extreme quantile estimation. Suppose a random variable Y

with continuous distribution function F models losses or negative returns on an asset over a certain

time horizon. Value-at-Risk at the upper tail α, denoted by VaRα, is defined as the 100(1− α)-th

quantile of the distribution F ,

VaRα(Y ) = F−1(1− α),

where F−1 is the inverse of the distribution F , and α is typically close to zero. If Y models losses,

then VaRα(Y ) is interpreted as the amount of loss exceeded only 100α% of the time, on the

average. A risk measure equivalent to VaR is the return level. Let α = 1/m, then Lm = VaR1/m

is the m-period return level. For instance, it is often more convenient to report return levels on

an annual scale. There are about 252 trading days in a year. Taking m = 252, we get an upper

tail α that approximately equals 0.004 and hence L252 = VaR0.004. Thus if Y models a daily

loss, then L252(Y ) gives us the expected level of loss to be exceeded once a year. The expected

shortfall (ES), also called tail conditional expectation, is defined as the expected loss that exceeds

the VaRα: ESα = E(Y | Y > VaRα).

Estimation of the risk measures Denote by σ̂ and γ̂ the estimated GPD parameters. To estimate

the VaR, we need to estimate F−1(1− α). This can be done by solving equation (3.8) for x. Then

VaRα can be estimated as

V̂aRα = xα =





u+ σ̂
γ̂

[(
Nu

Nα

)γ̂
− 1
]

if γ̂ 6= 0

u+ σ̂ log
(

Nu

Nα

)
if γ̂ = 0

To estimate the expected shortfall ESα, we use the relation

ÊSα = V̂aRα + E
(
Y − V̂aRα | Y > V̂aRα

)
,
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where the second term is the expected exceedance over the threshold V̂aRα. Since the mean excess

function for the GPD with γ < 1 is given in equation (3.6), it is easy to show that

ÊSα = V̂aRα +
σ̂ + γ̂

(
V̂aRα − u

)

1− γ̂
=

V̂aRα + σ̂ − γ̂u

1− γ̂
.

Large sample standard errors, leading to confidence intervals, for VaRα and ESα can be derived

using the delta method, see Section 3.4.1.

3.3 Risk analysis of CIDR curves

We now turn to study extremes of the CIDR curves defined in the Introduction. We are specifi-

cally interested in the quantification of their extremal behavior before, during and after the financial

crisis of 2008. However, the methodology we propose is applicable in many other contexts. A chief

question in any analysis of this type is what an extreme curve is. Traditional EVT has been de-

veloped for samples of scalar observations. Such observations can be ordered, so the concept of

“large” observations is clear. Extreme observations are generally those that lie beyond the range of

the sample, i.e. have not been observed yet. EVT is then used to compute measures of risk based

on upper tail approximations, like those explained in Section 3.2. In Section 3.3.1, we explain

what we mean by extreme curves. Then, in Section 3.3.2, we introduce the data sets to which our

approaches are applied. Sections 3.3.3 and 3.3.4 include the results of our analysis, which Section

3.3.5 summarizes.

3.3.1 Extreme return curves

We assume that the observed CIDR curves Rn defined in Definition 7 are realizations of a

random curve R; they form a stationary time series in L2, with the univariate marginal distribution

equal to that of R. The Karhunen-Loéve decomposition introduced in Section 3.2 states that the

random curve R can be represented as
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R(t) = µ(t) +
∞∑

j=1

ξjvj(t). (3.9)

The mean function µ is assumed to be zero (the estimates µ̂(t) are not significantly different from

zero), so the norm of R is given by

‖R‖ =

{∫ 1

0

R2(t)dt

}1/2

=

{ ∞∑

j=1

ξ2j

}1/2

, (3.10)

where ξj are the scores, uncorrelated random variables.

The simplest way to define a “large” CIDR curve is to require that the norm ‖R‖ be large. By

(3.10) this is equivalent to some of the scores being large, irrespective of their sign. There are

many ways in which the curve R can be large according to this definition. A very wiggly curve

that starts from zero and ends at zero will be large, even though the daily point-to-point return will

be zero. Such a situation corresponds to many high frequency scores being large, but the most

important first score being close to zero. To explain this point, we show in Figure 3.2 the first three

FPCs, v1, v2, v3 for SP500. They look almost identical for all other assets. The first FPC, v1, which

generally explains about 85% of the variability of these curves, quantifies the upward (if ξ1 > 0)

or downward daily trend. This is a pattern that is observed on most trading days. Thus for a zero

daily point-to-point return, the coefficient of this component must be close to zero. (The estimated

FPC have the same periodicity pattern as those of the Brownian motion, but they rise more steeply

at the beginning of the trading day, reflecting the abrupt price changes often seen at the opening of

the market.)

Empirical analysis shows that the shapes of the observed CIDR curves are basically encoded

by the first three scores:

Rn(t) ≈ ξn1v1(t) + ξn2v2(t) + ξn3v3(t).
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Figure 3.2: The first three FPCs for S&P500 during the period 2006/7/5 - 2011/12/30.

The overwhelming contribution comes from the first and the second FPCs; v2 quantifies a re-

versal during a trading day. This is illustrated in Figure 3.3, which shows the plots of A
(p)
n =

{∑p
j=1 ξ

2
nj}1/2, p = 2, 3, 4, against ‖Rn‖ for a selected asset and 50 trading days. The graphs for

other assets and periods are similar. We see that p = 4 gives basically the same norm as p = ∞,

and except for “very small" CIDR curves, using p = 3 is sufficient. For days with large market

swings, using p = 2 is sufficient to describe the intraday market action. Thus, in addition to the

norm, it is useful to study the extremal behavior of the sequences {ξn1} and {ξn2}. Extremes of

these sequences will define extreme curves. In most cases, ‖R‖ will be large if ξ21 is large, but it

does not have to be always the case. The norm ‖R‖ can be viewed as a new measure of the daily

volatility of an asset, but to get a fuller picture of extreme behavior, the first two scores must be

considered as well.
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To summarize, we will consider a CIDR curve Rn on the trading day n as extreme, if either

‖Rn‖ is extreme or the scores ξn1 or ξn2 are extreme (or both). The scores can be extreme on either

the negative or the positive side.
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Figure 3.3: The scatter plot of A
(p)
n = {∑p

j=1 ξ
2
nj}1/2 against ‖Rn‖ with p = 2, 3, 4 for XLF during the

period 2008/6/2 - 2008/8/12 (50 days).

3.3.2 Data description

Our application focuses on nine Select Sector SPDR ETFs, which are proxies for “sector port-

folios". These are Exchange Traded Funds that track the nine S&P 500 sector indexes, they hold

individual stocks within the corresponding sectors. For ease of reference, Table 3.1 lists the nine

Select Sector SPDR ETFs. The one minute frequency ETF price data are obtained from Quan-

tquote.
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Table 3.1: Tickers of the assets (Sector ETFs) used in this study.

Ticker Sector Ticker Sector

XLF Financials XLV Health Care

XLK Technology XLI Industrials

XLY Consumer Discretionary XLB Materials

XLP Consumer Staples XLU Utilities

XLE Energy

One of our major objectives is to examine if the extremal behavior of CIDRs for these “port-

folios" is “time-varying". We compare risk measures for periods around the financial crisis. This

allows us to determine whether the crisis has a significant impact on the extremal behavior of these

assets in a sense defined in Section 3.3.1. We consider four time periods specified in Table 3.2. The

inclusion of two time periods after the crisis is justified by our preliminary findings that indicated

a difference between the extremal behavior of the cumulative return curves immediately after the

generally accepted end of the crisis and at a later time.

Table 3.2: Time periods used in this study.

Designation Abbreviation Time span Sample size (days)

Before Bf 07/05/2006 – 09/28/2007 313

During Dr 10/01/2007 – 02/27/2009 351

After 1 A1 03/02/2009 – 07/30/2010 356

After 2 A2 08/02/2010 – 12/30/2011 358

3.3.3 Extremes of the norm and the scores

We first apply the PoT method to the norm (3.10) computed using the sum of the squares of

the first 15 scores. The application involves the following steps: select the threshold u, fit a GPD

to the exceedances over u, compute point estimates and standard errors of the Value-at-Risk and

expected shortfall, see Section 3.2. The results are shown in Table 3.3. The columns “u" and “Nu",

respectively, show the threshold and the number of observations over that threshold. The column

“Parameter γ̂" reports the estimates of the shape parameter with their standard errors. The shape
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parameter γ for most assets and periods is seen to be not significantly different from zero, implying

that in most cases computation of the risk measures using a Gumbel distribution is appropriate. For

longer periods of time, the estimates of γ tend to be positive, which may reflect inhomogeneity of

the data or higher risk involved in longer time horizons. To compute the risk measures, we use

the GPD with the estimated γ. The last four columns in Table 3.3 show the estimation results for

the VaR and ES of ‖R‖ with upper tail probability α = 0.004 and α = 0.0008. Since there are

252 trading days, VaR.004 and VaR.0008 are, respectively, the 1-year and 5-year return levels of

the norm of the CIDR. The following general pattern for the risk measures for the four periods

emerges:

during ≥ after1 ≥ after2 ≈ before. (3.11)

The periods are arranged from the most risky to the least risky. We see that, generally speaking,

the impact of the crisis on the extreme risks related to intraday investing persists for about a year

and a half after the commonly accepted end of the crisis. Sector specific responses to the crisis

are summarized in Figure 3.5. At both levels of VaR and ES, financials (XLF) and Consumer

Discretionary (XLY) stocks are seen to be most impacted by the crisis; they reach high levels of

risk during the crisis. The XLF stocks continue to be exposed to high risk even one year after

the crisis. The Technology (XLK) and Health care (XLV) stocks are seen to be, relatively, least

impacted by the crisis. They reach the highest risk during the crisis, and then the risk decays

almost linearly with time and eventually (2 or 3 years after the crisis) gets back to the level before

the crisis. Among all the ETFs, we also found that the Consumer Staples (XLP) and Utilities

(XLU) are the most dramatically affected by the crisis. They both have a fairly low risk levels

before and immediately after the crisis, while during the crisis, their risk level drastically goes

up to a very high level. The remaining sectors, including Energy (XLE), Industrials (XLI) and

Materials (XLB), share a similar risk pattern before, during and after the crisis, and they can be

categorized as moderately impacted by the crisis.

Since the first FPC usually contributes about 85% to the total variability in the CIDRs and has

a clear interpretation as a monotonic growth or decline during the trading day, we applied our risk
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analysis to the magnitude of the first score, |ξ1|. We show the results in Table 3.4. Comparing these

results to those in Table 3.3, we see a similar pattern for the risk measures among those 4 periods

around the crisis. This suggests that the monotonic trend usually dominates the extreme risk of the

CIDRs. The pattern of such gains or losses throughout the trading day can also be summarized by

relations (3.11).

We also applied the methodology of Section 3.2.2 to the traditional point-to-point returns,

where only the closing prices of a trading day are used to obtain the daily return. Instead of

dealing with Left tail (loss) and Right tail (gain) of the returns separately, we only consider the

magnitude of the point-to-point returns (or the norms). The corresponding results in Table 3.5

show a different pattern for the risk measures among those 4 periods from that revealed by Table

3.3 and Table 3.4. For the point-to-point returns, the relation can be summarized as follows:

during ≥ after2 ≥ (or ≈) after1 ≥ before. (3.12)

The only violation of this pattern is XLF, for which “after1" contains more risk than “after2". Also,

another important finding is that for most of the Sector ETFs in the “during" period, the standard

errors of VaR and ES are huge, c.f. XLE, XLV and XLU. This indicates that GPD might be an

inappropriate model to fit the point-to-point returns in our case. Moreover, this shows us that

the proposed daily volatility (or norm of CIDRs) reveals different information from that obtained

from the traditional point-to-point returns in the sense of extreme value studies. Similarly, sector

specific responses to the crisis are summarized in Figure 3.6. We take out two assets XLE and

XLU because of their unreasonable standard errors.

Visualization of extremal regions It is of interest to see how the extreme CIDRs might look like.

Since in most cases the shape of the CIDRs is sufficiently well explained by the first two FPCs,

and in order to keep the graphs informative, we will visualize the extremal regions by focusing on

these two scores. We thus consider the approximation
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R(t) ≈ R(2)(t) := ξ1v1(t) + ξ2v2(t).

As extreme, we consider R(2) for which ‖R(2)‖ = (ξ21 + ξ22)
1/2 is large. We consider extremal

regions in four quadrants of the (ξ1, ξ2) plane, denoted (+, +), (+, -), (-, -), (-, +), which reflect

the four possible combinations of the signs of first two scores. We want to see how these regions

change over the “before", “during", “after1" and “after2" periods considered above.

Set ξ = (ξ1, ξ2). Given a sufficiently large threshold u, one can postulate the following model

for the conditional distribution of ξ given ‖ξ‖ > u:

ξ|‖ξ‖ > u
d≈ Z(u)Y(u), (3.13)

where Z(u)
d≈ ‖ξ‖|{‖ξ‖ > u} and Y(u)

d≈ ξ/‖ξ‖|{‖ξ‖ > u} are independent. The random

variable Z(u) follows a GPD and Y(u) follows some probability distribution on the unit sphere.

One can fit various models to the data and use them to compute the probabilities P (ξ ∈ A), where

A is outside the ball B(0, u) with a large radius u. This is done using the relation

P (ξ ∈ A) ≈ P (‖ξ‖ > u)P (Z(u)Y(u) ∈ A).

The first factor on the right-hand side can be approximated by using standard univariate EVT. The

second factor can be calculated by using Monte Carlo methods.

In the Monte Carlo approach, we first simulate realizations of norms from the model for Z(u).

Recall that Z(u) follows a GPD Gu(z), which is fitted from the norms ‖ξi‖|{‖ξi‖ > u}, where

{ξi = (ξ1,i, ξ2,i), i = 1, . . . , Nu}, and Nu is the number of observations with norm greater than u.

One can easily draw a new sample of norms {z1, . . . , zM} from Gu(z), which can be further used

to construct new extreme scores. In the second step, we need to simulate data for the angles Y(u).

To this end, we normalize those observed pairs ξi = (ξ1,i, ξ2,i) whose norm ‖ξi‖ exceeds u to get

a pool of angles for the extreme points. That is,
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θi := arctan(ξ2,i/ξ1,i),

for i = 1, . . . , Nu. Based on those observed angles given norms exceeding u, there will be two

major ways to generate new angles for future simulation. One could naturally apply a nonpara-

metric method by directly resampling angles from {θi, i = 1, . . . , Nu} with replacement. This is

just simply a Bootstrap method. Alternatively, we can also employ a kernel density estimator, see

Supplementary materials 3.4.2 for the details of this method. From either of these methods, we can

simulate a new set of angles {θ∗i , i = 1, . . . ,M}. Together with the previously simulated norms

{z1, . . . , zM}, we can create simulated score pairs via

ξ∗i = (ξ∗1 , ξ
∗
2) = (zi cos θ

∗
i , zi sin θ

∗
i )

with ‖ξ∗i ‖ > u for i = 1, . . . ,M . These newly generated scores can be used to depict the extremal

region of the CIDRs.

To keep the number of figures relatively small, we merely illustrate our methodology using

the XLF (financials) data. The extremal regions obtained using bootstrap are shown in Figures

3.7–3.10. Specifically, in Figure 3.7, we show the extreme region determined by the norms of the

CIDRs on the plane of the scores (ξ1, ξ2). The inner black circle on each scatter plot represents

the one-year return level (VaR.004) for each of the 4 periods and the bigger grey circle represents a

10,000 day return level (VaR.0001) which can be considered very rarely exceeded. This extremely

high level is needed to have an upper limit in the graphs is the time domain. We can see for each of

the 4 periods that there are one or two observations, represented by stars, falling into the extreme

region defined by VaR.004 and VaR.0001, which approximately represents a region with an upper

probability of 0.4%. On the same plot, the little grey circles in the extreme region represent around

100 simulated points. With these simulated points, in Figure 3.8, we show the regions of extreme

shapes of the CIDRs for each quadrant and each period corresponding to the extremal regions

shown in Figure 3.7. We also plot the real extreme CIDRs, represented by thick solid curves, in the

extremal region into which they fall. Similarly, in Figure 3.9 and Figure 3.10, we show the extreme
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region relative to the one-year expected shortfall (ES.004) on the plane of the scores (ξ1, ξ2), and the

corresponding extreme shapes. The expected shortfall is a coherent risk measure and constrains

both the probability of a tail event and the expected loss given a tail event. This is confirmed in

Figure 3.9, where the observed extreme points are very close to the circles that represent norms

equal to ES.004. Alternatively, as we mentioned above, the procedure of simulating angles for

points with norm greater than u can be also done by using the a kernel density estimator (KDE).

The corresponding results are shown in Figures 3.11–3.14. A major difference between the two

methods in depicting the extreme region can be seen by comparing Figure 3.7 and Figure 3.11,

which show the extreme regions of the score pairs using the VaR estimates. With the bootstrap

method, we draw samples with angles that behave fairly similarly to the observed data, the KDE

method leads to a relatively higher chance of drawing some large angles, which are actually rarely

observed in the existing data. For example, a score pair with score 1 approximately equal to score 2

is almost never observed in practice, because the score of the first FPC explains most (about 85%)

of the total variability, which leaves very low chance for score 2 to reach a value as high as score

1. Figure 3.8 and Figure 3.12 show that the KDE method leads to a more extended extreme region

than the bootstrap method. Similar comments apply to the difference between the two methods for

the extreme regions based on the ES.

A general conclusion is that while less intuitive, visualizing extreme curves in the space of

scores is more informative, especially if the temporal evolution of these regions is to be exam-

ined. Using simple bootstrap may lead to more realistic extreme regions than more sophisticated

approaches based on the estimation of the angular density. This requires more investigation which

must include suitable criteria.

Fisher’s exact test We examined the independence of signs of (ξ1, ξ2) by using Fisher’s exact

test, which is a simple contingency table test for independence. We take “XLF" in the “before"

period to illustrate, and use u = 0.8 as the threshold. The number of norms above u is 52, and

the count (proportion) of the points falling in each of the 4 quadrants (+, +), (+, -), (-, -), (-, +) are

summarized in the following contingency table:
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Frequency ξ2 Total

(Percentage) + –

ξ1 + 15 (0.29) 8 (0.15) 23 (0.44)

– 14 (0.27) 15 (0.29) 29 (0.56)

Total 29 (0.56) 23 (0.44) 52 (1)

Using R function fisher.test, one gets the p value of 0.27. The test results for all the

assets are summarized in Tables 3.6 and 3.7. For all of them, no evidence was found that there is a

preference for any of the four quadrants. Also, no apparent pattern shows up in the 2× 2 tables of

probabilities as they change over the four periods “before", “during", “after1" and “after2". This

leads us to conclude that the crisis has not caused any shift in the “direction” of the extreme CIDR

curves. For example, the extreme scores are roughly equally likely to appear in the (+, +) region

before and during the crisis.

A more subtle question is if the extreme dependence between the first and second scores has

been affected by the crisis. Such an investigation requires rather sophisticated EVT tools, and is

the subject of the next section.

3.3.4 Extremal dependence between the magnitude of the scores

By construction, the scores ξj in (3.2) are uncorrelated. Using the methods described below,

we determined that there is no extremal dependence between the scores at the various levels j.

There is however extremal dependence between the squares of level 1 and level 2 scores which

occurs for certain assets and certain periods. Roughly speaking, such a dependence means that

extremely high monotonic trend increases the chance of a pronounced inflection point, i.e. of a

large change in the rate of growth or decline. Independence in this sense means that the occurrence

of a pronounced inflection point is not associated with a strong upward or downward trend. This

section explores this issue in some detail using measures of extremal dependence defined by [60].

Two measures of extremal dependence Suppose two variables X and Y have a common distri-

bution F . We define

χ = lim
z→z+

P (Y > z | X > z),

64



where z+ is the end-point of F , so that χ ∈ [0, 1] is a limiting measure of the tendency for one

variable to be large conditional on the other one being large. If χ = 0 the variables X and Y are

said to be asymptotically independent. If χ > 0, they are said to be asymptotically dependent.

More generally, suppose that FX and FY are the marginal distribution functions of X and Y ,

respectively. We then define

χ(q) = P (FY (Y ) > q | FX(X) > q)

= P (Y > VaR1−q(Y ) | X > VaR1−q(X))

and

χ = lim
q→1

χ(q).

The expression for χ(q) in terms of VaR shows that χ can be interpreted as the probability that

Y exceeds its VaRα value, given that X exceeds its VaRα value for extremely small α. Thus, if

χ = 0.5, for example, 50% of the time the losses of X are due to extreme losses in Y .

Clearly, χ is a useful measure of extremal dependence within the class of asymptotically de-

pendent distributions, where the value of χ increases with the strength of dependence at extreme

levels. A complementary measure χ ∈ [−1, 1] is defined as follows. For 0 < q < 1, define

χ(q) =
2 logP (FX(X) > q)

logP (FX(X) > q, FY (Y ) > q)
− 1

and

χ = lim
q→1

χ(q).

When χ = 1, the variables X and Y are asymptotically dependent, and when −1 ≤ χ < 1 they

are asymptotically independent. The two measures, χ and χ can thus be used to tests different

null hypotheses. Their properties as summarized in the following table, in which independence or

dependence refer to these quantities pertaining to extreme events.
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Independent Dependent

χ = 0 0 < χ ≤ 1

−1 ≤ χ < 1 χ = 1

Illustrative examples of data models are provided in Section 3.4.3. Generally, extremal inde-

pendence is more common than extremal dependence. For this reason, one typically first tests the

null hypothesis χ = 1, and if it is not rejected, assesses the strength of extremal dependence by the

value of χ > 0. The details of this procedure are presented in Section 3.4.3.

Application to sector ETFs To illustrate the methodology introduced above, Figure 3.15 shows

the plots of χ(q) and χ(q), together with approximate 95% confidence intervals, for the squared

scores ξ21 and ξ22 of XLF. Interpretation of these plots is not completely clear because of the large

variance of the estimators. However, we can roughly tell that for the “before" “after1" and “after2"

periods χ(q) → 1 as q → 1 while for the “during" period this is not the case. In the respective pe-

riods, χ(q) converges to values of around 0.3, 0, 0.3 and 0.4. Furthermore, the likelihood ratio test

of asymptotic dependence, see Section 3.4.3, lends support to the use of asymptotically dependent

models above a sufficiently high threshold for the “before" “after1" and “after2" periods. Finally,

under properly chosen thresholds (we use 80% marginal quantiles as the thresholds for each of

the “before" “after1" and “after2" periods), by applying the natural nonparametric estimator (3.19)

under the constraint χ̂ = 1, we obtain χ̂ = 0.40 for the “before" period, χ̂ = 0.43 for the “after1"

period and χ̂ = 0.35 for the “after2" period. After accounting for the variance, these results are

consistent with the apparent stable levels shown in Figure 3.15.

The estimation results for all the nine ETFs are shown in Table 3.8. For each ETF, the columns

“q" and “nu", respectively, give the quantile of the threshold and the number of observations ex-

ceeding that threshold during each period. We also give an estimate of χ with corresponding

standard errors. The “Pvalue" entries are the results of the likelihood ratio test of asymptotic

dependence, with the null hypothesis χ = 1. Only if the results are insignificant, do we give a non-

zero estimate of χ. The estimation results are sensitive to the choice of the threshold. We choose
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it carefully in a multi-stage process. First, we look at the the mean residual life plot using the R

function mrlplot. Next, we use the R function tcplot, which is a plot of parameter estimates

at various thresholds for PoT modeling. The valid threshold will be a value such that the parameter

estimates depicted are approximately constant above the threshold. We tried several thresholds

suggested by the above two approaches and selected a proper quantile q such that the estimation

results become stable and reasonable. (An inappropriately chosen q, hence the threshold u, can

result in very unstable estimation.)

After accounting for sampling errors, we can clearly observe a pattern among most of the

ETFs (XLK, XLY, XLV, XLI and XLB) that the “before" periods show a strong signal of extremal

dependence between ξ21 and ξ22 while for some other ETF sectors (XLE and XLU) it occurs in

the “after2" period. Since the “after2" is similar to the “before" period in other respects, we can

conclude that during the crisis as well as the short period right after the crisis, there tends to

be no asymptotic dependence between ξ21 and ξ22 for any ETF sectors. Generally, the extremal

dependence is of a different type “before” than in the other three periods, or is of a different type

in the “during” period.

3.3.5 Summary and concluding Remarks

We employed the popular extreme value theory peak-over-threshold (PoT) method and its ex-

tensions to study the extremal behavior of the cumulative intraday returns (CIDRs) of a set of

financial assets. We defined and estimated risk measures such as Value-at-Risk (return level) and

expected shortfall for function valued data. These and other measures have been applied to the

norm and to the scores and their squares. The norm of the CIDRs can be viewed as a new mea-

sure of intraday price movements which incorporates intraday variability and systematic trends or

changes in direction (e.g. from growth to decline). The scores quantify the presence of specific

patterns, like trends or reversals. We proposed several ways of visualizing the risk associated with

CIDRs.

Our major findings can be summarized as follows:
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1. Scores of the first three FPCs of a CIDR series typically contribute 90% ∼ 95% of the

total variability. The first score, ξ1, typically contributes more than 85%. This indicates that

ξ1 could be a more informative summary of the daily returns than the conventional point-

to-point returns based on the closing price. (For example, large ξ1 indicates that the price

increases almost monotonically throughout the day.)

2. The norm of the CIDRs, ‖R‖, has an exponential-decaying tail when the estimation is per-

formed over a relatively short period (1-2 years). This is likely because the clustering phe-

nomenon is not pronounced over such time periods. The intraday cumulative returns and

their variability are either large or small, so the tail, which measures the presence of obser-

vations much larger than most observations, is light. This is in contrast to point–to–point

returns over long periods of time, which are often modeled as heavy-tailed functions.

3. Estimation of the risk measures leads to the following general pattern around the financial

crisis of 2008:

during ≥ after1 ≥ after2 ≈ before,

where the periods are arranged from the most risky to the least risky. Since each period has

the length of about a year and a half, this implies the crisis had a monotonically decaying,

long-term impact on the intraday market risk extending beyond the commonly accepted end

of the crisis. The pattern of the decay of risk measures based on point–to–point returns is

often not monotonic.

4. Risk measures of CIDRs, in general, contain different information about the extreme behav-

ior of returns than those measures computed for point-to-point returns. The impact of the

crisis of 2008 on extreme risk is different for the CIDRs and point-to-point returns, both in

terms of a general pattern and impact on specific sectors.

5. The crisis impacted extremal dependence between the volatilities of the principal compo-

nents of the shapes of the CIDRs.

68



There is clearly room for improvement and extensions of the methodology that we proposed.

Multivariate EVT could in principle be applied to model the joint extremal behavior of the scores,

some effort in this direction is outlined in Section 3.4.2, but more sophisticated and accurate ap-

proaches might be possible. Rather than using the PoT approach, likelihood based methods that

incorporate temporal dependence might be feasible. Potential conditional heteroskedasticity might

possibly be incorporated; some research in this direction has been done, [61], [44], [62], but it does

not offer any guidance on how to incorporate these models into the study of extremal behavior of

CIDR curves. In all, we hope that our exploration will be received with some interest as an attempt

to quantify extreme behavior of samples of curves with a potential to quantify some aspects of

investment risk.

3.4 Supplementary Materials

3.4.1 Variances of V̂aRα and ÊSα

Denote Su = P (Y > u) and Ŝu = Nu/N. Observe that Ŝu is the maximum likelihood estimate

of Su, as the number of exceedances of u follows the Binomial distribution ∼ Bin(n, Su). Since

both V̂aRα and ÊSα can be viewed as a function of σ̂, γ̂ and Ŝu, i.e.

V̂aRα := g1(Ŝu, σ̂, γ̂) = u+
σ̂

γ̂

[(
Ŝu

α

)γ̂

− 1

]

and

ÊSα := g2(Ŝu, σ̂, γ̂) = u+
σ̂

1− γ̂
+

σ̂

γ̂(1− γ̂)

[(
Ŝu

α

)γ̂

− 1

]
,

large sample standard errors or confidence intervals for VaRα and ESα can be derived from the

delta method. From standard properties of the binomial distribution, VaR(Ŝu) ≈ Ŝu(1 − Ŝu)/n

and denote the (i, j) term of the variance-covariance matrix of σ̂ and γ̂ by vi,j , then the complete

covariance-variance matrix for (σ̂, γ̂, Ŝu) is approximately
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V =




Ŝu(1− Ŝu)/n 0 0

0 v1,1 v1,2

0 v2,1 v2,2



.

Hence, by the delta method,

Var(V̂aRα) ≈ ▽gT1 V▽g1

and

Var(ÊSα) ≈ ▽gT2 V▽g2,

where

▽gT1 =

[
∂g1
∂Su

,
∂g1
∂σ

,
∂g1
∂γ

]

=

{
σSγ−1

u

αγ
,
1

γ

[(
Su

α

)γ

− 1

]
, − σ

γ2

[(
Su

α

)γ

− 1

]
+

σ

γ

(
Su

α

)γ

log

(
Su

α

)}

and

▽gT2 =

[
∂g2
∂Su

,
∂g2
∂σ

,
∂g2
∂γ

]

=

{
σSγ−1

u

(1− γ)αγ
,

1

γ(1− γ)

[
γ +

(
Su

α

)γ

− 1

]
,

σ

(1− γ)2
+

σ(2γ − 1)

γ2(1− γ)2

[(
Su

α

)γ

− 1

]
+

σ

γ(1− γ)

(
Su

α

)γ

log

(
Su

σ

)}

evaluated at (Ŝu, σ̂, γ̂).

3.4.2 Estimation of the angular density

This section explains how the density of Y(u) in (3.13) can be estimated nonparametrically.

Since we consider two scores, this is a density on (−π, π). The idea is that if θi, i = 1, . . . , n, are

i.i.d. points from a density f , then its kernel estimator is given by
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f̂h(θ) :=
2

n

n∑

i=1

φh(tan(θ − θi)/2))/ cos
2((θ − θi)/2), (3.14)

where φh(x) = φ(x/h)/h is probability density on the real line. The idea behind this estimator is

to lift a distribution on the real line to the unit circle via the transformation

Θ → tan(Θ/2).

By default, we will use the standard normal density for φ (see also [63]). To apply this idea to the

procedure of resampling angles, suppose (ξ1,i, ξ2,i), i = 1, . . . , Nu are the points with norm greater

than the threshold u and define

θi := arctan(ξ2,i/ξ1,i)

for i = 1, . . . , Nu. Choosing the bandwidth h = 2π/N
2/3
u , we compute (3.14) using the θ′is, and

so obtain an estimated density function f̂h(θ) of the angles θ on (−π, π). From this density, we

sample angles that can be used to generate new extreme points. Figure 3.4 illustrates this method

using the asset XLF in the “before" period.

3.4.3 Elaboration on the measures χ and χ

This section provides details of inference based on the extreme dependence measures χ and

χ. Essentially, χ provides a measure with which to describe the strength of dependence within

the class of asymptotically dependent variables, while χ provides a corresponding measure within

the class of asymptotically independent variables. Taken together, the pair (χ, χ̄) provides more

complete information characterizing the form and the degree of extremal dependence of any two

random variables. For asymptotically dependent variables, χ̄ = 1 and the value of χ > 0 measures

the strength of dependence. For asymptotically independent variables, χ = 0, and the value of

χ ∈ [−1, 1) might be used to quantify the strength of extremal independence, which may be

interpreted also as a secondary or hidden tail dependence in terms of the notion of hidden regular

variation [64].
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Figure 3.4: Left panel: histogram of the observed θ′is with the estimate f̂h(θ) superposed. Right panel:

histogram of the same number of new θ′is generated from f̂h(θ).

We begin by providing two examples where χ > 0 (asymptotic dependence) and χ = 0

(asymptotic independence).

Example 3.4.1. In this example, X and Y have a common risk factor. Let Z, εx and εy be inde-

pendent GPD(γ, γ, 0) random variables with the same index γ > 0, such that

P(Z > u) = P(εx > u) = P(εy > u) = (1 + u)−1/γ,

for u > 0. Consider the simple factor model

X = σzZ + aεx and Y = σzZ + bεy,

where σz, a and b are positive. By applying Lemma 2 below with a1 = b1 = σz, a2 = a, b2 = 0,

and a3 = 0, b3 = b, we obtain
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σ
1/γ
X = σ1/γ

z + a1/γ, σ
1/γ
Y = σ1/γ

z + b1/γ,

χ(X, Y ) =
σ
1/γ
z

σ
1/γ
z + a1/γ

∧ σ
1/γ
z

σ
1/γ
z + b1/γ

=
1

1 + max(a1/γ, b1/γ)/σ
1/γ
z

.

Thus, the larger the ratio max(a1/γ, b1/γ)/σ
1/γ
z , the smaller the extremal dependence. This is nat-

ural since in this case, σz is relatively small and the common factor σzZ has relatively smaller

contribution to the simultaneous extremes of X and Y . On the other hand, if σz dominates a and

b, the common risk factor leads to more frequent simultaneous extremes, which is reflected by

relatively larger values of the extremal dependence measure χ.

Example 3.4.2. Suppose now that (X, Y ) are jointly Gaussian with correlation coefficient ρ ∈

(−1, 1). It can be shown that χ = 0 in this case, i.e. X and Y are always asymptotically indepen-

dent (unless ρ = 1). The measure χ̄ is more appropriate in this case and χ = ρ. See [65] for the

details.

Lemma 2. Let Z1, . . . , Zp be independent heavy–tailed GPD(γ, γ, 0) random variables, i.e., P(Zi >

u) = (1 + u)−1/γ, u > 0, for some γ > 0. Define

X =

p∑

i=1

aiZi and Y =

p∑

i=1

biZi,

where ai > 0 and bj > 0, for some i, j ∈ {1, . . . , p}. Then,

P(X > u, Y > u) ∼ u−1/γ

p∑

i=1

(ai ∧ bi)
1/γ
+ , as u → ∞, (3.15)

where xn ∼ yn means xn/yn → 1, x ∧ y := min{x, y} and (x)+ := max{x, 0}.

Consequently, the tail dependence coefficient between X and Y equals

χ(X, Y ) =

p∑

i=1

(
ai
σX

∧ bi
σY

)1/γ

+

, (3.16)

where σ
1/γ
X =

∑p
i=1(ai)

1/γ
+ and σ

1/γ
Y =

∑p
i=1(bi)

1/γ
+ .
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Proof. We shall first obtain Relation (3.16) as a consequence of (3.15). For simplicity, let α :=

1/γ > 0. By formally applying (3.15) to ai := bi, we obtain

P(Y > u) ∼ σα
Y u

−α, where σα
X =

p∑

i=1

(bi)
α
+,

and similarly P(X > u) ∼ σα
Xu

−α, as u → ∞. Observe that σX > 0 and σY > 0 since

maxi=1,...,p ai > 0 and maxi=1,...,p bi > 0.

Thus, P(X/σX > u) ∼ P(Y/σY > u) ∼ u−α, as u → ∞, and hence

χ(X, Y ) = lim
u→∞

P(X/σX > u|Y/σY > u) = lim
u→∞

uα
P(X > σXu, Y > σY u).

Now, by applying (3.15) with ai replaced by ai/σX and bi replaced by bi/σY , the formula (3.16)

follows.

Relation (3.15) is well known but we give a proof for completeness. This result can be under-

stood in terms of the so-called one big jump heuristic. Namely, since the Zi’s are independent and

heavy–tailed with the same tail exponent α = 1/γ > 0, asymptotically, a linear combination of

the Zi’s is large if one and only one of its terms is extreme. That is, the probabilities that two or

more components aiZi contribute to an extreme value of X is asymptotically negligible. Using

this principle, one can intuitively see that

P(X > u, Y > u) ∼
p∑

i=1

P(aiZi > u, biZi > u) = u−α

p∑

i=1

(ai ∧ bi)
α
+,

as u → ∞.

We will make the above heuristic precise using the notion of multivariate regular variation. We

start with some terminology. A set A ⊂ R
p \ {0} is said to be bounded away from 0 if there is a

ball B(0, ǫ) centered at the origin with radius ǫ > 0 such that A ∩ B(0, ǫ) = ∅. A random vector

Z = (Z1, . . . , Zp)
⊤ is said to be regularly varying in R

p \ {0} if there exists a Borel measure ν on

R
p \ {0}, such that
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c(u)P(Z ∈ uA) → ν(A), (3.17)

for all measurable bounded away from 0 and ν-continuity sets A, i.e., such that ν(∂A) = 0, where

∂A = A \ A◦ is the boundary of A.

In the simple case above, it is easy to see that the vector Z with independent GPD(γ, γ, 0)

components is regularly varying, where ν is supported on the positive orthant [0,∞)p. One can

identify the measure ν by taking A = [0,x]c = {y ∈ R
p : yi > xi for some i = 1, . . . , p}, for

x ≥ 0.

Indeed, by using the independence of the Zi’s and the inclusion-exclusion formula, we get as

u → ∞,

P(Z ∈ uA) ∼ P (∪p
i=1{Zi > uxi}) ∼ u−α

p∑

i=1

xα
i =: u−αν(A).

Thus (3.17) holds with c(u) := uα, where the measure ν is concentrated on the positive axes

ℓi := {λei : λ > 0}, i = 1, . . . , p, with e1 = (1, 0, . . . , 0)⊤, . . . , ep = (0, . . . , 0, 1)⊤ denoting the

standard basis of Rp. In general, for a measurable set A, we have the formula

ν(A) =

p∑

i=1

να(πi(A ∩ ℓi)), (3.18)

where να(x,∞) = x−α, x > 0 is a measure on the positive half-line (0,∞), and πi : R
p → R is

the projection on the i-th coordinate axis.

With this general tool, we can establish the tail behavior of various functionals of Z by relating

them to suitable sets A. In particular, observe that

{X > u} = {Z ∈ uA}, and {Y > u} = {Z ∈ uB}.

where A := {z = (zi)
p
i=1 :

∑p
i=1 aizi > 1} and B := {z :

∑p
i=1 bizi > 1}. Observe that both A

and B are bounded away from 0 and it can be shown, using the scaling properties of the measure

ν, that A and B are both ν-continuity sets. Thus, by (3.17) applied to the set A ∩ B, we obtain
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uα
P(X > u, Y > u) = uα

P(Z ∈ u(A ∩B)) → ν(A ∩ B),

as u → ∞. By elementary geometric considerations, however, (A ∩ B) ∩ ℓi = ∅, unless both ai

and bi are positive. In this case, if ai ∧ bi > 0, we have

πi(A ∩ B ∩ ℓi) = (1/ai,∞) ∩ (1/bi,∞) = (1/(ai ∧ bi),∞).

This, in view of (3.18), yields the formula (3.15) and completes the proof.

Equivalent definition of χ Before we discuss any estimation methods of χ and χ, it is useful to

introduce an alternative way of defining the two measures. The joint distribution of a set of vari-

ables can be separated into their respective marginal distributions and dependence structure among

them. This idea is also well known in the study of copulas. In order to focus on the dependence

structure of two variables, it is helpful to remove the influence of marginal aspects first by trans-

forming the raw data to a common marginal distribution. After such a transformation, differences

in distributions are purely due to dependence structures. Now we transform the bivariate variables

(X, Y ) to unit Fréchet marginals S and T as follows:

S = −1/ logFX(X) and T = −1/ logFY (Y ),

where FX and FY are the marginal distribution functions of X and Y respectively. Notice that

there are two typical ways to estimate FX and FY practically. Each of the two marginals can

either be approximated from a GPD family using univariate extreme value theory, or be simply

approximated by its empirical cumulative distribution function (ECDF). It follows that S and T

have the common distribution function F (s) = e−1/s. Thus, we can show that χ can be equivalently

defined as
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χ = lim
q→1

P (F (T ) > q | F (S) > q)

= lim
s→∞

P (T > s | S > s)

= lim
s→∞

P (T > s, S > s)

P (S > s)
.

Estimation of χ and χ Ledford and Tawn ( [66], [67] ) established that under weak conditions

P (S > s, T > s) ∼ L(s)s−1/η as s → ∞,

where 0 < η ≤ 1 is a constant and L is a slowly varying function. From this representation we

have

χ = 2η − 1,

and if χ = 1, corresponding to η = 1, then χ = lims→∞ L(s). So the estimation of η and

lims→∞ L(s) provide the basis for estimating χ and χ. Here, the key point is to estimate the joint

distribution P (S > s, T > s) hence η and L(s). Let Z = min(S, T ), so P (S > s, T > s) =

P (min(S, T ) > s) = P (Z > s). Inference follows using univariate extreme value techniques to

fit a generalized Pareto distribution to the data points in Z that exceed a large fixed threshold u,

then the estimated shape parameter of the fitted distribution provides an estimate of η.

Before we estimate χ, it is important to decide if there exists an asymptotic dependence. We

thus first test the null hypothesis χ = 1. Only if there is no significant evidence to reject it, we

estimate χ.

Testing χ = 1 There are basically two major different ways to test if χ = 1. First, we can simply

create a confidence interval for an estimate of χ. From the discussion above, the estimate and

standard error of the shape parameter η can be obtained in the usual way from standard likelihood

theory. So by the Delta method, one can obtain the corresponding estimate and standard error of χ

as
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χ̂ = 2η̂ − 1 and SE(χ̂) = 2SE(η̂),

where SE(η̂) can be obtained from the standard maximum likelihood method. Hence a 95%

confidence interval of the true χ is approximated by

(
χ̂− 1.96SE(χ̂), χ̂+ 1.96SE(χ̂)

)
,

as the sample size in the study is big enough. Thus, the hypothesis χ = 1 is rejected (at level 0.05)

when the confidence interval does not capture 1. For the second way, given that χ = 1 corresponds

to η = 1, one can use anova in R to perform a likelihood ratio test for asymptotic dependence,

with the null hypothesis η = 1 versus the alternative η < 1. We refer to [68] for the details of R

implementation.

Estimation of χ Once the above test shows no significant evidence to reject χ = 1, we can

estimate χ under the assumption that χ = η = 1. [69] provided a maximum-likelihood estimator

of χ, i.e. the natural non-parametric estimator under the constraint χ̂ = 1

χ̂ =
unu

n
(3.19)

and

SE(χ̂) =

√
u2nu(n− nu)

n3
,

where n is the sample size and nu is the number of observations of variable Z that exceed the

threshold u.

3.4.4 Large tables and displays

In this section, we display all the estimation results of the risk analysis of CIDR curves using

large Tables 3.3–3.8 as well as Figures 3.5–3.15.
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Table 3.3: Estimation results for the norm ‖R‖ for nine ETFs.

In this table, the Value-at-Risk estimates VaR.004 and VaR.0008, respectively, represent the 1-year and

5-years return levels. Standard errors in parentheses. Recall that u is the threshold and Nu is the sample

size of values over the threshold.

ETF Prd u Nu Parameter γ̂ VaR.004 ES.004 VaR.0008 ES.0008

Bf 0.8 54 0.12(0.16) 2.46(0.16) 3.08(0.13) 3.43(0.94) 4.18(0.34)

XLF Dr 2.7 71 -0.27(0.09) 7.83(0.20) 8.40(0.70) 8.78(0.43) 9.15(0.97)

(Financials) A1 2.5 33 -0.24(0.20) 6.81(0.37) 7.54(1.57) 8.02(1.23) 8.52(2.56)

A2 1.3 51 0.02(0.16) 3.11(0.13) 3.65(0.19) 3.98(0.69) 4.54(0.35)

Bf 0.8 67 -0.08(0.11) 2.13(0.04) 2.39(0.09) 2.56(0.13) 2.79(0.17)

XLK Dr 1.6 69 -0.08(0.11) 4.96(0.23) 5.64(0.43) 6.06(0.79) 6.66(0.74)

(Technology) A1 1.1 73 0.16(0.12) 3.08(0.19) 3.90(0.19) 4.33(1.09) 5.39(0.65)

A2 0.8 68 -0.10(0.15) 1.99(0.03) 2.23(0.11) 2.37(0.14) 2.57(0.21)

Bf 0.6 78 0.09(0.11) 1.91(0.06) 2.33(0.05) 2.58(0.31) 3.06(0.12)

XLY Dr 2.2 58 -0.02(0.13) 7.06(0.69) 8.29(1.11) 9.04(2.92) 10.22(2.03)

(Cons. Dis.) A1 1.4 63 0.10(0.17) 4.20(0.41) 5.18(0.33) 5.74(2.49) 6.88(0.64)

A2 0.9 69 -0.06(0.15) 2.56(0.08) 2.92(0.16) 3.14(0.35) 3.47(0.31)

Bf 0.6 50 -0.15(0.15) 1.34(0.01) 1.47(0.08) 1.55(0.04) 1.65(0.15)

XLP Dr 0.6 185 0.20(0.08) 5.38(0.82) 7.27(0.43) 8.25(4.41) 10.84(1.37)

(Cons. Stap.) A1 0.8 72 -0.10(0.12) 1.92(0.02) 2.13(0.07) 2.27(0.09) 2.45(0.14)

A2 0.6 66 0.12(0.14) 1.51(0.04) 1.84(0.06) 2.03(0.21) 2.43(0.21)

Bf 1.3 50 -0.08(0.19) 2.46(0.05) 2.71(0.16) 2.87(0.23) 3.09(0.32)

XLE Dr 2.5 51 -0.23(0.14) 5.79(0.16) 6.27(0.60) 6.58(0.49) 6.91(0.94)

(Energy) A1 1.7 51 -0.23(0.15) 3.45(0.05) 3.71(0.23) 3.88(0.14) 4.06(0.39)

A2 1.3 57 -0.12(0.13) 2.93(0.05) 3.24(0.16) 3.44(0.19) 3.70(0.30)

Bf 0.5 66 0.11(0.14) 1.74(0.09) 2.24(0.18) 2.51(0.54) 3.16(0.77)

XLV Dr 1.5 53 -0.06(0.17) 4.46(0.29) 5.15(0.58) 5.59(1.31) 6.22(1.08)

(Health) A1 0.8 95 0.12(0.11) 3.13(0.20) 3.93(0.13) 4.38(1.01) 5.35(0.30)

A2 0.7 71 0.11(0.11) 2.20(0.08) 2.73(0.08) 3.03(0.41) 3.66(0.19)

Bf 0.8 48 -0.12(0.16) 1.69(0.02) 1.87(0.10) 1.98(0.08) 2.12(0.20)

XLI Dr 1.5 88 0.14(0.13) 5.28(0.68) 6.67(0.41) 7.44(3.92) 9.17(0.88)

(Industrials) A1 1.5 65 -0.10(0.11) 3.83(0.10) 4.28(0.22) 4.57(0.31) 4.95(0.39)

A2 1.2 48 -0.10(0.17) 2.42(0.04) 2.69(0.14) 2.85(0.17) 3.08(0.28)

Bf 0.8 85 0.09(0.13) 2.75(0.16) 3.35(0.09) 3.70(0.81) 4.39(0.18)

XLB Dr 2.0 74 0.02(0.14) 5.83(0.51) 6.87(0.57) 7.49(2.40) 8.57(1.07)

(Materials) A1 1.5 70 -0.05(0.14) 3.99(0.17) 4.54(0.30) 4.88(0.71) 5.38(0.54)

A2 1.2 64 -0.23(0.10) 2.84(0.03) 3.06(0.13) 3.21(0.07) 3.36(0.21)

Bf 0.8 57 -0.01(0.15) 2.17(0.07) 2.52(0.10) 2.74(0.32) 3.08(0.20)

XLU Dr 0.9 163 0.13(0.09) 5.78(0.75) 7.35(0.34) 8.22(3.53) 10.13(0.67)

(Utilities) A1 1.1 56 -0.06(0.14) 2.83(0.08) 3.24(0.17) 3.49(0.32) 3.86(0.32)

A2 0.7 74 0.16(0.14) 2.17(0.12) 2.77(0.17) 3.10(0.74) 3.88(0.73)
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Table 3.4: Estimation results for the magnitude of the first score |ξ1| for nine ETFs.

Quantities reported in this table are the same as in Table 3.3.

ETF Prd u Nu Parameter γ̂ VaR.004 ES.004 VaR.0008 ES.0008

Bf 0.7 60 0.10(0.14) 2.30(0.12) 2.86(0.10) 3.17(0.64) 3.82(0.21)

XLF Dr 2.5 69 -0.30(0.10) 7.57(0.18) 8.11(0.69) 8.46(0.38) 8.79(0.95)

(Financials) A1 2.3 34 -0.23(0.19) 6.72(0.40) 7.49(1.58) 8.00(1.35) 8.54(2.60)

A2 1.2 57 0.02(0.15) 2.98(0.12) 3.48(0.16) 3.78(0.58) 4.30(0.30)

Bf 0.9 49 -0.07(0.15) 2.07(0.04) 2.34(0.10) 2.50(0.16) 2.74(0.20)

XLK Dr 1.6 60 -0.06(0.13) 4.91(0.29) 5.66(0.52) 6.13(1.14) 6.82(0.94)

(Technology) A1 1.0 76 0.14(0.12) 3.05(0.18) 3.84(0.16) 4.27(0.99) 5.25(0.43)

A2 0.9 45 -0.03(0.23) 1.97(0.06) 2.26(0.13) 2.44(0.33) 2.72(0.27)

Bf 0.6 68 0.12(0.13) 1.87(0.08) 2.32(0.07) 2.58(0.40) 3.12(0.22)

XLY Dr 2.2 51 -0.04(0.14) 6.97(0.64) 8.14(1.17) 8.86(2.56) 9.95(2.13)

(Cons. Dis.) A1 1.0 108 0.06(0.11) 4.04(0.28) 4.88(0.21) 5.37(1.23) 6.30(0.37)

A2 1.0 48 -0.14(0.17) 2.45(0.05) 2.74(0.20) 2.92(0.21) 3.14(0.39)

Bf 0.6 44 -0.19(0.14) 1.31(0.01) 1.43(0.07) 1.50(0.03) 1.59(0.15)

XLP Dr 0.5 188 0.19(0.08) 5.22(0.77) 7.06(0.40) 8.03(4.06) 10.54(1.24)

(Cons. Stap.) A1 0.9 48 -0.07(0.15) 1.89(0.03) 2.13(0.08) 2.28(0.12) 2.49(0.17)

A2 0.5 90 0.13(0.12) 1.47(0.04) 1.81(0.07) 2.01(0.21) 2.43(0.29)

Bf 1.2 52 -0.21(0.15) 2.39(0.02) 2.57(0.15) 2.68(0.08) 2.80(0.26)

XLE Dr 2.5 45 -0.14(0.17) 5.62(0.24) 6.24(0.71) 6.64(0.96) 7.14(1.26)

(Energy) A1 1.7 46 -0.23(0.16) 3.40(0.05) 3.66(0.24) 3.83(0.14) 4.01(0.42)

A2 1.2 57 -0.17(0.12) 2.85(0.04) 3.13(0.15) 3.31(0.13) 3.52(0.27)

Bf 0.5 58 0.15(0.16) 1.69(0.09) 2.17(0.16) 2.43(0.53) 3.05(0.66)

XLV Dr 1.7 35 -0.18(0.22) 4.31(0.18) 4.81(0.80) 5.14(0.79) 5.51(1.45)

(Health) A1 0.7 104 0.10(0.10) 3.07(0.18) 3.83(0.12) 4.26(0.84) 5.16(0.24)

A2 0.7 59 0.08(0.11) 2.16(0.08) 2.66(0.08) 2.94(0.35) 3.51(0.16)

Bf 0.8 39 -0.25(0.15) 1.64(0.01) 1.76(0.10) 1.84(0.03) 1.93(0.19)

XLI Dr 1.3 88 0.11(0.12) 5.14(0.60) 6.43(0.42) 7.16(3.15) 8.70(0.82)

(Industrials) A1 1.6 53 -0.07(0.13) 3.80(0.12) 4.30(0.26) 4.62(0.45) 5.07(0.48)

A2 1.2 41 -0.09(0.21) 2.37(0.05) 2.65(0.18) 2.82(0.24) 3.06(0.38)

Bf 0.8 76 0.13(0.15) 2.74(0.21) 3.44(0.13) 3.83(1.20) 4.68(0.38)

XLB Dr 1.5 94 -0.04(0.11) 5.65(0.39) 6.52(0.52) 7.06(1.51) 7.86(0.91)

(Materials) A1 1.6 48 -0.22(0.11) 3.94(0.07) 4.31(0.27) 4.55(0.17) 4.81(0.43)

A2 1.3 50 -0.20(0.12) 2.79(0.03) 3.03(0.15) 3.19(0.09) 3.36(0.26)

Bf 0.8 50 0.06(0.19) 2.16(0.11) 2.60(0.09) 2.86(0.62) 3.34(0.16)

XLU Dr 0.9 136 0.06(0.08) 5.35(0.48) 6.56(0.34) 7.26(1.97) 8.60(0.61)

(Utilities) A1 1.1 50 -0.01(0.16) 2.80(0.10) 3.27(0.18) 3.55(0.48) 4.00(0.35)

A2 0.6 93 0.11(0.12) 2.04(0.08) 2.53(0.06) 2.81(0.41) 3.39(0.17)
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Table 3.5: Estimation results for the magnitude of the point-to-point returns for nine ETFs.

Quantities reported in this table are the same as in Table 3.3.

ETF Prd u Nu Parameter

γ̂

VaR.004 ES.004 VaR.0008 ES.0008

Bf 1.1 59 0.06(0.18) 4.58(0.65) 5.72(0.47) 6.28(3.61) 7.53(0.97)

XLF Dr 5.3 53 -0.23(0.13) 15.53(1.37) 16.00(2.77) 17.95(3.82) 17.96(4.27)

(Financials) A1 4.9 26 -0.21(0.23) 13.52(2.03) 14.46(4.77) 16.47(7.46) 16.89(8.80)

A2 2.4 53 -0.02(0.14) 7.77(0.90) 9.15(1.08) 10.06(3.94) 11.40(2.16)

Bf 1.4 40 -0.03(0.14) 2.83(0.07) 3.16(0.08) 3.44(0.25) 3.76(0.17)

XLK Dr 2.9 58 0.10(0.14) 9.20(1.77) 11.75(1.59) 12.72(9.59) 15.66(3.46)

(Technology) A1 2.1 46 -0.10(0.12) 5.05(0.19) 5.51(0.30) 6.11(0.61) 6.48(0.57)

A2 1.8 48 0.02(0.18) 4.89(0.41) 5.84(0.40) 6.37(2.17) 7.34(0.85)

Bf 1.1 57 -0.04(0.15) 3.26(0.15) 3.71(0.17) 4.06(0.61) 4.48(0.35)

XLY Dr 3.4 50 -0.04(0.14) 9.50(1.08) 10.90(1.33) 11.98(4.38) 13.29(2.61)

(Cons. Dis.) A1 2.5 43 -0.15(0.12) 5.95(0.23) 6.31(0.42) 7.07(0.69) 7.28(0.76)

A2 2.0 42 -0.05(0.16) 5.35(0.35) 6.11(0.50) 6.75(1.49) 7.43(1.02)

Bf 0.8 51 0.04(0.14) 2.27(0.09) 2.76(0.08) 2.99(0.41) 3.50(0.16)

XLP Dr 1.8 56 0.11(0.15) 6.65(1.11) 8.64(1.01) 9.43(6.23) 11.75(2.19)

(Cons. Stap.) A1 1.2 60 -0.10(0.11) 3.24(0.08) 3.54(0.13) 3.91(0.24) 4.16(0.24)

A2 1.2 42 0.00(0.16) 3.25(0.16) 3.87(0.19) 4.24(0.78) 4.86(0.41)

Bf 1.7 67 -0.17(0.17) 3.82(0.11) 3.89(0.17) 4.34(0.41) 4.33(0.35)

XLE Dr 3.5 64 0.04(0.14) 15.68(5.60) 19.38(5.57) 21.36(27.57) 25.29(11.57)

(Energy) A1 2.7 51 -0.12(0.10) 6.16(0.21) 6.57(0.34) 7.30(0.58) 7.59(0.60)

A2 2.3 57 -0.03(0.12) 6.90(0.57) 8.00(0.68) 8.77(2.24) 9.82(1.32)

Bf 0.7 64 -0.12(0.15) 2.53(0.08) 2.78(0.17) 3.06(0.31) 3.25(0.32)

XLV Dr 2.2 47 0.06(0.16) 7.84(1.47) 9.91(1.56) 10.88(7.99) 13.16(3.41)

(Health) A1 1.6 38 -0.16(0.14) 3.98(0.12) 4.25(0.26) 4.77(0.37) 4.93(0.50)

A2 1.4 57 -0.02(0.14) 4.44(0.29) 5.17(0.33) 5.68(1.26) 6.38(0.67)

Bf 1.2 46 -0.10(0.18) 3.04(0.11) 3.33(0.17) 3.68(0.45) 3.92(0.36)

XLI Dr 2.9 55 -0.17(0.12) 8.21(0.45) 8.67(0.81) 9.67(1.35) 9.92(1.36)

(Industrials) A1 2.3 58 -0.10(0.13) 6.42(0.35) 7.03(0.51) 7.77(1.25) 8.25(0.94)

A2 2.2 45 -0.12(0.14) 5.87(0.31) 6.41(0.52) 7.13(1.09) 7.55(0.98)

Bf 1.3 59 -0.19(0.13) 3.72(0.09) 3.87(0.21) 4.31(0.28) 4.36(0.37)

XLB Dr 4.1 40 -0.22(0.14) 10.59(0.70) 10.93(1.48) 12.37(1.98) 12.39(2.46)

(Materials) A1 2.6 58 -0.32(0.12) 5.51(0.07) 5.19(0.20) 6.03(0.16) 5.58(0.32)

A2 2.6 40 -0.09(0.19) 6.66(0.53) 7.40(0.77) 8.22(2.40) 8.83(1.60)

Bf 1.3 43 -0.13(0.21) 3.80(0.21) 4.15(0.39) 4.62(0.95) 4.88(0.82)

XLU Dr 2.4 51 0.11(0.17) 9.60(2.84) 12.66(2.66) 13.91(17.54) 17.51(6.12)

(Utilities) A1 1.7 51 -0.25(0.15) 3.59(0.05) 3.52(0.14) 4.03(0.16) 3.86(0.27)

A2 1.1 70 0.19(0.14) 3.90(0.44) 5.40(0.58) 5.81(2.87) 7.75(1.78)
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Table 3.6: Fisher’s exact test (with frequencies).

This table shows the results of Fisher’s exact test on independence of the four regions with frequencies of

points falling in each region given their norms above the threshold.

ETF Prd u Nu (+, +) (+, -) (-, -) (-, +) P value

Bf 0.8 52 15 8 15 14 0.27

XLF Dr 2.7 68 13 21 18 16 0.62

(Financials) A1 2.5 29 6 7 6 10 0.47

A2 1.3 50 14 10 12 14 0.78

Bf 0.8 61 14 12 15 20 1.00

XLK Dr 1.6 64 18 15 15 16 1.00

(Technology) A1 1.1 69 16 14 22 17 0.47

A2 0.8 66 16 13 20 17 0.62

Bf 0.6 74 19 16 18 21 1.00

XLY Dr 2.2 53 12 16 12 13 0.59

(Cons. Dis.) A1 1.4 61 18 12 16 15 0.44

A2 0.9 63 18 15 10 20 0.44

Bf 0.6 47 13 8 13 13 0.56

XLP Dr 0.6 171 45 48 37 41 0.65

(Cons. Stap.) A1 0.8 67 14 17 16 20 0.47

A2 0.6 60 15 12 14 19 1.00

Bf 1.3 46 13 12 8 13 0.56

XLE Dr 2.5 48 12 11 8 17 0.38

(Energy) A1 1.7 50 12 15 13 10 1.00

A2 1.3 54 16 8 15 15 0.27

Bf 0.5 63 15 17 16 15 1.00

XLV Dr 1.5 51 16 8 13 14 0.39

(Health) A1 0.8 92 25 19 29 19 0.14

A2 0.7 65 17 10 19 19 0.32

Bf 0.8 44 10 11 12 11 1.00

XLI Dr 1.5 77 21 18 17 21 1.00

(Industrials) A1 1.5 63 16 15 17 15 0.80

A2 1.2 46 10 11 14 11 1.00

Bf 0.8 81 21 19 20 21 1.00

XLB Dr 2.0 67 19 12 11 25 0.61

(Materials) A1 1.5 60 13 15 17 15 1.00

A2 1.2 61 20 11 13 17 0.61

Bf 0.8 55 15 12 15 13 0.59

XLU Dr 0.9 147 39 38 34 36 1.00

(Utilities) A1 1.1 53 11 13 14 15 0.78

A2 0.7 69 20 18 13 18 0.81
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Table 3.7: Fisher’s exact test (with probabilities).

This table shows the results of Fisher’s exact test on independence of the four regions with probabilities of

points falling in each region given their norms above the threshold.

ETF Prd u Nu P(+, +) P(+, -) P(-, -) P(-, +) P value

Bf 0.8 52 0.29 0.15 0.29 0.27 0.27

XLF Dr 2.7 68 0.19 0.31 0.26 0.24 0.62

(Financials) A1 2.5 29 0.21 0.24 0.21 0.34 0.47

A2 1.3 50 0.28 0.20 0.24 0.28 0.78

Bf 0.8 61 0.23 0.20 0.25 0.33 1.00

XLK Dr 1.6 64 0.28 0.23 0.23 0.25 1.00

(Technology) A1 1.1 69 0.23 0.20 0.32 0.25 0.47

A2 0.8 66 0.24 0.20 0.30 0.26 0.62

Bf 0.6 74 0.26 0.22 0.24 0.28 1.00

XLY Dr 2.2 53 0.23 0.30 0.23 0.25 0.59

(Cons. Dis.) A1 1.4 61 0.30 0.20 0.26 0.25 0.44

A2 0.9 63 0.29 0.24 0.16 0.32 0.44

Bf 0.6 47 0.28 0.17 0.28 0.28 0.56

XLP Dr 0.6 171 0.26 0.28 0.22 0.24 0.65

(Cons. Stap.) A1 0.8 67 0.21 0.25 0.24 0.30 0.47

A2 0.6 60 0.25 0.20 0.23 0.32 1.00

Bf 1.3 46 0.28 0.26 0.17 0.28 0.56

XLE Dr 2.5 48 0.25 0.23 0.17 0.35 0.38

(Energy) A1 1.7 50 0.24 0.30 0.26 0.20 1.00

A2 1.3 54 0.30 0.15 0.28 0.28 0.27

Bf 0.5 63 0.24 0.27 0.25 0.24 1.00

XLV Dr 1.5 51 0.31 0.16 0.25 0.27 0.39

(Health) A1 0.8 92 0.27 0.21 0.32 0.21 0.14

A2 0.7 65 0.26 0.15 0.29 0.29 0.32

Bf 0.8 44 0.23 0.25 0.27 0.25 1.00

XLI Dr 1.5 77 0.27 0.23 0.22 0.27 1.00

(Industrials) A1 1.5 63 0.25 0.24 0.27 0.24 0.80

A2 1.2 46 0.22 0.24 0.30 0.24 1.00

Bf 0.8 81 0.26 0.23 0.25 0.26 1.00

XLB Dr 2.0 67 0.28 0.18 0.16 0.37 0.61

(Materials) A1 1.5 60 0.22 0.25 0.28 0.25 1.00

A2 1.2 61 0.33 0.18 0.21 0.28 0.61

Bf 0.8 55 0.27 0.22 0.27 0.24 0.59

XLU Dr 0.9 147 0.27 0.26 0.23 0.24 1.00

(Utilities) A1 1.1 53 0.21 0.25 0.26 0.28 0.78

A2 0.7 69 0.29 0.26 0.19 0.26 0.81
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Table 3.8: Estimation results of extreme dependence between ξ21 and ξ22 for the nine ETFs.

Standard errors in parentheses. The value of q is the quantile for the threshold. Pvalue is for the likelihood

ratio test of χ = 1, and “*" indicates cases where χ is not significantly different from 1.

ETF Prd q nu χ̂ Pvalue χ̂

Bf 0.80 63 0.59(0.43) 0.21* 0.40(0.04)

XLF Dr 0.70 106 0.25(0.32) 0.00 0

(Financials) A1 0.80 71 0.53(0.42) 0.15* 0.43(0.05)

A2 0.80 72 0.73(0.41) 0.39* 0.35(0.04)

Bf 0.80 63 0.67(0.43) 0.32* 0.38(0.04)

XLK Dr 0.70 105 0.01(0.33) 0.00 0

(Technology) A1 0.80 71 -0.20(0.35) 0.00 0

A2 0.75 89 0.21(0.33) 0.00 0

Bf 0.70 94 0.62(0.34) 0.15* 0.42(0.04)

XLY Dr 0.75 87 0.28(0.39) 0.02 0

(Cons. Dis.) A1 0.65 125 0.31(0.28) 0.00 0

A2 0.75 90 0.37(0.37) 0.04 0

Bf 0.80 63 0.29(0.41) 0.04 0

XLP Dr 0.60 140 0.62(0.33) 0.13* 0.42(0.03)

(Cons. Stap.) A1 0.85 54 -0.03(0.43) 0.01 0

A2 0.75 90 0.42(0.38) 0.05 0

Bf 0.80 63 -0.59(0.32) 0.00 0

XLE Dr 0.80 70 0.15(0.40) 0.01 0

(Energy) A1 0.80 71 0.21(0.37) 0.01 0

A2 0.70 108 0.61(0.35) 0.14* 0.39(0.03)

Bf 0.80 63 0.97(0.50) 0.93* 0.38(0.04)

XLV Dr 0.80 70 -0.10(0.33) 0.00 0

(Health) A1 0.70 106 0.25(0.30) 0.00 0

A2 0.85 54 0.19(0.42) 0.02 0

Bf 0.85 47 0.54(0.47) 0.22* 0.37(0.05)

XLI Dr 0.80 70 -0.58(0.28) 0.00 0

(Industrials) A1 0.80 70 -0.16(0.35) 0.00 0

A2 0.80 72 0.23(0.39) 0.02 0

Bf 0.85 47 0.44(0.50) 0.16* 0.35(0.05)

XLB Dr 0.80 70 -0.37(0.34) 0.00 0

(Materials) A1 0.80 71 -0.36(0.30) 0.00 0

A2 0.80 72 0.13(0.36) 0.01 0

Bf 0.80 62 0.07(0.37) 0.00 0

XLU Dr 0.80 70 0.09(0.38) 0.01 0

(Utilities) A1 0.80 71 0.31(0.40) 0.04 0

A2 0.80 72 0.87(0.45) 0.70* 0.36(0.04)
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Figure 3.5: VaR & ES Estimates of norms of CIDRs. This is an illustration of the VaR & ES Estimates

(with standard errors) of norms of CIDRs for the nine Sector EFTs.

85



5
1
0

1
5

2
0

2
5

Period

V
a
R

0
.0

0
4

Bf Dr A1 A2

XLF  

XLK  

XLY  

XLP  

XLV  

XLI  

XLB  

5
1
0

1
5

2
0

2
5

Period

E
S

0
.0

0
4

Bf Dr A1 A2

5
1
0

1
5

2
0

2
5

Period

V
a
R

8
e

−
0

4

Bf Dr A1 A2

5
1
0

1
5

2
0

2
5

Period

E
S

8
e

−
0

4

Bf Dr A1 A2

Figure 3.6: VaR & ES Estimates of magnitude of point-to-point returns. This is an illustration of the VaR

& ES Estimates (with standard errors) of magnitude of point-to-point returns for the seven Sector EFTs.
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Figure 3.7: The scatter plot of XLF scores with VaR Estimates (Bootstrap). On each of the scatter plot,

the big black thick circle corresponds to the norm at VaR0.004 (or the 1-year return level), while the bigger

grey circle corresponds to the norm at VaR0.0001. The stars represent the real extreme points with norm

greater than VaR0.004. The little grey circles represent the simulated extreme points with norm greater than

VaR0.004 based on the Bootstrap method.
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Figure 3.8: VaR Extremal regions of XLF (Bootstrap). This is the extremal regions of CIDRs correspond-

ing to extreme regions in different quadrants on the (ξ1, ξ2) plane in Figure 3.7. On each panel, the two

curves in the same type, respectively, represents the lower and upper bound of the extremal region of CIDRs

regarding one of the four periods under comparison. The thick solid curves represent the real extremal

CIDRs with norm greater than VaR0.004.
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Figure 3.9: The scatter plot of XLF scores with ES Estimates (Bootstrap). On each of the scatter plot,

the big black thick circle corresponds to the norm at ES0.004 (or the 1-year expected shortfall). The stars

represent the real extreme points with norms greater than VaR0.004. The little grey circles represent the

simulated extreme points with norm at ES0.004 based on the Bootstrap method.
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Figure 3.10: ES Extremal regions of XLF (Bootstrap). This is the extremal regions of CIDRs correspond-

ing to extreme regions in different quadrants on the (ξ1, ξ2) plane in Figure 3.9. On each panel, the two

curves in the same type, respectively, represents the lower and upper bound of the extremal region of CIDRs

regarding one of the four periods under comparison. The thick solid curves represent the real extremal

CIDRs with norm greater than VaR0.004.
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Figure 3.11: The scatter plot of XLF scores with VaR Estimates (KDE). On each of the scatter plot, the

big black thick circle corresponds to the norm at VaR0.004 (or the 1-year return level), while the bigger

grey circle corresponds to the norm at VaR0.0001. The stars represent the real extreme points with norm

greater than VaR0.004. The little grey circles represent the simulated extreme points with norm greater than

VaR0.004 based on KDE.
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Figure 3.12: VaR Extremal regions of XLF (KDE). This is the extremal regions of CIDRs corresponding to

extreme regions in different quadrants on the (ξ1, ξ2) plane in Figure 3.11. On each panel, the two curves in

the same type, respectively, represents the lower and upper bound of the extremal region of CIDRs regarding

one of the four periods under comparison. The thick solid curves represent the real extremal CIDRs with

norm greater than VaR0.004.

92



−10 −5 0 5 10

−
1

0
−

5
0

5
1

0

ξ1

ξ 2

XLF: Before

−10 −5 0 5 10

−
1

0
−

5
0

5
1

0

ξ1

ξ 2

XLF: During

−10 −5 0 5 10

−
1

0
−

5
0

5
1

0

ξ1

ξ 2

XLF: After1

−10 −5 0 5 10

−
1

0
−

5
0

5
1

0

ξ1

ξ 2

XLF: After2

Figure 3.13: The scatter plot of XLF scores with ES Estimates (KDE). On each of the scatter plot, the big

black thick circle corresponds to the norm at ES0.004 (or the 1-year expected shortfall). The stars represent

the real extreme points with norms greater than VaR0.004. The little grey circles represent the simulated

extreme points with norm at ES0.004 based on KDE.
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Figure 3.14: ES Extremal regions of XLF (KDE). This is the extremal regions of CIDRs corresponding to

extreme regions in different quadrants on the (ξ1, ξ2) plane in Figure 3.13. On each panel, the two curves in

the same type, respectively, represents the lower and upper bound of the extremal region of CIDRs regarding

one of the four periods under comparison. The thick solid curves represent the real extremal CIDRs with

norm greater than VaR0.004.
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Figure 3.15: Estimates of χ(q) and χ(q) for the squared scores of XLF. This is the estimates results of χ(q)
and χ(q) for the squared scores of the first two CIDR FPCs for XLF. Dotted lines correspond to approximate

95% confidence intervals. From top to bottom, the panels show the results for the periods “before", “during"

“after1" and “after2".
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Chapter 4

A Large-Scale Dynamic Cross-Correlation Testing

Problem

In this Chapter, we consider a large scale multiple testing problem for cross-correlations among

multivariate random vectors or elements. The basic idea is inspired by [5] and an attempt is made

to tailor it to address a specific hypothesis testing problem in statistical genomics and proteomics

studies. The properties of the proposed method is investigated numerically at this stage. Difficulties

that must be overcome are highlighted.

4.1 Introduction

Consider a two-sample problem. Let X = (X1, . . . , Xp1)
′ and Y = (Y1, . . . , Yp2)

′ be two high

dimensional random vectors, with dimension p1 and p2 respectively. It is of interest to carry out

multiple correlation tests between Xi and Yj:

H0ij : Cov(Xi, Yj) = 0 versus H1ij : Cov(Xi, Yj) 6= 0 (4.1)

for 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2, where “Cov" represents the covariance between two random

variables. This is the so-called large scale multiple testing problem of cross-correlations.

Large scale multiple testing problems arise in many applications including brain connectivity

analysis and gene co-expression network analysis, where thousands or millions of individual hy-

potheses are carried out at the same time. This brings up a particular focus on the high dimensional

setting where the dimension of the vectors can be much larger than the sample size. A common

goal in multiple testing is to control the false discovery rate (FDR), which is defined as the expected

proportion of false positives among all rejections, i.e.
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FDR = E[False Rejections/Rejections]

The difficulties of this multiple testing problem lie in (i) the construction of suitable test statistics

for testing the individual hypotheses, and more importantly, in (ii) constructing a good procedure

to account for the multiplicity of the test such that the overall FDR is controlled. A successful

procedure must have a solid theoretical and practical control on the FDR level while maintaining

a good power.

[5] propose a large scale simultaneous testing procedure for correlations in both the one-

sample and two-sample settings. Their multiple testing procedure is developed in two stages.

First, they construct a test statistic marginally for each individual hypothesis and show that the null

distribution is asymptotically standard normal, as both the sample size and the number of individual

tests go to infinity (a bootstrap method is used when the sample size is small). Second, they develop

a procedure to account for the multiplicity in testing a large number of hypotheses such that the

overall FDR and false discovery proportion (FDP) are controlled at least asymptotically. They

also mentioned a procedure for problem (4.1) as an application of their main results. Our major

objective is to tailor their procedure to solve a sophisticated multiple testing problem.

4.2 Motivation

4.2.1 Description of the data

The raw data consist of two datasets from a biological experimental study. The protein data

is an 805 × 18 matrix, which represents the abundance profile of 805 proteins measured on 3

individual subjects repeatedly at 6 time points 0hr, 1hr, 2hr, 6hr, 12hr and 24hr. Hence the data

structure can be viewed as a longitudinal type, where on each of the 3 subjects we collect data

of the 805 proteins over 6 sequential time points within a day. Naturally, the 3 subjects can be

viewed as a block, which give us 3 independent replicates of each protein profile. Notice that

there might present substantial temporal dependence across the 6 repeated measurements for each

protein within a subject.
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Similarly, the genomics data is a 779 × 30 matrix, which stores the temporal profiles of 779

genes measured on 3 subjects at 10 time points 0hr, 20min, 40min, 60min, 90min, 120min, 240min,

360min, 12hr and 24hr. Notice that the time points for proteins do not necessarily match those for

genes. All the protein and gene data have been log-transformed to make their distribution more

symmetric and Gaussian-like. In summary, we have

{Xgit} or Xi(t) = [X1i(t), . . . , XGi(t)] (4.2)

and

{Ypis} or Yi(s) = [Y1i(s), . . . , YPi(s)], (4.3)

where i = 1, . . . , n = 3, g = 1, . . . , G for gene and p = 1, . . . , P for protein. Focusing on the first

sample, we can denote by Xgit the profile of gene g measured on subject i at time t. The vectors Xi

are independent. Analogous assumptions hold for the second sample. In (4.2) and (4.3), subscript

“t” means that we view the repeated measurements as a vector, while “(t)" means that we treat the

repeated sequential measurements as discrete samples drawn from a continuous curve.

4.2.2 The main objective

We are interested in detecting which pairs of gene and protein are correlated dynamically. We

need to define a measure to quantify the similarity or correlation between each pair of gene and

protein based on their dynamical profiles and threshold them after the multiplicity of the tests has

been accounted for. Since our major objective is to test for the dynamic correlation among all

P ×G pairs simultaneously when the number of pairs is big, this problem is a large-scale multiple

testing problem.

4.3 Preliminaries

The challenge of this problem comes from three major sources. First, the entries of the cor-

relation matrix of sample statistics measuring the dynamic correlation between each protein-gene
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pair are intrinsically dependent even if the original observations are independent. This attribute

adds difficulty to the theory development. Second, the longitudinal data structure prevents us from

using the exact procedure by [5] directly. We need to propose a new model to measure the dynamic

correlation of each protein-gene pair. It is preferred that the marginal distribution of the individual

test statistic under the null should be approximately normal when the sample size and dimension

are both large enough. Otherwise a proper bootstrap method is needed to improve the accuracy

of the approximation. Lastly, because of the temporal dependence among the repeated measure-

ments, we have to utilize a new resampling scheme to account for the sequential dependence when

designing a bootstrap procedure.

To overcome aforementioned difficulties, some new flavors are added to the conventional recipe

proposed by [5] . To this end, we introduce the following essential concepts before diving into

details.

4.3.1 A mixed model

Mixed models are an extension of regression models that allow for the incorporation of random

effects. A common application of mixed models is the analysis of longitudinal data sets, especially,

when the subjects are randomly chosen and therefore their effects can be viewed as random effects.

In the rest of this section we shall formulate the mixed model that can be used to capture the

dynamic correlation between a given pair of protein and gene. For a review of mixed models, one

can refer to Chapter 4 of [70].

As a way of measuring the dynamic correlation between a given pair of protein and gene,

we are more interested in how the profile of each protein evolve over time can be explained by

the dynamic behavior of genes. Thus in the mixed model we have Ypis as the response variable

denoting the profile of protein p measured on subject i at time s, where p = 1, . . . , P = 805 and

i = 1, . . . , n = 3, as in Section 4.2.1. We however do not care about the real time when the protein

is measured, so the index s can be simplified as s = 1, . . . , S = 6. The genes serve as the covariates

in the model. Let us denote fgt the true profiles of the gene g at time t, for g = 1, . . . , G = 779 and
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t = 1, . . . , T = 6. The true gene profile fgt can be estimated using the raw gene data Xgit, since

we assume

Xgit = fgt + ηgit

where ηgit is the measurement error. In practice, for each gene g, we use all 3 by 10 raw gene data

points to estimate fg1, . . . , fg6, which are evaluated exactly at the same real time points as those

available for proteins. These estimates will be denoted by f̂gt later on. In practice, there are many

ways to estimate fgt. The easiest one is just to pick the 6 real time points which match that for

proteins and use the sample mean of the three replicates for each time point as the estimate f̂gt, or

Xg.t. This can also be done by fitting smooth curves (with either local polynomial or cubic spline

methods) and then evaluate f̂gt at the 6 real time points on each curve.

After aligning the time points s and t at which the protein observations are available, we pos-

tulate the following marginal mixed model for each protein-gene pair (p, g):

Ypit = µt + αpg + Upgi + λpgfgt + ǫpgit, (i = 1, . . . n, t = 1, . . . , T ). (4.4)

In model (4.4), µt denotes the trend of all the protein profiles at time t, this term is necessary when

there is a clear trend with the response over time. In practice, we can also remove this term in the

estimation step by subtracting it from the response in a prior data analysis procedure. The sample

mean of the responses of P proteins with all the n subjects at each time point t, ȳ..t, is usually con-

sidered to be a simple and efficient estimate of µt. Coefficient αpg is the intercept term considered

to depend only on p and g. Variables Upg1, . . . , Upgn denote the random intercepts which can be

treated as a random sample from, say, a N(0, σ2
Upg

) distribution for some σ2
Upg

> 0. There are two

major merits of introducing the Upgi term. First, notice that the repeated measurements within a

subject is usually less variable, so it would be beneficial to utilize the within-subject information.

Introducing Upgi term as a random intercept for each subject is a good way of accounting for corre-

lation of measurements pertaining to the same subject, or the within-subject correlation. Secondly,

in a longitudinal study, the subjects are usually randomly sampled, so the effect of subjects is not
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of interest. Random term Upgi has an advantage of taking into account the randomness during

sampling by introducing one single parameter, σ2
Upg

, which is commonly referred to as a variance

component. Slope λpg in (4.4) measures the dynamical correlation between protein p and gene g.

The main goal of our work is to test

H0pg : λpg = 0 versus H1pg : λpg 6= 0, for 1 ≤ p ≤ P and 1 ≤ g ≤ G. (4.5)

Lastly, we assume the random error term ǫpgit follows i.i.d. N(0, σ2
ǫ ).

Remark. An initial numerical study shows that there are very slight random effect of the

subjects in our real data. So a regression model might work sufficiently well. We focus on the

mixed model due to its potential theoretical value and broader scope of applications.

4.3.2 Moving block bootstrap

As a new resampling scheme, the moving block bootstrap (MBB) was independently proposed

by [71] and [72] to be applicable to dependent data without any parametric model assumptions. In

contrast to resampling individual observations by the ordinary bootstrap with i.i.d. observations,

the MBB performs the resampling procedure within a row of formed blocks of consecutive ob-

servations so that the dependence structure of the original observations can be preserved within

each block. Specifically, let Xn = {X1, . . . , Xn} be the observations of a sequence of stationary

random variables. Let Bi = (Xi, . . . , Xi+l−1) denote the ith block of time series starting with Xi,

1 ≤ i ≤ N where N = n− l+1. The block length l is an integer between 1 and n, which is usually

requested to satisfy the conditions that l → ∞ and l/n → 0. We randomly select a suitable number

(say, k) of blocks, B∗
1, . . . ,B∗

k from {B1, . . . ,BN} with replacement. Note that each of the selected

blocks contains l elements and denote the elements in B∗
i by (X∗

(i−1)l+1, . . . , X
∗
il), i = 1, . . . , k.

Then X∗
1 , . . . , X

∗
m consist of the MBB sample of size m = kl. Typically, we choose ⌊n/l⌋ blocks

of length l with replacement from the n− l+1 blocks of the observed data. When ⌊n/l⌋ happen to

be an integer then we have m = n, hence we can denote a random sample as X ∗
n = {X∗

1 , . . . , X
∗
n}.
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Suppose θ̂n = T (Fn) is an estimation based on random sample Xn, where Fn is an empirical

function of random sample distribution. Then the MMB version of the estimation θ̂n, denoted as

θ∗n, has the form:

θ∗n = T (F ∗
n),

where F ∗
n is the empirical distribution of MBB sample X ∗

n . Since each of the resampled blocks B∗
i

are randomly chosen from {B1, . . . ,BN} with replacement, the resampled observations {(X∗
(i−1)l+1, . . . ,

X∗
il), i = 1, . . . , k} are conditionally i.i.d random vectors with the probability:

P ((X∗
(i−1)l+1, . . . , X

∗
il) = (Xj, . . . , Xj+l−1)) = N−1,

for 1 ≤ j ≤ N . As l → ∞ with n, any finite-dimensional joint distribution of the population can

be ultimately revealed from the resampled observations. That is to say, the MBB method is able to

efficiently approximate features of the whole process at the population level.

As a successful variant of bootstrap, particularly for time series, MBB has acquired a broad

popularity in many applications. [73] compare four different block bootstrap methods by quan-

tifying their relative efficiency and conclude that the MBB procedure shows the lowest errors in

estimation and prediction in and out of the sample overall. In practice, it is usually not preferable

to directly apply MBB to original data, which requires us to create the best suitable model for the

original data. Instead, we adopt the MBB procedures in resampling the series of residuals from

the set of estimation models. According to the process of block replacement, it is possible some

randomly selected block of residuals are not used at all, while some other one is used multiple

times. An illustrative example is given in the Section 4.4.2. When the blocks of residuals are

long enough, the correlation structure of the residuals should be accurately reflected through the

bootstrapped ones even without the information on unknown correlations.

In Section 4.4, we apply the MBB procedure to residuals of the proposed mixed model to

approximate the distribution of a studentized statistic. [74] proposed a similar idea of applying

MBB for analyzing longitudinal data, which focus on a case where the number of replications over
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time is large relative to the number of subjects and justify the effectiveness of MBB in the study by

deriving its asymptotic properties. The proposed MBB in this paper is slightly different from [74],

where we do a stratified version of MBB at and within subject level.

4.4 Large-scale multiple testing procedure

In this section, we explain our procedure for testing 4.5 in details. Theoretical results will be

explored to show that the procedure asymptotically controls the FDR and FDP at pre-specified

levels.

The FDR controlling procedure has been broadly used in dealing with large-scale multiple

testing problems such as the genomic studies. [5] proposed a large scale multiple testing procedure

for drawing inference on correlations that controls the FDR and FDP asymptotically under mild

assumptions on the dependence structures. A key step is to estimate the proportion of the falsely

rejected nulls by the procedure among all the true nulls at any given threshold level. Two different

methods for estimating this proportion are discussed in the paper.

In the following, we consider

H0pg : protein p is not dynamically correlated with gene g versus (4.6)

H1pg : protein p is dynamically correlated with gene g.

As discussed in Section 4.3.1, mixed model 4.4 is proposed to quantify the association between

each pair of gene and protein after controlling for the random effect of the random chosen subjects.

So the multiple tests (4.6) amounts to (4.5).

The test statistics for the dynamical correlation of each pair can be constructed based on the

studentized estimate of the slope of the mixed model, i.e.

Tpg =
λ̂pg

ŝd(λ̂pg)

Under proper conditions and the null hypothesis H0pg : λpg = 0, as n, T → ∞,
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Tpg → N(0, 1).

Remark. The normality of Tpg is not guaranteed when the sample sizes n, T are small. An-

other potential difficulty may arise from the estimation of the true gene profile fgt. Since fgt is

unobservable, we have to find a proper way to estimate it from raw data. A local polynomial esti-

mator f̂g(t) is usually considered to be a good way to recover the true profile if the observed data

are believed to be generated from a smooth curve fg(t) plus some disturbance errors. One can

prove that for any given “t”,

f̂gt = fgt + op((n · T )−2/5),

where fgt represents the discrete points on the smooth curve fg(t). By incorporating the estimator

f̂pt into the model to take the place of fgt, we need to show the asymptotic normality of the newly

estimated λ̂pg. This is also referred as a measurement error model problem.

4.4.1 FDR control procedure

Controlling the FDR or FDP is nontrivial when dependences present among the individual test

statistics. [5] proposed a FDR control scheme and show that the procedure controls the FDR and

FDP at the pre-specified level asymptotically. In the followings, we go through details of the FDR

control procedure and make substantial adjustment to the original scheme to accommodate our

situations.

The first FDR control procedure proceeds well when the normal approximation of the individ-

ual test statistics holds. We begin by showing some basic properties of the individual test statistics

Tpg which are generally correlated. It can be proved that, under the null hypothesis H0pg and certain

regularity conditions,

sup
0≤u≤b

√
logM

∣∣∣∣∣
P (|Tpg| ≥ u)

2− 2Φ(u)
− 1

∣∣∣∣∣→ 0 as n · T → ∞
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uniformly in 1 ≤ g ≤ G, 1 ≤ p ≤ P and M ≤ (n · T )r for any b > 0 and r > 0, where

Φ is the cumulative distribution function (CDF) of the standard normal distribution. In our case,

M = P ·G.

Denote the set of all true null hypotheses by

H0 = {(p, g) : 1 ≤ p ≤ P, 1 ≤ g ≤ G, λpg = 0}

and q0 = Card(H0). Since the asymptotic null distribution of each test statistic Tpg is standard

normal, it is easy to see that

P

{
max

(p,g)∈H0

|Tpg| ≥ 2
√

logM

}
→ 0 as (n, T, M) → ∞. (4.7)

We now develop the multiple testing procedure. Let u be the threshold level such that H0pg are

rejected whenever |Tpg| ≥ u. Then FDP of the procedure is

FDP(u) :=

∑
(p,g)∈H0

I {|Tpg| ≥ u}
max

{∑
1≤p≤P, 1≤g≤G I {|Tpg| ≥ u} , 1

} . (4.8)

An ideal threshold level for controlling the false discovery proportion at a specified level 0 < α < 1

is

ũ = inf



0 ≤ u ≤ 2

√
logM :

∑
(p,g)∈H0

I {|Tpg| ≥ u}
max

{∑
1≤p≤P, 1≤g≤G I {|Tpg| ≥ u} , 1

} ≤ α



 ,

where the constraint 0 ≤ u ≤ 2
√
logM is used here due to the tail bound (4.7). It is easy to

observe that FDP defined in (4.8) should decrease as the threshold u increases.

Threshold ũ needs to be estimated and depends on the unknown true null set H0. The crucial

step becomes to properly estimate

G0(u) :=
1

q0

∑

(p,g)∈H0

I {|Tpg| ≥ u} , (4.9)
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which is the true proportion of the falsely rejected nulls at any threshold level u. In our case P and

G thus q0 can be very large, so it is natural to use the tail of standard normal G(u) = 2− 2Φ(u) to

approximate G0(u), i.e., we have

sup
0≤u≤bM

∣∣∣∣
G0(u)

G(u)
− 1

∣∣∣∣→ 0 (4.10)

in probability as (n, P,G) → ∞, where bM = 4
√
logM − aM and aM = 2 log(logM). The range

0 ≤ u ≤ bM is nearly optimal for (4.10) to hold in the sense that aM cannot be replaced by any

constant in general. We now define the threshold used for the multiple testing procedure in the

following.

Large-scale Dynamic Cross-Correlation Tests with Normal approximation (LDCCT-N) Let

0 < α < 1 and define

û = inf



0 ≤ u ≤ bM :

G(u)PG

max
{∑

1≤p≤P,1≤g≤G I {|Tpg| ≥ u} , 1
} ≤ α



 , (4.11)

where 0 ≤ α ≤ 1 and G(u) = 2 − 2Φ(u). If û does not exist, then set û =
√
4 logM . We reject

H0pg whenever |Tpg| > û.

Remark. In the above procedure, to show that for each pair (p, g), Tpg → N(0, 1), we need the

sample size n, T → ∞ for validate the uniform central limit theorem. Then, to show the empirical

distribution function of the observed Tpg under nulls converges to the standard normal CDF Φ, i.e.,

G0(u) → G(u) = 2 − 2Φ(u), we need both P and G are big enough to apply the law of large

number. We also require the number of the true significant alternatives is relatively small, i.e. we

introduce some sparsity. Because in the above multiple testing procedure, we use total number

of pairs PG as the estimate for the number q0 = Card(H0), i.e. in the “sparse" setting, we have

q0/(PG) ≈ 1. This controls the true FDR level of the testing procedure to be close to the nominal

level α.
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4.4.2 FDR control procedure with MBB adjustment

As we noticed that in Section 4.4.1, the normal approximation is suitable only when the sample

sizes are large. On the other hand, when the sample sizes are small, [5] suggests a bootstrap-based

procedure to improve the accuracy of the approximation. Specifically, we propose a two-level

stratified bootstrap procedure of the residuals from fitting data on the mixed model (4.4). First,

we perform ordinary bootstrap at the subject level, as all the profiles measured on the n different

subjects are independent to one another. Then, for T repeated measurements within each given

subject, we apply the MBB procedure to the residuals to retain the serial dependence within a

subject. Consider one protein-gene pair (p, g). Given estimates for gene g

f̂g = {f̂g1, . . . , f̂gT} (4.12)

and the original data for protein p

yp = {ypi1, . . . , ypiT , 1 ≤ i ≤ n}, (4.13)

we fit mixed model (4.4) to f̂g and yp. Denote estimate λ̂pg and the corresponding residuals

epg = {epgi1, . . . , epgiT , 1 ≤ i ≤ n}. (4.14)

Let Nn = {1, . . . , n}, then at the subject level we draw {ki ∈ Nn, 1 ≤ i ≤ n} randomly with

replacement from Nn. That is to say we get resamples for epg as {epgki1, . . . , epgkiT , 1 ≤ i ≤ n}.

For the second stage, we apply MBB within each subject ki, 1 ≤ i ≤ n, with the newly sampled

residuals after the first bootstrap stage. Suppose each block contain l elements and the number of

blocks is k = T/l. Implementing the MBB procedure as described in Section 4.3.2, we obtain the

resampled residuals

e∗pg = {e∗pgki1, . . . , e∗pgkiT , 1 ≤ i ≤ n}. (4.15)
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Then the bootstrapped data for protein p is y∗
p = yp − epg + e∗pg, or y∗

p = {y∗pi1, . . . , y∗piT , 1 ≤

i ≤ n}. The entire bootstrap procedure can be applied to all the P proteins simultaneously. Thus

we obtain Y∗ = {y∗
p, 1 ≤ p ≤ P} as bootstrap samples from Y = {yp, 1 ≤ p ≤ P}. Let

f̂ = {f̂g, 1 ≤ g ≤ G}. With Y∗ and f̂ , we can obtain bootstrap estimate λ̂∗
pg and ŝd(λ̂∗

pg) for all the

protein-gene pairs. Let

T ∗
pg =

λ̂∗
pg − λ̂pg

ŝd(λ̂∗
pg)

. (4.16)

For some integer B > 0, we replicate the above procedure B times independently and obtain

T ∗
pg,1, . . . , T

∗
pg,B. Let

G∗
n,B(u) =

1

BPG

B∑

b=1

P∑

p=1

G∑

g=1

I
{
|T ∗

pg,b| ≥ u
}
. (4.17)

In the bootstrap procedure, we use the conditional distribution of λ̂∗
pg− λ̂pg to approximate the null

distribution. Under some regularity conditions, it can be shown that, as n, T, P, G → ∞,

sup
0≤u≤bM

∣∣∣∣∣
G∗

n,B(u)

G0(u)
− 1

∣∣∣∣∣→ 0 (4.18)

in probability. Again, we define the threshold used for the multiple testing procedure following.

Large-scale Dynamic Cross-Correlation Tests using Bootstrap (LDCCT-B). Let 0 < α < 1

and define

û = inf



0 ≤ u ≤ bM :

G∗
n,B(u)PG

max
{∑

1≤p≤P,1≤g≤G I {|Tpg| ≥ u} , 1
} ≤ α



 . (4.19)

If û does not exist, then set û =
√
2 logPG. We reject H0pg whenever |Tpg| > û.

Remark. We give the following example to demonstrate our procedure explicitly.

Example 4.4.1. Focusing on one protein-gene pair (p, g), as the sample size n× T = 3× 6 = 18

is relatively small, we need to obtain G∗
n,B(u) in (4.17). Suppose at the first bootstrap step, we

obtain resampled subjects k1 = 1, k2 = 2, k3 = 2. At the second MBB step, we obtain resampled

time points {2, 3}, {3, 4}, {5, 6} for subject k1 = 1, resampled time points {1, 2}, {2, 3}, {5, 6}
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for subject k2 = 2 and resampled time points {1, 2}, {4, 5}, {4, 5} for subject k3 = 2. Then the

bootstrap sample in (4.15) becomes

epg12, epg13, epg13, epg14, epg15, epg16,

epg21, epg22, epg22, epg23, epg25, epg26,

epg21, epg22, epg24, epg25, epg24, epg25.

Plugging the resampled residual data into fitted mixed model, we can easily compute a new dataset

for protein p

y∗p11, . . . , y
∗
p16, y

∗
p21, . . . , y

∗
p26, y

∗
p31, . . . , y

∗
p36.

4.5 Simulation

Note that the sample size is relatively small in our gene/protein data set. To this end, in this sec-

tion, we primarily report the performance of the LDCCT-B testing procedure by some numerical

studies. The algorithm for computing the empirical FDR and power consists of the three following

steps:

Step 1. The data generation procedure (DGP)

Let Xgit denote the profile of gene g measured on ith subject at tth time point. For each g ∈

{1, . . . , G}, we generate Xgit by

Xgit = 5 + sin(2πt/T · g) + Ugi + ǫgit (4.20)

where Ugi ∼ N(0, 1) and ǫgit ∼ N(0, 0.5). For each g ∈ {1, . . . , G}, fgt was estimated from data

generated by (4.20), as {f̂gt}{t=1,...,T}. This estimation was implemented by the local polynomial

method. Now let’s generate the protein data. For the first q1 proteins

Ypjt = f̂pt · λ0 + Upj + ǫpjt, p = 1, . . . , q1 (4.21)
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and for the remaining P − q1 proteins

Ypjt = 5 · λ0 + Upj + ǫpjt p = q1 + 1, . . . , P, (4.22)

where λ0 can be a positive value (we use 0.5 or 1), j = 1, . . . , n and t = 1, . . . , T . Similar to that

for genes, we have Upj ∼ N(0, 1), ǫpjt ∼ N(0, 0.5). From the DGP (4.20), (4.21) and (4.22), we

can see among all the P ×G pairs of proteins and genes, only q1 pairs of them are truly associated.

Step 2. The mixed model-based test statistic

To measure the correlation between any protein p and gene g, we postulate the following marginal

mixed model for each pair (p, g)

Ypit = αpg + Upgi + λpgf̂gt + ǫpgit, (i = 1, . . . n, t = 1, . . . , T ) (4.23)

as in (4.4). Notice that in our simulated data from Step 1, the number of true alternatives is q1 and

the number of true nulls is q0 = PG − q1. Let H = {(p, g) : 1 ≤ p ≤ P, 1 ≤ g ≤ G}. The set

of true alternative hypotheses is: H1 = {(k, k) : 1 ≤ k ≤ q1} and H0 = H/H1. To fit the mixed

model (4.23), we use the function lme in the R package nlme and obtain the coefficient λ̂pg as

well as its standard error.

Step 3. The FDR control procedure with MBB adjustment

In this step, we apply the bootstrap procedure and get T ∗
pg from (4.16) and G∗

n,B(u) from (4.17).

Let 0 < α < 1 and define

û = inf



0 ≤ u ≤ bM :

G∗
n,B(u)PG

max
{∑

1≤p≤P,1≤g≤G I {|Tp,g| ≥ u} , 1
} ≤ α



 , (4.24)

where M = G · P , bM =
√
4 logM − aM and aM = 2 log(logM). If û does not exist, then let

û =
√

2 log(PG). We reject the null whenever |Tp,g| ≥ û.
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Table 4.1: Empirical FDR and Power for the LDCCT-B procedure.

P(=G) m T Empirical FDP Empirical Power

6 5 10 0.68 1

6 5 20 0.20 1

6 5 40 0.06 1

10 5 10 0.79 0.95

10 5 20 0.56 1

10 5 40 0.08 1

20 5 10 0.88 0.92

20 5 20 0.82 0.98

20 5 40 0.57 1

The simulation results. In all simulation studies, we consider the nominal FDR level at 0.2.

For all MBB procedures, we consider the length of each moving block l = 2 and the number of

bootstraps B = 400. In each experiment, we consider different settings G = P = 6, 10, 20 and

T = 10, 20, 40. The number of true alternatives is always defined as q1 = P/2. The number of

subjects is m = 5. We set λ0 = 1.

We repeat all the three steps above N = 100 times, then calculate the average empirical FDR

by

Average





∑
(p,g)∈H0

I {|Tp,g| ≥ û}
max

{∑
p,g I {|Tpg| ≥ û} , 1

}





and the average empirical powers

Average

{∑
(p,g)∈H1

I {|Tp,g| ≥ û}
q1

}
,

where û is an estimated threshold from the FDR control procedure.

The simulation results in terms of the empirical FDR and the empirical powers are summarized

in Table 4.1. It can be seen that, for given dimensions P and G, the empirical FDP cannot be well

controlled when the number of repeated measurements for each subject T is small. However, the

performance of the testing procedure gets better as T increases. This is not surprising, as for large
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sample size results in a better approximation of the true proportion of falsely rejected nulls among

the true nulls, i.e. G0(u) in (4.9). This is a key step in estimating the unknown true null set which

affects our choice of the threshold for the FDR procedure, see (4.9) and (4.10). On the other hand,

as the multiplicity of the testing procedure, i.e. P and G increase, we can see the estimation of

the empirical FDP is getting worse. This seems contradictory to our theoretical finding that a good

approximation of G0(u) benefits from larger P and G. After a close investigation of the simulation

procedure, we found that the major difficulty comes from the DGP step where we need to control

the true alternative set when P and G are big while T is relatively small. The reasoning behind is

perspicuous. In our DGP models, we choose q1 = P/2 to reflect the “sparse" settings, whilst the

proportion of true significant alternatives is q1/P
2 = 1/2P . Note that q1 gets big as P increases,

and it is challenging to control the settings such that there are q1 true alternatives as the sample

size T remains small, that being said, random noise will dominate so that some true nulls and true

alternatives are not distinguishable. An interesting finding from Table 4.1 implies that increasing

the sample size T can be a good remedy of this problem, i.e. when the dimension P and G are big,

we also need a big sample size accordingly to maintain the required FDR level. This discovery can

be confirmed in the simulation study of [5] as well.

Back to the very beginning of this study, we are trying to address a sophisticated multiple

testing problem when the number of individual tests is big while the sample size is relatively

small (say, 3 by 6 in our real-life data). Our simulation study shows that the proposed LDCCT-B

procedure inspired by the work of [5] could not control the FDR at a pre-specified level. A survey

in this area suggests many papers working on some similar high dimensional multiple testing

problems, but as far as we know, none of them really works when the sample size is really small.
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Chapter 5

Summary and Future Research

Dealing with Cumulative Intraday Returns (CIDRs) is one of many appealing ways of extend-

ing traditional financial research to the functional data framework. As a specialized time series of

functions, the unique strength of the CIDRs follows from their desirable properties like stationar-

ity and quantifiable dependence structure, which are critical to deriving inferential techniques for

CIDRs.

In Chapter 2, we constructed a two-sample test that can be utilized to compare if the regres-

sion coefficients, or betas, are equal for two independent populations in the context of functional

data. We considered on a CIDR based functional regression model, which is used to model the

dependence of the CIDRs of individual assets on the market and/or other factors. In particular, the

proposed test is applied to examine the so-called “asymmetric correlations/betas" problem, which

is concerned with a significant change in correlations/betas during market downturns and upturns.

Our procedure is flexible and amenable to various modifications and can serve as a useful tool in

the study of two sample problems in regression models. We provided both theoretical and numeri-

cal evidence that the test has the correct size and good power under some general assumptions. At

last, applications of this test to a selection of financial assets using both a functional and a scalar

model reveal that different return measures capture different information about the relationships

between individual assets and the market factors. The proposed method is more useful for day

traders, and higher frequency traders in general.

In Chapter 3, an interesting and difficult task of quantifying extremal behaviors of a time series

of curves was undertaken. By representing curves with their FPC coefficients/scores, we proposed

a way of depicting the extreme region of a CIDR series in terms of their magnitude and shape using

the extreme value theory peak-over-threshold (PoT) method along with suitable nonparametric

estimation methods. In our procedure, the first 2 or 3 FPC scores, which usually contribute more

than 90% to the total variability, quantify the presence of a few dominating shape components of
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a CIDR series, like trends or reversals. Moreover, the norm of the CIDRs can be viewed as a

new measure of intraday price movements incorporating intraday volatility and changes in trend

patterns. For risk analysis, the behavior of nine Sector ETFs around the 2008 financial crisis was

studied to compare the traditional point-to-point returns and CIDRs. The comparison shows that

there is a discrepancy in the pattern of the decay of risk measures after the crisis.

An unrelated problem of large scale multiple testing procedure was investigated in Chapter 4.

The motivating science question is to detect correlations among large amount of gene-protein pairs

simultaneously in a biological experimental study. An extension of the testing procedure by [5]

incorporating a mixed model and moving block bootstrap method was applied to our longitudinal-

like data structure and a simulation study was implemented to explore the validity of the proposed

procedure. The numerical exploration shows that the required FDR level cannot be controlled

when the sample size is too small. As far as we know, no current method works for this specialized

high dimensional multiple test with fixed, small sample size.

Possible extensions and future work for the topics covered by this dissertation include the

following directions. In Chapter 3, it might be useful to apply multivariate EVT to model the joint

extremal behavior of the scores. Even though some apparent difficulties exist, it might still be

possible to provide more sophisticated ways to depict extreme curves. Instead of using the PoT

method, likelihood based approaches incorporating temporal dependence as well as conditional

heteroskedasticity could also be feasible as a potential direction. In Chapter 4, to overcome the

difficulty of small sample size or small number of repeated measurements for each subject in our

particular context, it might be feasible to fit the discrete measurements of each subject with a

smooth curve first so that we can draw new samples from it. This provides a possible way of

having more data available for modeling.
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