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ABSTRACT

NEAR-RESONANT AND RESONANT LIGHT IN ULTRACOLD GASES

This dissertation describes experiments and calculations involving light manipulation of atoms

and light propagation in ultracold gases. There are three major sections to this dissertation. Each

section presents a research topic connected to the main subject of near-resonant and resonant light

in ultracold gases. First, this dissertation details the theoretical description and experimental im-

plementation of a novel cooling technique for ultracold atoms trapped in a confining potential.

Manipulating the internal states of atoms by applying near-resonant laser pulses at specified times

leads to high energy atoms being preferentially selected and then slowed to achieve cooling. We

call the technique "spatially truncated optical pumping (STOP) cooling." Advantages of the tech-

nique include its straightforward adaptability into experiments already using a magneto-optical

trap; its applicability to any species that can be laser cooled and trapped in a confining poten-

tial; it does not depend on highly specific transitions for cooling; it does not depend on number

loss for cooling. We present experimental results from applying the technique to an ultracold gas

of 87Rb. We also present theoretical predictions of expected cooling rates, along with possible

improvements to our apparatus that could lead to further cooling.

Next, this dissertation details numerical calculations of near-resonant light propagation through

a highly absorptive elongated ultracold gas. The confined gas modeled by these calculations are

representative of gases commonly found in ultracold atom experiments. The spatial density distri-

bution and spatial extent of these gases leads to a substantial gradient in the index of refraction. In

addition, these gases can have a smaller spatial extent than that of the cross section of a laser beam

that illuminates them. We present calculations that show the index variation in these systems can

lead to frequency-dependent focusing or defocusing of incident near-resonant light. In some cases,

focusing results in light intensities inside of the gas that are over an order of magnitude higher
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than the incident value. Additionally, we show that refraction and diffraction of the light results in

non-intuitive patterns forming in the directions perpendicular to the light propagation.

Lastly, this dissertation details the theoretical treatment and experimental measurements of the

time-dependent absorption and phase response of an ultracold gas that is suddenly illuminated by

near-resonant light. These studies focus on dynamics occurring over timescales on the order of

an atomic excited state lifetime. Because the atoms cannot respond instantaneously to the applied

light, both the absorption response and phase response require time to develop, with the phase

response being slower than the absorption response. Related polarization effects such as Faraday

rotation are due to phase shifts imparted by the gas, and therefore these effects also require time to

develop. We detail our experimental measurements of the time-dependent development of Faraday

rotation in an ultracold gas of 85Rb and compare the results to predictions using a theoretical ap-

proach based on solving optical Bloch equations. We identify how parameters such as the applied

magnetic field strength and optical thickness of the gas influence the response timescales of the

gas.
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Chapter 1

Introduction

Atoms have physical properties that can be manipulated by the application of a drive frequency

in the form of coherent electromagnetic radiation. For particular drive frequencies, there is a

peaked response corresponding to an atomic resonance. Phenomena associated with near-resonant

and resonant atom-light interactions are most easily studied when atoms are moving slowly. As

such, ultracold gases provide a near-ideal test bed to investigate fundamental physics, where the

effects of atom-light interactions lead to pronounced observable responses. The experimental and

theoretical work presented in this dissertation is a compilation of three research projects that are

connected by the main subject of near-resonant and resonant light in ultracold gases. First, we

performed an experimental implementation and theoretical evaluation of a completely new laser

cooling technique for atoms or molecules confined in a trapping potential [6]. These experiments

resulted in a nearly 30% temperature reduction of a confined ultracold gas of 87Rb atoms. Next,

we developed a numerical model to predict the behavior of near-resonant light in an elongated

ultracold gas [7]. These calculations produced the surprising result that under particular conditions,

over an order of magnitude increase in intensity can arise inside of the gas. Such an increase

is astonishing when the optical thickness (characterized by the absorption of light) of the gas is

considered. Lastly, our numerical work on intensity variations in ultracold gases stimulated a new

research direction for our group that included experimental and theoretical studies of the time-

dependence of the opacity and indices of refraction of an ultracold gas of 85Rb atoms at times

shorter than the D2 line atomic excited state lifetime [8]. We found that the peak response times

associated with opacity and polarization rotation depend strongly on physical parameters in the

system. An accurate description of the time-dependent response of the gas does not generally

match simple expectations, and requires careful modeling of the system.
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1.1 Background

The focus of my first project (chapter 4) was the continued development of a novel laser cooling

technique originally proposed by my advisor and one of his previous graduate students. Upon

joining the research group, my first task was to get the experimental apparatus back in working

order so we could continue to study the new cooling technique. This included diagnosing and

fixing experimental hardware (e.g. lasers, circuits, electrical connections) and adding more control

electronics (e.g. digital switches, amplifiers, function generators). In addition, the number of diode

lasers used for the experiment was reduced from five to two, which required all new beam paths

and characterization of those beams. For the most part, this went smoothly. However, during

the alignment of a particular laser beam needed for one of the steps in the cooling scheme, we

encountered unexpected signals in a subset of the collected data. The anomalous signals ultimately

prompted us to take a slight detour away from our laser cooling studies.

The temporary deviation in our research path led to my second project (chapter 5), which fo-

cused on developing a model to numerically calculate the intensity variations of near-resonant light

propagated through a trapped gas representative of those used in our laser cooling scheme. While

the gradient in the spatial number density of atoms in those systems was expected to have an ef-

fect, we were surprised to find realistic conditions produced large increases in light intensity inside

of an optically thick (model) system. The predicted spatial light intensity patterns that formed in

the gas motivated us to consider how we could study radiation transport physics associated with

a source of resonant light originating inside of an optically thick gas. In particular, how that light

would propagate outward through the gas during timescales less-than and on the order of an atomic

excited state lifetime. Before heading in a new research direction, we returned to our novel laser

cooling technique and completed measurements that definitively demonstrated the cooling tech-

nique does indeed work. We also performed additional calculations to understand possible sources

of cooling efficiency loss in our experiments.

After wrapping up our work on the cooling technique, we directed our research focus on study-

ing radiation transport physics in optically thick gases at timescales on the order of an atomic
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excited state lifetime. In the simplest of terms, we wanted to place a source of resonant light at the

center of an ultracold gas and observe how that energy propagated through the system until finally

escaping. The proposed detection scheme (chapter 7) was going to require significant changes to

our existing apparatus. We took a pause to consider what measurements were possible with our

existing apparatus that would better our understanding of what to expect in the proposed experi-

ments. This led to my third and final project (chapter 6). The main thrust of the last project was

to measure the transmitted intensity and polarization of a near-resonant laser beam over timescales

on the order of an atomic excited state lifetime after the beam had propagated through an opti-

cally thick ultracold gas. The measured signals were compared to theoretical predictions and good

agreement was obtained. Addressing and overcoming the challenges that came up during the ex-

perimental implementation and theoretical calculations explored numerous physics and technical

considerations necessary for future research to be performed by our group.

1.2 Overview

The following sections provide short summaries of the content presented in each chapter of

this dissertation. First is a chapter intended as an introduction to laser cooling and trapping con-

cepts that are relevant to the techniques we use to produce and confine ultracold gases in our

experiments. The next chapter is a description of the general experimental apparatus hardware and

methods that are commonly used throughout our experiments. After discussing the apparatus, the

following three chapters consist of detailed descriptions of the three projects that constitute the

bulk of research conducted for this dissertation. Lastly, there is a brief chapter describing a pro-

posed measurement technique for radiation transport experiments that will be performed by our

research group in the near future.

1.2.1 Laser Cooling and Trapping Atoms (Chapter 2)

Chapter 2 discusses atom-light interactions relevant to the laser cooling and trapping schemes

used in our experiments. The chapter begins with a description of Doppler cooling [9], which has
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a lowest achievable temperature known as the Doppler cooling limit [10–13]. Once a gas has been

cooled to temperatures near the Doppler cooling limit, other mechanisms that are able to cool the

gas to even lower temperatures [14–16] become necessary for further cooling. These are aptly

referred to as sub-Doppler cooling mechanisms. Specifically, lin-perp-lin cooling and motion-

induced orientation cooling are described [17–20]. After introducing the concepts behind laser

cooling atoms to ultracold temperatures, a description of how these atoms are spatially confined is

presented. The two spatially confining traps discussed will be a magneto-optical trap [21–24] and

an optical dipole trap [25–27]. The former combines laser cooling with a magnetic field so that

atoms experience a viscous velocity damping force and a spatial restoring force in a small region

of space. The latter operates in the absence of any laser cooling mechanisms such that the atoms

are spatially confined by an approximately conservative force.

1.2.2 General Experimental Apparatus (Chapter 3)

Chapter 3 provides a description of the hardware and techniques used to produce and char-

acterize ultracold gases in our experiments. All of our experiments are performed using either

85Rb or 87Rb, so the relevant energy levels [1–4] for those species are presented. This is followed

by a description of the type of vacuum chamber we use, along with how the necessary vacuum

pressures are reached. The arrangement and operation of our "homebuilt" lasers is then presented,

which when used with the vacuum chamber and magnetic coils, provide the main apparatus com-

ponents needed to produce ultracold gases for our experiments. In addition to the lasers used for

manipulating the atoms with near-resonance light, we often use a high-powered CW laser to spa-

tially confine atoms using far-off resonance light. This optical dipole trap is discussed, and then

the imaging technique used to characterize our ultracold gases is described. Lastly, some of our

experiments measure light intensity transmitted through an ulracold gas as a function of time. Data

collection for those experiments require a different detection scheme than the absorption imaging

set-up, so details of the necessary additional detectors and eletronics are presented. Much of the
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apparatus hardware is descendent from past experiments performed by previous members of our

research group, and is well-documented in those student dissertations [28–30].

1.2.3 Spatially Truncated Optical Pumping Cooling (Chapter 4)

Chapter 4 presents our theoretical and experimental work in developing a novel laser cooling

technique for ultracold atoms trapped in a confining potential. We call the technique "spatially

truncated optical pumping (STOP) cooling" [6]. STOP cooling uses the fact that the internal states

of atoms can be manipulated by laser light such that high energy atoms can be preferentially se-

lected and then slowed to achieve cooling. The research presented in this chapter builds on the

groundwork laid by a previous graduate student whose efforts provided the first indications of

STOP cooling’s viability [30]. For those experiments, the temperature reduction from applying

STOP cooling to a gas of trapped atoms was inferred through indirect calculations rather than be-

ing explicitly measured. This was due to constraints imposed by unfavorable vacuum conditions.

The implementation of the cooling technique presented in this dissertation resulted in a direct

measurement of temperature reduction, including the temperature reduction from applying STOP

cooling multiple times to a confined ultracold gas. Each application of STOP cooling involves

four steps that are collectively referred to as a "cycle." Our experiments resulted in a 0.0091(5)

fractional single-cycle temperature reduction and a 0.282(4) fractional temperature reduction from

60 cycles. In addition to conducting new experiments under improved vacuum conditions, we

performed additional calculations, too. These included the impact of collisions, a comparison to

a collision-based cooling mechanism, and the effect of using a realistic three-dimensional confin-

ing potential. By numerically modeling imperfections in the experimental system, we were able

to identify where improvements could be made to realize further temperature reduction. A de-

scription of the calculations, experiments, and results are presented, along with several proposed

improvements to the apparatus that are expected to further increase the technique’s cooling effi-

ciency.
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1.2.4 Intensity Pattern Formation in a Trapped Gas (Chapter 5)

Chapter 5 describes unanticipated signals seen during our STOP cooling experiments, and

the ensuing numerical calculations used to predict intensity pattern formations resulting from a

near-resonant plane wave propagating through an elongated model gas of two-level atoms. These

Maxwell’s equations-based calculations show that the wave nature of light coupled with the di-

mensions and spatial density distribution of confined ultracold atoms can lead to large intensity

variations inside of an elongated gas [7]. We perform the calculations using parameters repre-

sentative of physical quantities (e.g. density, spatial dimensions) similar to those found in our

experimentally confined ultracold gases. The main features of the predicted intensity variations

depend on whether the near-resonant light is above (+) or below (−) the resonance frequency of

the atoms. For example, light with a frequency below resonance will undergo a focusing effect that

can lead to over an order of magnitude larger light intensity inside of the gas as compared to the

incident intensity. The resulting increase in light intensity along the elongated axis is surprising

given the expected absorptive nature of the gas. Conversely, light with a frequency above reso-

nance experiences a defocusing effect that can lead to a dramatic decrease in light intensity along

the elongated axis of the gas. The results of these frequency-dependent calculations are in dis-

agreement with predictions of near-resonant light intensity as a function of elongated axis position

that result from a standard treatment using the Beer-Lambert law. In addition, significant radially-

varying intensity patterns can form in planes perpendicular to the direction of light propagation for

both signs of light frequency. These on and off-axis intensity variations would need to be carefully

considered in actual experiments that require accurate descriptions of light intensity in comparable

systems. A description of the numerical model is presented, along with results from calculations

using parameters similar to the elongated gases found in our STOP cooling experiments.

1.2.5 Faraday Rotation at Atomic Lifetime Timescale (Chapter 6)

Chapter 6 details theoretical predictions and experimental measurements of the time-dependent

development of opacity and Faraday rotation in an ultracold gas over timescales on the order of an
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atomic excited state lifetime [8]. When a gas of atoms is suddenly illuminated with near-resonant

light, the atoms cannot respond instantaneously. This results in an initial period of transparency

while the light absorption takes time to develop over a timescale set by the atomic excited state

lifetime. The atoms’ non-instantaneous response means the index of refraction also takes time to

develop, and the associated phase response is expected to develop slower than absorption effects.

When the gas has differing indices of refraction for orthogonal circular light polarization compo-

nents, a polarization rotation of the light can occur. Faraday rotation is one manifestation of this.

We have performed experimental measurements and theoretically described the time-dependent

development of polarization rotation in an ultracold gas subjected to an applied magnetic field (i.e.

Faraday rotation), and good agreement between experimental results and theoretical predictions

was obtained. The resulting timescale associated with the phase response is indeed slower than

that of absorption. However, the actual situation is more complicated than a simple factor of 2

estimate between the absorption and phase response timescales and involves multiple factors that

affect the timescales in ways that make general characterizations difficult. These factors include

the incident light intensity, the incident light frequency detuning, and the magnitude of the applied

magnetic field. In addition, we identify an optical thickness effect that also influences the response

timescale. In an optically thick gas, atoms on the opposite side of the gas from the incident light

are driven toward their steady-state response faster than they would be in an optically thinner gas.

This physics is relevant for applications or experiments that use rapidly applied near-resonant light

pulses in similar systems, especially those in which timings and phase shifts are important.

1.2.6 Radiation Transport Through an Ultracold Gas (Chapter 7)

Chapter 7 discusses the main details of a new detection scheme for radiation transport exper-

iments planned for future work in our research group. The proposed detection scheme combines

laser manipulation of the internal states of atoms with a device designed to detect charged particles.

By allowing the light associated with the radiation transport physics we are interested in studying

to excite atoms in an ultracold gas, the location of those atoms can be detected. This will be done
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by ionizing the excited atoms, and the resulting ions will be accelerated to the detector. The spatial

information coupled with different timings between laser pulses will provide a measurement tech-

nique capable of "looking inside" of an ultracold gas as resonant light propagates outward. The

focus of this chapter will be to provide a sense of the general set-up, including the atomic energy

levels and excitation wavelengths involved.
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Chapter 2

Laser Cooling and Trapping Atoms

The purpose of this chapter is to introduce concepts necessary for understanding the laser cool-

ing and trapping techniques used for the experimental work presented in this dissertation. There

are a large number of different laser cooling schemes, and extensive work has been performed by

the laser cooling community in describing the commons ones presented in this chapter. Therefore,

the following sections are intended to provide just an overview of the most basic physics of cooling

techniques used in our research. Our experiments generally involve gases of atoms with tempera-

tures on the order of 10 - 100 µK. These ultracold temperatures are achieved by using atom-light

interactions to reduce the average energy of atoms in a gas. The primary cooling mechanisms rele-

vant for producing the ultracold gases used for our experiments are categorized as Doppler cooling

and sub-Doppler cooling, both of which will be described in this chapter. In addition to cooling

the atoms, our experiments require spatial confinement of the gas, either during preparation stages,

or for the entire duration of an experiment. The first type of confining trap that will be described

uses a combination of lasers and an applied magnetic field and is known as a magneto-optical trap.

The second type of confining trap that will be presented is purely light based and is known as an

optical dipole trap.

2.1 Doppler Cooling Atoms

An effective and straightforward technique for laser cooling atoms is the method of Doppler

cooling [9]. Given a gas of atoms whose thermal motion is described by a velocity distribution

(e.g. Maxwell-Boltzmann velocity distribution), Doppler cooling works by slowing a subset of

those atoms that are moving within a particular velocity range. The basic idea is to take advantage

of the Doppler frequency shift of near-resonant light as measured from a moving atom’s reference

frame. This is routinely implemented in multiple dimensions but is most easily described in a

one-dimensional configuration.
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Consider a two-level atom in motion along the ẑ-direction and illuminated with low-intensity

counter-propagating laser beams of the same frequency, ω, in the lab frame. In the atom’s reference

frame, the laser beam that the atom is moving toward will have a frequency that appears higher

(blue-shifted) than ω, and the laser beam that the atom is moving away from will have a frequency

that appears lower (red-shifted) than ω. An appropriate choice of laser frequency (red-detuning)

in the lab frame leads to more photons being scattered (i.e. photon absorption and spontaneous

emission) on average from the laser beam that the atom is traveling toward than the laser beam that

the atom is traveling away from. This can be understood by examining the total scattering rate of

light for an atom in motion with velocity, ~v, and illuminated by a plane wave with frequency, ω.

The frequency and velocity dependent total scattering rate can be expressed as [31]

R =
γ
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, (2.1)

where γ = τ−1 and τ is the excited state lifetime of the atomic transition, δ is the frequency

detuning (δ = ω − ω0, where ω0 is the atomic resonance), ~k is the wavevector (‖~k‖ = k = 2π/λ,

where λ is the wavelength), I is the intensity of the light, and Isat is the saturation intensity (Isat ≡

2π2
~c/(3λ3τ), where ~ is the reduced Planck constant, and c is the vacuum speed of light). The

functional form of (2.1) is a Lorentzian centered at δ − ~k · ~v = 0. Choosing the frequency of light

to be red-detuned (δ < 0) with respect to ω0 leads to the atom scattering more photons on average

from a beam it is moving toward (~k · ~v = −‖~k‖‖~v‖) as compared to a beam it is moving away

from (~k · ~v = ‖~k‖‖~v‖) for suitably low velocities.

Each photon carries ~~k of momentum, so the process of photon absorption by an atom results in

a momentum transfer to the atom. This is followed by the atom spontaneously emitting a photon in

a random direction and undergoing a momentum recoil opposite to that random direction. When

this photon scattering process occurs many times, the net momentum change from spontaneous

emission events averages to zero. The remaining average momentum change from the absorption
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events is in the direction of ~k which results in an average radiation pressure force on the atom that

can be expressed as [17]

~Fsp = ~~kR =
~~kγ

2















I/Isat

1 + I/Isat + 4

(

δ − ~k · ~v
γ

)2















. (2.2)

It is worth noting that (2.2) cannot be made arbitrarily large by increasing the intensity without

bound. This is a consequence of the I/Isat term in the denominator and corresponds to the excited

state population of the two-level transition saturating such that half of the atoms in a gas are in the

excited state. For an atom illuminated by low-intensity (i.e. I/Isat ≪ 1) counter-propagating laser

beams such that stimulated emission events can be neglected, the average force on the atom can be

expressed as

~F =
~kγ

2















I/Isat

1 + I/Isat + 4

(

δ − ~k · ~v
γ

)2 − I/Isat

1 + I/Isat + 4

(

δ + ~k · ~v
γ

)2















ẑ. (2.3)

where ~k = kẑ in (2.3). When the laser frequency is red-detuned from the atomic resonance,

the counter-propagating beams provide a velocity-dependent viscous force opposite to the atom

motion. This configuration creates what is known as a one-dimensional optical molasses [17–

20]. The optical molasses can be implemented in three dimensions by arranging orthogonally

intersecting pairs of counter-propagating laser beams [32, 33]. The average force as a function of

atom velocity for a low-intensity one-dimensional optical molasses is shown in figure 2.1.

Figure 2.1 indicates that the one-dimensional force an atom experiences is linearly dependent

on the atom velocity between ±‖~v‖ ≃ γ/k, known as the (approximate) velocity capture range for

Doppler cooling [17,18]. This definition of the capture range is in line with early work in the field.
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Figure 2.1: The average force on an atom irradiated by a red-detuned one-dimensional optical molasses,

where I/Isat = .01. The solid curve corresponds to δ = −2γ and the dashed curve corresponds to

δ = −γ/2. Note that the units allow the force and velocity to be represented in quantities independent

of parameters specific to an atomic species.

The basic physics presented in the remainder of this chapter will identify other capture ranges as

first described in early literature as well. In general for many typical configurations, that will be

approximately equal to the linear region of the cooling force [34]. More recently, the capture range

tends to be defined in the context of a stopping length. This is because the capture range is really

a function of the distance over which an atom could be brought to rest.

The validity of treating the velocity in (2.3) as a quasi-continuous variable depends on the

amount of momentum change imparted to an atom during an absorption or spontaneous emission

event. The magnitude of the recoil velocity, ‖~vR‖ = vR = ~k/M , must be such that kvR ≪ γ [17].

Rubidium is an example of an atomic species for which this recoil velocity Doppler shift condi-

tion is valid. For a Rb atom illuminated by 780 nm wavelength light (D2 line), the Doppler shift

imparted by a photon absorption or spontaneous emission event is kvR/(2π) ≈ 8 kHz, which is

a negligible fraction of the natural linewidth (i.e. Γ ≡ (2πτ)−1 = 6 MHz). The recoil momen-

tum is also important when predicting the lowest achievable temperature from Doppler cooling.
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Scattering many photons in an optical molasses introduces statistical heating (i.e. random thermal

motion) acquired from the random direction of spontaneous emission events. The Doppler cooling

limit [10–13] in equilibrium is expressed as kBTD = ~γ/2, where kB is Boltzmann’s constant and

TD represents the minimum Doppler temperature. For a sense of scale, the Doppler cooling limit

for Rb being cooled on the D2 line is ≈ 140 µK, corresponding to a root-mean-square (RMS)

speed of vrms ∼ 10 cm s−1.

2.2 Sub-Doppler Cooling Atoms

Laser cooling below the Doppler cooling limit is possible through additional mechanisms re-

ferred to as polarization gradient cooling [17–20], among other possibilities [35–38]. The theo-

retical description of polarization gradient cooling relies on a multilevel atom traveling through

a spatially varying polarization landscape produced by counter-propagating laser beams with dif-

ferent polarizations. The interaction of the light with the internal structure (i.e. hyperfine and

magnetic sublevels) of an atom can result in temperatures that are less than the Doppler cooling

limit [14–16]. The two types of polarization gradient cooling described in this section were orig-

inally named ellipticity-gradient cooling and polarization-rotation cooling [17], but are now more

commonly referred to as lin-perp-lin cooling and motion-induced orientation cooling, respectively.

For simplicity, the descriptions will be for a low-intensity one-dimensional optical molasses, with

the emphasis being on the ability to reach sub-Doppler temperatures.

2.2.1 Lin-Perp-Lin Cooling

Lin-perp-lin cooling depends on overlapping counter-propagating laser beams of the same fre-

quency, ω, such that one beam is linearly polarized in an ǫ̂1 direction and the other beam is linearly

polarized in an ǫ̂2 direction, where ǫ̂1 · ǫ̂2 = 0. This is known as the lin-perp-lin (or lin ⊥ lin)

configuration [18]. Assuming plane wave solutions of equal amplitude counter-propagating along

the ẑ-direction and letting ǫ̂1, ǫ̂2 → x̂, ŷ, the superposition of the electric fields can be expressed as

13



~E = E0[(x̂+ ŷ) cosωt cos kz + (x̂− ŷ) sinωt sin kz], (2.4)

where E0 is a real amplitude, t is time, and k = 2π/λ is the wavenumber. Beginning at z = 0,

positions spaced by quarter-wavelength increments (i.e. z = 0, λ/4, λ/2,...) have a total field

that is linearly polarized at a different angle (π/2 change every quarter wavelength) with respect to

the x̂-direction. Half-way between those quarter-wavelength increments (i.e. z = λ/8, 3λ/8,...),

the total field is circularly polarized (σ+, σ−) with alternating handedness depending on position.

Along the axis of propagation, the polarization changes from linear to σ− circular to linear to σ+

circular in less than half a wavelength.

A description of how this gradient of ellipticity leads to sub-Doppler cooling requires including

the internal structure of a multilevel atom. A simple transition that can be used to describe sub-

Doppler cooling in the lin ⊥ lin configuration is a J = 1/2 to J = 3/2 transition (J = L + S is

the total angular momentum, where L is the orbital angular momentum, and S is the spin angular

momentum) [18]. The J = 1/2 ground state has magnetic sublevels,mJ = ±1/2, and the J = 3/2

excited state has magnetic sublevels, mJ = ±1/2,±3/2 (where the sublevels are denoted by their

quantum numbers; see figure 2.2). Dipole allowed transitions between the ground state sublevels

and excited state sublevels are those that result in ∆m = 0,±1, where ∆m = 0 corresponds to

transitions from linearly polarized light, ∆m = +1 corresponds to transitions from σ+ light, and

∆m = −1 corresponds to transitions from σ− light. In addition to the sublevel transitions that

occur from the atom-light interaction, there are energy shifts (i.e. AC Stark shifts [39], otherwise

known as light shifts) of the magnetic sublevels due to the presence of the driving field. The

light shifts of the ground state magnetic sublevels due to counter-propagating laser beams of equal

low-intensity can be expressed as [31]

∆Eg =
~δ(I/Isat)C

2
ge

1 + 4

(

δ

γ

)2 , (2.5)

whereCge is the Clebsch-Gordan (CG) coupling coefficient between the atom and light for a partic-

ular transition between a ground state sublevel, g, and excited state sublevel, e. The CG coefficient
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depends on the polarization of the local driving field and the quantum numbers of the magnetic

sublevels involved in the transition. This means an atom in a ground state magnetic sublevel mov-

ing through the lin ⊥ lin polarization landscape will undergo light shifts that have an oscillatory

spatial dependence, as shown in figure 2.2.

0 ✁ /8 ✁ /4 3✁ /8 ✁ /2 5✁ /8

Posit ion

0E
n
e
rg
y

mJ = -1/2

mJ = +1/2

σ+σ- σ-
lin lin lin

Figure 2.2: Spatially dependent light shifts for the ground state magnetic sublevels, mJ = ±1/2. At

positions where the light is linearly polarized (lin), the sublevel energies are equal, and at positions where

the light is circularly polarized (σ+, σ−), the difference between the sublevel energies is maximal. An

atom in motion through the polarization gradient is represented by the black solid lines with arrows on the

oscillating light shift energy curves. The upward black solid arrow corresponds to an atom absorbing a

photon near the top of a potential hill, and the downward blue dashed arrow corresponds to the spontaneous

emission of a blue-shifted photon as the atom transitions to the lower energy ground state magnetic sublevel.

When the atom moves from a position where the light shift is the largest to a position where

the light shift is the smallest (in absolute value), the internal energy of the atom increases through

a reduction of its kinetic energy (for δ < 0). The atom will absorb more photons on average

at positions where it is moving the slowest, and the CG coefficients are such that spontaneous

emission into the lower energy ground state magnetic sublevel is most probable. This results in a
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spontaneous anti-Stokes Raman photon [18,19], where the additional energy of the emitted photon

corresponds to the difference between the AC Stark shifts of the ground state magnetic sublevels.

As the atom continues to move through the polarization gradient, it will again convert kinetic

energy to potential energy, then dissipate some or all of that internal energy difference through

absorption and spontaneous emission. The continual climbing of potential hills at the expense of

kinetic energy is the reason this cooling mechanism is also known as Sisyphus laser cooling [40],

in reference to Greek mythology.

For the J = 1/2 to J = 3/2 transition, an analytical result can be derived for the average force

on an atom traveling through low-intensity light in the lin ⊥ lin configuration. It is valid when

‖~v‖ ≪ γ/k and is expressed as [18]

~f =
−α~v

1 +

(

~v

~vc

)2 , (2.6)

where α = −3~k2δ/γ for δ < 0 and ‖~vc‖ = 1/(2kτp) is the critical speed, where τp is the average

time required for an atom to be transferred from one ground state magnetic sublevel to the other

ground state magnetic sublevel via photon absorption and emission (a process known as optical

pumping [18]; 1/τp = (I/Isat)(γ
3/(4δ2) [17]). The velocity domain over which (2.6) is linear

corresponds to the velocity capture range for lin-perp-lin cooling. Sufficiently slow moving atoms

that are within the velocity capture range experience an additional damping force that is much

more effective than Doppler cooling, as shown in figure 2.3.

In the range where the force is linear, the minimum (lowest achievable) equilibrium temperature

when |δ| ≫ γ is expressed as T ≃ ~γ2(I/Isat)/(16kB|δ|). The temperature expression suggests

that an unphysical limit approaching zero temperature is possible. A more meaningful lower tem-

perature limit from this cooling mechanism requires that the RMS speed be much smaller than

‖~vc‖, leading to a condition for the minimum laser intensity necessary for the temperature deriva-

tion validity [18]. The condition can be expressed as I/Isat ≫ 2~k2|δ|3/(Mγ4), where M is the

atomic mass of the particular species being laser cooled. A subsequent condition is then placed
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Figure 2.3: The average force on an atom irradiated by a red-detuned one-dimensional optical molasses in

the lin ⊥ lin configuration, where I/Isat = .01 and δ = −γ. The solid curve corresponds to the average

force from lin-perp-lin cooling and the dashed curve corresponds to the average force from pure Doppler

cooling.

on the minimum equilibrium temperature and is expressed as T ≫ ~
2k2|δ|2/(kBMγ2). Achieving

the lowest predicted temperatures requires an atom gas with very low optical density such that

multiple photon scattering events do not contribute substantial heating [41–43].

2.2.2 Motion-Induced Orientation Cooling

Motion-induced orientation cooling is created by overlapping counter-propagating laser beams

of the same frequency, ω, such that one beam is σ+ circularly polarized (ǫ̂1 = −(x̂+ iŷ)/
√
2) and

the other beam is σ− circularly polarized (ǫ̂2 = (x̂− iŷ)/
√
2) with regard to the atom’s absorption

frame. This is known as the σ+- σ− configuration [18]. Assuming plane wave solutions of equal

amplitude counter-propagating along the ẑ-direction leads to a total electric field expressed as

~E = −
√
2E0 sinωt[x̂ sin kz + ŷ cos kz], (2.7)
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which is an electric field that is linearly polarized with a polarization vector that rotates around

the axis of propagation (in the lab frame) with a periodicity determined by the wavelength of the

laser beams. An atom moving through this polarization landscape encounters light of constant

intensity and linear polarization everywhere. The light shifts no longer vary spatially, but instead

are constant along the direction of motion for a particular magnetic sublevel.

A J = 1 to J = 2 transition can be used to explain how the σ+- σ− configuration can result

in sub-Doppler temperatures [18]. In this case, the J = 1 ground state has magnetic sublevels,

mJ = 0,±1. Transforming to a moving frame (rest frame of the atom) that rotates with the

direction of the linear polarization leads to nonadiabatic (vanish when the atom is at rest) couplings

proportional to ~k ·~v between the ground state eigenstates. This leads to a population difference that

causes the atom to experience unbalanced radiation pressure forces from the counter-propagating

beams. Due to the structure of the CG coefficients, the atom scatters more photons from the beam

it is moving toward as compared to the beam it is moving away from with a velocity dependence

that becomes effective at speeds where Doppler shifts are small. Velocity reduction still occurs

through differential absorption from counter-propagating laser beams, but rather than reliance on

the Doppler shift, motion-induced orientation cooling depends on non-adiabatic following of the

atom orientation as it moves through the polarization landscape (here orientation refers to the

anisotropy in the populations of the ground state magnetic sublevels). This non-adiabatic following

of the atom orientation is what leads to this cooling mechanism being referred to as motion-induced

orientation cooling.

In a low-intensity (τ ≪ τp) and low velocity (‖~v‖ ≪ 1/(kτp)) regime, the velocity dependent

force for a J = 1 to J = 2 transition in the σ+- σ− laser configuration can be expressed as [18]

~f = −
(

120

17

−δγ
5γ2 + 4δ2

~k2
)

~v, (δ < 0). (2.8)

The velocity capture range for motion-induced orientation cooling corresponds to the velocity

domain where (2.8) is valid. Low-intensity is an initial assumption for the expression’s derivation,

so the velocity capture range is necessarily small. Even so, for slow atoms within the capture
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range, the resulting damping force provides a much more effective cooling mechanism than the

force exerted by Doppler cooling. A comparison of the two forces in the linear regime is shown in

figure 2.4.
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Figure 2.4: The average force on an atom irradiated by a red-detuned one-dimensional optical molasses in

the σ+- σ− configuration, where I/Isat = .01 and δ = −γ. The solid curve corresponds to the average

force from motion-induced orientation cooling and the dashed curve corresponds to the average force from

pure Doppler cooling.

For the motion-induced orientation cooling mechanism, the minimum equilibrium tempera-

ture when |δ| ≫ γ is given by, T ≃ 29~γ2(I/Isat)/(600kB|δ|). As was the case in lin-perp-lin

cooling, the lowest achievable temperature from motion-induced orientation cooling must also be

carefully considered. A condition for the minimum laser intensity can be expressed as I/Isat ≫

2~k2|δ|/(Mγ2), and the resulting condition for the minimum temperature is then expressed as,

T ≫ ~
2k2/(kBM). This indicates that temperatures larger than the recoil temperature (cor-

responding to the recoil velocity), but less than the Doppler cooling limit, are achievable in a

low-intensity σ+- σ− laser configuration. In addition, for substantial detunings, motion-induced

orientation cooling results in lower temperatures than lin-perp-lin cooling.
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2.3 Magneto-Optical Trap

The laser cooling mechanisms described in section 2.1 and 2.2 provide viscous forces that can

be used to slow atoms, but they do not provide a restoring force necessary for confining atoms

within a region of space. An atom in motion that leaves the volume of overlap formed by the

counter-propagating laser beams is essentially lost, since it is no longer acted on by the slowing

forces present in the optical molasses. However, a spatially dependent force that acts to "localize"

the atom can be introduced through a weak inhomogenous magnetic field along the direction of

light propagation [21–23]. Such a magnetic field combined with the σ+- σ− laser configuration

is known as a magneto-optical trap (MOT) [24]. For simplicity, the MOT will be described in a

one-dimensional case.

The MOT scheme can be applied using any Jg to Je = Jg + 1 transition, so a J = 0 to J = 1

transition is adequate for understanding the effect of adding a weak magnetic field, ~B(z) = bzẑ,

where b is the field gradient. The excited state magnetic sublevels,mJ = 0,±1, are Zeeman shifted

by an amount, ∆E = gJmJµBbz, where E represents energy, gJ is the Landé g-factor, and µB is

the Bohr magneton. For an atom located at a position, z < 0, the mJ = +1 sublevel is shifted

lower in energy. Conversely, if the atom is located at a position, z > 0, then the mJ = −1 sublevel

is shifted lower in energy. Arranging the counter-propagating lasers to be red-detuned and aligned

such that the σ+ beam propagates in the +ẑ-direction results in an atom located at z < 0 scattering

more σ+ light than σ− light on average. This is due to the frequency difference associated with

the ∆mJ = +1 transition being closest to the laser frequency. The situation is the opposite for an

atom located at z > 0, where it will scatter more σ− light than σ+ light due to the ∆mJ = −1

transition being closest to the laser frequency. The effect of this spatially dependent differential

scattering from the laser beams is to drive the atom toward the magnetic field zero (z = 0). A

depiction of the energy levels and counter-propagating beams are shown in figure 2.5.

For a sufficiently slow moving atom (‖~v‖ ≤ γ/k) near z = 0, the viscous force from the

radiation and the restoring force from the magnetic field gradient leads to damped harmonic motion

[24], and the atom becomes spatially confined. As the Doppler cooling limit is reached, sub-
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Figure 2.5: Energy levels for a J = 0 to J = 1 transition in the presence of a weak inhomogenous linear

magnetic field, ~B(z) = bzẑ. The energy levels are Zeeman shifted by an amount, ∆E ∝ mJz, where the

atomic resonance frequency is ω0 and the laser frequency is ω. An atom located at z < 0 (z > 0) will scatter

more σ+ (σ−) light on average. The position dependence of the magnetic sublevel energy shifts combined

with properly polarized light leads to the radiation pressure force driving the atom toward z = 0.

Doppler cooling begins to dominate [44–46] and the atom is cooled highly effectively since it is

trapped in the region of laser overlap where the magnetic field is low. From the one-dimensional

description, it would appear that motion-induced orientation cooling is the relevant sub-Doppler

cooling mechanism in a MOT. However, the polarization gradient formed in the volume of a multi-

dimensional MOT is a complicated superposition of fields that leads to both σ+- σ− and lin ⊥ lin

polarization landscapes. An atom in motion along a trajectory that does not coincide with a laser

beam propagation axis will likely encounter both types of polarization gradients.

One way to straightforwardly implement a MOT in three-dimensions is to combine the three-

dimensional red-detuned optical molasses described in section 2.1 with a pair of equal radius

magnetic coils. The coils are positioned coaxially with opposite current directions to produce a

spherical quadrupole magnetic field [22,47,48]. The magnetic field is zero at the position half way

between the coils (along the axis of symmetry) and increases linearly in all directions outward from

that position. The counter-propagating laser beam pairs for the optical molasses are arranged in
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the σ+- σ− configuration and are made to intersect at the magnetic field zero. Assuming properly

polarized beams with respect to the field directions along the orthogonal axes, the damping forces

from the optical molasses and the spatial restoring force from the magnetic field are present in all

three dimensions. The temperature of atoms in a low density MOT, where atom-atom interactions

such as multiple photon scattering and collisions can be neglected, is identical to the temperature

of an optical molasses [41,49]. However, the typical parameters (i.e. laser intensity, frequency de-

tuning, atomic species, spatial number density) used in a standard Rb MOT implementation yield

gas temperatures on the order of 100 µK with a root-mean-square spatial extent ∼ 1 mm in one

dimension.

2.4 Optical Dipole Trap

Magneto-optical traps are a powerful tool for producing low temperature trapped gases, but

often times it is preferential to have confined ultracold atoms without extraneous fields (i.e. mag-

netic fields) present. There are also substantial limitations to the lowest temperatures that can be

achieved in a MOT for reasonable density gases [41–43]. In addition, it may be desirable to have

higher spatial number densities than what can be achieved in a standard MOT. One option is to

use an optical dipole trap produced by a single focused laser beam that is red-detuned far from the

atomic resonance of the species being trapped [25,26]. This type of optical dipole trap is known as

a far-off resonance trap (FORT) [27]. A FORT does not provide any dissipative forces that can cool

atoms, but it does provide a three-dimensional confining potential that leads to an approximately

conservative restoring force on the atoms.

A specific type of FORT is created when the trapping laser frequency is less than half of the

resonance frequency of the lowest electric dipole transition of the species being trapped. In this

case, the optical dipole trap is sometimes referred to as a quasi-electrostatic trap (QUEST) [50,51].

Advantages of using such a trap include a very low photon-scattering rate (> 10−3 s−1 [26])

and small photon recoil energy. From an atom’s perspective, the applied laser field, ~E, is well-
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approximated as a static electric field. This field induces an atomic dipole moment, ~p = αs ~E, and

the resulting dipole interaction potential can be expressed as [26]

Udip = − αs
2ǫ0c

I(~r), (2.9)

where αs is the static polarizability and I(~r) is the spatially dependent intensity of the field. For a

Gaussian laser beam, the intensity can be expressed as [52]

I(~r) = I0
1

1 + (z/zR)
2 exp

(

− 2r2

w0
2(1 + (z/zR)

2)

)

, (2.10)

where z and r are the axial and radial position coordinates, respectively, I0 is the peak intensity

(I0 = 2P0/(πw
2
0), where P0 is the total laser power), zR = πw0

2/Λ is the Rayleigh length, w0 is

the spot size of a Gaussian laser beam, and Λ is the optical trap wavelength. This spatial intensity

profile means the interaction potential has a non-vanishing second derivative in all spatial dimen-

sions and so may be approximated as a three-dimensional simple harmonic oscillator potential near

the z = r = 0 origin. The specific radial to axial aspect ratio of the trap depends on the physical

parameters of the Gaussian beam, where aspect ratios of 1:10 - 1:100 are common in experiments.

Therefore, a focused Gaussian beam can produce a tightly confining elongated trap, as shown in

figure 2.6. The frequency and intensity profile of a red-detuned FORT lead to a conservative force

on an atom that is attractive toward the position of highest intensity (i.e. the focus, w0, of the laser

beam located at the origin), and is expressed as

~Fdip = −∇Udip =
αs
2ǫ0c

∇I(~r). (2.11)

For typical laser parameters (spot size on the order 10 - 100 µm and power on the order of 10

- 100 W), the FORT has a trap depth ∼ 100 µK (in temperature units, i.e. energy divided by kB).

The depth of the confining potential establishes how much energy an atom can if it is to become

trapped. As mentioned above, the optical dipole trap does not provide any dissipative forces,

and so the relatively shallow trap depth means laser cooling techniques must be implemented in
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Figure 2.6: Three-dimensional confining potential produced by an optical dipole trap with beam parameters,

w0 = 100 µm and Λ = 10 µm. A low velocity atom near the origin is trapped in an approximate three-

dimensional simple harmonic oscillator potential. Note the axial and radial axes have the same units but

span different ranges.
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conjuction with the FORT for atoms to be confined. This is usually accomplished by overlapping

the FORT with a MOT [27] for a period of time, after which the magnetic coils are turned off, and

an optical molasses stage further cools the atoms in the confining potential.
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Chapter 3

General Experimental Apparatus

This chapter is intended to provide a synopsis of the main apparatus components used through-

out the course of this dissertation work. The apparatus components that are used in a majority of

the experiments are a source of neutral atoms, a vacuum chamber, lasers, magnetic field coils, a

TTL-based timing control system, and a charge-coupled device (CCD) camera for imaging. These

components are combined to create gases of ultracold atoms and characterize those gases by means

of absorption imaging. In addition to using a CCD camera for data collection, we also introduced

a pair of solid-state photoreceivers as the primary measurement devices for a subset of our later

experiments. The main apparatus components will be described to an extent that provides a suffi-

cient context for how the work was performed as described in following chapters. A more detailed

description of the first-generation apparatus and characterization techniques, along with electron-

ics circuit diagrams and discussion of the computer control using LabView, can be found in the

dissertation of a previous graduate student [28].

3.1 Neutral Atoms for Laser Cooling

Alkali atoms are well suited for laser cooling and trapping experiments as they have single

valence electrons with closed optical transitions [26]. The resonance frequencies necessary to

excite those transitions generally lie in a spectral range that is conveniently accessible with existing

laser technology. Furthermore, alkali atoms have nonzero nuclear spin which leads to hyperfine

structure in the ground state and excited states. Finally, these atoms’ vapor pressure means that

they are easily introduced at the right density into vacuum systems without as much effort as other

types of atoms. All of the experiments presented in this dissertation are performed using rubidium

atoms, namely 85Rb and 87Rb, and so the following is intended to provide a description of the

relevant energy levels used for manipulating those atomic species. The symbol notation for the

energy levels will be of the form nLJ , where n is the principal quantum number, L is the total
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orbital angular momentum quantum number in spectroscopic notation, and J is the total angular

momentum quantum number.

3.1.1 The D2 Line of 85Rb and 87Rb

The 85Rb and 87Rb isotopes (atomic number 37) each have a single valence electron in the

5S1/2 ground state energy level and the lowest energy excited state is the 5PJ energy level, where

spin-orbit coupling splits the excited state into 5P1/2 and 5P3/2 fine structure energy levels. Our

experiments are performed by exciting the valence electron on the 5S1/2 to 5P3/2 transition, com-

monly known as the D2 line, with 780 nm wavelength light. The total angular momentum of the

nucleus and electrons is, F = I + J , where the nuclear spin (represented as I in this section) for

85Rb is I = 5/2 and the nuclear spin for 87Rb is I = 3/2. The nucleus and electron interaction re-

sults in hyperfine structure in the ground state and excited state energy levels for the two isotopes.

The energy difference in frequency units between the fine structure and hyperfine structure energy

levels are shown in figure 3.1.

According to quantum number selection rules [53], electric dipole allowed transitions between

hyperfine ground state and hyperfine excited state energy levels are those that result in ∆F =

0,±1. The size of the hyperfine splittings with respect to the 6 MHz natural linewidth (Γ =

(2πτ)−1, where τ = 26.25 ns [54]) of the D2 transition allows for manipulating Rb atoms via

excitations between various pairs of individual hyperfine energy levels. Of particular importance

to laser cooling is the cycling transition used to scatter photons from the laser cooling beams.

For 85Rb, the D2 line cycling transition is the 5S1/2 F = 3 to 5P3/2 F = 4 transition, and for

87Rb, the D2 line cycling transition is the 5S1/2 F = 2 to 5P3/2 F = 3 transition. An atom with

thermal motion that is illuminated by light that is slightly red-detuned from a cycling transition

will repeatedly scatter photons on that transition and experience a velocity reduction for the proper

arrangement of laser cooling beams.

During the cycling transition scattering process, the presence of lower energy hyperfine excited

states means the atom has a nonzero probability of undergoing a ∆F = 0 or ∆F = −1 ground
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Figure 3.1: The D2 line for 85Rb and 87Rb. The resonant wavelength corresponding to the optical frequency

splitting [1, 2] between the 5S1/2 and 5P3/2 is 780 nm. Hyperfine structure (ground state [1] and excited

state [3] splittings in 85Rb, and ground state [4] and excited state [3] splittings in 87Rb) within each hyperfine

manifold are shown to scale (but not with respect to other manifolds or the difference between the 5S1/2 and

5P3/2 energy levels). Note the hyperfine splitting in the ground state is orders of magnitude larger than the

excited state shifts.
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state to excited state transition, followed by a decay into the lower hyperfine ground state. Such an

event puts the atom into a "dark state", meaning that atom can no longer be driven by the frequency

of the laser cooling light that is nearly resonant with the cycling transition. The inability of the

cooling laser frequency to excite atoms in the dark state is a consequence of the relatively large

hyperfine splitting between the hyperfine ground states. This problem is remedied by optically

pumping atoms from the lower hyperfine ground state back into the upper hyperfine ground state

using an additional laser, commonly referred to as a hyperfine repump laser. For our experiments

involving 85Rb, the hyperfine repump laser frequency is set to the 5S1/2 F = 2 to 5P3/2 F = 3

transition, and for our experiments involving 87Rb, the hyperfine repump laser frequency is set to

the 5S1/2 F = 1 to 5P3/2 F = 2 transition.

3.2 Ultra-High Vacuum Chamber

Performing experiments with ultracold trapped gases of atoms requires operating the experi-

ments in an ultra-high vacuum (UHV) environment. This is due to the trapped atoms being con-

fined in relatively shallow trap depths (∼ 1 K for the MOT and ∼ 100 µK for the FORT). In

the event that a room temperature background molecule or atom collides with a trapped atom, the

confined atom will likely be ejected from the trap. To mitigate those losses from background-gas

collisions and maximize the characteristic trap lifetimes (i.e. the time required for the number of

atoms in a trap to decrease to e−1 the initial trapped number), it is important to maintain a high

quality vacuum with a pressure ∼ 10−9 - 10−10 Torr.

The ultracold atom experiments presented in this dissertation are all conducted inside of a

stainless steel vacuum chamber (Kurt J. Lesker custom chamber) with optical access provided by a

subset of the vacuum ports capped with optically transparent windows set in stainless-steel conflat

(CF) flanges. The vacuum arm-length (i.e. the extent a port protrudes from the main vacuum

chamber body) and port diameter varies depending on the particular arm. All of the vacuum

connections are formed by sandwiching a copper gasket between two CF surfaces. The knife-edge

on the CF flanges deforms the copper gasket and produces a high-quality seal. This metal-to-metal
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connection has the benefit of being able to withstand the high temperatures necessary for "baking-

out" the vacuum. A bake-out is required anytime the vacuum chamber has been brought up to

atmosphere and exposed to the external environment. At minimum, contaminants from the air, such

as water molecules, become attached to the inner walls of the vacuum chamber. In addition, when

adding or removing items from the open vacuum chamber (e.g. optics, electrical connections),

there is an increased risk of vacuum surface contamination through accidental contact. This can

severely inhibit the lowest attainable vacuum pressures since impurities in the vacuum system will

outgas over time (creating a persistent background pressure). The bake-out process accelerates

this outgassing by raising the temperature of the entire sealed vacuum system to 150 ◦C - 300 ◦C,

where the maximum temperature is limited by whichever component in the system has the lowest

bake-out temperature rating.

3.2.1 Bake-Out Procedure

The procedure for taking the closed vacuum chamber from atmosphere to UHV pressures can

be summarized by the following steps. First, the vacuum chamber is slightly elevated from the main

optical table to eliminate direct surface contact during the bake-out. Next, a dedicated vacuum

chamber port with a bakeable all-metal isolation valve (Nor-Cal Products Model AMV-150-CF)

is attached to a bootstrapping pump (comprised of a turbo vacuum pump (Pfeiffer Vacuum Model

TMU 261 P) and diaphragm vacuum pump (Pfeiffer Vacuum Model MVP-035-2) in series). The

chamber is wrapped with independent lengths of heater tape connected to variac power supplies,

and thermistors are strategically placed to monitor the local temperature at different positions. The

entire vacuum chamber is then wrapped with aluminum foil to create an enclosed oven, and the

heater tape is used to slowly raise the temperature of the system. During this time, it is important

to ensure large temperature gradients do not develop, since these can lead to differential thermal

expansion at flange connections that could result in vacuum leaks. While the temperature is being

increased, the diaphragm vacuum pump is used to compensate for the outgassing and ultimately

bring the vacuum pressure down to levels where the turbo vacuum pump can operate effectively

30



(∼ 10−3 Torr). The system is given time to bake until the pressure reduction approximately levels

off (∼ 10−8 Torr), at which point the applied heat is slowly reduced to zero and the tin foil is

removed. The chamber is carefully lowered to its original height and an ion vacuum pump (Gamma

Vacuum Model 45S-CV-2V-SC-N-N) that is attached to another dedicated vacuum port is turned

on. Finally, the bakeable valve is closed and the bootstrapping pump is turned off and detached

from the vacuum chamber. The UHV operates indefinitely with the ion vacuum pump maintaining

the vacuum pressure.

3.3 External-Cavity Diode Lasers

The coherent light required for creating ultracold gases of atoms in our experiments is pro-

duced by tunable external-cavity diode lasers (ECDLs), otherwise known as grating-stabilized

diode lasers, that are aligned and controlled to emit 780 nm wavelength light. These are home-

built systems that use the rear facet of a commercial diode laser (Roithner Lasertechnik Model

ADL78901TX) and a diffraction grating in the Littrow configuration to form a resonant cav-

ity [55, 56]. The cavity is placed in an enclosure to isolate it from environmental changes (e.g.

turbulent air, temperature gradients), and temperature-control of the enclosed cavity is achieved by

contact with a thermoelectric device mounted to a heat sink to the outside environment. A general

schematic of the design of a homebuilt laser is shown in figure 3.2.

The wavelength of the laser emission is determined by the cavity mode that experiences the

most gain [52]. As shown in figure 3.2, the diffraction grating is mounted such that the first diffrac-

tion order couples directly back into the diode laser, and the zeroth order reflects out of the cavity

and enclosure. The first diffraction order provides feedback into the lasing medium and increases

the gain associated with a particular cavity mode, causing the emission to be predominantly in that

single mode [52]. By altering the angle between the incident light and the grating surface normal,

the wavelength associated with the mode with maximum gain can be selected [56] (over a finite

range determined by the diode laser and cavity characteristics). The diffraction grating is physi-

cally mounted (glued) to a mirror mount, which provides coarse adjustment capability to the angle
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Figure 3.2: Top-down view of the main elements housed inside the enclosure of a homebuilt ECDL. The

labeled parts are as follows: a) an aluminum mounting plate, b) a thermistor mounted to the top of an

aluminum diode laser collimation tube housing, c) a diode laser collimation tube, including diode laser and

collimation optic, d) a thermoelectric device mounted beneath the aluminum mounting plate, e) the beam

path of the diode laser output (rightward arrow) and the first diffraction order coupled back into the diode

laser (leftward arrow), f) the zeroth diffraction order (experiment laser beam), g) a diffraction grating, h) a

piezoelectric actuator mounted between a surface and adjustment screw head, i) a mechanical mirror mount

with vertical and horizontal adjustment screws, j) aluminum enclosure, and k) experiment laser beam output

window (wedge). The electrical connections associated with the diode laser, thermistor, thermoelectric

device, and piezoelectric actuator are left out for clarity.
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of the grating. Fine-scale angle changes are accomplished by applying a bias voltage (Thorlabs

Model MDT694A) to a piezoelectric actuator (made from lead zirconate titanate and referred to as

PZT (Thorlabs Model AE0203D04F)) mounted between the mirror mount surface and horizontal

adjustment screw (see figure 3.2).

Thermal expansion or contraction of the cavity directly affects the wavelength of the dominant

lasing mode, so an additional source of wavelength control comes from altering the temperature

of the cavity. Additionally, the center of the gain curve of the diode laser itself is temperature-

dependent. The easiest way to alter the temperature is by changing the current supplied to the

thermoelectric device, or to alter the injection current supplied to the diode laser. The temperature

sensitivity of the laser wavelength does, however, mean temperature control of the cavity is crit-

ical when performing experiments. Including a thermistor in the homebuilt enclosure provides a

voltage signal that is used for an electronic servo-loop [28] that controls the current supplied to the

thermoelectric cooler. A low-noise current supply (ILX Lightwave Model LDX-3525) is used to

power the diode laser. Long-timescale temperature changes are readily managed by the feedback

loop, but rapid temperature variations can be severely problematic. Rapid temperature changes can

be compensated for using an additional feedback servo-loop that alters the injection current, but

this was not necessary in our experiments, and so was not implemented.

In addition to the electronic servo-loop that controls the temperature of the cavity, there is a

servo-loop [28] that controls the bias voltage applied to the PZT. When a constant voltage is applied

to the PZT, the resulting cavity length produces a specific output frequency of the laser. Changing

the PZT voltage then allows for the laser frequency to be altered in a controllable way. For this to

be useful during our experiments, it is necessary to provide a precise frequency reference that can

be used to calibrate the applied voltages such that the laser operates at the desired frequency. The

voltage signal for the servo-loop is provided by a dichroic-atomic-vapor laser lock (DAVLL) [5]

signal. The frequency reference used to calibrate the DAVLL signal is provided by a Doppler-free

saturated absorption (SA) spectroscopy set-up [55]. The light used to create the DAVLL signal

and SA signal is derived from the ECDL. Figure 3.3 shows a DAVLL set-up and SA set-up, along
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with the resulting signals. Calibrating the DAVLL signal based on the hyperfine splitting in Rb

allows us to apply a specific voltage to the PZT so that the output laser frequency corresponds to a

well-known frequency that drives a transition in Rb atoms.

As shown in figure 3.3, a DAVLL set-up works by sending linearly polarized light through a

room temperature Rb vapor cell. The linearly polarized light can be considered as being com-

posed of equal parts σ+ and σ− circular polarization components. A uniform magnetic field, ~B, is

provided by permanent magnet rings attached concentrically around the vapor cell. The effect of

the magnetic field (∼ 100 Gauss) is to Zeeman shift the central frequencies of the Doppler broad-

ened absorption features associated with the σ+ and σ− circular polarization components. The

central frequencies are shifted by equal and opposite amounts away from the unshifted resonance

frequency. After the vapor cell, the light passes through a quarter waveplate and polarizing beam

splitter (PBS) cube. The fast axis of the quarter waveplate is orientated to be 45◦ with respect to the

incident light polarization direction (and PBS through-beam output axis) so the σ+ and σ− circular

polarization components are split into separate paths after the PBS. The transmitted intensity of

each component is detected and the signals are combined to form a difference signal. The laser

is scanned over a range of frequencies and the net result is a broad antisymmetric signal with an

approximately linear slope ideal for stable side-locking.

3.3.1 Laser Beam Manipulation Tools

Having a coherent light source tuned to a desired frequency is critical for our experiments,

but it is not the only requirement. During the course of an experiment, it is often necessary to

change the frequency of a laser beam. The servo-loop electronics allow for digitally switching

between preset set-points corresponding to different voltages (i.e. frequencies) on the linear slope

of a DAVLL signal (see figure 3.3(c)). This provides the capability of jumping the laser frequency

to different values within a hyperfine manifold (see figure 3.1) during the course of an experiment.

Further frequency control comes from acousto-optic modulators (AOMs) that produce deflected

beams with a known frequency shift. We commonly use 40 MHz (IntraAction Corp. Model AOM-
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Figure 3.3: Schematic of laser beam and vapor cell arrangements used for creating signals to calibrate and

lock the diode laser frequency. Part a) shows the dichroic-atomic-vapor laser lock set-up, and part b) shows

the Doppler-free saturated absorption spectroscopy set-up. Part c) is adapted with permission from [5]

c© The Optical Society and shows the resulting signal shape produced by each type of set-up when the laser

frequency is scanned over the 87Rb F = 2 → F ′ = 1, 2, 3 and 85Rb F = 3 → F ′ = 2, 3, 4 transitions.

The labels indicate photodiodes (PD), a waveplate (WP), a polarizing beam splitter (PBS) cube, and mirrors

(M). In both set-ups, the PD signals are combined such that one PD is forward-biased and the other is

reverse-biased to form a difference signal.
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402AF3) and 80 MHZ (Isomet Model 1205C-2) AOMs driven by homebuilt RF signal generators

comprised of voltage-controlled oscillators (VCO) in series with RF switches, attenuators, and

amplifiers (Mini-Circuits components). The combination of set-point jumps and AOM frequency

shifts gives us a wide range of frequency control during an experiment.

In addition to changing the laser frequency, we require the ability to alter the intensity of laser

beams during an experiment. AOMs provide a means of doings so by varying the amplitude of the

RF drive signal. This is accomplished via RF switches that lead to different levels of RF attenuation

in the homebuilt driver circuits. Alternatively, a programmable function generator can be used in

series with a power amplifier to vary the intensity of the RF signal sent to an AOM. Laser beam

intensity control means that AOMs also serve as effective shutters, where a deflected beam path

can typically be extinguished by more than a part in 103. We generally use an AOM "backed-up"

by a mechanical shutter (Uniblitz Model LS6) to ensure any undesirable leakage light along a beam

path is blocked.

The general experimental layout on the optical table includes many optical components that

are used to reshape, resize, or redirect laser beams. Reshaping and resizing is accomplished by

anamorphic prism pairs and lens combinations, respectively. Redirecting laser beams is accom-

plished by mirrors and beamsplitter cubes. Additionally, some of our experimental layout requires

two laser beams to propagate along the same path. This is achieved by rotating (using a half

waveplate) the linear polarization of the two beams to be in orthogonal directions, and then direct-

ing them along orthogonal paths into a polarizing beam splitter cube. One beam passes directly

through the cube and the other beam reflects at the inner surface so that both beams exit the cube

along the same path. Beamsplitter cubes (or wedges) are also used to provide "pick-off" laser

beams. Pick-offs serve a variety of purposes such as providing light for frequency references and

lock signals (i.e. SA and DAVLL set-ups), temporary beam paths used for auxiliary measurements,

or new beam paths that are essential to an experimental scheme.
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3.4 Experiment Magneto-Optical Trap

Whether being the primary trap for an experiment or providing an ultracold gas to be loaded

into an optical trap, the MOT is an integral component of our experiments when it comes to pro-

ducing samples of ultracold atoms. Our MOT consists of three circularly polarized laser beams that

are directed through the vacuum chamber along mutually orthogonal directions and retroreflected

back along the same paths to produce three pairs of counter-propagating beams intersecting at the

center of the vacuum chamber. Opposing magnetic coils are mounted externally on the vacuum

chamber and positioned to provide a magnetic field zero at the beam intersection. In addition to the

trap lasers that create the optical molasses there is a repump laser beam. The role of the repump

laser is to maintain continuous laser cooling by preventing atoms from getting stuck in a dark state.

Our apparatus uses two ECDL lasers to implement the laser cooling in our experiments. These

consist of the trap laser and the repump laser. The trap laser provides the three pairs of counter-

propagating laser beams for the optical molasses. The frequency is tuned to drive transitions start-

ing from the upper hyperfine ground state (see figure 3.1). All three beam pairs are derived from

a single ECDL through appropriate placement of beam-splitter cubes along the beam paths. Each

beam is linearly polarized until passing through a quarter waveplate just before entering the vac-

uum chamber. The beams pass through the center of the chamber and exit through a port window

opposite to the input side. A quarter waveplate and mirror are positioned just after the output

window so the beams retroreflect back through the vacuum chamber to form circularly polarized

counter-propagating laser beams in the σ+- σ− configuration. The repump laser is a separate ECDL

with the frequency tuned to drive transitions starting from the lower hyperfine ground state. A sin-

gle beam from the repump laser is overlapped with one of the σ+- σ− beam pair paths through the

vacuum chamber, and its role is to optically pump atoms from the lower hyperfine ground state

back into the upper hyperfine ground state so the trap laser can continue to laser cool the atoms.

With the counter-propagating laser beam pairs arranged to intersect orthogonally at the center

of the vacuum chamber, the remaining piece needed for the MOT is the inhomogenous magnetic

field with a magnetic field zero at the laser intersection. Our experimental apparatus has two
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opposing magnetic coils that are attached externally on opposite sides of the vacuum chamber.

Each coil is mounted concentrically on a vacuum arm that coincides with one of the laser beam

pair propagation axes. The spherical quadrupole magnetic field is produced by applying current

to the coils, and the resulting magnetic field induces the Zeeman splitting necessary to introduce

a spatially dependent force on the atoms in the laser cooling region. A schematic depicting the

arrangement of our MOT is shown in figure 3.4.

Figure 3.4: Schematic of the three-dimensional MOT configuration implemented experimentally. The light-

red arrows correspond to red-detuned laser beams for laser cooling, where the circular polarization of each

beam is labeled. The counter-propagating laser beam pairs are mutually orthogonal and intersect at the

center of the vacuum chamber. The dark-red arrows correspond to the repump laser. The black circles

represent opposing magnetic coils mounted external to the vacuum (see main text), and the light-blue circle

in the center represents a laser cooled and spatially confined gas of atoms.

3.4.1 Loading Atoms into the MOT

For our experiments, the method of introducing Rb atoms into the vacuum chamber is to heat

a Rb getter (SAES Getters Rb/NF/3.4/12 FT10+10), also referred to as an alkali metal dispenser

(AMD). The getter is a device comprised of a reducing agent and rubidium chromate mixture

housed in a small metal container. The container has electrical terminals on both ends and a

small slit to allow the alkali metal to escape. When the device is heated (by supplying current),
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a reduction reaction occurs and the alkali metal evaporates out of the container. This provides

a source of Rb atoms that thermalize to a Maxwell-Boltzmann velocity distribution inside of the

vacuum chamber. As discussed in section 2.3, there is a finite velocity capture range over which

atoms can be effectively Doppler cooled and then confined in the MOT. The Rb vapor introduced

into the vacuum contains a subset of atoms with suitably low velocities, and it is these atoms that

are laser cooled and trapped for our experiments. Of course, there are also atoms with velocities

that are too high to be cooled and trapped for our experiments. Those atoms, along with impurities

that may still be present from opening the chamber or those introduced by outgassing, are what

constitute the primary source of room temperature atoms and molecules that limit the trap lifetimes

through background-gas collisions [26].

3.5 Experiment Optical Dipole Trap

A subset of our experiments require a sample of ultracold atoms spatially confined in the vac-

uum chamber, but without near-resonant light or magnetic fields doing the trapping. We accom-

plish this by trapping ultracold atoms in an optical dipole trap. Our particular optical dipole trap is

a single focused Gaussian laser beam produced by a high-power RF excited CO2 laser (Coherent

Model GEM Select 100). The laser output wavelength is 10.6 µm, which is far red-detuned from

the 780 nm resonance wavelength of the D2 line transition in Rb. Therefore, our optical dipole trap

operates as a FORT, as described in section 2.4. The confining potential is derived from the main

CO2 laser output using a 40 MHz AOM (IntraAction Model AGM-406B1) driven by a commercial

RF driver (IntraAction Model GE-4030).

The peak laser intensity of the FORT is the beam property that determines the depth of the trap-

ping potential and the spatial oscillation frequencies associated with the axial and radial directions.

The depth of the optical dipole trap establishes the maximum temperature an atom can have while

being spatially confined in the trapping potential. When an atom has a large initial kinetic energy

compared to the potential depth, it will pass through the FORT light and not be trapped. However,

when the kinetic energy of the atom is less than the potential depth, there is an increasing likeli-
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hood the atom will become spatially confined in the FORT. Since the optical trap only provides

a conservative force, atoms need to be laser cooled into the FORT (i.e. via a simultaneous MOT

or optical molasses). Once trapped, the characteristic spatial oscillation frequencies determine the

timescale of exchange between potential and kinetic energy as the atom moves in the confining

potential.

The radial oscillation frequency is determined by performing a parametric heating measure-

ment [57–59]. This works by heating the trapped atoms through sinusoidal modulation of the laser

power [28]. For small modulation amplitudes, the change in characteristic oscillation frequencies

follows the change in trap depth. When the trap depth is varied at a frequency close to twice the

characteristic oscillation frequency [60], a large amount of energy is put into the gas. We perform

trap depth modulation experiments over a range of frequencies (see figure 3.5) and then measure

the final temperature (as described in section 3.6.1) after the atoms are heated. The frequency that

leads to the largest temperature increase corresponds to twice the radial oscillation frequency. The

axial oscillation frequency can be calculated once the gas temperature and axial spatial extent are

known (see section 3.6.1). Alternatively, the axial oscillation frequency can be measured by ob-

serving the time required for a fraction of atoms at the edge of the trap to move to the center of the

trap along the axial direction using absorption imaging techniques (as described in section 3.6).

3.5.1 Aligning and Loading the FORT

Our optical dipole trap is created by focusing the FORT beam to a location external to the

vacuum chamber, and then that focus is 1:1 imaged into the center of the vacuum chamber using

a lens positioned inside the vacuum. This is a somewhat unusual arrangement compared to other

systems used elsewhere, which generally employ a single lens to directly focus to the desired

trap location. The FORT wavelength is in the infrared region of the electromagnetic spectrum,

so we rely on careful geometric positioning for the initial beam alignment. The challenge is to

overlap the roughly mm3 trapping volume of the laser with the roughly mm3 volume of trapped

atoms at the center of the vacuum chamber, which is about 10 cm away from the outside of the
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Figure 3.5: Radial oscillation frequency data collected via parametric heating (see main text) over a range

of power modulation frequencies. The radial spatial extent is plotted and is related to the temperature of the

gas. The largest spatial extent corresponds to the highest temperature gas. The blue diamonds and green

circles are data collected on consecutive days. The peak position in this data indicates a radial oscillation

frequency of 550 Hz.

vacuum chamber. We start by forming a MOT in the vacuum chamber, which we view using a

security camera with sensitivity into the infrared and a video monitor. This allows us to observe

the fluorescence of the atoms as they scatter light from the laser cooling beams An aperture in steel

plate is placed directly in front of the FORT beam input window, and a security camera is mounted

to a translation stage at the location where the external lens will be positioned. The aperture is

adjusted so the MOT appears centered in the aperture hole on the video monitor. Next, the security

camera is translated along the direction defined by the input vacuum arm, and if necessary, the

aperture position undergoes small corrections to ensure the MOT stays visibly centered. Once the

first aperture is positioned, another aperture is placed at the location where the external lens focus

will be located. The centering procedure is repeated for the second aperture so that its final position

allows the security camera to be translated while keeping the MOT visibly centered between both

apertures on the video monitor. Finally, the security camera is removed and the external lens is

positioned so the FORT beam passes through the center of the lens. To check the initial beam
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alignment, we place Tyvek R© paper on the output window and send a short pulse from the FORT

laser through the chamber. If the beam is able to pass through the apertures and exit the chamber,

which is detected when the beam burns a hole in the Tyvek R© paper, then the rough alignment is

complete. Figure 3.6 depicts the aligned FORT laser path through the vacuum chamber.

Figure 3.6: Schematic of the FORT beam path through the vacuum chamber. The lens (L) before the

chamber creates a beam focus external to the vacuum port. The next lens (internally mounted in the chamber)

images the beam focus to the center of the vacuum, where atoms become spatially confined in the optical

dipole trap. The third lens in the beam path focuses the beam to a location outside of the chamber so a mirror

(M) can direct it into a beam dump. The inset shows an elongated gas of trapped ultracold atoms (light-blue)

at the focus of the laser beam (outlined by dark-red curved lines). Distances are not drawn to scale.

The alignment procedure is a reliable method for making contact with the atoms in the MOT,

resulting in a detectable number of trapped atoms in the FORT. We detect the trapped atoms by

performing absorption imaging (described in the following section 3.6), and the initial signals

provide a baseline that we use to optimize the trap load. The adjustable parameters available for

optimizing the number of trapped atoms include the optical trap alignment, trap laser alignments,

trap laser frequency detuning, repump beam intensity, and shim coil currents. Shim coils are

magnetic coils positioned along mutually orthogonal axes around the vacuum chamber and are used
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to eliminate stray magnetic fields to produce the lowest possible optical molasses temperatures.

They also have the effect of changing the location of the magnetic field zero, and hence the center

of the MOT, which can be compensated for by adjustments to the optical trap alignment. Coarse

adjustment of the shim coil fields is accomplished by turning off the opposing MOT coils and

altering the applied currents so the amount of time that atoms remain in the optical molasses

is maximized. We perform this maximization qualitatively by observing the fluorescence of the

atoms using security cameras positioned along different axes. The coarse adjustment current values

become the starting point for further adjustments during the trap load optimization.

In addition to the above adjustable parameters, there is the computer controlled timing se-

quence that dictates how long a particular combination of trap laser detuning, repump intensity,

and magnetic field environment are applied before and after the optical trap is turned on. The large

parameter space available for the trap load optimization makes searching for the global optimum

corresponding to the highest number of trapped atoms a futile exercise. Instead, we perform sev-

eral iterations of each adjustable parameter until we arrive at a sufficiently dense and reproducible

number of atoms for our experiments. The long-term stability of the FORT load (with respect to

experiment timescales) is more important than operating at the global optimum.

3.6 Imaging Ultracold Gases

Characterization of our ultracold gases is performed using standard absorption imaging tech-

niques. This is the main diagnostic tool that we use to optimize the number of atoms in our traps

and to measure the temperature of those atoms. A laser (probe) beam used to image the atoms

is derived from the trap laser and overlapped with the ultracold gas in the vacuum chamber. A

converging lens placed on the output side of the vacuum chamber collects the transmitted probe

light and overlaps it onto a CCD camera (Roper Scientific Model 7404-0001). Proprietary soft-

ware (WinView) provided by the camera manufacturer converts the CCD data to image files that

can be viewed directly, or the files can be manipulated using a variety of software tools (i.e. basic

arithmetic operations, binning, scaling, etc.) to produce processed images.
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A vast majority of the absorption imaging measurements collected for the experiments de-

scribed in this dissertation were performed with atoms that were confined in a FORT, and so the

following discussion will focus on that particular system (though the general approach also applies

to imaging atoms in a MOT). It is useful to identify two categories of images that can be collected:

in-trap images and out-of-trap images. As the name suggests, an in-trap image is collected when

atoms are confined in the FORT, whereas an out-of-trap image is collected after the atoms have

been released from the FORT. Due to the tight radial confinement and high number density in the

optical dipole trap, it is usually most useful to perform out-of-trap imaging.

3.6.1 Basic Atomic Gas Characteristics

The most common images we collect are after the trapped atoms have reached thermal equi-

librium. To ensure the atoms have sufficiently thermalized, we "hold" the trapped atoms in the

FORT for a period of several seconds. We assume a Maxwell-Boltzmann distribution can be used

to describe the positions and velocities of the trapped atoms and also approximate the trapping

potential as harmonic, which leads to the spatial number density distribution of the cylindrically

symmetric gas being expressed as [61]

ρ(r, z) = Nω2
rωz

(

m

2πkBT

)3/2

exp
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(ω2

rr
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zz
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(
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z
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, σi =
1

ωi

√

kBT

m
, (3.1)

where the subscript, i, corresponds to the spatial dimension (i.e. r, z, where r2 = x2 + y2), σi

is the root-mean-square (RMS) width of the confined atoms’ spatial density distribution, ωi is the

characteristic oscillation frequency (rad s−1), N is the number of atoms, T is the temperature of

the gas, and m is the atomic mass of the trapped species . The elongated shape of a FORT means
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that the radial direction is more tightly confining as compared to the axial direction, so the radial

oscillation frequency is larger than the axial frequency by an amount equal to σz/σr.

Suddenly turning off the FORT leads to the gas undergoing three-dimensional ballistic expan-

sion as a result of the atoms’ thermal energy. The equipartition theorem states that the atoms have

an average kinetic energy of kBT/2 in each spatial direction with a one-dimensional RMS speed

of vrms = (kBT/m)1/2, so the time dependent spatial extent in each dimension can be expressed as

σi(t) =
√

σ2
i + v2rmst

2, (3.2)

where t is the amount of time the gas expands (from t = 0). Inserting the expression for σi into

(3.2) leads to

σi(t) = vrmst

√

1 +
1

ω2
i t

2
. (3.3)

The trap parameters used for our FORT result in large radial oscillation frequencies (i.e. hundreds

of Hertz) and the ballistic expansion time is usually a few milliseconds, so (3.3) for the radial

direction can be well-approximated as σr(t) ≈ vrmst. Therefore, the temperature of our ultracold

gas can be expressed approximately as

T =
m

kB

(

σr(t)

t

)2

. (3.4)

3.6.2 Probe Beam and Optical Depth

Measuring the spatial extent (and thus the temperature) of our ultracold gas is performed by

illuminating the expanded cloud with a low-intensity probe beam set to be resonant with the cycling

transition of the particular species being imaged. Before applying the probe beam, the atoms are

optically pumped into the upper hyperfine ground state. Once the atoms are in the upper hyperfine

ground state, the probe beam is applied. The atoms scatter light out of the probe beam along the

direction of light propagation, and a lens positioned on the opposite side of the atoms (and external
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to the vacuum chamber) images the resulting shadow onto the CCD camera. The amount of light

scattered out of the probe beam is proportional to the number of atoms in the gas, so the shadow

imaged onto the CCD has a two-dimensional Gaussian shape. A schematic of the probe beam path

is shown in figure 3.7.

Figure 3.7: Schematic showing the probe beam path through the chamber and overlapped onto the CCD

camera. Before entering the chamber, the beam passes through a linear polarizer (Pol.) then a quarter

waveplate to create circularly polarized light. A magnification lens (L) on the output side of the vacuum

chamber images the light onto a CCD camera. The beam path is directed using a gold-plated mirror (M).

To simplify the image analysis, the probe beam is circularly polarized such that the atoms are

spin polarized in the outermost ground state magnetic sublevel via optical pumping. From this

energy state, the atoms can only make a closed two-level transition with the corresponding outer-

most excited state magnetic sublevel. For example, 87Rb atoms illuminated with a σ+ circularly

polarized probe beam will scatter light on the mF = +2 ground state sublevel to mF = +3 excited

state sublevel transition. The intensity of the probe beam is attenuated as it propagates (chosen

here to be in the x̂-direction) through the gas, which is expressed as

dI

dx
= −σ0ρI, (3.5)
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where σ0 = 3λ2/(2π) is the polarized resonant cross-section, ρ ≡ ρ(x, y, z) is the spatial density

distribution (see (3.1)) of the gas, and I is the spatially-dependent light intensity. Integrating (3.5)

along the direction of light propagation leads to a simple solution expressed as

I(y, z) = I0 exp(−O.D.(y, z)), (3.6)

where I0 is the incident light intensity and O.D.(y, z) is the optical depth at a position in the two-

dimensional plane perpendicular to the probe beam propagation direction. The optical depth can

be expressed as

O.D.(y, z) = − ln

(

I(y, z)

I0

)

= σ0
N

2πσyσz
exp

(

−1

2

(

y2

σ2
y

+
z2

σ2
z

))

. (3.7)

3.6.3 Data from CCD Camera

The role of the CCD camera is to measure the intensity of the transmitted probe light through

our vacuum chamber (see figure 3.7). The probe light is collected by a lens and overlapped onto

the CCD surface, where each square pixel records a value (i.e. counts) that is proportional to the

energy associated with the portion of the beam incident on that pixel area. The net result is a two-

dimensional intensity pattern corresponding to the transmitted light. A sequence of four images

are collected during each absorption imaging measurement. The first image prepares the CCD by

clearing out any dark counts on the pixels. The next image (Im1) is collected when atoms are

present in the beam path, which is followed by an image (Im2) of the probe beam when no atoms

are present. Lastly, an image (Im3) is collected when no light is directed through the chamber.

The final three images are used to calculate an optical depth for each pixel. The two-dimensional

optical depth calculated from the images can be represented by

O.D.(x′, y′) = − ln

(

Im1− Im3

Im2− Im3

)

, (3.8)
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where x′ and y′ are spatial coordinates in the image frames (i.e. represent the location of a pixel).

The measured two-dimensional optical depth is fit to (3.7) via least-squares-minimization. The

numerical fit parameters are the peak optical depth, radial and axial RMS widths, and center-of-

mass position in the image. Since the ultracold gas is elongated in one direction, and since that

axis is not necessarily horizontal with respect to a side of the image frame, the fit routine (written

in Fortran) also includes an angle of rotation.

The spatial resolution of the imaging system is limited to around 10 µm due to the quality

of the imaging lens used to collect the probe light. This hinders the ability to resolve the radial

spatial extent of a confined gas, since it is near or below the resolution limit (in-trap images do

provide information about the axial direction owing to the larger extent in that spatial dimension).

Releasing the atoms from the trap allows the gas to expand to a size greater than the resolution limit.

During this ballistic expansion, the radial extent quickly reaches a regime where it is determined by

the gas temperature, with the initial in-trap size adding only a negligible contribution (see (3.3)).

The expanded radial extent thus gives the radial temperature, and the overall absorption gives the

total number. In-trap densities are calculated using the temperature and radial oscillation frequency

measured by parametric heating (as described in section 3.5). The peak number density, ρ0, and

the average number density, 〈ρ〉, are expressed as

ρ0 =
N

(2π)3/2σ2
rσz

, 〈ρ〉 = N

8π3/2σ2
rσz

. (3.9)

The ability to use the images to determine quantities in meaningful units requires calibrating

the CCD pixel size with respect to the magnified object size. To perform the pixel calibration, we

take advantage of the center-of-mass free fall when the atoms are released from the FORT. We

collect images at different times, and then we fit kinematic equations to the center-of-mass motion.

Assuming a value for the local gravitational acceleration results in a measurement of the apparent

pixel size in the image, including the magnification from the light collection lens. An example of

data collected for a pixel calibration is shown in figure 3.8. The data shown in figure 3.8 resulted in
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a calibration of 6.6± 0.5 µm side−1, where "side" corresponds to the one-dimensional side length

of a square CCD pixel.
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Figure 3.8: Pixel calibration data collected over a range of free fall times. The center-of-mass location of

the ultracold gas is determined through absorption imaging performed at specified times after releasing the

atoms from the trap. The x′ and y′ center-of-mass (c.o.m.) positions are plotted separately for clarity. The

blue diamonds correspond to data and the red curves correspond to best-fit functions. In both cases, the fit

function is a quadratic free fall equation with three fit parameters.

3.7 Measuring Transmission Signals

The experiments that will be presented in chapter 6 use all of the previously described MOT

components to produce and characterize an ultracold gas, but the data collection technique used

for the main results requires an additional set of apparatus components. In those experiments, the

ultracold gas is initially trapped in a MOT, and we measure the intensity of near-resonant light

transmitted through the released gas under various experimental conditions. The light is rapidly

turned on over a few nanoseconds and we study the time-dependent evolution of the transmitted

light over several atomic excited state lifetimes. Rather than using absorption imaging for the data

collection, we use a set of fast photoreceivers and preamplifiers to detect the transmission signals.

A digital storage oscilloscope is used to save the data.
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3.7.1 Laser Beam with Rapid Turn-on

Our method for producing a laser beam with a fast turn-on has been previously implemented

both by our group and others. However, given the less common use of an acousto-optic modulator

(AOM) as a nanosecond scale turn-on device in ultracold atom experiments, it is worth including a

brief summary of the technique we used. A laser beam is derived from the trap laser via a pick-off

and tightly focused (15 µm spot size) into a 200 MHz center frequency AOM (ISOMET Model

1250C). Having a small transverse spatial extent of the beam inside the interaction medium of the

AOM minimizes the time required for the generated acoustic wave to propagate across the laser

beam. The deflected beam turn-on time is thus determined largely before by the acoustic veloc-

ity (3.63 mm s−1) in the interaction medium and the transverse beam width. We experimentally

measured a 10% to 90% 1st order deflection turn-on time of 9 ns, which agrees with simple esti-

mates. The AOM drive frequency comes from a commercial RF driver output (IntraAction Model

ME Modulator Driver) that is triggered on by a 5 ns rise-time function generator (Agilent Model

33250A). The function generator output is triggered on by a pulse generator (Berkeley Nucleonics

Corporation Model 505), which also provides a delayed trigger for the oscilloscope so that the

experiment and data collection are synced in time.

3.7.2 Electronics and Detectors

The detectors we use for measuring short-timescale transmission signals are low noise free

space silicon optical receivers (New Focus Model 1601FS-AC). These detectors have 1 GHz band-

widths and 400 ps rise times, and so are well-suited for the measurement. Because of the low

laser intensity necessary for the experiment, the resulting signals must be amplified before reach-

ing the oscilloscope. Characterization of test signals was performed to ensure the amplifiers we

use do not impart signal distortions with time variations as fast as our measurement timescales.

We accomplish signal amplification by using four RF preamplifiers in series (Stanford Research

Systems Model SR445A), with each preamplifer having a gain of 5 and a 1 ns rise/fall time. The

amplified output signal is directed to a 200 MHz bandwidth digital storage oscilloscope (Tektronix
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TDS 2024C). The oscilloscope has universal serial bus (USB) connectivity allowing for direct data

transfer to a removable flash drive. Data is collected and saved over a 500 ns time window that

includes a detector background signal, the laser turn-on period, and the intensity transmission over

several hundred nanoseconds. The resulting signals are used to compare to theoretical predictions

of the transmission and to calculate the optical depth associated with the orthogonal light polariza-

tion components (as will be described in chapter 6).
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Chapter 4

Spatially Truncated Optical Pumping Cooling

The following chapter is dedicated to presenting both the theoretical description and exper-

imental implementation of a laser cooling technique for ultracold atoms trapped in a confining

potential. The technique is known as "spatially truncated optical pumping (STOP) cooling" [6],

and it uses near-resonant light to preferentially select high energy atoms and then slow those atoms.

This selection and velocity reduction occurs by applying pulses of near-resonant light that manip-

ulate the internal state of an atom and scatter photons while that atom oscillates spatially in a

confining potential. The STOP cooling technique involves multiple steps that we collectively refer

to as a STOP cooling cycle.

The first iteration of this laser cooling technique is described in a dissertation written by a previ-

ous graduate student from our research group [30], Rebekah Wilson. In that prior implementation,

the ability to directly measure the temperature reduction was hindered due to substantial atom loss

from the optical trap over the time required to complete a cooling experiment. The short optical

trap lifetime (with respect to rethermalization timescales) in those experiments also meant that the

effect of applying multiple STOP cooling cycles could not be easily studied. Furthermore, the

optical trap configuration used in this prior work had an evaporation rate of atoms out of the trap

that was too high. Lowering the background-gas pressure in the vacuum chamber was essential

for performing a direct temperature reduction measurement and also for implementing multiple

cooling cycles. Changing trap parameters to lower the evaporation rate was important as well. The

solution to these two problems will be presented in turn.

In the absence of vacuum leaks, simply waiting a long enough period of time can lead to

improved vacuum conditions. This is because the ion vacuum pump is continuously working to

remove gaseous contaminants in the system. Between the first iteration of STOP cooling and the

experiments presented in this chapter, the apparatus sat dormant for 6 - 12 months. This allowed

the vacuum pressure to reach a level that led to improved optical trap lifetimes. The experimental
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apparatus was revived from its dormant state, and we were able to perform direct temperature

measurements of the ultracold gas after applying STOP cooling cycles. Unfortunately, this period

of operation was short-lived due to the finite number of Rb getters in the vacuum chamber. We were

forced to open the vacuum system to replace the Rb getters before we had completed the STOP

cooling measurements we had planned. However, opening the system proved to be a blessing in

disguise, as the newly baked vacuum system rapidly reached low pressure (∼ 10−9 Torr), and

ultimately the system produced an even longer optical trap lifetime. We not only had a fresh

supply of new Rb getters to use for our experiments, but the optical trap lifetime was long enough

to implement many successive STOP cooling cycles.

In addition to an improved vacuum environment, there was a modification of the optical trap

parameters. The optical trap used in the first implementation had beam characteristics that resulted

in power being displaced from the center of the beam when focused and imaged into the vacuum

chamber. The effect from these optical aberrations was an anharmonic potential in the radial

direction. In any confining potential with a finite potential depth, the highest energy atoms can

gain enough energy to escape from the potential. The rate this occurs is a function of the atom

temperature and the trap depth. This mechanism for atom loss was exacerbated by the radial

anharmonicity in the first implementation. While there are subtleties [29], in general the initial

temperature of the atoms changes more slowly than linearly with the trap depth. By changing

optical trap optics, the confining laser beam was made to be smaller on the focusing lens to reduce

optical aberrations, which had the effect of increasing the peak intensity at the optical trap focus

despite the smaller spot size incident on the lens. This increased the trap depth, and in the end, the

radial direction was more harmonic and the atom loss was reduced.

The following sections of this chapter will provide a detailed description of the STOP cooling

technique. The description will include the theory used to model STOP cooling, predictions for

expected energy reduction from applying STOP cooling to an ultracold gas, and our initial exper-

imental implementation used to perform measurements of STOP cooling. A comparison between
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model predictions and experimental results will be discussed, along with proposed improvements

to the apparatus that are expected to increase the cooling performance.

4.1 A Novel Nonevaporative Technique

Laser cooling has enabled a large number of experiments at ultracold temperatures [10,62–65].

The most common forms of laser cooling, Doppler and polarization gradient cooling, are useful

as a first stage in laser cooling in a wide variety of systems. These have temperature limits such

that additional cooling is needed in order to perform experiments in Bose-Einstein condensation

[66, 67], Fermi degenerate gases [68, 69], precision atomic clocks [70, 71], ultracold molecule

physics [72, 73], and other areas [74, 75]. Both evaporative cooling [76, 77] and laser cooling

methods [35, 78, 79] beyond Doppler and polarization gradient cooling have been used to extend

the temperature range for such experiments. Each method has advantages and disadvantages, and

so the exploration of new techniques broadens the range of possible experimental parameters for

advantageous laser cooling, allowing either improvements in experiments or enabling experiments

to be performed that otherwise could not be.

STOP cooling is a novel nonevaporative cooling technique that adds to the viable methods

available to the laser cooling community. The technique is designed to cool a gas of ultracold atoms

that have been initially cooled and then confined in a conservative potential. In STOP cooling, the

atoms need to have multiple ground states (e.g. different hyperfine states) so that some atoms can

selectively be made to interact with a particular laser frequency while the remainder do not. Atoms

in the latter category are referred to as being in "dark states" while those in the former are in "bright

states". The main idea behind the cooling scheme is to use the fact that the atoms in a conservative

potential oscillate spatially in that potential. The atoms thus continuously trade energy back and

forth between potential energy and kinetic energy. By selecting atoms with high potential energy,

waiting for that energy to be converted to kinetic energy, and then removing that kinetic energy via

light scattering, STOP cooling reduces the temperature of the gas.
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Our cooling technique has several advantages. First, STOP cooling is straightforward to im-

plement in most ultracold atom experiments that use a MOT [62–64] (see section 2.3) as the first

stage of laser cooling. Through the use of acousto-optic modulators (AOMs), all of the required

STOP laser beams can be derived from the existing MOT beams. More broadly, STOP cooling

makes efficient use of photons for cooling in that, as will be described in detail below, they are

all directed opposite to average atom motion and only high-energy atoms scatter the light. Since

cooling limitations are very often ultimately linked to the rate of photon scattering [80–82] effi-

cient use of cooling photons is potentially quite advantageous. Experiments that can only initially

achieve a limited number of trapped atoms would benefit from the fact that STOP cooling does

not require the loss of the trapped atoms in order to cool. This technique has relatively few re-

quirements for the internal structure of the atoms to be cooled, and so should be widely applicable.

Again, the main requirements are the presence of dark and bright states and a confining potential.

The availability of a cycling transition is useful, but not critical. This means that STOP cooling

can be extended to cooling some types of ultracold molecules, although in that case an additional

laser or lasers may be necessary, as will be discussed later in this chapter.

4.1.1 Overview of a STOP Cooling Cycle

As a first step in describing STOP cooling, we present an overview of the cooling technique.

Our implementation of STOP cooling consists of a sequence of four steps, which are illustrated

in figure 4.1. The starting point for STOP cooling begins with atoms in thermal equilibrium and

trapped in a confining potential. It is assumed that all of the atoms are optically pumped into

one or more dark states. The first step is to spatially overlap a laser beam with the edge of the

trapped gas where the potential energy of the trapped atoms is the highest. The atoms that are

in the region of overlap are optically pumped into an internal bright state. The optically pumped

atoms are then given time to move on average to the center of the confining potential, where much

of their initial potential energy is converted into kinetic energy. At this time, a scattering beam

is directed opposite to the optically pumped atoms’ center-of-mass motion. By transferring linear
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momentum from the scattering beam photons to the atoms that have been optically pumped, those

atoms’ center-of-mass velocity is reduced to zero. Once they have been slowed, the final step

is to optically pump the atoms back into dark states. This results in a reduction of the average

energy. Upon rethermalization, the temperature of the gas is reduced. STOP cooling is similar

in some ways to one-way wall [83–86] and Sisyphus cooling techniques that rely on trapping

potentials [87–90], but is very different from those in how the cooling mechanism works and

because there is no need for the confining potential to depend on the internal state.

4.2 STOP Cooling Theory

To model STOP cooling, we begin with an idealized system where the confining potential is

assumed to be a one-dimensional simple harmonic oscillator potential, and the spatial distribution

of the atoms placed into the bright state at the edge of the confining potential is assumed to have an

infinitely sharp axial cut-off position (the spatial position, zc, in figure 4.1). The net result of these

calculations are predictions of the average energy reduction in an ultracold gas after applying one

STOP cooling cycle. We then extend our theoretical calculations to a three-dimensional system that

includes the possibility of elastic collisions between atoms as the atoms oscillate in the trapping

potential. This allows us to study how the cooling efficiency is impacted over a range of gas

densities and therefore collision rates. Lastly, the simple harmonic oscillator potential is replaced

with a more realistic trap shape, and we investigate the impact of using an anharmonic confining

potential and a non-ideal (i.e. imperfect axial cut-off) initial bright-state atom distribution. To

provide additional context for this last set of theoretical calculations, they will be presented (in

section 4.7.2) after the experimental implementation and results sections.

4.2.1 Simple Harmonic Oscillator Model

In order to predict STOP cooling performance in a general way, we perform a series of calcu-

lations assuming idealized conditions. In these calculations, the atoms are assumed to be confined

in a one-dimensional simple harmonic oscillator potential. The atoms are also assumed to be in
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Figure 4.1: Depiction of a STOP cooling cycle. The light-blue oval represents confined ultracold atoms in

a dark state, where the horizontal direction is the z-axis. The red represents atoms in a bright state. (a) Step

1 is the application of the laser beam (red arrow) that optically pumps atoms into a bright state. The dotted

line, zc, represents the edge of the laser overlap region where optical pumping is spatially truncated, leaving

the remainder of the atoms in a dark state. (b) Step 2 is giving the bright state atoms’ center-of-mass time to

move to the center of the confining potential. (c) Step 3 is the application of the scattering beam (dark-blue

arrow) that slows the bright state atoms’ center-of-mass once it reaches the center of the confining potential.

Step 4 is the application of the laser beam (light-blue arrow) that optically pumps atoms back into a dark

state. The curves shown in each subfigure correspond to the bright state atoms’ z-coordinate position and

velocity distributions at the end of the corresponding step(s). The vertical axis for each curve is the number

density of bright state atoms. Figure reproduced from [6].

57



thermal equilibrium. A characteristic oscillation frequency, ω, is chosen for the atoms. Their time-

dependent positions and velocities are then determined using the basic equations of motion for a

simple harmonic oscillator.

Assuming the atoms are in thermal equilibrium leads to a spatial density distribution propor-

tional to exp(−U/(kBT )), where U is the harmonic trapping potential, kB is Boltzmann’s constant,

and T is the temperature of the gas. The experiment is performed with 87Rb, so its mass, m, and

parameters appropriate to its 5S1/2 to 5P3/2 cycling transition (see figure 3.1) are used for these

calculations. To model the spatial selection in the first step of the technique, a cooling cycle cal-

culation starts by identifying all of the atoms with a spatial position greater than an axial cut-off

distance, denoted by zc in figure 4.1, as atoms that will be subjected to the STOP laser beams. To

model the optical pumping process in the first step of STOP cooling, each of these atoms is as-

sumed to randomly scatter photons from the first STOP cooling beam such that each photon scatter

has a 50% probability of transferring the atom into the bright state. It is also assumed that enough

photons are scattered by these atoms so that all are in the bright state, and the number of photons

scattered by a given atom is labeled as n1. Physically, the cut-off distance corresponds to the ideal

edge of the laser overlap region in the experiment where atoms with the highest potential energy

were optically pumped into a bright state.

With a well-defined fraction of atoms in a bright state, the next step of the calculation is to

allow those high-energy atoms’ center-of-mass to move to the center of the harmonic potential.

The ideal time that allows the atoms’ center-of-mass to reach a maximum velocity is used (1
4

period of the atoms’ oscillation in the potential). After this time, the bright state atoms’ center-of-

mass is slowed by simulating the application of a scattering laser beam. This is done by simulating

scattering photons directed opposite to the atoms’ center-of-mass motion. We assume that each

bright state atom randomly scatters n2 photons according to a Poisson distribution, Pn̄(n2), where

n̄ is the mean number of photon scatters. Once the atoms’ center-of-mass has been slowed, the last

step is to close the STOP cooling cycle by optically pumping the atoms back into their original dark

state. It is assumed that each atom randomly scatters photons from this final beam with each scatter

58



resulting in a 50% probability of the atom being optically pumped to the dark state. The number

of photons scattered by an atom in this step is labeled n3. Since this final optical pumping beam

propagates in the same direction as the scattering beam, it also provides slowing power for the

atoms’ center-of-mass motion. An absorbed photon from the scattering beam or the final optical

pumping beam is assumed to impart ~k of momentum (where ~ is the reduced Planck constant and

k = 2π/λ where λ is the wavelength) directed along the z-axis.

Putting the above considerations together leads to the following set of equations to model

the change in energy from a single STOP cooling cycle. Equation (4.1) is the normalized one-

dimensional Maxwell-Boltzmann thermal phase space density describing the position and velocity

distribution of the atoms at time t = 0 (where z0 is the initial position and v0 is the initial velocity).

Equation (4.2) is the average energy of the bright state atoms as a function of n photons scattered,

where n = n2 + n3. Equation (4.3) is the average single-cycle energy reduction as a function of n̄.

Note that the integrations in (4.2) and (4.3) are over the initial condition variables and the limits of

integration extend over all relevant positions and velocities for the bright state atoms
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mω
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(
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The second double integral term in (4.2) accounts for the recoil energy from a spontaneously-

emitted photon that occurs after each absorption from the scattering beam or final optical pump-

ing beam. Additionally, the energy imparted from absorbing and scattering n1 photons from the

first optical pumping beam is included as the first summation in (4.3). The upper limits for the

summations are chosen to be large enough to ensure convergence of the sums to our desired pre-

cision. Using parameters based on our experiment, we calculate the cooling-cycle-induced change

in energy ∆E. The mean number of photons scattered in the Poisson distribution is optimized

to produce maximum cooling. The net result of this calculation is a prediction of the amount of

energy removed in one STOP cooling cycle.

Figure 4.2 shows the results of this calculation for a range of initial temperatures. For each

curve, the axial cut-off distance is continuously adjusted so that the selected bright state atom frac-

tion remains constant. This calculation is repeated for several different optically pumped fractions.

Being more selective by optically pumping a smaller fraction tends to increase the amount of en-

ergy removed per selected atom, but tends to decrease the total energy removed from the gas since

fewer atoms are selected. In figure 4.2, the 25% fraction of optically pumped atoms has the high-

est predicted energy reduction rate, although the 15% and 10% fractions are only slightly lower.

As the temperature decreases the energy reduction becomes less efficient as the heat imparted by

absorption and random recoils during scattering becomes more important.

4.2.2 Impact of Elastic Collisions

The rate at which energy is removed depends on the time that a STOP cooling cycle takes. For

typical confining potentials this will often be on the order of several ms. For a sense of scale, the

per atom energy removal rate for the whole gas for a 25% selected fraction and 50 µK initial gas

temperature with a 20 ms STOP cooling cycle time is 5.8 × 10−27 W = kB · 420 µK s−1. While

this provides a scale for the energy removal rate, it is not directly a temperature reduction rate

as energy is removed in one dimension and STOP cooling distorts the velocity distribution away

from equilibrium. Depending on different alignments of lasers, STOP cooling can in principle
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Figure 4.2: Energy reduction per atom in the gas from a single STOP cooling cycle for a selected fraction

of bright state atoms. Ti denotes the initial temperature of the gas. The blue curve corresponds to a 10%
selected fraction, the green curve corresponds to a 15% selected fraction, the red curve corresponds to a

25% selected fraction, and the teal curve corresponds to a 35% selected fraction. While the calculation is

performed in a one-dimensional model, the energy reduction fraction is calculated using a denominator ap-

propriate to the total energy of a gas confined via a simple harmonic oscillator potential in three dimensions

for easier comparison to experiments. Figure reproduced from [6].

be applied in three-dimensions or there can be mixing of motion between the dimensions through

energy mixing in the confining potential. In the absence of those mechanisms, energy mixing

between dimensions will occur naturally via collisions between atoms. To characterize collision-

induced cross-dimensional energy reduction rates and the effect of collisions on STOP cooling, we

performed an additional set of calculations.

These additional calculations consisted of a three-dimensional calculation of STOP cooling

where we included the possibility of collisions for any atom during the bright state atoms’ center-

of-mass motion. To avoid the computational difficulties of a direct N2-type binary collision sim-

ulation, we calculated an average collision probability for each atom in each timestep based on

local density and temperature parameters and then generated a random number to see if a col-

lision occurred. If a collision occurred for an atom, its velocity was changed by simulating an

isotropic collision of that atom with a randomly-generated representative "target" atom given the

temperature-determined velocity distribution. While computationally more efficient than a more
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complete N2-type calculation, this treatment ignores the possibility of non-isotropic scattering and

precise details of the atoms’ density and velocity distribution during STOP cooling. However, we

expect these considerations to be small and this calculation sufficient for characterizing the general

impact of collisional effects on STOP cooling.

To evaluate the effect of collisions, we identified the following timescale to quantify the en-

ergy reduction rate of STOP cooling: the time period, ∆t, required to reach 20% overall energy

reduction in the gas using continuous STOP cooling cycles. This time period was determined for

both a 10% selected fraction and a 25% selected fraction over a range of collision rates spanning

two orders of magnitude. We calculated both the total energy reduction rate over time ∆t and the

energy reduction rate in only the non-STOP-cooled radial directions as well. Since energy in the

radial directions is removed only through the actions of collisions, examining radial energy reduc-

tion is useful for evaluating the influence of collisions. The results of these calculations are shown

in figure 4.3.
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Figure 4.3: Impact of elastic collisions on total and radial energy reduction rates (in temperature units, i.e.

average energy divided by kB) in STOP cooling. The purple circles correspond to total energy reduction

rates from STOP cooling using a 10% selected fraction. The teal squares correspond to total energy reduc-

tion rates from STOP cooling using a 25% selected fraction. The blue downward triangles correspond to

radial energy reduction rates from STOP cooling using a 10% selected fraction. The red upward triangles

correspond to radial energy reduction rates from STOP cooling using a 25% selected fraction. Note that the

horizontal and vertical axes have logarithmic scales. Figure reproduced from [6].
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Figure 4.3 indicates that STOP cooling results in energy reduction over a range of gas densities

and collision rates. Because collisions disrupt the bright state atoms’ center-of-mass motion during

the second step of STOP cooling (see figure 4.1(b)), total average energy reduction is highest

when no collisions are present. For the radial directions, (under the assumptions used for the

calculation) energy reduction can only occur through collisions. This leads to the radial energy

reduction rate increasing as the collision rate increases and then turning over as collisions reduce

the STOP cooling energy reduction rate. The calculation included some heating in the radial

direction from random photon scatters, and so a minimum collision rate is necessary to achieve net

energy reduction in the radial direction.

Techniques or trap configurations that mix radial and axial energy will result in faster radial

energy reduction rates than the rates shown in figure 4.3. Even in the absence of such considera-

tions, STOP cooling is still effective for three dimensional cooling even when applied along one

dimension over a range of collision rates. STOP cooling’s reliance on the motion of the atoms

reduces its intrinsic cooling rate to be less than some other extensions to laser cooling (e.g. Raman

cooling [79, 91]). Ultimate achievable temperatures, however, are a balance between cooling and

heating effects and STOP cooling has favorable considerations in that regard. Because the direction

of the scattering beam is directly opposed to the atoms’ center-of-mass motion, the atoms’ center-

of-mass motion is slowed with a small number of photon scatters. Since the typical timescale of

trapped ultracold atoms is on the order of milliseconds and the technique works with the scattering

beam on or near resonance, intensities on the order of 10−3 of the saturation intensity are suffi-

cient for the scattering beam. Alternatively, substantially larger detunings and correspondingly

larger intensities could be used instead if that were advantageous. In addition to practical advan-

tages, this low level of photon scattering rate can be used to mitigate reabsorption-based heating

effects [62, 63, 80, 92] that limit light-based cooling. Moreover, the most effective radial cooling

range in figure 4.3 corresponds to the range where collisions typically start to disrupt other laser

cooling techniques (e.g. [79, 91]).
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4.2.3 Comparison to Evaporation

In the presence of elastic collisions, it becomes relevant to compare predicted STOP cooling

energy reduction rates to a purely collision based cooling mechanism. To perform such a compar-

ison, we calculate the average energy reduction rate from simple evaporative cooling that would

occur during a time required to reach 20% overall energy reduction in the gas using continuous

STOP cooling cycles. This is the same time defined as ∆t in section 4.2.2. The final average

energy of the gas after evaporation can be expressed as

Ef =
3kBT − ηνcU0 exp(−η)∆t

1− ηνc exp(−η)∆t
, (4.4)

where U0 is the depth of the confining potential, η = U0/(kBT ), and νcol is the collision rate in

the gas. This is an approximate treatment of evaporative cooling, since here the temperature and

density are considered constants during ∆t. We use (4.4) to calculate the average energy reduction

rate, (Ef−3kBT )/∆t, that results from evaporation. We then determine the ratio of STOP cooling

rates to evaporative cooling rates for the ∆t of the 10% selected fraction and the ∆t of the 25%

selected fraction. The results of these calculations are shown in figure 4.4.

Figure 4.4 shows that the STOP cooling energy reduction rate is faster than that of evaporation

over the entire range plotted. At the lowest collision rates used for the calculations, STOP cool-

ing results in an average total energy reduction rate that is orders of magnitude larger than what

would be expected when relying solely on evaporative cooling. While STOP cooling works over a

large range of gas densities, it is best adapted to low density situations and would be particularly

advantageous in situations where low density is either desirable or necessary. When no collisions

(or other energy mixing mechanisms) are present, the gas will not rethermalize and STOP cooling

is asymptotically limited to an amount of energy that can be removed from the axial direction.

As collisions begin to increase from non-zero, STOP cooling is able to remove additional energy

from the radial direction (see figure 4.3) while also staying closer to thermal equilibrium. There is

a wide range of collision rates where STOP cooling is 10 - 100× faster than evaporative cooling

where there are still collisions that can thermalize the gas.
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Figure 4.4: Ratio of STOP cooling total average energy reduction rate to simple evaporative cooling average

energy reduction rate. The gray circles correspond to the ratio of energy reduction rates from STOP cooling

using a 10% selected fraction to evaporative cooling. The blue squares correspond to the ratio of energy

reduction rates from STOP cooling using a 25% selected fraction to evaporative cooling. Each ratio is

determined using an equivalent time for STOP cooling and evaporation at a particular collision rate (see

main text for definition of timescale used). Note that the horizontal and vertical axes have logarithmic

scales.

4.3 Extension to Molecules

While we have focused on atoms so far, STOP cooling can be extended to cooling of molecules.

Those molecules which can be cooled and trapped in a MOT are prime candidates [93–96]. Recent

progress in laser cooling optically trapped diatomic calcium monofluoride [97, 98] motivates the

following described adaptation of STOP cooling, and so the following discussion will be presented

in the context of that particular system.

Figure 4.5 shows the relevant energy levels [99] that could be used to implement STOP cooling

in optically trapped CaF. Initializing the molecules by placing them into a dark state is accom-

plished by optically pumping into theX(ν = 1) electronic ground state via theX(ν = 0)−A(ν ′ =

1) transition. The first step of STOP cooling is the application of the beam that optically pumps

the molecules into a bright state (see figure 4.1(a)). In this case, the bright state is the X(ν = 0)

electronic ground state. After waiting for the bright state molecules’ center-of-mass to move to the

center of the optical trap (see figure 4.1(b)), a scattering beam slows the center-of-mass velocity
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by scattering photons on the X(ν = 0)− A(ν ′ = 0) transition. The final step is to optically pump

the molecules back into the X(ν = 1) dark state (see figure 4.1(c)). Many of these beams are du-

plicates of those used in the MOT cooling stage. Hyperfine structure would require either AOMs

or a few stages of each STOP cooling step. It is likely the trapped molecule densities will continue

to improve as techniques develop, making the advantages of STOP cooling increasingly relevant

to such systems.

Figure 4.5: Relevant energy levels for STOP cooling CaF molecules. The red solid arrow (628.5 nm)

corresponds to the beam used to optically pump molecules into a bright state. The orange solid arrow (606
nm) corresponds to the scattering beam used to slow the bright state molecules’ center-of-mass. The yellow

solid arrow (585 nm) corresponds to the beam used to optically pump atoms into the dark state. The dotted

lines correspond to spontaneous emission (606 nm). Figure reproduced from [6].

An alternative implementation of STOP cooling optically trapped CaF could rely on the hyper-

fine structure in X2Σ+
1/2(ν = 0, N = 1) [96, 99, 100] to serve as dark and bright states. The 606

nm laser (see figure 4.5) with AOMs is then used to both optically pump and cool the molecules

so the need for a 585 nm laser is eliminated. The 628.5 nm laser remains in the scheme to pump

molecules back to the X(ν = 0) electronic ground state in the event of vibrational branching that

will occur over the course of many STOP cooling cycles. By using only the hyperfine levels, ex-

isting experiments that laser cool optically trapped CaF can immediately adapt STOP cooling into

their system without requiring an additional laser. The disadvantage with this implementation is
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that the comparatively close (∼ 100 MHz) resonant frequencies between the different hyperfine

states will limit the range of detunings that can be used as compared to the scheme shown in fig-

ure 4.5. However, as long as conditions allow for all of the STOP beams to be nearly on-resonance,

this alternate approach should be effective for STOP cooling in this system.

4.4 Experimental Implementation

Our experimental measurements of STOP cooling were conducted with ultracold 87Rb atoms.

In our experimental realization of STOP cooling there is a laser beam for each beam depicted

in figure 4.1. These beams are straightforwardly derived by inserting an AOM into beam paths

associated with the usual MOT cooling and repump lasers as appropriate. The first laser beam

is responsible for optically pumping atoms from the lower hyperfine ground state (5S1/2 F = 1;

dark state) into the upper hyperfine ground state (5S1/2 F = 2; bright state). We will refer to this

beam as the "up-pump" beam and atoms in the upper hyperfine ground state will be referred to as

"up-pumped" atoms. The next step in the cooling cycle is the application of the scattering beam

that opposes the up-pumped atoms’ center-of-mass motion at the center of the confining potential.

This beam will be referred to as the "stop" beam. The light of the stop beam is tuned to the 5S1/2

F = 2 to 5P3/2 F = 3 cycling transition. Finally, the last step in the cooling cycle is to optically

pump atoms back into the lower hyperfine ground state (5S1/2 F = 1). The laser beam responsible

for this will be referred to as the "down-pump" beam. A schematic depicting the experimental

implementation of STOP cooling is shown in figure 4.6.

We started our experiments by loading ultracold 87Rb atoms from a MOT into a FORT [27] (see

section 2.4) . The MOT was prepared using standard techniques [22] and the FORT was created

using an AOM-controlled 60 W (10.64 µm wavelength) CO2 laser beam focused to a spot size of

approximately 120 µm. The focus of the CO2 laser beam was overlapped with the MOT atoms and

loading from the MOT into the FORT was performed following the techniques of [101,102]. Once

loaded into the FORT, the atoms were given several seconds to reach thermal equilibrium. This

resulted in a trapped gas of ultracold 87Rb atoms with a peak spatial density of 5× 1011 cm−3 and
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Figure 4.6: Schematic of the experimental set-up used to perform STOP cooling. The confining potential,

up-pump beam, stop beam, and down-pump beam are pictured. The portion of the down-pump beam de-

picted as a dotted line is overlapped with the stop beam. The beams used to form the initial MOT and the

probe beam used for absorption imaging are left out for clarity. Note that all three beams used for STOP

cooling are derived from existing MOT lasers. Figure reproduced from [6].

a temperature of 45 µK. The atom temperature is measured to a precision of less than a percent

while the accuracy of the measurement is estimated to be about 20%. The confined atoms had axial

and radial oscillation frequencies of 14 Hz and 550 Hz, respectively, measured with an accuracy

at the 10% level. These parameters lead to a collision rate of approximately 0.16 Collisions per

STOP cycle.

4.4.1 STOP Cooling Beams

After reaching thermal equilibrium in the confining potential, the trapped atoms were optically

pumped into the lower hyperfine ground state (5S1/2 F = 1). STOP cooling cycles were then

applied to the gas. The up-pump laser beam was overlapped with the edge of the FORT for 500 µs

to "up-pump" the selected atoms. A sharp edge corresponding to the axial cutoff position for the

overlap region was realized by partially blocking the up-pump beam with a razor blade external

to the vacuum chamber. The edge of the razor blade was imaged onto the atoms using a lens.
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After being up-pumped, those atoms’ center-of-mass was then allowed to move to the center of

the trapping potential, where it reached a maximum velocity. At that time, a 1 ms duration stop

beam pulse was applied to slow the center-of-mass velocity of the up-pumped atoms. Immediately

following the stop beam was a 1 ms down-pump beam used to optically pump the up-pumped

atoms back to the lower hyperfine ground state (5S1/2 F = 1), thus completing a single cycle of

STOP cooling.

Each intermediate step of the STOP cooling cycle was individually optimized. The up-pump

beam was tuned 25 MHz below the 5S1/2 F = 1 to 5P3/2 F = 2 transition and the intensity of

the beam was set to optically pump all of the overlapped atoms into the upper hyperfine ground

state (5S1/2 F = 2). The experiments were performed using a 10% selected fraction. With a well-

defined fraction of up-pumped atoms, we then measured the amount of time it took the atoms’

center-of-mass to reach the middle of the optical trap to determine the time to apply the stop laser

pulse. The stop beam was tuned to be approximately on-resonance with the 5S1/2 F = 2 to 5P3/2

F = 3 cycling transition and its intensity was adjusted to reduce the up-pumped atoms’ center-

of-mass velocity to zero at the optical trap center. Finally, the down-pump beam was tuned 5

MHz below the 5S1/2 F = 2 to 5P3/2 F = 2 transition and the intensity of the beam was set

to optically pump all of the up-pumped atoms back into the lower hyperfine ground state (5S1/2

F = 1). The selected fraction of up-pumped atoms, the time for the atoms’ center-of-mass to reach

the middle of the optical trap, and the optimal intensity of each beam were determined through

absorption imaging. For instance, after applying the stop beam, images of the up-pumped atoms

were collected at increasingly later times to observe whether or not the atoms’ center-of-mass had

moved between frames. The stop beam intensity was adjusted using absorptive neutral density

filters until the center-of-mass remained in the middle of the optical trap in each of the images.

4.4.2 Single Cycle to Multiple Cycles

Once the single-cycle optimizations had been determined, the application of multiple cycles

was performed. We began by measuring the cooling from 3 successive cycles and then from

69



5 successive cycles. From there, we added 3 additional STOP cooling cycles to each cooling

experiment (i.e. 8 cycles, 11 cycles, etc.) until reaching 20 successive cooling cycles. At that

point, we broke up the application of STOP cooling into "blocks", which consisted of 20 cooling

cycles applied successively. Blocks were then separated by a rethermalization time estimated from

collision rate calculations. This gave time for the gas to reestablish thermal equilibrium, allowing

for further temperature reduction through the application of additional STOP cooling blocks. Our

final STOP cooling experimental procedure consisted of 3 blocks of 20 successive cycles, with each

block followed by a 500 ms rethermalization time. The total duration for 3 blocks of 20 successive

cycles plus rethermalization periods was between 2.64 s to 2.76 s, with the variation owing to slight

differences in the time between the up-pump and the stop pulses that we deliberately introduced to

search for optimal multi-cycle cooling parameters.

4.5 STOP Cooling Data

After the STOP cooling cycles and rethermalization were completed, data collection was per-

formed using standard time-of-flight and absorption imaging techniques. The absorption imaging

allowed the determination of the number of atoms in the trap and the temperature of the gas. This

is the main diagnostic that we use in order to evaluate how much cooling has occurred.

Three types of absorption measurements were taken to characterize the amount of STOP cool-

ing. The first type of measurement was taken at the beginning of the STOP cooling sequence to

measure the initial temperature of the gas. The second type of measurement was taken after the

STOP cooling cycles had been applied to measure the final temperature of the gas. The third type

of measurement was taken at an equivalent time required to complete the STOP cooling cycles,

but without applying any STOP cooling to the gas. The difference between the first and third types

of measurements indicated there was a small amount of evaporative cooling over the time scale

measured.

As one way to analyze our data, our two-dimensional absorption images of the the gas were

integrated along the shorter (radial) extent of the gas to produce one-dimensional spatial density
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distributions. To do this, the pixels in a processed image file were divided into bins along the axial

direction of the gas. The pixel values were summed in each bin to produce a one-dimensional

spatial density profile of the confined atoms. Figure 4.7 shows such a set of binned data depicting

the spatial density profiles of each of the three types of measurements described in the previous

paragraph. STOP cooling produces a clear reduction of high energy atoms at the edges of the

spatial density distribution and a corresponding increase in peak spatial density at the center of the

distribution.
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Figure 4.7: One-dimensional spatial density profiles of confined atoms. O.D. is the optical depth. The

blue curve is a measurement taken after STOP cooling cycles have been applied to the gas. The green curve

is a measurement of atoms that have been held for an equivalent amount of time required to complete the

STOP cooling cycles but without applying any cooling cycles. The red curve is a measurement taken at the

beginning of a STOP cooling experiment before any cycles have been applied to the gas. Figure reproduced

from [6].

4.6 STOP Cooling Results

Figure 4.8 shows the results for the temperature reduction as a function of an increasing number

of applied STOP cooling cycles. From these data we derived a single-cycle cooling efficiency

of 0.0091(5) fractional temperature reduction. For our STOP cooling experiment consisting of
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3 blocks of 20 successive cycles conducted under the optimal conditions that we examined, we

measured a 0.282(4) fractional temperature reduction for the cooled atoms compared to the initial

gas temperature. Over the same time period, the mild evaporation described in section 4.5 resulted

in only a 0.031(4) fractional temperature reduction. Thus, STOP cooling produced a significant

and well-resolved temperature reduction in the gas.
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Figure 4.8: Fractional temperature reduction resulting from the application of successive STOP cooling

cycles. T0 is the temperature of the gas when no STOP cooling cycles have been applied. T0 is measured

at an equivalent amount of time required to complete the corresponding number of STOP cooling cycles

and rethermalization for a given data point (blue diamonds). ∆T is the difference between T0 and the

temperature of the gas after STOP cooling cycles have been applied. The green curve is a second-order

polynomial fit to the data. Figure reproduced from [6].

The number of atoms in each measurement were also calculated, and we observed a 0.71(1)

fraction of atoms remaining in the gas that had STOP cooling applied versus a 0.75(2) fraction

of atoms remaining in the gas with no STOP cooling applied. The majority of the atom loss in

both cases is due to the background-gas-determined 10 second lifetime of atoms in the optical

trap. The difference with and without STOP cooling translates to 7(4)× 10−4 fractional atom loss

per cooling cycle. Therefore, substantial cooling with small atom loss was observed with STOP

cooling. We attribute the small loss from applying STOP cooling cycles to be a result of light-

assisted collisional loss effects [103–105] where near-resonant laser light induces dipole moments

72



in the atoms. These dipoles can produce interatomic forces strong enough to accelerate some pairs

of atoms out of the optical trap.

In terms of a cooling rate, the 3 blocks of 20 successive cycles resulted in a temperature re-

duction rate of 4.7 µK s−1, as determined by the radial temperature. Converting this rate to a total

energy reduction rate results in kB · 14.1 µK s−1 and converting to a total radial energy reduction

rate results in kB · 9.4 µK s−1. These rates demonstrate the efficacy of the cooling technique and

we expect these rates to increase with improvements to the experimental apparatus. While clear

evidence of successful cooling was obtained, the measurement of 0.0091(5) fractional temperature

reduction from a single cycle of STOP cooling is approximately 5 times smaller in magnitude than

the temperature reduction predicted from the harmonic oscillator potential model in this implemen-

tation of STOP cooling. Details of why this is the case along with improvements to the experiment

will be discussed in the next section.

4.7 Comparing Measurements to Predictions

The difference between predicted and measured temperature reduction is due to the fact that

our experimental system deviated from the assumptions of the ideal calculation. First, the actual

confining potential was not harmonic. Second, the axial cut-off distance for the optically pumped

atoms at the edge of the potential was not infinitely sharp. Finally, the confining potential in the

experiment was non-separable in the radial and axial directions. For the most part, these deviations

are not inevitable and so understanding them is useful in achieving closer-to-ideal performance in

future implementations.

4.7.1 Possible Heating from Optical Pumping

Before describing the impact of the known imperfections on the cooling rate, we consider the

possibility of additional heating beyond the minimum amount of recoil heating from the beams

used to optically pump the high energy atoms in the first and last step of a STOP cooling cycle. To

search for any unusually large heating from such a mechanism, a fraction of atoms at the edge of
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the trap was optically pumped to the 5S1/2 F = 2 state, allowed to move to the center of the trap,

and then was optically pumped back to the 5S1/2 F = 1 state. This was performed using 10 or

more successive cycles, all of which were in the absence of the intermediate stop beam. The same

experiments were repeated but without performing any optical pumping (i.e. the atoms were held

for an equivalent amount of time without applying any light). Comparing the temperatures with and

without the atoms being optically pumped indicated a decrease in temperature of approximately

70 nK per cycle. Rather than heating, this test produced a small amount of cooling, likely owing

to the fact that the down-pump beam has stop beam-like characteristics. In any case, there was no

evidence of any excess heating.

4.7.2 Realistic Optical Trap Shape

To gain further insight as to where cooling efficiency losses may have occurred, we developed

a more extensive model of STOP cooling than the idealized collisionless calculation described in

section 4.2.1. We replaced the harmonic oscillator potential with a more realistic optical trapping

potential and performed a three-dimensional calculation. We also included a non-ideal axial cut-off

region instead of an infinitely sharp cut-off.

In this more extensive model we simulated atom motion and all of the applied STOP beam

pulses numerically. We used random number generation to initialize atom positions and velocities

given a thermal equilibrium distribution, and modeled photon scattering through determining the

random number of photons scattered given the average photon scattering rate. For the optical

potential, we used the approximate potential

U = U0
1

1 + (z/zR)
2 exp

(

− 2r2

w0
2(1 + (z/zR)

2)

)

, (4.5)

where z and r are the axial and radial position coordinates, respectively, U0 is the trap depth,

zR = πw0
2/(ΛM2) is the Rayleigh length, w0 is the spot size of a Gaussian laser beam, Λ is the

optical trap wavelength, and M2 is to correspond to the beam quality factor. For M2 = 1 this

would be exact, but our beam did not have an M2 value of one and the potential in (4.5) allows
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an approximation of the effect that will have, without being an exact match to an optical potential.

Through this simulation, we could model the energy reduction in a single cycle of STOP cooling

for more realistic experimental parameters.

We concentrated our initial studies assuming a 10% up-pumped fraction and we varied the M2

value to alter the anharmonicity of the potential. The deviation from M2 = 1.0 estimated through

the effective axial oscillation frequency and the confined atoms’ spatial extent was determined

to be M2 = 1.65. The increased axial anharmonicity in the model potential resulted in further

reduction of cooling efficiency compared to the harmonic confining potential predictions. We also

conducted calculations where we accounted for the influence of the non-ideal edge of the axial cut-

off. Given the measured experimental axial cut-off width, a sigmoid function was used to model

the non-ideal cut-off for the initial spatial density distribution of the 10% up-pumped fraction

and additional lowering of the cooling efficiency was observed. With these considerations, the

experimentally observed reduction in single cycle cooling efficiency can be reproduced by model

parameters consistent with the non-TEM00 optical trap beam and imperfect axial cut-off.

4.7.3 Apparatus Improvements

While cooling was experimentally observed, more realistic modeling suggests that our single-

cycle temperature reduction could be increased by at least a factor of 2 for the same initial condi-

tions while still using a realistic optical trap. To realize this increase in cooling, several improve-

ments for the next iteration of experiments are expected to be advantageous. A sharper edge for

the optically pumped region of the gas can be achieved by using a higher-quality lens to image

the razor edge. Since our modeling indicates the amount of cooling depends on the shape of the

confining potential, the trapping potential specific to our experiment can be improved by switching

to a fiber laser, resulting in a higher quality TEM mode.

Additionally, other gains in the temperature reduction can be made in the multi-cycle cooling

experiments. As the gas cools, the axial extent becomes smaller. This in turn reduces the region

of overlap between the confining potential and the beam used for optically pumping atoms in the
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first step of STOP cooling. Rather than a static overlap position, the relevant lens can be mounted

to a motorized translation stage and used to deflect the optical pumping beam during multi-cycle

cooling to better maintain an optimal optically pumped fraction as the cooling proceeds. In fact,

such an improvement is required in order to obtain a meaningful determination of the lowest tem-

peratures that could be achieved with this cooling technique.

4.7.4 Ways to Mitigate Limitations

For this initial implementation of STOP cooling, the long cooling time combined with the fi-

nite background lifetime resulted in losses that hindered the phase space density increase of the

gas. Enhancing the cooling rate through addressing the imperfections described above and ex-

tending the cooling further to lower temperatures will improve this factor substantially. The phase

space density increased by a factor of 2.3 over the course of the 3 block experiment. Addressing

the known imperfections identified in the prior section would result in a higher phase space den-

sity increase. After addressing the known imperfections of the system, the limitations to further

performance increases due to other factors may become significant, however.

For instance, light-assisted collisional losses will become more significant at higher atom den-

sities [106], and would be substantial at a density an order of magnitude higher than that of the

current experiments. Due to the flexibility of the scheme, the wide parameter space (i.e. detuning,

intensity) available for exploration, and the difference in the dependence of light-assisted collision

rates and light scattering rates on experimental parameters, we expect an acceptable region of op-

eration could very likely be found. Searching for such an acceptable region is far easier when the

light-assisted collision losses are more easily detectable.

Light-based cooling schemes also suffer when the gas being cooled becomes sufficiently op-

tically thick [80–82]. Adjusting the detuning of the light used for cooling cannot remove this

issue as two-photon detuning-independent effects contribute to heating. We saw no evidence of

reabsorption-related effects for our conditions, but again an increase in performance and therefore

optical depth could possibly cause this common limitation to cooling to become significant for
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STOP cooling. The efficient use of photons, very low required photon scattering rates, and the fact

that the cooling does not have to occur between particular magnetic sublevel combinations means

that STOP cooling is much less sensitive to this physics than other cooling techniques, however.

Additional routes to mitigate this optical-density-related limit include reducing the selected frac-

tion of bright state atoms or applying a magnetic field to produce slight Zeeman shifts. These

mitigation techniques may introduce different problems (e.g. smaller fractions would result in a

slower cooling rate) so any implementation would need to be evaluated.

4.8 STOP Cooling Conclusions

We have presented a description of a new cooling technique for ultracold gases. The technique

is based on using STOP to create a group of atoms that move in a known direction at a known time

such that they can be slowed with light. The cooling technique only requires that a gas be trapped

and that a dark state exists for the technique to be applicable. We have performed experimental

measurements that demonstrated the cooling method. We observed a 0.0091(5) fractional single-

cycle temperature reduction and a 0.282(4) fractional temperature reduction from 60 cycles. These

measurements were less than the predicted ideal cooling but the observed reduction is explicable

through the non-harmonic oscillator nature of the confining potential and other non-ideal factors.

Our numerical modeling of the cooling technique indicates that with reasonable improvements to

the experimental system increased cooling performance should be realizable.

We note there are several advantages to using the STOP cooling technique. Since photons are

used efficiently in the cooling process, a minimal amount of power is required for the laser beams.

This is beneficial for experiments cooling on transitions where laser light is difficult to produce.

Light-assisted collision losses and reabsorption effects [80, 92, 107] that often limit laser cooling

techniques were small for the amount of cooling obtained in STOP cooling. This is advantageous

for experiments that begin with small initial numbers. Furthermore, the STOP cooling that we

implemented is not the only way that this cooling scheme could be applied. Rather than resonant
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scattering, stimulated Raman transitions could be used to slow the selected atoms and would be

expected to have even higher efficiency.
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Chapter 5

Intensity Pattern Formation in a Trapped Gas

The role of this chapter is to present our work [7] on light intensity pattern formations that

can develop in elongated ultracold gases such as those used for our STOP cooling experiments de-

scribed in chapter 4. A collection of ultracold atoms generally has an index of refraction that varies

depending on the spatial density distribution of the gas. For many confined gases commonly found

in ultracold atom experiments, there can be a substantial gradient in the spatial density distribution

and hence the index of refraction. In addition, these gases can have a smaller spatial extent than

that of the cross section of a laser beam that illuminates them. With a sufficient gradient in den-

sity under these conditions, the resulting index variation leads to frequency-dependent focusing or

defocusing of incident near-resonant light as demonstrated by the calculations in this work. Non-

intuitive intensity pattern formations result within the gas from the combination of refraction and

diffraction of the incident light, including focusing effects that substantially increase the intensity

of the light as compared to its incident value despite the nominally absorptive nature of the gas.

5.1 A Detour from STOP Cooling

During the set-up and optimization of the up-pump beam used for our experimental implemen-

tation of STOP cooling (see section 4.4), we varied the beam alignment, light intensity, length of

time the beam illuminated the edge of the confined ultracold gas, and the laser frequency. These

measurements were performed to ensure that we could generate a well-defined and reproducible

fraction of up-pumped atoms at the edge of the gas for our STOP cooling experiments (see fig-

ure 4.1(a)). Changing each parameter resulted in a predictable change in the absorption imaging

measurements (e.g. adjusting the beam alignment caused the fraction of up-pumped atoms to in-

crease/decrease in the expected direction). That was until we began to vary the laser frequency. For

those data sets where the laser frequency was the only variable, we encountered unexpected signals

in our absorption imaging measurements. Specifically, we measured atoms in the bright state at
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positions in the gas that did not have up-pump light directly illuminating the atoms. Figure 5.1

shows examples of these signals for various up-pump beam frequencies.

Figure 5.1: One-dimensional spatial density profiles of bright state atoms (top) and the corresponding

fraction of bright state atoms along the axial direction of the confining potential (bottom). The yellow

spatial density profiles are when the entire confined gas is optically pumped into the bright state. The other

curves are when only the edge of the confined ultracold gas is optically pumped into the bright state. The

length of time the up-pump beam is applied is shown in the inset legend. The frequency of the up-pump

beam is below resonance (red-detuned) on the left and increases to above resonance (blue-detuned) on the

right.

The one-dimensional spatial density distributions shown in figure 5.1 are data from absorption

images represented in the binned format described in section 4.5. Each subfigure along the top

of figure 5.1 shows a spatial profile when the entire confined ultracold gas is up-pumped into the

bright state, along with separate spatial profiles when only the edge of the gas is up-pumped into

the bright state. The data in each top subfigure corresponds to measurements performed using a

different up-pump beam frequency. The up-pump beam was tuned to be either red or blue-detuned

with respect to the 5S1/2 F = 1 to 5P3/2 F = 2 transition in 87Rb (see figure 3.1). The up-pump

pulse length applied to the edge of the gas ranged from 100 to 500 µs, but the applied pulse lengths

were the same for all data sets. In addition, the alignment and intensity were the same for all data

sets, too.
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To further illustrate the frequency-dependent difference between the data sets, it is useful to

divide the spatial profile of the up-pumped atoms by the spatial profile of the entire confined gas

for each data set. This ratio is simply the number of bright state atoms as a function of position

along the axial direction of the ultracold gas, and the results are shown in the subfigures along the

bottom of figure 5.1. For red-detuned light, the resulting fractions show a clear non-zero signal

corresponding to bright state atoms in the gas at positions where no up-pump light was directly

illuminating the atoms. The frequency-dependence of this effect is apparent when looking at the

blue-detuned data, where there are little to no bright state atoms at the same positions. It was

these types of signals that motivated us to temporarily postpone our work on STOP cooling and

investigate the underlying physics present in our system. The remainder of this chapter is dedicated

to describing our efforts to quantify the effects of illuminating an elongated ultracold gas with near-

resonant light.

5.2 Near-Resonant Light in Optically Thick Gases

A critical parameter in evaluating how light will propagate through a gas is the absorption

length of light in that gas. The absorption length is inversely proportional to the density of atoms

in the gas and the light absorption cross section, and it is not uncommon to have a system where

the absorption length is much smaller than the spatial size of the system. This is true for ultracold

atom experiments where it is possible to create gases in which the absorption length is smaller than

the spatial extent of the gas in one or more dimensions [108–122]. This condition is most easily

obtained when the light being considered is resonant or nearly-resonant with an atomic transition.

In general, one would expect that in a gas where the absorption length is much smaller than the

spatial extent of the gas along which the light propagates, the light would not be able to penetrate

far into the gas and would attenuate quickly. However, in some ultracold atom experiments the

atoms are trapped in an elongated confining potential where one spatial dimension is much larger

than the other two (i.e. a so-called "cigar-shape") [25, 27, 51, 101, 120–122]. While the long axial

direction of such a gas can be hundreds of absorption lengths in extent, the shorter radial direction
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can be comparable to the absorption length. For light propagating along the long direction of

the gas, if the light extends beyond the radial extent of the gas diffraction and refraction effects

radically alter how far the light can penetrate into the gas. This can lead to non-intuitive intensity

variations. A theoretical calculation of light propagation in these circumstances is the primary

topic of this chapter.

The main question that we address in this chapter is the following: "For an optically thick

elongated gas illuminated by a laser beam propagating along its elongated direction, what is the

predicted maximum intensity of light near the center of the gas?" The answer that we derive for

easily obtained experimental conditions is "up to an order of magnitude greater than the intensity

of the original incident light." In other words, despite absorption lengths far shorter than the length

of the trapped gas, rather than a decrease in peak intensity as the light propagates Maxwell’s

equations predict an increase and even large enhancement of the peak intensity for light with the

appropriate near-resonant detuning. This applies to a range of atom densities near, but below,

the density where atom-atom interactions would be expected to have significant influences on

light propagation [123]. Understanding the intensity patterns of light in such gases is a necessary

prerequisite for understanding either optomechanical forces or atom excitation (e.g. Rydberg atom

excitation) resulting from such light.

The calculations that show this behavior are performed in a model system that consists of

two-level atoms that are confined such that their density is described by a three-dimensional cylin-

drically symmetric Gaussian spatial density distribution with an axial rms size of σz = 700 µm and

a radial rms size of σr = 20 µm along one of the radial directions (see figure 5.2). The confined

gas is considered to be illuminated with a wide beam of near-resonant or resonant low-intensity

light propagating in the elongated direction of the distribution. For these conditions, it is possible

to determine the total optical depth (i.e. number of e−1 absorption lengths) along the elongated

axis for a given laser detuning using the Beer-Lambert law, on-resonant cross section (taken to be

equal to the unpolarized cross section λ20/(2π)), and gas density. This is done by simply integrating

the predicted amount of absorption based on the cross section and gas density as a function of the
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distance along the center axis of the gas and translating that into an optical depth. The results of

such a calculation are shown in figure 5.3.

Figure 5.2: Normalized Gaussian spatial density distribution along the (a) axial direction and (b) radial

directions. The horizontal axis for the axial distribution extends from z = −5σz to z = 5σz . The horizontal

axis for the radial distribution extends from r = 0 to r = 5σr. These plots were included to allow for ease

of comparison between the density of atoms at a given position with the amount of light intensity predicted

(shown in later figures) to be at that same position. Figure reproduced from [7].

Additionally, applying the Beer-Lambert law in the same way also yields a prediction for the

intensity of light as a function of position along the elongated central axis of the gas. Figure 5.4

shows the result of such a calculation for two different peak densities in the density range of

interest. As expected, the intensity of on-resonance light is quickly reduced to near-zero levels

before reaching the center of the spatial density distribution. Detuning away from resonance allows

for the light to penetrate further into the gas, but for moderate detunings the intensity reaching the

opposite end of the gas is still only a fraction of the initial intensity.

In the remainder of this chapter, we go beyond such calculations and more carefully consider

how near-resonant or resonant low-intensity light propagates in such a model system. Because

the system has a monotonically decreasing density gradient away from the center of the gas in

the radial and axial directions, there is a spatially dependent index of refraction in the medium.

Depending on the frequency of the light, the incoming wave intensity is either focused (negative-

detuned light) or defocused (positive-detuned light) by this index gradient. As a result of focusing,

light intensity can be drawn from regions outside the trapped gas into the gas, increasing the light
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Figure 5.3: Beer-Lambert-law-based calculations of the optical depth (O.D.) along the long central axis

of an elongated trapped ultracold gas. The variation in calculated O.D. with detuning is shown. The O.D.
is determined by integrating along the axial length of the gas as described in the main text. The resonant

wavelength is 780 nm. The green curve corresponds to a peak spatial density of 1011 cm−3 and the blue

curve corresponds to a peak spatial density of 1012 cm−3. Note that the vertical axis has a logarithmic scale.

Figure reproduced from [7].

Figure 5.4: Beer-Lambert law predictions for the intensity of light propagating through the model system

with a peak spatial density of (a) 1011 cm−3 and (b) 1012 cm−3. The initial position is z = −3.5 mm (well

outside of the volume with significant gas density). The blue curve is 0Γ detuning, green is ±3Γ, red is ±6Γ,

and teal is ±9Γ, where Γ is the natural linewidth of the resonance transition. Figure reproduced from [7].
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intensity in the trapped gas despite the fact that it is optically thick. The opposite can happen for

light of opposite detuning with respect to resonance where it is defocused by the index gradient.

Furthermore, the radial extent of the spatial density distribution is within about an order of magni-

tude in size of the wavelength of the propagating light. This introduces diffraction effects that also

contribute to frequency-dependent intensity patterns in the trapped gas.

5.3 Envelope Wave Equation

This more careful consideration of the behavior of the light intensity as it propagates through a

confined ultracold gas begins with Maxwell’s equations and a wave solution that varies periodically

in time as e−iωt. This is often done in other treatments of light propagation in a physical situation

exhibiting cylindrical symmetry [120, 124, 125]. As usual, the physical part of the wave in this

treatment is given by the real part of the solution. The spatial part of the wave’s electric field for a

wave propagating in the elongated direction of the gas (the z-axis; see figure 5.5) is given as

E = E0ψ(x, y, z)e
ik0z, (5.1)

where E0 is the amplitude, k0 = ω/c = 2π/λ0 where λ0 is the vacuum wavelength, and ψ(x, y, z)

is the envelope of the wave. The envelope of the wave has unit magnitude for all positions dur-

ing propagation through vacuum. The wave evolves away from uniformity when it encounters the

(complex) index of refraction associated with the ultracold gas. The envelope is expected to vary

slowly in the distance of a wavelength, allowing the use of the slowly varying envelope approxi-

mation [126] to write the following equation as a result of Maxwell’s equations:

∂ψ

∂z
=

i

2k0
∇2

⊥ψ +
ik0
2
(n2 − 1)ψ, (5.2)

where ∇2
⊥ is the second-order spatial derivative in the transverse direction and n is the complex

index of refraction. Replacing (n2 − 1) in (5.2) with the frequency dependent complex suscepti-

bility for a two-level atom leads to a term associated with the index of refraction (real part) and the
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absorption of light (imaginary part). The complex susceptibility for a two-level atom is expressed

as [127]

χ = −σ0
k0
ρ(x, y, z)

2δ/γ − i

1 + I/Isat + 4

(

δ

γ

)2 , (5.3)

where σ0 is the unpolarized cross section, ρ(x, y, z) is the spatial density distribution, and I/Isat ≪

1. This more careful treatment allows us to account for the wave nature of the light as it propagates

through an absorptive spatially anisotropic ultracold gas.

Figure 5.5: Schematic of a plane wave (red) encountering an ultracold gas (blue) of two-level atoms. The

axial positions z0, z1, z2, z3, and z4 identify the locations of evenly spaced planes perpendicular to the light

propagation direction in the spatial density distribution (see main text). Figure reproduced from [7].

5.3.1 Integration Method

To calculate results within this model, we use a variation of the Crank-Nicolson method with

a fixed mesh grid in the radial (r =
√

x2 + y2) and axial directions to numerically integrate (5.2).

We define wk,m ≡ ψ(k∆r, z0 +m∆z), where the indices k = 0, 1, 2, ..., K and m = 0, 1, 2, ...,M

are integers labeling a particular grid point. The discretized spatial coordinates are expressed as

r = k∆r and z = z0 + m∆z, where ∆r, ∆z are the grid point spacings in the radial and axial

direction, respectively, and z0 = −5σz. For the radial boundary conditions, we assume ∂ψ
∂r

= 0 at

r = 0 and r = K∆r. For the axial boundary conditions, we assume a plane wave (wk,0 = 1 for all

k) at z = z0 and then propagate the wave in the positive z-direction.
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The first step is to formulate (5.2) as an explicit difference equation (forward Euler method)

and as an implicit difference equation (backward Euler method). The Crank-Nicolson method then

uses 1
2

the sum of the explicit and implicit difference equations to give the following expression:

wk,m+1 − wk,m
∆z

=
i

4k0

1

∆r2k

[(

k +
1

2

)

wk+1,m +

(

k − 1

2

)

wk−1,m − 2kwk,m

]

+
i

4k0

1

∆r2k

[(

k +
1

2

)

wk+1,m+1 +

(

k − 1

2

)

wk−1,m+1 − 2kwk,m+1

]

+
ik0
4
(χk,mwk,m + χk,m+1wk,m+1), (5.4)

where χk,m ≡ χ(k∆r, z0 +m∆z) and the 1
2

factors make the spatial derivative work out in cylin-

drical coordinates to second order in an expansion of ψ. Collecting like-terms in (5.4) leads to

(

1

∆z
+

i

2k0

1

∆r2
− ik0

4
χk,m+1

)

wk,m+1 −
i

4k0

1

∆r2

(

1 +
1

2k

)

wk+1,m+1

− i

4k0

1

∆r2

(

1− 1

2k

)

wk−1,m+1

=
(

1

∆z
− i

2k0

1

∆r2
+
ik0
4
χk,m

)

wk,m +
i

4k0

1

∆r2

(

1 +
1

2k

)

wk+1,m

+
i

4k0

1

∆r2

(

1− 1

2k

)

wk−1,m. (5.5)

Next, the boundary condition at r = K∆r means wK+1 = wK,m, so from (5.5) we get another

equation expressed as
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(

1

∆z
+

i

4k0

1

∆r2

(

1− 1

2K

)

− ik0
4
χK,m+1

)

wK,m+1

− i

4k0

1

∆r2

(

1− 1

2K

)

wK−1,m+1

=
(

1

∆z
− i

4k0

1

∆r2

(

1− 1

2K

)

+
ik0
4
χK,m

)

wK,m

+
i

4k0

1

∆r2

(

1− 1

2K

)

wK−1,m. (5.6)

Lastly, at r = 0, cylindrical symmetry leads to another difference equation that can be expressed

as

(

1

∆z
+

i

k0

1

∆r2
− ik0

4
χ0,m+1

)

w0,m+1 −
i

k0

1

∆r2
w1,m+1

=
(

1

∆z
− i

k0

1

∆r2
+
ik0
4
χ0,m

)

w0,m +
i

k0

1

∆r2
w1,m. (5.7)

With known values for wk,m, the primary task is to calculate the values for wk,m+1. To do so,

(5.5) is solved for the interior grid points, (5.6) is solved for the r = K∆r grid points, and (5.7)

is solved for the r = 0 grid points. In each case (i.e. interior and boundaries), the corresponding

linear system of equations can be expressed using a tridiagonal matrix representation, and so can

be solved efficiently using a tridiagonal matrix algorithm (e.g. Thomas algorithm). Solving the

three systems of equations results in the solution advancing by ∆z in the positive z-direction, and

a new set of equations are generated until the solution reaches z = z0 +M∆z. The normalized

intensity of the wave at any grid point can be determined by |wk,m|2.

5.3.2 Calculation Parameters

The axial and radial spatial parameters relevant to the spatial density distribution are set to be

similar to those found in experiments where ultracold atoms are confined in an elongated optical
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trap. Convergence tests are performed on the number of mesh grid points and the spacing be-

tween grid points. For the predictions presented in the following sections, we use 1251 radial grid

points with a spacing of ∆r = 320 nm and 5001 axial grid points with a spacing of ∆z = 1.4

µm. Calculations that result in intensity features extending beyond 3.5 mm in the axial direction

have additional axial grid points included. The partial differential equation is then integrated to

obtain solutions for the envelope of the wave under various spatial density and frequency detuning

conditions.

As detailed in section 5.2, we model the spatial density distribution as a three-dimensional

Gaussian distribution with an elongated axis in the axial direction (aspect ratio = 35). The radial

grid size is large enough to ensure ∂ψ
∂r

is well-approximated by 0 at the radial boundary for all axial

positions, which is a reasonable approximation. We set the direction of the incident wave vector

to be colinear with the axial direction of the spatial density distribution, and set the initial plane

wave to be at an axial position where the atom density is negligible (z0 = −5σz). The calculations

are performed with peak spatial densities of 1011 cm−3 and 1012 cm−3. Working in units of natural

linewidths, Γ = (2πτ)−1 (where τ is the excited state lifetime), we vary the frequency detuning

over an interval spanning nearly an order of magnitude above and below the resonance frequency.

5.4 Calculation Results

The results of the simulation were very different from the Beer-Lambert law predictions (see

figure 5.3 and figure 5.4). For instance, the expectation from those predictions is that practically

no light will make it across the length along the center axis of the gas for a wide range of pa-

rameters. Instead, for negative-detuned frequencies the penetration of the light along the axis can

easily be such that it increases and actually forms intensity peaks past the center position of the

spatial density distribution. For positive-detuned frequencies, the intensity of the light along the

axial direction can often be attenuated far more than predicted by the calculation using the Beer-

Lambert law. Moreover, examining radial distributions of light intensity in planes along the light

propagation direction show the formation of light intensity patterns reminiscent of Airy patterns.
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5.4.1 Elongated-Axis Intensity Profiles

Figure 5.6 shows the intensity along the axial direction at the radial center of the spatial density

distribution when a plane wave is propagated through the model system. The negative-detuned

light experiences very little attenuation, and after the peak of the spatial density distribution the

light intensity begins to increase. Most notably, for the 1012 cm−3 peak spatial density and −6Γ

frequency detuning the intensity maximum is more than 12 times the initial intensity. This is

approximately 40 times larger than what would be expected at that same position given the Beer-

Lambert law prediction. The on-resonance light has the same axial intensity behavior as the Beer-

Lambert law case until the end of the spatial density distribution, where the light undergoes a

"recovery" of intensity owing to the influence of diffraction. For the positive-detuned frequencies,

the intensity falls off more rapidly than in the Beer-Lambert law prediction. For the 1012 cm−3

peak spatial density and +6Γ frequency detuning, the intensity is nearly 70 times less than what

the Beer-Lambert law predicts at the final axial position (z = 3.5 mm).

5.4.2 Pattern Formation in Radial Directions

Examples of radial intensity patterns that form in planes perpendicular to the light propagation

direction are shown in figure 5.7. The positions of the planes represented in the corresponding

subfigures are evenly spaced as illustrated by planes z1,...,4 in figure 5.5. For visual comparison,

all of the subfigures are plotted using the same false-color scale. In the case of −6Γ frequency

detuning, this scale results in heavy saturation of the intensity values, but serves to demonstrate

the large increase in expected intensity in downstream planes. Alternatively, the intensity can be

visualized in a plane that cuts through the atom distribution such that the r = 0 axis is included in

the plane. Such a representation is shown in figure 5.8. Figure 5.9 shows the radial distribution of

light intensity at several axial positions under the −6Γ detuning condition.

We have examined the intensity patterns represented in figures 5.6, 5.7, 5.8 and 5.9 over a

wider range of density and detuning parameters, too. The relevant features (e.g. the peak intensity)

change smoothly as parameters are varied. At peak densities much smaller than 1011 cm−3 there is
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Figure 5.6: Wave propagation model predictions for the intensity along the elongated axis of the spatial

density distribution. The plots (a) and (b) both have a peak spatial density of 1011 cm−3. The plots (c) and

(d) both have a peak spatial density of 1012 cm−3. The blue curve for all four plots is 0Γ detuning. For (a)

and (c) the green curve is +3Γ, red is +6Γ, and teal is +9Γ. For (b) and (d) the green curve is −3Γ, red is

−6Γ, and teal is −9Γ. Note that the vertical axis scale for (a)-(c) is different than the vertical axis scale for

(d). Figure reproduced from [7].
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Figure 5.7: Intensity patterns located at evenly-spaced planes perpendicular to the axis of propagation

for a peak spatial density of 1012 cm−3. (a)-(d) correspond to a frequency detuning of +6Γ and (e)-(h)

correspond to a frequency detuning of −6Γ. The planes are located at z1 = −1.75 mm, z2 = 0, z3 = 1.75
mm, and z4 = 3.5 mm. The horizontal and vertical widths are equal to 16σr for all of the subfigures. Figure

reproduced from [7].

Figure 5.8: Intensity patterns formed in a plane that intersects the central elongated axis of the spatial

density distribution for a peak spatial density of 1012 cm−3. (a) corresponds to a frequency detuning of

+6Γ and (b) corresponds to a frequency detuning of −6Γ. The horizontal axes are parallel to the axis of

propagation and the tick marks are located at z1 = −1.75 mm, z2 = 0, z3 = 1.75 mm, and z4 = 3.5 mm.

The vertical width is equal to 16σr (aspect ratio not to scale) and the center of the vertical axis is r = 0 for

both subfigures. Figure reproduced from [7].
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Figure 5.9: Radial plot of intensity patterns formed during propagation through the model system with a

peak spatial density of 1012 cm−3. The horizontal axis extends out to 5σr , where r = 0 lies on the elongated

central axis of the gas. The peak spatial density is 1012 cm−3 and the frequency detuning is −6Γ. The blue

curve corresponds to the radial intensity at z = 0, the green curve corresponds to z = 1.498 mm, and the

red curve corresponds to z = 3.5 mm. Figure reproduced from [7].

hardly a noticeable effect as compared to the Beer-Lambert law either along the central radial axis

or in radial intensity patterns. As the density is increased, patterns emerge along the lines described

in the examples shown above and become more and more pronounced. This continues past 1012

cm−3, but at that point approximations that we made to obtain (5.2) are starting to break down, and

in addition the physics of atom-atom interactions (e.g. dipole coupling [123,128]) would start to be

expected to play a role and that is not included in this model. We don’t expect that such additional

considerations would make the general behavior presented here to become ignorable. The effects

would still be there – they would just be harder to model accurately.

Additionally, we have also examined the influence of the radial extent of the spatial density

distribution on the formation of the intensity peak along the central axis of the gas. Using a peak

spatial density of 1012 cm−3 and frequency detuning of −6Γ, we varied the radial rms size from 10

µm to 40 µm while keeping the axial rms size fixed. A large enhancement of the initial intensity

occurs over the entire range of radial sizes, and the axial position of the intensity peak shifts further
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away from the center of the gas when the radial extent increases. For the smallest radial size tested

(10 µm), the maximum intensity is less than the peak in figure 5.6(d), but only by approximately

20%. As the radial extent increases, the resultant maximum intensity becomes larger, reaching

several percent higher than the peak in figure 5.6(d), until turning over near the end of the range of

radial sizes tested.

Beyond varying the radial extent, we also increased the propagation distance from z = 5σz

out to z = 30σz to examine the "recovery" feature for on-resonance light shown in figure 5.6.

At z = 30σz, the intensity along the axis of propagation is approximately 80% of the originally

incident value for a peak spatial density of 1012 cm−3. Performing the same calculation using a

peak spatial density of 1011 cm−3 results in a "recovery" to more than 90% of the incident value,

with a curve that is trending smoothly toward unity. We note that while the on-axis intensity tends

toward the value of the incident intensity infinitely far from the gas, the total power in the forward

direction is reduced.

5.4.3 Total Scattered Power

While it is evident that the Beer-Lambert law and wave propagation model produce different

predictions for the light intensity, it is also reasonable to consider whether these two treatments

are in agreement with regard to the total power of the light propagating through the system. Total

power as a function of position is the light intensity integrated over a plane perpendicular to the

elongated axis as a function of the position of that plane along the axis. The radial extent of the

plane is taken to be well beyond the radial extent of the gas. As a plane wave propagates through the

model system, the total power as a function of axial position will decrease monotonically along the

propagation direction. This is due to light being scattered by the atoms, which causes the power

reaching subsequent axial planes in the forward direction to continually decrease. Figure 5.10

shows normalized results for the amount of power scattered out of an incident plane wave as it

propagates through the model system. The −6Γ detuning results in more power being scattered

because of the light intensity being drawn from outside of the trapped gas into the gas causing an
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increase in the total power scattered. Similar considerations explain the lower amount of scattered

light in the +6Γ case.
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Figure 5.10: Normalized scattered power as a plane wave propagates through the model system with a peak

spatial density of 1012 cm−3. The blue curve is +6Γ and red is −6Γ. The green curve is the prediction from

the Beer-Lambert law for ±6Γ. Figure reproduced from [7].

5.5 Intensity Pattern Formation Conclusions

Comparing the Beer-Lambert law predictions to Maxwell’s equations-based predictions for sets

of easily achieved ultracold atom parameters demonstrates a clear difference in regard to the be-

havior of intensity as near-resonant or resonant low-intensity light propagates through the medium.

Given the index gradients are not that different from the light wavelength it is not so surprising that

refraction and diffraction produce significant effects. Even so, the magnitude of these effects are

so large than even for what would be expected to be a highly optically thick and absorptive gas, the

on-axis light intensity doesn’t just fail to decrease for some parameters. Rather, the light intensity

increases to more than an order of magnitude greater than its initial value. This shows that the

considerations listed here would need to be taken into account in any estimation or determination
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of the light intensity distribution in similar situations if even only a mildly accurate picture of the

resulting intensity pattern of light is of interest.

Simply put, in ultracold atom systems with significant index of refraction spatial variations, the

application of the Beer-Lambert law fails spectacularly in regard to the prediction of near-resonant

or resonant low-intensity light propagating in a sample. In such cases, the central on-axis light

intensity can be well more than an order of magnitude larger (smaller) than expected for negative

(positive) detuned light. And, for regions of space surrounding the ultracold atom spatial density

distribution, significant radially-varying intensity patterns can form too. The existence of such

non-intuitive behavior would be an important consideration in experiments, for instance in those

studying optomechanical effects in ultracold atomic gases [119, 121, 129, 130].

5.5.1 Difficulties with Comparing to Data

The experimental signals described in section 5.1 alluded to light propagation physics asso-

ciated with near-resonant light in our ultracold gas. Those measurements provided qualitative

evidence that motivated us to carefully consider near-resonant light propagation using a model sys-

tem. However, a direct comparison between model predictions and data could not be performed.

The signal-to-noise capabilities of the experimental measurements required illuminating the atoms

with up-pump light over timescales that were much longer than would be required to observe the

intensity formations predicted by the numerical model. Specifically, the timescales were longer

than the atom motion in radial directions and comparable to the atom motion in the axial direction.

A comparison to experimental light patterns would have required including atom motion and a

precise representation of the optical trap in the numerical model. While technically feasible, the

degree of optical trap characterization necessary was beyond our capabilities at the time. Further-

more, a comparison to those measurements (see section 5.1) is complicated by the fact that it is

not the light intensity patterns that are experimentally detected, but rather the integrated number

of atoms that have been optically pumped into the bright state. While the fraction of bright state
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atoms is related to the light intensity in the gas, the absorption imaging technique used for those

measurements does not allow for discerning the spatial intensity patterns predicted.
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Chapter 6

Faraday Rotation at Atomic Lifetime Timescale

This chapter is dedicated to presenting the theoretical description and experimental measure-

ments of the time-dependent development of Faraday rotation in an ultracold gas over timescales

on the order of an atomic excited state lifetime [8]. When a gas of ultracold atoms is suddenly

illuminated by light that is nearly resonant with an atomic transition, the atoms cannot respond

instantaneously. This non-instantaneous response means the gas is initially more transparent to the

applied light than in steady-state. The timescale associated with the development of light absorp-

tion is set by the atomic excited state lifetime. Similarly, the index of refraction in the gas also

requires time to reach a steady-state value, but the development of the associated phase response

is expected to be slower than absorption effects. Faraday rotation is one manifestation of differing

indices of refraction for orthogonal circular light polarization components. We have performed

experiments measuring the time-dependent development of polarization rotation in an ultracold

gas subjected to a magnetic field. Our measurements match theoretical predictions based on solv-

ing optical Bloch equations. We are able to identify how parameters such as steady-state optical

thickness and applied magnetic field strength influence the development of Faraday rotation.

The following sections of this chapter will provide a description of the theoretical modeling of

our system along with results based on experimental measurements. The description will include

the theory used to model the time-dependent evolution of light in an ultracold gas, predictions of the

transmitted intensity through an ultracold gas representative of those used in our experiments, and

our experimental measurements of the time-dependent development of Faraday rotation. Parame-

ters that influence the response timescales in the system will be discussed. The work presented will

highlight important considerations when dealing with near-resonant light that is suddenly applied

to an optically thick ultracold gas.
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6.1 Near-Resonant Light and Atoms

Extensive theoretical and experimental research has been performed studying near-resonant

light interacting with ultracold atomic gases, ranging from dilute (e.g. low spatial number den-

sity) [114, 131] to high density ensembles [132–134]. A description using coupled dipoles ade-

quately captures physics in a low density gas [135, 136]. Accurate predictions for light in high

density gases, where atom-atom interactions become relevant, are also being pursued [137, 138].

Identifying subtleties linked to the physics in these systems is ongoing. For instance, recent theoret-

ical calculations indicate that transitioning from a scalar description to one that includes the vector

nature of light (i.e. polarization) can significantly alter predictions of phenomena such as Anderson

localization of light [139,140]. While fundamental studies of light and its interactions with matter

date back centuries, it is clear there are still open questions highlighted by discrepancies between

current theoretical models and experimental results [141]. The important role resonant light plays

in a wide variety of fields, including quantum simulation [142], precision spectroscopy [143], op-

tical clocks [144], and ultracold plasmas [145] to name a few, encourages the continued study of

near-resonant light interactions. In this article, we examine how a phase-associated effect, Faraday

rotation, develops in concert with absorption as atoms in a dilute ultracold gas transition from a

state of being transparent to being optically thick.

The characteristic response time of a gas of atoms to light that is near-resonant or resonant with

a particular transition is determined by the atomic excited state lifetime of that transition. One

implication of this is that if near-resonant or resonant light is suddenly applied to a gas of atoms,

the gas will be effectively transparent until the atoms have enough time to develop an appreciable

dipole response to the light. This has been demonstrated theoretically and experimentally, for

example, in measurements of optical precursors [146], optical free induction decay [147], and

related effects [148]. However, these measurements have focused on absorption effects. The

atom gas can also shift the phase of incident light (i.e. have a real component of an index of

refraction), but similar to absorption, cannot do so instantaneously. Since the phase response
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is non-instantaneous, related polarization effects such as Faraday rotation will also take time to

develop.

At first glance, the timescale for the phase shifts that underly the phase effects might be ex-

pected to be approximately twice as long as for absorption effects since the phase effects manifest

themselves linearly with the electric field while absorption effects are observed via light intensity

(proportional to the electric field squared). Through the work presented in this article, we find that

the associated physics in a realistic system is more complicated than a straightforward ratio of two

relationship. We have conducted experiments measuring the time development of Faraday rotation

in an optically thick ultracold gas and then compared those experimental results with theoretical

predictions. Aside from investigating the associated basic physics, these considerations are rele-

vant if sufficiently short pulses are used in situations where phase shifts are important, as can be

the case in cavity QED [149] and interacting Rydberg gases [150].

6.1.1 Implementation Overview

Our experiments consisted of suddenly turning on a resonant linearly polarized laser beam

through a gas of ultracold atoms in a magnetic field and monitoring the intensity and polarization

of the transmitted light as a function of time. After a sufficiently long period of time, the system

reaches quasi-steady state. We refer to this as a quasi-steady state because there is a period in

time where the light transmission stops changing rapidly with time, but there is then a slow optical

pumping that works to bring the gas to a true steady-state over a longer timescale. Along with a

significant absorption of the light determined in part by the atom density, there is a modification

of the ellipticity and direction of the light polarization. The latter effect can be understood as

being due to different values of the real part of the index of refraction of the right-handed and left-

handed circular polarization components of the incident light. By measuring the development of

the intensity and polarization of the light as a function of time, the time-dependent absorption and

phase shifts of the light in the gas can be characterized and compared to theoretical expectations.

Our experimental data is in good agreement with calculations based on optical Bloch equations.
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6.2 Treatment of Dipole Response

We use Maxwell’s equations and a set of optical Bloch equations based on our experimental

conditions to calculate the time-dependent transmitted light intensity and polarization. The spatial

extent of the gas as compared to the beam size and wavelength of the incident light is such that

diffraction effects are negligible and thus not included in this treatment. One advantage of this

is that we can model the gas as having a uniform spatial density of atoms rather than having to

model the density variations that exist in the actual experiment. We also ignore the finite speed of

light with regard to the propagation of light intensity changes through the ultracold gas, which is a

reasonable approximation for our conditions.

To model our experimental measurements, we use parameters appropriate to the D2 line for

85Rb (shown in figure 6.1(a)) for light that is nearly resonant on the F = 3 to F = 4 cycling

transition. The incident light is linearly polarized and propagates along the direction of an applied

magnetic field, so it is natural to consider the light as being composed of equal parts σ+ and σ−

circular polarization components. The applied magnetic field produces Zeeman shifts across the

magnetic sublevels which causes the σ+ and σ− polarization components to become frequency

detuned by different amounts for transitions that share the same ground state magnetic sublevel

(see figure 6.1(b)). Accounting for the range of induced detunings along with the atoms’ relative

transition strengths in the calculation captures both the absorption and the phase shift associated

with the σ+ and σ− polarization components. If the response of the multi-level atoms subjected to

the magnetic field leads to a differential phase shift between the polarization components then the

result will be a polarization rotation of the light.

6.2.1 The Polarization Components

Our theoretical treatment begins with a linearly polarized plane wave propagating in the ẑ-

direction. The plane wave, ~E(z, t), is incident on a gas of effectively stationary atoms, where z is

the spatial coordinate and t is time. There is assumed to be no spatial variation in the directions
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(a) (b)

Figure 6.1: Relevant energy levels for our theoretical calculations and experimental measurements of

the time-dependent Faraday rotation of light in an ultracold gas. The incident light is composed of equal

parts σ+ and σ− circular polarization and is represented by the red arrow(s). Part (a) shows the hyperfine

structure in the D2 (780 nm) line in 85Rb (the ground state [1] and excited state [3] splittings are not to

scale). Polarized light is driving the 5S1/2 F = 3 to 5P3/2 F = 4 cycling transition. Part (b) depicts the

magnetic sublevels in the 5S1/2 F = 3 ground state and 5P3/2 F = 4 excited state. The gray lines represent

the degenerate (no magnetic field) magnetic sublevels and the black lines represent the Zeeman-shifted

sublevels. Two examples of the σ+ and σ− polarization components are shown with different amounts of

detuning resulting from the energy shifts. Figure reproduced from [8].

perpendicular to the direction of propagation. Starting with Maxwell’s equations and the plane

wave assumption leads to the wave equation

∂2 ~E(z, t)

∂z2
= µ0

∂2 ~D(z, t)

∂t2
, (6.1)

where ~D(z, t) = ǫ0 ~E(z, t) + ~P (z, t), µ0 is the vacuum permeability, ǫ0 is the vacuum permittivity

and ~P (z, t) is the polarization response of the ultracold gas. The plane wave solution is expressed

as

~E(z, t) = Ẽ+(z, t)σ̂+ + Ẽ−(z, t)σ̂−, (6.2)

Ẽ±(z, t) = Ã±(z, t)e
(ik0z−iωt), (6.3)
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where σ̂+ and σ̂− are circular basis unit vectors and the ± subscript corresponds to the σ+ and σ−

circular polarization components, respectively. Ã±(z, t) are the polarization amplitude and phase

components of the wave, k0 is the vacuum wave number, and ω is the optical frequency. The

relative phase between the σ+ and σ− polarization components of the incident light is initially set

to be zero. The atoms’ polarization response is expressed as

~P (z, t) = P̃+(z, t)σ̂+ + P̃−(z, t)σ̂−, (6.4)

P̃±(z, t) =
ǫ0
k0
β̃±(z, t)e

(ik0z−iωt), (6.5)

where β̃±(z, t) are complex amplitudes corresponding to the σ+ and σ− polarization component

dipole responses of the atoms. Steady-state treatments generally express the atoms’ polarization

response as ~P = ǫ0χ~E, where the susceptibility, χ, is a constant. This is correct once the system

has reached steady-state, but it is not an applicable expression for our calculations since we are

interested in what happens in the system while the atoms’ polarization response is still developing

with time.

To calculate the effect these dynamics have on the light in the gas, we derive an envelope equa-

tion by inserting (6.2) and (6.4) into (6.1). We apply the slowly-varying-envelope-approximation

and
∂P̃±

∂t
<< ωP̃±, which leads to

∂Ã±(z, t)

∂z
=
i

2
β̃±(z, t). (6.6)

A key feature of (6.6) is that it captures the time-dependent evolution of the atoms’ dipole

responses across the ẑ-direction spatial extent of the gas. To better appreciate the importance of

including the spatial extent in the calculation, it is useful to first examine the evolution of near-

resonant light interacting with an optically thin gas of atoms in a simplified system as compared to

the real 85Rb states.
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6.2.2 Atomic Dipole Response

A simple F = 0 to F = 1 transition can be used to examine the relevant general physics of

driving an optically thin gas with light composed of equal parts σ+ and σ− polarization compo-

nents. An applied magnetic field induces Zeeman shifts in the excited state magnetic sublevels

that causes the incident light polarization components to become detuned by an equal and opposite

amount with magnitude |δ| from the zero magnetic field transition resonance (where the sign of the

detuning depends on the magnetic field direction and magnetic sublevel quantum number). The

optical Bloch equation for the dipole coherence of the ∆mF = +1 ground-excited state transition

in a rotating frame can be expressed as

ρ̇1,2 = −(iδ + γ/2)ρ1,2 + iA′
+(ρ1,1 − ρ2,2), (6.7)

where the subscripts 1 and 2 denote the mF = 0 ground state and mF = +1 excited state magnetic

sublevels, respectively. γ is the damping rate (i.e. inverse excited state lifetime of the transition),

and A′
+ corresponds to the σ+ polarization component of the incident light. The light is assumed

to have an instantaneous turn-on and is assumed to be very low-intensity (A′
+ ≪ γ) so that the

excited state population remains ignorable. Given the initial condition, ρ1,2 = 0 at t = 0, an

analytic solution for (6.7) can be expressed as

ρ1,2 =
2A′

+

γ

2δ/γ + i

1 + (2δ/γ)2

[

1− exp
(

−γ
2
(1 + 2iδ/γ)t

)]

. (6.8)

The imaginary part, Im(ρ1,2), is associated with absorption while the real part, Re(ρ1,2), is

associated with an index of refraction. Working in normalized units for the electric field amplitude,

the transmitted σ+ light intensity through the optically thin gas can be characterized by an optical

depth (i.e. number of e−1 absorption lengths) that is expressed as

O.D.+ = − ln
(

[1− η Im(ρ1,2)]
2
)

, (6.9)
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where η is a unitless scale factor introduced to account for the gas density and physical constants

relating the dipole coherence to the light absorption. For the calculations in this section, we choose

η = 1 such that O.D.+ ∼ .01 for t ≫ 1/γ. Figure 6.2(a) shows (6.9) and ηRe(ρ1,2) plotted as

functions of time with the same horizontal time axis. Figure 6.2(b) shows the same curves, but with

the optical depth plotted with an additional time axis that is a factor of 2 shorter, where the new

time axis is displayed on the top of the figure. In this case, the amplitude and phase component

differ by exactly a factor of 2 with regard to their peak response. A Taylor expansion of (6.8) about

t = 0 shows the leading order for the amplitude component is linear in time and the leading order

for the phase component is quadratic in time. This produces the difference in curvature visible at

early times in figure 6.2.

This simple calculation also provides insight into the evolution of the index of refraction of an

absorptive medium illuminated by a very short (with respect to the medium’s characteristic radia-

tive lifetime) pulse of light. For a sufficiently large detuning, the phase response of the medium

oscillates rapidly about an average nonzero value, as shown in figure 6.3. Observation timescales

that average over this oscillation period will measure an appreciable index of refraction that de-

velops in a very short amount of time, even for sub-lifetime timescales. In other words, for light

detuned much more than a natural linewidth from an atomic transition, the apparent index response

timescale will be given by the inverse of the detuning for measurements with sufficiently coarse

time sensitivity.

Extending the simple calculation to a transition with an F > 0 ground state results in an im-

mediate departure from a factor of 2 difference between the amplitude and phase components. To

illustrate this, we use the F = 3 to F = 4 transition with magnetic sublevels depicted in figure

6.1(b). The additional magnetic sublevels means there is a range of Zeeman induced detunings

associated with the various transitions. A transition at the edge of the sublevels (e.g. mF = +3

to mF = +4) has the largest detuning labeled δ. Assuming low-intensity incident light with an

instantaneous turn-on, the optically thin gas can be treated by solving 14 independent optical Bloch

equations for the dipole coherences. The complex amplitude of the σ+ (σ−) polarization compo-
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Figure 6.2: Time-dependent optical depth (blue solid curve) and time-dependent phase (black dashed

curve) of the transmitted σ+ polarization component through an optically thin gas of atoms driven on a

simple F = 0 to F = 1 transition, where A′
+ = .01γ and η = 1. The magnitude of the induced detuning in

the calculations is |δ| = 1.0γ. The blue (black) dotted vertical line indicates the time when the optical depth

(phase response) reaches its maximum. Subfigure (a) shows the curves plotted on the same horizontal axis,

with a clear separation between the times corresponding to the maximum of each curve. Subfigure (b) shows

that when the phase response is plotted with respect to the bottom horizontal axis and the optical depth is

plotted with respect to a separate horizontal axis scaled by a factor of 2 (shown on top of the subfigure), the

dotted vertical lines exactly overlap. Note that the vertical axis is a normalized scale. Figure reproduced

from [8].
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Figure 6.3: Phase response for an optically thin gas of atoms driven on a simple F = 0 to F = 1 transition

with a large detuning, |δ| = 20γ. Figure reproduced from [8].
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nent dipole response is then proportional to the superposition of dipole coherences corresponding

to ∆m = +1 (∆m = −1) transitions. The dipole coherences have solutions of the form expressed

by (6.8), but with a detuning that is different for each transition. Figure 6.4 shows that the addi-

tional frequency components lead to less than a factor of 2 between the peak response times for the

amplitude and phase. As the magnetic field induced detuning increases there is a faster response

for both the amplitude and the phase.

In contrast to these simple systems, our experiments were not performed in an optically thin

gas, but rather an optically thick gas. This plays a role in the predictions of the total light transmis-

sion through the gas and requires including the ẑ-direction absorption of the ultracold gas in the

calculations. We describe this inclusion in the next section.

6.2.3 Dividing the Gas into Increments

We return to the envelope equation derived in section 6.2.1 with the motivation of including

the ẑ-direction absorption to accurately model the time-dependent evolution of light in an optically

thick ultracold gas. The general solution to (6.6) with respect to an initial reference position, z = 0,

can be expressed as

Ã±(z, t) = Ã±(0, t) +
i

2

∫ z

0

dz′β̃±(z
′, t). (6.10)

We have approximated the gas as having a uniform density, which is reasonable in the absence

of diffraction effects. Our theoretical calculations depend on numerically integrating (6.10). To

do so, it is necessary to identify the contributions to the dipole response terms in the integrand.

We obtain the dipole response terms in the integrand by first calculating the density matrix for

all states associated with the 5S1/2 F = 3 to 5P3/2 F = 4 transition in 85Rb. We include the

magnetic sublevels of the ground state (F = 3) and excited state (F = 4) shown in figure 6.1(b).

Time-dependent Faraday rotation of the total light is introduced into the calculation by including a

magnetic field in the ẑ-direction. This incorporates the Zeeman induced detunings associated with
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Figure 6.4: Time-dependent optical depth (blue solid curve) and time-dependent phase (black dashed

curve) of the transmitted σ+ light through an optically thin gas of multi-level atoms driven on an F = 3 to

F = 4 transition in the presence of increasing applied magnetic field strengths. The ground state magnetic

sublevels have initial populations that are evenly distributed. The optical depth is plotted with respect

to the top horizontal axis and the phase response is plotted with respect to the bottom horizontal axis.

The subfigures (a)-(c) are the results when the magnitude of the magnetic field induced detuning for the

outermost allowed transition between ground and excited state magnetic sublevels is (a) |δ| = 0.5γ, (b)

|δ| = 1.0γ, and (c) |δ| = 1.5γ. The blue (black) dotted vertical line indicates the time when the optical

depth (phase response) reaches its maximum. Figure reproduced from [8].
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the energy level shifts and leads to 256 coupled optical Bloch equations that we solve to determine

a 16× 16 density matrix

ρ =













ρ1,1 . . . ρ1,16
...

. . .
...

ρ16,1 . . . ρ16,16













, (6.11)

where the subscripts 1 to 7 correspond to the magnetic sublevels (mF = −3, ...,+3) in the ground

state and 8 to 16 correspond to the magnetic sublevels (mF = −4, ...,+4) in the excited state.

Once the density matrix is determined, we calculate β̃+(z, t) by summing the dipole coherence

terms (i.e. off-diagonal elements) that correspond to ∆mF = +1 ground-excited state transitions

and β̃−(z, t) by summing the dipole coherence terms that correspond to ∆mF = −1 ground-

excited state transitions. Besides coherences between ground and excited states, there are also

ground-ground (e.g. ρ1,2) and excited-excited coherences (e.g. ρ8,9), and they play different and

lesser roles in the overall response of the atoms.

A critical aspect of our calculations is to divide the ultracold gas into equally spaced increments

of equal optical depth along the ẑ-direction. We calculate the density matrix for each increment at

each time step, where the density matrix for an increment is used to calculate the average dipole

response of the atoms within that increment. The local driving field for subsequent increments is

then the superposition of the incident driving field and the dipole responses from preceding incre-

ments. The polarization components of the local driving field for an increment located at position

z are given by (6.10), where the position of the increment with respect to z = 0 corresponds to the

limit of integration.

For our calculations, we use 20 increments with each increment having an optical depth of

1/20 the total optical depth, where the total optical depth is typically between 1 and 2. Once the

complex amplitudes of the polarization components are calculated for each increment at each time

step, we can determine the time-dependent phase difference of the transmitted light
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∆φ(t) = φ+(t)− φ−(t), (6.12)

where φ±(t) are the phases associated with the complex polarization components of the light given

by (6.10). Equation (6.12) represents the phase difference between the σ+ and σ− polarization

components of the total transmitted light after the light has propagated through the full ẑ-direction

spatial extent of the gas. The amount of polarization rotation incurred by the light as it propagates

through the gas is directly attributable to the phase difference.

6.2.4 Constraining Calculation Parameters

To make theoretical predictions that correspond to our experimental conditions, we use exper-

imental data to constrain the physical parameters required for the calculations. These parameters

include the magnitude of the magnetic field, the laser detuning, and the average initial ground state

magnetic sublevel population distribution (referred to as "m-state distribution" for the remainder of

this chapter) in the ultracold gas. The acousto-optic modulator (AOM) that we use to turn the inci-

dent light on quickly induces a linear frequency chirp during turn-on. We independently measured

that to be the case and so include a linear chirp when calculating the atom response.

Theoretical predictions and experimentally measured transmission data collected over a range

of experimental conditions are used to perform a least-squares-minimization to find best-fit values

for these parameters. The calculations maintain no assumptions of low-intensity or steady-state.

This means that all 256 coupled differential equations required to determine the density matrix

must be solved for each set of optimization parameters. Furthermore, this number of equations

must be solved for each increment at each timestep, equating to over 5000 coupled equations being

solved at each timestep.

Since the optimization parameters associated with the magnetic field and frequency chirp rep-

resent quantities that are the same for all data sets, we implement a least-squares-minimization

routine that varies those parameters and compares solutions to all experimental data sets simul-

taneously. The measured signals are far more sensitive to the global parameters than could be

determined from other practical experimental measurements, and so fit corrections were included
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to capture the deviation from our measured quantities. An auxiliary set of our typical data, but at

deliberately varied detunings, was used to determine the laser detuning.

The m-state distribution is expected to vary between experiments, so we implement a separate

least-squares-minimization routine that holds the global parameters constant while varying the m-

state distributions for individual experimental data sets. The m-state distribution includes seven

distinct population values corresponding to the mF = −3, ...,+3 magnetic sublevels in the ground

state. While the general distribution affects the measured signals, the precise individual variation

of the m-state distribution has far less effect. For example, a distribution with more population in

the positive m-states versus the negative m-states will produce distinct signals, but capturing the

exact population in each of the m-states is less crucial. Therefore, we simplify the number of pa-

rameters to three such that the populations in an m-state distribution are set by an average, a linear,

and a quadratic constant. This simplification also allows for performing the multidimensional op-

timization in a reasonable amount of time (∼ hours) on a modern desktop central processing unit

(CPU). We deliberately varied the magnetic field between different predetermined values during

experimental data collection to better constrain the m-state distribution. The net result of these

calculations are predictions of the time-dependent light in an ultracold gas of atoms corresponding

to our experimental conditions.

6.3 Experimental Methods

Our experimental measurements of the time-dependent development of Faraday rotation were

performed using an ultracold gas of 85Rb. A near-resonance laser beam tuned to the 5S1/2 F = 3

to 5P3/2 F = 4 cycling transition was turned on rapidly over a timescale faster than the excited

state lifetime (τ = 26.25 ns [54]) of the atoms. This beam was directed through the center of the

ultracold gas. The total transmitted light was decomposed into orthogonal polarization components

and detected on two independent fast photoreceivers. A schematic depicting the experimental

implementation is shown in figure 6.5.
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Figure 6.5: Schematic depicting the experimental set-up used to measure the time-dependent Faraday

rotation in an ultracold gas. The beams used to form the initial MOT are left out for clarity. Note that the

near-resonance beam has a turn-on time that is faster than the excited state lifetime of the atoms. Figure

reproduced from [8].

We started our experiments by forming an 85Rb Magneto-Optical Trap (MOT) using standard

techniques [22]. After the MOT formation, the trap light and magnetic fields were turned off and

the atoms were given 4 ms to expand. This resulted in an ultracold gas with a root-mean-square

(RMS) spatial extent in one dimension of approximately 0.9 mm (determined through separate

absorption imaging measurements). A magnetic field was then applied to the gas. The magnitude

of the magnetic field at the location of the atoms was set to a value between 1.3 Gauss and 6.2

Gauss depending on the experiment. We did not increase the magnetic field further in this iteration

of the experiment because doing so results in the development of a non-negligible dipole amplitude

associated with the 5S1/2 F = 3 to 5P3/2 F = 3 transition. Including this transition along with

possible decay paths substantially increases the number of coupled differential equations required

to accurately model the system.

6.3.1 Near-Resonance Beam

With a well-defined axis provided by the magnetic field, we applied a near-resonance laser

beam along the same direction through the gas. The near-resonant beam was derived from the

MOT laser and a rapid turn-on time was realized by tightly focusing the beam into a 200 MHz

AOM. The AOM driver was triggered by a 5 ns rise time function generator which resulted in a
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10% to 90% 1st order deflection turn-on time of 9 ns. The deflected beam was collimated and

sized to a spot size of 364 µm, which led to a peak intensity polarization-averaged saturation

parameter of I/Isat = 0.2, where Isat = 4.8 mW cm−2. The fast photoreceivers used for detection

resulted in a signal-to-noise ratio that limited our ability to reduce the intensity much lower without

dramatically increasing the amount of data required for a measurement. The near-resonance beam

was passed through a Glan-Thompson polarizer external to the vacuum chamber so the incident

light on the atoms was linearly polarized perpendicular to the magnetic field direction.

Positioned on the output side of the vacuum chamber was a quarter waveplate followed by

a polarizing beam splitter (PBS) cube. The orientation of the quarter waveplate’s fast axis with

respect to the input field’s polarization direction determined what type of signal we measured. The

two primary orientations we used for our measurements were 45◦ and 0◦. Using the 45◦ orientation

led to the σ+ and σ− polarization components of the total transmitted light being split into separate

paths after the PBS. In this configuration, we measured the transmitted light with and without

ultracold atoms present in the vacuum to determine the optical depth associated with each of the

polarization components.

Using the 0◦ orientation and having no ultracold atoms present in the vacuum led to the in-

cident light being transmitted through the PBS onto detector 1 (see figure 6.5), and only a small

background signal on detector 2. When atoms were present, any relative phase shift between the

σ+ and σ− polarization components imparted by the atoms while responding to the incident light

caused the polarization vector of the total light to rotate, resulting in a time-dependent transmission

signal developing on detector 2.

6.4 Experimental Data and Predictions

Data collection was performed by interleaving measurements using the 0◦ and 45◦ orientations

and two predetermined magnetic field values. The data collection sequence constrained the pa-

rameters in our theory calculations. Approximately 24 repeated measurements were taken for each

specific waveplate and magnetic field combination, and the measurements were combined together
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to produce curves like those shown in figures 6.6-6.8. Each of those figures show experimental data

collected in the presence of ultracold atoms in the vacuum and corresponding theoretical transmis-

sion curves.
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Figure 6.6: Experimental data and theoretical calculations in the presence of a B = 1.3 Gauss magnetic

field along the axis of light propagation. Subfigure (a) is data and predictions when the quarter waveplate’s

fast axis is positioned at 0◦, and subfigure (b) is data and predictions when the quarter waveplate’s fast axis

is positioned at 45◦. The yellow and blue data are measurements collected on detector 1 and 2, respectively.

The black and red curves are the predicted transmission corresponding to the light on detector 1 and 2,

respectively. Figure reproduced from [8].

As shown in figures 6.6-6.8, the initial transparency of the gas leads to a peak in the transmis-

sion as the incident light turns on, and this intensity peak is visible in data collected using both

waveplate orientations. The initial transparency is a direct result of the atoms requiring a finite

amount of time to develop an appreciable dipole amplitude in response to the incident light. Be-

fore this happens, the incident light is able to transmit through the gas nearly unnattenuated. The

transmission peak then decays to a steady-state value as the atoms begin to radiate in response

to the driving field. As well as the transmitted amplitude, a time-dependent polarization rotation
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Figure 6.7: The same type of data as shown in figure 6.6, except B = 4.4 Gauss. Figure reproduced

from [8].

develops as the atoms impart a differential phase shift between the polarization components of the

light. The signal from this Faraday rotation can be seen in the data collected with detector 2 using

the 0◦ waveplate orientation. From data collected using the 45◦ waveplate orientation, we calcu-

late the overall transmission associated with each polarization component. This data also provides

sensitivity to the m-state distribution in the gas.

6.5 Time-Dependent Response

We have compared our experimental data to theoretical predictions, and good agreement was

obtained. While the data itself was used to constrain the precise value of some experimental pa-

rameters, this was done either across all of the data sets collected or across alternating conditions

to produce a meaningful comparison. To characterize the time-dependent Faraday effect, we use

the phase difference defined by (6.12). The phase difference, ∆φ(t), can also be extracted through

fitting smooth curves directly to the measured data. Given the agreement between data and the-
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Figure 6.8: The same type of data as shown in figure 6.6, except B = 6.2 Gauss. Figure reproduced

from [8].

ory predictions, however, the basic features of the time-dependent development of the polarization

rotation can be extracted from the matched theory curves with little difference from a direct deter-

mination from the data.

In addition to determining the phase response, we calculate the time-dependent development

of the opacity in the ultracold gas (i.e. the evolution of the optical depth). This is expressed as

O.D.(t) = − ln

(

I(t)

I0(t)

)

, (6.13)

where I(t) is the total transmitted light intensity as a function of time and I0(t) is the total incident

light intensity as a function of time. The results of the phase response calculations and the evolution

of the opacity calculations for data sets collected using three different magnetic fields are shown

in figure 6.9.
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Figure 6.9: Time-dependent optical depth (blue solid curve) and time-dependent phase difference (black

dashed curve) calculated from the theory curves of figures 6.6-6.8. The optical depth is plotted with respect

to the top horizontal axis and the phase response is plotted with respect to the bottom horizontal axis. The

subfigures (a)-(c) are the results when the magnitude of the magnetic field quantization axis is (a) B = 1.3
Gauss, (b) B = 4.4 Gauss, and (c) B = 6.2 Gauss. The blue (black) dotted vertical line corresponds to the

time when the optical depth (phase response) reaches its maximum. Figure reproduced from [8].
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The curves shown in figure 6.9 share expected characteristics with the simple calculations (see

section 6.2.2) for an ultracold gas of atoms with multiple ground state magnetic sublevels. These

characteristics include a clear separation between the peak response times of the optical depth and

phase difference, along with increasingly faster response times for larger applied magnetic fields.

Figure 6.9 also illustrates the difference between the time-dependent response of the amplitude

component and the time-dependent response of the phase component near t = 0 for a realistic finite

turn-on time. The amplitude response begins to develop almost immediately after the incident light

is turned on, whereas the phase response has a delayed onset under all conditions. This is expected

given the functional time-dependence of the amplitude and the phase components of the light, as

discussed in section 6.2.2.

6.5.1 Influences on Response Times

From the model developed using a multi-level atom gas with no constraints on the incident

light intensity, it is straightforward to identify various parameters that can influence the optical

depth and phase response times in a detectable way. These parameters include the incident light

frequency detuning and the magnetic field. For instance, larger magnetic fields have larger detun-

ings and that drives the dipole response to a peak value more rapidly than for smaller magnetic

fields. Additionally, the particular m-state distribution plays a role by weighting the Zeeman in-

duced detuning contributions associated with each transition. Also, saturation effects influence the

response times by making them shorter, although for our conditions the impact of saturation effects

on the fitted response times is only a few percent.

As discussed in section 6.2, the optical thickness plays a role in the gas response time in a

way that is different than the factors discussed above. For an optically thick gas in steady-state,

the atoms on the side of the gas opposite to the incident light will have relatively small dipole

amplitudes. This is a result of the light intensity at those atoms’ location being less than the incident

light due to absorption in the gas [151]. When the light is initially applied to the gas, though, there

is much less absorption, and the atoms on the opposite side of the gas are driven by light that has
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a higher intensity than in steady-state. This does not persist for long, since the gas absorbs the

incident light more and more as a function of time. However, the larger-than-steady-state intensity

drives those atoms toward (or even past) their steady-state dipole response much faster during the

period of relative transparency (as shown in figure 6.10). This means that the larger the optical

thickness of the gas, the shorter the timescale for the gas to absorb the light, since more atoms

will be strongly "overdriven" at early times. The result is a total transmitted intensity that has

a characteristic timescale that is faster than the excited state lifetime of the atoms. The faster

response times due to this effect were apparent in our theoretical calculations, and necessitated

breaking the gas up into increments (see section 6.2.3) along the light propagation direction. We

also observed this effect in general with some of our data sets, but those sets were not included in

our most comprehensive analysis due to insufficient information necessary for characterizing the

m-state distributions.

A similar effect occurs for the development of polarization rotation with time as a function of

the optical thickness of the gas, but the effect is not as pronounced as in the absorption case. As

discussed above, the phase response of the atoms is slower than the absorption response and so the

polarization component overdrive is reduced as the intensity falls relatively faster than the phase

response. In addition, at early times (after the incident light turn-on) the atoms are being driven

by light with a phase that is different than in steady-state. This tends to mute the polarization

overdrive effect to a greater extent than the absorption effect. Nevertheless, a reduction in the time

to reach steady-state as much as a factor of 2 is not uncommon for our conditions, and so this is

still a significant effect.

6.6 Time-Dependent Faraday Rotation Conclusions

Atoms in an ultracold gas do not respond instantaneously to the sudden application of near-

resonant light, and this has important consequences for the underlying dynamics in the system

before it reaches steady-state. We have theoretically described and experimentally measured the

time-dependent development of Faraday rotation in an ultracold gas subjected to an applied mag-
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Figure 6.10: Time-dependent magnitude of the σ+ polarization component dipole amplitude in the first

(green dashed curve) and last (red solid curve) increment of a calculation using 20 increments in the z-

direction. The last increment corresponds to the side of the gas opposite to the incident light. The calculation

is performed in the low-intensity (I ≪ Isat) limit with zero detuning and no magnetic field. The ground

state magnetic sublevels have initial populations that are evenly distributed. The subfigures (a)-(c) are the

results when the optical depth is (a) O.D. = 0.06, (b) O.D. = 1.2, and (c) O.D. = 2.4. The curves in each

subfigure are normalized to the maximum dipole amplitude value in the first increment for easier comparison

between subfigures.
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netic field, and good agreement between experimental results and theoretical predictions was ob-

tained. Polarization rotation is ultimately due to phase shifts induced by the real part of indices of

refraction in the gas, and a naive expectation would be that the development of those phase shifts

requires about a factor of 2 longer in time than absorption effects. The actual situation is more

complex and involves numerous factors that influence the phase response timescale in ways that

make general characterizations difficult. For realistic systems, the phase response is slower than

the absorption response, though.

Among the various parameters of the system that influence the response times is the optical

thickness of the gas. During the initial application of a light pulse, the atoms on the opposite side

of the gas from the incident light are driven much more rapidly towards their steady-state response

than they would be in an optically thinner gas. Capturing this optical thickness effect is important

for accurately describing the development of absorption and phase responses in an ultracold gas,

and would likely need to be considered in any applications or experiments using very short near-

resonant light pulses in similar systems.

The research presented in Chapter 6 has been submitted in the form of a manuscript to Physical

Review A. If accepted for publication, the bibliographic information on the arXiv repository [8]

will be updated to include the DOI for the peer-reviewed paper.
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Chapter 7

Radiation Transport Through an Ultracold Gas

This chapter is intended to provide an overview on the direction of our research group mov-

ing forward. Our successful measurements of the time-dependent development of opacity and

Faraday rotation in an ultracold gas provides the group with a good understanding of intricacies

involved when measuring radiation transport physics over short timescales. In addition, those

measurements allowed us to evaluate our theoretical approach using a straightforward experimen-

tal measurement. There were non-intuitive aspects of the relevant physics that would have been

more time-consuming to realize and characterize using the more advanced measurement technique

that will be described in this chapter. We now have the numerical tools to compare to experimental

measurements that we are confident will be effective in evaluating and analyzing light propagation

through our new measurement technique for observing radiation transport physics in an optically

thick ultracold gas.

The main idea behind the next phase of research is to implement a measurement technique

that allows us to spatially and temporally resolve the location of atoms that have been excited by

particular frequencies of light. We will send a laser beam through a gas of Rb atoms, and the laser

will be resonant on the 5S1/2 to 5P3/2 transition (780 nm). That will cause the atoms to scatter

light, and we will then measure the propagation of that scattered light through the optically thick

gas. Since the excited state atom population is a function of the intensity of light, tracking the

excited state atom population tracks light intensity as it moves through the optically thick gas. To

measure the excited state atoms, we will use a resonant photon excitation from the 5P3/2 excited

state to the 5D5/2 excited state (776 nm). From there, we will use a 1064 nm laser pulse to ionize

those atoms. The energy levels involved in the sequence are shown in figure 7.1. The resulting

ions will be accelerated toward a micro-channel plate (MCP) detector using a DC electric field,

as shown in figure 7.2. The 5P3/2 to 5D5/2 excitation laser will be focused to a size smaller than

the ultracold gas, and so can probe different spatial regions of the gas. Information about the
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location of an ionized atom along the direction of this 5P3/2 to 5D5/2 beam can be obtained from

the resulting ion’s time of flight. Temporal resolution will come from carefully timing the applied

lasers. By waiting a variable amount of time between the lasers responsible for the 5S1/2 to 5P3/2

excitation and 5P3/2 to 5D5/2 excitation, the time-dependent propagation of light in an optically

thick ultracold gas can be measured. This of course is not a direct light intensity measurement, but

rather a measurement of the location of atoms that have been excited by a particular frequency of

light. However, the light propagation and diffusion through the gas can be traced from the excited

state atom distribution.

Figure 7.1: Relevant energy levels for the resonant photon excitations and ionization pulse used in the

radiation transport measurement technique.

Other experiments have measured the time behavior of light diffusing through an optically

thick ultracold gas. This was done by illuminating the gas with a laser and then measuring the

time-dependence of the light escaping the gas using time-sensitive photon detectors positioned

outside of the gas (e.g. [114]). The measured signal was then used to determine a light diffusion

rate through the gas. These experiments rely on a model of the light propagation through the gas

as they do not directly observe a signal sensitive to the light as a function of position and time

inside the gas. In addition, these experiments are not sensitive to short times after the initial atom
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Figure 7.2: Schematic of the resonant laser beams and ionization laser pulse used in the radiation transport

measurement technique. Part a) shows the application of the 780 nm laser beam (light red) used to excite

atoms (light blue circle) from the 5S1/2 ground state to the 5P3/2 excited state. Part b) shows the application

of the 776 nm laser beam (dark blue) used to excite atoms from the 5P3/2 excited state to the 5D5/2 excited

state. Also shown is the 1064 nm ionization pulse (bronze) propagating along a direction that passes through

the center of the gas. Part c) shows the resulting ions being accelerated toward the micro-channel plate

(MCP) detector. The dotted vertical lines correspond to voltage grids and the voltages will be approximately

V1 = +10 V, V2 = −10 V, and V3 = −200 V.
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excitation, since the signal detection only occurs once light escapes the gas. The usual approach

in those experiments is to first let the gas come into steady-state, then turn off the excitation light

and measure the decay of the light signal escaping the gas. Light takes time to diffuse through

the optically thick gas, so by measuring the escaped light signal, the diffusion rate can be inferred.

The new measurement technique described in this chapter does not have these limitations. It can

measure the light diffusion inside the gas and can look at short-time behavior. This allows a

different investigation of the light diffusion. In particular, the usual model of light diffusion is

based on a random walk of photons. That picture cannot apply at short times after excitation (as

the atoms in the gas have not had time to respond to the light). Thus, the extent of the validity of

the random walk picture can be investigated in a controlled and characterizable way.

The research presented in chapter 6 was necessary to understand the physics of the atom re-

sponse inside the 5S1/2 to 5P3/2 excitation beam and the time and space profile of the light scattered

out of that beam. In the absence of knowing those details, the light diffusion experiment data could

not be interpreted at short times.
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