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ABSTRACT OF DISSERTATION 

NETWORK MULTIPLE FRAME ASSIGNMENT ARCHITECTURES 

Multiple target tracking methods divide into two broad classes, namely single 

frame and multiple frame methods. The most successful of the multiple frame 

methods are multiple hypothesis tracking (MHT) and multiple frame assignments 

(MFA). In dense tracking environments the performance improvements of multiple 

frame methods over single frame methods is very significant, making it the pre­

ferred solution for many tracking problems. Thus, in addition to the availability 

single frame processing, multiple frame data association methods are an essential 

class of methods for almost all tracking needs. 

The application of multiple frame tracking methods must consider an architec­

ture in which the sensors are distributed across multiple platforms. Such geometric 

and sensor diversity has the potential to significantly enhance tracking and dis­

crimination accuracy. A centralized architecture in which all measurements are 

sent to one location and processed with tracks being transmitted back to the dif­

ferent platforms is a simple one that is probably optimal in that it is capable of 

producing the best track quality (e.g., purity and accuracy) and a consistent air 

picture. The centralized tracker is, however, unacceptable for several reasons, no­

tably the communication overloads and single-point-failure. Thus, one must turn 

to a distributed architecture for both estimation/fusion and data association. 

One of the simplest network-centric architectures is that of placing a central­

ized tracker on each platform. The architecture is called Network MFA Centralized, 
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which removes the problem of single-point-failure. However, due to communica­

tion delays in the network, the order the measurements arrive at different platforms 

varies. Each composite tracker is making its own tracking decisions based on the 

data it receives, regardless of decisions of other platforms. Therefore, a consistent 

air picture may not be achieved across the network. 

Thus, the objective of this thesis is the development of two near-optimal 

Network-Centric MFA architectures, namely Network MFA on Local Data and 

Network Tracks and Network MFA on All data and Network Tracks, that preserve 

the quality of a centralized tracker across a network of platforms while managing 

communication loading and achieving a consistent air picture. 

One technique that has proved useful for achieving SlAP is to require that each 

platform be in charge of assigning its own measurements to the network tracks. In 

the architecture of Network MFA on Local Data and Network Tracks, only local 

data are used in the sliding windows and track initiations are based on local data 

only. In the architecture of Network MFA on All Data and Network Tracks, all 

data (remote and local) are used in the sliding window. 

Communication loading is only addressed by the architectures in that track 

states and their error covariances are not required to be transmitted back to the 

various platforms. The results of extensive computations are presented to validate 

the differences in four tracking architectures. 
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Chapter 1 

INTRODUCTION 

Multiple target tracking methods divide into two broad classes, namely sin­

gle frame and multiple frame methods. The single frame methods include nearest 

neighbor, global nearest neighbor and JPDA (joint probabilistic data association). 

The most successful of the multiple frame methods are multiple hypothesis track­

ing (MHT) [8] and multiple frame assignment (MFA) [60, 61]. The performance 

advantage of the multiple frame methods over the single frame methods follows 

from the ability to hold difficult decisions in abeyance until more information is 

available and the opportunity to change past decisions to improve current deci­

sions. In dense tracking environments the performance improvements of multiple 

frame methods over single frame methods is very significant, making it the pre­

ferred solution for many tracking problems. Thus, in addition to the availability 

single frame processing, multiple frame data association methods are an essential 

class of methods needed for almost all tracking needs. 

The application of multiple frame tracking methods must consider an architec­

ture in which the sensors are distributed across multiple platforms. Such geometric 

and sensor diversity has the potential to significantly enhance tracking and dis­

crimination accuracy. A centralized architecture in which all measurements are 

sent to one location and processed with tracks being transmitted back to the dif­

ferent platforms is a simple one that is probably optimal in that it is capable of 
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producing the best track quality (e.g., purity and accuracy) and a consistent air 

picture. The centralized tracker is, however, unacceptable for several reasons, no­

tably the communication overloads and single-point-failure. Thus, one must turn 

to a distributed architecture for both estimation/fusion and data association. 

Perhaps one of the most challenging tracking problems is the development of 

an advanced MFA/MHT that preserves the multiple frame tracking performance 

across a network of platforms comparable to that achieved for centralized track­

ing. The network centric algorithm architecture described by Moore and Blair [55] 

provides a consistent air picture across multiple platforms and limits the commu­

nications loads to within a practical limit. This architecture is, however, designed 

with single frame data association in mind. The multiple frame data associa­

tion approaches of MFA/MHT offer substantially improved tracking performance 

compared to the current single frame process while maintaining consistent threat 

pictures across platforms and limited communications load. 

While network-centric tracking is capable of achieving enhanced estimation of 

tracks using geometric diversity and sensor variety not available in single platform 

tracking, one must deal with a host of new problems including (1) distributed 

data association and estimation; (2) consistent air picture; (3) management of 

communication loading ( 4) sensor biases as well as location and registration errors 

(sometimes called gridlock); (5) pedigree problems in the case of a sparse com­

munication network; and, (6) out-of-order, latent, and missing data due to both 

sensor and communication problems. These topics as well as others are discussed 

in the article by Moore and Blair [55] and the book by Blackman and Popoli [8J. 

Thus, objective of the current work is to develop two near-optimal Network­

Centric MFA/MHT architectures that preserve the quality of a centralized tracker 

across a network of platforms while managing communication loading and achiev­

ing a consistent air picture. One technique that has proved useful for achieving 
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SlAP is to require that each platform be in charge of assigning its own measure­

ments to the network tracks, but this technique has been implemented only for 

single frame processing. This technique is extended to multiple frame processing 

for two of the architectures explained in subsequent chapters. Communication is 

addressed in part by the architectures in that track states and their error covari­

ances are not required to be transmitted back to the various platforms. 

In Chapters 2 - 7, four architectures, namely, MFA Centralized, Network 

MFA Centralized, Network MFA on Local Data and Network Tracks, and Network 

MFA on All Data and Network Tracks are explained or developed. Computational 

experience with these architectures are summarized extensively in Chapters 8 and 

9 with Conclusions presented in Sections 8.6 and 9.6. 
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Chapter 2 

INTRODUCTION TO A CENTRALIZED 
TRACKING ARCHITECTURE 

2.1 Introduction to Small Target '!'racking 

In the multi-target/multi-sensor tracking problem, there are cases where the 

sensors are located at a single site or on a single platform (e.g., a ship or an air­

craft). However, sensors are generally located on multiple platforms which may 

have different geographic locations. Platforms can be ships or airborne surveil­

lances that are moving around in the entire surveillance region, or they can be 

ground platforms that are fixed at certain locations. There are multiple sensors 

on board each platform. Some of the sensors are rotators that have a scan rate 

around 10 seconds, and provide 2D measurements with only range and azimuth 

(sometimes referred to as bearing) as well as 3D position measurements. The rota­

tors may provide Doppler information (range rate) as well. Some of the sensors are 

electronically scanning radars (ESRs) that have a faster update rate and provide 

very accurate 3D measurements. Some ESRs have a sensor tracker that provides 

a track ID and a state in addition to the measurement. 

Many benefits can be derived from the use of multiple sensors in multiple 

target surveillance systems. These benefits are derived from the manner in which 

the data from each sensor can be used to complement the data of the other sensors 

in order to obtain broader coverage and more accurate target state estimate and ID 
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decisions, and to reduce false tracks. The central problem in multi-target/multi­

sensor surveillance system is the partitioning of observations from multiple sensors 

into tracks and false alarms. 

The multi-target/multi-sensor tracking architectures that are widely used can 

be divided into two categories. 

• Centralized Tracking Architecture (chapter 2). 

Observations from different platforms are all sent to a single centralized pro­

cessing unit, which has a composite tracker that does all the tracking and 

sends tracking results back to each platform. The centralized processing unit 

may or may not reside on one of the platforms. Theoretically, the centralized 

architecture should produce the best performance. 

• Network (or Distributed) Tracking Architecture (chapter 3, 4, 5 and 7) 

Practical considerations, such as communication limitations, registration er­

ror and resolution differences, have led to a wide variety of architectures. 

In a network distributed tracking architecture, each platform has its own 

composite tracker that does the tracking. 

2.1.1 Overview of Centralized Tracking Architecture 

A centralized architecture (Figure 2.1) is one in which all the sensors on dif­

ferent platforms send measurements to a central processing unit that contains a 

composite tracker. The composite tracker processes all the measurements, puts 

them into proper frames and processes them in the time order as they become 

ready. This architecture is conceptually the simplest and will ideally produce the 

most accurate data associations and tracking. Furthermore, the tracks (global 

tracks) are broadcast back to all the platforms, and they share a consistent air 

picture. 
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However, this architecture suffers from the serious problem of single point fail­

ure. If the central processing unit fails, or the communication is cut down, none 

of the platforms will have any tracking results. Furthermore, broadcasting track 

states (state vector and covariance matrix) at each update is a heavy communica­

tion load to the network. 

• • • 

Measurements 

Figure 2.1: Centralized Architecture 

2.1.2 Overview of Centralized Tracking Algorithms 

• • • 

Current algorithms for multi-target tracking generally fall into two categories: 

sequential and deferred logic. Sequential algorithms consider one frame of observa­

tions at a time. The term frame or proper frame is used to represent a grouping 

of observations where each target in the surveillance region can be seen at most 

once. Deferred logic considers several frames of observations all at once in making 

data association decisions. A popular deferred logic method used is called multi­

ple hypothesis tracking (MHT) [8], in which one uses a sliding window of size N, 

builds a tree of possibilities, assigns a likelihood score to each track, develops an 

intricate pruning logic, and then solves the data association problem. 
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A newly proposed deferred logic method, which is called multiple frame assign­

ment (MFA), is used in our centralized tracking architecture. It has been regarded 

as superior to the other methods. MFA is superior to single frame processing, 

because difficult data association decisions are held in abeyance until more infor­

mation is available. For deferred logic, the central problem of tracking is formulated 

as a multi-dimensional assignment problem, which is NP-hard. Near optimal so­

lutions, as opposed to optimal solutions, are used. MFA considers hundreds, or 

thousands, or even millions of hypothesis, while MHT only considers fifty or a 

hundred, thus leading to near optimal solutions that are much closer to optimal 

solutions, especially in dense scenarios. In the MFA method, a double pane sliding 

window ( M / N) is used, where the window spans exactly M frames of data. All M 

frames within the window participate in track initiation calculations, but only the 

most recent N < M frames participate in track continuation. A TrackTree that 

represents all feasible combinations of existing tracks and observations, each with a 

likelihood ratio score assigned, is designed to be the most efficient to navigate. The 

data association problem is formulated as an N dimensional assignment problem. 

Based on the solutions to the data association problem, the TrackTree is pruned 

and shifted. 

2.2 Composite Tracker for the Centralized Architecture 

A composite tracker for the centralized architecture has been well developed 

and tested. It is an Object Oriented software package written in C++ and owned 

by N umerica. It is based on the idea of an event driven code, which means the 

tracker processes events as they arrive, instead of waiting for the entire set of input 

data before processing. 
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2.2.1 Introduction to Event Driven 

In traditional procedural programming, there exists a "main" program that 

handles input, processing and output sequentially. Therefore, such a traditional 

tracking program will read in the observations all at once, process them, and 

output the tracking result at the end. In surveillance systems, it won't meet real­

time needs. Thus the modern tracking system is an event driven system. 

Such a system has a main loop which just waits for events to occur. Whenever 

an event occurs, specific procedures are executed to handle the events. In the mean 

time, it might generate new events as well. 

2.2.2 Event Driven Tracker 

As discussed above, the composite tracker is an event driven system. It has 

a central-level event manager in which there is a global event queue that stores 

events that need to be processed. There are various event listeners, each of which 

listens to certain types of events (to perform specific operations required for those 

events). The tracker waits for an event to occur and then processes it. Processing 

means that the tracker goes through its entire list of event listeners to see if any 

of them can process it. New events may be generated while some events are being 

processed. They are pushed back onto the queue (posted). The top priority ones 

can be processed immediately (fired). 

As is shown in Figure 2.2, it is the external events (observation event, metrics 

scoring event, and EOF event) that drive the tracker. Those external events can 

be read in from any specified input stream, such as stdin (keyboard), a particular 

file or a socket. Those external events are pushed onto the event queue of the 

tracker waiting to be processed. 

There are basically three types of event listeners: the frameBuilder, the out­

putFormatter and the sliding window. Different event listeners process different 
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events. Furthermore, during the process of one event, new events (which are called 

internal events) can be generated and pushed onto the event queue. 

Input Stream External Events Event Queue 

Observation 

Metrics 

EOF 

Event Listeners Output Stream 

FrameBuilder 

Output Formatter 

Window 

Figure 2.2: Event Driven Overview of the Centralized Tracker 

External Events 

• Observation Event 

The most common external event is an observation. An observation event 

contains a time tag, measurement type (such as 2D or 3D, with or without 

Doppler), sensor ID (by which one can tell the sensor type), sensor navigation 

data (geodetic position and velocity of the sensor), necessary sensor charac­

teristics (such as probability of detection, revisit time or Identity Friend or 

Foe (IFF) tag), the measurements (a subset of range, azimuth, elevation and 

Doppler) and the covariance associated with it. 

Observation Event 

Figure 2.3: Observation Event 

An incoming observation, from the input stream, is posted onto the event 

queue. The event listener, frameBuilder, processes observation events, and 

tries to put them into proper frames (which will be discussed later in the 

following sections). When a frame is ready, the frameBuilder generates a 

frame event. This is an internal event, which is posted on the event queue. 

10 



• Metrics Scoring Event 

A metrics scoring event is generated when we want to evaluate the perfor­

mance of the tracker. A metrics event generally includes a time tag and 

platform navigational data (position and velocity). The composite tracker 

forks a child process to handle the metrics scoring event. One can choose 

what type of tracks they want: 

- "hard": If "hard" is chosen, then the child process searches the Track­

Tree for tracks that include the most recent firm decisions. Such a track 

set contains a consistent set of tracks. 

- "soft": If "soft" is chosen, then the child process searches the TrackTree 

for tracks that are the most recent soft decisions on the frames in the 

sliding window. However, as more information arrives, the associations 

may change for successive metrics scoring events. 

- "softPlus": If "softPlus" is chosen, then the child process processes all 

the observations that have already arrived, and chose the most probable 

tracks based all the data that are present. It collects all the unfinished 

frames that are still in the frameBuilder and appends them to the end 

of the sliding window. The data association problem is a ( M p) 

dimensional assignment problem where p is the number of unfinished 

frames. 

Track Metrics Events are fired for the set of tracks, and they will be processed 

by the corresponding output formatter to be predicted to the required time, 

and transformed into the required coordinate system. 

• EOF Event 
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Metrics Events./ I I Event Queue : I Forks a child process 

1 hard soft 1 softPlus 

fire track metrics events fire track metrics events fire track ~etrics events 
for tracks with most recent for tracks with most recent for most probable tracks on 

firm decisions soft decisions on frames in the window all data that have arrived 

Figure 2.4: Metrics Scoring Event 

The EOF event is encountered when the end of the input data stream is 

reached. At the end of each Monte Carlo run, the simulator generates an 

EOF event to indicate that no more measurements are left. The frameBuilder 

in the composite tracker posts all its unfinished frames as frame events. After 

processing all the frames left in the frameBuilder, it generates a close event 

and posts it onto the event queue. 

EOFEvent 
Event Queue 1-----------., 

post a close even,..;;.t ____ _, 

Event Queue 

Figure 2.5: EOF Event 

Internal Events 

• Frame Event 

It is the sliding window's responsibility to process a frame event. The frame 

is added to the sliding window's frame list, and the TrackTree is extended to 
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that frame. A data association problem is set up and solved. Solutions are 

parsed, the TrackTree is pruned and fixed DA decision events are fired. Then 

the window is shifted and the leftmost frame is moved out of the window and 

the TrackTree. 

J E Q I Frame Event J Add into Moving Window I Extend TrackTree 
vent ueue 1 I to the new frame 

Set up and Solve 
j Move the Window 1 I Parse DA Solutions r the Data Association Problem 

post false alarm, track events 
(initiation, extension, termination) 

I Event Queue j 

Figure 2.6: Frame Event 

• Data Association Decisions Events 

DA decisions events can be divided into two categories: irrevocable decisions 

and soft decisions that may change. Those events include false alarms (FA) 

events, track initiation events, track extension events and track termination 

events. All those events are processed by the output formatter to generate 

the appropriate output and direct it to the specified output stream. All the 

processing details will be covered in section 2.3.2. 

Transform to 
Write to output streams 

the required coordinates 

Figure 2.7: DA Decisions Event 

• Close Event 
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The moving window starts to close by fixing the DA solutions and deleting 

the leftmost frames in the window. When the size of the window reaches 

zero, the tracker terminates normally. 

close event 
Event Queue Close the Window 

Figure 2.8: Close Event 

2.3 Major Issues for the Centralized Architecture 

2.3.1 FrameBuilder 

stop 

The frameBuilder puts observations from the incoming stream into frames. A 

proper frame is a set of observations such that each target can be seen at most 

once. By definition, one could divide the observation stream into the smallest 

possible proper frames where each one contains a single observation. However, too 

many small frames will be built and it is impossible to relate them to the scoring 

formula introduced in Chapter 11, especially how to score missed detections. What 

we want to achieve in the frameBuilder here is to divide observation streams into 

proper frames and if the target is not seen in the frame, we can decide whether 

we need to score it as a missed detection or not. 

The concept of a sensorFrame is introduced that contains a set of observa­

tions coming from the same sensor in which each target is seen at most once. In 

the multi-sensor scenario, each sensor has its own field of view (FOV). Some may 

overlap with those of others, some may not. If two sensors have non-overlapping 

FOV, then one can link two sensorFrames together to form a frame, where it is 

guaranteed that each target can be seen at most once in the frame. Look at the 

example of four sensors with FOVs shown in Figure 2.9. Sensor A and C have non­

overlapping FOVs. Similarly, sensor B's and D's FOVs do not overlap. So, given 
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Sensor A and C have non-overlapping FOVs 
Sensor Band D have non-overlapping FOVs 
Link A and C together. B and D together 

Figure 2.9: Sensors with different FOVs 

one sensor frame from each sensor, it is obvious that one can link the sensorFrame 

of A and C together and B and D together to form two proper frames. 

Thus, the algorithms for the frameBuilder in the centralized composite tracker 

can be summarized in the following steps: 

1. Build sensorFrames for observations coming from the same sensor. 

2. Link non-overlapping sensorFrames into frames in a timely fashion. 

Building SensorFrames 

The tracker has two different sensorFrame building schemes, due to the fact 

that it is now capable of handling observations from two different type of sensors. 

• Rotators: 

A physical scan of the rotating radar is taken to be a frame. And it is 

assumed that the scanning rate/period of the rotators are known. Suppose 

the scanning period of a rotator is denoted to be T, then an observation at 

time t belongs to frame k, provided that k * T ~ t ~ ( k + 1) * T. 

15 



• Electronically Scanned Antenna (ESA) radars: 

An ESA radar has its own sensor tracker, so it can adaptively revisit targets, 

instead of following a fixed pattern. This means the target will not be revis­

ited at a fixed rate. The method we use to divide the measurement streams 

into frames is highly heuristic. 

Each ESA measurement has a sensor track ID associated with it, so the 

criteria for frame building of ESA measurements are based on their own 

sensor track IDs. 

In order to avoid delays, the composite tracker wants to process the ESA 

measurements as soon as possible. Thus, the ESA sensor frameBuilder can 

have at most two sensorFrames in it. 

Let F 1
, F 2 be the sensor Frames in the ESA sensor frameBuilder, and let 

ST}D, STfD be the set of sensor track IDs that the observations in the sen­

sor Frames have. Given a new observation z, with its own sensor track ID 

Stz: 

1. If stz E ST}D, then the sensorFrame F 1 is ready to be processed. The 

ESA frameBuilder adds it into the second sensorFrame: 

2. Otherwise, add the observation to the first sensorFrame: 

If the sensor Frame F 1 is ready, it will be taken to the frameBuilder to build 

frames after processing the observation z. Then the ESA sensor frameBuilder 

sets F 1 = F 2 and ST}D = STfD· Both F 2 and STfD are reset to be empty 

sets. 
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Linking Non-Overlapping SensorFrames 

Given two sensor Frames, how to tell if the two have overlapping FOV s is 

solved by the ideal of space partitioning as well. For efficiency considerations, a 

very coarse grid is applied to the entire surveillance region. It is assumed that 

observations in different grids can not emanate from the same target. Thus, if the 

FOVs have non-overlapping grids, it is concluded that the FOVs do not overlap. 

The total number of grids is generally of size 32 or 64, such that each grid can be 

represented by a bit in an integer or a long integer. For the sensorFrame of sensor 

i, there is an integer ( S F{0 v) that denotes the grids the sensor's FOV lies in. 

During the course of building the sensor Frame, the integer is maintained whenever 

a new observation is added. If the sensor Frame has at least one observation lying 

in grid k, then the kth bit of the SF{0 v is 1. The kth bit of the SF{0 v is 0 

otherwise. Thus, bit AND and OR operations can be used to link non-overlapping 

sensor Frames into frames. Figure 2.10 is an example of how to set the integer that 

represents which grids the sensor FOV lies in. For simplicity, the entire surveillance 

region is divided into 16 grids, and the sensor FOV is as shown in the figure. The 

actual sensor FOV lies in grids 4, 5, 6, 8, 9, 10, 12, 13 and 14. However, based on the 

observations in the current sensorFrame, since there are no observations in grid 6 

and 14, so there is no mark in grid 6, and 14. 

For each sensor si, i = 1, · · · , N, there is a queue of sensor Frames in time 

order that are finished and ready to be processed. Denote the queue to be 

(SFsi (Pi), SFsi (Pi + 1), .. · ), then tsFsi(pi) < tsFsi(Pi+l), where tsFsi(pi) can be the 

start time or the end time of the sensor Frame. The algorithm to build a frame Fk 

can be described as: 

1. Order the sensorFrames queues such that 
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Figure 2.10: Example of Setting the spFOV 

Fk = SFsm1 (Pml), 

pFOV = SFFOV(p ) 
k sm1 m1 ' 

(2.2) 

(2.3) 

where sensor Frame SFsm
1 

(Pm1 ) has the earliest time tag of all the sensor­

Frames. 

3. Fori 2, · · · , N, check if 

then 

(2.4) 

(2.5) 

(2.6) 

Otherwise, sensor Frame SFsm· (PmJ has overlapping FOV with at least one 
l 

sensorFrame in the frame Fk. 
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2.3.2 Double Pane Sliding Window 

Introduction to the Sliding Window 

The sliding window in our tracker is a double pane window, which is generally 

denoted as an M / N window. The window spans exactly M frames in the data. 

The most recent N < M frames participate in track extension, and all M frames 

participate in track initiation. However, the first ( M - N) frames in the track 

initiation window contain only observations that have not been associated with 

any existing tracks yet. 

Track initiation Window 

• • ---G---0 
" / 

' / ' / 

• •-- -&--o ,...-----1. / '' 
/ ' 

G-- f?f-- -G-- -'E) 
/ ' 

/ ' 
o: ----8--~'-0 

e Established track 

0 Observations 

Track extension Window 

Hard Association 

Potential Association 

Figure 2.11: Tracking Initiation and Extension Window 

A 4/2 window is shown in Figure 2.11, where 4 frames of observations can be 

used to initiate new tracks. The existing tracks extend into the 3rd and 4th frames 

(extension window). 

Introduction to 'I'rackTree 

Let the frames in the window at step k be denoted by fko, · · · , !kM-N-l, · · · , !kM-t, 

and the ith observation in frame fkj is denoted by zt. 
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TrackTree is the tree structure for maintaining the entire track database on 

each of the platforms. The TrackTree has only one root node, and the root node 

has no parents. All other nodes in the TrackTree have exactly one parent. 

The TrackTree data structure represents all feasible combinations of existing 

tracks and observations, and each combination is represented as a distinct string of 

integers. For example, Figure 2.12 shows a TrackTree for a 4/2 window (initiation 

size of 4 and extension size is 2). The root node is always denoted by ( 0 · · · 0) 

and is depicted at the top of the tree. The number of zeros in the root node 

is the same as the number of frames in the sliding window. Nodes containing 

only non-negative integers ((ikoik1 • • • ikM_ 1 ), where ik3 ~ 0 for all j = 0, · · · , M-

1) are collections of observations, and these nodes participate in track initiation 

calculations ( ik3 = 0 means there is no detection in frame fk3 ). The observations 

from a given string come from distinct frames, but a given observation may appear 

in the strings in more than one node. When ik3 = 0, then the string does not 

contain any observation from frame kj· Existing tracks are denoted by negative 

integers. For instance, a node represented by (0 · · · 0- Tk1 ikM-N · • · ikM-l ), extends 

the track with track ID Tkz. The extension contains observations ik3 ::2: 0 for all 

j = M - N, · · · , M - 1. The number of zeros in the preamble to the string is 

always M - N - 1, so that the integer strings in all the nodes have the same length 

on all nodes. 

Each node represents a feasible combination of measurements in different 

frames or a combination of an existing track with measurements. For example, 

node 1001 means z}
0 

goes with z}
3 

and node 0- 111 means track number 1 is 

feasible with observation z}
2 

and z}
3

• 

There is a TrackString data structure associated with each node, which can 

be denoted as TSik ik ···ik or TSo ... o-r.k ik ···ik . The TrackString records all 
0 1 M-1 l M-N M-1 

the necessary filtering, gating and scoring information when a tracking filter has 

initiated. 
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0010 0001 

I 
1100 1001 0-110 0-101 0110 0101 0011 

I I 
0-111 0111 

Figure 2.12: A simple example of the TrackTree 

Introduction to the Data Association Problem 

The data association problem can be posed as an M dimensional assignment 

problem. For instance, the four-dimensional assignment problem produced by the 

above TrackTree can be represented in a tableau as follows. Each line of the tableau 

corresponds to a different node in the TrackTree data structure, and each line is 

called an arc. The first four columns of the tableau contain the individual integers 

from the node string, and the last column is the cost, or the score, for each arc. All 

singleton arcs (arcs which have only one non-zero index, such as 1000 and 0 -100) 

are always added, since they are required by the assignment solver itself. All valid 

tracks are also added. A valid track has an associated tracking filter and produces 

a negative score. Thus, if a given track is required to have at least 3 observations 

in order to start a filter (according to a user definable parameter initLengthMin), 

then nodes that have only two observations are not added to the tableau. 

1 0 0 0 0.0 

0 1 0 0 0.0 

0 -1 0 0 -40.0 

0 -2 0 0 -50.0 

0 -1 1 0 -52.0 
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0 -1 0 1 -50.0 

0 -1 1 1 -60.0 

0 1 1 1 -20.0 

0 0 1 0 0.0 

0 0 0 1 0.0 

Introduction to Parsing DA Solutions 

The DA problem associated with a M / N window is generally of dimension M 

as described in the previous section. All DA solutions are parsed into the following 

categories: 

1. False Alarms are defined as solution arcs of the form (0, · · · , 0, iki, 0, · · · , 0). 

If j > 0, so that observation z~:i., is not in the oldest frame of the window, 
J 

then z1iki is temporarily treated as a false alarm. But if j = 0, then z1iko is 
ki ko 

declared as a false alarm permanently. 

2. Tentative Tracks are solution arcs of the form (0, · · · , 0, iki, · · · , ikM_J where 

j > M- Nand which has at least two non-zero indices. 

3. Initiating Tracks are defined as solution arcs of the form 

(ik0 , • • • , ikM-N' ikM-N+P · · · , ikM_J, which have at least two or more non-zero 

indices and such that the subString (ik0 , • • • , ikM-N) preceding the extension 

window has at least one non-zero index. It will be called as an initiating track 

if the trackString TSik ... ik 0 ... 0 meets the following criteria: (1) a track-
o' ' M-N'' ' 

ing filter has been initiated, (2) it produces a negative score and (3) the track 

has at least initLength observations,. If the trackString TSik ... ik o ... o 
O' ' M-N'' ' 

meets all three criteria, then association between all those observations will 

be fixed. Otherwise the association between iko and ik 1 will be fixed. 
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Figure 2.13: DA solutions expressed in the TrackTree 

4. Extending Tracks are defined to be solution arcs of the form 

(0, · · · , 0, -Tkp ikM-N' • • • , iM-1), where Tkz is track ID. The association be­

tween track Tk, and observation z1ikM-N is fixed if ikM-N -::/= 0. 
' kM-N 

5. Terminating Tracks are defined as solution arcs of the form 

(0, · · · , 0, -Tkn 0, · · · , 0). If the corresponding track hasn't been seen for a 

while or the score degrades to a number greater than zero, then the track 

will be removed from the TrackTree permanently. 

The DA solutions to the four-dimensional assignment problem above are cir­

cled in Figure 2.13. For solution arc 1000, observation z1
1 is declared a false alarm 
ko 

permanently. For solution arc 0100, observation z1
1 is declared a false alarm tem­
kt 

porarily. Solution arc 0 - 111 is declared as an extension of the existing track 

and the observation z}~c2 in first frame of the extension window is fixed to track 1. 

0 - 200 is declared a dropping track if it has not been seen for a certain period of 

time. Likewise, if the score for arc 0 200 degrades to zero, then it is declared a 

dropping track. Otherwise, 0 - 200 can be regarded as a track that has two missed 

detections. 

Now the TrackTree is pruned based on firm decisions. For false alarm solu­

tions, nothing else needs to be done. For track extensions and track initiations, the 
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Figure 2.14: TrackTree after Pruning 
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Figure 2.15: TrackTree after Shifting 

corresponding sub-trees are detached, and any incompatible branches are pruned, 

as is shown in Figure 2.14. Then, the detached branches are grafted back into the 

Track Tree. 

After the pruning process, the TrackTree is shifted to the left by one frame. 

Now the tracker is ready to process a new frame of data. The TrackTree, after 

pruning is shown in Figure 2.15. 

A valid TrackTree satisfies the following conditions 

• If node ( iko, ik1 , • • • , ik3+1, 0, · · · , 0) exists in the tree, 

then node ( iko, ik1 , • • • , ik3, 0, · · · , 0) must exist in the tree. 
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• If node ( i1.:0 , i1.:1 , • • • , iki+I, 0, · · · , 0) exists in the tree, 

then node (0, i1.:1 , • • • , iki+I, 0, · · · , 0) must exist. 

2.3.3 Scoring Missed Detections 

As explained in full detail in Chapter 11, the scoring formula for MFA has a 

nice recursive form. The likelihood ratios and the scores can be written recursively 

as: 

N 

Litiz···iN = II Lik = Litiz···iN-1 LiN (2.7) 
k=l 
N 

Ci1iz···iN = L Cik = Ciliz .. ·iN-1 CiN (2.8) 
k=l 

with 

For a detection, when Ll.oik = 0, it is scored either as a track initiation or a 

track extension. However, in a multiple sensor scenario, the fact that Ll.oik = 0, or 

the track is associated with 0 in a certain frame does not necessarily mean it has 

a missed detection in that frame. A 0 shouldn't be scored as a missed detection if 

the target is out of the sensor's field of view (FOV). The criteria for scoring missed 

detections are heuristic. 

Suppose frame /1.: is made up of sensorFrames whose sensor IDs are denoted 

by { s1.:1 , • • • , skp}. For each track, there is also a list of sensor IDs denoted by 

{ St1 , • • • , Stq}. The track is in the FOV of the sensor Sti, for i = 1, · · · , q. For a 0 

index in frame /1.:: 

1. It should not be scored as missed detection scored if 

(2.10) 
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2. Suppose 

{ Sk1 , • • • , Skp} n {Sf!, · · · , Stq} = { 81, · · · , Sp} (2.11) 

Then for each Sj E { s11 • • • , sp}, if the time difference between the frame 

end time and the time last seen by that particular sensor is greater than the 

revisit time for that sensor, then one should score a missed detection for s i. 

The list of sensor IDs that see the track is adaptively maintained. If a new 

sensor sees the target, then that new sensor should be added into the list. 

Otherwise, we should remove a sensor s from the list if it has not seen the 

track for Q successive frames, where Q can be decided based on 

(2.12) 

where Pds is the probability of detection for sensor s, and a can be a user 

defined parameter (e.g. a= 0.05). 

2.3.4 Filtering and Estimation 

For each collection of observations, a tracking filter is applied to do the filtering 

and estimation. The tracking filter can be a single model Kalman filter, or an IMM 

filter. Square root filtering algorithm can be used to achieve numerical stability. 

Refiltering Window 

As described above, a distinct string of integers represents a node in the 

TrackTree which corresponds to a trackString. Each trackString is a sequence of 

observations associated together. So a refiltering window whose length is totally 

independent of the double pane sliding window is used. 

In the sliding window, observations are organized according to frames. In the 

refiltering window, the observations are organized according to their time tags. 

When the tracking filter has been initiated, the filter states and the scores corre­

sponding to each observation are also stored. When a new observation arrives to 
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update the track, it first tries to insert the new observation in the correct position 

in the refiltering window (an old one might be moved out). It recovers the filter 

states and the scores of the observation immediately preceding the new one in time 

order and updates the track with the new observation and all the observations that 

have a later time tag. 

new observation 

• 
/9 

• • • • 
before 

• • • 
1 2 3 4 5 6 7 8 time 

after 

• • •• • • • • 
2 3 4 9 5 6 7 8 time 

Figure 2.16: Illustration of the Refiltering Window of size 8 

Notice here that after inserting the new observation into the correct position 

of the refiltering window, one needs to update the track with the new observation 

and the observations thereafter. As indicated in Figure 2.16, one needs to extract 

the filter state at observation 4 and update the track with observations 9, 5, 6, 7, 

and 8. After the update, observation 1 will be moved out. 

This is the optimal solution to the latent data problem. The refiltering win-

dow size can be a user definable parameter, based on a priori knowledge. It has 

the disadvantage of possibly incurring huge computational loads. And it needs 

tremendously more memory space to store the observations and the track states 

associated with the observations at each step. 

Unfortunately, it is still possible that the time tag of the new observation is 

even earlier than that of the first observation in the refiltering window, in which 

case, one can discard the observation (the association being regarded as not feasi­

ble) or go to the negative time update methods explained below. 
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Negative Time Update 

Let's consider a linear model first: 

Xk Fk-1Xk-l + Wk-b 

Zk = HkXk + Vk, 

where Qk = E[wkw[] and Rk = E[vkvf]. 

The following methods are used to handle negative time updates. 

• Retrodict 

(2.13) 

{2.14) 

A simple approach is to predict the state estimate back to the time of the 

measurement (retrodict), form the residual, and use the residual to update 

the state estimate in the same manner that a current observation would 

be used (process noise effects are ignored and the filter covariance matrix 

remains referenced to the current time). The gain and subsequent covariance 

update are also computed as if the observations were not delayed. 

For convenience, we only demonstrate how to incorporate a measurement 

arriving one time iteration late. Assume a measurement arrives late, with 

time tag, tk_1, just after the filter update has been made for a measurement 

with time tag, tk. We define T = tk-1 - tk, such that T < 0. Two properties 

will be important in the following. First note that 

{2.15) 

For a nearly constant velocity model, we have the additional property that 

F-1(T) = F(-T). {2.16) 

The principle of the negative time update can be described as follows: First 

we propagate the current estimates of state and covariance back to time 
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k - 1 to produce the best estimate of these properties at this previous time 

on the basis of the previously estimated states. In a second step the current 

measurement Zk- 1 is included in the state and covariance update. Then, in 

a third step, we propagate the now best estimate at time k 1 forward to 

produce the new estimate at time k, which now includes the measurement 

1. Negative time-update: 

Xk-l!k- = F(T)xklk­

Pk-llk- = F(T)Pklk-FT(T). 
(2.17) 

k- denotes the state at time k which does not contain yet the new 

measurement. 

2. Measurement update: 

(2.18) 

3. Forward Projection: 

xklk+ = F(ITI)xk-1!k 

Pklk+ = F(ITI)Pk-1lkFT (IT I) Qk_1. 
(2.19) 

k+ denotes the state which includes the late measurement. 

• Direct Update Methods 

Delayed observations are expressed as a function of the current state esti­

mates. Unlike the retrodict method explained above, it won't predict the 

state estimate back to the time of the latent measurement. Instead, it will 

make the measurement prediction based on the function between the latent 
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measurements and the current state estimates. Again, process noise effects 

are ignored. Then the state and covariance update (at the current time) can 

be carried out as in the procedures in a standard Kalman filter routine. The 

measurement matrix now takes the form of Hk_ 1F(T), forT:::; 0. 

The direct update method is a two-step method, as follows. 

1. Measurement Prediction: 

zk-1 = H k-1F(T)zklk-

Sk-1 = Hk-1F(T)Pklk-FT(T)Hf_1 + Rk-1 

2. Measurement update: 

Kk-1 = Pklk-FT(T)Hf_1Sk~l 

• MMSE Approach 

(2.20) 

(2.21) 

The MMSE approach accounts for the effects of the process noise that entered 

the system during the time interval [tk_1, tk]· The measurement Zk-1 can be 

of no help in estimating the random target motion that entered the system 

after that time. The measurement equation can be expressed as: 

(2.22) 

Then, the update equation is of the form: 

zklk+ = xklk- K k-1 { H k-1F(T) [~k - wk-1J + vk-1 - H k-1F(T)xklk-} 

(2.23) 

Define the estimation error residual: 

(2.24) 

30 



Then, 

[I- Kk-IHk-1F(T)](xk- xklk-) + Kk-1[Hk-1F(T)wk-1 Vk-1] 

=[I- Kk-1Hk-1F(T)]xklk- + Kk_I[Hk-1F(T)wk-1- vk-1] 
(2.25) 

The resulting covariance matrix equation is 

(2.26) 

The appropriate choice of the Kalman gain matrix K k-1 is found by mini­

mizing the mean square error matrix (covariance matrix). Mathematically, 

Kk_ 1 is found by setting the derivative of the trace to zero: 

which gives: 

Kk-1 =[Pklk-- C::vk!k-Wk_JFT(T)H[_1 

{Hk-1F(T)[Pklk-- C::vklk-Wk_JFT(T)H[_1 

+ Hk-1F(T)[Qk-1- C~klk-wk_JFT(T)H[_ 1 + Rk-1} - 1 

(2.27) 

(2.28) 

where C::vklk-wk- 1 = E[xklk-wf_1]. The fact that state estimation residual 

xklk- is cross-correlated with the plant noise Wk-1 is due to the fact that when 

updating with observation Zk, the plant noise in the time interval [tk_2, tk] 

is taken into consideration already. Thus, the plant noise during the time 

interval [tk-b tk], which is now denoted as wk_1, is considered twice. And 

C::vklk-wk_ 1 has the form: 

(2.29) 

Notice here Kk is the Kalman gain matrix when updating with measurement 

Zk, and H k is the corresponding measurement matrix. 
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1. Measurement Prediction: 

2. Kalman Gain Calculation: 

c~klk-Wk-1 ==[I- KkHk]Qk-1 

Kk-1 ==[Pklk-- C~klk-wk-l]FT(T)H[_1 

{Hk-1F(T)[Pklk-- C~klk-wk_ 1 ]FT(T)H[_l 

(2.30) 

+ Hk-lF(T)[Qk-1- Ciklk-wk_JFT(T)H[_1 + Rk-1} -
1 

(2.31) 

3. Measurement Update 

Pklk+ ==[I- Kk-lHk-IF(T)] Pklk- + Kk-lHk-IF(T)Ciklk-wk-l 
(2.32) 

The MMSE approach is computational more intensive, and it has the dis­

advantage that it needs to store the Kalman gain K k and the measurement 

matrix H k at the previous step. 

• Optimal Solution 

Due to the assumption that all process noises and measurement noises are 

Gaussian, the optimal MAP estimator is actually the MV (minimum vari­

ance) estimator. Let E[·] denote the LMV estimator, then the optimal solu-

tion is 

reklk+ E[x(k)lzk- u zk-1l 

== E[x(k)jzk-] E[x(k)lzk-llk-] 

== xklk- + E[x(k)lzk-IIk-] 
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The predicted measurement based on measurement set zk- = {zt, · · · , Zk-2, zk} 

is denoted by: 

(2.34) 

Thus, the measurement update is 

xklk+ = xklk- + E[x(k)lzk-tlk-] 

= xklk- E[x(k)z~-tlk-] E[zk-1lk-z~-1lk-J Zk-1fk- (2.35) 

Similar to the MMSE approach, the optimal solution is computational more 

intensive, and it has the disadvantage that it needs to store the Kalman gain 

K k and the measurement matrix H k at the previous step. 

1. Measurement Prediction: 

where H k is the measurement matrix when updating observation Zk, 

and z k and S k are the corresponding measurement predicting error and 

innovation matrix. 

Unlike the previous solutions, the measurement prediction from time tk 

to time tk-1 accounts in full for the process noise w k-t· 

2. Kalman Gain Calculation: 

Cwklk-wn-1 =[I- KkHk]Qk-1 

Kk-1 =[Pklk-- Cwklk-wn_JFT(T)Hf_1 

{Hk-tF(T)[Pklk-- Cwklk-Wk-1- ciklk-Wk_JFT(T)Hf-1 

+ Hk-tF(T)[Qk-1- Qk-1HfS!;1HkQk-l]FT(T)Hf_l Rk-t}-1 

(2.37) 
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3. Measurement Update 

Pklk+ =[I- Kk-IHk-IF(T)] Pklk- Kk-IHk-IF(T)Crklk-wk-1 
(2.38) 
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Chapter 3 

INTRODUCTION TO NETWORK MFA 

3.1 Problem Description 

The multi-target/multi-sensor tracking systems can be divided into two cat­

egories, as discussed in Chapter 2. The Centralized Tracking Architecture ( CTA) 

discussed in detail in Chapter 2 has optimal performance, and so the CTA provides 

a baseline for performance comparisons with Network (or distributed) Tracking Ar­

chitectures (NTAs). 

In the NTAs, each platform has its own composite tracker. Each composite 

tracker applies the MFA algorithm. The MFA algorithm itself belongs to a category 

of data association algorithms called deferred logic. All NTAs use deferred logic 

on all platforms. 

3.1.1 Definition of Terms 

The following terms that are used frequently in the tracking literature and 

these terms appear in later chapters: 

1. Local platform is the platform on which one resides (also called as own-ship 

or own-platform). 

2. Local sensor is a sensor on a local platform. 

3. Local data are measurements from a local sensor. 
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4. Remote platform is a platform located a geographic distance from the local 

platform. 

5. Remote sensor is a sensor on a remote platform. 

6. Remote data are measurement from a remote sensor. 

7. Frame is a set of measurements in which each target can be seen at most 

once. 

8. Local frame is a frame of data from a local sensor. 

9. Remote frame is a frame of data from a remote sensor. 

10. Sensor tracker is a tracker that processes data from a designated sensor. 

11. Sensor tracks are a set of tracks that are formed by the sensor tracker using 

data from a single sensor. 

12. Local tracker is a tracker that processes local data only. 

13. Local tracks are a set of tracks that are formed from local data. 

14. Composite tracker is a tracker located on a particular platform (or else 

a central processing unit) that processes measurements from multiple plat­

forms. 

15. Composite {Global, Network) tracks are a set of tracks that combines 

information from multiple platforms. 

16. Measurement Report {MR) is a message indicating a remote measure­

ment. 
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17. Associated Measurement Report ( AMR) is a message indicating a mea­

surement and a composite track ID to which it has been assigned by the own 

ship platform. 

18. Associated Measurement Map (AMM) is a message indicating which 

measurements in a frame of data are associated with which composite tracks. 

3.1.2 Important Issues 

Multiple Frame vs. Single Frame Processing 

In Network-Distributed tracking architectures, multiple frame processing is 

still regarded as superior to single frame processing due to the fact that it can 

make data association decisions based on future data. So all the architectures 

we propose use Multiple Frame Assignment (MFA) as opposed to single frame 

processing. The basic idea of a Network MFA tracker is the same as a centralized 

MFA tracker which is explained in Chapter 2. 

Consistent Air Picture 

A consistent Air picture is one of the most important objectives in the design 

of a network-distributed tracking system. What consistent air picture means is 

that each platform should have exact the same set of tracks, (same association, 

same track states and covariance matrices). 

Latent Data Problem 

Because of the existence of multiple sensors on multiple platforms, various 

information such as measurements, track states and covariance, MRs, AMRs or 

AMMs are sent via the communication network. Random delays in communication 

are inevitable in real systems. So, a composite tracker must deal with the latent 

data problems and still achieve a consistent air picture. 
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Communication Load 

Real communication networks are always band limited. There is a limit to the 

amount of information being passed between platforms at any time. Any design of 

a network architecture should reduce the communication load as much as possible. 

For example, passing track states and covariance matrices need 3-5 times more 

bandwidth than passing an MR. Tracklets [53, 31, 30] are also sometimes proposed 

to reduce communication loading. 

Sensor Registration Bias 

Sensor registration bias in a multiple sensor system needs be corrected so 

that multiple sensor measurements and/ or tracks can be referenced to a common 

tracking coordinate system (frame). If uncorrected, registration errors can lead to 

large tracking errors and potentially to the formation of multiple tracks (ghosts) of 

the same target. There are three sources of registration biases: misalignments of 

the sensor measurement axes, electronic calibration bias errors, and sensor location 

errors. Techniques required to estimate and compensate these biases are highly 

dependent on conditions in the application. 

Performance Evaluation and Metrics 

Following are some of the important performance evaluation and metrics: 

• Completeness History 

- Composite Completeness: proportion of real objects that should be 

tracked which are held as a declared composite track at each time in 

the scenario. 

- Relative Completeness: ratio of number of real objects that should be 

tracked which are held as declared composite tracks at each time in the 
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scenario to the maximum number of real objects that should be tracked 

which are held in any participating single sensor's track file. 

• Composite track initiation time: time at which a particular object that 

should be tracked has a valid declared composite track. 

• Track Continuity 

- Cumulative swaps of composite tracks: for real objects that should 

be tracked, the cumulative number of swaps (not counting breaks) of 

composite tracks for particular objects and averaged across all objects 

by time t into the scenario. 

- Cumulative broken composite tracks: for real objects that should be 

tracked, the cumulative number of breaks of composite tracks for partic­

ular objects and averaged across all objects by timet into the scenario. 

• Ambiguity 

- Composite track redundant ratio: in a gated non-unique assignment, 

the number of declared composite tracks that are assignable to real 

objects that should be tracked, divided by the number of valid declared 

composite tracks. 

- Composite track spurious ratio: in a gated non-unique assignment, the 

number of declared composite tracks that are unassignable to real ob­

jects that should be tracked, divided by the number of valid declared 

composite tracks. 

• Accuracy 
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- Composite track accuracy: as assessed over all Monte Carlo runs for 

a particular object that should be tracked, the root mean square error 

(RMSE) history in position, the RMSE history in velocity, the root sum 

squared average error (RSSAE) history in position, and the RSSAE his­

tory in velocity of the composite track assigned to that object compared 

to the truth states for that object. 

- Composite track covariance consistency: as assessed over all Monte 

Carlo runs for a particular object that should be tracked, the mean 

normalized Chi-square statistic of the composite track assigned to that 

object. 

• Cross-platform commonality history 

- Ratio of non-common composite track numbers: ratio of active com­

posite track number that are different (additions or deletions) between 

pairs of composite tracking processors, divided by number of composite 

track numbers in the union of the two composite track files. 

- Composite track state estimate differences: the Euclidean differences 

between position and velocity state estimates of tracks held by pairs 

of composite tracking processors, for composite tracks with the same 

active composite track number. 

• Communication data loading: the total amount of data that all the platforms 

send to the communication network. 

3.2 Introduction to Some Tracking Fusion Architectures 
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3.2.1 Distributed Tracking with Central-Level Track Fusion 

In distributed tracking with track fusion [5], platforms operate independently. 

Local data is processed by local trackers. The output is passed to some type of 

global processing entity. In this case, the data being passed to the global processor 

consists of a track state and the associated covariance matrix for each measurement 

update. The track fusion center performs a track-to-track association process to 

determine which state vectors from each of the platforms correspond to the same 

physical target. Having determined the likely association, the track fusion center 

collects the state vector and covariance matrices corresponding to common tracks 

from each platform and predicts each one to a common time. These predicted 

state vectors and predicted covariance matrices are then combined to produce a 

composite track state and covariance matrix for each track. 

This approach has several disadvantages. The most significant disadvantage is 

the huge communication loading. Each local tracker on the platform passes track 

states and covariance matrices to the fusion center. In order to achieve a consistent 

air picture on all the platforms, the fusion center must broadcast track states and 

covariance matrices back to each platform. Another disadvantage is that the fusion 

center combines track states and covariance matrices that have a common process 

noise. The common process noise due to the common target dynamics observed 

by all the sensors makes combining all the states and state covariance matrices a 

sub-optimal approach, unless the cross-correlation between sensor observations is 

removed. 

3.2.2 Distributed Track Fusion 

In this approach, the state vector and associated covariance matrix for each 

tracker are passed from the tracker on each platform to a track fusion processor on 
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every other platform. The track fusion processor updates composite track states 

in an iterative fashion, as each update arrives. 

This approach also suffers from the disadvantage of huge communication data 

loading and the sub-optimal fusion process to remove the cross correlation of the 

subsequent track states. 

3.3 Proposed Network MFA Architectures 

3.3.1 Communication Network Architecture 

The communication network available to all trackers in all the proposed NT As 

is fully connected. There is a direct path between any two platforms j and k. There 

is a random delay in the network, but there is no lost data. Figure 3.1 is an example 

of such a network with four platforms. 

Platfonn 1 Platfonn 2 

Platfonn 3 Platfonn4 

Figure 3.1: Communication Network 

To simulate the communication network, and implement the different archi­

tectures we propose, we use the network architecture shown in Figure 3.2. There 

is a Communication/Control Unit (CCU) that siinulates communications between 

the simulator and the network trackers. The CCU can read data from stdin, other 

file streams, or sockets. The data arrives in the form of messages, which contain 

a message header and a message body. The CCU extracts the message header, 
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which contains information identifying message types and platform IDs. Based on 

the message header, the CCU sends the message to the composite tracker on the 

corresponding platform (through sockets). 

The CCU takes feedback from all the composite trackers. Feedback from 

the composite trackers can be used later to pass information that configures the 

network. For instance, a new tracker entering the network, or an existing tracker 

leaving the network requires a configuration change. Feedback can also be used 

for error control purposes. For example, if a communication link is down, then the 

CCU should stop sending observations to that particular tracker. Or, if the end of 

the input data stream is reached, then all the composite trackers in the network 

need to be shut down properly. 

Each composite tracker handles its own communications with all the other 

platforms in the network. For different architectures we propose, the information 

sent is be very different, and differences will be discussed in detail in successive 

chapters. 

Socket 
file stream 

Stdin 

I 
I 
I 

I 
I 
I 

Feed back from the 

comp1ite traders 
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Figure 3.2: Overview of the Network MFA Architecture 

3.3.2 Network MFA Centralized 

In the network MFA centralized, each platform has a composite tracker which 

is similar to the one discussed in the centralized tracking architecture. The com-
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posite tracker broadcasts all its local raw measurements to all the other platforms. 

Thus, every tracker has access to all the data. A centralized tracking algorithm 

(explained in Chapter 2) is used. 

3.3.3 Network MFA on Local Data and Network Tracks 

In this approach (Chapter 5), each platform has a composite tracker whose 

sliding window spans local frames only. Track initiation is based on local frames in 

the track initiation window only. Track extension decisions are based on network 

tracks and local frames in the track extension window. After the data association 

decisions are made, AMRs and newly initiated local tracks are broadcast to the 

network. The composite tracker uses the remote AMRs to update its network 

tracks and the remote, newly initiated tracks to update its track database. The 

messages being broadcast to the network are AMRs and initiating tracks. 

3.3.4 Network MFA on All Data and Network Tracks 

In this approach (Chapter 7), each platform has a composite tracker whose 

sliding window spans both local and remote frames. The composite tracker is 

allowed to make firm data association decisions on its local frames based on all 

the frames in the sliding window. It needs to wait for remote AMMs to fix the 

association between the network tracks and remote frames. The messages passed 

through the communication network include measurement reports, AMMs, and 

initiating tracks. 
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Chapter 4 

INTRODUCTION TO NETWORK MFA 
CENTRALIZED 

4.1 Overview of the Architecture 

Platformj Platform k 

measurement reports measurement reports 

Figure 4.1: Network MFA Centralized 

The network MFA centralized architecture places a centralized tracker on each 

platform. Raw observations generated by local sensors on the platform are fed into 

the local composite tracker. They are broadcast by the local composite tracker to 

all the other composite trackers in the network. As in real scenarios, all the track­

ers get local observations from the local sensors directly and remote observations 
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from remote platforms through the communication network. The communication 

network used is a fully connected network as is described in Chapter 3. Local ob­

servations are fed to the composite tracker through the CCU that interfaces with 

the simulator. Each composite tracker is responsible for broadcasting its local 

observations, as measurement reports, to all the other trackers in the network. 

In this architecture, the single point failure problem is solved. If one or more 

composite trackers fail to perform correctly, or certain communication links are 

cut down, the composite trackers on other platforms are still capable of doing 

the tracking. However, the composite tracker may not have access to all remote 

measurement reports. 

The communication network is used to broadcast measurement reports only. 

No composite track states are broadcast in this architecture. Thus the commu­

nication loading is relatively low. However, due to communication delays in the 

network, the order of observations arriving at different platforms varies. Each com .. 

posite tracker is making its own tracking decisions based on the data it receives, 

regardless of the decisions of other platforms. Therefore, a consistent air picture 

may not be achieved across the network. 

4.2 Implementation of A Network Composite Tracker 

A network composite tracker (Figure 4.2) should be able to process observa­

tions (local and remote) as they arrive and perform the tracking tasks simulta­

neously. Since the arrival times of the messages (observations) are unpredictable, 

and they ought to be processed immediately, traditional sequential programming 

does not suffice. Multi-thread programming is used in implementing the network 

composite tracker. The interacting tasks are implemented as multiple threads 

within a single process (the tracker). They share a common environment such 

as the same static and dynamic storage. However, in order to protect multiple 
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threads from accessing the shared resource (the same piece of data) at the same 

time, a thread synchronization mechanism ( mutex [79]) is used to provide mutually 

exclusive access to a shared resource. 
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Figure 4.2: Network Composite Tracker 

There are two threads on each composite tracker in the network. One of the 

threads handles input messages. It is called the Communication Thread. The 

other one is the major process thread and is called the Tracking Thread. Each 

tracker has a global message queue, which is shared by both threads. The message 

queue is protected by a mutex so that it can not be accessed by two threads at the 

same time. 

4.2.1 Communication Thread 

The Communication Thread handles all the incoming messages and pushes 

them onto the message queue as soon as they arrive. 

Generally speaking, there are three types of incoming messages. The first type 

are local sensor messages, such as local observations and local sensor tracks gen­

erated by local sensors. The local sensor messages are now sent to the composite 

tracker by the communication/control unit that interfaces with the simulator. The 

second type are the metrics scoring requests, which also come from the CCU. The 
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third type are remote messages, which come from remote platforms. In the cen­

tralized network MFA architecture, the remote messages are remote measurement 

reports. 

All types of messages are received through the listening socket [73] assigned 

to the composite tracker. The listening socket is opened (passive open) in the ini­

tialization step of the program and remains open during the entire simulation. 

The Communication Thread continually waits for remote connections through 

the listening socket. Whenever a connection occurs (either from the communi­

cation/control unit or from some remote platform), an active open of the socket 

is issued and a temporary connection is established. The thread then reads in the 

message and closes the connection. However, the socket can only buffer a finite 

number of connection requests, so if too many connection requests to the fusion 

node happen at the same time, some requests may be lost. (This may cause lost 

data in the communication network, but based on the basic assumptions, we will 

not consider this problem now.) 

After the incoming messages are received from the listening socket, the com­

munication thread pushes them onto the global message queue. 

4.2.2 Tracking Thread 

As discussed in the previous section, the incoming messages are pushed onto 

the global message queue by the communication thread, waiting to be processed 

by the Tracking Thread. The Tracking Thread takes messages out of the message 

queue and translates them into events. Specific operations are defined for all the 

possible events. The event queue stored inside the tracking thread drives the 

composite tracker. Therefore, in some sense, the tracking thread is equivalent to 

the event-driven tracker that applies the MFA algorithm. 

The major difference is that there are broadcasting events where the tracker 

needs to broadcast messages to all the other network trackers through sockets. 
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In the centralized architecture, the messages broadcast are only local observation 

events. 

4.3 Ideal Case 

Consider the ideal case, where there is no delay in the communication network, 

and no processing delay in the composite tracker. As soon as a local observation 

is fed into the composite tracker, it generates a measurement report event which 

is then broadcast to the network immediately. The time difference between obser­

vations arriving on local and remote platforms is negligible. Thus, all composite 

trackers should receive the same observations in the same order. Conceptually, a 

consistent air picture should be achieved. 

In order to simulate the ideal case, the CCU needs to be modified accordingly. 

Instead of sending the observations to the corresponding platform only, the CCU 

broadcasts observations to all platforms. Thus, there is no need for each tracker to 

broadcast its local observations to other platforms. In this way, all the composite 

trackers get the same data in exactly the same order. 

4.4 Practical Case 

A more realistic centralized type architecture takes into account communica­

tion delays and processing delays. There are delays inherent in socket communica­

tions. We use these delays to model communication delays between the platforms. 

As shown in Figure 4.2, messages are pushed onto the global message queue by the 

Communication Thread. The Tracking Thread keeps taking messages out from the 

message queue, interprets them as events and pushes them onto the event queue. 

According to the network architecture we proposed in Chapter 3, each composite 

tracker gets its local observations from the CCU which interfaces with the sim­

ulator. The Tracking Thread interprets them as observation events. While an 

observation event is being processed, it is broadcast to all other platforms. 
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The broadcasting step is done sequentially. To broadcast an observation event, 

it is transformed into a character string and sent to the listening socket of the 

tracker. This is done sequentially for each remote platform. In the future, the 

broadcasting step should be done in parallel. A new thread can be started to take 

over the task of sending the observation to one tracker. 

On each composite tracker, the local observations arrive earlier than the re­

mote measurement reports. Each tracker builds its own frames of data based on 

the observations received and processes them, regardless of the other composite 

trackers in the network. a consistent air picture may not be achieved. 

In order to achieve a consistent air picture, different architectures and different 

rules are introduced to moderate the problem. In Chapter 5, the network archi­

tecture on local data and network tracks is explained. The network architecture 

on all data and network tracks is discussed in Chapter 7. 
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Chapter 5 

PROPOSED NETWORK TRACKING 
ARCHITECTURE I: MFA ON LOCAL DATA 

AND NETWORK TRACKS 

5.1 Overview of Architecture 

Platformj Platform k 

Figure 5.1: Network MFA on Local Data and Network Tracks 

The network MFA architecture on local data and network tracks is explained 

in Figure 5.1. The composite tracker on each platform only has access to its 

local data. On each platform, there are multiple sensors, some of which may have 

their own sensor trackers. Raw measurements and sensor tracks are sent to the 
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composite tracker on the local platform to do the tracking. The double pane 

sliding window is made up of local frames only. The data association decisions 

are made based on scores of network tracks extending to the local frames in the 

window. Data association results are broadcast to all platforms in the network in 

the form of Associated Measurement Reports(AMRs) and local new tracks, which 

are used to update the track database on the remote platforms. The goal is that 

all composite trackers have the same set of network tracks. 

5.1.1 Basic Assumptions 

The architecture is based on the following assumptions: 

• The communication network is fully connected. There are delays .. in the 

network, but there will be no lost data. (Lost data is discussed in Chapter 

9.) 

• Each composite tracker will broadcast to all the other platforms its firm 

(irrevocable) decisions on its local frames. 

• Each composite tracker will update its network tracks according to the remote 

data association decisions. 

5.1.2 What's Being Sent Out as Fixed DA Decisions 

Data association decisions are assembled together as AMRFrames, which 

include: 

• AMRs (Associated Measurement Reports): Each AMR has four parts, a mea­

surement report, an associated track ID (network track ID), an AMRFrame 

ID that indicates which AMRFrame it is in, and a platform ID. 

• Newly initiating tracks: Each new track should contain a Kalman state vector 

and covariance matrix with a time tag, a corresponding network track ID, 
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an AMRFrame ID, and a platform ID. However, it now contains the local 

observation history associated with it, which can be used by the remote side 

to reconstruct the track. 

5.1.3 What's Being Done After Receiving Remote DA Decisions 

Remote data association decisions are received as AMRs and new tracks, the 

remote composite tracker puts the pieces into the correct AMRFrames based on 

AMRFrame IDs and platform IDs. When a remote AMRFrame is ready to be 

processed, the composite tracker processes remote new tracks first, and then the 

A MRs. 

Track-to-track correlation is performed between the remote new tracks and the 

existing tracks. If a remote new track correlates with one of the existing tracks, 

track fusion is performed to fuse the information of two tracks, and the TrackTree 

is updated. If the remote new track is actually a new one, then it is inserted as 

a new node in the TrackTree, and extended to the local frames in the extension 

window. 

For AMRs, it finds the corresponding network track and updates it using the 

remote measurement. Then the network track is re-extended to all frames in the 

extension Window. The sub-tree structure might change due to the contribution 

of each incoming AMR. 

5.2 Algorithm Overview 

5.2.1 Ideal Case 

The algorithm of the network MFA on local data and network tracks in the 

ideal case can be illustrated in Figure 5.2. There are three platforms i, j and k 

shown in the graph. A track extension window of size 2 is chosen for all three 

platforms. 
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Figure 5.2: Ideal Case for Network MFA on Local Data and Network Tracks 
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The window on each platform contains only local frames, and there is only 

one local frame in each of the track extension window. We start with the same set 

of network tracks on platform i, j and k, which are represented by dark black dots 

in front of the track extension windows. Suppose another local frame on platform 

i is ready to be processed, then the frame is inserted into the extension window, 

and the TrackTree is extended to the frame. After setting up the data association 

problem, platform i makes irrevocable data association decisions on the first frame 

in its extension window based on network tracks and the two local frames. The 

data association decisions are broadcast as an AMRFrame to platform j and k. 

The composite tracker on platform i prunes its TrackTree and moves the sliding 

window forward. The composite trackers on both platform j and k update their 

network tracks based on the AMRFrame received and rebuild the TrackTrees in 

their extension window. 

After all composite trackers finish processing the local frame from platform 

i, the network tracks are still the same in the sense that they all have the same 

observation history associated with each track. Then, another frame on platform 

j is ready to be processed. The composite tracker on platform j inserts it into its 

extension window, updates the TrackTree and makes its data association decisions 

and broadcasts them to platform i and k. The moving window on platform j is 

moved forward after that. Platform i and k update their network tracks and the 

TrackTrees according to the AMRFrame received. 

Similarly, when a local frame from platform k is ready, the composite tracker 

on platform k makes its firm data association decisions and broadcasts them to 

platform i and j. 

In the ideal case, the composite trackers across the network are well synchro­

nized. By well synchronized, it means the following two conditions are satisfied. 

(1) The frames get ready to be processed alternatively on different platforms in 
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time order. For the example in Figure 5.2, let tj(P) denote the time at which pth 

frame on platform j is ready, then 

(2) The time interval between which two successive frames are ready is big enough 

for the local composite tracker to make irrevocable data association decisions 

and broadcast them to the remote platforms, for the AMRFrame be transmit­

ted through the network, and for the remote composite tracker to process the 

corresponding AMRFrame. 

It can be concluded that: 

• Ideally, the network tracks are exactly the same across the platforms in the 

sense that they have the same observation history. 

• The data association decisions on each platform are based on local frames in 

the extension window and network tracks which includes local and remote 

information. 

5.2.2 More Realistic Case: Delays 

In real life situations, there is no centralized control that synchronizes the 

process of all the composite trackers, and delays in the transmission of data are 

random. The order of the incoming AMRFrames is unpredictable. Thus, the 

composite tracker is designed to be event driven and is capable of handling out-of­

order AMRFrames. 

The composite tracker should try to process the AMRFrames according to the 

following rules: 

• In the initialization phase, if the sliding window has less than ( M - N) 

frames, then the remote AMRFrame needs to be buffered. 
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• If the parameter buffer AMRFrames is set to be true by the user, then the 

composite tracker processes the local frames in the extension window and 

remote AMRFrames in a timely order. If all observations in the first frame 

in the extension window have time tags earlier than the AMRs in the remote 

AMRFrame, then the composite tracker buffers the remote AMRFrame and 

processes the local frame first. However, if the A MRs have time tags earlier 

than the observations in the first frame in the extension window, then the 

composite tracker updates its network tracks with the remote AMRFrame 

first. 

• If the parameter buffer AMRFrames is set to be false by the user, the com­

posite tracker processes the remote AMRFrames as soon as they are ready. 

If the AMRFrames the composite tracker processes are out of order, then for 

each track, the observations used to update the network tracks may be out-of-order, 

which needs a lot of refiltering and rescoring. In the worst case, the observation 

may even fall out of the refiltering window to cause a negative time update. Thus, 

though the observation histories for the same network track are the same, the track 

states might be different due to negative time updates. 

Sometimes, the composite tracker might receive an AMR for a track which 

does not exist in the local TrackTree yet. This can be caused by out of order 

AMRFrames from the same platform, or it can be caused by abnormalities in 

the communication network. Suppose there are three platforms in the network, 

denoted by A, B and C, and that the AMRFrames from the same platform are in 

the correct time order. However, the communication links between A-Band A-C 

are very efficient, while the communication link between B-C is heavily loaded. 

Thus, it takes significantly longer to communicate between Band C. Suppose the 

composite tracker on platform B broadcasts an AMRFrame (denoted by AM Rs) 
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that contains a new track T B, the tracker on platform A processes the AM Rs after 

it arrives, and generates its own AMRFrame (AMRA), which contains an AMR for 

track Ts. Suppose for the tracker on platform C, the AMRFrame AMRA arrives 

sooner than AM Rs, then the tracker needs to handle the AMR for the non-existing 

track Ts. 

There are two solutions to the above problem. One is to discard the AMR if 

the corresponding network track does not exist. This is easy to implement, but 

the consistent air picture may not be achieved any more. The other solution is to 

buffer the AMRs for non-existing tracks, and process them when the corresponding 

tracks arrive. 

5.3 Even-Driven Overview 

5.3.1 Modified Event Manager 

The composite tracker is an event-driven software package. However, due to 

the fact that it needs to buffer AMRFrames (which are interpreted as AMRFrame 

events), the event manager needs to be modified. 

There are now two event queues in the event manager, which are called as the 

primary event queue and the secondary event queue respectively. All events are 

posted onto the primary event queue waiting to be processed. If the event needs to 

be buffered, then it is moved from the primary queue to the secondary event queue. 

When the composite tracker processes all the primary events, it keeps processing 

the primary events until the queue is empty. However, when processing all the 

secondary events, the composite tracker goes through the queue again and again 

to process all the events that can be processed. It stops when the queue is empty 

or when no more events can be processed. 

5.3.2 Introduction to Events 
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Adaptive Events 

1. Observation Event 

An observation event contains a local observation, it is processed by the 

FrameBuilder to be put into proper frames. The frameBuilder builds sensor­

Frames according to sensor types and links the non-overlapping sensor Frames 

into frames as discussed in the centralized architecture. 

,.-----,Observation Event Frame Event ...-------....., 
Event Queue I ·I FrameBuilder j .. \ Event Queue 

Figure 5.3: Observation Event 

2. EOF Event 

At the end of each Monte Carlo run, an EOF event is generated. When the 

frameBuilder encounters an EOF event, it goes through its list of unfinished 

frames, and post them as frame events. 

Frame Event 

Figure 5.4: EOF Event 

Data Association Decisions Events 

1. Broadcasting Events 

The composite tracker on each platform builds the sliding window using only 

local frames. As discussed in the centralized architecture, whenever a frame 

event comes, the tracker extends its TrackTree to the frame and sets up 

the data association problem. The data association decisions on the first 

frame in the extension window are irrevocable and are broadcast to all other 

platforms. There are three types of data association decisions events that 

need to be broadcast. 
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AMR Event, New Track Event 
Event Queue 1-----------....; 

EndAMRFrame Event 
Broadcast to all other trackers 

Figure 5.5: Broadcasting Events 

• AMR Event 

An AMR event consists of four parts: an AMRFrame ID, a platform 

ID, a network track ID and the corresponding measurement report. 

• New Track Event 

A new track event has an AMRFrame ID, a platform ID, a network 

track ID and an observation list. The length of the observation list is 

no less than initLength which is a user definable parameter that specifies 

the minimum number of observations required to initiate a new track. 

Thus, all estimation, filtering and scoring information for the new track 

can be reconstructed based on the observation list. 

• End of AMR Frame Event 

An end of AMR Frame event consists of an AMRFrame ID, a platform 

ID and the number of data association decisions included in the AM­

RFrame which is the sum of AMR events and new track events in the 

AMRFrame. The End of AMR Frame event is used to help decide if 

AMRFrames are ready or not on the remote side. 

2. Remote Events 

Remote data association decisions events are events sent to the composite 

tracker from remote platforms. They are irrevocable data association deci­

sions made by the remote composite trackers. Based on the AMRFrame ID 

and the platform ID, the AMRFrameBuilder (an event listener that listens 

to remote DA decision events) puts them into the correct AMRFrames. 
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.-----------, AMRFrame Event 
Incoming AMR Event 

Incoming New Track Event 
Event Queue 1-----------..1. AMRFrame Builder 

Incoming EndAMRFrame Event 

Figure 5.6: Remote Events 

• Incoming AMR Event 

Event Queue 

As discussed in the previous section, an incoming AMR event includes 

an AMRFrame ID, a platform ID, a network track ID and a correspond-

ing measurement report. 

• Incoming New Track Event 

The incoming new track event includes an AMRFrame ID, a platform 

ID, a network track ID and an observation list which consists of ob­

servations from the local platform only. The observation list is used to 

rebuild the track. 

• Incoming End AMR Frame Event 

The incoming end AMR Frame Event consists of an AMRFrame ID, 

a platform ID and the number of DA decisions in that AMRFrame. 

The incoming end AMR frame event can be regarded as notifying the 

AMRFrameBuilder the number of data association decisions in the AM-

RFrame, so the AMRFrameBuilder can check if the AMRFrame is full 

and ready to be processed. 

3. Output Events 

Output events are events processed by outputFormatters, to be written in the 

form that can be recognized by some visualization tool. There are false alarm 

events, track initiation events, track update events and track termination 

events. 
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4. Track Metrics Events 

Track metrics events are processed by the Metrics outputFormatter. Track 

states are predicted to the required time and transformed to the required 

coordinate systems. 

Metrics Scoring Event 

Metrics scoring events are used to evaluate the performance of the composite 

trackers. Similar to the centralized architecture, the composite tracker forks a child 

process to handle the metrics scoring requests. The user can set the parameter 

predictFrom to be (1) "hard", in which case the track states are reported based 

on the most recent firm decisions; (2) "soft", in which case the track states are 

reported based on the most recent soft decisions; and (3) "softPlus", in which case 

the track states reported contain all the available information (local and remote). 

All the available information for the composite tracker includes the network 

tracks, local frames that have already been added into the window, the unfinished 

local frames that are in the frameBuilder, and the unfinished AMRFrames that are 

in the AMRFrameBuilder. When the parameter predictFromis set to be "softPlus", 

the metrics event collects all the unfinished frames in the frameBuilder and all the 

unfinished AMRFrames in the AMRFrameBuilder. The sliding window processes 

the metrics event by (1) updating its network tracks and the TrackTree with the 

unfinished AMRFrames, (2) appending all the unfinished local frames to the right 

end of the window, (3) extending the TrackTree to those frames, (4) setting up 

and solving a ( M + p) dimensional assignment problem, where p is the number of 

unfinished frames, and (5) firing track metrics events on the solution tracks. 

Kernel Events 

Kernel events are events that are processed by the sliding window. 
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Extend TrackTree 
to the new frame 

Set up and Solve 
Move the Window the Data Association Problem 

Process the secondary event queue fire broadcasting events 
(AMREvent, NewTrackEvent, End AMRFrameEvent) 

Figure 5.7: Frame Event 

• Frame Event 

The way the frame event is processed is exactly the same as that of the 

centralized architecture. The difference is that when parsing the data as­

sociation solutions, the window generates broadcasting events (AMRs, new 

tracks, and end AMRFrame events) based on the irrevocable decisions. After 

moving the window, it needs to process secondary event queue (which are 

buffered AMRFrame events) and process all the AMRFrames that can be 

processed. 

• AMRFrame Event 

As discussed above, an AMRFrame is made up of remote data association 

decisions ( AMRs and new tracks). The window uses the AMR frame to 

update its network tracks to include information from remote platforms. 

However, as is discussed in the previous section, if the AMRFrame needs to 

be buffered instead of being processed immediately, the AMRFrame event is 

moved to the secondary event queue. 

• Close Event 

A close event is generated at the end of each Monte Carlo run. The size of 

the sliding window shrinks to zero by shifting the leftmost frame out. 
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AMRFrame Event Yes 

onto the secondary event queue 

the extension window 

Figure 5.8: AMRFrame Event 

5.4 Major Issues 

5.4.1 Broadcasting AMRFrames 

An AMRFrame is a group of irrevocable data association decisions on a local 

frame of observations. It includes new tracks and AMRs. When a local frame is 

ready and is inserted into the window, the composite tracker sets up and solves 

the data association problem (based on network tracks and local frames in the 

extension window). Then it parses the data association solutions and prunes the 

TrackTree. The decisions on the first frame in the extension window are irrevoca­

ble, and are broadcast to all other platforms as new tracks and AMRs, which are 

discussed in detail in the following subsections. 

New Tracks 

For a M / N window (track initiation window size of M and extension win­

dow size of N), the data association solutions can be divided into the following 

categories: 

• False alarm arcs of the form (0, · · · , 0, iki, 0, · · · , 0), where iki =/: 0, and j = 

0,· · · ,M -1. 
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• Updating arcs of the form (0, · · · , 0, -Tk, ikM-N' · • • , iM_l), where there should 

be at least one non-zero iki' for j = (M- N), · · · , (M- 1). 

• Terminating arcs of the form (0, · · · , 0, -Tkp 0, · · · , 0). 

• Initiating arcs of the form ( ik0 , • • • , ikM-N, ikM-N+l, · · · , ikM-l ), where there 

are at least two non-zero indices. 

For initiating arcs of the form (ik0 , • • • , ikM-N' ikM-N+P • • • , ikM_J, the com-

posite tracker assigns a local track ID and promotes it to the local track database, 

provided that the track string TSik
0

, ... ,ikM-N satisfies the following requirements. 

1. A tracking filter has been started and it produces a negative score. 

2. It has at least initLength number of observations associated with it, where 

initLength is a user definable parameter that specifies the minimum number 

of observations required to initiate a new track. 

3. The track state does not correlate with any of the existing remote tracks, 

who have no corresponding local tracks. 

When a local track initiates, the associations in track string T Sik ... ,;k 
0' ,~ M-N 

are fixed and the new track event is generated to broadcast the new track to the 

network. 

A MRs 

Associated measurement reports are generated from the solution arcs of of the 

form (0, · · · , 0, -Tk, ikM-N' • • • , iM_t), if ikM-N =j:. 0. A broadcasting AMR event 

is generated, which consists of an AMR Frame ID (frame ID of fkM-N ), a platform 

ID, a network track ID associated with track Tkz, and the observation z1ikM-N . 
kM-N 
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End AMRFrame 

The End AMRFrame message consists of an AMRFrame ID, a platform ID 

and the total number of data association decisions in that AMRFrame, which is 

just the summation of the number of new tracks reported and the number of A MRs 

broadcast. 

5.4.2 Building AMR Frames 

AMRFrames are built based on remote input events (incoming new track 

event, incoming AMR event and incoming end AMRFrame event). For each com­

posite tracker, there is an event listener called AMRFrameBuilder which listens to 

remote input events and builds AMRFrames. 

As discussed in Section 5.3.2, each remote input event has an AMRFrame ID 

and a platform ID associated with it. The AMRFrameBuilder puts pieces of events 

into the correct AMRFrames based on both the frame ID and the platform ID. 

The incoming end AMRFrame event tells the AMRFrameBuilder how many pieces 

of information the corresponding AMRFrame has. Thus the AMRFrameBuilder 

is able to tell if the AMR Frame is full (ready to be processed) by comparing the 

number of incoming events received and the number expected. 

5.4.3 Processing AMRFrames 

The sliding window listens to AMRFrame events. As explained before, an 

AMRFrame includes a list of new tracks and a list of AMRs. 

Based on the discussions of the sliding window in the centralized architecture, 

the size of the sliding window between events is ( M - 1). It is waiting for an­

other frame of data to be added. Therefore, when an AMRFrame event is being 

processed, the window is not full. 

Due to the fact that AMRFrames are irrevocable data association decisions, 

all corresponding operations are on the ( M - N) -th branch in the TrackTree. 
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Thus, in the composite tracker initialization step, if the window size is too small 

(smaller than ( M - N)), the AMRFrame events have to be buffered (moved onto 

the secondary event queue) instead of being processed immediately. 

New Tracks 

For incoming remote new tracks, track-to-track correlation is carried out be­

tween the remote new tracks and the existing tracks in the local track database 

(see Chapter 6 for detailed discussions). If the remote track does not correlate 

with any of the existing tracks, it is inserted as a new node into the TrackTree. 

Otherwise, it is fused with the existing track. 

The TrackTree for a 5/3 sliding window is used for demonstration of the 

algorithm. The window is of size 4 when the AMRFrame is being processed. The 

dashed line and box represents that the window is waiting for another frame of 

data. 

• Example of inserting a new track 

Figure 5.9 illustrates the steps when an incoming new track is regarded as 

emanating from a new target after the track-to-track correlation. In order to 

insert the track in the correct branch of the TrackTree, an integer sequence 

of size (M- N) is formed ((0, · · · , 0, -Tnew) = (0- 2)}, which serves as an 

address in the TrackTree. Tnew = 2 is the network track ID for the incoming 

new track. 

Then, the remote new track needs to be extended to the frames that are in 

the extension window in a the order of fkM-N+l, • • • , fkM_ 2 • As is shown in 

Figure 5.9, it is first extended to frame fk2 in the window by building the 

child (0- 210). It is later extended to frame fka in the window, building 

child (0- 201) and (0- 211). 
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• Example of fusing two tracks emanating from the same target 

Figure 5.10 illustrates the steps when an incoming new track is regarded as 

emanating from the same target as one of the existing tracks. Suppose the 

remote new track Tnew = 3 correlates with the local track 1local = 2. 

After the fusing step, the track contains additional information. Thus, the 

track needs to be re-extended to the frames that are in the extension window 

(fkM-N' · · · , !kM_2 ) in order. The sub-tree structure maybe changed due to 

the additional information of the incoming track, so the sub-tree is deleted 

first and then rebuilt. As is shown in the Figure 5.10, it is first extended to 

frame fk2 in the window by building the child (0- 210). It is then extended 

to the frame fk3 in the window, building child (0- 201) and (0- 211). 

A MRs 

For remote AMRs, Figure 5.11 is an example of how to process them. For 

an AMR pair of (Tn, z), where Tn is the network track ID, an integer sequence 

(0, · · · , 0, -1}) is formed to search the TrackTree for the track, where 1} is the 

corresponding local track ID. Then track 1l is updated with the remote observation 

z. The entire sub-tree is deleted first and then rebuilt by extending to the frames 

in the extension window. 
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0000 

Remote new track Tnew = 7 ~·-·-·-·-·-·-·-·-·-·-·-·-. 
1\ /\ l' 7° ~~ T-

1100 1001 0-110 0-101 0110 0101 0011 ! 

I I !_._ 
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Step I: Insert new Node (0-200) in the TrackTree 

0000 

-/~ !\ ;\- 0-200 _ r,"-·-=~~-:::--·-·--·-r-1 
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1100 1001 /0-110 0-101 01/10 0101 0011 l l 
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Step II: Update the Node (0-200) with the 3rd frame in the window 
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0
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Step III: Update the Node (0·200) with the 4th frame in the window 

0000 

Figure 5.9: Example: Insert A Remote New Track into the TrackTree 
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1\ ;\-i~r-=:-----T_ 
1100 1001 0-110 0-101 0-210 0-201 0110 0101 0011 

I I I 
0-111 0-211 0111 

Step 1: Delete aU children of Node (0-200), fuse the information of track ( -2) and ( -3) 
0000 

~ ~---. _______ _ 

1\ ;\-- 0-200 _ T\ 7 ~~ r 
1100 1001 i11o 0-101 oj'o 0101 0011 I 

0-111 0111 

Step II: Update the Node (0-200) with the 3rd frame in the window 

0000 

~ ~-·-·-·-·-·------
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0-100 -- 0-200 -- or~ 0010 0001 -;=·-·! 

/\ I "' I ! I 
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Step III: Update the Node (0-200} with the 4th frame in the window 

0000 

~ ~--·-·-·-------
!\ ;\-T\- 0

' ' 7 ~~ r1 
1100 1001 0-110 0-101 0-210 0-201 0110 0101 0011 ! 

I I I I ! 
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Figure 5.10: Example: Fuse A Remote New Track with An Existing Track 
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AMR for track Tl = Tn = 1 
0000 

v~-1\ /\ 7' 7° ___ ::-----T-
1001 0..110 0-101 0110 0101 0011 ! 1100 
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0-111 0111 

Step 1: Delete all children of Node (0-100), update the Node (0-100) with the AMR 
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I 
0111 

Step II: Update the Node (0-100) with the 3rd frame in the window 
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I 
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Step ID: Update the Node (0-100) with the 4th frame in the window 

0000 
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Figure 5.11: Example: Update with An AMR 
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Chapter 6 

NETWORK MFA ON LOCAL DATA AND 
NETWORK TRACKS: TRACK INITIATION 

6.1 Problem Description 

The architecture discussed in Chapter 5 is network MFA on local data and 

network tracks, in which the sliding window is made up of local frames only, and 

the network tracks include information from all the remote platforms as well. Each 

composite tracker broadcasts to all the other platforms its AMRFrames (irrevoca­

ble data association decisions on local frames). 

The goal is that each composite tracker has the same track database. Each 

platform should have the consistent air picture. The tracks on different platforms 

that emanate from the same target may have different local track IDs, but should 

have the same network track ID. And the state estimate difference between the 

platforms should be as small as possible. 

In order to achieve a consistent air picture, each composite tracker is capable of 

initiating new tracks based on local data only. For the remote incoming new tracks, 

the composite tracker performs track-to-track correlation to see if it emanates from 

the same target as one of the existing tracks. If this is the case, then two tracks 

are fused. Otherwise, the new track is inserted into the local track database. 

Similarly, the composite tracker broadcasts its track update as AMRs. When a 

remote AMR arrives, the tracker updates the corresponding network track with 

the remote observation. 
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6.2 Track Numbering Schemes 

6.2.1 Local Track ID Bank 

As discussed above, each composite tracker can initiate new tracks based on 

the local frames in the initiation window. For each newly initiated tracks, a unique 

local track ID is assigned to the track. The local track ID is used by the composite 

tracker to represent the track locally. It is used to form an integer sequence which 

serves as an address in the TrackTree. To locate a network track, the composite 

tracker needs to know its local track ID to search the TrackTree. 

To achieve this goal, composite trackers have disjoint local track ID banks 

that they use to assign to the local tracks. Let T I Di denote the local track ID 

bank for platform i, then 

(6.1) 

For each newly initiated local track, the composite tracker assigns it its next 

available track ID from the local track ID bank. It is then guaranteed that the 

same track ID will not be assigned to two different tracks. 

Suppose there are at most M composite tracks in the network, then an easy 

example for the track ID bank is: 

T!Di = {j x M +i, for j = 1,2,···} 

6.2.2 Network Track ID 

(6.2) 

There might be multiple local track IDs assigned to tracks emanating from 

the same target across the network. However, they should have the same network 

track ID. So that each target has one unique network track ID assigned to it. 

Suppose the collection of local track IDs that represent the same target can 

be denoted as 

{ t)i) E TIDi, fori E /, I C {1, 2, · · · , M}}, 
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where I is some subset of platforms that track the target. Then the network track 

ID can be chosen as 

ntJ =min { t;i) E TIDh fori E I, I c {1, 2, · · ·, M} }. (6.3) 

Whenever a new track is initiated locally, the network track ID is set to be 

the same as the local track ID and is later updated according to rule explained in 

equation (6.3). 

6.2.3 Track ID Map 

When broadcasting data association decisions, the network track ID is used. 

For remote platforms, it ought to know which local track ID the network track is 

corresponding to. A track ID map which maps network track ID to local track ID 

is used to implement the correspondence. 

For platform i, the track ID Map is denoted as M ap~id· At the initialization 

step for the composite tracker, Map~id = 0. In the following cases, a new element 

is inserted into the track ID map if 

1. A local new track t~ E T I Di initiates, 

(6.4) 

2. A remote new track ntj needs to be inserted into the TrackTree. 

Suppose after performing track-to-track correlation, the conclusion is made 

that the remote new track ntj is actually a new one, then it is inserted into 

the TrackTree, and 

(6.5) 
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3. A remote new track ntk needs to be fused with an existing one. 

Suppose after performing track-to-track correlation, the conclusion is made 

that the remote new track ntk actually emanates from the same target as a 

local existing track t, then it needs to fuse the information from track ntk 

into track t, and 

(6.6) 

The local track ID t can be from the local track ID bank ( t E T I Di), if it is 

initiated using local frames on platform i. Or it can belong to some remote 

track ID bank (e. g. t E T I DJ). In that case, the track has been inserted as 

a new track, based on the data association decision of platform j. Thus, one 

can conclude that { t --+ t} E M ap~ia· 

The network track ID for track tis updated if it is greater than ntk. 

When a track t 0 terminates on platform i, the composite tracker goes through 

the track ID map M ap~id' and removes all terms such that { tx --+ t 0 }. 

Based on the network to local track ID map, for all remote AMR events, 

the composite tracker checks the track ID Map to map the network track ID to 

local Track ID, and then tries to locate and update the corresponding track. If 

the remote track ID is not in the current track ID Map, the following reasons are 

possible: 

• The corresponding network track has been declared to be terminated on the 

local platform. 

• Due to communication delays in the network, the remote data association 

decision of the new track has not arrived yet. 

The composite tracker cannot use the AMR at that time. If the AMR is for 

a terminated track, it will never be used again. However, if the AMR corresponds 
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to a remote new track that has not arrived yet, it can still be used after the arrival 

of the new remote track. The composite tracker now discards the AMR if the 

corresponding track does not exist in the TrackTree. 

6.3 Track to Track Correlation 

6.3.1 Mathematical Formulation as 2D Assignment Problem 

Denote the remote incoming new tracks as T["ew, · · · , Tr;;_w and the existing 

tracks as T11 • • • , TM2 • It can be concluded that for each new network track ~new, 

it can emanate from the same target as at most one of the existing tracks Ti, 

and for each existing track, it can represent the same target as at most one of the 

remote ones. Thus, the problem can be formulated as a 2- D assignment problem. 

Let Xij E {0, 1} stand for whether track rrew emanates from the same target as 

the existing track Tj. If they do emanate from the same target, then Xij = 1. 

Otherwise, Xij = 0. 

M1 M2 

min L:: L:: CijXij 

i=O j=O 

M1 

s.t. L:: Xij = 1, j = 1, · · · , M2 
i=O 

M2 

L:: Xij = 1, i = 1, ... 'Ml 
j=O 

Xij E {0, 1} (6.7) 

where Cij is the cost function or distance function that measures the distance 

between track ~new and track 1j. A user definable Dmax is used as a threshold, if 

Cij > Dmax, then the arc ( i, j) is not even added, which means track ~new can not 

go with track 1j because they are too far apart. However, the assignment problem 

requires 

Cij - CiO - Coj < 0, 
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so one can set 

6.3.2 Distance Function 

Dmax 
cio = Coj = -2-. (6.8) 

In order to compute the scores Cij, each track needs to predict its state vec­

tor and covariance matrix to a common time and transform them to a common 

coordinate system to compute the distance. 

• Euclidean Distance 

The most commonly used distance function is the Euclidean distance. Let xi 

and Xj be the 3 - D position vector of track ~new and Ti respectively. Then 

the distance dij is 

{6.9) 

• Statistical Distance 

Let Xi and Xi be state vector and Pi and Pi be the corresponding covariance 

matrix of track ~new and Tj. Then, the state difference vector 

Generally, Xi and Xi contain position and velocity information. The statis­

tical distance is defined to be 

2 -r T-1-
dii = Xii[Pi +Pi- Pii- Pii] Xij, {6.10) 

where Pij is the cross-covariance matrix between track ~new and Tj's esti­

mation errors. [8] 

6.3.3 Parse Solutions to the 2D Assignment Problem 
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Solution Arcs of the Form Xio = 1 

The incoming new track 7inew does not correlate with any of the existing ones, 

it needs to be added to the local track database. 

1. It needs to be inserted into the current TrackTree. The corresponding integer 

sequence representing the node is (0· · ·0-tiew), where there are (M -N -1) 

zeros, and tiew is the network track ID of the new track. Furthermore, the 

track is extended to local frames in the extension window, i.e., build all the 

children of node (0 · · · 0- tiew). 

2. The network to local track ID map needs to be updated. 

Solution Arcs of the Form Xij = 1 

The incoming new track 7inew emanates from the same target as the existing 

track Tj. Suppose 1inew is broadcast to the composite tracker by platform k, 

then it contains a list of observations associated with it and they are observations 

generated by sensors on platform k only. The existing track Ti couldn't have 

had those observations yet, so the two tracks need to be fused by adding the 

observations from 1inew to Ti. 

The network track ID of the track 7j will be changed to tiew, if the current 

network track ID is greater than t;:ew. 

The track ID Map needs to be updated accordingly. 

Solution Arcs of the Form Xoj = 1 

This means that there is no incoming new tracks correlate with the existing 

track Ti. No operation is necessary. 
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Chapter 7 

PROPOSED NETWORK TRACKING 
ARCHITECTURE II: MFA ON ALL DATA 

AND NETWORK TRACKS 

7.1 Overview of Architecture 

The network MFA architecture on all data and network tracks we propose is 

explained in Figure 7.1. There is one composite tracker on every platform. The 

composite tracker has access to all the data from the sensors on its local platform as 

well as data from sensors on remote platforms. The double pane sliding window is 

made up of both remote and local frames. The data association decisions are made 

based on the network tracks and the frames (remote and local) in the window. 

7 .1.1 Basic Assumptions 

• The communication network is fully connected. There is delay in the network, 

but there is no lost data. 

• Local observations are put into frames by the frameBuilder on the local com­

posite tracker. Then, the observations are broadcast to all remote platforms 

with a local frame ID and the position in that frame. Thus, all composite 

trackers have the exact same frames. 

• The sliding window on each tracker consists of both remote and local frames. 
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Platformj Platformk 

Frames of measurement reports Frames of measurement reports 

Figure 7.1: Network MFA on All Data and Network Tracks 

• Each composite tracker can only make firm {irrevocable) data association 

decisions on its own frames {local frames). For remote frames, the tracker 

needs to update its network tracks based on the remote data association 

decisions. 

7.1.2 What's Being Sent Out as Fixed DA Decisions 

If the (M- N + 1)-th frame (fkM-N) in the sliding window is a local frame, 

then the composite tracker sets up an M dimensional assignment problem and 

firm data association decisions on that frame are assembled together to form an 

AMMFrame, which includes: 

• Associate Measurement Maps {AMMs): Each AMM has for parts: an AMM­

Frame ID, a platform ID, a network track ID, and an observation ID in the 

corresponding frame. 

• Newly initiating tracks: Each new track contains an AMMFrame ID, a plat­

form ID, a network track ID, and an observation list that is associated with 

the new track. 

80 



7.1.3 What's Being Done After Receiving Remote DA Decisions 

When a new frame of data is ready to be added into the sliding window, the 

composite tracker checks to see if the first frame in the extension window (!kM -N) 

is a local frame or a remote one. If fkM-N is a local frame, then the composite 

tracker sets up the assignment problem and solves it. The AMMFrame is built 

as discussed in Section 7.1.2. Then the first frame (fko) in the moving window is 

removed and the new frame is inserted. 

However, if frame fkM-N belongs to a remote platform, the composite tracker 

is not allowed to make data association decisions on that frame, instead, it needs 

to wait for the remote AMMFrame. If the corresponding AMMFrame is in the 

AMMFrame buffer, the tracker fixes the data association decisions between the 

network tracks and observations in frame fkM-N based on the AMMFrame received. 

The TrackTree is properly updated and the remote frame ( fkM -N) is deleted from 

the sliding window. Then the new frame is inserted into the sliding window. 

However, if the corresponding AMMFrame has not arrived yet, then the com­

posite tracker waits for the AMMFrame for a certain amount of time. If during the 

waiting period, the AMMFrame arrives, it is then used to update the TrackTree as 

discussed before. If the AMMFrame does not arrive, then frame fkM -N is removed 

from the extension window and stored in the tardy queue waiting to be used when 

the corresponding AMMFrame arrives. Thus, whenever a remote AMMFrame ar­

rives, the composite tracker checks to see if the corresponding frame is in the tardy 

queue. If the frame is not in the tardy queue, which means the frame is still in the 

window or has not been added into the window yet, the AMMFrame is buffered in 

the AMMFrame buffer. If the corresponding frame is in the tardy queue, it means 

that the frame has been removed from the window because the AMMFrame arrives 

too late. The composite tracker then uses the AMMFrame and the frame in the 

tardy queue to update the TrackTree immediately instead of buffering it. 
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7.2 Algorithm Overview in the Ideal Case 

If there are no communication or processing delays, then all the frames on 

different platforms are in exactly the same order. It is further assumed that all 

the trackers are well synchronized. Figure 7.2 shows three platforms (i, j, and k) 

in the network, each has a track extension window of size 2. 

Suppose at certain time t, the network tracks (represented as black dots) 

are the same, the first frame in the extension window belongs to platform i, and 

another frame (from platform j) is ready to be processed. The composite tracker 

on platform i sets up a data association problem based on the network tracks and 

frames in the window (one local frame and one remote frame from platform j). 

After solving the DA problem, it makes firm (irrevocable) decisions on its local 

frame, broadcasts the AMMs and new tracks as an AMMFrame to platform j 

and k, and moves the window forward. For the composite trackers on platform j 

and k, since the first frame in their extension windows is a remote frame (from 

platform i), they wait for the AMMFrame from platform i. After the AMMFrame 

is received, the trackers use them to update the network tracks. The remote frame 

is then removed from the sliding window. 

Then another frame (from platform k) is ready. Now the first frame in the 

extension window belongs to platform j, so the composite tracker on platform j 

sets up the DA problem, solves it, fixes the decisions in that frame, broadcasts the 

AMMFrame to platform i and k, and moves the window forward. The composite 

trackers on platform i and k wait for the AMMFrame to update their network 

tracks. 

Figure 7.2 illustrates three steps of such a process. After those three steps, 

the network tracks on all platforms are still the same because they have the same 

observation history. 
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Figure 7.2: Ideal Case for Network MFA on All Data and Network Tracks 
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7.3 Algorithm Overview in More Realistic Case: Delays 

In real life situations, random delay in the transmission network is inevitable. 

Furthermore, processing time needed to put a remote frame together is different 

for each tracker. Thus, the order of the frames being processed on each composite 

tracker is different. Similarly, for remote data association decisions, they arrive at 

different platforms at different times and in different order. The AMMFrame can 

be ready earlier than the time that the frame is shifted to be the first frame in 

the extension window, in which case the composite tracker buffers the AMMFrame 

before processing it. However, the AMMFrame can be ready much later than the 

time the frame is being processed. 

These out-of-order data cause the problems which we call them conflicts in 

association and deadlock in processing. 

7.3.1 Conflicts in Association 

Problem Description 

The problem is illustrated in Figure 7.3 using two platforms i and j. For the 

composite tracker on platform i, the first frame in the extension window is a local 

frame, so it sets up and solves the data association problem, fixes the decision, 

broadcasts the AMMs, and moves the window forward. In the mean time, for the 

composite tracker on platform j, the first frame in the extension frame is a local 

frame, so it sets up and solves its own DA problem, fixes the decision, broadcasts 

the AMMs, and moves the window forward. 

When another frame is ready to be processed on platform i, the first frame in 

the extension window belongs to platform j. The composite tracker on platform 

i uses the AMMFrame from platform j to fix the data association decisions be­

tween network tracks and observations in the first frame of the extension window. 

However, the association may not exist in the TrackTree on platform i. 
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Platform i 

broadcast AMMs 

broadcast AMMs 

Figure 7.3: Conflicts in Association 

Platform i 

OTOO OTOO 

/"" 
Broadcast AMM pair (T, il) 
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~ 
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OTjlO -0Tj20 OTOkl 

Move the window 
Process a new frame 

Platformj 

@ Broadcast AMM pair (T, j2) 

OTjlO 

/ 
OT jl kl 

Figure 7.4: Example of Conflicts in Association 

OTOkl 

A specific example is given in Figure 7.4. Suppose the frame from platform i 

contains one measurement Zi1 , the frame from platform j contains two measure­

ment Zj1 and zh, and the frame from platform k has one measurement Zk1 • In a 

4/2 window, the sub-tree structure of network track T on platform i is shown in 

Figure 7.4. Suppose the data association solution is (0Ti1jl), which is represented 

by the node circled in the tree. The composite tracker broadcasts the AMM pair 

(T, i 1), prunes the TrackTree, and moves the window forward. Then a new frame 

from platform k is added and the TrackTree is extended to the new frame. Mean­

while, the composite tracker on platform j finishes processing its local frame and 
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broadcasts the AMM pair as (T, j 2). When the tracker on platform i has to fix the 

association between network track T and the observation zh in the first frame in 

the extension window based on the AMMs received, the TrackTree indicates that 

track Tis not feasible with observation zh, or the node (0Tj20) does not exist in 

the tree. 

Proposed Solutions 

Platform i: forced association 

OTOO 

AMM pair (T,j2) /~ 
0Tj10-0Tj20 OTOkl 

/ I 
0 T jl kl 0 T j2 kl 

Figure 7.5: Proposed Solutions to Conflicts in Association: Forced Association 

If a conflict in data association decisions ever occurs, in order to achieve a 

consistent air picture, the network tracks on different platforms need to be up­

dated with the same sequence of observations. Thus, the composite tracker forces 

association between network tracks and observations based on the remote AMMs. 

As is shown in Figure 7.5, on platform i, a new node (0Tj20) is added and extended 

to the remaining frames in the extension window (building child node (OTj2ki)). 

7 .3.2 Deadlock in Processing 

Problem Description 

As is shown in Figure 7.6, for the composite tracker one platform i, the first 

frame in its extension window is a remote frame from platform j, so it waits for 

the AMMFrame from platform j to update the TrackTree and move the window 

forward. However, platform j's first frame in the extension window belongs to 
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platform i, it can not process until the AMMFrame from platform i is received. 

Thus, both platforms are waiting for each other and the deadlock problem occurs. 

Platform i 

·A. II •tJIIJ 

Platformj 

:~mo 
Figure 7.6: Deadlock in Processing 

Proposed Solutions 

The key to solving the deadlock problem and maintaining a consistent air 

picture is to have the composite tracker wait for the corresponding AMMFrames 

for each remote frame for a certain number of steps which is specified by the user 

in the parameter file. 

During the waiting period, if the remote AMMFrame is ready to be processed, 

then the composite tracker updates its network tracks with the remote AMMFrame. 

If after the specified number of steps, the AMMFrame still has not arrived yet, 

the remote frame will be removed from the sliding window, and put into the tardy 

queue waiting to be processed later. When the corresponding AMMFrame arrives, 

the frame is taken out from the tardy queue and used to update the network tracks. 

In this way, the sliding window on the composite tracker can always move 

forward regardless of the status of the remote platforms in the network. 

7.3.3 One Way to Moderate the Problems: Buffering Frames 

On each composite tracker, there is a frame buffer to buffer both local and 

remote frames before they are processed by the sliding window. Thus, the frames 

are not put into the sliding window in the order in which they become ready. 

Instead, they are put into the frame buffer to be buffered for a certain amount 

of time Tooffer (Fixed Lag Buffer) or to be buffered for a certain length (Fixed 
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Length Buffer). The proposed method to order the frames in the frame buffer is 

to order them according to the time tag of the last observation in the frame. 

The reason for choosing the last observation in the frame is that in most 

scenarios, one needs to deal with sensors with vastly different revisit rates. For 

instance, a rotator might only see the target once in 10 seconds, while an ESR 

may see the target every 0.1 second. If the time tag of the first observation in 

the frame is used to order the frames, then the composite tracker might need to 

process the rotator frame first before it can come to process those ESR frames. So 

if the tracker needs to report track states, there is a lot of valuable information 

not being used. By choosing the time tag of the last observation in a frame, short 

frames can be processed sooner. 

In the optimal case for a fixed lag buffer, where Tbuf fer -t oo, all the com­

posite trackers on different platforms should order the frames exactly the same 

(according to the time tag of the last observation in the frame). However, since 

Tbuffer is a finite number that is set according to some a priori knowledge of the 

communication network, the order of the frames in the frame buffer may not the 

same on different composite trackers. So the order of the frames being added into 

the window is different. In Figure 7. 7, the horizontal axis stands for the frame 

duration time, and the vertical axis stands for the frame arrival time. The frame 

arrival times are different on platform i and platform k. If Tbuffer is big enough, 

then the frames on both platforms are in the same order. However, if Tbuf fer is 

not big enough, the orders of frames on platform i and k are still different. 

Similarly, for a fixed length buffer, if the buffer length is infinite, the order of 

the frames in the buffer on all platforms are the same. However, for a finite length 

buffer, the frame order may still be different. 

From the above discussion, it can be concluded that buffering the frames mod­

erates the problems caused by out-of-order frames. However, when the composite 
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Figure 7. 7: Illustration of Frame Buffer 
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tracker handles a metrics scoring request, the more frames in the frame buffer, the 

worse the state estimate accuracy is, due to the fact that more frames haven't been 

processed yet. 

7.4 Event-Driven Overview 

7.4.1 Modified Event Manager 

The event manager in the proposed architecture is different from the event 

manager in the centralized tracker as explained in Chapter 2. The difference is 

caused by the solution to the deadlock problem as described in Section 7.3.2. For a 

remote frame, the composite tracker should wait for the corresponding AMMFrame 

for a finite number of steps. 

In order to achieve the goal, an is Waiting flag is added in the event manager. If 

the flag is true, it means the tracker is waiting for the corresponding AMMFrame 

when processing a new frame of observations. During the waiting period, the 

first event in the event queue, which should be a kernel frame event, remains 

unprocessed. However, the event manager shouldn't block the incoming remote 

data association decision events. Thus, all the incoming remote data association 

decision events that are used to build AMMFrames are fired directly, instead of 

being posted onto the back of the event queue. If the AMMFrame is not ready 

after a certain number of steps, the first frame in the extension window is removed 

and put into the tardy queue, and the new frame is inserted into the window. If the 

is Waiting flag is false, the event Manager proceeds as discussed in the centralized 

case. The is Waiting flag is set to be true each time the composite tracker starts 

a waiting process, and is reset to be false either the corresponding AMMFrame is 

received or the frame is moved to the tardy queue. 

7 .4.2 Introduction to Events 
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Adaptive Events 

1. Observation Event 

An observation event contains an observation from a local sensor, it is then 

processed by the frameBuilder to be put into proper frames. The frame­

Builder builds sensorFrames according to sensor types, and links the non­

overlapping sensorFrames into proper frames as discussed in the centralized 

architecture. The frameBuilder generates a measurement report event for 

local observations. It generates a frame event when the frame is ready . 

.-----,Observation Event.------, Frame Event .--------. 
Event Queue 1------~ FrameBuilder r------+~ 

MREvent 

Event Queue 

Figure 7.8: Observation Event 

2. Measurement Report (MR) Event 

Event Queue 

A measurement report event contains three parts, an observation, a platform 

ID, and a sensorFrame ID. It is broadcast to all the remote platforms by the 

composite tracker. 

MREvent 

Event Queue 1--------to~ broadcast to all remote platforms 

Figure 7.9: Measurement Report Event 

3. Incoming Measurement Report (MR) Event 

An incoming measurement report contains a remote observation, a platform 

ID and a sensorFrame ID. The frameBuilder processes incoming MR events, 

putting observations into the corresponding sensor frames according to their 

platform ID and sensorFrame ID. 
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..------.. Incoming MR Event Frame Event r---------, 
Event Queue I ·I FrameBuilder j •I Event Queue 

Figure 7.10: Incoming Measurement Report Event 

4. Frame Event 

A frame event can be either a local frame or a remote frame. All frames are 

added into the frame buffer to be ordered based on the time tag of the last 

observation in the frame. And if there exists a frame that has been buffered 

long enough, the Frame Buffer generates a Kernel Frame event, which is 

then pushed onto the event queue. For a local frame, the composite tracker 

broadcasts the lists of sensorFrame IDs and the corresponding sensor Frame 

sizes to the remote platforms. 

,-------, Kernel Frame Event ,-------.. 

Yes 

Broadcast the list of sensorFrame IDs 
and the corresponding sensor Frames 
sizes to the remote platofrms 

Figure 7.11: Frame Event 

5. EndFrame Event 

Event Queue 

An EndFrame Event contains four parts: a platform ID, a frame ID, a list of 

sensor Frame IDs and a list of corresponding sensor Frame sizes. The frame­

Builder listens to the EndFrame event, and builds the remote frame by linking 

the corresponding sensorFrames together. 

6. EOF Event 
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EndFrame Event Frame Event 
Event Queue ·I FrameBuilder j tr--~-v-en-t -Q-ue-ue-..1 

Figure 7.12: EndFrame Event 

An EOF event is generated when it reaches the end of the input stream. 

When the frameBuilder encounters an EOF event, it goes through its list of 

unfinished local frames, and generates frame events for them. 

EOFEvent Frame Event 

Event Queue 1------....; FrameBuilder 1-------..t Event Queue 

Figure 7.13: EOF Event 

7. EOFrame Event 

When an EOFrame event is generated by the composite tracker, it means 

there is no more frames (local or remote) ready. The frameBuffer generates 

kernel frames for all the frames it buffers. 

EOFrame Event Kernel Frame Event.---------. 
Event Queue j ·I Frame Buffer ) f Event Queue 

Figure 7.14: EOFrame Event 

Data Association Decisions Events 

Data association decision events are all fired instead of posted onto the back 

of the event queue to avoid processing delay. 

1. Broadcasting Events 

The composite tracker builds the window using both local and remote frames. 

As discussed in the centralized architecture (Chapter 2), whenever a frame is 

ready to be processed, the composite tracker checks to see whether the first 

frame in the track extension window is a local frame or not. If it is a local 
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frame, then the tracker sets up and solves the data association problem. 

The data association decisions on the first frame are irrevocable and are 

broadcasted to all other platforms. There are three types of broadcasting 

DA decisions events: AMM, new track and EndAMMFrame events. 

AMM Event, New Track Event 
Event Queue r------------.! 

EndAMMFrame Event 
Broadcast to all other trackers 

Figure 7.15: Broadcasting Events 

• AMM Event 

An AMM event has four parts: a platform ID, an AMMFrame ID, a 

network track ID, and an observation ID. The track ID and observation 

ID pair indicates which network track goes with which observation in 

the frame. 

• New Track Event 

A new track event contains a platform ID, an AMMFrame ID, a network 

track ID and an observation list associated with the track. 

• End of AMMFrame Event 

An end of AMMFrame event contains a platform ID, an AMMFrame 

ID, and the number of data association decisions in that frame, which 

are used by the remote side to reconstruct the AMMFrame. 

2. Remote Events 

Correspondingly, there are three types of remote events sent from the remote 

tracker in the network: incoming AMM event, incoming new track event, 

and incoming EndAMMFrame Event. The AMMFrameBuilder collects those 

pieces and reconstructs the AMMFrames based on the platform IDs and 

AMMFrame IDs. All remote events are fired instead of posted not only to 
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avoid the processing delay, but also to avoid being blocked while the event 

manager is in its waiting stage for some AMMFrame. 

Incoming AMM Event 
Incoming New Track Event .---------. AMMFrame Event .-------, 

Event Queue t---c:-------,---:-::----t 
Incoming EndAMMFrame Event 

AMMFrame Builder 

Figure 7.16: Remote Events 

3. Output Events 

Event Queue 

The output events are false alarm events, track initiate, update, and termi-

nate events, which are all handled by the output formatter. 

4. Track Metrics Events 

Track metrics events are generated by track metrics scoring events. They are 

processed by the metrics outputFormatter, to be predicted to the required 

time and transformed into the required coordinate systems. 

Metrics Scoring Event 

Metrics scoring events are used to evaluate the performance of the composite 

trackers. Similar to the centralized architecture, the composite tracker forks a child 

process to handle the metrics scoring request. The user can set the parameter 

predictFrom to be ( 1) " hard ", in which case the track states are reported based 

on the most recent firm decisions; (2) "soft", in which case the track states are 

reported based on the most recent soft decisions; and (3) "softPlus", in which case 

the track states reported contain all the available information (local and remote). 

All the available information for the composite tracker includes the network 

tracks and all frames that have already been added into the window, the unfinished 

local and remote frames that are in the frameBuilder, and the finished local and 

remote frames in the frameBuffer. When the parameter predictFrom is set to be 

"soft Plus", the metrics event collects all unfinished frames in the frameBuilder, 
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and finished frames in the frameBuffer. The sliding window processes the metrics 

event by appending all the unfinished/finished frames to the right end of the win­

dow, extending the TrackTree to those frames, setting up and solving a (M + p) 

dimensional assignment problem, where pis the number of unfinished frames, and 

firing track metrics events on the solution tracks. 

Kernel Events 

Kernel events are processed by the sliding window. 

1. Kernel Frame Event 

The kernel frame event is generated by the frame buffer and processed by the 

sliding window. When the window encounters a frame event, the operations 

are different based on single frame processing (M/1 window) or multi-frame 

processing (M/N window, for N > 1). Emphasis is laid on multi-frame 

processing, but the difference will be pointed out at the end. 

For an M/N window, the composite tracker checks the first frame (!kM-N) 

in the extension window to see if it is a local frame or not. If the frame is a 

local one, then the new kernel frame is added into the window, the TrackTree 

is extended to that frame, and the data association problem is set up and 

solved. Data association solutions are used to generate DA decision events 

as discussed above. The TrackTree is pruned, the leftmost frame is shifted 

out of the window, and the window is moved forward. 

If frame fkM-N is a remote one, then the composite tracker can't make its 

own DA decisions on that frame. Instead, it needs to update the tracks 

based on the corresponding AMMFrame. Thus, it checks in the AMMFrame 

buffer to see if the AMMFrame has been received or not. If the AMMFrame 

has already been received, then the associations between network tracks and 
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observations in first frame in the extension window are fixed based on the 

AMMFrame. Then the first frame in the extension window (!kM-N) is re­

moved and the TrackTree is pruned accordingly. Details will be explained 

in the Section 7.5.4. The sliding window is of size (M- 2) after removing 

the remote frame. The remote new tracks are then inserted or fused with 

the current network tracks and the TrackTree is updated with the remaining 

frames in the extension window. Finally the new kernel frame is added into 

the window and the TrackTree is extended to the new frame. If the corre­

sponding AMMFrame is not available yet, the kernel frame will be pushed 

onto the front of the event queue and the is Waiting flag of the event man­

ager is set to be true. Since the incoming AMM, new track, EndAMMFrame 

events, and the AMMFrame events are all fired, it is expected that during 

the waiting process, the corresponding AMMFrame can arrive and is ready 

to be processed. However, if the composite tracker has been waiting for a 

certain number of steps and the AMMFrame isn't ready, the first frame of the 

extension window is removed and put into the tardy queue. The TrackTree 

is pruned accordingly. Then the new kernel frame is added into the window 

and the TrackTree is extended to the newly added frame. 

For single frame processing ( M /1 window), the window size is ( M -1) when a 

kernel frame event is being processed. Thus, the first frame in the extension 

window is actually the frame being added. So if the frame is a local one, 

then the composite tracker processes it as discussed before. Otherwise, if the 

corresponding AMMFrame exists, the tracker adds the frame into the sliding 

window, extends the TrackTree, and then fixes the data associations based 

on the AMMFrame. The frame is then removed from the sliding window. If 

the corresponding AMMFrame does not exist, then the window waits for it 
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Figure 7.17: Kernel Frame Event for M/N Window (N > 1) 

for a certain number of steps. And if the window has waited long enough, 

then the frame is put into the tardy queue. 

2. AMMFrame Event 

The sliding window processes the AMMFrame event, it checks to see if the 

corresponding frame is in the tardy queue or not. If the corresponding frame 

is not in the tardy queue, then the AMMFrame is stored in the AMMFrame 

buffer waiting to be processed later. 

If the corresponding AMMFrame is in the tardy queue, then the TrackTree is 

updated using the AMMFrame and the frame taken out of the tardy queue. 

The procedures performed in the window and TrackTree are similar to the 

ones in Network MFA on local data and network tracks (Chapter 5). The 

network tracks are updated and the new tracks are inserted and fused with 

the existing ones. Then the TrackTree is re-extended to all the frames in the 

extension window. 

7.5 Major Issues 
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Figure 7.18: AMMFrame Event 

7.5.1 Broadcasting AMMFrames 

After irrevocable data association decisions are made on frame fkM-N in the 

extension window, they are broadcast to all the remote platforms as AMMFrames. 

New Tracks 

For data association solution arcs of the form (ik0, • • • , ikM-N' ikM-N+P • • • , ikM_J, 

the composite tracker assigns a local track ID and promotes it to the local track 

database, provided that the track string T Sik ... ik satisfies the following re-
o' ' M-N 

quirements. 

1. ikM-N 0, which means the trackString has a detection in the frame !kM-N. 

2. A tracking filter has been started and it produces a negative score. 

3. It has at least initLength number of observations associated with it, where 

initLength is a user definable parameter that specifies the minimum number 

of observations required to initiate a new track. 

4. The track state does not correlate with any of the existing remote tracks, 

who have no corresponding local tracks. 
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When a local track initiates, the associations in track string T Sik ... ik 
0' ' M-N 

are fixed and the new track event is generated to broadcast the new track to the 

network. 

What is broadcast as a new track is a corresponding platform ID, an AMM­

Frame ID, a track ID and a list of observations associated with the new track. 

AMMs 

For associated measurement maps, the composite tracker checks the list of up­

dating tracks of the form {0, · · · , 0, -Tkp ikM-N' • • • , iM-1). If ikM-N =/= 0, then the 

composite tracker generates an AMM event, and broadcasts to remote platforms. 

The AMM event consists of a Platform ID, an AMRFrame ID, a network track 

ID, which the local track ID Tkz corresponds to, and the observation ID ikM-N' 

End AMRFrame 

The End AMMFrame message consists of a platform ID, an AMMFrame ID 

and the total number of data association decisions in the AMMFrame, which is 

the summation of the number of new tracks and the number of AMMs. 

7.5.2 Building AMMFrames 

The AMMFrameBuilder processes incoming AMMs, incoming new tracks and 

incoming end AMMFrame events, puts them into the correct AMMFrames accord­

ing to the platform ID and the AMMFrame ID of each event. The incoming end 

AMMFrame event allows the AMMFrameBuilder to check if the corresponding 

AMMFrame is full by comparing the number of data association decisions received 

with the number expected. When an AMMFrame is ready to be processed, the 

event is fired instead of posted onto the back of the event queue. 
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7.5.3 Processing AMMFrame and the Corresponding Frame in Tardy 
Queue 

When processing an AMMFrame event, if the corresponding frame is in the 

tardy queue, it means that the frame has been added into the window, and then 

been removed from the window as explained earlier in Section 7.4.2. 

For a certain AMM pair (11, ik) in the AMMFrame, with the help of the frame 

taken out from the tardy queue, the composite tracker is capable of locating the 

observation Zik to update the network track 11. The algorithm used to update 

the TrackTree is exactly the same as the way the composite tracker updates its 

TrackTree in Network MFA on local data and network tracks architecture (Chapter 

5). 

For new tracks in the AMMFrame, the algorithm is the same as the one ex­

plained in Chapter 6. A two-dimensional assignment problem is set up to correlate 

the remote new tracks and the local existing tracks. Based on the solutions to the 

assignment problem, the new tracks are inserted in the TrackTree or fused with 

existing tracks. 

7.5.4 Processing AMMFrame and the Corresponding Frame in Win­
dow 

For an AMMFrame, if the corresponding frame is the first frame in the ex­

tension window (frame !kM-N ), then the associations between network tracks and 

observations in frame !kM -N are fixed based on the AMMs in the AMMFrame. 

Update with AMMs 

When processing an AMM pair (11, ikM-N ), if the corresponding association 

exists in the TrackTree, as is shown in Figure 7.19, then followings steps are carried 

out: 

1. Replace the track To···O-Tz with To .. ·O-TzikM-N. 
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2. Delete all children (or the sub-tree) of node (0 · · · 0 7l) 

3. Extend node (0 · · · 0 -7l) to frames !kM-N+I, • • • , fkM-l, while maintaining 

all the crossLinks. 

4. Delete frame fkM-N in the window, and prune the branches of the TrackTree 

that extends to that frame. 

However, if the corresponding node does not exist in the TrackTree, then 

forced association is performed on the network track and the observation. Then 

the tracker continues with step 2. 

After processing all the AMMs, the sliding window is of size ( M - 2). 

Insert Remote New Track 

If a remote new track does not correlate with any of the existing tracks, it will 

be inserted in the TrackTree. After that, the new track is extended to all frames in 

the extending window. Figure 7.20 is an example of how the TrackTree changes. 

Fuse Remote New Track with the Existing One 

If the remote new track is regarded as emanating from the same target as one 

of the existing tracks, then the information of the two tracks are fused together, 

and then the corresponding sub-tree of the TrackTree is updated, as is shown in 

Figure 7.21. 
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Figure 7.19: Example: Process An AMM 
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Figure 7.20: Example: Insert A Remote New Track into the TrackTree 
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Figure 7.21: Example: Fuse A Remote New Track with An Existing Track 
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7.6 Track Initiation 

7.6.1 Problem Description 

For the Network MFA on all data and network tracks, the composite trackers 

initiate new tracks based on both remote and local data. Correlating the initiating 

tracks across the network is a little different from what is explained in Chapter 6. 

However, the idea of track numbering schemes discussed in Section 6.2 for 

Network MFA on local data and network tracks is adopted here. The composite 

tracker uses the same local track ID bank, and the same network to local track ID 

Map. 

7.6.2 Track to Track Correlation 

2D Assignment Problem 

Denote the remote incoming new tracks in the AMMFrame as Tiew, · · · , TJ:hw, 

and the existing tracks as Tb · · · , TM2 • As discussed in the Network MFA on local 

data and network tracks, the 2D assignment problem is as explained in Equation 

(6.7). 

The cost, Cij, is computed by some distance function between track Jinew and 

Tj as discussed in Section 6.3.2. If Xio = 0, then r::ew is a new track. If Xij 0, 

then Jinew is regarded as emanating from the same target as the existing track Tj. 

Insert Remote Track Jinew 

If the remote incoming new track Jinew is regarded as emanating from a new 

target, it is inserted in the TrackTree using the integer sequence (0 · · · 0 -Jinew) as 

the address. There are ( M - N - 1) zeros in front of the negative track ID Jinew. 

Then the new node is extended into all frames in track extension window. (Figure 

7.20) 
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Fuse Track Jinew and Tj 

If the remote incoming new track Jinew correlates with the local track Ti, then 

the two tracks are merged. 

Since both tracks contain remote and local observations, most likely, they have 

the same observation history associated with them. The local existing track has the 

opportunity to be initiated first and broadcast to the network, it is then assumed 

that the local track contains more information (more observations) than the remote 

new one. Thus, all information from the remote new one is neglected to avoid using 

the same information twice. However, if the remote track ID Jinew < Tni, where 

Tni is the network track ID of track Tj, then the network track IDs of the existing 

track and all its child tracks are set to be Jinew. 
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Chapter 8 

SIMULATION RESULTS, COMPARISON AND 
DISCUSSIONS: PERFECT 
COMMUNICATION LINK 

8.1 Scenario Description 

This chapter contains a comparison of the four different tracking architectures 

centralized, network MFA centralized, network MFA on local data and network 

tracks, and network MFA on all data and network tracks presented in the previous 

chapters. 

The scenario we use contains four fighter aircraft and is 600 seconds in length. 

There are four ship platforms defined. Each ship has an S-hand Phased array 

radar and a UHF rotating radar. Figure 8.1 illustrates the target and platform 

trajectories and depicts the merging of the fighters. 

The composite trackers in all architectures apply the MFA algorithm. A 

double pane sliding window of size 6/2 is used. A two-model IMM filter, which 

consists of two NCV models with noise level 10 and 1000, is used. At least four 

observations are required to start a tracking filter, and at least six observations to 

initiate a new track. A refiltering window of length 20 is used to avoid negative 

time update. 

In this Chapter, all simulations are carried out using a perfect communica­

tion network, where there is no communication delay between the platforms and 
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Scenario Description 
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Figure 8.1: Scenario Description 

there is no lost data. However, the order of the observations arriving on different 

platforms may still he different. For observations taken at the same time, the local 

observations always arrive on local platforms faster than the remote ones. For 

each architecture, five Monte Carlo runs are performed. For each metrics scoring 

request, the most recent ''soft" decisions are used to give the state estimates. 

8.2 Composite Track Ambiguity 

The first metrics category is Ambiguity, which contains two metrics: Com .. 

posite Redundant Track Mean Ratio and Composite Spurious Track Mean Ratio. 

8.2.1 Spurious Thack Mean Ratio 

The composite spurious track mean ratio is equal to the number of un-assignable 

declared composite tracks divided by the number of valid, declared composite 

tracks. The metrics module attempts to assign every declared track on a platform 
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Figure 8.2: All four Architectures 

to each truth object, if they pass the threshold for at least one truth object. A 

Euclidean threshold value defined to be 2e8 is used. The number of un-assignable 

composite tracks is the number of composite tracks that do not pass the gating 

threshold with respect to any truth object. 

For all four architectures, there are no spurious tracks on any of the platforms, 

and the spurious track mean ratio is always zero, as is shown in Figure 8.2. 

8.2.2 Redundant Track Mean Ratio 

The composite redundant track mean ratio is equal to the number of com­

posite tracks assignable to a truth object divided by the number of valid, declared 

composite tracks. This metric is computed and plotted for each platform. Are­

dundant track mean ratio of one is the ideal value, which means the composite 

tracker has exactly one track associated with each truth object. 

For all the architectures, there are no redundant tracks. However, track ini­

tiation times differ on different platforms in different architectures. Figure 8.3 
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Figure 8.3: Network MFA on All Data and Network Tracks 

shows the redundant track mean ratio on Ship 3 for network MFA on all data and 

network tracks. 

8.3 Composite Track Accuracy 

The second metrics category is Accuracy, which also contains two metrics: 

Composite Track Accuracy, and Composite Track Covariance Consistency. 

8.3.1 Composite Track Position Accuracy 

Composite track position accuracy is computed for each truth object on each 

platform as a function of metrics scoring times. At each metrics scoring time, the 

Euclidean distance between the truth object and the assigned composite track state 

estimate is calculated. The root mean square error (RMSE) statistic is computed 

and plotted for each truth object on each platform. 

Composite Track Position Accuracy on Ship 4 tracking Fighter 4 is used as 

an example for comparison. 

111 



Composite Track Accuracy 
on Ship #4 trackingFtghter 14 

103 .-----.,-----.--------,.------r------r---'------, 

100 200 300 400 500 600 
Time (Seconds) 

Figure 8.4: Centralized Architecture 

• Centralized Architecture 

Figure 8.4 shows the position RMSE for the centralized architecture. As 

one can expect, the state estimates are very accurate for the first 120 sec­

onds, before Fighter 1 merges with Fighter 3. After the merge, the accuracy 

worsens a little bit, but remains almost the same during the first 2g turn. 

The estimation error goes up after the four fighters merge together at 460 

seconds. 

• Network MFA Centralized 

The composite track position accuracy for the network MFA centralized ar­

chitecture is close to that of the centralized architecture. The RMSE statis-

tics from 400 to 600 seconds is shown in Figure 8.5. 

• Network MFA on All Data and Network Tracks 
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Figure 8.5: Comparison between Centralized and Network MFA Centralized 

The composite track position accuracy differences between the centralized ar-

chitecture and the network MFA on all data and network tracks architecture 

are negligible (Figure 8.6). 

• Network MFA on Local Data and Network Tracks 

Figure 8. 7 shows the RMSE statistics from 400 to 600 seconds for the central­

ized architecture and network MFA on local data. The composite trackers 

in network MFA on local data and network tracks only have access to their 

local data to make the soft data association decisions in the sliding window. 

Thus, especially during the 2g turn around 460 seconds, the estimation error 

is consistently bigger than the other architectures where the state estimates 

are made based on all data. 
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Figure 8.6: Comparison between Centralized and Network MFA on All Data 

:; 
il 

Composite Track Accuracy 
on Ship #4 trackingFighter #4 

Pure Centralized 

• - · - · - "• NetMFA LoCal Data 

101 ~--~----~----~--~~--~----~----~--~----~--~ 
400 420 440 460 480 500 520 540 560 580 600 

Time (Seconds) 

Figure 8.7: Comparison between Centralized and Network MFA on Local Data 
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Figure 8.8: Network MFA on All Data and Network Tracks 

8.3.2 Composite Track Covariance Consistency 

Composite track covariance consistency is evaluated by computing the mean 

normalized Chi-square statistics of the composite tracker assigned to each truth 

object as assessed over all Monte Carlo runs. 

For all four architectures, Composite Track Covariance Consistency is very 

similar. Figure 8.8 is an example of Ship 4 tracking Fighter 1 in the network 

MFA on all data and network tracks. Before Fighter 1 merges with other fighters, 

the observations associated to it are always correct, so the mean normalized Chi 

square value fluctuates around 1. However, after 460 seconds, when all fighters 

merge together, miss associations may occur, and the Chi square value goes up 

to around 10, which means the tracking filters are too optimal about the state 

estimations and the covariance matrices get too small. 
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8.4 Cross-platform Commonality History 

The third category is Cross-platform Commonality History, which contains 

two metrics: Ratio of Non-common Composite Track Numbers and Composite 

Track State Estimate Difference. 

8.4.1 Ratio of Non-common Composite Track Numbers 

The rate of non-common composite track numbers is the number of active 

composite track numbers that are different between pairs of tracking platforms di­

vided by the number of composite track numbers in the union of the two platforms' 

track databases. This metric is computed and plotted for each pair of platforms. 

Ships 1 and 2 are chosen to show the metric here. For the centralized archi­

tecture, network MFA centralized architecture, and network MFA on all data and 

network tracks, where all composite trackers initiate tracks based on all data (local 

and remote), the ratio of non-common composite track numbers is zero. All plat­

forms use the same network track IDs to identify the same truth object. (Figure 

8.9) 

For the architecture of network MFA on local data and network tracks, the 

ratio of non-common composite track numbers is different at the beginning couple 

of metrics scoring times, and then goes back to 0 afterwards, as is shown in Figure 

8.10. The composite trackers in this architecture initiate new tracks based on 

local data only, and then broadcast them to remote platforms to be fused. Thus, 

different platforms initiate tracks (using different local track IDs) at different times 

due to different data rates of the sensors on board. However, after all platforms 

get the remote new tracks, the fusion process is correct, and all tracks associated 

with the same truth object have the same network track ID across the network. 
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Figure 8.10: Network MFA on Local Data and Network Tracks 
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Figure 8.11: Centralized Architecture 

8.4.2 Composite Track State Estimate Differences 

600 

The composite track state estimate differences are the Euclidean distances 

between the position estimates of tracks held by pairs of platforms for composite 

tracks with the same active composite track number. 

• Centralized Architecture 

For the centralized architecture, the composite tracker broadcasts track states 

of its most recent soft (or hard) decisions to all other platforms in the network 

after processing each frame of data. As is shown in Figure 8.11, except for a 

couple metrics scoring times, the Composite Track State Estimate differences 

are negligible. 

• Network MFA Centralized 

For the network MFA centralized architecture, each composite tracker pro­

cesses frames of data, and makes its own fixed data association decisions, 
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Figure 8.12: Network MFA Centralized 

regardless of other trackers in the network. Thus, as Figure 8.12 illustrates, 

there is almost no differences before all fighters merge together. However, 

once Ship 1 and Ship 2 make one different association decision, that effects 

all successive decisions, because there is no mechanism built in to correct 

the association differences. Therefore, after four fighters merge together, the 

position estimate differences stays around 70 meters. 

• Network MFA on Local Data and Network Tracks 

For the architecture of network MFA on local data and network tracks, the 

composite track position estimate differences are shown in Figure 8.13. The 

state estimates are computed using the most recent soft decisions based on 

the network tracks and the local frames in the window. Different platforms 

have different local frames in the sliding window, so the state estimates are 

different across the platforms. 
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Figure 8.13: Network MFA on Local Data on Network Tracks 

• Network MFA on All Data and Network Tracks 

For the architecture of network MFA on all data and network tracks, the com-

posite tracker is allowed to make data association decisions on local frames. 

The associations between network tracks and remote frames are fixed based 

on remote AMMFrames. As is shown in Figure 8.14, the composite tracker 

position estimate differences are pretty small, except at a couple of metrics 

scoring times. The differences are mainly caused by processing delays. After 

the local composite tracker makes irrevocable decisions on its local frame, the 

time it takes for remote composite trackers to finish processing the remote 

AMMFrame may not be negligible at all times. However, unlike the network 

MFA centralized architecture, the composite trackers can correct their differ­

ences, so that the differences only occur at a discrete set of metrics scoring 

times. 
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Figure 8.14: Network MFA on All Data 

8.5 Communication Data Loading 

Communication data loading is the total amount of data that all of the plat­

forms send to the communication link for transmission to other platforms during 

a scoring interval. 

• Centralized Architecture 

There are three types of messages transmitted across the network: 

1. Measurement report: all measurement reports are sent to the composite 

tracker by remote platforms. The composite tracker by default resides 

on platform 1. 

2. Track state: for each track update, a track state message, which includes 

a state vector (6 x 1), an upper half of the covariance matrix (6 x 6) and 

a track ID, is sent back to all the platforms by the composite tracker. 
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Figure 8.15: Centralized Architecture 

3. Track drop: for each dropped track, the composite tracker broadcasts a 

track drop message that contains a track ID. 

As discussed in Chapter 2, the communication loading is huge in this archi­

tecture (Figure 8.15), due to the fact that track states are broadcast back to 

all platforms at each update. 

• Network MFA Centralized 

As discussed in Chapter 4, the messages passed around the network are only 

measurement reports. As is shown in Figure 8.16, the communication loading 

is now only a third compared to the centralized architecture. 

• Network MFA on Local Data and Network Tracks 

In this architecture (Chapter 5), the messages broadcast by the composite 

trackers are AMRs, new tracks, and end AMRFrame messages. 
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Figure 8.16: Network MFA Centralized 
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The communication loading is depicted in Figure 8.17. Compared with Fig­

ure 8.16, the communication loading is actually a little bit higher than the 

network MFA centralized case. The reason is three fold: 

1. The scenario we are running does not have clusters. Thus, there are 

hardly any false alarms. almost all measurements are returns from truth 

objects, which are then categorized by the local composite tracker as 

A MRs. 

2. AMRs add two additional fields compared with measurement reports: 

a tracker ID and an AMRFrame ID. 

3. The new track messages are expensive to be transmitted across the 

network. 

• Network MFA on All Data and Network Tracks 
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Figure 8.17: Network MFA on Local Data and Network Tracks 

For the network MFA on all data and network tracks, the messages being 

broadcast are measurement reports, end frame messages, AMMs, new tracks 

and end AMMFrame messages. Figure 8.18 illustrates the communication 

loading for this architecture. 

8.6 Conclusions and Comparisons 

The computational results presented in this chapter demonstrate that all four 

architectures have a perfect or near perfect score on a large class of metrics, namely, 

spurious track mean ratio, redundant track mean ratio, track breakage, composite 

completeness. These metrics generally measure the continuity of the tracks and a 

one-to-one match of the computed tracks to truth objects. This is quite remarkable 

given that the local trackers and data arising from the local trackers are often very 

imperfect in these metrics. The reason for the success of the network tracker is 
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Figure 8.18: Network MFA on All Data and Network Tracks 

that MFA at the network level can correct many if not all of the errors in the local 

tracker due to the more global information available at the network level. 

The accuracy and consistency of all four architectures are reasonably close to 

each other with Network MFA on Local Data and Network Tracks being slightly 

worse than the other three architectures which use all data. Often it is the case 

that the local sensor tracker on a platform may produce erroneous tracks. Using 

local data only in the MFA may not be able to correct the problems as well as 

using all data in the MFA. 

With respect to a consistent air picture, the centralized architecture natu­

rally has an almost perfect cross-platform commonality history as measurement 

by non-common composite tracker numbers and composite state estimate differ­

ences. Imperfections are due primarily to processing delays. The network MFA 

centralized architecture puts a centralized tracker on each platform and no track 

matching mechanism is applied. Each composite tracker makes its own tracking 
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decisions regardless of the other trackers in the network. Thus, the performance in 

cross-platform commonality history degrades. The use of the rule that each plat­

form is in charge of assigning its own measurements to the network tracks leads to 

improvements found in the architectures of network MFA on local data and net­

work MFA on all data. Each composite tracker is only allowed to make tracking 

decisions on its local data only, and associations between the network tracks and 

remote data are fixed based on remote decisions. 

We might note that the tracking accuracy is slightly better when using Net­

work MFA on All Data and Network Tracks than with Network MFA on Local 

Data and Network Tracks. The network MFA on all data and network tracks has 

an almost perfect cross-platform commonality history except at a discrete set of 

metrics scoring times due to processing delays. Network MFA on Local Data and 

Network Tracks is worse, primarily due to the use of soft data association decisions, 

but improves in these metrics if hard decisions are used. 

The centralized architecture has the biggest communication loading, because 

track states are broadcast to all platforms at each measurement update. All net­

work MFA architectures proposed cut down the communication loadings to one 

third of that of the centralized architecture. The communication loading for net­

work MFA on all data is always a little heavier than the network MFA centralized 

architecture, which is caused by the extra messages sent in the network (end frame 

messages, AMMs, new tracks and end AMMFrame messages). In the future, the 

composite trackers can only broadcast gated measurements instead of all raw mea­

surements, which might help to cut down the communication loading even more 

in dense clusters. In the architecture of network MFA on local data and network 

tracks, the messages transmitted are fixed data association decisions instead of raw 

measurements. 
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Thus, in dense clusters, if the communication bandwidth is limited, the net­

work MFA on local data and network tracks is the preferred architecture. 

With respect to processing loads, the network architectures are computation­

ally more expensive than the centralized one. In the centralized architecture, there 

is only one composite tracker in the network, whereas in all network architectures, 

each platform has its own composite tracker. However, network MFA on all data 

and network MFA on local data require ten to twenty percent more computing 

power than network MFA centralized. 
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Chapter 9 

SIMULATION RESULTS, COMPARISON AND 
DISCUSSIONS: IMPERFECT 

COMMUNICATION LINK 

9.1 Scenario Description 

The same scenario shown in Figure 8.1 is used. However, an imperfect com­

munication network is used. It models two general phenomena: the time delay 

incurred while transmitting a message from one platform to another, and the pos­

sibility that a message does not arrive at its intended destination. 

The time delay consists of two parts. The first part is deterministic based 

on the relative positions of the platforms. These deterministic delays are unique 

for each pairing of originating platform to destination platform. The second com­

ponent of the time delay results from queuing at the input of the originating 

communication node. It is modeled as a random quantity. 

The probability that a message is not successfully transmitted also results 

from a combination of factors. The first factor is the small probability that a 

message is lost due to the imperfect reliability of the transmission. The second 

factor results from a process that is referred to as triage. If the the communication 

link determines that the total time delay associated with message transmission is 

greater than 1.35 seconds, it does not send the message. 
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On the tracker side, the max communication delay in the parameter file is set 

to be 1.8 for all the architectures, to account for the communication delay. 

Due to the fact that there is lost data in the network, for the network MFA 

on Local data and network tracks, a remote AMRFrame is regarded as ready 

if maxC ommunicationDelay seconds have passed, and no more information has 

arrived yet. 

Similarly, for network MFA on all data and network tracks, a remote AMM­

Frame is regarded as ready if maxC ommunicationDelay seconds have passed, and 

no more information has arrived. For a remote frame of observations, if the end­

Frame message has arrived, maxC ommunicationDelay seconds have passed, and 

no more observations for that frame arrive, then the remote frame is regarded as 

ready. However, if the endFrame message is lost, then the entire frame won't be 

used, because in that case, the remote platforms don't know the exact rules to link 

the sensor Frames together. 

9.2 Composite Track Ambiguity 

9.2.1 Spurious Track Mean Ratio 

For the centralized architecture, the network MFA centralized, and the net­

work MFA on all data and network tracks, the spurious track mean ratio is zero 

on all the platforms. 

However, for the architecture of network MFA on local data and network 

tracks, the Spurious Track Mean Ratio is up to 0.05 on Ship 1 and 3 for the first 

200 seconds. As is shown in Figure 9.1, there are two un-assignable composite 

tracks that diverge on one of the Monte Carlo runs. One is short, and the other is 

around 60 seconds long. This may due to the fact that the composite trackers in 

this architecture initiate tracks based on local data only. 
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Figure 9.1: Network MFA on Local Data and Network Tracks 

9.2.2 Redundant Track Mean Ratio 

• Centralized Architecture 

The redundant track mean ratio is always 1 on all the platforms. 

• Network MFA Centralized 

As is shown in Figure 9.2, there are no redundant tracks on Ship 3. Ship 2's 

redundant track ratio goes up to 1.2 at the beginning, and then drops back 

to 1.0. Ship 1 's redundant ratio goes up to 1.05 after 250 seconds or so and 

remains there. The redundant ratio on Ship 4 is 1.05 at 120 seconds, when 

Fighters 3 and 4 merge together, and goes up to 1.1 after all four fighters 

merge together at 460. 

• Network MFA on Local Data and Network Tracks 

Figure 9.3 shows the redundant track ratio in network MFA on local data 

and network tracks. Only on Ship 3, the redundant track ratio goes back to 
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Figure 9.4: Network MFA on All Data and Network Tracks 

1.0, on all others ships, the ratio remains at 1.05, which means there is one 

redundant track in one of the Monte Carlo runs. 

• Network MFA on All Data and Network Tracks 

The redundant track ratio is shown in Figure 9.4. Only on Ship 2, there are 

some redundant tracks. All other ships have the correct number of tracks 

initiated as the truth objects. 

It can be concluded that the network MFA on all data and network tracks 

architecture performs better in the redundant track mean ratio metric com­

pared with the other two network architectures. 

9.2.3 One Way to Improve: Longer Tracking Filter Initiation Length 

As explained in Chapter 8, four observations are required to initiate a tracking 

filter. If the filter initiation length is set to be five, the spurious track mean ratio 
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Figure 9.5: Network MFA on Local Data and Network Tracks: Improved 

and redundant track mean ratio improve in all architectures. The reason is that 

filter initial state estimates are computed using weighted least squares (WLS) based 

on at least five observations, and the chances that all five observations misalign is 

much smaller than four observations misalign. 

In the network MFA on local data and network tracks, the spurious track 

mean ratio goes back to zero on all platforms. And there are no redundant tracks 

on any platform, as is shown in Figure 9.5. 

9.3 Composite Track Accuracy 

9.3.1 Composite Track Position Accuracy 

• Centralized Architecture 

With the imperfect communication link, the accuracy of the centralized ar­

chitecture of Ship 4 tracking Fighter 4 is shown in Figure 9.6. Compared to 

the case with the perfect communication link (Figure 8.4), the accuracy is 
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Figure 9.6: Centralized Architecture 

worse. However, the accuracy in the centralized architecture is still regarded 

as the lower bound of all the network architectures proposed. 

• Network MFA Centralized 

Figure 9. 7 illustrates the composite track position RMSE of Ship 4 track­

ing Fighter 4. Figure 9.8 shows the accuracy from 400 To 600 seconds of 

the centralized architecture versus the network MFA centralized. It can be 

concluded that the differences are negligible. The network MFA centralized 

architecture actually puts a centralized composite tracker on each platform. 

And each composite tracker tracks independently of each other. Thus, the 

accuracy performance should be close to the centralized architecture. 

• Network MFA on Local Data and Network Tracks 

In the network MFA on local data and network tracks, the composite track 

position accuracy is shown in Figure 9.9. The errors are huge at the tracking 
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Figure 9.9: Network MFA on Local Data and Network Tracks 

initiation step, which is again due to the fact that the composite tracker 

initiate new tracks on local data only. The accuracy improves after remote 

information comes in. However, compared with the centralized architecture, 

the accuracy is still worse, as is shown in Figure 9.10. 

After 460 seconds, when all four fighters merge together, it can be shown that 

the accuracy of the network MFA on local data and network tracks becomes 

much worse than the centralized case. This is due to the delays in the 

network. The processing delays from when fixed data association decisions 

are made on a local frame and broadcast until the remote platforms process 

the corresponding AMRFrame are significant. Thus, for a metrics scoring 

request, the composite tracker has less information available to make the 

prediction. 

• Network MFA on All Data and Network Tracks 
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Figure 9.10: Comparison between Centralized and Network MFA on Local Data 

Figure 9.11 shows the composite tracker position accuracy of the Network 

MFA on all data and network tracks. In the track initiation step, the accuracy 

is close to what's being achieved in the centralized architecture. However, 

the accuracy is a little worse during the turns and after the four fighters 

merge together. The reason is that processing time necessary for decisions 

on local frames to be used by remote composite trackers increases under the 

imperfect communication links. 

Predict Using "soft" vs. "hard" vs. "softPlus" 

Figure 9.13 shows the composite track position accuracy of Ship 4 tracking 

Fighter 4 in the network MFA centralized architecture. However, it can be shown 

that when the predictFrom option is set to be "softPlus", where all available infor­

mation is used to estimate the target positions, the accuracy improves significantly. 

The differences using "soft" and "hard" are negligible, though the "soft" is a 

little bit better than the "hard" at certain times. This is due to the fact that the 
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composite trackers are using a 6/2 window, and when a metrics scoring request 

occurs, there is only one frame in the track extension window. With only one 

additional frame, the improvements are really small. With a longer extension 

window, e.g. a 6/4 window, the "soft" option should be able to give more accurate 

state estimations than the "hard" option. 

From the view point of processing load, the "hard" option is the cheapest. 

Every time there is a metrics scoring request, it just searches through the existing 

firm decision tracks. New data association is not necessary at all. 

For both network MFA on local data and on all data, the most recent "soft" 

decisions might be changed with the remote information. Thus, whenever there is 

a metrics call, a new data association problem is set up and solved. 

The "softPlus" option is the most expensive. All unfinished frames are used, 

and with the imperfect communication link, each composite tracker may have up 

to 6 or 7 unfinished frames. All those frames are appended at the end of the 
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Figure 9.14: Network MFA on All Data and Network Tracks 

window, and an (M + p) dimensional assignment problem is set up and solved, 

where p is the number of unfinished frames. 

9.3.2 Composite Track Covariance Consistency 

The composite track covariance consistency in the imperfect communication 

link is close to that of the perfect communication link case. Figure 9.14 shows the 

covariance consistency of Ship 4 tracking Fighter 1 in the Network MFA on all 

data and network tracks. 

With the presence of random communication delays, observations associated 

with each track may be out of order. However, with a refiltering window length 

up to 20, the composite tracker is able to handle the out of order data optimally, 

and give a consistent set of state estimates. 

9.4 Cross-platform Commonality History 
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9.4.1 Centralized Architecture 

500 600 

For the centralized architecture, the ratio of non-common composite track 

numbers is shown in Figure 9.15, and the composite track state estimate differences 

are shown in Figure 9.16. 

The non-common composite track numbers at the beginning of the simulation 

are due to the fact the communication delays in the network cause track state 

messages arrive on different platforms at different times. 

The composite track state estimate differences performance achieved in the 

centralized architecture is regarded as the lower bound of all the network tracking 

architectures we propose. 

9.4.2 Network MFA Centralized 

The network MFA centralized architecture puts a centralized composite tracker 

on each platform. Observations are broadcast to all remote platforms, so compos-
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ite trackers in the network have access to all the data. However, each composite 

tracker makes its own tracking decisions regardless of the other trackers in the 

network. 

In this architecture, the composite trackers have the same track ID bank and 

no track numbering scheme is applied to correlate the tracks across the network. 

Whenever a new track initiates, the composite tracker assigns the next available 

track ID to it, regardless of what the track ID is used to represent it on the remote 

platforms. Therefore, when there is no communication delay, the composite track­

ers are still capable of using the same track IDs for the same truth object. With 

communication delays and lost data, the same truth object may be represented 

using different track IDs on different platforms. 

As is shown in Figure 9.17, the ratio of non-common composite track numbers 

stays relatively high during the entire simulation. However, the composite track 

state estimate differences defined in Section 8.4.2 are computed based on the state 

estimates for composite tracks with the same active composite track ID. Since the 

same track ID on different platforms is used to represent different truth objects, 

this metrics is not even applicable for the network MFA centralized architecture. 

9.4.3 Network MFA on Local Data and Network Tracks 

Figure 9.18 shows the ratio of non-common composite track numbers in the 

network MFA on local data and network tracks. The peak at the beginning of the 

simulation is caused by different track initiation times on different platforms. The 

non-common composite track numbers afterwards are caused by redundant tracks 

initiated on some platforms. 

Figure 9.19 shows the composite track state estimate differences in network 

MFA on local data and network tracks. 
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Figure 9.20: Network MFA on All Data and Network Tracks 

9.4.4 Network MFA on All Data and Network Tracks 

Figure 9.20 shows the ratio of non-common composite track number for net­

work MFA on all data and network tracks. The peak at the beginning of the 

simulation is lower than that of the network MFA on local data, which shows 

that initiating tracks with all data is superior to initiating tracks with local data 

only. The non-common composite track numbers afterwards are caused by the 

redundant tracks initiated on Ship 2. 

Figure 9.21 shows the composite track state estimate differences in network 

MFA on all data and network tracks. The differences are smaller than the network 

MFA on local data and network tracks before the fighters merge together. 

9.5 Communication Loading 

The Communication loading levels in all four architectures are similar to 

what's shown in Figure 8.15 to 8.18. 
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Figure 9.21: Network MFA on All Data and Network Tracks 

9.6 Conclusions and Discussion 

The metrics that measure track continuity such as spurious track mean ratio, 

redundant track ratios, track breakage, track completeness remain nearly perfect 

even with moderate communication delays and lost data; however, most other 

metrics degenerate somewhat. The centralized tracking architecture remains the 

best overall architecture except for communication loading. The delays cause non­

common composite track numbers for the Network MFA Centralized to degenerate 

significantly and this is primarily due to the lack of any mechanism to coordinate 

tracks from platform to platform. All other metrics perform well for this architec-

ture. 

In both network MFA on local data and network MFA on all data, specific 

methods were developed to ensure cross-platform commonality history metrics. 

These include track numbering schemes and track correlation for initiating tracks 

as well as data association rules that yield a consistent set of tracks N frames back. 
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Network MFA on local data and network tracks demands the lowest commu­

nication bandwidth. However, the composite trackers initiate new tracks based on 

local data only, which may cause bigger estimation errors in the initialization step, 

and tracks may not be initiated fast enough. 

Network MFA on all data and network tracks is more expensive in the sense 

of communication and processing loadings. However, it generally provides a more 

consistent set of tracks across the network. 

9. 7 Future Directions of Research and Recommendations 

1. Adaptive Push-Pull Scheme 

The network tracking system is a time-varying system. Instead of broad­

casting all message to remote platforms, the composite tracker can push the 

messages that are of interest to a particular tracker. On the other hand, the 

tracker can request information from remote trackers based on the tracking 

performance. 

2. Data Compression: Tracklets 

Currently, information passed around the network consists of observations, 

AMR.s, or track states. In the future, Tracklets [53, 31, 30] can be used for 

data compression purposes. A Tracklet is a track computed so that its errors 

are not cross-correlated with the errors of any other data in the system for the 

same apparent target. A Tracklet is like a large (typically 6-dimensional) 

measurement and is equivalent to a track based on only the most recent 

measurements, typically 6 to 30 measurements. 

3. Hybrid System 

The network architectures proposed are: network MFA centralized, network 

MFA on local data and network tracks, and network MFA on all data and net­

work tracks. In the future, instead of using one architecture in the network, 
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the tracking system can be a hybrid system that contains some combinations 

of these architectures. 

4. Biases and Registration Errors 

Future network tracking architectures should be able to estimate and remove 

sensor biases and registration errors [8]. If uncorrected, the registration errors 

can lead to large tracking errors and potentially to the formation of multiple 

tracks (ghosts) on the same target. Once estimated, the biases will be used 

to transform the measurement data. 
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Chapter 10 

INTRODUCTION 

10.1 Statement of the Problem 

The central problem in any multi-target/multi-sensor surveillance system is 

the data association problem of partitioning the observations into tracks and false 

alarms. Current methods for multi-target tracking generally fall into two cate­

gories: sequential and deferred logic. Deferred logic considers several frames of 

observations all at once in making data association decisions. The principal de­

ferred logic method used is called multiple hypothesis tracking (MHT), in which 

one uses a sliding window of size N, builds a tree of possibilities, assigns a likeli­

hood score to each track, develops an intricate pruning logic, and then solves the 

data association problem. 

Future multi-target/multi-sensor surveillance systems will provide a variety of 

feature and attribute data as well as kinematical data. However, the term Feature 

Aided Tracking includes both feature and attribute data. The potential use of the 

fused information is in determining target type and identity, assisting kinematic 

estimation of the target dynamics through maneuver detection and improved model 

selection, and aiding data association. The proposed research program is focused 

on the use of features and attributes to improve the likelihood ratio scores, and 

thus improve data association. 

There are three types of data available: 
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• Kinematical 

Measurements of the target's position and its derivatives. Examples of kine­

matical measurements are range, azimuth, elevation and Doppler. 

• Features 

Characteristics of a target from a continuous sample space. Features can be 

measured directly or computed based on a number of measured quantities. 

Examples of features include estimated target dimension, radar cross section, 

and other target signature data. 

• Attribute: 

Characteristics of a target from a discrete sample space. Examples of at­

tributes include target type, type of radar systems used by a target, and 

number of engines on an airplane. 

10 .. 2 Overview 

This research program undertook an investigation into the theory and practice 

of the use of features and attributes in the data association process. A key step 

is the derivation of generalized likelihood ratios combining both kinematical data 

and features/attributes. 

Chapter 11 explains the mathematical formulation of the data association 

problem of partitioning reports into tracks and false alarms and the likelihood 

ratio scores developed for kinematical measurements. 

For kinematical and feature measurements, Kalman filtering techniques are 

proposed to be the best. For cases when only kinematical measurements are avail­

able, the likelihood ratio calculation is presented in Chapter 11. When feature 

measurements are available, the discussion is divided into two cases: independent 
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features and features cross-correlated with kinematical measurements. Both cases 

are presented in Chapter 12. 

For attribute measurements, techniques used for attribute tracking are largely 

an issue of the nature of the available a priori information about target attributes, 

target behavior, and the attribute measurement process. Bayesian reasoning (Chap­

ter 13) and evidential reasoning(Chapter 14) are the two most important tech­

niques. 

Bayesian reasoning is a classical approach. Theoretical studies for one at­

tribute or multiple attributes are given in Chapter 13. Formal Bayesian processing, 

unfortunately, requires a degree of a priori knowledge (i.e., complete knowledge of 

transitional and a priori densities) that is difficult to obtain. Evidential reasoning 

has been proposed as an alternative to Bayesian processing by many researchers. 

Its attractiveness rests on its less stringent needs for statistical information. In 

a multi-sensor scenario, different sensors report their data in different frames of 

discernment, evidential reasoning is claimed to be able to combine multiple sen­

sor data for attribute problems. We start with one attribute under a complete 

probability model in Chapter 14, and prove the exact correspondence between ev­

idential reasoning and Bayesian reasoning. Under the circumstances when only 

partial probability models are available, the generalized likelihood ratio is derived 

instead. Further investigations of the correspondence between a generalized like­

lihood ratio and the probabilities will be carried out. We plan to apply similar 

techniques in multiple attribute situations. 

Measures of merit and performance are developed to demonstrate and evaluate 

the effectiveness of the use of features and attributes in tracking. Some commonly 

used measures of merits are: tracking (kinematical) accuracy, track continuity, 

track purity, probability of false tracks, number of missed tracks and time to detect 

a track (track initiation). 
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Simulations of one feature (range extent) and one attribute (to be determined) 

will be carried out using our multi-target/multi-sensor tracker to demonstrate the 

performance improvements obtained through the use of features and attributes. 

10.3 Literature Review 

Multiple hypothesis tracking has been popularized by the fundamental work of 

Reid [62]. These works are further discussed in the books of Blackman and Popoli 

[8], Bar-Shalom and Li [5], which also serve as excellent introductions to the field 

of multi-target tracking and multi-sensor data fusion. Poore [59] has formulated 

sensor fusion problems in terms of these multidimensional assignment problems. 

For kinematical tracking, model selection is essential to the performance. Dif­

ferent dynamic models such as the nearly constant velocity model, the nearly 

constant acceleration model, the Singer model, the 2-D turning model and the 

3-D turning model can be found in [3, 70, 69, 68, 67, 81, 9]. Standard Kalman 

filtering techniques [1, 3], square root filters [26] and IMM techniques [3, 14] are 

thoroughly investigated. Different IMM architectures that are commonly used in 

tracking systems are introduced in (28, 81, 10, 9, 19]. Bar-Sharlom [5] introduces 

the idea of augmenting the kinematical state with the feature states. 

Oliver Drummond [33] summarizes different types of measurements and de­

scribes how different gating techniques are used to eliminate unlikely measurement­

track pairs, thus aiding the data association problem. Blackman [8] gives an 

overview of the various methods used in tracking in the presence of feature and 

attribute information. 

The classical approaches based on Bayesian and maximum likelihood require 

the most detailed knowledge. The Bayesian network [25] is regarded as computa­

tionally efficient [23, 22, 35, 43, 50]. Among the various algorithms available in the 

literature, the symbolic probabilistic inference (65] is regarded as best. 
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The non-traditional techniques require significantly less information. The vot­

ing and set intersection techniques require the least a priori knowledge [8]. The fact 

that no probabilistic information is utilized makes the description of the algorithm 

very intuitive. The evidential reasoning (Dempster-Shafer reasoning) [17, 18, 16] 

requires some prior information and maintains belief measures (mass assignments) 

over multiple propositions. The implementation of evidential reasoning is rela­

tively straightforward if it is assumed that basic mass assignment information is 

available. There is difficulty with evidential reasoning if one wants the basic mass 

assignments and the resulting support and plausibility to have any relationship to 

probability. Several practical approaches are discussed in the literature for deter­

mining and combining mass values for identification problems. [17] 
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Chapter 11 

LIKELIHOOD RATIO SCORES 
CALCULATION 

The goal of the tracking problem is to determine the number of targets, which 

measurements go with which targets and which are false, (i.e., the data association 

problem), and to estimate the state of each target at some set of times given a 

sequence of measurements that emanate from that target. 

In the MHT method, a sliding window of length N is used. N frames of 

measurements (or reports) inside the window are processed together. A frame 

(sometimes called a proper frame) of data is a set of measurements which contains 

at most one observation from each target. Irrevocable decisions are made for the 

first frame of data (measurements). 

11.1 Data Association Problem Formulation 

Let Z(k) denote a frame of Mk reports {zfk}::~1 and let zN denote the cu­

mulative data set of N such sets. 

Z(k) = {ztJt:!:1 and zN = {Z(1), ... , Z(N)}, (11.1) 

The data association problem in multitarget tracking and multisensor data 

fusion is generally posed as 

M .. { P(r=ry 1 zN) 
1 

r*} 
ax1m1ze P(r ='Yo I ZN) ryE 
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where zN represents N data sets (11.1), I is a partition of indices of the data, r* 

is the finite collection of all such partitions, r is a discrete random element defined 

on r*' ')'0 is a reference partition, and P(r =II zN) is the a posterior probability 

of a partition 1 being true given the data Z N. 

A partition of the cumulative data set Z N is defined as follows. 

IN= {I(1),I(2), ... ,I(N)} where I(k) = {ik}t:'~o (11.3) 

denote the indices in the data sets (11.1). The zero index, which stands for a 

dummy report z~ is added for notational convenience in representing tracks. The 

dummy report z~ serves several purposes in the representation of missing data, 

false reports, initiating tracks, and terminating tracks. 

A partition 1 of IN and the collection of all such partitions r* is defined by 

linli -

IN -

r* -

fori= 1, · · · , n(1)}, 

0, fori¥: j 

{ 1 II satisfies (11.4)- (11.6) }. 

(11.4) 

(11.5) 

(11.6) 

(11.7) 

Here, li in (11.4) will be called a track, so that n(1) denotes the number of tracks 

(or elements) in the partition I· l'i ¥: 0 for each i in (11.4) means that a track 

can't be made up of dummy reports z~(k = 1, ... , N) only. Equation (11.6) 

can be reformulated as ik ¥: jk, fork= 1,··· ,N, where l'i = {i1,··· ,iN} and 

li = {jr, · · · ,jN }. It can be interpreted as saying that no observation can belong 

to two tracks. 

Given a partition "Y E r*, 

(11.8) 
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where 

(11.9) 

(11.10) 

The partition --y0 of the data in which all reports are declared to be false reports 

is defined by 

Z - {Z - ( 1 k-1 k k+l N) I . - 1 M . k - 1 N} -y0 - O···OikO···O = Zo, • • • 'Zo 'Zik' Zo '· • • 'Zo 'tk - '· • ·' k, - '· • ·' · 

(11.11) 

The independence assumptions can be summarized as: 

p(zN I r = 1) = n"YiE"Yp(Z"Yi I r = 1) (11.12) 

p( z"Yi I r = 1) = p(Z"Yi I r = w) 

for all 1i E 1 and 1i E w, such that 1, w E f* (11.13) 

Pr(r = --y) = Cil~li) G(1i) (11.14) 

where C is a constant independent of the partition 1 E f* and G is a probability 

distribution on the set of tracks 1i in (11.4). We also note that since for each 

1 E f*, Z-y corresponds to a partition of the data into n( 1) feasible tracks of 

data, assumption (11.12) says that the n(1) tracks of data, {Z-yp ... , Z"Ynb)}, are 

independent if 1 is the true partition. Of course, there may be dependence between 

the reports within a single track. Equation (11.13) further states that these tracks 

are independent across all partitions of the data. 

Based on Bayes' formula, 

P(r = 1 1 zN) = PciN)P(zN 1 r = 1)Pr(r = 1) 

- p(iN) [ il~li) p(Z-yJ] Pr(f = 1) 

157 

(11.15) 

(11.16) 

(11.17) 



To derive the assignment problem, observe that for "Yi = ( i1 ···in) as in (11.10) 

and the reference partition (11.11), the expansion (11.17) can be written as 

(11.18) 

where 

L . . _ p(Zi1···iN )G(Zi! ···iN) 
~l'"~N - N ' 

rrk=l,iH~O p( Zo···OikO···O)G(Zo ... oiko ... o) 
(11.19) 

Here the index ik in the denominator corresponds to the kth index of zit···iN in the 

numerator. 

Next define 

(11.20) 

so that 

(11.21) 

Define a 0 - 1 variable 

. . _ { 1 if ( i b ... , iN) E "'(, 
ZH·"~N- . 

0 otherwise. 
(11.22) 

An equivalent characterization of a partition is that it is a solution to the equations 

(M~, ... ,Mk-I,Mk+I, ... ,MN) 

L Zi1 ••• iN = 1 for ik = 1, ... , Mk and k = 1, ... , N. (11.23) 
( i1 , ... ,ik-1 ,ik+I , ... ,iN )=(0, ... ,0) 
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The data association problem (11.2), formulated for tracking, can be further 

posed as an N -dimensional assignment problem. 

Mt MN 

Minimize 2.: · · · 2.: ci 1 .. ·iN Zi 1 ···iN 

it=O iN=O 

M2 MN 

Subject To: 2.: · · · 2.: Zi1 ... iN = 1, i1 = 1, ... , M11 
i2=0 iN=O 

Mt Mk-1 Mk+l MN 

2.: . • • 2.: 2.: • • . 2.: Zi1 .. ·iN = 1, (11.24) 
it =0 ik-1 =0 ik+l =0 iN=O 

for ik = 1, ... , Mk and k = 2, ... , N- 1, 
M1 MN-1 

2.: ... 2.: Zi1· .. iN = 1, iN= 1, ... 'MN, 
i1=0 iN-1=0 

11.2 Likelihood Ratio Calculation 

From the discussion in the previous section, computation of the likelihood ratio 

Lit···iN (or the score Ci1 ···iN) is an essential part of the N -dimensional assignment 

problem. In this section, recursive formulas are derived which fit in the sliding 

window techniques perfectly. 

Denote the kth set of data reports as Z(k) = {zf}:':~1 and the cumulative set 

of k such data sets as zk = {Z(1), ... , Z(k)} so that zk = Z(k) U zk-1. The 

customary notation here [62] is to define Ok = {Oj I j = 0, 1, ... , Ik} as the set 

of hypotheses about the feasible partitions of the cumulative set of measurements 

zk into tracks and false alarms. In the notation of the previous section, each nj 

represents the event that a partition 'Yk E rk* is true. (Here, the dependence of 

1 on the number of scans k has been explicitly included as a superscript.) The 

hypothesis 0~ is that all reports are false. Let 0~~ 1 denote that specific hypothesis 

in nk-1 that produces n~, and let 1/Jz(k) denote the hypothesis that indicates the 

specific status of all targets postulated by 0~~ 1 at the scan time tk and the specific 
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origin of all reports received at scan time tk. Thus 

0~ = '¢L(k) u 0~~1 and zk = Z(k) u zk-1 (11.25) 

Using Bayes' rule, one can write 

P(flf!Zk) = p(Z(k)lfl~, zk-1 )P('Ijl,(k)lfl~~ 1 , zk-1)P(fl~~1 izk-I) [P~f;:;)] 
(11.26) 

Thus, the data association problem posed in (11.2) can be reformulated using 

a recursive formula 

P( Of 1 zN) = p( z ( N) !Of, zN -l) P( 1/Jz ( N) 10~ - 1, zN - 1) [ P( o~ -1 lZN - 1)] 
P(OfjZN) p(Z(N)IOt', ZN-1)P(¢0(N)j0~-1 , ZN-1) P(0~-1 jZN-l) 

{11.27) 
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For ease of reference, we tabulate the following list of definitions: 

P; is the probability of termination on scan k; 

PJ is the probability of detection on scan k; 

zt is measurement ik from scan k; 

ok is the number of measurements on scan k 

originating from previously established tracks; 

vk is the number of new targets detected on scan k 

with an associated probability mass function J.t~(vk); 

fk is the number of false alarms on scan k 

with an associated probability mass function J.t'(Jk); 

= vk + fk + ok, is the total number of measurements on scan k ; 

is the number of targets that were extended from scan k- 1 to scan k; 

v~ 
~ 

is the number of terminated (and nondetected) targets on scan k; 

= { 1, if zf is a false alarm; 
0, otherwise; 

{ 
1 if zf is a new target; 

= o: otherwise; 

{ 
1 if zf belongs to an existing track; 

= o: otherwise; 

{
1 i = j; 

= o: otherwise. 

(11.28} 

Thus, Tk - xk - ok is the number of missed detections on scan k (non-terminated 

target but not detected), and the total number of targets that exist after scan k is 

rk+l = Tk- xk + vk. In addition, let ~(zt jnf' zk-l) represent the likelihood that 

the report zt originated from a previously established target, p~(zt lnf, zk-l) rep-
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resent the likelihood that the report originated from a new source; and, pj(zfk I Of, zk-t) 

represent the likelihood the report represents a false alarm. 

Based on the detailed derivation in Appendix A, we arrive at the following 

expression for the likelihood ratio: 

(Ak)fk (A~lvk 
If it is further assumed that ttj(Jk) = exp( -..\j)7t- and tt~(vk) = exp( -..\~) v 1 

are Poisson probability mass functions(for k = 1, ... , N), then 

The above equation can be formulated equivalently as 

where Liti2'"iN is the likelihood ratio of the track zil·"iN = { zll' ... 'z~} . 

Define 

(11.31) 

{
P;, if track zil·"iN terminates at scan k; 

Pi = (1 - P;)(1 - Pt), if track Zi 1 ... iN has a missed detection on scan k; 
1, otherwise. 

(11.32) 
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Then 

provided at least two of the indices in { i1, i2, ... , iN} are nonzero and 

with 

Lo ... oiko ... o = 1 provided {0, ... , 0, ik, 0, ... , 0} E "'f 

The likelihood ratios and the scores can be written recursively as: 

N 

Lili2·"iN = II Lik = Liti2·"iN-1 LiN 
k=l 

N 

Cili2"'iN = E Cik = Cili2"'iN-1 + CiN 
k=l 

(11.34) 

(11.35) 

Whenever a new scan of data (indexed by scan k + 1, k = 1, 2, · · ·) is brought 

into the sliding window for processing, one can recursively update Li1 ···ikik+I or 

Ci1 ... ikik+l by calculating Lik+l or cik+l using (11.34) or (11.35) respectively. 

11.3 Kinematical Measurements 

Consider the probability density function pf(zfk 1Zi1 ... ik) that an observation 

zt emanates from the track Zi1 ···ik. If the observation zfk contains only position 

or velocity information of the target (i.e. kinematical measurements only), the 

dynamics of the target is modeled by a discrete state transition equation. 

{11.37) 
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where zk is the state vector at time tk, Xk usually contains position, velocity and 

acceleration information about the target. The measurement equation is 

(11.38) 

A Kalman filter (in Appendix B) is used to recursively estimate the state vec­

tor Xklk based on the cumulative observation set zk = {z 11 • • • , zk}· For a linear 

system, where, Jk_ 1(·) and hk(·) are both linear functions, and under the assump­

tion that the plant noise wk and the measurement noise Vk are white Gaussian, 

then one can conclude that 

if p(xk-1lzk-1
) f'..) N(zk-llk-1; Pk-IIk-1), then p(zklzk) f'..) N(xklk; Pklk). 

(11.39) 

which means that for a linear system, the Kalman filter is optimal in the Minimum 

Variance {MV} sense. For a nonlinear system, the extended Kalman filter (in 

Appendix B) is used in state estimation which is optimal in the Linear Minimum 

Variance {LMV} sense. 

11.3.1 Dynamic Models 

For kinematical tracking, model selection is essential to performance. The 

most commonly used dynamic models in the literature are: 

• Nearly Constant Velocity Model (NCV) 

The NCV model is a white noise acceleration model, in which the acceleration 

is assumed to be zero mean white Gaussian [5]. This is the most popular 

dynamic model in tracking. Proper settings of the noise levels is an important 

part of model design. Small process noise will model the air turbulence, winds 

aloft changes and so forth, while a somewhat larger process noise is used to 

cover slow turns as well as small linear acceleration so as to ease the burden 

of modeling a broad range of maneuvers. 
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• Nearly Constant Acceleration Model (NCA) 

In the NCA model, changes in acceleration are modeled by a zero mean white 

noise. [5] 

• Singer Model 

In the Singer model [70, 69, 68, 67], the acceleration is assumed to be a 

first-order Markov process. 

• Nearly Constant Turn Rate Model 

The nearly constant rate turn model is usually formulated in the horizontal 

plane (2-D space) [9]. The turning rate is assumed to be a Gaussian random 

variable, where the variance models the fluctuation in the turn rate. The 

model is nonlinear. 

11.3.2 Likelihood calculation for a single Kalman Filter 

In the likelihood ratio score calculation, it is always assumed that zt obeys a 

normal distribution with mean Zklk-l and with covariance matrix Sk, as discussed 

in Appendix B. Mathematically, 

(11.40) 

or 

p:(z~. JZ;, ... ;.) = JI2~Ski exp { -~(z~ - Zklk-d s;;t(zf. - Zk!k-d} (11.41) 

Similarly, the probability density function P1(zt IZ0 ... 0ik) that an observation 

zt is a false alarm is assumed to be a uniform distribution over the entire surveil­

lance region. 
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11.3.3 Likelihood calculation in IMM 

In situations where a target abruptly performs maneuvers and changes its 

type of movement, the use of one particular type of Kalman Filter will not lead to 

good estimates. The interactive multiple model (IMM) algorithm is now regarded 

as the superior technique for tracking maneuvering targets. The IMM algorithm 

is decision-making free, it undergoes a soft switching of models and can give good 

estimates even at the critical maneuver periods. A detailed discussion of the IMM 

algorithms can be found in appendix B.4. 

A unique feature of the IMM approach is the manner in which the state 

estimates and the covariance matrices from these multiple models are combined 

according to a Markov model for the transition between target maneuver states. 

The total number of target maneuver models is defined to be r and is typically 

around three. 

The likelihood p:(zfk IZit···ik) in the IMM architecture is the weighted sum of 

likelihood functions A{ for each individual filter as in equation (B.33). 

r 

p:(zfkiZil· .. ik) = L p:(ztlm{_l, zil·"ik-1) p(m{_l,zil ... ik_J 
j=l 

r 

= L J-t{_lA{ 
j=l 

- ~ j 1 { 1 ( k Aj )'(Sj)-1( k --j )} - L-J f.lk-1 J . exp -2 z;. - zkik-1 k z;.- zkik-l 
j=l j21rS~I 

(11.42) 
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Chapter 12 

FEATURES 

12.1 Measurement Space Decomposition 

Chapter 10 describes the mathematical formulation of the data association 

problem and explains the likelihood ratio scores used. With the presence of a 

variety of feature and attribute data as well as kinematical data, the proper fusion 

of feature and attribute information into the likelihood ratio scores (equation 11.36) 

can improve the data association problem, and thus improve the performance of 

the surveillance system. 

Denote the entire measurement space to be Z, then 

with Z 0 the kinematic (geolocational) measurement space, zF the feature mea­

surement space, and Z A the attribute measurement space. 

Features are characteristics of a target that are from a continuous sample 

space. Features can be measured directly or computed based on a number of 

measured quantities. Examples of features include estimated target dimension, 

radar cross section, and other target signature data. Due to the fact that features 

are similar to kinematic measurements, they can be processed in much the same 

way, i.e., using filtering and estimation techniques. 
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12.2 Features Independent of Kinematic Measurements 

In cases when feature measurements are statistically independent of kinemati­

cal measurements, separate Kalman filters can be used for kinematical and feature 

data. Suppose the feature state vector at time tk is denoted by xf. The dynamic 

behavior of the feature can be modeled by the feature state dynamic equation: 

(12.1) 

where Fk_1 is the state transition matrix for feature state vectors, and the noise 

term wk-1 models uncertainties in the model. For static features, Fk =I, for V k. 

Denote the feature measurements at time tk as zKk E Z F. The measurement 

equation has the form: 

(12.2) 

With an initial state estimate x[ and covariance matrix P 010 , one can initiate the 

Kalman filter to estimate x~k based on the feature measurements { zfo0
, • • • , zKk}. 

For track extension, if the measurements taken in different spaces are statistically 

independent, then the probability in equation 11.36 can be rewritten as 

(12.3) 

Similarly, 

(12.4) 

As per the discussion on kinematical tracking (chapter 11), the likelihood 

for feature measurements obeys a Gaussian distribution centered at the predicted 

feature measurement with a covariance that is the innovation covariance matrix 

given in each iteration of Kalman filtering. 

(12.5) 
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or 

F~r,( FklzF ) 1 { 1 ( Fk --F )'s-1( Fk AF )} (12 6) Pt zik i1 .. ·ik = v'l21rSkl exp -2 zik - zklk-1 k zik - zklk-1 · 

The probability density function pfk ( zt I Zf. .. oik) that an observation z~k is a false 

alarm is assumed to be uniformly distributed over the entire feature space. 

12.3 Features Cross-Correlated with Kinematical Measurements 

When feature measurements are cross-correlated with kinematic measure-

ments, they should be processed as a single vector. The state vector used in 

Kalman filtering is a concatenation of the kinematic states and features states. 

The state equation and the measurement equation should include both kinematic 

and feature information. 

The likelihood in equation 12.3 will now be treated as 

(12.7) 

12.3.1 Using a Single Kalman Filter 

If only one dynamic model is used for kinematic and feature data, then 

where z~uFk is the concatenation of kinematic and feature measurements, z~~~~ is 

the predicted measurements (kinematic and feature), and S k is the corresponding 

innovation covariance matrix. 

This processing is dealing with a higher dimensional space, thus it is compu­

tationally more intensive. 
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12.3.2 IMM Approach I 

As discussed in Chapter 11, when processing kinematical measurements in 

situations where a target abruptly performs maneuvers and changes its type of 

movement, the use of one particular type of Kalman Filter will not lead to good 

estimates. The interactive multiple model (IMM) algorithm is currently regarded 

as the best technique for tracking maneuvering targets. 
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Figure 12.1: Structural diagram for IMM with features: Approach I 

When the Kalman state vector contains kinematic states augmented with 

feature states, one can still use the IMM approach on the augmented state vector. 

The state estimates and the covariance matrices from selected multiple models 

(for both kinematic and feature dynamics) are combined according to a Markov 

model for the transition between target maneuver states as before. The structural 

diagram is shown in Figure 12.1. 
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12.3.3 IMM Approach II 

XG2 

klk 

Xar 
k·llk-1 

Model 
Probability 

Update 

Ut 

Parameter 

Estimation 

Figure 12.2: Structural diagram for IMM with features: Approach II 

Generally, a single state transition equation for feature data should suffice, 

since we have better a priori knowledge of target feature dynamics. In this case, 

an IMM architecture as shown in figure 12.2 is proposed. There, only the kinematic 

states are combined over multiple models according to a Markov transition matrix. 

The feature states are estimated using parameter estimation techniques. 
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Chapter 13 

ATTRIBUTES: BAYESIAN REASONING 

Attributes are characteristics of a target that come from a discrete sample 

space. They are generally independent of the kinematical and feature measure­

ments. Attribute tracking can be described as the process of combining informa­

tion collected over time from one or more sources to refine our knowledge about 

possibly evolving attributes of a target or group of targets. 

Techniques used for attribute tracking are largely an issue of the nature of the 

available a priori information about target attributes, target behavior, and the 

attribute measurement process. 

Classical approaches based on Bayesian and maximum likelihood require the 

most detailed knowledge. Complete legitimate probability models for both the a 

priori and transitional densities are a prerequisite for the application of Bayesian 

processing. Maximum likelihood processing only requires a legitimate probability 

for the transitional density, with the assumption of a uniform a priori. 

13.1 Single Attribute 

One static attribute denoted by Xi E X is considered. When the full prob­

abilistic model is known, including P(xi), the a priori distribution, and p(zlxi), 

which is called the transitional distribution of observation z given truth xi, Bayesian 

reasoning is typically denoted as 

(13.1) 
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Assume that all the observations are statistically independent, otherwise, one 

needs to pre-whiten the observation stream as explained in (8]. For the probability 

term in (12.3) associated with attributes, 

pf(zfkiZit .. ·i,J =pf(zfklzf1 ,··· ,zfk-=!) = Lp(zfklxi) P(xilzf1 ,··· ,z~-=!), (13.2) 
Xi EX 

where p(zt I xi) is a transitional probability that depends on the measurement pro­

cess modeling procedure. The probability p(xilzf1, · · · , zfk-=!) can be computed 

recursively using: 

P( ·I ~ . . . ~-l) = p(z~-=! I xi) P(xilzh, · · · , zt-=;) (13.3) 
x, z,t' 'z,k-l "" ( k-11 ) ( 1 1 k-2)' 

L,.,xmEX p zik-1 Xm p Xm zit' •. • 'zik-2 

with initialization 

P( ·I ~) = p(zf1 lxi)P(xi) 
x, z,l L:xmEX p(zftlxm)P(xm). 

(13.4) 

For the probability term in (12.4) associated with attributes, 

pf(z~IZo ... Qik) = pf(zfk) = L p(zfklxi) P(xi)· (13.5) 
Xi EX 

13.2 Multiple Attributes 

Suppose r attributes are considered at the same time, and 

xi. E Xi i = 1 · · · r 
J ' ' ' 

13.2.1 Case 1: Statistically Independent 

If the r attributes are statistically independent, 

(13.6) 

and the measurement zt can divided into r statistically independent components 

z~ = [ z~ (1) · · · z~ (r) ]t 
'l.k 'l.k ' ' 'l.k 

p(z~) = p(zt (1)) · · · p(zt (r)) 
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such that 

p = 1, · · · , r (13.9) 

(13.10) 

where c = p( zt) is a normalizing constant. 

The probability term associated with attributes in the likelihood function 

(12.3) can be written as: 

= 11 P: ( zt (p) lzfl' · · · ' zt-=!) 
p 

= 11 { 2: P:(zt(P)I~p)P(~Pizfl, · · · ,zfk-=~)} 
P x'l! EXP 

Jp 

for which P(~Piz}1 (p), · · · , zfk-=~ (p)), p = 1, · · · , r can be computed recursively as 

in (13.3) for the single attribute case. 

The likelihood for false alarms (12.4) can be written 

Th al. · t t '11 1 t' h l'k l'h d · p~(zfkiZi1 ... ik) e norm 1z1ng cons an c w1 cance upon compu tng t e 1 e 1 oo rat1o k ( k I Z ) . 
Pt zik O···Oik 

From (13.11) and (13.12), it can be concluded that if the attributes are sta-

tistically independent, then one can compute the likelihood of each attribute indi­

vidually, and multiply them together, that is 

I{ ( zf.l Z;, ... ;.) = rr p~• ( zf. (p) I Z;, ... ;.) 

P~(zfkiZo···Oik) p=l P;P(zt(P)!Zo ... oik) 
(13.13) 
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where 

{13.14) 

13.2.2 Case II: Statistically Correlated 

If the attributes x}
1

, XJ
2

, • • • , xjr are statistically correlated, or each component 

of the measurement z is dependent all all the attributes, then they needs to be 

processed as a whole. 

When the full probabilistic model is known, including P(x}
1

, XJ
2

, • • • , xjr), the 

joint a priori distribution, and p(zlx}
1

, XJ
2

, • • • , xjJ, which is called the transitional 

distribution of observation z given truth x}
1

, XJ
2

, • • • , xjr, Bayesian reasoning is 

typically denoted as 

The probability term in (12.3) associated with attributes is 

(13.16) 

where p( zt lx}
1

, XJ
2

, • • • , xjr) is a transitional probability that depends on the mea­

surement process modeling procedure. The a posterior probability 

P( I 2 r 1 I k-I) b t d · 1 · Xi1 , xh, · · · , xir Zi1 , • • • , zik-t can e compu e recursive y using: 

P(x}1 , x;2 , • • • , xjJzf1 , • • • , zt-=.~) = 
p(zt-=.~ lx}1 , XJ2 , • • • , xjr) P(x}1 , XJ2 , • • • , xjr lzl1 , • • • , zt-=.;) 
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with initialization 

(13.18) 

The probability term in (12.4) associated with attributes is 

(13.19) 

13.2.3 Case III: General Case 

Generally, among the r attributes, some may be statistically independent, and 

some maybe cross correlated. One can divide them into subsets of attributes, such 

th t th b t ( · { 1 } { rt } { T1 +1 T2 } { TM+1 T(M+1) }) a ose su se s z. e. x3-1 
, • • • , x3. , x3- +1 , • • • , x3- • • • x3- 1 , • • • , x3. r1 r1 r2 rM+ r(M+l) 

are mutually independent. Mathematically, 

P( 1 2 r ) P( 1 ) P( rt )P( rt+1 r2 ) P( rM+1 T(M+l) ) X· X· • • • X· ::::: X· • •• X· X· ••• X· • • • X· • • • X· 
)1' )2' ' )r )1 Jr1 Jr1 +1' ' Jr2 )rM+I' ' Jr(M+l) 

(13.20) 

with r{M+1) = r. The likelihood ratio can then be decomposed into several smaller 

components. 

k( k IZ ) Tt kj { k IZ ) M krj+l,.·· ,r(j+l) ( k I ) 
Pt zik il ... ik = II Pt zik il ···ik II Pt zik zil"'ik 

~(zt!Zo···Oi~c) ·-1 p:i(z~ IZo···Oi) ·-1 pkri+l,···,ru+I)(z~ IZ . ) 
J- SJc k J- t Sk O···O~k 

(13.21) 

13.3 Implementation 

13.3.1 Single Attribute 

For a single attribute, the computation of likelihood ratio is relatively simple. 

Each potential track will keep a vector of a posteriori probabilities P(xiiZi
1 

... i~c), 

for i = 1, · · · , I X I· Each time a new frame of data is brought into the window, the 

vector is updated according to equation (13.3). 
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13.3.2 Multiple Attributes 

When multiple attributes are present in the tracking system, the computation 

is much more complicated. The Bayesian Network (BN) is used to model or to 

encode probabilistic relationships among distributions so that one can compute 

the association likelihood as well as a posteriori probabilities efficiently. 

The BN is an annotated acyclic directed graph, each node in the graph is a 

random element, and the arc between two nodes indicates a potential stochastic 

dependence between the two random elements by the two nodes. The qualitative 

relationships represented by incoming arcs to a state node is quantified as a condi­

tional probability distribution. For our tracking system, the BN is used to relate 

the target attribute states to measurements at the sensors. 

In addition to the convenient and flexible representation, a major benefit of 

using BNs is the existence of powerful probabilistic inference algorithms developed 

recently. The symbolic probabilistic inference (SPI) algorithm is regarded as the 

most flexible and efficient. 
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Chapter 14 

SINGLE ATTRIBUTE: DEMPSTER-SCHAFER 
REASONING 

Non-traditional techniques of attribute tracking require significantly less in­

formation. Those that require the least a priori knowledge are the voting and set 

intersection techniques. The fact that no probabilistic information is utilized makes 

the algorithms very intuitive. The set intersection approach is really a process of 

elimination, while the voting approach is a process of inclusion. 

Evidential reasoning (Dempster-Shafer reasoning) requires little more informa­

tion than set intersection and voting techniques and can be considered a weighted 

version of them. With proper settings, evidential reasoning is closely related to 

probabilities. 

14.1 Complete Probability Models 

In a full probabilistic model, it is possible to choose the evidential masses 

with an exact correspondence between evidential reasoning and Bayesian reason­

ing. In this case, the a priori distribution P(xi), and the transitional probability 

(likelihood) p(zlxi) for all Xi E X are known. 

14.1.1 Mass Assignment 

• A Priori Mass Assignment 
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Under a complete probability model, the a priori focal elements Xi are sim­

ply the singletons xi E X for which P(xi) f= 0. The basic a priori mass 

assignment is: 

(14.1) 

Denote the frame of discernment as 8, then 

(14.2) 

• Transitional Mass Assignment 

The procedure for transitional basic mass assignment mz ( ·) is more compli­

cated. It depends on the observation z. 

1. Order the singletons Xi in descending value according to the likelihood 

function lz(xi) = p(z!xi) so that 

where M is the cardinality of the set X. 

2. Define the sequence of scaled likelihood values: 

lz (xi) 
{rl ~ · · · ~ rM I ri = lz(xt)} 

(14.3) 

(14.4) 

3. Let P ~ M be the cardinality of the set of r values in which repeated 

values have been discarded. This set defines a sequence of unique values 

4. Define the P ~ M telescoping sets }j ~ 8 

lz(xi) 
}j = {xillz(xl)~qj} 

Note that it is the nature of these telescoping sets that 

xi E Yk implies Xi E }j, Vj > k 
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(14.6) 
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5. Assign mz(lJ) 

mz(lJ) = {qj- qj+b if j < P 
qp, if j = p 

(14.8) 

so, 

1 (14.9) 

Based on the telescoping nature of lj and the transitional mass assignment 

described above, the following formulas can be derived. 

(14.10) 

(14.11) 

(14.12) 

14.1.2 Mass Combination 

The a posterior mass is computed by combining the a priori mass and the 

transitional mass using Demspter's rule of combination (Appendix C.1). 

(14.13) 

Since all the focal elements in the a priori mass assignment are singletons, all 

the focal elements in the a posteriori mass assignment are singletons as well. 

Given a sequence of observations { zf1, · · · , zfN, · · · } , one can start by combin­

ing the a priori mass function mx(xi) and the transitional mass function mz1 (lj1
) 

based on the first measurement zl
1 

using formula (14.13). Call that mxlz(Xi)· 
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Then we can recursively combine the mass functions mxlz1 ,. •. ,zN-l (Xi) and mzN (YjN) 

based on the N-th observation z~ using 

(14.14) 

The generalized likelihood function is constructed using the a posteriori mass 

function instead of the a posteriori probability. 

P:(zfk IZi1 .. ·ik) = P:(zt lzi\, · · · , zfk~~) = L p(zfk lxi) mxlzt,. .. ,zk-1 (xi) 
Xi EX 

The generalized likelihood function for false alarms is now formulated as: 

P:(zfk IZo···Oik) = p:(zfk) = L p(zt lxi) mx(xi) 
Xi EX 

Thus, the generalized likelihood ratio is 

P:(z~ IZi1···ik) 
Pf ( zfk I Zo ... oik) 

l:xiEX p(zfk I xi) mx!zt,··· ,zk-1 (xi) 
l:xiEX p(z~ lxi) mx(xi) 

(14.15) 

{14.16) 

(14.17) 

14.1.3 Correspondence Between Bayesian and Evidential Reasoning 

Under a complete probability model with the mass assigned as above, it can 

be proved using mathematical induction that evidential reasoning is exactly the 

same as Bayesian reasoning. The generalized likelihood ratio equals the traditional 

likelihood ratio, which can be further reduced due to the fact that the a posteriori 

mass and the a posteriori probability are the same. 

{14.18) 
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Fork = 1, according to equation 14.13 

1 
mxlz(xi) =

1 
_"' L mx(Xj)mz(Yk) 

Xj ,Yk IXinYk=xi 

_ l:xj,YkiXinYk=xi mx(Xj)mz(Yk) 

-1- l:xj,Yk!XjnYk=0 mx(Xj) mz(Yk) 

_ l:x;,YkiXjnYk=xi mx(Xj)mz(Yk) 

- l:xj,Yk!XjnYk:f:0 mx(Xj) mz(Yk) 

_ mx(xi) l:YklxinYk:;t0 mz(Yk) 

-l:xi mx(xj) l:YklxinYk:f:0 mz(Yk) 

mx(xi)lz(xi) 
-=-------:--

l:x· mx(Xj)lz(Xj) 
J 

P(xi)p(z}1lxi) 

l:xi P(xj)p(z}1 1Xj) 

=P(xilz) 

If for k - 1, it is assumed that 

then fork 

l:xj,YkNIXjnYkN=xi mxlzl,. .. ,zN-1 (Xj)mzN (Y() 

1- l:xi,YkNIXjnYkN:::::0 mx!z1,··· ,zN-1 (Xj)mzN (Y() 

mxjzt,···,Zk-1 (xi) l:YflxinYf:;t0 mzN(Y() 

l:xi mxjzt,···,zk-1 (xj) L:YflxinykN:;t0 mzN(Y() 

mxlzb ... ,zk-1 (xi)lz(xi) 
L:xj mxjzt,·",Zk-1 (Xj)lz(Xj) 

p(z~ lxi)P(xi lzf1 , • • • , zfk-=~) 

l:xi p(z~ lxj)P(xilzf1 , • • • , zfk-=~) 
=P(xilzf1 , • • • , zt) 

(14.19) 

(14.20) 

(14.21) 

This completes the proof that Dempster-Schafer reasoning is identical to 

Bayesian reasoning if the recommended procedure for basic mass assignment under 

a complete probability model is followed. The combined a posteriori mass function 

mxlz1,. .. ,zk (xi) is just the a posteriori probability. 
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14.2 Partial a Priori Probability Models 

When only partial prior probability models are available, that is, the a priori 

focal elements are J subsets Xi ~ 8 with P- distribution P(Xi) (Appendix C). 

The traditional Bayesian reasoning method won't work. In order to be able to 

use Bayesian reasoning techniques, one needs to make assumptions about mass 

distributions within each P(Xi)· One feasible assumption is that the mass is 

distributed uniformly within each Xi, thus 

P(xi) = L (14.22) 
j I XiEXj 

where I Xi I is the cardinality of the set Xi. If the actual distribution is not uniform, 

the assumption might introduce huge errors to the tracking system. However, 

evidential reasoning techniques don't need to make those assumptions. 

The a priori mass assignments are straight forward: 

mx(X) = {P(Xj), for X. Xi is a focal element 
0, otherwise 

(14.23) 

Since the complete transitional probability model is available, one can use the 

recommended transitional mass assignment as described in the previous section 

for mz(Yk)· The mass combination is done according to Dempster's Rule: 

(14.24) 

Again, we can recursively combine the mass functions of mxlz1 , ... ,zN-l (Xi) and 

mzN (~N) based on the N-th observation z~ by 

N 1 "" mx!zl, ... ,zN-l,zN(Xi ) =-1-- ~ 
-/'£ 

Xj,YkNIXjnYf =X[" 

""= (14.25) 
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The difference is that now the focal elements of mxlz(·), · · · , mxlz1 ,···,zN_1 ,zN(·), · · · 

are not singletons any more, they are just subsets of e. 

According to the discussion in Section ( 6.1), the generalized likelihood function 

associated with the attribute term in equation {12.3) can be constructed as follows: 

p(ztiXi) = L p(zfklx). 
xEXi 

L p(zfkiXi) mx!z1, ... ,zk-I {Xi), 
Xi EX 

(14.26) 

Here, p: ( zfk I Zi1 ... ik) does not have the traditional meaning of a probability any 

more. 

14.3 Partial Transitional Probability Models 

Under a partial transitional probability model, p(Zjlxi), for any i = 1, · · · , m, 

j = 1, · · · , ni, Zj ~ Z are given, where Z is the entire attribute measurement 

space. One can not compute the a posteriori mass function mxlz1 , ... ,zk (Xi) recur­

sively as explained before. 

14.3.1 Approaches to Computing A Posteriori Mass 

Blackman's book [8] recommends the following two approaches to compute 

ffixlzt,· .. ,zk (Xi): 

• Power set approach 

Define the state of nature to be that attribute type Xi generates a measure­

ment that is in Zj. Thus, the total number of possible states are IJ:f=1 nj. The 

power set approach assumes uniform a priori distribution of all the states of 

nature. For each subspace Z(k) of Z, the approach considers all the possible 

states and defines mxlz(Xj(k)IZ(k)), for j = 1, · · · ,jk. The subspace Z(k)'s 

are generally a partition of Z, and equals the set intersection of certain Zj's. 
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• Typical Sequence approach 

The concept of a typical sequence is defined in terms of a J-element partition, 

Ui, given the true target attribute Xi· 

The probabilities of the event partitions aili are 

For n repeated independent trials, the elements aili of Ui form sequences of 

the form 

{ aili occurs n3 times in a specific order} 

with the probability of each sequence given by 

where n1 + · · · + nJ = n. 

Pnt ••. pnJ .•• pnJ 
lli jji Jli 

The sequence is called typical for Xi if n3 ~ nPili. All other sequences are 

called rare. 

In our problem of a partial transitional probability model, the a3 's are just 

subspace Zj's. Thus, the a/s are not necessarily disjoint. Given a measure­

ment z~c, heuristic methods are developed to choose the a3 such that z~c E a3 

and maximizing the typicality of the given measurement sequence z1, • • • , ZN. 

Thus, the typical sequence approach computes the typicality of a given se-

quence of measurements assuming given attribute xi, fori= 1, · · · , m. The 

a posterior focal elements and the corresponding mass assignments are all 

based on that. 
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14.3.2 Generalized Likelihood 

In partial transitional probability models, the generalized likelihood function is 

not even determined. We can only find the maximum and minimum of a generalized 

likelihood: 

= L { {zi~~zi p(Z!Ixi)} { L mxlz11···,zk-1 (Xj)}} 
XiiXiEX p lk p Xj!XiEXj 

(14.27) 

(14.28) 

Again, the correspondence between pf(z~ 1Zi1 ... ik) and the probability theory 

is uncertain. 
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Chapter 15 

SIMULATION: RANGE EXTENT 

Range extent is a feature provided by modern surveillance systems. It is the 

length that the target is projected onto the range direction. 

For simplification, the following 2 D problem is considered. A Cartesian 

East-North system is fixed at the sensor location. The sensor measurements are 

range ( r), azimuth (a), Doppler (f), and range extent (d). The target is not 

regarded as a point target anymore. It is assumed to be a rectangle of dimension 

W x L. Target velocity is assumed to be parallel to the long side L (Figure 15.1). 

N 

r 

s E 

Figure 15.1: 2-D measurements 

15.1 Problem Formulation 

A nearly constant velocity model is used to describe the target's dynamics, 

and the target state at time tk is chosen to be xk = [xk, Xk, Ykdik]T. Given an 
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additional feature measurement (range extent), the measurement vector is zk = 

[rk, ak, rk, dk]T. The dynamic state vector is augmented with two feature states, 

width (W) and length (L ). So, xk = [xk, Xk, Yk, Yk, Wk, lk]· The state space is 

modeled by 

Xk+t = FkXk wk, (15.1) 

Zk = h(Xk) + Vk, (15.2) 

where 
1 Lltk 0 0 0 0 
0 1 0 0 0 0 

Fk= 
0 0 1 Lltk 0 0 

(15.3) 
0 0 0 1 0 0 ' 
0 0 0 0 1 0 
0 0 0 0 0 1 

and wk, vk are white Gaussian noise with zero mean. The covariance matrices are 

Llt~ 
0 0 0 0 Qxg 

Llt2 
k 

Qxfltk 0 0 0 0 QxT 
Llt3 

Qk =E[wkw~] = 0 0 k 0 0 Qy3 

Llt2 

0 0 k 
Qyfltk 0 0 Qy-2-

0 0 0 0 € 0 
0 0 0 0 0 € 

and 

[a; 0 0 0 l T 0 a~ 0 0 
Rk =E[vkvk] = 0 0 a; 0 

0 0 0 aJ 
In the first matrix, Qx, Qy are parameters that indicate noise levels in the NCV model 

and e is some small number that one sets to make sure Qk is positive definite. In the 

second, a;, a~, a; and aJ are measurement error variances that are decided by sen-
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is nonlinear: 

hr(Xk) = Jx~ + y~, 
Xk 

ha(Xk) =arctan(-) 
Yk 

h·(X ) = XkXk + YkYk 
r k ./ 2 2' v xk + Yk 

hd(Xk) = Wk sin fJk + lk cos fJk, 

Xk Xk 
where (}k =arctan(-. ) -arctan(-). 

Yk Yk 

15.2 Observability Problem 

(15.4) 

(15.5) 

(15.6) 

(15.7) 

A (deterministic) system is completely observable if its initial state can be 

fully and uniquely recovered from a finite number of observations of its output and 

full knowledge of its input. The system described by equations (15.1) and (15.2) 

is locally observable if the observation matrix 

(15.8) 

has full rank nx, where nx is the dimension of state vector. Actually, the rank of 

Qok for the system described by (15.1) and (15.2) is 5, while nx = 6. This means 

the system is not observable. 

An example problem in which cars are tracked on a highway is considered, 

in which case, most of the cars are of the same width. In state equation (15.1), 

assume that the width is known, and augment the dynamic state with length only. 

Then, Xk = [xk, xk, Yk, iJk, lk]· The state transition matrix Fk in (15.1) is 

1 D..tk 0 0 0 
0 1 0 0 0 

Fk= 0 0 1 D..tk 0 (15.9) 
0 0 0 1 0 
0 0 0 0 1 
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the covariance matrix of wk is 

~t3 ~t~ k 0 0 0 qx3 qxT 
~t2 k 

qx~tk 0 0 0 qxT 
Qk =E[wkw~] = ~t3 ~t2 (15.10) 

0 0 k k 0 qy3 qyT 
~t2 

0 0 k 
qy~tk 0 qyT 

0 0 0 0 f 

The observation matrix of the above system if of full rank. 

15.3 Simulation Results 

The above example problem in which cars are tracked on a highway is tested 

using matlab. Two extended Kalman filters are used for comparison purposes. The 

first one uses an NCV model in its state equation and the state vector consists of 

only position and velocity information. The measurements are range, azimuth 

and Doppler. The other one makes use of range extent and the state vector is 

augmented with length, while width is assumed to be known. Its state and mea­

surement equations are described by (15.1) and (15.2) with the matrices defined 

by (15.9) and (15.10). 

Assume the car being tracked is of dimension 2 x 4 meters. Sensor measure-

ments are generated every second. Sensor parameters are given as follows: 

<J'
2 = 0.001 radian2 
a 

m2 
(]'~ = 100-

r s2 

Rmax = 2 X 105 m 

m 
Rmax = 200-

s 

Dmax =10m 
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As discussed in Chapter 11, the likelihood score obeys: 

(15.12) 

where 

(15.13) 

(15.14) 

In equation (15.13), Sk and dzk are the innovation matrix (3 x 3) and predicted 

measurement error ( 3 x 1) given by a Kalman filter that does not use range extent 

and where the state vector is dynamics only. In equation (15.14), Sk' and dzk' are 

the innovation matrix (4 x 4) and predicted measurement error (4 x 1) given by a 

Kalman filter that does use range extent and where the state vector is dynamics 

concatenated with length and width. 

The likelihood scores after 100 steps are compared for 20 Monte Carlo runs. 

Different ad values that range from 0.1 to 3 are chosen. Figure (15.2) shows how 
c"Pith - c"Pithout ad 

'
100 

. '
100 changes with respect to --. 

wzthout D 
Ci100 max 

c"Pith _ c"Pithout 

If the value ' 100 with~~o is greater than zero, this means with range extent, 
ci10o 

we are able to improve our likelihood ratio scores. As can be seen in Figure (15.2), 

score improvement can be up to 14% under small measurement noises (small ad)· 

When Dad increases to around 0.22, updating the filtering with range extent 
max 

information doesn't help any more. If the range extent measurement is extremely 

noisy, i.e., Dad > 0.22, the likelihood ratio score is even worse than the filter 
max 

using dynamic information only. 

More Monte Carlo simulations were performed for targets with different di­

mensions. The results are similar to Figure (15.2). 
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Improvement In Score with Range Extent: {cwith - cwithou~ I (cwllhou~ 

Figure 15.2: Score Improvements Using Range Extent 

15.4 Conclusions 

The above simulations show that one must assure the new system maintains 

observability when attempting to augment the dynamic state vector (position and 

velocity) with feature states. Numerically stable methods should be applied when 

taking the inverse of the innovation matrix (Sk), if the observation matrix is close 

to singular, or ill-conditioned. 

With relatively accurate feature measurements (small ad's), one can improve 

the likelihood ratio score by augmenting the state and updating the filter with 

feature measurements. If the feature measurements are relatively noisy (big ad's), 

then the feature information should be discarded. 
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Appendix A 

PROBABILITY CALCULATIONS 

The objective in this appendix is to derive specific formulas for the factors 

p(Z(k)IOf, zk-1) and P(¢1(k)jn~; 1 , zk-1) in equation (11.26). For the first factor, 

note that each report is assigned to a previous track, to a new source, or to a false 

alarm. Using the symbols defined in (11.27), the likelihood of the reports Z(k) 

given the association hypothesis is 

(A.1) 

where p:(zfk IOf, zk-l) represents the likelihood that the report originated from a 

target maintaining a certain dynamic model, p= ( z~ 1 nr, zk-1
) represents the likeli­

hood that the report originated from a new source, and p; ( zfk J Of, zk-l) represents 

the likelihood the report represents a false alarm. 

The development of an expression for P(¢1 (k)ln~;t, zk-l) makes extensive 

use of the notation and definitions in (11.27). Let 'l/JzN(k) denote the event that 

postulates the numbers {Jk, vk, 8k, xk} defined in (11.27). Of the Mk reports, vk 

originate from new targets with an associated probability mass function p,=(vk), 

fk are false reports with probability mass function p,;(Jk), and the remaining 8k 

reports are associated with existing targets. Of the Tk targets that exist after scan 

k - 1, xk of these Tk targets are terminated and are not observed (on scan k), 8k of 
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the rk - xk non-terminated targets are detected, and rk - xk - 8k non-terminated 

targets are not detected. (Thus, the total number of targets that exist after scan 

k is rk+ 1 = rk - xk + vk.) Recalling that the binomial coefficient 

(n) n! 
m = (n-m)!m! 

gives the number of ways to arrange n elements taken m at a time, one can show 

[62] 

P(t/;lN(k)IO~;\ zk-1) ={JJ1Uk)Jt~(vk) }{ G:) (P;)x•(l- p;y•-x•} 

{ (rk;;;. xk) (P:}""(l- p:y•-x•-5• }· 
(A.2) 

The number of ways Mk observations can be divided into 8k detected targets, 

Jk false reports, and vk new targets is 

Also, the number of ways rk targets can be divided into xk terminated targets, 

ok extended targets from scan ( k - 1)' and rk - xk - 8k missed targets is 

Let 'lj;10 ( k) denote the event within 1/JlN ( k) that designates a specific set of 8k 

extended targets from scan ( k - 1)' xk terminated targets, rk - xk - 8k missed 

targets, 8k detected targets, Jk false reports, and vk new targets. Assuming each 

such event is equally likely, 

P(t/llc(k)!t/llN(k), 0~;\ zk-1) = { (~) ( rk;;;. Xk) ( ~k) ( Mkv-; <)k) r1 

(A.3) 

From the event 1/Jzc ( k), 1/Jt ( k) represents a specific hypothesis that assigns a 

specific set of reports (detected targets on scan k) to the extended targets from 
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scan ( k - 1). The number of ways to assign 6k detections to 8k targets is 8k!. Thus, 

assuming the probability for each such assignment is the same, the probability of 

the hypothesis 'l/Jt ( k) given 'l/Jzc ( k) is 

(A.4) 

The product of the expressions in (A.2) - (A.4) yields 

P('¢z(k)I0~~ 1 ' zk-1
) =P('¢zN(k)I0~~ 1 ' zk-1 )P('¢lc(k)l'¢lN(k), n~~1 ' zk-1

) X 

P('¢z(k)l'¢lc(k), 0~~1, zk-1
) 

={ v~:' ~wk)~~(vk)} { (P:)x•} x 

{ [(1- ~)(1- P:w•-••-x• [(1- P:)P:j""} 
(A.5) 

Similarly, based on the hypothesis n~ that all reports are false, one can conclude 

that: 

p(Z(k)Jn~. zk-1) = i! { [P7(z~ J!1~, zk-1) ]"~ }. (A.6) 

P('¢o(k)ln3-1
, zk-1

) =P('¢oN(k)ln~-l, zk-1)P('¢oc(k)!'¢oN(k), n~- 1 ' zk-1) X 

P('¢o(k)l'l/Joc(k), n~-1 , zk-1
) 

=tt1(Jk)J-t~(vk), 
(A.7) 

where 'l/Jo(k), ¢oN(k) and 'l/Joc(k) are defined correspondingly. 
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The substitution of (A.l), (A.5), (A.6), and (A.7) into {11.27) conditioned on 

ZN • Id h £ 11 . . c P(nfiZN) 
yie s t e o owing expression 10r P(nb"IZN): 

(A.8) 
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Appendix B 

KALMAN FILTERING 

Kalman filtering technique is a recursive processing method, which is optimal 

in the Linear Minimum Variance{LMV) sense. For a linear system, and under 

the assumptions of white Gaussian noise (both plant noise and measurement noise), 

the state estimate given by the Kalman Filter is the minimum variance estimator. 

B.l Algorithm 

The Kalman filter addresses the general problem of trying to estimate the 

state x E J?.,N of a discrete-time controlled process that is governed by a linear 

stochastic difference equation. For a discrete linear time varying system, the state 

equation can be written in the form 

(B.l) 

where Wk E nP denotes the driving noise input to the system. The N X N matrix 

F denotes the (time-dependent) state transition matrix and theN x P matrix G 

the (time-dependent) noise gain matrix. 

Let Xjjk denote an estimation about x at time ti based on measurements up 

to time tk. The following basic assumptions are typically made in order to make 

computations mathematically feasible. 

1. The noise processes w and v consist of white noise with zero mean, i.e.: 
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2. wk and v1 are uncorrelated, i.e.: E[wkvf] = 0 

3. x0, the initial state is a random variable (or vector), satisfying the following 

properties: 

E[x0] = J-tx(O), where J-t denotes the mean. 

E[(xo- J-tx(O)){zo- J-tx(O))T] = Pojo, where Pilk denotes the conditional 

error covariance matrix of Xj based on estimate Xjjk: 

Also, for any k, 

E[zowf] = 0 and E[zovf] = 0. 

The Kalman filtering process involves the following steps which are performed 

recursively in real-time, while new measurements are observed: 

1. As initial conditions, set 

Zojo = E[xo] and Po1o = diag(a, ... , a). 

Note that if we have more confidence in the initial estimates of re010 , we could 

set a to be smaller. 

2. Predict the new state based on the previous estimate: 

(B.2) 

where zklk-l is the predicted state variable. 

3. Computation of a priori error covariance matrix (error covariance matrix 

before updating the estimation) 
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4. Compute the Kalman Gain matrix: 

(B.4) 

where the matrix 

is called the innovation covariance matrix. 

5. Update the state estimate Xk: 

&klk = Xklk-1 + Kk [zk- Hkxklk-d. (B.5) 

6. Compute the a posteriori error covariance matrix (error covariance matrix 

after updating the estimation) 

(B.6) 

7. Return to step 2). 

B.2 Extended Kalman Filter 

For the nonlinear model 

Xk = fk-1 (Xk-t) Wk-1 

(B.7) 
Zk = bk(Xk) Vk. 

We assume additive zero white noise 

where the covariance Q is related to the noise gain G through Q = GCwGT. We 

further assume that the measurement noise vk is uncorrelated to the process noise 

Wk. 
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The main idea behind the extended Kalman Filter is to linearly approximate 

the nonlinear model. This is done to first-order (resulting in the first-order ex­

tended Kalman Filter) by expanding fk{xk) and hk{xk) around the best estimates 

xk and Xklk-1 respectively: 

fk(xk) ~ fk(xk) + Fk(xk)(xk- xk) 

hk{xk) ~ hk(xklk-1) + Hk(xklk-l)(xk- xklk-1)· 

Fk and Hk denote the Jacobian matrices: 

Fk(Xk) = [ :: (Xk)] , and Hk(Xklk-I) = [ :: (Xklk-d] . 

The extended Kalman Filter algorithm can be summarized as follows. 

1. Initial conditions: 

~ojo = E[xo], ~110 = fo(xo), Polo = Var[xo]. 

2. Given estimate Xk-1lk-h evaluate Jacobian Fk-1 (xk-1lk-d· 

3. Predict new state: Xkjk-1 = fk (xk-1jk-1). 

4. Given estimate Xklk-h evaluate Jacobian Hk-1 (xklk-1). 

5. Predict covariance: 

6. Compute the filter gain: 

with 
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7. Update the state estimate: 

(B.l3) 

with 

8. Update covariance: 

(B.l4) 

9. Return to step 2. 

B.3 Modifications to Kalman Filtering Algorithm 

Notice that the standard Kalman filter algorithm requires the inversion of the 

M x M innovation covariance matrix Sk at each time step. This matrix inversion is 

computationally expensive. To maintain the real-time capability and the numerical 

stability of the Kalman filter, it is important to be able to compute the Kalman 

gain without directly inverting a matrix at each step. 

Notice the innovation covariance matrix Sk is a positive definite matrix, so 

Cholesky decomposition can be applied on it, and one gets: 

(B.l5) 

where Lsk is a lower triangular matrix, thus, 

(B.l6) 

The state update equation can be rewritten as, 

" " + p HTL-TL-1-reklk = rekjk-1 klk-1 k sk sk Zk (B.l7) 

One should compute L~1 Zk first, and since Lsk is a lower triangular matrix, forward 

elimination method can be used. Then when computing L-;[(L;}}zk), L;k is an 

upper triangular matrix, so backward elimination method can be used. 

Covariance update can be treated similarly. 
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B.4 Square Root Filter 

A more numerically stable way is to use a square root filter as shown in [26). 

Unlike the standard Kalman filtering algorithm, the square root filter operates 

on state estimate and the square root of the covariance matrix. The square root 

of a positive definite matrix A is a lower triangular matrix denoted by A~, and 

1 1 

Denote J klk == PZ
1
k and J klk-1 == PZ

1
k_ 1. The algorithm is as follows: 

1. Initial Conditions: 

This can be done using Cholesky decomposition. 

2. Prediction: 

&klk-1 == rk (xk-1lk-1) 

J k!k-1 = { [ Fk-1J k-!lk-1 Qt~J [ Fk-lJ k-1lk-1 Qt~r}! 
1 

(B.l8) 

(B.l9) 

(B.20) 

QI_1 can be computed using Cholesky decomposition on Qk_1• The matrix 

[ Fk-1J k-1lk-b Q%_1] is of size N x 2N. Instead of multiplying things out 

and take the Cholesky decomposition, QR factorization is used instead. 

(B.21) 

where Q is a 2N x 2N orthogonal matrix, and R is an upper triangular 

matrix of size 2N x N, and R = [~1], where R 1 is of size N x N. So one 

has 

Jklk-1 == {RTQTQR}! 

= {[Rf o] [~1] }! 

== {RfR1}! 

-RT - 1 
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3. Measurement Prediction 

4. State update 

Suppose 

[ l]T [R1] 
HkJk-llk R~ = Q 0 

then, 

(B.23) 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

And one can still use forward or backward elimination method when taking 

the inverse of M k and Mz. 

5. Square Root of the Covariance update 

(B.28) 

B.5 Interactive Multiple Models (IMM) 

Any Kalman filter model is usually optimal only for a certain type of move­

ment. Thus, in situations where an object abruptly performs maneuvers and 

changes its type of movement, the use of one particular type of Kalman filter will 

not lead to good estimations. Many Kalman filter models for different types of 

behavior exist. Thus, to solve the filtering problem in scenarios with objects which 

change behavior, multiple model filtering has been developed. Amongst these, 

the Interacting Multiple Model (IMM) is now accepted as the best-cost-effective 

implementation (3}, [5], [8]. 

210 



In IMM filtering, state estimates and covariance matrices from multiple mod­

els are combined according to a Markov model for the transition between target 

maneuver states. We denote with r the total number of target maneuver models. 

As a result, the IMM algorithm requires r filters to operate in parallel. The state 

estimate is the Gaussian mixture of the output of these r filters. 

Assume the following system model: 

(B.29) 

(B.30) 

where mk denotes the model at time k, mk E {m1, • • ·, mr }. Let m{ denote that 

model j is in effect at time k. 

It is assumed, that the model transitions form a Markov process with a priori 

known model transition probabilities 

Pii = P { m{ I mi-1} · 

Pii gives the probability that the system will be described by model mi at time 

k under the condition that it was described by model mi at time k - 1. It is 

L:j=1 Pii = 1, Vi and the Pii are state independent. 

Next, let p,{ denote the conditional probability that m{ is correct at time k 

based on the past observations (model probability): 

The mixing probability J.L~_ 1 is defined as 

and denotes the probability that mode mi was in effect at time k - 1 given that mj 

is in effect at time k conditioned on the measurement Zk-1 and past measurements 

[3]. 
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Assuming a Markov process for the model transition probabilities, the mixing 

probabilities can be computed from the model probabilities through [3]: 

i r 
iJ PiJI-lk-1 _i """ · 

1-lk-1 = · ' ck-1 = L....JPij/-lk-1' 
Ck-1 i=1 

(B.31) 

The d play the role of normalizing constants. Given the filter estimates x~_11k_ 1 , 

the covariance matrices Pi_11k_ 1 for model i and the mixing probabilities p~_1 at 

time k- 1, the new filtered state estimates and covariance matrices produced by 

the mixing process are as follows: 

AOj 
X k-1lk-1 

r 

pOj _ """ ij [pi 
k-1lk-1 - L..J IL~c-1 k-1lk-1 

i=1 

where d denotes the difference between estimates before and after mixing: 

(B.32) 

x0J and pOJ are the new mixed initial conditions for the filter matched to model j. 

In the next step, these estimates are used as inputs to the corresponding filters. The 

filters use the mixed estimates to produce new estimates of their model probability. 

A Gaussian statistic is assumed. The likelihood function A{ corresponding to 

model j at time k can then be expressed in the form 

A{= .N ( zk; z~1k_ 1 , s{) = .N ( zk; Hjx~1k_ 1 , HjP~1k_ 1 (HJ)r + Rj). 

(B.33) 

This is frequently called mode-matching (3]. 

With the updated likelihood functions, the model probabilities can be updated 

using Bayes formula. The model probability update can be written in the form 

J A{ ck-1 ~ · · 
ILk = c , J = 1, · · · , r, with the normalizing constant c = L..J A~ck-1 . 

j=1 

(B.34) 
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Given the updated model probabilities p,{ and the updated state estimates x{
1
k 

and covariances P{lk' these model-conditioned estimates can be combined through 

the mixture equations 

r 

x.klk = 2: p,{ x{
1
k 

j=l 
r 

pklk = L:p,t (P{Ik d{(d{)T)' 
j=l 

(B.35) 

where now d{ = x{1k- Xkjk· This combination of estimate and covariance is 

not part of the recursion algorithm, it can be performed upon request. 

See Fig. B.l for a graphical representation of the IMM algorithm. In Fig. B.2 

the algorithm is described for r = 2. 

l k-l{k-1 rlk-1 
k·llk·I 

+ 

I Interaction (Mixing) I uk-llk-1 

I 
XOl 

k-ljk-1 
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X Or 
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~odel l Filter! rodel2 Filter! ~odel r Filter I u 

I L 

! k-1 

Model 
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Estimate 

Combination 
I..,...__. 

t 
Uk 

Figure B.l: Structural diagram for r model IMM. 

Suppose that we are asked to give the best state estimate at any given time t. 

Let tk be the closest time tot, such that tk ~ t and we have an observation zk at 

time tk. Then the best state estimate and error covariance can be obtained using 
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D. i initial state estimate for model i. i = 1, 2 

oi - predicted state for model i. i = 1. 2 

*i_ corrected state for model i. i = 1, 2 

e - combined state estimate .n_ 
observatio j n = 1, 2 

~ _ outside the estimation gate, discard 

•
1 

- in the estimation gate, update 

i . 
0 = F t1 

· i i 1 Oi) *1 
= 0 +Kg (. • 

b.i - linear combination of * ~ * 1 based on the mixing probability 

[ul, u2} mode probability 

Figure B.2: Illustrations of the IMM2 algorithm. 

the following formula: 

r 

Xtjk = L tt{ x{lk 
j:::=l 

r 

Ptlk = LJ-l{ (P1,k + d{(d{)T)' 
j=l 

(B.36) 

(B.37) 

where now d{ = x1
1
k - Xtlk and x1

1
k is the predicted state estimate at time t using 

model j and tt{ is the mode probability for model j given all the observations up 

to time tk. 

The characteristics of the IMM algorithm can be summarized as follows: 

• Decision-making free 

No maneuvering detection decision is needed in IMM algorithms. The out­

put estimate is a combination of r mode-matched filters weighted by the 
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mode-probability. In other words, the maneuvering detection is automati­

cally represented in the change of mode-probability. 

• Soft-switching 

The IMM algorithms undergo a soft switching of models according to the 

latest updated mode probabilities. 

• Estimation error reduction 

The IMM can give good estimates even at the critical maneuver periods 

(onset and termination). In the case that the target doesn't maneuver (it 

follows exactly one model), the IMM can still give approximately the same 

results as using only one model matched Kalman filter since the unmatched 

models contribute very little to both the output estimates and the combined 

initial estimates. 

The basic IMM algorithm is summarized as follows: 

1. Compute the mixing probabilities 

Given the model probabilities 11i and the model transition probabilities Pii, 

compute the model mixing probabilities {tij from (B.31). 

2. Mix the initial estimates 

Given the filter estimates x.i, the covariance matrices pi and the mixing 

probabilities {tii, compute the mixed state estimates x0i and P 0i through 

(B.32). 

3. Update the model probabilities 

(a) Predict. 
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(b) Given the mixed initial estimates x0j and poj predict the respective 

model estimates xj and pj using the normal Kalman filter equations. 

(c) Given the predicted estimates xj and pj update the model likelihood 

functions Aj through (B.33). 

(d) Using the updated likelihood function, update the model probabilities 

P,j according to (B.34). 

4·. Update model state estimates 

Using the normal Kalman filter equations, update the respective model esti-

mates. 

Return to 1) if no output is required. 

5. Estimate and covariance combination 

Given the updated model probabilities p,j, the updated state estimates xj 
and covariances Pj, combine these estimates according to (B.35). 

B.6 Square Root IMM 

Instead of operating on state estimates and their covariance matrices, the 

IMM algorithm can be used to operate on state estimates and the square root of 

the covariance matrices. 

The square root filtering algorithm can be used for updating the single filters. 

However, the IM'M algorithm need to mix the initial state and its covariance ac­

cording to the mixing probabilities. The initial state can be mixed as explained in 

the previous section, it will be explained here how to mix the square root of the 

covariance matrix. Since we have 

r 

p~~1lk-1 = 2:: P~-1 [Pi-1lk-1 + di-1 (di-1)T] , J = 1, · · · , r, 
i=l 

(B.38) 
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then 

(B.39) 
rj Jr rj ..rr ]T} 1 

1-Lk-1 k-1lk-1 1-Lk-1 u,k-1 2 

where R 1 is defined by 

[ 
lj Jl 1j d1 

1-Lk-1 k-1lk-1 1-Lk-1 k-1 
rj Jr rj cf:. ] T Q [R1] 

1-Lk-1 k-1lk-1 1-Lk-1 k-1 = 0 (B.40) 
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Appendix C 

EVIDENTIAL REASONING 

C.l Introduction 

Given a frame of discernment e made up of elements (or atoms) Xi, the 

evidential reasoning scheme can be described as a method for combining two basic 

mass assignments mA(Ai) and m8 (Bi) over the frame of discernment 8 to produce 

a combined basic mass assignment mc(C) == m(CIA, B) according to a formula 

known as Dempster's rule of combination: 

1 
mc(C) == m(CIA, B)== 

1 
_"' L mA(Ai) mB(Bi) (C.1) 

i,jjAinBi =C 

where"" is a measure of inconsistency between the basic mass assignments mA(Ai) 

and mB(Bj), it is defined by 

""== L mA(Ai) mB(Bi) 
i,jjAinBj=0 

(C.2) 

The Ai E 8 are called the focal elements of the basic mass assignment mA ( ·) 

such that mA(Ai) -1- 0. Mass assigned to a focal element Ai should be thought of 

as free to move among the atoms Xi E Ai. The same comments hold for m8 ( ·) and 

me(·). 

In addition to basic mass assignments, evidential reasoning introduces the 

concepts of support Spt(X) and plausibility Pls(X) of any proposition X E 8. 

1 
Spt(XIA, B)== 1 _"" L mA(Ai) mB(Bi) 

i,jjAinBj~X 

L m(CIA,B) (C.3) 
CjCEC,CEX 
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and 

m(CIA,B) 
CICEC, CnX;f0 

= 1- Spt(XIA, B) (C.4) 

The support of proposition X is the evidence directly assigned to X or any 

subset of X (i.e., any proposition which implies X). The plausibility of X is the 

sum of all the mass assigned to propositions which have a non-null intersection 

with X (i.e., any proposition which does not contradict X). 

C.2 Partial Probability Models 

A partial probability model (P-probability) allows us to denote that the ex­

act distribution (as required by conventional complete probability model) of the 

probability among the individual singletons is unknown. Assume that all that is 

know is the partial distribution ( P-distribution), denoted P( ai) of the probability 

mass among J disjunctions ai ~ 8. The only constraints placed on P ( ai) is that 

P(ai) 2:: 0, Vai and 
J 

1 = LP(aj)· (C.5) 
j=l 

Notice that ai may not be disjoint. P(aj) is the mass assigned to the entire set 

ai, it does not specify how to assign the mass among the elements xi E Ai. Thus, 

there are many complete (i.e. conventional) probability distributions that would 

be consistent with the partial information of (C.5). One can express all possible 

consistent complete probability models by a single parametric model. The model 

is parameterized on a matrix of parameter aii· We denote this matrix [aii] 

J 

P(xil [aij]) = L P(aj)aij (C.6) 
j=l 
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where Uij 2 0 and 

(0.7) 

and 

if Xi fj. aj 

else the fraction of mass P(aJ) is to be assigned to Xi 
(0.8) 

C.3 P-Probability Models and Evidential Reasoning 

In the case of a complete probability model, we can form a set X by collecting 

the Xi for which P(xilz) is largest such that 

Pc = 2.: P(xilz) (0.9) 
ilxiEX 

where Pc is the desired rate of being correct in the sense that Xt E X for Pc of the 

trials. 

In the case of P-probability models, the experiment can be defined as follows. 

As a result of the information z, a set A of subsets Ai of E> and their rates of 

occurrence mA ( Ai) are specified. 

Unlike complete probability models, it is not possible to calculate the prob­

ability, Pc, that any set estimate X is correct in the sense that it will contain Xt 

in Pc fraction of the trials. It is possible, however, to calculate the maximum and 

the minimum value that Pc could have, as the P-probability law is varied over all 

the complete set of probability models as described in (0.6). 

If one assigns 

(0.10) 

then, to describe a P-probability using evidential reasoning terminology, one has 

min Pc - min 2.: P(xil[aii]) 
[O:ij] [O:ij] " 

ijxiEX 

- 2.: mA(Aj) 
iiA;~X 

- Spt(XIA) (0.11) 
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Similarly, 

max E P(xil[aii]) 
[aij] A 

ilxiEX 

E mA(Ai) 
i1Ain.X,e0 

Pls(XIA) 
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