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ABSTRACT 

PROFILING AND PUTATIVE AROMA BIOMARKER IDENTIFICATION FOR FLAVOR IN  

POTATOES USING A TRAINED SENSORY PANEL AND HS-SPME GC-MS 

Flavor is the synthesis of taste and aroma sensations. The taste fraction of flavor, 

including salty, sweet, sour, bitter, and savory, refers to non-volatile chemical compounds that 

are detected by epithelial cells in the mouth. The aroma fraction encompasses volatile or semi-

volatile chemical compounds that are sensed by nerve cells within the olfactory system, 

particularly during the chewing process, initiating a multitude of sensations such as earthy, floral, 

or fruity. Flavor may also be influenced by texture, sound, appearance, or personal preference, 

resulting in an inherently complex phenotypic trait that is difficult to assess. Cooked flavor 

profiling of fifteen fresh market potato clones (Solanum tuberosum, L.) using sensory analysis 

paired to aroma compound analysis reveals potential biomarkers for flavor phenotyping. Trained 

sensory panelists described extensive, significant sensory differences between potatoes including 

bitter, buttery, creamy, earthy, fruity, off-flavors other than bitter, potato-like flavor, sweet, 

woody, appearance, aroma intensity, mealy texture, and overall quality (mixed model ANOVA, 

α=0.05, n=17-38 ratings x 15 clones). Non-targeted volatile metabolomics with headspace solid-

phase microextraction gas chromatography coupled to mass spectrometry (HS-SPME GC-MS) 

facilitated identification of 42 unique metabolites with significant variation across samples 

(ANOVA, α=0.05, n=5 technical replicates x 14-15 clones x 2 cooking methods). Based on 

Spearman’s rank correlations, hierarchical clustering analysis (HCA), and principal component 

analysis (PCA), potential biomarkers for buttery, a positive flavor attribute, are aldehydes 1-

nonanal, benzaldehyde, (E)-2-heptenal, pentanal, 2-phenylacetaldehyde, the alcohol (Z)-2-



iii 

methyl-2-penten-1-ol, and 5-methyl-2-hexanone, a ketone. Other positive flavor attributes, sweet 

and potato-like flavor, are related to benzoate-3-methyl-2-buten-1-ol, 2-ethylfuran, and 3,4,5-

trimethyl-2-cyclopenten-1-one. Potential biomarkers for negative flavor attributes are also 

implicated. Additionally, some sensory and aroma compound differences occur between baked 

versus boiled potatoes. Flavor biomarkers may play a key role in achieving flavor quality 

improvement through breeding and selection.   
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CHAPTER 1. LITERATURE REVIEW 

1.1. Introduction 

Potato, a significant national and global food staple, is a tuber crop originating in the 

Andean Mountains of South America. Despite the bland flavor of the most commonly cultivated 

potatoes, potatoes contain considerable flavor diversity in terms of taste, aroma, and texture. An 

assortment of shape, size, skin, and flesh colors exists as well. Although flavor is a complex and 

subjective trait, it has been examined through extensive metabolite analyses with some sensory 

analysis correspondence in potato. Nonetheless, potato metabolite corroboration with human 

flavor sensations is relatively lacking but crucial to fresh market crop improvement through 

breeding and selection.  

1.2. Potato As a Crop 

1.2.1. General Taxonomy and Characteristics 

Potatoes, potato tubers, or simply tubers are modified underground stems that store 

nutrients and enable asexual propagation. Within the nightshade family, Solanaceae, potatoes 

belong to the genus Solanum, which includes both wild and cultivated potato relatives.1 The most 

commonly cultivated potato species is tetraploid (2n=48) Solanum tuberosum (L.).1,2 Potatoes 

are up to 79% water yet satisfy daily human dietary energy and protein requirements with an 

ample supply of B and C vitamins, calcium, iron, phosphorous, and potassium.3 

1.2.2. Origin and Early Cultivation 

Though wild species of Solanum range from the central United States to south central 

Chile1, the center of origin of all Solanum species is most likely the Andean Mountains in Peru 

and Bolivia.1,2,4 Archaeological evidence confirms that potatoes were cultivated at least as early 
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as the second century in South America, but there is speculation that potatoes may have been 

cultivated up to 6,000 to 8,000 years ago.2,4 In the late sixteenth century, the import of potatoes 

to Europe prompted worldwide dissemination of potatoes as a staple food crop.2,5 

1.2.3. Current Cultivation 

Today, potatoes remain in the top rankings of worldwide staple food crops in terms of 

production acreage, dietary intake, and economic livelihood. Each year, the United States 

National Potato Council trade association compiles data from the United States’ Departments of 

Agriculture and Commerce as well as the Food and Agriculture Organization of the United 

Nations into a Potato Statistical Yearbook. The most recent issue, the 2016 Potato Statistical 

Yearbook, indicates that the United States was the 5th largest global potato producer in tons for 

2015, of which 24% of potatoes were sold to the fresh market sector and 67% for processing.6 

For the same year, total production value in the United States was nearly $4 billion. Nationally, 

Colorado ranked as the 5th largest producer in tons. Readers are encouraged to refer to the most 

recent issue of the Potato Statistical Yearbook as it becomes available. 

1.3. Potato Flavor 

1.3.1. Overview of Flavor 

Flavor is primarily a combination of sensations produced by taste and aroma receptors on 

the tongue or in the olfactory, respectively.7 The taste fraction of flavor refers to non-volatile 

metabolites, whereas the aroma fraction encompasses volatile metabolites.8 Volatiles are 

substances that readily vaporize from solid or liquid to gaseous forms. Contrastingly, non-

volatiles remain in a solid or liquid form without chemical modifications or extreme physical 

conditions. Flavor may also be influenced by texture, appearance, and sound.9 In potatoes, 
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texture, or mouthfeel, has the most predominant influence on overall flavor after taste and 

aroma.10 

1.3.2. Taste 

Taste sensations are more readily identifiable than aromatic sensations, including sweet, 

salty, sour, bitter, and umami. Modified epithelial cells on the tongue and in the mouth confer 

taste through the reception of non-volatile compounds.7 Most early potato flavor research from 

the 1950s to 1970s focuses on bitter taste compounds, specifically glycoalkaloids and phenolics, 

which are the main contributors to off-flavors, particularly bitterness and astringency.3,11–13 The 

amino acids leucine, isoleucine, and phenylalanine lysine also contribute to bitterness.14 

Although sweet, salty, and sour compounds are not thought to have a noticeable influence on 

potato flavor, one sensory analysis study indicated a positive correlation between perceived 

quality and sweetness.15 Umami taste is more prominent in potatoes,16,17 resulting from the 

interaction between certain amino acids and 5’-nucleotides released during cooking.18 Multiple 

studies11–13,19–22 show that total amounts of potato taste compounds vary by cultivar, environment 

(e.g. location and year), and even storage temperatures.14 

1.3.3. Aroma 

Flavor diversity beyond the five basic taste components is primarily ascribed to aroma 

compounds, which may or may not be aromatic, including semi-volatile and volatile compounds. 

Volatiles and semi-volatiles are sensed by olfactory nerve receptors through smell and the act of 

eating, the latter of which causes air to pass backwards through the nasal cavity.7 As suggested 

by the amount of research literature for aroma versus taste compounds in potato, aroma 

influences overall flavor to a greater degree than taste. One study indicated that a lack of 

volatiles resulted in decreased detectable flavor evaluated by a sensory panel.23 Most aroma 
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metabolites related to potato flavor result from interactions during cooking between fatty acid, 

sugar, and amino acid precursors, including Strecker amino acid degradation to form aldehydes, 

lipid degredation to aldehydes and ketones, Maillard reactions that form pyrazines, and other 

sugar degradation reactions.24,25 Sulfur metabolites are also important to potato flavor,25,26 as are 

terpenes and pyrazines present in raw tubers.10 Relative importance of certain aroma compound 

types to human potato flavor sensations is debated. Some researchers attest that pyrazines are 

most significant,27–29 whereas others suggest that aldehydes are more important,25,30 though most 

researchers agree that a mixture of several aroma compounds rather than a singular constituent 

imparts potato flavor.  

Hundreds of volatile or semi-volatile metabolites have been associated with potato flavor. 

As with taste metabolites, aroma metabolites differ by cultivar,31–33 environment,32 and storage 

conditions.25,30 However, unlike taste metabolites, potato aroma metabolites vary by cooking 

method.33,34 Though most aroma studies utilize a single cooking method, one study directly 

compares cooking methods and demonstrates that baking or microwaving potatoes results in 

drier flesh that favors Maillard reaction and sugar degradation products, whereas boiling enables 

increased accumulation of terpenes and pyrazines.33 Another study indicates that although 

volatiles differ among select Italian potatoes, geographical origin cannot be distinguished based 

on volatiles alone.35 

1.3.4. Texture 

Desirable potato texture depends on cooking or processing utilization. Texture 

characteristic thresholds are more critical for potatoes that will be used for chips, fries, 

dehydrated products, or other food products and will not be discussed within this thesis. Texture 

attributes for fresh market potatoes are less defined, but can be described as mealy or waxy.10 
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Mealy potatoes are dry, with more starch, and a greater specific gravity compared to waxy 

potatoes, which are gummier, have less starch, and a smaller specific gravity.10,36 Red and yellow 

flesh potatoes tend to be waxy, whereas white flesh potatoes tend to be mealy.36 In a sensory 

analysis that includes mealiness for several potato cultivars, mealiness is not related to overall 

quality perception and is variable across cultivars and environment.15 

1.4. Methods for Evaluating Potato Flavor 

1.4.1. Flavor Compound Analysis 

Taste components of potato flavor, including glycoalkaloids, sugars, and amino acids are 

typically detected by mass spectrometry (MS), ultraviolet detection (UV), or flame ionization 

detection (FID) and quantified by coupling to high-performance liquid chromatography (HPLC). 

An enzyme-linked immunosorbent assay (ELISA) has also been developed for glycoalkaloids 

specific to potatoes.20 Still, assays for taste are fairly laborious, though efforts have been made to 

shorten extraction times.37 For aroma compound measurement, gas chromatography (GC) is 

typically paired to MS for volatile identification and quantification or an olfactometry FID 

sniffing port for aroma characterization. A multitude of extraction methods causes aroma 

compound methods to be more variable than for taste, but can be separated into liquid or 

headspace (HS) methods.  

In liquid extraction methods, aroma compounds are extracted with solvents. 

Simultaneous-distillation extraction (SDE) is an older liquid extraction method that tends to be 

tedious, to require large quantities of potatoes, and to result in numerous metabolite artifacts.23 

Solvent-assisted flavor evaporation (SAFE) is similar to SDE but results in fewer 

artifacts.31,32,38,39 Newer liquid extraction methods incorporate derivitization, the chemical 
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modification of aroma compounds from volatiles to liquids, which has less extraction bias, 

requires less sample material, and is more reproducible than SDE or methods.21,22,40,41 

With solid-phase polymers rather than solvents, aroma compounds are extracted via 

adsorption in HS extraction. Though early HS extraction in potatoes required a large amount of 

potatoes,29 the development of Tenax plate dynamic HS concentration methods greatly reduced 

sample size requirements and increased reproducibility.25,30,33 Solid-phase microextraction 

(SPME) from HS is comparable to dynamic HS method volatile profiles but with slightly less 

sensitivity, greater automation capability, and faster extraction times.35,42–45 

1.4.2. Sensory Analysis 

The subjective nature of flavor requires human sensory analysis. Even if potato cultivars 

exhibit unique chemical profiles, sensory analysis is necessary to determine if differences in 

chemical profiles can be detected.33 Several sensory methods exist, but the most common 

approach for potato flavor evaluation is a trained panel for descriptive profiling. Trained 

panelists may also be used for aroma characterization via GC olfactory sniffing ports. Training 

methods are poorly described, while scorecards and attributes are inconsistent. Some sensory 

scorecards use a non-graded linear rating scale,15,16,31,45,46 others use a categorical hedonic 

scale.11,13,38,44 Examples of detectable potato attributes are sweetness, flavor intensity, bitterness, 

astringency, umami, and mealiness.11,13,15,45 Sensory analysis is resource-intensive, which may 

explain the limited number of described potato attributes.7 

1.4.3. Instrumental Texture Analysis 

Though some sensory panels have evaluated cooked potato texture, instrumental texture 

analysis is largely unexplored. For most foods, however, single variable instrumental 

measurements typically do not correlate to sensory texture ratings.7 
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1.4.4. Integrated Methods 

As already mentioned, sensory analysis is crucial in identifying flavor compounds that 

influence potato flavor. Several important flavor compounds have been identified by combining 

sensory and chemical methods,16,44,45 which has the potential to reveal key flavor metabolic 

pathways and genes with additional molecular techniques. One such combination demonstrates 

that potato off-flavor and some aldehyde flavor compounds associate with lipoxidase activity.44 

Specific genes have also been associated with potato flavor.43 

1.5. Conclusion 

Plant breeding efforts tend to focus on yield, postharvest storage, and pest resistance, 

which is thought to have a negative influence on produce quality, including flavor.4,7 Though 

past aroma compound extraction methods are slow and resource-intensive, SPME provides a 

fast, solvent free method that enables more efficient metabolic phenotyping.41 Flavor gene 

discovery coupled with efficient phenotyping may play a vital role in flavor crop improvement.47 

Initial sensory analysis should be used to identify critical flavor compounds prior to potential 

gene discovery. 

The experiments described in the remaining thesis explore potato flavor through sensory, 

metabolite, and instrumental texture analysis of select potato clones. Overall objectives were as 

follows: 

1) to generate and compare cooked flavor profiles of potato cultivars 

2) to identify volatile and semi-volatile flavor metabolites of cooked potatoes potato 

3) to evaluate instrumental texture analysis of cooked potatoes 

Unlike other potato flavor studies that contain a sensory component, the following sensory 

analysis covers an extensive array of flavor attributes that are used to identify significant flavor 
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metabolites. These flavor metabolites provide a framework for future potato flavor gene 

discovery studies. Further development of metabolite detection methods may provide a means of 

high-throughput flavor phenotyping, which would be particularly useful to selection-based 

breeding programs such as the Colorado State University Potato Breeding and Selection 

Program. Flavor profiles generated from sensory analysis are also informative to potato breeders, 

producers, and consumers that wish to maximize flavor quality.  
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CHAPTER 2. PLANT MATERIAL AND GENERAL PREPARATION 

2.1. Introduction 

Potato tuber material from two growing seasons at the San Luis Valley Research Center 

(SLRVC), a Colorado State University (CSU) Agriculture Experiment Station (AES) located in 

Center, CO was analyzed for sensory, volatile compound, and texture components. Fifteen 

clones, including six advanced selections and nine named cultivars with a variety of flesh and 

skin colors were evaluated. Potatoes were baked or boiled then cut and served warm during 

sensory sessions.  After sensory sessions, remaining warm potatoes were used for texture 

analysis or frozen with liquid N2 and stored at -80°C until volatile analysis.  

2.2. Clone Characteristics 

Potato clones consisted of commercial cultivars and advanced selections from the 

Colorado Potato Breeding and Selection Program at the SLVRC.  White-fleshed clones (all 

russets) included named cultivars Russet Norkotah, Russet Burbank, Fortress Russet, Russet 

Nugget, and advanced selection AC00395-2RU. Yellow-fleshed clones encompassed named 

cultivars Masquerade, Harvest Moon, Red Luna, Yukon Gold, and advanced selections 

CO04067-8R/Y and CO04099-3W/Y. Red- and purple-fleshed clones were named cultivar 

Purple Majesty and recently named Crimson King as well as advanced selections CO04056-

3P/PW and CO04063-4R/R. In addition to flesh color, clones had various skin colors, size 

classes, and origins (Table 2.1).  

2.3. Cultural Conditions 

All potato clones were field grown in 2014 and 2015 by the Colorado Potato Breeding 

and Selection Program at the SLVRC, with the exception of advanced selection CO04063-4R/R, 
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which was grown in 2014 only. Soil type is a sandy loam classified as Dunul cobbly sandy loam. 

Plots were spaced 86 cm apart with a length of 7.6 m by 25 hills with 30 cm spacing between 

hills. Planting, vine kill, harvesting dates and number of days grown from planting until vine kill 

were similar for both years (Table 2.2). Irrigation was provided as necessary by 

evapotranspiration using a center pivot at a 42 and 38 cm gross application rate in 2014 and 

2015, respectively. Rainfall during the growing season was 3.6 cm in 2014 and 12.0 cm in 2015. 

Fertilization rates were the same for both years (Table 2.3) while pesticide applications were 

somewhat different (Table 2.4). In 2014, vine-kill was accomplished with Reglone (Syngenta 

AG, Basel, Switzerland) at a rate of 9 L per ha. Sulfuric acid at a rate of 38 L per ha was used for 

vine-kill in 2015. Harvested tubers were stored at approximately 4.4 °C with a relative humidity 

of 95% for at least 3 months.  

2.4. Tuber Preparation 

Potato tubers free of imperfections from each clone were used for sensory, volatile, and 

texture analysis. Preparation of tubers prior to cooking involved a combination of tap water 

rinsing and gentle scrubbing. Tubers intended for baking were punctured with a fork, wrapped in 

aluminum foil, and cooked until easily penetrated with a toothpick at 200 °C (45 minutes to an 

hour and a half, varying by clone). Boiled tubers were cooked in separate pots of water by clone 

brought to a boil before the addition of tubers. Large-sized tubers were cut in half for boiling. 

Sensory analysis samples included six 1 cm cooked potato cubes, approximately two from a 

single tuber of a clone. At least three different tubers were used for sensory samples. Small size 

class tubers generally required one or two more tubers. Sensory panelists received warm, cooked 

potatoes in 8 oz Styrofoam cups covered with aluminum foil and coded with randomized 3-digit 

codes by clone. For volatile analysis samples, about 75 g of finely diced cooked potatoes from 
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both tuber stem and bud ends were bulked from at least three different tubers, frozen with liquid 

nitrogen, and stored at -80 °C until analysis. All sensory and volatile analysis samples were free 

of tuber skin. The texture of at least eight whole cooked tubers per clone was analyzed for 2014, 

whereas 30 tubers from each clone were used for 2015. 

2.5. Summary 

Analysis included a diverse array of potato clones that were field grown using standard 

practices for the San Luis Valley region in Colorado. Potato tubers were prepared similarly for 

sensory, texture, and volatile analyses through either baking or boiling cooking methods. 

Growing conditions were similar for both years that tubers were harvested, though more 

precipitation occurred in 2015 versus 2014. 
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Table 2.1. Characteristics of field grown potato clones evaluated for flavora at the SLVRC (Center, CO) 

aPotato clones were grown in 2014 and 2015 but evaluated in 2015 and 2016, respectively. 

bSize class according to USDA United States Standards for Grading of Potatoes, where small tubers have a diameter of 4.45 to 

6.35 cm (1.75 to 2.50 in), medium tubers have a diameter of 5.72 to 8.26 cm (2.25 to 3.25 in), and large tubers have a diameter of 
7.62 to 11.43 cm (3.00 to 4.50 in). 

cOrigin refers to the parents that were crossed to produce the progeny from which clones were propagated. 

dGrown in 2014 only. 

  

Clone Code Skin Color Flesh Color Sizeb Originc

AC00395-2RU 95 Russet White Large A95523-12 x Summit Russet

CO04056-3P/PW 56 Purple Purple Small CO97216-1P/PW x CO97277-2P/PW

CO04063-4R/Rd 63 Red Red Medium CO97226-1R/R x CO97222-1R/R

CO04067-8R/Y 67 Red Yellow Medium CO97232-1R/Y x ATC98444-1R/Y

CO04099-3W/Y 99 White Yellow Medium VC1002-3W/Y x ATC98495-1W/Y

Crimson King CK Red Red Medium CO94170-1 x Mountain Rose

Fortress Russet FR Russet White Large AC99375-1RU: AWN86514-2 x A89384-10

Harvest Moon HM Purple Yellow Small AC99330-1P/Y: Inka Gold x A89655-5DY

Masquerade MQ Purple and White Yellow Medium AC99329-7PW/Y: Inka Gold x A91846-5R

Russet Norkotah NK Russet White Large ND9526-4 Russ x ND9687-5 Russ

Purple Majesty PM Purple Purple Medium CO94165-3P/P: ND2008-2 x All Blue

Red Luna RL Red Yellow Medium CO97233-3R/Y: CO94218-1 x VC0967-5

Russet Burbank RB Russet White Large

Russet Nugget RN Russet White Large Krantz x AND71609-1

Yukon Gold YG White Yellow Medium Norgleam x W5279-4

Table 2.2. Growing season of potatoes evaluated 

for flavora at the SLVRC (Center, CO) 

  

aPotato clones were grown in 2014 and 2015 but evaluated in 
2015 and 2016, respectively. 

  

2014 2015

Planting Date 16-May 15-May

Vine Kill Date 4-Sep 2-Sep

Harvesting Date 29-Sep 29-Sep

Number of Days 

Grown
108 110

Table 2.3. Fertilization schedule of potatoes evaluated for flavora 

at the SLVRC (Center, CO) 

aPotato clones were grown in 2014 and 2015 but evaluated in 2015 and 2016, 
respectively. 

2014 2015 Type Nutrient Amount (kg ha -1)

16-May 15-May in-row liquid N 435

P2O5 326

K2O 218

S 136

Zn 13

20-Jul 23-Jul fertigation N 82

26-Jul 27-Jul fertigation N 82

4-Aug 18-Jul fertigation N 54

total N 653
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Table 2.4. Pesticide schedule for potatoes evaluated for flavora at the SLVRC (Center, CO) 

aPotato clones were grown in 2014 and 2015 but evaluated in 2015 and 2016, respectively. 
bThe acronym a.i. is synonymous with active ingredient. 
cFormulated by Bayer CropScience, Monheim am Rhein, Germany 
dFormulated by Valent Agricultural Products, Walnut Creek, CA 
eFormulated by Syngenta AG, Basel, Switzerland 
fFormulated by BASF Crop Protection, Research Triangle Park, NC 
gFormulated by Gowan Co., Yuma, AZ 
hFormulated by DuPont, Wilmington, DE 
  

2014 Product
Amount a.i. 

(kg ha -1 )
2015 Product

Amount a.i. 

(kg ha -1 )

Insecticide 17-Jul

Leverage 360c 

(imidacloprid and B-

cyfluthrin)

1.0 15-Jul

Leverage 360 

(imidacloprid and B-

cyfluthrin)

1.0

24-Jul Belayd (clothianidin) 1.0 4-Aug Belay (clothianidin) 1.0

8-Aug
Moventoc 

(spirotetramat)
1.7

Fungicide 12-Jul Quadrise (azoxystrobin) 1.1 15-Jul

Quadris Opti e 

(azoxystrobin and 

chlorothalonil)

1.1

24-Jul

Luna Tranquilityc 

(fluoryram and 

pyrimethanil)

3.8 4-Aug

Luna Tranquility 

(fluoryram and 

pyrimethanil)

3.8

Herbicide 2-Jun
Outlookf 

(dimethenamide-P)
0.9 5-Jun Dual Magnum e 7.8

24-Jun
Eptamg (S-ethyl 

dipropylthiocarbamate)
1.0 5-Jun

Boundarye  (metolachlor 

and metribuzin)
5.4 and 1.3

24-Jun
Matrix SGh 

(rimsulfuron)
0.1
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CHAPTER 3. SENSORY ANALYSIS 

3.1. Introduction 

A number of investigations describe and propose cooked potato flavor metabolite profiles 

based upon instrumental measurements, however, relatively few flavor profiles created from 

sensory profiling are defined. Flavor is a subjective, complex quality trait that primarily 

encompasses taste and olfactory sensations, although appearance, texture, or other characteristics 

may influence perception.1 Early potato sensory analysis focuses on off-flavor sensory attributes, 

including bitterness and astringency.2,3 More recent profiles include sweetness,4-6 umami,7 

mealiness,4 and overall flavor intensity,5-7 as well as other descriptive attributes.5,7,8 Moreover, 

most recent potato sensory studies focus on European cultivars,5-8 whereas American cultivar 

descriptions are comparatively absent.   

The following study describes sensory-derived flavor profiles of fifteen American potato 

clones developed from a sensory panel. A trained rather than untrained sensory panel enabled 

comprehensive profiling for fifteen attributes. Positive and negative attributes are identified 

using associations to overall quality scores. In addition to clone differences, differences between 

cooking methods, baking or boiling, and interactions with clone are explored.  

3.2. Materials and Methods 

3.2.1. Tuber Material 

Clones consisted of white-, yellow-, purple-, and red-fleshed named cultivars or advanced 

selections grown by the Colorado State University (CSU) Potato Breeding and Selection 

Program at the San Luis Valley Research Center (SLVRC, Center, CO) in 2014 and 2015 for 

sensory analysis in 2015 and 2016, respectively. White-fleshed clones, all russets, were 
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AC00395-2RU, Fortress Russet, Russet Norkotah, Russet Burbank, and Russet Nugget. Yellow-

fleshed clones were CO04067-8R/Y, CO04099-3W/Y, Masquerade, Harvest Moon, Red Luna, 

and Yukon Gold. Purple-fleshed clones were CO04056-3P/PW and Purple Majesty, whereas red-

fleshed clones were CO04063-4R/R and Crimson King. Tubers were baked or boiled, diced into 

cubes, and served warm. Prior to baking, tubers were poked with a fork and wrapped in 

aluminum foil. Randomized material from at least three tubers per clone per cooking method was 

provided to each panelist. Presentation of coded samples was randomized across panelists per 

session to account for order effects.  

3.2.2. Sensory Analysis 

A trained panel of 15 sensory panelists evaluated potato clones, with at least eight 

panelists present per sensory session. Panelists were recruited as volunteers in the San Luis 

Valley of Colorado. Demographics were 47% men and 53% women; 80% white, 20% other 

races; 20% aged 18 to 25, 27% aged 26 to 40, 27% aged 41 to 55, and 27% aged 56 to 70. A 

preliminary training session for each year involved an overview of tasting technique as well as 

aroma and taste discussions for reference foods. In this case, sampling technique refers to the 

inhalation and exhalation of air while chewing to maximize flavor components and the 

utilization of water and crackers as a palate-cleanser between samples. Reference foods were 

selected during the training session of the first year and duplicated the second year for flavor 

attributes (Table 3.1). Following panelist consensus, a scorecard of 15 attributes were listed in 

the following order: appearance, aroma intensity, potato-like flavor, sweet, fruity, lemon, umami, 

buttery, creamy, earthy, woody, bitter, off-flavors other than bitter, mealy texture, and overall 

quality (Appendix 1). Attributes were rated on a scale from 1 to 9 with both numeric and hedonic 

anchors, from absence to maximum attribute intensity. Each panelist was provided a set of 
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reference foods, water, and crackers per session. Panelists were rewarded with grocery gift cards 

at the conclusion of each sensory session. 

3.2.3. Statistical Analysis 

Sensory data was analyzed with analysis of variance (ANOVA) in univariate linear 

mixed models calculated using the ‘lme4’ package in Rstudio version 0.99.896 (RStudio, Inc., 

Boston, MA). Fixed effects were clone, cooking method, and the interaction between clone and 

cooking method. Random effects were session year, sample order presented to panelists, 

panelists, and all interactions. Means were estimated using residual maximum likelihood 

(REML) least square means in attribute mixed models for fixed effects with significant F-values 

(α=0.05). Clone, cooking method, and clone by cooking method means of significant attributes 

were contrasted by linear least square mean differences with Welch’s adjustments (t-test, 

α=0.05). Using mixed model clone mean estimates for attributes with significant fixed effects, 

Spearman’s rank correlation coefficients were calculated and clustered by attribute to attribute 

with z-score normalized Ward’s two-way hierarchical clustering analysis (HCA). Clone 

descriptions using sensory attribute mean estimates were generated in RStudio using value tests 

(v-tests) through the ‘SensoMineR’ package, which identifies under or over-represented 

attributes, or means relatively smaller or greater than the overall mean (modified t-test, α=0.05). 

Loadings and scores for sensory attributes were Pareto-scaled in principal component analysis 

(PCA) using SIMCA version 14.1 (MKS Data Analytics Solutions, Umea, Sweden), with 

component selection guided by Q2 validation of R2. Loadings were sensory attributes, whereas 

scores were raw panelist entries by clone and cooking method. Trends were examined by clone, 

cooking method, flesh color and year in PCA.  
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Post-hoc flesh color group means were calculated from mean estimates by clone (e.g. 

white, yellow, and red or purple) and attributes with significant variation by flesh color group 

were determined by significant F-values in ANOVA (α=0.05, n=4-6). Purple- and red-fleshed 

clones were included in the same group to balance flesh color group sizes. Flesh attribute mean 

differences were compared pairwise by Tukey’s Honest Significant Difference (HSD) tests (t-

test, α=0.05).  

3.3. Results and Discussion 

3.3.1. Spearman’s Rank Correlations: Positive vs. Negative Attributes 

Attributes have weak to strong, negative or positive correlations with one another 

according to Spearman’s rank correlation coefficients. Clustering of correlation coefficients in 

HCA reveals two clusters of sensory attributes with opposing correlations (Figure 3.1). The 

larger cluster, cluster 1, encompasses appearance, creamy, fruity, overall quality, sweet, buttery, 

mealy texture, and potato-like flavor. Cluster 2 includes aroma intensity, earthy, woody, bitter, 

and off-flavors other than bitter. Considering overall quality as a positive attribute, similarly 

clustered attributes in cluster 1 are also likely to be positive, whereas attributes in cluster 2 are 

probably negative. Spearman’s rank correlation coefficients highlight proportional variation 

within positive or negative attribute groups and an inverse relationship between attribute groups.  

3.3.2. Linear Mixed Model ANOVA: Attribute Differences by Clone and Cooking Method 

Attributes with mean estimate differences by clone are bitter, buttery, creamy, earthy, 

fruity, off-flavors other than bitter, potato-like flavor, sweet, and woody flavor notes as well as 

related sensory attributes for appearance, aroma intensity, mealy texture, and overall quality 

(Table 3.2; Figure 3.2). Comparing positive and negative attributes identified by Spearman’s 

rank correlation coefficients, sensory panelist scores indicate that greater scores for positive 
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attributes and smaller scores for negative attributes are desirable. Sensory attributes with ratings 

centered on the lower end of the hedonic scale, e.g. off-flavors other than bitter, imply flavor 

note absence or detection difficulty.  

At a glance, purple- and red-fleshed clones have greater ratings for bitter and earthy 

compared to white- or yellow- fleshed clones. Colored-fleshed clones also have greater 

appearance scores than white-fleshed clones, which is to be expected since colored-fleshed 

potatoes are inherently more vibrant and more of a novelty to consumers. Based on Spearman’s 

rank correlation coefficient distinction of positive and negative attributes, Masquerade and 

Harvest Moon consistently have larger scores for positive attributes and smaller scores for 

negative attributes compared to other clones.  

Attribute differences between cooking methods are minimal. Sensory panelists discerned 

between cooking methods for creamy and potato-like flavor notes, mealy texture, and overall 

quality, all of which are rated greater for baked rather than boiled potatoes (Table 3.3; Figure 

3.3). Greater creamy, potato-like flavor, and overall quality in baked versus boiled potatoes may 

be attributed to the slightly longer cooking time required for baking, which enabled more flavor 

reactions to occur, paired with increased potential of flavor compounds to leach into water 

during boiling. Furthermore, baking is a drier cooking process than boiling, logically resulting in 

higher mealy scores. Greater overall quality scores for baked versus boiled potatoes suggests 

panelists had more positive sensory perceptions of baked rather than boiled potatoes.  

Overall quality is the only attribute with significant variation between clone and cooking 

method interactions for a few clones (Table 3.4). For Russet Burbank, CO4099-3W/Y, and 

Crimson King, greater overall quality occurred after boiling, suggesting that these clones be 

boiled to maximize positive sensory perceptions in contrast to CO04063-4R/R, which should be 
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baked to maximize positive perceptions. Yet, clone by cooking method interactions may simply 

reflect undercooked potatoes in baking sessions versus boiling sessions due to differences in 

tuber size between clones. Few significant clone by cooking method interactions implies that the 

influence of cooking method on potato flavor profiles is near negligible. 

3.3.3. HCA: Similarities Between Attributes and Clones 

Two-way Ward HCA of sensory attributes and clones divides sensory attributes into two 

main clusters (Figure 3.4). Cluster 1 consists of aroma intensity, appearance, overall quality, and 

potato-like flavor, all of which are sensory attributes other than flavor notes, with potato-like 

flavor as an exception. Cluster 2 is mostly flavor notes except for mealy texture, and contains 

two smaller clusters, off-flavors other bitter, bitter, fruity, and woody flavor notes in cluster 3 

and mealy texture, earthy, sweet, buttery, and creamy flavor notes in cluster 4. Expectedly, off-

flavors other than bitter clusters closely to bitter in the flavor note group. Another rational cluster 

is that of sweet, buttery and creamy within cluster 4. Surprisingly, earthy does not cluster closely 

with woody, despite a sizeable Spearman’s rank correlation and intuitively linked sensations. 

In the first branch of HCA clustering by clone, advanced selections CO04063-4R/R and 

Crimson King, both the only red-fleshed clones, separate from the other clones into cluster A. 

The second branch creates cluster B with Harvest Moon and Masquerade, both of which are 

yellow-fleshed, half-sib, named cultivars developed by the CSU Potato Breeding and Selection 

Program. The third branch separates white-fleshed russet clones from colored-fleshed clones, 

with the exception of Yukon Gold, while remaining branches are mixtures of yellow- and purple-

fleshed clones.  

For white-fleshed clones, flavor note attribute z-scores (i.e. bitter, buttery, creamy, 

earthy, fruity, off-flavors other than bitter, potato-like flavor, sweet, woody) appear to be 
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relatively consistent compared to those among yellow-, purple- or red-fleshed potatoes, which is 

supported by pairwise comparisons in the ANOVA. More consistent ratings for white-fleshed 

compared to colored-fleshed potatoes is not unexpected since breeding efforts are largely 

focused on white-fleshed potatoes. Purple- and red-fleshed potatoes especially have received less 

attention in breeding, where less selection against bitter or other off-flavors caused by 

phytopigments, glycoalkaloids, and other secondary plant metabolites may be the cause of 

greater abundances and inconsistencies of negative, off-flavor compounds. Yet, white-fleshed 

potatoes are not rated lower than yellow-fleshed potatoes for bitter or earthy flavor notes, 

indicating influences on flavor other than flesh color. 

3.3.4. V-Tests: Under- and Over-Represented Attributes per Clone 

Although some variation occurs between attribute score mean estimates by clone, clonal 

variation is most discernible in descriptions generated by v-tests (Table 3.5). In the white flesh 

group, Russet Norkotah had no prominent descriptors. Russet Burbank, the most common, 

commercial, white-fleshed russet, has a relatively highly rated potato-like flavor. Russet Nugget 

has a fairly mealy texture, but no distinctive flavor notes. The recently named cultivar, Fortress 

Russet, has minimal lemon flavor and high scores for off-flavors other than bitter, possibly 

related to poor overall quality ratings. Appearance ratings for Fortress Russet were also lowly 

ranked. The advanced selection, AC00395-2RU, seems promising due to minimal bitter flavors, 

off-flavors other than bitter, and aroma intensity.  

Compared to white-fleshed clone descriptions, yellow-fleshed clones appear to have 

more diverse flavor notes and a greater buttery flavor versus other flesh colors. Masquerade has 

low ratings for bitter and off-flavors other than bitter, but high ratings for creamy, fruity and 

sweet. Harvest Moon also has low scores for bitter flavors and off-flavors other than bitter, with 
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high scores for buttery and low ratings for earthy and woody. Both Masquerade and Harvest 

Moon have a high overall quality score. Yukon Gold, a common commercial yellow-fleshed 

potato, does not have prominent sensory attributes other than a low rated earthy flavor, possibly 

indicating better flavor quality in Masquerade and Harvest Moon. Mealy texture is minimal for 

Red Luna with no other pronounced attributes. Advanced selection CO04099-3W/Y has no 

distinguishable attributes, yet advanced selection CO04067-8R/Y has a highly rated buttery 

flavor and appearance, denoting another promising advanced selection. 

Bitter, off-flavors other than bitter, and earthy are most prominent in purple- and red- 

versus white- or yellow-fleshed clones. By v-test description, Purple Majesty, which is purple-

fleshed, is not high in bitter or other off-flavors, but does have a highly rated earthy flavor, 

appearance, and overall quality. Another purple-fleshed potato clone, advanced selection 

CO04056-3P/PW, has high scores for bitter, off-flavors other than bitter, earthy, and mealy 

texture. Red-fleshed advanced selection CO04063-4R/R is high in the same flavor notes plus has 

low buttery and overall quality scores. Crimson King, also red-fleshed, has high bitter and earthy 

scores with low buttery, minimally mealy texture, poor appearance and poor overall quality. 

Although purple- and red-fleshed potatoes may inherently be more bitter and off-flavored due to 

higher phytopigment content, Crimson King and the advanced selections have a questionable 

fresh market value since Purple Majesty, a popular commercial cultivar in Colorado, is not 

characterized with the same negative components (identified through Spearman’s rank 

correlation coefficients) as the advanced selections.  

3.3.5. PCA: Positive vs. Negative Attributes in Relation to Clones 

The PCA has three components that explain 54.9% of sample variation (R2), however, a 

low validation coefficient of 22.2% (Q2) implies a poor model fit. Still, several sensory attribute 
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loadings have proportional R2 and Q2 values, indicating a good model fit for some attributes 

(Figure 3.5A-D). Scores do not have well-defined separation by clone, cooking method, year, 

order, or flesh color, yet, due to the subjective nature of flavor, some separation occurs between 

panelists, which is an important reminder of personal preferences and the subjective nature of 

flavor. Sensory attribute loadings correlate in two distinct clusters in a normalized correlation 

biplot of PC2 versus PC1 (Figure 3.5E). The top left cluster, cluster 1, contains overall quality, 

sweet, buttery, creamy, potato-like flavor, with weak correlations to fruity and appearance, 

whereas cluster 2 contains off-flavors other than bitter, lemon, umami, aroma intensity, woody, 

earthy, and bitter with a weak correlation to mealy texture. Using the same logic for identifying 

positive and negative attributes in Spearman’s rank coefficient correlation HCA, cluster 1, which 

is closely associated with PC1, contains positive attributes whereas cluster 2, related to PC2, 

contains negative attributes. Though there are correlations within clusters, there is no correlation 

between clusters. Several scores for CO04056-3P/PW, CO04067-8R/Y, CO4099-3W/Y, Harvest 

Moon, and Yukon Gold correlate with the positive attribute cluster, while multiple scores for 

CO04056-3P/PW, CO04063-4R/R, CO4099-3W/Y, Crimson King, Fortress Russet, Purple 

Majesty, and Russet Nugget correlate with the negative attribute cluster. 

3.3.6. Post-Hoc ANOVA: Attribute Differences by Flesh Color   

In flesh color group comparisons, bitter, buttery, earthy, off-flavors other than bitter, 

woody, appearance, and aroma intensity attributes have mean score differences (Table 3.6; 

Figure 3.6), implying that flesh color is somewhat indicative of flavor profiles. Purple- and red-

fleshed potatoes have greater ratings for bitter, earthy, and aroma intensity relative to white- or 

yellow- fleshed potatoes, as well as greater ratings for off-flavors other than bitter and woody 

compared to yellow-fleshed potatoes. Buttery flavor scores are greater for yellow-fleshed 
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potatoes versus other flesh colors. Additionally, appearance is greater for yellow- versus white-

fleshed potatoes.  

3.3.7. Summary of Positive vs. Negative Attributes   

Positive attributes consistent across Spearman’s rank correlation coefficient HCA and 

PCA are appearance, buttery, creamy, fruity, sweet, overall quality, and potato-like flavor.  

Consistent negative attributes are aroma intensity, bitter, earthy, off-flavors other than bitter, and 

woody. Mealy texture was a positive attribute in Spearman correlation coefficient HCA but a 

negative attribute in PCA.  The HCA for sensory attributes and clone mean estimates did not 

follow a pattern similar to Spearman’s rank correlation coefficient HCA and PCA. 

3.3.8. Application of Results 

Flavor profiles generated from sensory analysis are informative to producers that are 

interested in growing fresh market potatoes with high flavor quality, which should increase profit 

since more flavorful produce tends to have a higher value than produce with poor flavor quality.9 

Flavor profiles may also be useful to consumers that wish to maximize flavor quality or select a 

product with specific flavor components. For selection-based breeding programs, such as the 

Colorado State University Potato Breeding and Selection Program, flavor profiles may be used to 

guide parental crosses for crop flavor quality improvement. This sensory analysis can also guide 

flavor compound biomarker discovery and development of efficient biomarker assays, therefore 

enabling selection for phenotypes with improved flavor. Flavor biomarker identification will 

further provide a framework for potato flavor gene studies. 

3.4. Summary 

The purpose of this study was to examine fresh market potato flavor diversity and to 

identify relevant sensory attributes. A sample population of 15 clones with various skin and flesh 
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colors was described by and scored for 15 attributes using a trained panel. Clones had significant 

differences for 13 of 15 attributes according to linear mixed model ANOVA (F-test, α=0.05) and 

least square mean differences (t-test, α=0.05). The influence of cooking method on flavor was 

minimal. Positive attributes identified in Spearman’s correlation coefficient hierarchical 

clustering analysis and principle component analysis were appearance, buttery, creamy, fruity, 

sweet, potato-like flavor, and overall quality, whereas negative attributes were aroma intensity, 

bitter, earthy, off-flavors other than bitter, and woody. The most positively perceived clones 

across statistical methods were Masquerade and Harvest Moon, which are yellow-fleshed half 

sibs developed by the Colorado Potato Breeding and Selection Program.  
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Table 3.1. Reference foods selected by a trained sensory panel for cooked potato 

flavor description with a hedonic scale (1 to 9, absence to maximum intensity)  

Flavor Reference Food

Sweetness Sugar cube

Fruity Flavor Apple slice

Lemon Flavor Lemon slice

Umami Flavor Chicken broth

Buttery Flavor Butter slice

Creamy Flavor White chocolate

Earthy Flavor Beet slice

Woody Flavor Toothpick

Bitter Tonic water
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Table 3.2. Hedonic score (1 to 9, absence to maximum intensity) clone mean estimatesa and comparisonsb of 

cooked potato sensory attributes rated by a trained sensory panel  
 

aMeans estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, interactions as 
random effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects (n=17-38 hedonic scores x 15 

clones). 
bAll sensory attribute clone means are significantly different according to mixed model ANOVA F-tests (α=0.05), where means labeled with the 

same capital letter are not significantly different but different capital letters indicate significantly different means in Welch’s adjusted t-tests 

(α=0.05).  

Flesh Color Clone

White AC00395-2RU 1.53 [0.84, 2.23] A 2.66 [1.83, 3.48] BCD 2.51 [1.70, 3.31] AB 3.09 [2.29, 3.88] ABC 1.97 [1.34, 2.60] ABCD

Fortress Russet 2.21 [1.52, 2.91] BCD 2.79 [1.96, 3.61] CD 2.87 [2.07, 3.68] BCDE 3.53 [2.74, 4.32] BCD 1.84 [1.20, 2.47] A

Russet Burbank 2.39 [1.68, 3.10] CDE 2.41 [1.58, 3.24] ABC 2.26 [1.45, 3.08] A 3.47 [2.67, 4.27] ABCD 2.07 [1.43, 2.71] ABCD

Russet Norkotah 1.71 [1.02, 2.41] AB 2.79 [1.96, 3.61] CD 2.53 [1.72, 3.34] AB 3.64 [2.85, 4.43] CDE 1.89 [1.26, 2.52] AB

Russet Nugget 1.89 [1.18, 2.59] ABC 2.54 [1.71, 3.37] BC 2.54 [1.73, 3.35] AB 3.23 [2.44, 4.03] ABCD 2.02 [1.38, 2.65] ABCD

Yellow CO04067-8R/Y 1.91 [1.21, 2.62] ABC 3.33 [2.50, 4.16] E 3.12 [2.30, 3.93] CDE 3.47 [2.68, 4.27] ABCD 2.03 [1.39, 2.67] ABCD

CO04099-3W/Y 2.41 [1.70, 3.11] CDE 2.66 [1.83, 3.49] BCD 2.43 [1.62, 3.24] AB 3.57 [2.78, 4.37] BCD 2.28 [1.64, 2.92] BCDE

Masquerade 1.58 [0.89, 2.28] A 3.14 [2.31, 3.96] DE 3.32 [2.51, 4.13] E 3.12 [2.33, 3.91] ABCD 2.63 [2.00, 3.27] E

Harvest Moon 1.68 [0.98, 2.38] AB 3.35 [2.53, 4.18] E 3.24 [2.43, 4.05] DE 2.96 [2.16, 3.75] A 1.90 [1.27, 2.54] ABC

Red Luna 2.47 [1.77, 3.17] CDE 2.76 [1.93, 3.58] CD 2.86 [2.05, 3.67] BCDE 3.58 [2.79, 4.37] BCD 2.47 [1.83, 3.11] DE

Yukon Gold 1.92 [1.23, 2.61] ABC 2.89 [2.06, 3.71] CDE 2.53 [1.73, 3.34] AB 3.03 [2.25, 3.82] AB 2.43 [1.79, 3.06] DE

Purple CO04056-3P/PW 2.85 [2.14, 3.56] E 2.53 [1.70, 3.36] ABC 2.55 [1.73, 3.36] AB 4.39 [3.59, 5.19] F 2.23 [1.59, 2.87] ns

Purple Majesty 2.10 [1.40, 2.80] ABC 2.76 [1.93, 3.58] CD 2.75 [1.94, 3.56] ABCD 4.17 [3.38, 4.97] EF 2.17 [1.54, 2.81] ABCD

Red CO04063-4R/R 3.83 [3.02, 4.64] F 1.91 [1.01, 2.81] A 2.56 [1.66, 3.46] ABC 4.44 [3.55, 5.34] F 1.97 [1.25, 2.68] ABCD

Crimson King 2.82 [2.11, 3.53] DE 2.16 [1.33, 2.99] AB 2.60 [1.79, 3.42] ABC 3.68 [2.88, 4.47] DE 2.35 [1.71, 2.99] CDE

Flesh Color Clone

White AC00395-2RU 1.19 [0.79, 1.58] A 5.99 [5.48, 6.50] CDE 2.78 [2.06, 3.50] BC 2.48 [1.78, 3.19] BCDEF

Fortress Russet 2.00 [1.61, 2.40] CD 5.62 [5.11, 6.13] BCD 2.20 [1.48, 2.93] A 2.72 [2.02, 3.42] EF

Russet Burbank 1.54 [1.14, 1.95] AB 6.28 [5.76, 6.80] E 2.37 [1.65, 3.10] AB 2.51 [1.80, 3.22] BCDEF

Russet Norkotah 1.53 [1.14, 1.92] AB 5.88 [5.38, 6.39] CDE 2.41 [1.69, 3.14] AB 2.54 [1.83, 3.24] CDEF

Russet Nugget 1.33 [0.93, 1.74] A 5.99 [5.48, 6.51] CDE 2.28 [1.55, 3.00] AB 2.17 [1.46, 2.88] ABCD

Yellow CO04067-8R/Y 1.43 [1.03, 1.84] AB 6.00 [5.48, 6.52] CDE 2.54 [1.81, 3.27] ABC 2.40 [1.69, 3.11] BCDE

CO04099-3W/Y 1.56 [1.16, 1.96] ABC 5.58 [5.06, 6.10] ABCD 2.55 [1.82, 3.28] ABC 2.63 [1.92, 3.34] DEF

Masquerade 1.20 [0.80, 1.59] A 5.81 [5.29, 6.32] BCDE 3.40 [2.67, 4.12] D 2.03 [1.33, 2.74] AB

Harvest Moon 1.17 [0.77, 1.57] A 5.97 [5.46, 6.48] CDE 2.64 [1.91, 3.36] ABC 1.90 [1.19, 2.06] A

Red Luna 1.47 [1.07, 1.86] AB 5.45 [4.94, 5.97] ABC 2.64 [1.91, 3.36] ABC 2.36 [1.65, 3.06] ABCDE

Yukon Gold 1.50 [1.10, 1.89] AB 5.74 [5.24, 6.25] BCD 2.97 [2.25, 3.69] C 2.06 [1.36, 2.77] ABC

Purple CO04056-3P/PW 1.89 [1.48, 2.30] BC 5.34 [4.82, 5.86] AB 2.23 [1.50, 2.95] AB 2.92 [2.21, 3.63] F

Purple Majesty 1.52 [1.12, 1.92] AB 6.08 [5.56, 6.59] DE 2.67 [1.94, 3.39] ABC 2.74 [2.03, 3.44] EF

Red CO04063-4R/R 2.46 [1.94, 2.99] D 5.38 [4.72, 6.03] ABC 2.21 [1.41, 3.01] AB 2.52 [1.73, 3.31] BCDEF

Crimson King 2.00 [1.60, 2.41] CD 5.09 [4.57, 5.61] A 2.28 [1.55, 3.01] AB 2.60 [1.89, 3.31] DEF

Flesh Color Clone

White AC00395-2RU 5.75 [5.13, 6.37] BCDE 4.26 [3.40, 5.12] A 3.88 [3.06, 4.69] EF 6.04 [5.56, 6.51] CDEF

Fortress Russet 4.90 [4.28, 5.52] A 4.84 [3.98, 5.70] CD 3.22 [2.41, 4.03] ABCD 5.34 [4.87, 5.81] AB

Russet Burbank 5.48 [4.85, 6.12] ABC 4.97 [4.10, 5.84] CD 3.30 [2.48, 4.12] ABCDE 5.46 [4.98, 5.94] BC

Russet Norkotah 5.65 [5.02, 6.27] BCD 4.74 [3.87, 5.60] ABC 3.46 [2.64, 4.27] BCDE 5.55 [5.08, 6.02] BC

Russet Nugget 5.50 [4.86, 6.13] ABC 4.79 [3.92, 5.65] ns 4.66 [3.84, 5.48] G 5.89 [5.41, 6.37] CDE

Yellow CO04067-8R/Y 6.43 [5.80, 7.07] F 4.67 [3.80, 5.54] ABC 3.90 [3.08, 4.73] EF 6.14 [5.65, 6.62] DEF

CO04099-3W/Y 6.27 [5.64, 6.90] DEF 4.83 [3.96, 5.70] BCD 3.58 [2.76, 4.40] CDEF 5.63 [5.15, 6.11] BC

Masquerade 6.22 [5.60, 6.85] DEF 4.95 [4.08, 5.81] CD 3.62 [2.81, 4.44] DEF 6.48 [6.01, 6.96] F

Harvest Moon 6.26 [5.64, 6.89] DEF 4.30 [3.43, 5.16] AB 2.98 [2.16, 3.79] ABC 6.14 [5.66, 6.61] DEF

Red Luna 6.27 [5.65, 6.90] EF 4.81 [3.95, 5.68] BCD 2.87 [2.05, 3.68] AB 5.53 [5.06, 6.01] BC

Yukon Gold 5.94 [5.32, 6.56] CDEF 4.64 [3.78, 5.50] ABC 3.73 [2.92, 4.54] DEF 5.66 [5.19, 6.14] BCD

Purple CO04056-3P/PW 6.19 [5.55, 6.82] DEF 5.30 [4.43, 6.17] D 4.10 [3.28, 4.93] FG 5.84 [5.35, 6.32] CDE

Purple Majesty 6.25 [5.63, 6.88] DEF 5.16 [4.30, 6.03] CD 3.81 [3.00, 4.63] DEF 6.33 [5.85, 6.80] EF

Red CO04063-4R/R 5.92 [5.18, 6.65] BCDEF 5.27 [4.32, 6.22] CD 3.39 [2.46, 4.32] ABCDEF 4.80 [4.21, 5.38] A

Crimson King 5.24 [4.60, 5.87] AB 5.10 [4.23, 5.97] CD 2.82 [2.00, 3.64] A 4.85 [4.37, 5.34] A

Overall Quality

Creamy Earthy

Woody

Bitter

Off Flavors Other Than Bitter

Mealy TextureAppearance Aroma Intensity

Potato-Like Sweet

FruityButtery
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Table 3.3. Hedonic score (1 to 9, absence to maximum intensity) cooking method mean estimates 

with 95% confidence intervalsa and comparisonsb of cooked potato sensory attributes rated by a 

trained sensory panel 

aMeans estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, 
interactions as random effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects 

(n=237-291 x 2 cooking methods). 
bCooking method means by sensory attribute are significantly different according to mixed model ANOVA F-tests (α=0.05) and 

pairwise comparison of means in Welch’s adjusted t-tests (α=0.05). 

 

  

Table 3.4. Hedonic score (1 to 9, absence to maximum intensity) clone by cooking method mean 

estimates with 95% confidence intervalsa and comparisonsb of cooked potato overall quality rated 

by a trained sensory panel  

  

aMeans estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, 
interactions as random effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects 

(n=8-21 x 2 cooking methods x 15 clones). 
bCooking method means by clone for overall quality are significantly different according to a mixed model ANOVA F-test (α=0.05) 

and pairwise comparison of means for some clones in Welch’s adjusted t-tests (α=0.05). 

  

Creamy 2.99 [2.24, 3.74] 2.43 [1.67, 3.19]

Potato-Like 6.06 [5.66, 6.45] 5.44 [5.03, 5.85]

Mealy Texture 4.01 [3.27, 4.75] 3.10 [2.34, 3.87]

Overall Quality 5.95 [5.55, 6.35] 5.47 [5.04, 5.90]

Baked Boiled

Flesh Color Clone

White Russet Burbank 4.45 [3.81, 5.09] 6.14 [5.54, 6.73]

Yellow CO04099-3W/Y 5.67 [4.92, 6.42] 6.27 [5.63, 6.90]

Red CO04063-4R/R 6.01 [5.41, 6.61] 5.53 [4.91, 6.15]

Crimson King 3.87 [3.07, 4.66] 5.67 [5.08, 6.25]

Baked Boiled
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Table 3.5. Cooked potato clone description using sensory attributes identified by v-testsa with hedonic score (1 to 

9, absence to maximum intensity) mean estimatesb calculated from ratings of a trained sensory panel  
  

aA v-test is a modified t-test used for the identification of over or under-represented variables, or in this case, clone means significantly smaller or 
greater (α=0.05) than the overall mean of a sensory attribute 

 bMeans estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, interactions as 
random effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects (n=17-38 hedonic scores x 15 

clones).  
  

Flesh Color Clone Flavor Notes Other

White AC00395-2RU Low bitterness, low off-

flavors other than bitter

 Low aroma intensity

Fortress Russet Low lemon flavor, high 

off-flavors other than 

bitter

Poor appearance, poor 

overall quality

Russet Norkotah None None

Russet Burbank High potato-like flavor None

Russet Nugget None Highly mealy texture

Yellow CO04067-8R/Y High butteriness Great appearance

CO04099-3W/Y None None

Harvest Moon Low bitterness, high 

butteriness, low 

earthiness, low off-

flavors other than bitter, 

low woodiness

Highly mealy texture, 

high overall quality

Masquerade Low bitterness, high 

creaminess, high 

frutiness, high 

sweetness, low off-

flavors other than bitter

High overall quality

Red Luna None Minimally mealy texture

Yukon Gold Low earthiness

Purple CO04056-3P/PW High bitterness, high 

earthiness, high off-

flavors other than bitter

Highly mealy texture

Purple Majesty High earthiness Great appearance, high 

overall quality 

Red CO04063-4R/R High bitterness, low 

butteriness, high 

earthiness, high off-

flavors other than bitter

Poor overall quality

Crimson King High bitterness, low 

butteriness, high 

earthiness

Poor appearance, 

minimally mealy texture, 

poor overall quality
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Table 3.6. Hedonic score (1 to 9, absence to maximum intensity) flesh color mean estimates with 95% confidence 

intervalsa and comparisonsb of cooked potato sensory attributes rated by a trained sensory panel 

aFlesh group mean of REML mean estimates by clone (n=5 for white, n=6 for yellow, n=4 for red)  from a mixed model analysis with session 
year, sample order presented to panelists, panelists, interactions as random effects and clone, cooking method, and the interaction between clone 

and cooking method as fixed effects. 
bFlesh group means by sensory attribute are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same 

capital letter are not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05). 

 

  

Flavor Notes

Flesh Color n

White 5 1.95 [1.64, 2.26] A 2.64 [2.50, 2.78] AB 3.39 [3.19, 3.59] A 1.52 [1.25, 1.79] AB 2.48 [2.31, 2.66] AB

Yellow 6 2.00 [1.70, 2.29] A 3.02 [2.78, 3.26] B 3.29 [3.06, 3.52] A 1.39 [1.26, 1.52] A 2.23 [2.01, 2.45] A

Purple and Red 4 2.90 [2.21, 3.60] B 2.34 [1.97, 2.71] A 4.17 [3.83, 4.51] B 1.97 [1.59, 2.35] B 2.70 [2.53, 2.86] B

Other Characteristics

Flesh Color n

White 5 5.45 [5.17, 5.74] A 4.72 [4.48, 4.95] A

Yellow 6 6.23 [6.10, 6.36] B 4.70 [4.52, 4.88] A

Purple and Red 4 5.90 [5.44, 6.35] AB 5.21 [5.12, 5.30] B

Woody

Appearance Aroma Intensity

Off-Flavors Other Than 

Bitter
Bitter Buttery Earthy
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Figure 3.1. Spearman’s rank correlation coefficients with two-way Ward HCA of cooked potato sensory attributes 

using clone hedonic score (1 to 9, absence to maximum intensity) mean estimatesa calculated from ratings of a 

trained sensory panel 

  
aMeans estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, interactions as random 
effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects (n=17-38 hedonic scores x 15 clones). 
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Figure 3.2. Hedonic score (1 to 9, absence to maximum intensity) clonea mean estimatesb and comparisonsc of 

cooked potato sensory attributes rated by a trained sensory panel  

a95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 
99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 

63=CO04063-4R/R, CK=Crimson King.  
bMeans estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, interactions as 

random effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects (n=17-38 hedonic scores x 15 

clones). 
cAll sensory attribute clone means are significantly different according to mixed model ANOVA F-tests (α=0.05), where means labeled with the 

same capital letter are not significantly different but different capital letters indicate significantly different means in Welch’s adjusted t-tests 
(α=0.05). Sensory attributes are also significantly different according to mixed model F-tests (α=0.05) for cK=cooking method, cL:cK=clone by 

cooking method, or F=flesh color when notated. 
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Figure 3.4. Hedonic score (1 to 9, absence to maximum intensity) clonea mean estimatesb with z-score 

normalization and two-way Ward HCA of cooked potato sensory attributesc rated by a trained sensory panel 
a95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 
99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 

63=CO04063-4R/R, CK=Crimson King.  
bMeans estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, interactions as 

random effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects (n=17-38 hedonic scores x 

15 clones). 

cAll sensory attribute clone means are significantly different according to mixed model ANOVA F-tests (α=0.05).  
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Figure 3.5. (A-C) Loading contributions and (D) normalized correlation R2 biplot in principle component analysis 

of Pareto-scaled sensory attributea loadings and cloneb by cooking method hedonic scores colored by clone flesh 

colorc 
aAll sensory attributes are significantly different according to mixed model ANOVA F-tests (α=0.05) for clone, cooking method, or clone and 
cooking method interactions (n=8-21 hedonic scores x 2 cooking methods x 15 clones). 

b95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 
99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 

63=CO04063-4R/R, CK=Crimson King.  
cOnly scores with R2≥0.50 are labeled with clone codes 
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Figure 3.6. Hedonic score (1 to 9, absence to maximum intensity) flesh color mean estimates with 95% confidence 

intervalsa and comparisonsb of cooked potato sensory attributes rated by a trained sensory panel 

aFlesh group mean of REML mean estimates by clone (n=5 for white, n=6 for yellow, n=4 for red)  from a mixed model analysis with session 
year, sample order presented to panelists, panelists, interactions as random effects and clone, cooking method, and the interaction between clone 

and cooking method as fixed effects. 
bFlesh group means by sensory attribute are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same 

capital letter are not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05). 
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CHAPTER 4. NON-TARGETED AROMA COMPOUND ANALYSIS 

4.1. Introduction 

Flavor is a subjective, complex quality trait that primarily involves taste and aroma 

sensations, although appearance, texture, or other characteristics may influence perception.1 

Taste is the basic reception of bitter, sweet, salty, sour, and umami on the tongue.2 In potatoes, 

umami and bitter are most prominent, whereas the other tastes are minimal.3 Aroma, detected in 

the olfactory, includes more diverse sensations that typically contribute to flavor to a greater 

extent than taste,1 particularly for potatoes.3 Aroma flavor metabolites and products range from 

volatile to semi-volatile, thus are potent even in small concentrations.4 

Since the late 1960s, dozens of aroma flavor metabolites and products have been 

identified in potatoes. Most potato aroma compounds result from interactions during cooking 

between fatty acid, sugar, and amino acid precursors, including Strecker amino acid degradation 

to form aldehydes, lipid degradation to form aldehydes and ketones, Maillard reactions that form 

pyrazines, and other sugar degradation reactions.5,6 Other aroma metabolites include sulfur 

compounds6,7 as well as terpenes and pyrazines present in raw tubers.10 Although overall flavor 

is synergistic between metabolites and products,4 pyrazines8-10 and aldehydes6,11 may be 

particularly influential to potato flavor. Aroma compounds differ by cultivar,12-14 environment,13 

storage conditions,6,11 and cooking method.14 

Compared to older volatile extraction methods, headspace solid-phase microextraction 

(HS-SPME) has similar sensitivity, greater automation capacity, and faster extraction times.15 

Solvents are also not used, reducing chemical waste and error likelihood. This method has been 

used in a handful of European fresh market potato volatile metabolite studies coupled to gas 
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chromatography and mass spectrometry (GC-MS),15-19 however, has not been applied to 

American fresh market potato cultivars or a sample group with differential cooking methods. 

Assessment of potato aroma metabolites and products using HS-SPME will enable tentative 

identification of American potato flavor compounds and serve as an indicator for method 

application to high-throughput flavor phenotyping. Confirmation of potato flavor aroma 

compounds with sensory analysis may elucidate target flavor compounds for selection-based 

breeding programs. In the following study, aroma compounds were extracted through HS-SPME 

from American potatoes for evaluation with GC-MS across fifteen clones and two cooking 

methods. 

4.2. Materials and Methods 

4.2.1. Plant Material 

Potato clones were field grown at the Colorado State University San Luis Valley 

Research Center (SLVRC, Center, CO) using conventional production practices in 2014 and 

2015. Tuber material consisted of fifteen clones, including five advanced breeding selections and 

ten named cultivars. White-fleshed clones were AC00395-2RU, Fortress Russet, Russet 

Burbank, Russet Norkotah, and Russet Nugget; yellow-fleshed clones were CO04067-8R/Y, 

CO04099-3W/Y, Harvest Moon, Masquerade, Red Luna, and Yukon Gold; purple-fleshed clones 

were CO04056-3P/PW and Purple Majesty; red-fleshed clones were CO04063-4R/R and 

Crimson King. In the beginning of the year following each growing season, tubers were removed 

from storage and baked or boiled. Cooked potatoes were diced, subsequently frozen with liquid 

N2, and stored at -80°C until volatile analysis. Bulked, randomized samples for each clone by 

cooking method contained material from at least three tubers. 
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4.2.2. Aroma Compound Reference Standards 

Although samples were analyzed using a non-targeted metabolomics workflow, some 

known potato flavor analytes were diluted to 30 ng µL-1 with 100% methanol as a standard mix 

to facilitate method development for gas chromatography coupled to mass spectrometry (GC-

MS) and confirm identifications when appropriate. Exceptions were α-copaene and dimethyl 

trisulfide, diluted to 14 and 15 ng µL-1, respectively. All standards were produced by the Sigma-

Aldrich Company, LLC (St. Louis, MO): 3-carene (90%), α-copaene (≥90%), β-damascenone 

(≥90%), 1-decanal (≥98%), hexadecane (≥99.8%), furfural (≥98%), isovaleraldehyde (≥97%), α-

limone (≥99%), methional (≥97%), 1-octen-3-ol (98%), 2-pentanone (99.5%), 2-

phenylacetylaldehyde (≥90%), α-pinene (99%+), 2,5-dimethylpyrazine (98%), 2-isobutyl-3-

methoxypyrazine (99%), 2-isopropyl-3-methoxypyrazine (97%), dimethyl disulfide (≥99%), and 

dimethyl trisulfide (≥98%).  

4.2.3. HS-SPME GC-MS 

In both years, 5.0 g cooked potato samples were transferred to 20 mL (75.5 x 22.5 mm; 

MicroSolv Technology Co., Leland, NC) HS vials. Five randomized technical replications per 

clone and cooking method were gently thawed to room temperature, mashed within HS vials, 

resealed, and placed into an 80°C water bath for 5 minutes to equilibrate vial and HS 

temperatures. A 75 µm carboxen-coated 23 mm polydimethylsiloxane fiber (CAR/PDMS, 

Supelco Inc., Bellefonte, PA) was used for SPME of volatile compounds. Adsorption occurred 

for 20 minutes at 50 °C and 300 rpm, followed by desorption and splitless injection of 

metabolites and products with helium carrier gas at a constant flow rate of 1.5 mL min-1 for 2 

minutes at 280°C. An Agilent 7890A (Agilent Technologies, Santa Clara, CA) equipped with an 

Agilent VF5-ms GC column separated analytes using temperature ramps from 35 to 280°C. An 
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Agilent 240 ion trap detected analyte fragments after internal electron ionization at 70 eV and a 

full scan mode from 29-400 m/z at 0.45 seconds per scan. Automation was achieved through 

System Control in MS Workstation version 6 (Agilent Technologies). 

4.2.4. Data Processing 

Raw GC/MS chromatographs were processed with the XCMS package in RStudio 

version 0.99.896 (RStudio, Inc., Boston, MA) using a CSU Proteomics and Metabolomics 

Facility chromatography processing workflow with supporting functions. Processing included 

peak detection, grouping, retention time correction, filling, and normalization using the total ion 

current (TIC). A signal to noise ratio (S/N) of 2 was used for peak detection. Using the 

‘ramclustR’ package in RStudio, peak data was clustered and correlated by trends in peak 

abundance and retention time to generate reconstructed spectra for tentative identification and 

statistical analysis. Reconstructed peak areas were analyzed in an analysis of variance (ANOVA) 

with false discovery rate (FDR) adjustments (α=0.05) and principal component analysis (PCA) 

with Pareto-scaling (α=0.05). Mass spectra of compound peaks with significant differences in 

ANOVA and PCA were tentatively identified using minimum intensity matching of 450 in the 

National Institute of Standards and Technology (NIST) MS Search Software version 2.0f (NIST, 

Gaithersburg, MD) with the NIST 11 database. A user-generated database of standards 

confirmed some tentative spectral identifications with retention time matching.  

4.2.5. Statistical Analysis 

Compound peak areas were log-transformed prior to statistical analyses. Spearman’s rank 

correlation coefficients between compounds across both years were calculated and clustered by 

Ward’s two-way hierarchical clustering analysis (HCA). Two-way ANOVA was conducted for 

each identified compound by clone, cooking method, and their interaction. For compounds with 



45 

a significant F-value in ANOVA (α=0.05), means were compared pairwise by clone and the 

interaction of clone and cooking method using Tukey’s Honest Significant Difference (HSD) 

tests (t-test, α=0.05) or pairwise with Welch’s adjusted t-tests (α=0.05) for cooking method 

comparison. Due to differences in compounds detected, two-way ANOVA was performed by 

individual sample year rather than pooled between years. Compounds with significant variation 

in two-way ANOVA were subject to z-score normalization for Ward’s two-way HCA by clone. 

The SIMCA version 14.1 program (MKS Data Analytics Solutions, Umea, Sweden) was used to 

conduct Pareto-scaled multivariate PCA with clone by cooking method compound peak areas as 

variables for individual and collective sample years. Components were selected using Q2 

validation of R2. 

Clone peak means were combined by respective flesh color into the following groups: 

white, yellow, and purple or red flesh. Purple- and red-fleshed clones were included in the same 

group to balance flesh color group sizes. A post-hoc analyte comparison between flesh colors 

was evaluated with ANOVA and Tukey’s HSD tests (α=0.05, n=4-6).  

4.3. Results and Discussion 

4.3.1. Data Processing: Total Peaks to Identifiable Peaks with Variation Across Samples 

Processing produced 539 analyte peaks in 2014 and 583 in 2015. In the 2014 ANOVA 

with FDR adjustments, 3.90%, 1.67%, and 0.19% of analytes had significant p-values (α=0.05) 

by clone, cooking method, and their interaction, respectively. Percentages of analytes with 

significant p-values for analogous ANOVA treatments in 2015 were 77.74%, 30.98%, and 

38.40%. Across 20 principal components in PCA, 6.68% of analytes had a least one significant 

score (α=0.05) in 2014 compared to 10.29% in 2015. The number of tentatively identifiable, 

non-contaminant compounds in 2014 was 13 and 32 in 2015. A few tentatively identified 
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compounds had ambiguous fragmentation, resulting in subsequent use of generic names (i.e. 

saturated hydrocarbon 1) in this study. Various hydrocarbon, ether, ester, aldehyde, ketone, 

halogenic, nitrogenous, and thioether compounds were tentatively identified (Table 4.1; Table 

4.2). Furfural, 1-octen-3-ol, dimethyl disulfide, 3-carene, 2-isopropyl-3-methoxypyrazine, 2-

phenylacetaldehyde, and α-copaene spectra were confirmed by standard retention time matching. 

A large number of tentatively identified aldehydes supports other assays that identified a large 

proportion of potato volatiles as aldehydes. Sensory analysis is necessary to verify tentatively 

identified or confirmed compounds that play a role in potato flavor. 

A multitude of reasons may have contributed to a larger number of identifiable, variable 

compounds in 2015 versus 2014. Samples were stored for a longer period in 2014 prior to 

analysis, which may have caused sample degradation. Differences may also be attributable to 

systematic error within the instrument or cooking methods across years. User error is another 

potential factor, since technique and consistency tends to improve over time. Despite consistent 

production management, minor environmental differences in terms of water, light, nutrients, or 

other biotic factors may have also influenced compound presence and variation.  

4.3.2. Spearman’s Rank Correlations Between Potential Flavor Compounds 

Cluster 1 is the most prominent, largest cluster (0.67≤rs≤0.95) in the Spearman’s rank 

correlation HCA heatmap, which includes (E)-2-heptenal (AD-14-1), 3,5-octadien-2-one (KE-

14-2), o-methylacetophenone (KE-14-1), (E,E)-2,4-nonadiene (HC-14-1), 2-n-butyl furan (FU-

14-1), 2,4-nonadienal (AD-14-3), (E)-2-octenal (AD-14-4), hexanal (AD-14-2), and 3,5-

dimethylcyclopentene (HC-14-2) (Figure 4.1). The second largest cluster (0.45≤rs≤0.91), cluster 

5, contains dimethyl disulfide (SU-15), (E)-2-heptenal (AD-15-2), 1-nonanal (AD-15-3), 

benzoate-3-methyl-2-buten-1-ol (PA-15-1), benzaldehyde (AD-15-1), (Z)-2-methyl-2-penten-1-
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ol (AC-15-3), and pentanal (AD-15-4). Two medium clusters contain 3-carene (TE-15-1), 2-

isopropyl-3-methoxypyrazine (PZ-15), an unidentifiable phenol (AC-15-4), α-copaene (TE-15-

2), and an unidentifiable phenyl acetate (PA-15-2) in cluster 6 (0.43≤rs≤0.98) and unsaturated 

hydrocarbon 2 (HC-15-7), saturated hydrocarbon 2 (HC-15-4), saturated hydrocarbon 1 (HC-15-

3), saturated hydrocarbon 3 (HC-15-5), and 2,2,3,4-tetramethyl-pentane (HC-15-2) in cluster 9 

(0.89≤rs≤0.97). Two weaker medium clusters are clusters 2 and 4, which include isomenthone 

(TE-15-3), 3-methyl-pentane (HC-15-1), unsaturated hydrocarbon 1 (HC-15-6), 1-octen-3-ol 

(AC-15-1), and p-methylacetophenone (KE-15-2) (0.07≤rs≤0.54) and α-copaene (TE-14), 

methional (SU-14), 2-phenylacetaldehyde (AD-14-5), and furfural (FU-15-1) (0.06≤rs≤0.64), 

respectively. Small clusters are as follows: 3,4,5-trimethyl-2-cyclopenten-1-one (KE-15-3), 1-

pentanol (AC-15-2), and 2-ethylfuran (FU-15-1) (0.58≤rs≤0.69) in cluster 3; 2-pentyl-furan (FU-

15-2), 1-chloro-2-methyl-butane (HA-15), and 5-methyl-2-hexanone (KE-15-1) (0.43≤rs≤0.53) 

in cluster 7; 3,4-dimethyl-styrene (HC-15-9) with azulene (HC-15-8) (rs=0.66) in cluster 8. 

Although clusters are evident in HCA of Spearman’s rank correlation coefficients by 

analyte-to-analyte, the basis of the clustering is unclear. In general, compounds separate by 

sample years. Aldehydes occur in the two larger clusters, clusters 1 and 5, rather than separate 

across clusters as compounds with other functional groups (i.e. ketones, alcohols, hydrocarbons, 

etc.), perhaps due to a larger proportion of aldehydes relative to the other functional groups. 

Cluster 6 contains an alcohol, ester, pyrzaine, and two terpenes, which all have large atomic 

masses relative to the other compounds, though not all large mass compounds are within the 

cluster. Cluster 9 includes five hydrocarbons with retention times within a three-minute time 

window. While this study did not include characterizations of metabolite or product reactions for 
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tentative or confirmed compounds, clustering between compounds could represent similar 

metabolite reactants or reactions.  

4.3.3. ANOVA: Potential Flavor Compound Differences by Clone and Cooking Method 

Univariate analysis revealed analyte variation and mean differences by clone, cooking 

method, and their interaction. Within 2014 data by clone, Russet Nugget and Yukon Gold have 

consistently larger mean peak areas than other clones, which is not evident for 2015 (Tables 4.3 

& 4.4; Figures 4.2 & 4.3), indicating systematic or random errors as formerly mentioned. White-

fleshed clone means were typically greater than purple- or red-fleshed clone means from 2014, 

while yellow-fleshed clone means were less distinct. Clone means in 2015 did not follow a 

similar pattern. For both years, analyte means are greater in baked versus boiled potatoes (Table 

4.5; Figure 4.4). Clone by cooking method interactions are significant for several compounds 

across nine clones (Table 4.6).  

Analyte mean differences by cooking method are more prominent in samples from 2015 

than 2014, though all means for baked potatoes are greater than boiled. Intuitively, it makes 

sense that means are greater for baked potatoes since aluminum foil confined volatiles that may 

have been released during boiling. Analyte mean discrepancies between cooking methods are 

limited to nine of the fifteen clones. All white-fleshed clones have mean differences by cooking 

method for at least one analyte, while only some yellow-fleshed clones and no purple- or red-

fleshed clones have differences. The most common compounds with mean differences by clone 

between cooking methods are aldehydes (including furans), suggesting formation dependence on 

cooking, most likely through Maillard or Strecker reactions. 
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4.3.4. HCA: Similarities Between Potential Flavor Compounds and Clones 

For both years, HCA elucidates trends between analytes and clones (Figures 4.5 & 4.6). 

Two primary analyte clusters emerge in 2014 HCA, where cluster 2 contains four of five 

aldehydes (not including furans) and cluster 1 contains a mixture of compounds by functional 

group. The 2015 clone-to-analyte HCA also splits analytes into two clusters. The clusters differ 

by a few compounds by functional group, where cluster 1 uniquely contains both terpenes and 

nitrogenous compounds and cluster 2 contains most of the non-terpene hydrocarbons and both 

furans. Both clusters contain alcohols, aldehydes, and ketones. Except for the clustering of 

aldehydes in the 2014 HCA, analyte clustering in HCA of both years does not coincide with 

clustering from HCA of Spearman’s rank correlation coefficients. Differential clustering of 

compounds across HCAs was expected due to the use of analyte means by clone rather than 

bivariate correlations between analytes 

In 2014 HCA, white-fleshed clones cluster together in cluster B with the exception of 

Russet Nugget, which clusters with yellow-fleshed Yukon Gold in cluster A. Advanced selection 

CO04056-3P/PW and Purple Majesty, both purple-fleshed, correspond in cluster C. Cluster D is 

a mixture of yellow- and red-fleshed clones. Clustering by clone in 2015 HCA is more mixed 

than the 2014 HCA, though both purple-fleshed clones cluster together in cluster A similarly to 

the 2014 HCA. Contrasting clone clustering between years was anticipated because of 

differences in tentative or confirmed analyte identification. Clustering of clones in the 2014 

analyte-to-clone HCA supports ANOVA differentiation of white- from colored-flesh clones, 

with the exception of Russet Nugget. 

 

 



50 

4.3.5. PCA: Potential Flavor Compounds in Relation to Clones 

A PCA of 2014 data has four components that contribute to 92.2% of sample variation, 

whereas PCA of 2015 data has five components representing 71.2% of variation. Combined PCA 

for both years has six components expressing 82.4% of variation. Scores do not have well-

defined separation by clone, cooking method, replication, year, or flesh color, however, some 

clustering occurs between compound loadings. Except where noted, compound clustering does 

not reflect characteristics including retention time, atomic mass, density, boiling point, vapor 

pressure, or carbon content. 

In the 2014 model, there is an obvious small and large cluster of loadings, though the two 

clusters do not correlate well (Figure 4.7). Cluster 1 includes 2-phenylacetaldehyde (FU-14), 

furfural (AD-14-5), and methional (SU-14) and cluster 2 includes (E,E)-2,4-nonadiene (HC-14-

1), 3,5-dimethylcyclopentene (HC-14-2), (E)-2-heptenal (AD-14-1), hexanal (AD-14-2), 2,4-

nonadienal (AD-14-3), (E)-2-octenal (AD-14-4), o-methylacetophenone (KE-14-1), 3,5-

octadien-2-one (KE-14-2), and 2-n-butyl furan (FU-14-1). Scores for Russet Nugget and Yukon 

Gold correlate positively to cluster 1, whereas purple- or red-fleshed scores appear to have a 

weak negative correlation to the same cluster.  

For 2015, cluster 1 contains α-copaene (TE-15-2), an unidentifiable phenol (AC-15-4), 

and an unidentifiable phenyl acetate (PA-15-2) and correlates to cluster 2, which contains 2-

isopropyl-3-methoxypyrazine (PZ-15), 3-carene (TE-15-1), p-methylacetophenone (KE-15-2), 

azulene (HC-15-8), and dimethyl disulfide (SU-15). Clusters 1 and 2 also have a weak 

correlation to hydrocarbon cluster 3 of 2,2,3,4-tetramethyl-pentane (HC-15-2), saturated 

hydrocarbons 1 to 3 (HC-15-3, HC-15-4, HC-15-5), and unsaturated hydrocarbon 2 (HC-15-7) 

(Figure 4.8). The hydrocarbons weakly correlate to cluster 4, which contains most of the 
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aldehydes and ketones, including 1-pentanol (AC-15-2), 1-nonanal (AD-15-3), (E)-2-heptenal 

(AD-15-2), pentanal (AD-15-4), 5-methyl-2-hexanone (KE-15-1), 3,4,5-trimethyl-2-

cyclopenten-1-one (KE-15-3), 2-ethylfuran (FU-15-1), 2-pentyl-furan (FU-15-2), and 1-chloro-

2-methyl-butane (HA-15). Cluster 4 is also related to baked Russet Nugget scores. The former 

cluster also appears to be somewhat positively related to other white-fleshed clone scores and 

negatively to red-fleshed clone scores. In both PCAs by year, white- and purple- or red-fleshed 

clone means appear to be in opposition.  

4.3.6. Post-Hoc ANOVA: Potential Flavor Compound Differences by Flesh Color 

Although 2015 HCA of clones and compounds does not have clear trends, post-hoc 

ANOVA of compounds by flesh color suggests otherwise. For 2014 samples, compounds with 

significant variation across flesh color generally have a greater mean for white-fleshed clones, 

followed by yellow- and purple- or red-fleshed clones (Table 4.7; Figure 4.9). Compound means 

are partially greater for white- and purple- or red-fleshed clones in 2015 samples (Table 4.8; 

Figure 4.10), though differences between all three flesh color groups are less distinct as in 2014. 

Compounds with different means across flesh color include diverse primary functional groups. 

Hydrocarbon content is greater for white- versus purple- or red-fleshed potatoes in 2014 samples, 

while the opposite is true for 2015 samples. Yellow-fleshed potato hydrocarbon means in either 

year are similar to both purple- or red- and white-fleshed clone means. Aldehyde means across 

both years tend to be greatest in white- followed by yellow-, and purple- or red- potatoes. Ketone 

means in both years are greater for white- relative to purple- or red-fleshed clones.       

4.3.7. Application of Results 

Sample runtimes for HS-SPME GC-MS were relatively long for practical use in high-

throughput phenotyping, but methods could be streamlined to improve feasibility for application 
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in selection-based breeding programs. Univariate mean differences of potential flavor 

compounds between clones suggest diverse cooked potato flavor profiles with a possible genetic 

component. Multivariate flavor profiles by clone from HCA and PCA are less diverse and more 

inconsistent compared to univariate flavor profiles by clone, though some trends occur by flesh 

color. Flesh color is somewhat related to genetic background, particularly for white- versus 

colored-fleshed potato clones, so a genetic component for flavor profiles is still plausible. Flavor 

phenotyping and selection may be possible by selecting a few, key flavor compounds as 

biomarkers. Nonetheless, the role of compounds in flavor should be confirmed with sensory 

analysis prior to breeding or other genetic explorations. Cooking methods result in differences in 

relative volatile amounts, which may influence potato flavor. 

4.4. Summary 

Cooked fresh market potato volatile and semi-volatile diversity was examined. Volatiles 

are aroma compounds that influence flavor to a greater extent than non-volatile, taste 

compounds. To evaluate potential key aroma compounds for potato flavor, headspace profiles of 

15 clones with a range of skin and flesh colors were compared. Across 2014 and 2015, 33 

compounds with differences by clone, cooking method, or interactions (ANOVA F-test and 

Tukey’s HSD t-tests, α=0.05, n=5 technical replicates x clone x cooking method) were 

tentatively identified using mass spectral matching. Identification of 8 compounds was 

confirmed by retention time matching in gas chromatography, including 3-carene, α-copaene, 

dimethyl disulfide, furfural, methional, 1-octen-3-ol, 2-phenacetaldehyde, and 2-isopropyl-3-

methoxypyrazine. Clone differences revealed some compound trends by flesh color, particularly 

for white versus other flesh colors. Compound peak area means were greater for baked versus 

boiled potatoes, suggesting aroma flavor differences between cooking methods. 
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Table 4.1. Characteristics of analytes detected by HS-SPME GC-MS with spectral matching identificationa  

aSpectral matching with National Institute of Standards and Technology (NIST, Gaithersburg, MD) 11 database and NIST MS Search Software 
version 2.0f, minimum of 450 matching intensity for positive identification. *An asterisks indicates that analyte identification was additionally 

confirmed using retention time matching of a standard. 
bPrimary functional groups based on flavor metabolites. 
cTop 3 orrganoleptic characteristics retrieved from the Good Scents Company online database (Oak Creek, WI). Nutty includes almond, green 

includes leafy, vegetative, and grassy, fatty includes buttery, chicken fat, oily, beef, and egg. 
dAnalytes have significant variation according to ANOVA F-tests (α=0.05) for cL=clone, cK=cooking method, cL:cK=clone by cooking 

method, or F=flesh color as notated. 
eCompound codes are arbitrary, but were intended simplify table or figure labels as appropriate; The first letters are AC=alcohol, AD=aldehyde, 

FU=furan, HA= halogenic, HC=hydrocarbon, KE=ketone, PA=phenyl acetate, PR=pyrrole, PZ=pyrazine, SU=sulfurous, and TE=terpene; The 
second number digits represent growing season of potato material, 14=2014, 15=2015; Final number digit makes each code unique per analyte. 

 

Year
Primary 

Functional Groupb Configuration Compound Organolepticsc Significant 

Variabled

Compound 

Codee

2014 Hydrocarbon Alkene (E,E)-2,4-nonadiene cL HC-14-1

Cycloalkene 3,5-dimethylcyclopentene cL, cL:cK HC-14-2

Terpene α-copaene* woody, spicy, honey cL TE-14

Aldehyde Aliphatic (E)-2-heptenal green, fatty, fruity cL, cL:cK AD-14-1

hexanal green, woody, fatty cL, cL:cK AD-14-2

2,4-nonadienal fatty, nutty, citrus cL, cL:cK AD-14-3

(E)-2-octenal green, herbal, fatty cL, cL:cK AD-14-4

2-phenylacetaldehyde* honey, floral, cocoa cL, cK AD-14-5

Ketone Aliphatic o-methylacetophenone floral, burnt, nutty cL KE-14-1

3,5-octadien-2-one fruity, green cL KE-14-2

Ether Furan 2-n-butyl furan fruity, wine, spicy cL, cL:cK FU-14-1

furfural* caramel, woody, nutty cK FU-14-2

Thioether Aliphatic with Aldehyde methional* potato, musty, fatty cK SU-14

2015 Hydrocarbon Alkane 3-methyl-pentane cL, cL:cK, F HC-15-1

2,2,3,4-tetramethyl-pentane cL, cK, cL:cK HC-15-2

saturated hydrocarbon 1 cL, cK HC-15-3

saturated hydrocarbon 2 cL, cK, cL:cK HC-15-4

saturated hydrocarbon 3 cL, cK HC-15-5

Alkene unsaturated hydrocarbon 1 cL, cL:cK, F HC-15-6

unsaturated hydrocarbon 2 cL, cK, F HC-15-7

Cycloalkene azulene cK HC-15-8

Styrene 3,4-dimethyl-styrene cK HC-15-9

Terpene 3-carene* citrus, pine cL, cL:cK TE-15-1

α-copaene* woody, spicy, honey cL, cL:cK TE-15-2

isomenthone minty cK TE-15-3

Alcohol Aliphatic 1-octen-3-ol* earthy, green, fatty cL, cK, cL:cK AC-15-1

1-pentanol fermented, yeasty, wine cL, cL:cK, F AC-15-2

(Z)-2-methyl-2-penten-1-ol cL, cK, F AC-15-3

Phenol unidentifiable phenol cL:cK AC-15-4

Aldehyde Aliphatic benzaldehyde nutty, fruity, fatty cL, cL:cK, F AD-15-1

(E)-2-heptenal green, fatty, fruity cL, cK, cL:cK, F AD-15-2

1-nonanal citrus, green, potato cL, cL:cK AD-15-3

pentanal fermented, yeasty, wine cL, cL:cK, F AD-15-4

Ketone Aliphatic 5-methyl-2-hexanone cL, cK, cL:cK, F KE-15-1

Acetophenone p-methylacetophenone creamy, fruity, vanilla cL, cK, cL:cK KE-15-2

Cyclic 3,4,5-trimethyl-2-cyclopenten-1-one cL, cL:cK, F KE-15-3

Ether Furan 2-ethylfuran musty, earthy, yeasty cL, cK, cL:cK, F FU-15-1

2-pentyl-furan fruity, green, earthy cL, cK, cL:cK, F FU-15-2

furfural* caramel, woody, nutty cK, cL:cK FU-15-3

Ester Phenyl Acetate benzoate-3-methyl-2-buten-1-ol woody, fruity, chocolate cL PA-15-1

Phenyl Acetate unidentifiable phenyl acetate cL PA-15-2

Halogenic Aliphatic 1-chloro-2-methyl-butane cK, cL:cK HA-15

Nitrogenous Pyrazine 2-isopropyl-3-methoxypyrazine* earthy, chocolate, nutty cL, cL:cK, F PZ-15

Pyrrole 2-formyl-1-methylpyrrole cL, cL:cK, F PR-15

Thioether Aliphatic dimethyl disulfide* sulfur, cabbage, caramel cL:cK SU-15
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Table 4.2. Top 5 mass peaks used in spectral matchinga and retention times of cooked potato analytes 

aSpectral matching with National Institute of Standards and Technology (NIST, Gaithersburg, MD) 11 database and NIST MS Search Software 
version 2.0f, minimum of 450 matching intensity for positive identification. 

 *An asterisks indicates that analyte identification was additionally confirmed using retention time matching of a standard. 

Compound Top 5 Mass Peaks RT

unsaturated hydrocarbon 1 57, 56, 55, 53, 61 144

1-chloro-2-methyl-butane 57, 41, 55, 39, 56 158

2-ethylfuran 81, 53, 96, 65, 82 171

pentanal 44, 58, 43, 41, 57 172

3-methyl-pentane 57, 56, 53, 50, 51 226

1-pentanol 41, 55, 42, 71, 70 276

(Z)-2-methyl-2-penten-1-ol 72, 71, 67, 43 57 332

hexanal 41, 44, 56, 43, 57 348

furfural* (2015) 95, 97, 39, 69, 68 395

furfural* (2014) 96, 95, 39, 38, 37 418

3,4,5-trimethyl-2-cyclopenten-1-one 109, 81, 79, 124, 53 428

5-methyl-2-hexanone 43, 58, 81, 71, 82 503

2-formyl-1-methylpyrrole 108, 109, 42, 40, 95 546

methional 48, 49, 30, 50, 35 559

(E,E)-2,4-nonadiene 79, 81, 53, 95, 68 624

(E)-2-heptenal (2015) 41, 55, 57, 39, 69 632

benzaldehyde 77, 106, 51, 50, 52 642

(E)-2-heptenal (2014) 41, 83, 55, 39, 69 649

1-octen-3-ol* 57, 69, 55, 67, 81 674

2-pentyl-furan 82, 81, 53, 138, 39 686

benzoate-3-methyl-2-buten-1-ol 105, 41, 43, 55, 69 716

dimethyl disulfide* 93, 91, 79, 136, 81 716

3-carene* 93, 67, 121, 81, 53 732

3,5-dimethylcyclopentene 81, 79, 41, 53, 39 749

saturated hydrocarbon 1 57, 41, 43, 71, 70 758

saturated hydrocarbon 2 57, 41, 56, 71, 70 795

2-phenylacetaldehyde 91, 92, 65, 93, 63 810

2,2,3,4-tetramethyl-pentane 57, 41, 43, 56, 71 818

(E)-2-octenal 41, 55, 83, 70, 39 839

unsaturated hydrocarbon 2 57, 41, 56, 55, 69 845

2-isopropyl-3-methoxypyrazine* 109, 152, 137, 124, 105 883

1-nonanal 41, 57, 43, 55, 56 912

3,5-octadien-2-one 95, 79, 81, 71, 59 914

saturated hydrocarbon 3 57, 41, 56, 71, 68 934

p-methylacetophenone 91, 119, 92, 134, 65 936

3,4-dimethyl-styrene 117, 119, 115, 68, 132 1002

isomenthone 55, 69, 41, 112, 70 1023

o-methylacetophenone 91, 79, 105, 134, 119 1063

azulene 128, 129, 102, 127, 126 1084

2,4-nonadienal 81, 41, 67, 39, 65 1172

2-n-butyl furan 81, 67, 95, 70, 82 1363

phenyl with ester branch 105, 91, 79, 93, 106 1435

α-copaene* (2015) 161, 119, 149, 204, 145 1437

unidentifiable phenol 148, 133, 147, 103, 129 1439

α-copaene* (2014) 105, 119, 91, 161, 93 1452
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Table 4.3. Log-transformed peak area clone means and comparisonsa and 95% confidence intervals of analytes 

detected by non-targeted HS-SPME GC/MS in cooked potatoes in 2014b  

 

aClone means by analyte are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same capital letter are 
not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05) (n=technical replicates x 

15 clones).  
bCompound codes are arbitrary, but were intended simplify table or figure labels as appropriate; The first letters are AC=alcohol, AD=aldehyde, 

FU=furan, HA= halogenic, HC=hydrocarbon, KE=ketone, PA=phenyl acetate, PR=pyrrole, PZ=pyrazine, SU=sulfurous, and TE=terpene; The 
second number digits represent growing season of potato material, 14=2014, 15=2015; Final number digit makes each code unique per analyte. 

 

Flesh Color Clone

White AC00395-2RU 1.93 [1.71, 2.14] AC 2.34 [2.07, 2.60] AC 1.79 [1.68, 1.90] AB 2.50 [2.31, 2.69] AC 3.17 [2.89, 3.45] AD 2.21 [2.05, 2.36] AB 2.24 [2.06, 2.43] AD 2.48 [2.30, 2.67] AB

Fortress Russet 1.73 [1.57, 1.89] AB 2.16 [1.88, 2.43] AB 2.16 [1.98, 2.34] BC 2.40 [2.19, 2.61] AC 2.90 [2.61, 3.19] ABC 2.08 [1.94, 2.21] A 2.09 [1.91, 2.28] ABC 2.34 [2.18, 2.50] AB

Russet Burbank 1.84 [1.69, 1.98] AC 2.30 [2.04, 2.56] AC 2.16 [2.04, 2.27] BC 2.49 [2.30, 2.69] AC 3.30 [2.90, 3.69] BD 2.27 [2.04, 2.49] AB 2.27 [2.04, 2.49] BD 2.67 [2.50, 2.85] B

Russet Norkotah 1.66 [1.56, 1.77] AB 2.15 [1.98, 2.33] AB 1.74 [1.50, 1.98] A 2.42 [2.29, 2.55] AC 2.94 [2.74, 3.13] ABC 2.13 [1.97, 2.29] A 2.11 [1.98, 2.24] AD 2.47 [2.33, 2.61] AB

Russet Nugget 2.24 [1.97, 2.51] C 2.79 [2.48, 3.10] C 1.84 [1.73, 1.95] AB 2.75 [2.58, 2.92] C 3.72 [3.37, 4.07] D 2.58 [2.37, 2.78] B 2.51 [2.32, 2.71] D 2.60 [2.44, 2.76] AB

Yellow CO04067-8R/Y 1.68 [1.55, 1.81] AB 1.97 [1.77, 2.16] A 1.88 [1.72, 2.03] AC 2.09 [1.92, 2.26] A 2.66 [2.42, 2.90] AB 1.97 [1.84, 2.10] A 1.91 [1.76, 2.05] AB 2.62 [2.35, 2.88] AB

CO04099-3W/Y 1.69 [1.53, 1.86] AB 2.01 [1.83, 2.19] A 1.94 [1.72, 2.16] AC 2.21 [2.10, 2.32] AB 2.65 [2.45, 2.84] AB 1.96 [1.83, 2.10] A 1.95 [1.79, 2.11] AB 2.55 [2.38, 2.73] AB

Harvest Moon 1.66 [1.49, 1.82] AB 1.90 [1.74, 2.06] A 1.72 [1.60, 1.84] A 2.13 [2.03, 2.23] A 2.56 [2.33, 2.80] AB 1.96 [1.86, 2.07] A 1.90 [1.74, 2.07] AB 2.70 [2.55, 2.85] B

Masquerade 1.70 [1.50, 1.89] AB 2.03 [1.79, 2.28] A 1.94 [1.76, 2.12] AC 2.30 [2.12, 2.47] AB 2.76 [2.39, 3.13] AB 2.05 [1.87, 2.24] A 2.00 [1.82, 2.18] ABC 2.58 [2.45, 2.72] AB

Red Luna 1.74 [1.57, 1.91] AB 2.23 [1.90, 2.55] AB 1.80 [1.70, 1.90] AB 2.38 [2.19, 2.57] AC 2.99 [2.57, 3.41] ABC 2.13 [1.93, 2.32] A 2.08 [1.87, 2.29] ABC 2.66 [2.52, 2.81] B

Yukon Gold 2.04 [1.80, 2.29] BC 2.61 [2.28, 2.94] BC 1.91 [1.77, 2.06] AC 2.58 [2.34, 2.82] BC 3.56 [3.15, 3.97] CD 2.53 [2.31, 2.75] B 2.40 [2.16, 2.65] CD 2.63 [2.45, 2.80] AB

Purple CO04056-3P/PW 1.68 [1.59, 1.78] AB 1.87 [1.77, 1.98] A 2.25 [2.06, 2.43] C 2.09 [1.94, 2.24] A 2.58 [2.39, 2.78] AB 1.90 [1.81, 2.00] A 1.89 [1.78, 1.99] AB 2.31 [2.17, 2.46] AB

Purple Majesty 1.60 [1.50, 1.70] A 1.83 [1.73, 1.93] A 2.14 [1.99, 2.30] BC 2.17 [2.00, 2.33] AB 2.51 [2.38, 2.64] A 1.91 [1.82, 1.99] A 1.83 [1.72, 1.94] A 2.24 [2.10, 2.39] A

Red CO04063-4R/R 1.63 [1.52, 1.74] AB 1.87 [1.74, 2.01] A 1.73 [1.61, 1.85] A 2.06 [1.93, 2.20] A 2.56 [2.35, 2.78] AB 1.92 [1.80, 2.04] A 1.85 [1.72, 1.97] AB 2.45 [2.28, 2.62] AB

Crimson King 1.63 [1.54, 1.72] A 1.90 [1.79, 2.02] A 1.66 [1.54, 1.78] A 2.13 [2.00, 2.26] A 2.74 [2.51, 2.98] AB 1.95 [1.85, 2.05] A 1.93 [1.80, 2.06] AB 2.36 [2.17, 2.55] AB

Compound Code

Configuration

Functional Group

Flesh Color Clone

White AC00395-2RU 1.96 [1.80, 2.12] AC 1.91 [1.69, 2.13] AC 1.90 [1.74, 2.05] AC

Fortress Russet 1.88 [1.72, 2.04] AB 1.70 [1.54, 1.86] AB 1.85 [1.67, 2.03] AC

Russet Burbank 1.98 [1.83, 2.12] AC 1.87 [1.73, 2.02] AC 1.94 [1.72, 2.16] AC

Russet Norkotah 1.77 [1.67, 1.88] A 1.72 [1.60, 1.83] AB 1.78 [1.63, 1.93] AB

Russet Nugget 2.34 [2.09, 2.59] C 2.26 [2.03, 2.49] C 2.21 [2.00, 2.43] C

Yellow CO04067-8R/Y 1.84 [1.67, 2.01] AB 1.72 [1.59, 1.86] AB 1.67 [1.48, 1.85] A

CO04099-3W/Y 1.80 [1.63, 1.97] AB 1.72 [1.53, 1.90] AB 1.69 [1.54, 1.84] A

Harvest Moon 1.84 [1.69, 1.99] AB 1.70 [1.56, 1.84] AB 1.63 [1.48, 1.79] A

Masquerade 1.80 [1.61, 1.99] AB 1.70 [1.52, 1.87] AB 1.70 [1.53, 1.87] A

Red Luna 1.89 [1.74, 2.05] AB 1.82 [1.64, 2.00] AB 1.76 [1.58, 1.95] AB

Yukon Gold 2.18 [1.94, 2.43] BC 2.08 [1.81, 2.35] BC 2.15 [1.95, 2.36] BC

Purple CO04056-3P/PW 1.80 [1.70, 1.90] AB 1.66 [1.55, 1.77] A 1.60 [1.51, 1.69] A

Purple Majesty 1.76 [1.66, 1.87] A 1.66 [1.55, 1.76] A 1.59 [1.49, 1.70] A

Red CO04063-4R/R 1.81 [1.67, 1.94] AB 1.70 [1.56, 1.84] AB 1.65 [1.51, 1.78] A

Crimson King 1.81 [1.66, 1.96] AB 1.71 [1.61, 1.80] AB 1.68 [1.57, 1.79] A

Compound Code

Configuration

Functional Group

AD-14-4 AD-14-5

Aliphatic

Ketone

2-phenyl-acetaldehyde

o-methylaceto-phenone 3,5-octadien-2-one

HC-14-1

Alkene Cycoalkene

Ether

Aldehyde

(E,E)-2,4-nonadiene

Furan

FU-14-2KE-14-1 KE-14-2

Hydrocarbon

2-n-butyl furan

Aliphatic

(E)-2-octenal2,4-nonadienal
3,5-dimethylcyclo-

pentene
(E)-2-heptenal hexanalα-copaene

HC-14-2 AD-14-1 AD-14-2 AD-14-3TE-14

Terpene
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Table 4.4. Log-transformed peak area clone means and comparisonsa with 95% confidence intervals of analytes 

detected by non-targeted HS-SPME GC/MS in cooked potatoes in 2015b 

 

aClone means by analyte are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same capital letter are 
not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05) (n=10 x 14 clones). 
bCompound codes are arbitrary, but were intended simplify table or figure labels as appropriate; The first letters are AC=alcohol, AD=aldehyde, 
FU=furan, HA= halogenic, HC=hydrocarbon, KE=ketone, PA=phenyl acetate, PR=pyrrole, PZ=pyrazine, SU=sulfurous, and TE=terpene; The 

second number digits represent growing season of potato material, 14=2014, 15=2015; Final number digit makes each code unique per analyte. 

 
 

Flesh Clone

White AC00395-2RU 3.33 [3.20, 3.46] AC 3.53 [3.47, 3.60] CD 3.04 [3.00, 3.09] C 3.47 [3.39, 3.54] BD 3.54 [3.46, 3.62] BC 3.70 [3.54, 3.86] AB 3.30 [3.25, 3.35] BC 1.98 [1.91, 2.04] AB 2.58 [2.42, 2.74] AC

Fortress Russet 3.40 [3.33, 3.48] CEF 3.15 [3.04, 3.26] AD 2.80 [2.69, 2.92] AC 3.26 [3.19, 3.34] AD 3.11 [2.99, 3.22] AB 3.61 [3.47, 3.76] BC 3.10 [3.02, 3.18] AC 2.20 [2.14, 2.26] F 3.16 [2.98, 3.33] EF

Russet Burbank 3.90 [3.78, 4.02] CEF 3.32 [3.23, 3.40] ABC 2.92 [2.83, 3.01] AB 3.34 [3.29, 3.39] ABC 3.28 [3.18, 3.37] AC 3.96 [3.83, 4.09] AB 3.16 [3.10, 3.23] A 2.38 [2.33, 2.42] A 3.05 [2.94, 3.17] CE

Russet Norkotah 3.86 [3.78, 3.93] A 3.21 [3.10, 3.32] ABC 2.88 [2.78, 2.98] A 3.21 [3.14, 3.27] ABC 3.12 [3.00, 3.23] A 3.97 [3.77, 4.18] AB 3.07 [2.99, 3.14] AB 2.00 [1.95, 2.05] AC 2.29 [2.22, 2.37] CF

Russet Nugget 3.25 [3.13, 3.38] DEG 3.41 [3.35, 3.47] ABC 2.94 [2.88, 3.00] AB 3.38 [3.31, 3.45] ABC 3.38 [3.29, 3.46] AC 3.83 [3.71, 3.96] BC 3.18 [3.11, 3.24] AC 2.16 [2.03, 2.29] A 2.79 [2.59, 2.99] A

Yellow CO04067-8R/Y 3.60 [3.48, 3.72] FG 3.50 [3.37, 3.63] ABC 3.04 [2.94, 3.14] AC 3.48 [3.38, 3.58] ABC 3.50 [3.36, 3.64] C 3.89 [3.74, 4.04] AC 3.26 [3.17, 3.35] AC 2.23 [2.18, 2.28] EF 3.06 [2.95, 3.18] DEF

CO04099-3W/Y 3.84 [3.69, 3.99] BC 3.27 [3.10, 3.44] A 2.93 [2.80, 3.07] A 3.24 [3.14, 3.34] A 3.21 [3.03, 3.38] A 3.72 [3.51, 3.93] A 3.14 [3.02, 3.25] AB 2.49 [2.41, 2.57] CE 2.96 [2.77, 3.16] F

Harvest Moon 3.56 [3.44, 3.68] EG 3.23 [3.11, 3.36] ABC 2.85 [2.73, 2.97] AB 3.26 [3.18, 3.34] ABC 3.16 [3.02, 3.30] AB 3.93 [3.85, 4.02] AB 3.10 [3.01, 3.20] AC 1.97 [1.88, 2.06] F 2.20 [2.02, 2.38] CF

Masquerade 3.05 [2.91, 3.18] CEF 3.25 [3.10, 3.40] BD 2.83 [2.70, 2.95] BC 3.25 [3.11, 3.39] CD 3.17 [3.01, 3.34] A 3.81 [3.64, 3.99] AB 3.09 [2.97, 3.21] AC 2.00 [1.85, 2.14] DE 2.89 [2.68, 3.10] DEF

Red Luna 3.52 [3.43, 3.61] BCD 3.29 [3.17, 3.40] ABC 2.94 [2.85, 3.03] AB 3.29 [3.22, 3.36] ABC 3.22 [3.10, 3.35] AC 3.93 [3.77, 4.08] AC 3.10 [3.01, 3.18] AB 1.99 [1.92, 2.06] AB 2.66 [2.51, 2.80] BCD

Yukon Gold 3.64 [3.41, 3.86] G 3.28 [3.14, 3.42] D 2.89 [2.80, 2.99] C 3.24 [3.14, 3.34] D 3.22 [3.08, 3.36] A 3.88 [3.76, 4.01] C 3.07 [2.97, 3.18] C 1.95 [1.86, 2.04] ACD 2.73 [2.58, 2.88] CF

Purple CO04056-3P/PW 3.59 [3.50, 3.67] EG 3.34 [3.24, 3.44] A 2.97 [2.89, 3.05] A 3.31 [3.23, 3.38] AB 3.30 [3.19, 3.40] AC 3.98 [3.93, 4.04] BC 3.17 [3.09, 3.25] A 2.46 [2.41, 2.52] AC 3.07 [2.90, 3.24] AB

Purple Majesty 3.97 [3.88, 4.06] BCE 3.60 [3.51, 3.69] AB 3.11 [3.06, 3.16] A 3.49 [3.40, 3.58] AB 3.57 [3.47, 3.68] C 4.27 [4.20, 4.34] AC 3.34 [3.27, 3.40] AB 2.11 [2.01, 2.21] AB 2.89 [2.74, 3.03] A

Red Crimson King 3.81 [3.66, 3.95] AB 3.29 [3.20, 3.38] AD 2.93 [2.85, 3.01] AC 3.27 [3.20, 3.34] AD 3.23 [3.12, 3.34] AB 4.00 [3.87, 4.14] AB 3.14 [3.09, 3.20] AC 1.95 [1.90, 1.99] BCD 2.24 [2.01, 2.47] CF

Compound Code

Configuration

Functional Group

Flesh Clone

White AC00395-2RU 3.25 [3.16, 3.35] CDE 3.50 [3.16, 3.85] C 3.36 [3.23, 3.50] AB 3.37 [3.23, 3.51] AB 2.53 [2.47, 2.59] AB 3.29 [3.11, 3.46] AC 3.65 [3.52, 3.77] ABC 3.08 [2.86, 3.31] BC 2.90 [2.84, 2.97] ABC 3.21 [2.99, 3.42] CDF

Fortress Russet 3.14 [3.05, 3.23] BD 3.30 [3.09, 3.51] AB 3.14 [3.04, 3.24] AB 3.20 [3.04, 3.35] AC 2.43 [2.34, 2.53] A 3.31 [3.12, 3.50] AC 3.40 [3.18, 3.61] AB 2.95 [2.84, 3.06] AC 2.91 [2.86, 2.96] AB 3.36 [3.18, 3.53] A

Russet Burbank 3.21 [3.18, 3.25] EF 3.08 [2.99, 3.16] AB 3.53 [3.46, 3.59] AB 3.55 [3.50, 3.60] CD 2.65 [2.58, 2.72] AB 3.57 [3.51, 3.63] AC 3.52 [3.31, 3.72] AB 2.85 [2.64, 3.06] AC 3.19 [3.10, 3.27] ABC 3.14 [2.99, 3.29] BCDF

Russet Norkotah 3.03 [2.93, 3.14] AB 3.34 [3.07, 3.62] BC 3.40 [3.30, 3.50] AB 3.47 [3.39, 3.55] CD 2.60 [2.53, 2.67] BC 3.43 [3.25, 3.61] C 3.64 [3.53, 3.74] CD 2.85 [2.73, 2.97] AB 2.90 [2.86, 2.94] AB 3.10 [2.93, 3.27] EF

Russet Nugget 3.04 [2.93, 3.15] ABC 3.23 [3.00, 3.46] AC 4.49 [4.20, 4.78] A 3.66 [3.61, 3.71] A 2.84 [2.66, 3.02] A 3.46 [3.42, 3.51] AB 4.09 [3.85, 4.33] A 3.10 [2.84, 3.35] AC 2.77 [2.67, 2.86] ABC 3.49 [3.15, 3.84] ADE

Yellow CO04067-8R/Y 2.97 [2.93, 3.02] BED 2.96 [2.85, 3.06] AC 3.55 [3.24, 3.86] B 3.44 [3.25, 3.63] BCD 2.49 [2.37, 2.62] AC 3.39 [3.27, 3.50] BC 3.61 [3.40, 3.83] AB 2.80 [2.72, 2.88] AC 2.87 [2.82, 2.92] D 2.93 [2.82, 3.04] BCDF

CO04099-3W/Y 3.58 [3.50, 3.66] ABC 3.51 [3.20, 3.81] AC 3.07 [2.87, 3.26] AB 3.24 [3.08, 3.40] A 2.58 [2.48, 2.67] A 3.17 [2.96, 3.38] AC 3.25 [3.01, 3.49] AB 3.13 [2.90, 3.37] AC 3.07 [2.99, 3.15] ABC 3.31 [3.14, 3.48] DF

Harvest Moon 3.04 [2.97, 3.11] F 3.09 [3.00, 3.18] C 3.45 [3.34, 3.56] A 3.75 [3.66, 3.84] A 2.54 [2.46, 2.61] AC 3.61 [3.49, 3.73] A 3.71 [3.56, 3.87] A 2.74 [2.66, 2.81] C 2.86 [2.78, 2.94] CD 3.07 [2.88, 3.27] CDF

Masquerade 3.04 [2.94, 3.13] A 3.35 [3.25, 3.45] AB 3.46 [3.27, 3.65] B 3.68 [3.62, 3.75] AC 2.79 [2.55, 3.03] A 3.60 [3.48, 3.71] AC 4.06 [3.81, 4.30] ABC 2.73 [2.62, 2.84] AC 2.84 [2.67, 3.01] ABC 3.44 [3.28, 3.60] AC

Red Luna 3.24 [3.15, 3.33] BD 3.04 [2.91, 3.17] AB 3.32 [3.19, 3.45] AB 3.55 [3.46, 3.64] BCD 2.48 [2.37, 2.60] A 3.53 [3.44, 3.62] BC 3.73 [3.61, 3.85] BD 2.71 [2.65, 2.77] A 2.99 [2.90, 3.08] BD 2.97 [2.82, 3.12] AD

Yukon Gold 3.45 [3.33, 3.58] DF 2.93 [2.81, 3.06] A 3.36 [3.21, 3.50] AB 3.68 [3.58, 3.77] A 2.57 [2.49, 2.64] A 3.46 [3.36, 3.56] AC 3.37 [3.16, 3.59] AB 2.81 [2.65, 2.96] AC 2.90 [2.82, 2.97] BD 3.15 [3.01, 3.29] AB

Purple CO04056-3P/PW 3.24 [3.16, 3.32] AB 2.98 [2.90, 3.05] BC 3.18 [3.12, 3.24] AB 3.41 [3.27, 3.55] AD 2.42 [2.37, 2.48] AC 3.48 [3.34, 3.62] AC 3.41 [3.35, 3.48] ABC 2.91 [2.85, 2.97] AC 2.86 [2.77, 2.95] ABC 2.65 [2.59, 2.71] BCDF

Purple Majesty 3.39 [3.34, 3.44] AB 2.84 [2.77, 2.92] AC 3.29 [3.12, 3.46] AB 3.24 [3.07, 3.41] D 2.47 [2.39, 2.54] AB 3.29 [3.14, 3.44] C 3.50 [3.43, 3.56] BD 2.81 [2.76, 2.86] AB 2.99 [2.92, 3.05] AB 2.77 [2.70, 2.85] ADF

Red Crimson King 3.09 [3.03, 3.15] AB 3.13 [2.95, 3.31] AC 3.07 [2.96, 3.19] C 3.17 [3.02, 3.31] BCD 2.39 [2.34, 2.44] C 3.24 [3.12, 3.36] AC 3.24 [3.07, 3.42] D 2.89 [2.83, 2.95] BC 2.89 [2.80, 2.97] A 3.04 [2.91, 3.16] F

Compound Code

Configuration

Functional Group

Flesh Clone

White AC00395-2RU 3.53 [3.10, 3.95] BC 3.40 [3.20, 3.61] BC 3.17 [3.09, 3.25] AC 2.25 [1.72, 2.78] AD 2.82 [2.68, 2.96] A 2.63 [2.54, 2.72] AB

Fortress Russet 3.34 [2.97, 3.71] A 3.16 [3.00, 3.32] A 3.08 [2.95, 3.21] AC 2.60 [2.16, 3.04] D 2.82 [2.65, 2.99] B 2.96 [2.74, 3.19] AB

Russet Burbank 2.97 [2.80, 3.13] A 3.17 [3.06, 3.27] A 3.35 [3.30, 3.41] AC 2.47 [2.03, 2.90] AD 2.74 [2.61, 2.87] A 2.72 [2.65, 2.80] AB

Russet Norkotah 3.25 [2.80, 3.70] AC 3.08 [2.89, 3.28] A 3.24 [3.12, 3.36] C 2.17 [1.79, 2.56] CD 2.71 [2.63, 2.80] A 2.74 [2.70, 2.77] AB

Russet Nugget 3.61 [3.25, 3.97] A 3.42 [3.17, 3.67] A 3.33 [3.27, 3.39] A 2.41 [1.83, 2.99] AB 2.70 [2.58, 2.83] A 2.64 [2.52, 2.76] A

Yellow CO04067-8R/Y 3.02 [2.84, 3.20] AB 3.05 [2.93, 3.17] AC 3.19 [3.08, 3.29] C 2.51 [2.03, 2.99] D 2.71 [2.60, 2.83] A 2.55 [2.44, 2.66] AC

CO04099-3W/Y 3.07 [2.80, 3.34] AC 3.10 [2.90, 3.31] AC 3.09 [2.93, 3.24] AB 2.47 [1.86, 3.08] D 2.78 [2.65, 2.92] A 2.60 [2.45, 2.76] C

Harvest Moon 2.95 [2.81, 3.10] AC 3.08 [2.98, 3.17] AC 3.37 [3.28, 3.47] AB 2.12 [1.68, 2.57] D 2.77 [2.67, 2.87] A 2.83 [2.75, 2.91] AB

Masquerade 3.04 [2.90, 3.18] AC 2.97 [2.89, 3.04] AB 3.38 [3.22, 3.55] AC 2.49 [1.98, 3.01] D 2.70 [2.58, 2.82] A 2.58 [2.49, 2.68] AB

Red Luna 3.00 [2.88, 3.13] AC 2.88 [2.76, 2.99] A 3.28 [3.19, 3.37] AC 2.32 [1.90, 2.75] AD 2.67 [2.59, 2.75] A 2.62 [2.55, 2.70] AB

Yukon Gold 2.84 [2.69, 2.98] A 2.86 [2.79, 2.92] AC 3.26 [3.16, 3.35] AC 2.33 [1.89, 2.76] CD 2.69 [2.55, 2.82] A 2.55 [2.46, 2.64] AC

Purple CO04056-3P/PW 2.78 [2.68, 2.87] AC 3.03 [2.90, 3.15] AC 3.26 [3.14, 3.37] AC 2.52 [1.98, 3.07] AC 3.26 [3.11, 3.41] A 2.64 [2.50, 2.78] AC

Purple Majesty 2.79 [2.65, 2.92] AB 3.09 [2.99, 3.19] AC 3.16 [3.05, 3.28] C 2.37 [1.99, 2.76] A 2.81 [2.76, 2.87] A 2.71 [2.63, 2.80] BC

Red Crimson King 2.75 [2.61, 2.88] C 2.99 [2.90, 3.09] C 3.06 [2.96, 3.15] BC 2.23 [1.72, 2.74] BCD 2.76 [2.62, 2.90] A 2.51 [2.41, 2.62] AB

Compound Code

Configuration

Functional Group

Terpene

Hydrocarbon

Alkane

HC-15-3 HC-15-5

Alkene

HC-15-7HC-15-6 TE-15-1 TE-15-2

2,2,3,4-tetramethyl-

pentane

unsaturated 

hydrocarbon 1
α-copaene3-carene

HC-15-4

3-methyl-pentane
saturated hydrocarbon 

2

saturated hydrocarbon 

1

saturated hydrocarbon 

3

unsaturated 

hydrocarbon 2

HC-15-1 HC-15-2

1-octen-3-ol 1-pentanol

KE-15-2 KE-15-3

(Z)-2-methyl-2-penten-1-ol benzaldehyde (E)-2-heptenal nonanal pentanal

AC-15-3 AD-15-1 AD-15-2 AD-15-3 AD-15-4 KE-15-1

Aliphatic Aliphatic Aliphatic Acetophenone Cyclic

5-methyl-2-hexanone p-methylaceto-phenone
3,4,5-trimethyl-2-

cyclopenten-1-one

AC-15-1 AC-15-2

Alcohol Aldehyde Ketone

2-ethylfuran 2-pentyl-furan
benzoate-3-methyl-2-buten-

1-ol

unidentifiable phenyl 

acetate

2-Isopropyl-3-

methoxypyrazine
2-formyl-1-methylpyrrole

Furan Phenyl Acetate Pyrazine Pyrrole

FU-15-1 FU-15-2 PA-15-1 PA-15-2 PZ-15

Ether Ester Nitrogenous

PR-15
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Table 4.5. Log-transformed peak area cooking method analytea meansb with 95% confidence intervals detected by 

non-targeted HS-SPME GC/MS in cooked potatoes in 2014 and 2015 

 

aCompound codes are arbitrary, but were intended simplify table or figure labels as appropriate; The first letters are AC=alcohol, AD=aldehyde, 
FU=furan, HA= halogenic, HC=hydrocarbon, KE=ketone, PA=phenyl acetate, PR=pyrrole, PZ=pyrazine, SU=sulfurous, and TE=terpene; The 

second number digits represent growing season of potato material, 14=2014, 15=2015; Final number digit makes each code unique per analyte. 
bCooking method means by analyte are significantly different according to ANOVA F-tests (α=0.05) and pairwise for cooking method by Welch’s 

t-tests (α=0.05) (n=70-75 technical replicates x 2 cooking methods). 

Year Compound Class Compound Compound Code

2014 Aliphatic Aldehyde 2-phenylacetaldehyde AD-14-5 2.59 [2.52, 2.67] 2.43 [2.38, 2.48]

Furan furfural FU-14-2 2.39 [2.31, 2.46] 2.18 [2.12, 2.23]

Sulfur-Containing methional SU-14 2.41 [2.34, 2.49] 2.13 [2.05, 2.20]

2015 Aliphatic Alkane
2,2,3,4-tetramethyl-

pentane
HC-15-2 3.40 [3.35, 3.45] 3.27 [3.22, 3.32]

saturated hydrocarbon 

1
HC-15-3 3.35 [3.31, 3.39] 3.29 [3.25, 3.32]

saturated hydrocarbon 

2
HC-15-4 3.36 [3.30, 3.41] 3.22 [3.16, 3.27]

saturated hydrocarbon 

3
HC-15-5 2.99 [2.95, 3.02] 2.88 [2.84, 2.92]

unsaturated 

hydrocarbon 2
HC-15-7 3.21 [3.17, 3.25] 3.11 [3.08, 3.14]

Cyclic Alkene azulene HC-15-8 3.28 [3.24, 3.31] 3.23 [3.20, 3.26]

Aromatic 

Hydrocarbon
3,4-dimethyl-styrene HC-15-9 2.42 [2.38, 2.46] 2.36 [2.34, 2.38]

Terpene isomenthone TE-15-3 2.64 [2.58, 2.70] 2.47 [2.44, 2.50]

Aliphatic Aldehyde (E)-2-heptenal AD-15-2 2.60 [2.54, 2.66] 2.51 [2.47, 2.54]

pentanal AD-15-4 3.65 [3.55, 3.76] 3.51 [3.45, 3.57]

Aliphatic Ketone 5-methyl-2-hexanone KE-15-1 2.99 [2.92, 3.06] 2.77 [2.74, 2.81]

Aromatic Ketone p-methylaceto-phenone KE-15-2 2.97 [2.93, 3.01] 2.87 [2.84, 2.91]

Cyclic Ketone
3,4,5-trimethyl-2-

cyclopenten-1-one
KE-15-3 3.22 [3.13, 3.31] 3.01 [2.94, 3.07]

Aliphatic Alcohol 1-octen-3-ol AC-15-1 3.27 [3.23, 3.32] 3.12 [3.07, 3.17]

1-pentanol AC-15-2 3.32 [3.23, 3.41] 3.00 [2.95, 3.05]

(Z)-2-methyl-2-penten-1-

ol
AC-15-3 3.48 [3.37, 3.60] 3.32 [3.25, 3.40]

Furan 2-ethylfuran FU-15-1 3.31 [3.18, 3.43] 2.82 [2.78, 2.87]

2-pentyl-furan FU-15-2 3.20 [3.13, 3.28] 2.98 [2.94, 3.02]

furfural FU-15-3 3.41 [3.35, 3.46] 3.32 [3.28, 3.36]

Halogen-Containing
1-chloro-2-methyl-

butane
HA-15 3.18 [3.09, 3.27] 2.99 [2.93, 3.04]

Baked Boiled
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Table 4.6. Log-transformed peak area clone by cooking method means of analytesa with 95% confidence intervals 

detected by non-targeted HS-SPME GC/MS in cooked potatoes in 2014 and 2015 

aClone by cooking method means by analyte are significantly different according to ANOVA F-tests (α=0.05) and pairwise for some clones by 
Tukey’s HSD tests (α=0.05) (n=5 technical replicates x 2 cooking methods x 15 clones). 

Flesh Color Clone Compound Year

White AC00395-2RU 1-pentanol 2015 3.97 [3.80, 4.14] 3.03 [2.75, 3.31]

2-ethylfuran 2015 4.15 [3.90, 4.41] 2.90 [2.81, 2.99]

2-pentyl-furan 2015 3.67 [3.51, 3.84] 3.14 [3.01, 3.26]

5-methyl-2-hexanone 2015 3.41 [3.30, 3.53] 2.75 [2.65, 2.86]

1-chloro-2-methyl-butane 2015 3.75 [3.48, 4.03] 2.93 [2.76, 3.10]

Fortress Russet 2-ethylfuran 2015 3.87 [3.63, 4.11] 2.82 [2.67, 2.96]

1-chloro-2-methyl-butane 2015 3.36 [3.26, 3.45] 2.77 [2.51, 3.03]

2-formyl-1-methylpyrrole 2015 2.65 [2.49, 2.82] 3.27 [3.13, 3.41]

Russet Burbank hexanal 2014 2.80 [2.62, 2.97] 3.70 [3.26, 4.14]

Russet Norkotah 1-pentanol 2015 3.66 [3.47, 3.85] 2.95 [2.82, 3.08]

2-ethylfuran 2015 3.81 [3.57, 4.05] 2.56 [2.47, 2.64]

Russet Nugget 1-pentanol 2015 3.56 [3.51, 3.60] 2.90 [2.73, 3.07]

(Z)-2-methyl-2-penten-1-ol 2015 4.92 [4.86, 4.99] 4.06 [3.91, 4.20]

(E)-2-heptenal 2015 3.11 [3.05, 3.18] 2.57 [2.52, 2.61]

pentanal 2015 4.44 [4.31, 4.57] 3.75 [3.64, 3.86]

5-methyl-2-hexanone 2015 3.44 [3.20, 3.68] 2.75 [2.69, 2.81]

3,4,5-trimethyl-2-cyclopenten-1-one 2015 3.97 [3.70, 4.25] 3.01 [2.90, 3.12]

2-ethylfuran 2015 4.14 [4.00, 4.29] 3.07 [3.01, 3.12]

2-pentyl-furan 2015 3.76 [3.58, 3.94] 3.08 [2.91, 3.25]

Yellow CO04067-8R/Y (Z)-2-methyl-2-penten-1-ol 2015 4.00 [3.82, 4.18] 3.10 [3.05, 3.15]

benzaldehyde 2015 3.71 [3.67, 3.75] 3.17 [3.02, 3.32]

pentanal 2015 3.93 [3.88, 3.98] 3.29 [3.23, 3.36]

CO04099-3W/Y 5-methyl-2-hexanone 2015 3.41 [3.16, 3.66] 2.85 [2.65, 3.05]

1-pentanol 2015 3.87 [3.50, 4.25] 3.14 [2.99, 3.29]

2-ethylfuran 2015 3.33 [2.95, 3.71] 2.81 [2.58, 3.03]

Masquerade unidentifiable phenol 2015 3.46 [3.36, 3.55] 3.27 [3.15, 3.39]

hexanal 2014 2.34 [2.08, 2.60] 3.18 [2.74, 3.63]

(E)-2-heptenal 2015 3.12 [2.81, 3.43] 2.53 [2.48, 2.59]

pentanal 2015 4.40 [4.32, 4.48] 3.78 [3.56, 4.01]

Red Luna hexanal 2014 2.57 [2.32, 2.83] 3.40 [2.76, 4.04]

Baked Boiled



59 

 

Table 4.7. Log-transformed peak area analytea means and comparisonsb with 95% confidence intervals by flesh 

color detected by non-targeted HS-SPME GC/MS in cooked potatoes in 2014 

 

aCompound codes are arbitrary, but were intended simplify table or figure labels as appropriate; The first letters are AC=alcohol, AD=aldehyde, 
FU=furan, HA= halogenic, HC=hydrocarbon, KE=ketone, PA=phenyl acetate, PR=pyrrole, PZ=pyrazine, SU=sulfurous, and TE=terpene; The 

second number digits represent growing season of potato material, 14=2014, 15=2015; Final number digit makes each code unique per analyte. 

bFlesh group means by analyte are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same capital 

letter are not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05). 

Flesh Color n

White 48 1.88 [1.78, 1.98] B 2.35 [2.22, 2.48] C

Yellow 57 1.76 [1.68, 1.84] AB 2.13 [2.02, 2.25] B

Purple and Red 39 1.64 [1.59, 1.68] A 1.87 [1.82, 1.92] A

Flesh Color n

White 48 2.51 [2.43, 2.6] C 3.20 [3.05, 3.36] C 2.25 [2.16, 2.34] C 2.25 [2.16, 2.34] C 2.51 [2.43, 2.59] B

Yellow 57 2.29 [2.21, 2.37] B 2.88 [2.72, 3.03] B 2.11 [2.02, 2.19] B 2.05 [1.96, 2.13] B 2.62 [2.55, 2.69] B

Purple and Red 39 2.11 [2.04, 2.18] A 2.60 [2.5, 2.7] A 1.92 [1.87, 1.97] A 1.88 [1.82, 1.93] A 2.34 [2.26, 2.42] A

Flesh Color n

White 48 1.99 [1.89, 2.08] B 1.89 [1.79, 1.99] B 1.94 [1.85, 2.03] C

Yellow 57 1.90 [1.82, 1.98] AB 1.79 [1.71, 1.88] AB 1.77 [1.69, 1.86] B

Purple and Red 39 1.79 [1.74, 1.85] A 1.68 [1.63, 1.74] A 1.63 [1.58, 1.68] A

Cycoalkene

Hydrocarbon

AD-14-2

2,4-nonadienal (E)-2-octenal 2-phenyl-acetaldehyde

Compound Code

Configuration

Functional Group

HC-14-1

Alkene

HC-14-2

Aldehyde

KE-14-1

AD-14-3 AD-14-4

(E,E)-2,4-nonadiene
3,5-dimethyl-

cyclopentene

o-methyl-acetophenone

(E)-2-heptenal hexanal

AD-14-1

Furan

Ether

2-n-butyl furan

AD-14-5

Aliphatic

3,5-octadien-2-one

KE-14-2

Aliphatic

Ketone

FU-14-2

Functional Group

Compound Code

Configuration

Functional Group

Compound Code

Configuration
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aCompound codes are arbitrary, but were intended simplify table or figure labels as appropriate; The first letters are AC=alcohol, AD=aldehyde, 
FU=furan, HA= halogenic, HC=hydrocarbon, KE=ketone, PA=phenyl acetate, PR=pyrrole, PZ=pyrazine, SU=sulfurous, and TE=terpene; The 

second number digits represent growing season of potato material, 14=2014, 15=2015; Final number digit makes each code unique per analyte. 

bFlesh group means by analyte are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same capital 

letter are not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05). 

Table 4.8. Log-transformed peak area analytea means and comparisonsb with 95% confidence intervals by flesh 

color detected by non-targeted HS-SPME GC/MS in cooked potatoes in 2015 

 
Flesh Color n

White 49 3.54 [3.45, 3.63] A 3.81 [3.73, 3.89] A 3.16 [3.13, 3.20] AB 3.29 [3.18, 3.40] B 3.59 [3.44, 3.74] B

Yellow 59 3.54 [3.46, 3.62] A 3.86 [3.80, 3.92] A 3.13 [3.08, 3.17] A 3.14 [3.06, 3.23] AB 3.37 [3.28, 3.45] A

Purple and Red 30 3.79 [3.70, 3.87] B 4.09 [4.02, 4.16] B 3.22 [3.17, 3.27] B 2.98 [2.91, 3.06] A 3.18 [3.10, 3.26] A

Flesh Color n

White 49 3.45 [3.39, 3.51] B 2.61 [2.55, 2.67] B 3.66 [3.55, 3.76] B 2.97 [2.88, 3.06] B 3.26 [3.16, 3.37] B

Yellow 59 3.55 [3.49, 3.62] B 2.57 [2.52, 2.63] B 3.62 [3.51, 3.72] B 2.82 [2.76, 2.89] A 3.14 [3.06, 3.22] B

Purple and Red 30 3.28 [3.18, 3.37] A 2.43 [2.39, 2.46] A 3.38 [3.31, 3.46] A 2.87 [2.84, 2.91] AB 2.82 [2.74, 2.90] A

Flesh Color n

White 49 3.34 [3.17, 3.51] B 3.25 [3.16, 3.34] B 2.76 [2.70, 2.82] B 2.74 [2.67, 2.80] A

Yellow 59 2.99 [2.92, 3.06] A 2.99 [2.94, 3.04] A 2.72 [2.67, 2.77] A 2.62 [2.58, 2.67] A

Purple and Red 30 2.77 [2.70, 2.84] A 3.04 [2.98, 3.10] A 2.94 [2.84, 3.05] A 2.62 [2.55, 2.69] B
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Figure 4.1. Spearman’s rank correlation coefficients with two-way Ward HCA for analyte-analyte of cooked potato 

analytes using log-transformed peak areas (n=10 technical replicates x 15 clones) detected by non-targeted HS-

SPME GC/MS 
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Fig. 4.2. Log-transformed peak area clonea means and comparisonsb of analytes detected by non-targeted HS-SPME 

GC/MS in cooked potatoes in 2014   
a95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 
99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 

63=CO04063-4R/R, CK=Crimson King.  
bClone means by analyte are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same capital letter are 

not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05) (n=technical replicates x 

15 clones). Analytes are also significantly different according to mixed model F-tests (α=0.05) for cK=cooking method, cL:cK=clone by cooking 
method, or F=flesh color when notated. 

*An asterisks indicates that analyte identification was confirmed using retention time matching of a standard in addition to spectral matching. 
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Figure 4.3. Log-transformed peak area clonea means and comparisonsb of analytes detected by non-targeted HS-

SPME GC/MS in cooked potatoes in 2015     

a95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 
99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 

CK=Crimson King.  
bClone means by analyte are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same capital letter are 

not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05) (n=10 x 14 clones). 

Analytes are also significantly different according to mixed model F-tests (α=0.05) for cK=cooking method, cL:cK=clone by cooking method, or 
F=flesh color when notated. 

*An asterisks indicates that analyte identification was confirmed using retention time matching of a standard in addition to spectral matching. 
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Figure 4.4. Log-transformed peak area cooking method means of analytesa with 95% confidence intervals detected 

by non-targeted HS-SPME GC/MS in cooked potatoes in 2014 and 2015 

aCooking method means by analyte are significantly different according to ANOVA F-tests (α=0.05) and pairwise for cooking method by 
Welch’s t-tests (α=0.05) (n=70-75 technical replicates x 2 cooking methods). 
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Figure 4.5. Log-transformed peak area clonea means of analytesb with z-score normalization and two-way Ward 

HCA, detected by non-targeted HS-SPME GC/MS in cooked potatoes in 2014  
a95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 
99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 

63=CO04063-4R/R, CK=Crimson King.  
bClone means by analyte are significantly different according to ANOVA F-tests (α=0.05) (n=10 technical replicates x 15 clones). 
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Figure 4.6. Log-transformed peak area clonea means of analytesb with z-score normalization and two-way Ward 

HCA, detected by non-targeted HS-SPME GC/MS in cooked potatoes in 2015  

a95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 
99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 

CK=Crimson King. . 
bClone means by analyte are significantly different according to ANOVA F-tests (α=0.05) (n=10 technical replicates x 14 clones).  
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Figure 4.7. (A-D) Loading contributions and (E) normalized correlation R2 biplot in principle component analysis 

of Pareto-scaled analytea,b loadings and potato clonec by cooking method scores colored by flesh colord, analyte 

detection by HS-SPME GC/MS in 2014 

 aCompound codes are arbitrary, but were intended simplify table or figure labels as appropriate; The first letters are AC=alcohol, 
AD=aldehyde, FU=furan, HA= halogenic, HC=hydrocarbon, KE=ketone, PA=phenyl acetate, PR=pyrrole, PZ=pyrazine, SU=sulfurous, and 

TE=terpene; The second number digits represent growing season of potato material, 14=2014, 15=2015; Final number digit makes each code 
unique per analyte. 

bAll analytes are significantly different according to ANOVA F-tests (α=0.05) for clone, cooking method, or clone and cooking method 

interactions (n=5 technical replicates x 2 cooking methods x 15 clones). 
c95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 

99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 
63=CO04063-4R/R, CK=Crimson King.  
dOnly scores with R2≥0.50 are labeled with clone codes. 
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Figure 4.8. (A-E) loading contributions and (F) normalized correlation R2 biplot in principle component analysis of 

Pareto-scaled analytea,b loadings and potato clonec by cooking method scores colored by flesh colord, analyte 

detection by HS-SPME GC/MS in 2015 
aCompound codes are arbitrary, but were intended simplify table or figure labels as appropriate; The first letters are AC=alcohol, 
AD=aldehyde, FU=furan, HA= halogenic, HC=hydrocarbon, KE=ketone, PA=phenyl acetate, PR=pyrrole, PZ=pyrazine, SU=sulfurous, and 

TE=terpene; The second number digits represent growing season of potato material, 14=2014, 15=2015; Final number digit makes each code 
unique per analyte. 

bAll analytes are significantly different according to ANOVA F-tests (α=0.05) for clone, cooking method, or clone and cooking method 

interactions (n=5 technical replicates x 2 cooking methods x 14 clones). 
c95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 

99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 
CK=Crimson King.  
dOnly scores with R2≥0.50 are labeled with clone codes. 
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Figure 4.9. Log-transformed peak area meansa and comparisonsb of analytes with 95% confidence intervals by 

flesh color detected by non-targeted HS-SPME GC/MS in cooked potatoes in 2014 

aFlesh group clone number: n=5 for white, n=6 for yellow, n=4 for red. 
bFlesh group means by analyte are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same capital 

letter are not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05). 
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Figure 4.10. Log-transformed peak area meansa and comparisonsb of analytes with 95% confidence intervals by 

flesh color detected by non-targeted HS-SPME GC/MS in cooked potatoes in 2015 

aFlesh group clone number: n=5 for white, n=6 for yellow, n=3 for red. 
bFlesh group means by analyte are significantly different according to ANOVA F-tests (α=0.05), where means labeled with the same capital 

letter are not significantly different but different capital letters indicate significantly different means in Tukey’s HSD test (α=0.05). 
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CHAPTER 5. COMBINED SENSORY AND INSTRUMENTAL TEXTURE ANALYSES 

5.1. Introduction 

Texture influences flavor taste and aroma compound release through density, cohesion, 

adhesion, malleability, and other factors.1 In potatoes, starch content, related to specific gravity, 

is a fairly reliable indicator of sensory texture, particularly in terms of mealiness versus 

waxiness.2 Russets and other white-fleshed potatoes tend to have a greater starch content than 

yellow-, purple-, or red-fleshed potatoes, therefore resulting in a grainy, dry, mealy texture in 

contrast to waxiness, which is gummier and smoother.3 At least one recent sensory study of 

potato demonstrates sensory texture differentiation among clones.4 In this study, sensory scores 

were used to evaluate objective instrumental measurements for hardness of cooked potatoes. 

Clones and cooking methods were compared. 

5.2. Materials and Methods 

5.2.1. Preparation 

Potato tubers included advanced breeding selections (number codes) and named cultivars 

with a range of skin types and flesh colors. White-fleshed clones were AC00395-2RU, Fortress 

Russet, Russet Burbank, Russet Norkotah, and Russet Nugget; yellow-fleshed clones were 

CO04067-8R/Y, CO04099-3W/Y, Harvest Moon, Masquerade, Red Luna, and Yukon Gold; 

purple-fleshed clones were CO04056-3P/PW and Purple Majesty; red-fleshed clones were 

CO04063-4R/R and Crimson King. Clones were field grown and conditioned at the Colorado 

State University San Luis Valley Research Center (SLVRC, Center, CO) in 2014 and 2015. 

Whole tubers were baked in aluminum foil or boiled in water, diced, and served warm to a 

sensory panel or kept warm until instrumental texture analysis.  
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5.2.2. Sensory Analysis 

A trained sensory panel of 15 volunteers conducted a descriptive flavor analysis of 

potatoes cooked by both methods from both growing seasons. Panelists were 47% men and 53% 

women; 80% white, 20% other races; 20% aged 18 to 25, 27% aged 26 to 40, 27% aged 41 to 55, 

and 27% aged 56 to 70. Training included a discussion of potato flavor, aroma, appearance, and 

texture. By consensus, a scorecard was developed for 15 attributes with a number-anchored 

hedonic scale from 1 to 9, absence to maximum intensity. Panelists scored each clone by cooking 

method twice over both years. Individual diced potato samples contained material from at least 

three tubers.  

5.2.3. Instrumental Texture Analysis 

A CT3-10kg Texture Analyzer (Brookfield Engineering, Middleboro, MA) was used for 

instrumental texture analysis. Tubers were halved longitudinally. Skin was removed from one 

half and load measurements were taken with a spherical probe for both halves, flesh side down. 

In 2014, analysis included 3 to 9 tubers per clone by cooking method, whereas 2015 analysis 

evaluated 30 tubers per clone by cooking method. Maximum loads, representative of hardness, 

were compiled from each tuber half.  

5.2.4. Statistical Analysis 

Mealy texture score clone mean estimates were calculated by residual maximum 

likelihood (REML) in a linear mixed model in Rstudio version 0.99.896 (RStudio, Inc., Boston, 

MA) with clone, cooking method, and their interaction as fixed effects and panelist, order, year 

and interactions as random effects. A similar linear mixed model was used for maximum load 

(hardness) mean estimates from instrumental measurements, but with only year and interactions 

with fixed effects as random effects. Only effects significant by a mixed model F-test (α=0.05) 
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were used for least square mean estimates and Satterthwaite t-test contrasts (α=0.05). Regression 

of clone sensory mean estimates versus clone maximum load mean estimates was assessed. 

5.3. Results and Discussion 

Clone is a significant effect in the sensory mealy texture mixed model (Figure 5.1; Table 

S3.2), but not the instrumental mixed model. Cooking method is significant for both models. 

Additional significant effects in the instrumental model are the interactions of clone with 

cooking method and clone with year. Panelist and the interaction of panelist with cooking 

method are significant effects in the sensory model. Flesh color is not significant in a mixed 

model with flesh color rather than clone for sensory mealy texture or instrumental hardness.  

Russet Norkotah and Fortress Russet maximum load mean estimates are greater than 

most other clones, though this trend is not significant (Table 5.1; Figure 5.2). The sensory mealy 

texture score mean estimate for baked potatoes is greater than the boiled potato score mean 

estimate. Conversely, load mean estimates are greater for boiled versus baked potato totals for 

overall baked mean estimates (Table 5.2), which is reflected by clone and cooking method 

interaction mean estimates for eleven clones (Table 5.3; Figure 5.3). Instrumental max loads and 

sensory scores by clone do not correlate linearly or non-linearly in regression.  

Although both instrumental hardness measurements and sensory mealiness scores have 

significant variation by clone, the variables are seemingly unrelated when clone means are used 

as the sample population. Disparity between instrumental and texture measurements is not 

uncommon,1 but may suggest inconsistencies in one or both measurements. For sensory analysis, 

food references were not provided for mealy texture, which may have resulted in poor distinction 

by panelists. Uneven cooking may have also played a role. Instrumental analysis was relatively 

standardized, but texture can change as potatoes cool. Measurements were not randomized by 
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clone, so some clones may have experienced cooling. Still, both separate analyses distinguish 

between baked or boiled potatoes, where baked potatoes have a greater sensory mealy score 

mean estimate and smaller maximum mean load estimate compared to boiled potatoes. Baking 

tends to dry potato flesh compared to boiling, which explains greater mealy sensory scores but 

smaller hardness measurements for baked potatoes. Boiled potatoes retain more water, which 

would make mouthfeel gummier rather than mealy, resulting in lower mealy score ratings. The 

retention of water also means more turgid cells, and therefore, greater hardness.  

5.4. Summary 

In this study, the ability of an instrumental texture analyzer to measure mealiness of 

cooked potatoes was assessed by evaluating the relationship between sensory texture scores for 

mealiness and instrumental texture measurements for hardness. Trained sensory panel ratings 

were used to calculate mealy texture score mean estimates by clone, which had some significant 

differences (linear mixed model ANOVA F-test and Satterthwaite t-tests, α=0.05, n=17-38 

ratings per clone). Instrumental texture hardness mean estimates were not significantly different 

by clone. Baked potato sensory mealy scores were significantly greater than boiled potato scores, 

whereas baked potato hardness measurements were significantly less than that of boiled potatoes. 

Instrumental hardness measurements and sensory scores were not correlated in regression of 

variable means by clone. 
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Table 5.2. Max load (hardness)a and hedonic score (1 to 9, absence to maximum intensity)b 

mealy texture cooking method mean estimates with 95% confidence intervals for cooked potatoes 

aMax load means estimated using REML in a mixed model analysis with year as a random effect and clone, cooking method, 
and the interaction between clone and cooking method as fixed effects (n=33-39 tubers per clone); Means are significantly 

different according to a mixed model F-test (α=0.05) and pairwise comparison of means in Satterthwaite t-tests (α=0.05) 

bSensory mealy texture means estimated using REML in a mixed model analysis with session year, sample order presented to 

panelists, panelists, interactions as random effects and clone, cooking method, and the interaction between clone and cooking 
method as fixed effects (n=237-291 tuber replicates x 2 cooking methods); Means are significantly different according to a 

mixed model F-test (α=0.05) and pairwise comparison of means in Satterthwaite t-tests (α=0.05). 

 

  

Max Load (g) 821 [746, 896] 1066 [992, 1140]

Sensory 4.01 [3.27, 4.75] 3.10 [2.34, 3.87]

Baked Boiled

Table 5.1. Max load (hardness) clone mean estimatesa,b 

with 95% confidence intervals for cooked potatoes 

aMeans estimated using REML in a mixed model analysis with year as a random effect and 
clone, cooking method, and the interaction between clone and cooking method as fixed 

effects (n=33-39 tuber replicates per clone). 
bClone means are not significantly different according to a mixed model F-test (α=0.05), 

where means labeled with the same capital letter are not significantly different but different 
capital letters indicate significantly different means in Satterthwaite t-tests (α=0.05). 
 

Flesh Color Clone

White AC00395-2RU 985 [717, 1253] EF

Fortress Russet 1308 [1035, 1582] BCDE

Russet Burbank 945 [681, 1210] ABCDE

Russet Norkotah 1309 [1043, 1576] ABCD

Russet Nugget 933 [667, 1199] G

Yellow CO04067-8R/Y 823 [554, 1092] EF

CO04099-3W/Y 879 [611, 1146] CDEF

Harvest Moon 935 [662, 1208] DEF

Masquerade 834 [565, 1102] ABC

Red Luna 926 [657, 1195] AB

Yukon Gold 976 [708, 1244] DEF

Purple CO04056-3P/PW 853 [585, 1121] A

Purple Majesty 694 [420, 967] FG

Red CO04063-4R/R 717 [330, 1103] ABCDEF

Crimson King 1034 [769, 1299] DEF

Max Load (g)
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Table 5.3. Max load (hardness) clone by cooking method mean 

estimatesa,b with 95% confidence intervals for cooked potatoes 

aMeans estimated using REML in a mixed model analysis with year as a random effect and clone, 
cooking method, and the interaction between clone and cooking method as fixed effects (n=33-39 

tuber replicates per clone). 
bClone by cooking interaction is significant according to a mixed model F-test (α=0.05) and 

pairwise for some clones by Satterthwaite t-tests (α=0.05), unless noted with ns=not significant. 
 

Flesh Color Clone

White AC00395-2RU 860 [582, 1138] 1110 [835, 1385]

Fortress Russet 1128 [844, 1413] 1489 [1208, 1769]

Russet Burbank 849 [575, 1122] 1042 [771, 1313]

Russet Norkotah 1355 [1076, 1633] 1264 [993, 1535] ns

Russet Nugget 796 [522, 1071] 1070 [797, 1343]

Yellow CO04067-8R/Y 636 [356, 915] 1010 [735, 1285]

CO04099-3W/Y 917 [642, 1192] 840 [564, 1116] ns

Harvest Moon 670 [388, 951] 1200 [920, 1481]

Masquerade 797 [514, 1079] 871 [599, 1143] ns

Red Luna 619 [338, 899] 1234 [959, 1508]

Yukon Gold 816 [539, 1093] 1136 [861, 1411]

Purple CO04056-3P/PW 757 [481, 1033] 949 [672, 1225]

Purple Majesty 587 [304, 870] 800 [518, 1082] ns

Red CO04063-4R/R 733 [307, 1158] 700 [294, 1107] ns

Crimson King 794 [520, 1068] 1274 [1002, 1546]

Baked Boiled
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Figure 5.1. Hedonic score (1 to 9, absence to maximum intensity) mealy texture clone mean estimatesa and 

comparisonsb with 95% confidence intervals of cooked potato sensory attributes rated by a trained sensory panel 
aMeans estimated using REML in a mixed model analysis with year as a random effect and clone, cooking method, and the interaction between 
clone and cooking method as fixed effects (n=33-39 tuber replicates per clone). 

bClone means are significantly different according to a mixed model F-test (α=0.05), where means labeled with the same capital letter are not 
significantly different but different capital letters indicate significantly different means in Satterthwaite t-tests (α=0.05). 
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Figure 5.2. Max load (hardness) clone mean estimatesa,b with 95% confidence intervals for cooked potatoes 

aMeans estimated using REML in a mixed model analysis with year as a random effect and clone, cooking method, and the interaction between 
clone and cooking method as fixed effects (n=33-39 tuber replicates per clone). 

bClone means are not significantly different according to a mixed model F-test (α=0.05). 
 

0
50
0

10
00

15
00

20
00

Crimson	King

CO04063-4R/R

Purple	Majesty

CO04056-3P/PW

Yukon	Gold

Red	Luna

Masquerade

Harvest	Moon

CO04099-3W/Y

CO04067-8R/Y

Russet	Nugget

Russet	Norkotah

Russet	Burbank

Fortress	Russet

AC00395-2RU

Max	Load	(g)	Mean	EsWmate

White	

Flesh

Yellow	

Flesh

Red	

Flesh

Purple	

Flesh



81 

 

Figure 5.3. Max load (hardness) clone by cooking method mean estimatesa,b with 95% confidence intervals for 

cooked potatoes 
aMeans estimated using REML in a mixed model analysis with year as a random effect and clone, cooking method, and the interaction between 
clone and cooking method as fixed effects (n=33-39 tuber replicates per clone). 

bClone by cooking interaction is significant according to a mixed model F-test (α=0.05) and pairwise for some clones by Satterthwaite t-tests 
(α=0.05), unless noted with ns=not significant. 
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CHAPTER 6. COMBINED SENSORY AND AROMA COMPOUND ANALYSES 

6.1. Introduction 

Flavor is a subjective, complex quality trait conferred by non-volatile, semi-volatile, or 

volatile compounds.1,2 Perception of flavor may be influenced by appearance, texture, personal 

preference, or other characteristics.3 Taste is the basic reception of typically non-volatile 

metabolites that produce bitter, sweet, salty, sour, and umami sensations on the tongue.4 In 

potatoes, umami and bitter are most prominent, whereas the other tastes are minimal.1 Aroma is 

the reception of volatile or semi-volatile compounds in the olfactory that produce more complex 

sensations and greater contributions to flavor compared to taste,1,3 even at small concentrations.2  

Most potato aroma compounds result from thermal cooking interactions between fatty 

acid, sugar, and amino precursors, particularly aldehyde formation through Strecker amino acid 

degradation, aldehyde and ketone formation via lipid degradation, pyrazine formation in 

Maillard reactions, and volatile products from other sugar degradation reactions.5,6 Prominent 

volatile flavor compounds extant in raw tubers include sulfur metabolites, terpenes, and 

pyrazines.6–8 Several comprehensive aroma profiles exist for fried, chipped, baked, microwaved, 

boiled, or dehydrated potatoes. Potato aroma profiles have been found to differ by cultivar,9–11 

environment,10 storage conditions,6,12 and cooking method.11 

Though past aroma compound extraction methods are slow and resource-intensive, 

headspace solid phase-microextraction (HS-SPME) provides a fast, solvent-free method that 

enables more efficient aroma phenotyping13,14 when used in combination with gas 

chromatography (GC) and mass spectrometry (MS). A handful of volatile profiles for cooked 

European potato cultivars have been generated through HS-SPME GC-MS,15–18 but minimal 
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information exists for cooked American potato cultivars using this method. Moreover, very few 

volatile assays have been paired to sensory analysis to confirm flavor compounds. Unlike other 

potato flavor studies with a sensory component, the following sensory analysis covers an 

extensive array of flavor attributes for identification of aroma compounds significant to cooked 

fresh market potato flavor. Confirmed aroma compounds provide a framework for the 

development of flavor biomarker assays and gene discovery studies. Further development of 

potato aroma compound detection methods may provide a means of high-throughput flavor 

phenotyping using select biomarkers, which would be particularly useful in selection-based 

breeding programs for flavor improvement. 

6.2. Materials and Methods 

6.2.1. Tuber Material and Preparation 

The Colorado State University (CSU) Potato Breeding and Selection program provided 

potato tubers field grown at the CSU San Luis Valley Research Center (SLVRC, Center, CO). 

During 2014 and 2015 growing seasons, potatoes received conventional fertilizer, pesticide, and 

drip-irrigation applications. Tuber material comprised advanced selections and named cultivars 

developed by the CSU Potato Breeding and Selection program, including white-fleshed clones 

AC00395-2RU, Fortress Russet, and Russet Nugget; yellow-fleshed clones CO04067-8R/Y, 

CO04099-3W/Y, Harvest Moon, Masquerade, and Red Luna; purple-fleshed clones CO04056-

3P/PW and Purple Majesty; and red-fleshed clones CO04063-4R/R and Crimson King. 

Additional commercial cultivars were white-fleshed Russet Burbank and Russet Norkotah 

clones, as well as yellow-fleshed clone Yukon Gold. Storage-conditioned potato tubers for each 

clone were baked or boiled, diced into cubes, and served warm to sensory panelists or frozen 

with liquid N2 for storage at -80°C until volatile analysis. Bulked, randomized samples for each 
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clone by cooking method contained material from at least three tubers per individual sample in 

both sensory and volatile analyses. In sensory analysis, presented sample codes and order were 

random. 

6.2.2. Sensory Analysis 

A trained sensory panel evaluated each potato clone by cooking method once per 

growing season, with at least eight panelists present in a sensory session.  Fifteen panelists were 

recruited as volunteers in the San Luis Valley of Colorado. Demographics were 47% men and 

53% women; 80% white, 20% other races; 20% aged 18 to 25, 27% aged 26 to 40, 27% aged 41 

to 55, and 27% aged 56 to 70. Training included potato flavor discussions, aroma sampling, 

description of active flavor enhancement while eating, reference food consensus, and scorecard 

development. Using a categorical scale from 1 to 9 with both numeric and hedonic anchors (from 

0 or absence to 9 or maximum attribute intensity), the following sensory attributes were rated: 

appearance, aroma intensity, potato-like flavor, sweet, fruity, lemon, umami, buttery, creamy, 

earthy, woody, bitter, off-flavors other than bitter, mealy texture, and overall quality (see 

scorecard in Appendix 1). Panelists received reference foods, water, and crackers in each sensory 

session.  Samples were presented with three-digit codes. To account for order effects, sample 

order was randomized across panelists. 

6.2.3. Aroma Compound Analysis 

A non-targeted metabolomics workflow was used for cooked potato aroma compound 

analysis. For each clone by cooking method, 5.0 g of frozen, cooked potato was transferred to 20 

mL HS vials (75.5 x 22.5 mm; MicroSolv Technology Co., Leland, NC), gently thawed, mashed, 

and resealed. Vial temperatures were equilibrated by immersion in an 80°C water bath for 5 

minutes prior to volatile extraction. For volatile adsorption, a 75 µm carboxen-coated 23 mm 
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polydimethylsiloxane (CAR/PDMS) SPME fiber (Supelco Inc., Bellefonte, PA) was exposed to 

vial HS for 20 minutes at 50 °C and 300 rpm, followed by desorption and splitless injection with 

helium carrier gas at a constant flow rate of 1.5 mL min-1 for 2 minutes at 280°C. An Agilent 

7890A (Agilent Technologies, Santa Clara, CA) equipped with an Agilent VF5-ms (5% phenyl-

methyl) capillary GC column separated analytes using temperature ramps from 35 to 280°C. 

After internal electron ionization at 70 eV, an Agilent 240 ion trap was used to detect analyte 

fragments in full scan mode from 29-400 m/z at 0.45 seconds per scan. The HS-SPME GC-MS 

method was automated with System Control in MS Workstation version 6 (Agilent 

Technologies). Analysis consisted of five technical replications in a randomized order.  

Mass spectrometry data was processed with the XCMS package in RStudio version 

0.99.896 (RStudio, Inc., Boston, MA). Peaks were detected using a signal to noise ration (S/N) 

of 2, subsequently corrected for retention time, and finally normalized using the total ion current 

(TIC). Peaks were clustered and correlated by mass abundance and retention time with the 

package ‘ramclustR’ in Rstudio, generating reconstructed mass spectra for analyte identification. 

To focus on aroma compounds contributing to variation across samples, an analysis of variance 

(ANOVA) with false discovery rate adjustments and principal component analysis (PCA) with 

Pareto-scaling was used to eliminate analytes without significant variation (F-test, α=0.05). 

Analytes with significant variation were identified using spectral matching of reconstructed 

spectra in National Institute of Standards and Technology (NIST) MS Search Software version 

2.0f (NIST, Gaithersburg, MD) with the NIST 11 database and a minimum intensity matching 

threshold of 450. Retention time matching with a user generated database of standards 

supplemented spectral matching for 3-carene, α-copaene, dimethyl disulfide, furfural, methional, 

2-isopropyl-3-methoxypyrazine, 1-octen-3-ol, and 2-phenylacetaldehyde.  
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6.2.4. Statistical Analysis 

To account for unbalanced sample numbers, univariate linear mixed models were used to 

identify sensory attributes with significant variation in fixed effects (ANOVA, F-test, α=0.05).  

Fixed effects were clone, and the interaction between clone and cooking method (n= 8-21 

hedonic scores x 15 clones x 2 cooking methods) while random effects were session year, sample 

order presented to panelists, panelists, and interactions. Clone, cooking method, and clone by 

cooking method interaction attribute means were estimated using residual maximum likelihood 

(REML) least square means. Variable sensory attributes by clone were confirmed by linear least 

square mean contrasts with Welch’s adjustments (t-test, α=0.05). Sensory attribute linear mixed 

models and statistical tests were calculated with the ‘lme4’ package in Rstudio version 0.99.896 

(RStudio, Inc., Boston, MA).  

Mean peak areas of aroma compounds by clone, cooking method, and the interaction 

between clone and cooking method were calculated (n=10 technical replications). Aroma 

compounds with significant variation between mean peak areas by clone according to ANOVA 

F-tests (α=0.05) and Tukey’s Honest Significant Difference (HSD) multiple comparison tests (t-

tests, α=0.05) were used for further analysis. 

Sensory score mean estimates and aroma compound peak area means by clone were used 

for multivariate analysis. Spearman’s rank correlation coefficients were calculated between 

sensory attributes and aroma compounds. Correlations were clustered with Ward’s two-way 

hierarchical clustering analysis (HCA). A Pareto-scaled PCA with aroma compound peak area 

means as independent variables and sensory attribute mean estimates as dependent variables was 

also conducted using SIMCA version 14.1 (MKS Data Analytics Solutions, Umea, Sweden).  
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6.3. Results and Discussion 

6.3.1. Linear Mixed Model ANOVA: Significant Sensory Attributes 

Attributes with variation and mean estimate differences by clone are bitter, buttery, 

creamy, earthy, fruity, off-flavors other than bitter, potato-like, sweet, and woody flavor notes as 

well as the related sensory attributes appearance, aroma intensity, mealy texture, and overall 

quality (Table 6.1). Sensory panelists discerned between cooking methods for creamy and 

potato-like flavor notes, mealy texture, and overall quality, however, overall quality is the only 

attribute with significant variation between clone and cooking method interactions for a few 

clones. Limited significant clone by cooking method interactions suggests that the influence of 

cooking method on potato flavor profiles is near negligible.  

6.3.2. GC-MS Data Processing and ANOVA: Significant Aroma Compounds 

Processing produced 539 analyte peaks in 2014 and 583 in 2015. In the 2014 ANOVA 

with FDR adjustments, 3.90%, 1.67%, and 0.19% of analytes had significant p-values (α=0.05) 

by clone, cooking method, and their interaction, respectively. Percentages of analytes with 

significant p-values for analogous ANOVA treatments in 2015 were 77.74%, 30.98%, and 

38.40%. Across 20 principal components in PCA, 6.68% of analytes had a least one significant 

score (α=0.05) in 2014 compared to 10.29% in 2015. The number of tentatively identifiable, 

non-contaminant compounds in 2014 was 13 and 32 in 2015. A few tentatively identified 

compounds had ambiguous fragmentation, resulting in subsequent use of generic names (i.e. 

saturated hydrocarbon 1) in this study.  

In 2014 and 2015 ANOVA of aroma analytes, 11 and 26 compounds have significant 

variation across clones, respectively (Table 6.2). Various hydrocarbon, ether, ester, aldehyde, 

ketone, halogenic, and nitrogenous compounds are tentatively identified from spectral matching. 
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The identification of 2 compounds in 2014 and 4 compounds in 2015 are confirmed by retention 

time matching with standards. Despite some significant analyte variation by cooking method and 

the interaction of clone by cooking method, scant significance by cooking method and the 

interaction with clone for sensory attributes in the linear mixed model ANOVA suggests it is not 

important to overall flavor perception. 

6.3.3. Spearman’s Rank Correlation Coefficients: Correlations Between Sensory Attributes and 

Aroma Compounds 

Only clone means for sensory attributes and aroma analytes with significant variation 

across clone are used in combined statistical analysis. Several correlations occur between 

sensory attributes and aroma compounds (Figure 6.1). The strongest correlation occurs 

negatively between buttery and 5-methyl-2-hexanone, however, the two do not cluster in 

subsequent Spearman HCA or in PCA. Other correlations are generally fairly weak, with 

Spearman’s rank correlation coefficients ranging between 0.50 and 0.65 at most.  

Since a larger overall quality sensory score implies a positive perception of a potato 

sample, sensory attributes with a positive Spearman’s rank coefficient correlation to overall 

quality suggest positive flavor attributes (Figure 6.2). Conversely, attributes with a negative 

correlation to overall quality indicate negative flavor attributes. Positive attributes are 

appearance, buttery, creamy, fruity, mealy texture, potato-like, and sweet, whereas negative 

attributes are aroma intensity, bitter, earthy, off-flavors other flavor, and woody. 

In HCA clustering of Spearman’s rank correlations, two primary clusters emerge (Figure 

6.2). Cluster A contains buttery with 1-nonanal (AD-15-3), benzaldehyde (AD-15-1), 2-

phenylacetaldehyde (AD-14-5), (E)-2-heptenal (AD-15-2), pentanal (AD-15-4), (Z)-2-methyl-2-

penten-1-ol (AC-15-3), 1-pentanol (AC-15-2), 3,4,5-trimethyl-2-cyclopenten-1-one (KE-15-3), 
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2-ethylfuran (FU-15-1), o-methylacetophenone (KE-14-1), 3,5-octadien-2-one (KE-14-2), (E,E)-

2,4-nonadiene (HC-14-1), hexanal (AD-14-2), 2,4-nonadienal (AD-14-3), (E)-2-heptenal (AD-

14-1), 3,5-dimethylcyclopentene (HC-14-2), furfural (FU-14-2), and (E)-2-octenal (AD-14-4). 

The other major cluster, cluster B, contains overall quality, sweet, potato-like, creamy, 

appearance, mealy texture, fruity, woody, aroma intensity, earthy, off-flavors other than bitter, 

and bitter with unsaturated hydrocarbon 1 (HC-15-6), 3-methyl-pentane (HC-15-1), saturated 

hydrocarbon 2 (HC-15-4), 2,2,3,4-tetramethyl-pentane (HC-15-2), 2-formyl-1-methylpyrrole 

(PR-15), 5-methyl-2-hexanone (KE-15-1), 2-pentyl-furan (FU-15-2), 2-isopropyl-3-

methoxypyrazine (PZ-15), 1-octen-3-ol (AC-15-1), p-methylacetophenone (KE-15-2), 3-carene 

(TE-15-1), α-copaene (TE-14), unidentifiable phenyl acetate (PA-15-2), and α-copaene (TE-15-

2). The trend driving separation of cluster A and B is unclear; compound clustering does not 

reflect characteristics including retention time, atomic mass, density, boiling point, vapor 

pressure, carbon content, or organoleptic descriptions. 

In cluster 1 within cluster A, buttery clusters with 1-nonanal (AD-15-3, rs=0.56), 

benzaldehyde (AD-15-1, rs=0.67), 2-phenylacetaldehyde (AD-14-5, rs=0.56), (E)-2-heptenal 

(AD-15-2, rs=0.28), pentanal (AD-15-4 rs=0.47), and (Z)-2-methyl-2-penten-1-ol (AC-15-3, 

rs=0.60). Because the aroma compounds cluster with buttery flavor, they are likely candidates for 

buttery flavor biomarkers. Existing organoleptic descriptions of some of the aroma compounds 

relate with buttery (Table 6.2). Similarly in cluster 2 within cluster B, bitter clusters with 3-

carene (TE-15-1, rs=0.65), α-copaene (TE-14, rs=0.47, and TE-15-2, rs=0.63), and an 

unidentifiable phenyl acetate (PA-15-2, rs=0.63). Cluster 3 within cluster B contains several 

sensory attributes and a few aroma compounds: bitter, off-flavors other than bitter, earthy, aroma 

intensity, and woody with 2-isopropyl-3-methoxypyrazine (PZ-15), 1-octen-3-ol (AC-15-1), and 
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p-methylacetophenone (KE-15-2). Each aroma compound in cluster 3 is characterized by earthy 

(including vanilla) organoleptic descriptions. Mealy texture also positively clusters with 

saturated hydrocarbon 2 (HC-15-4, rs=0.53) and 2,2,3,4-tetramethyl-pentane (HC-15-2, rs=0.50) 

in cluster 4 of cluster B.  

6.3.4. Principle Component Analysis: Multivariate Evaluation of the Relationship Between 

Sensory Attributes and Aroma Compounds 

The PCA of analyte and sensory attribute means by clone has two principal components 

(PC) that capture 49.5% (R2) of clonal variation, although Q2 validation is only 17.8%. A 

cumulative Q2 value disproportionally smaller than R2 suggests a poor model fit, yet values for 

some individual analyte and sensory attribute loadings for either principal component are more 

proportional (Figure 6.3). In principal component 1, bitter, off-flavors other than bitter, earthy, 

and benzaldehyde (AD-15-1) are modeled well as demonstrated by large R2 and Q2 values 

(>0.50). More loadings are modeled well by principal component 2, including (E)-2-heptenal 

(AD-14-1), 3,5-dimethylcyclopentene (HC-14-2), (E)-2-octenal (AD-14-4), 2-n-butyl furan (FU-

14-1), (E,E)-2,4-nonadiene (HC-14-1), 2,4-nonadienal (AD-14-3), hexanal (AD-14-2), o-

methylacetophenone (KE-14-2), and 3,5-octadien-2-one (KE-14-2), all of which were identified 

from 2014 data. 

Two primary clusters occur in a loading and score normalized correlation biplot of the 

PCA (Figure 6.4). In cluster 1, sweet, potato-like, buttery, overall quality, and creamy, all 

positive attributes according to Spearman’s rank coefficient correlation, correlate positively 

together with pentanal (AD-15-4), benzaldehyde (AD-15-1), (E)-2-heptenal (AD-15-2), 

benzoate-3-methyl-2-buten-1-ol (PA-15-1), 2-ethylfuran (FU-15-1), 3,4,5-trimethyl-2-

cyclopenten-1-one (KE-15-3), (Z)-2-methyl-2-penten-1-ol (AC-15-3), and 1-nonanal (AD-15-3). 
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Half-sib yellow-fleshed cultivars Masquerade and Harvest Moon as well as white-fleshed 

cultivar Russet Nugget correlate to cluster 1.  

The opposite cluster towards the right of the PCA biplot, cluster 2, contains the negative 

attributes earthy, woody, bitter, aroma intensity, and off-flavors other than bitter correlated with 

3-methyl-pentane (HC-15-1) and 2-isopropyl-3-methoxypyrazine (PZ-15-1). In HCA, the same 

sensory attributes cluster with 2-isopropyl-3-methoxypyrazine. Red-fleshed clones CO04063-

4R/R and Crimson King correlate with the cluster, as well as purple-fleshed clone CO04056-

3P/PW to a lesser extent. White-fleshed clones AC00395-2RU, Russet Norkotah, Russet 

Burbank, and Fortress Russet plus yellow-fleshed clone CO04067-8R/Y and purple-fleshed 

clone Purple Majesty plot towards the middle of the biplot, indicating that the clones are poorly 

described by sensory attributes or analytes. Mealy texture and a few other analytes are also 

located towards the middle of the plot, implying minimal differences between clones for those 

variables. Appearance is between the two primary clusters, indicating that it is not correlated to 

either cluster, though it does weakly correlate to yellow-fleshed clone CO04099-3W/Y. Clone 

CO04099-3W/Y has an appearance different than that of the other clones, though it is unknown 

if it is better or worse in comparison. 

6.3.5. Application of Results 

Based on Spearman’s rank coefficient correlations with overall quality, positive versus 

negative attributes are revealed. Positive attributes are appearance, buttery, creamy, fruity, mealy 

texture, potato-like, and sweet, which should be maximized to increase flavor quality. Negative 

attributes, which should be minimized, are aroma intensity, bitter, earthy, off-flavors other 

flavor, and woody. 



93 

Results provide an overview of cooked flavor for clones, particularly those developed by 

the CSU Breeding and Selection program in relation to common commercial cultivars. About 

half of the potato clones show variation in PCA amongst sensory attribute and aroma compound 

clusters, whereas remaining clones are not very different. Masquerade and Harvest Moon, half-

sib, yellow-fleshed clones developed by the CSU Breeding and Selection program, correlate with 

a cluster of positive sensory attributes, indicating favorable flavor reception compared to the 

common yellow-fleshed cultivar Yukon Gold, which is not distinguished by positive or negative 

attributes. Yellow-fleshed clones CO04067-8R/Y, CO04099-3W/Y, and Red Luna are 

comparable to Yukon Gold. Russet Nugget was distinguished by positive attributes compared to 

the common, undistinguished russet cultivar, Russet Burbank. Other russet clones AC00395-

2RU, Fortress Russet, and Russet Norkotah are comparable to Russet Burbank. Purple-fleshed 

advanced selection CO04056-3P/PW as well as red-fleshed clones CO04063-4R/R and Crimson 

King correlate to negative flavor attributes. Purple Majesty, which is a commercially successful 

purple-fleshed cultivar, is not distinguished by positive or negative attributes, suggesting the 

formerly mentioned purple- and red-fleshed may have poor flavor quality. 

In terms of potential biomarkers, aroma compounds that consistently coincided with the 

positive buttery sensory attribute in Spearman’s rank correlation HCA and PCA are aldehydes 1-

nonanal, benzaldehyde, (E)-2-heptenal, pentanal, 2-phenylacetaldehyde, and the alcohol (Z)-2-

methyl-2-penten-1-ol. Other potential biomarkers for positive flavor attributes, identified through 

either HCA or PCA, are benzoate-3-methyl-2-buten-1-ol, 2-ethylfuran, and 3,4,5-trimethyl-2-

cyclopenten-1-one. The aroma compound 2-isopropyl-3-methoxypyrazine consistently correlates 

with negative sensory attributes, making it a negative flavor biomarker candidate. Based on 

HCA, terpenes are also potential negative flavor biomarkers, particularly for bitter. 
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To confirm feasibility of biomarkers, additional quantitative analysis should be carried 

out to assess clonal variation. Aroma compounds without variation between clones are poor 

biomarkers for selective breeding, which depends on heterogeneity for trait improvement. 

Correlations of clones in this study suggest some degree of heterogeneity exists for proposed 

biomarkers. Clone correlations or lack of correlations in the case of white-fleshed russets imply 

that flesh color is somewhat indicative of cooked flavor. Color-fleshed potatoes tend to contain 

larger amounts of secondary metabolite anthocyanins, carotenoids, and other phytopigments 

compared to white-fleshed potatoes, supporting this distinction. Perhaps secondary metabolites 

serve as reactants for some aroma compound formation reactions.  

6.4. Summary 

In this study, aroma compound biomarkers for cooked potato flavor were determined. 

Sensory analysis was paired with a non-targeted gas chromatography-mass spectrometry (GC-

MS) aroma assay to evaluate fifteen potato clones. Spearman’s rank coefficient correlations 

suggested that positive sensory attributes were appearance, buttery, creamy, fruity, mealy 

texture, potato-like, and sweet, whereas negative attributes were aroma intensity, bitter, earthy, 

off-flavors other flavor, and woody. Aroma compounds that consistently coincided with buttery 

in Spearman’s rank correlation HCA and PCA were aldehydes 1-nonanal, benzaldehyde, (E)-2-

heptenal, pentanal, 2-phenylacetaldehyde, and the alcohol (Z)-2-methyl-2-penten-1-ol, all of 

which are potential biomarkers for buttery. Other potential biomarkers for positive flavor 

attributes are benzoate-3-methyl-2-buten-1-ol, 2-ethylfuran, and 3,4,5-trimethyl-2-cyclopenten-

1-one. The aroma compound 2-isopropyl-3-methoxypyrazine consistently correlated with 

negative sensory attributes, making it a negative flavor biomarker candidate. Terpenes are also 

potential negative flavor biomarkers, particularly for bitter. 
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Table 6.1. Cooked potato linear mixed model ANOVAa of sensory attributes rated by a trained sensory panel  
  

aMeans estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, interactions as 
random effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects (n=8-21 hedonic scores x 15 

clones x 2 cooking methods). Sensory attributes with asterisks have significant variation according to mixed model ANOVA F-tests (α=0.05), 
confirmed by at least one significant difference between means according to linear least square mean contrasts with Welch’s adjustments (t-test, 

α=0.05). 

Attribute Type Attribute

Flavor Note Bitter F 14,179 =5.484, p =0.000 * F 1,347 =0.435, p =0.510 F 14,356 =1.430, p =0.136

Buttery F 14,497 =3.845, p =0.000 * F 1,500 =2.421, p =0.120 F 14,482 =1.616, p =0.071

Creamy F 14,486 =2.626, p =0.001 * F 1,11 =11.286, p =0.007 * F 14,473 =1.674, p =0.058

Earthy F 14,484 =4.387, p =0.000 * F 1,9 =1.025, p =0.339 F 14,470 =0.392, p =0.977

Fruity F 14,498 =2.208, p =0.007 * F 1,502 =1.594, p =0.207 F 14,483 =1.049, p =0.403

Lemon F 14,484 =1.657, p =0.061 F 1,10 =0.690, p =0.426 F 14,471 =1.032, p =0.420

Off-Flavors Other 

Than Bitter

F 14,499 =3.778, p =0.000 * F 1,511 =0.583, p =0.445 F 14,483 =1.271, p =0.221

Potato-Like F 14,490 =2.750, p =0.001 * F 1,13 =16.479, p =0.001 * F 14,476 =0.722, p =0.753

Sweet F 14,484 =3.556, p =0.000 * F 1,9 =0.084, p =0.779 F 14,470 =0.552, p =0.901

Umami F 14,190 =0.622, p =0.845 F 1,12 =1.914, p =0.193 F 14,362 =0.896, p =0.564

Woody F 14,484 =2.784, p =0.001 * F 1,10 =0.597, p =0.458 F 14,471 =0.763, p =0.709

Other Appearance F 14,170 =4.022, p =0.000 * F 1,3 =0.376, p =0.583 F 14,324 =0.786, p =0.685

Aroma Intensity F 14,481 =2.235, p =0.006 * F 1,8 =0.106, p =0.753 F 14,468 =0.688, p =0.787

Mealy Texture F 14,487 =5.004, p =0.000 * F 1,12 =14.18, p =0.003 * F 14,473 =1.015, p =0.436

Overall Quality F 14,149 =6.719, p =0.000 * F 1,14 =4.955, p =0.044 * F 14,334 =2.444, p =0.003 *

Clone ANOVA F-test Cooking Method ANOVA F-test Clone:Cooking Method ANOVA F-test
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Table 6.2. Non-targeted HS-SPME GC/MS detection of cooked potato analytes with significant variation by 

clonea  

aAnalytes have significant variation by clone according to ANOVA F-tests (α=0.05), confirmed by at least one significant difference between 
means according to Tukey’s HSD t-tests (α=0.05) (n=10 x 14 clones).  

bCompound codes are arbitrary, but were intended simplify table or figure labels as appropriate; The first letters are AC=alcohol, AD=aldehyde, 
FU=furan, HA= halogenic, HC=hydrocarbon, KE=ketone, PA=phenyl acetate, PR=pyrrole, PZ=pyrazine, SU=sulfurous, and TE=terpene; The 

second number digits represent growing season of potato material, 14=2014, 15=2015; Final number digit makes each code unique per analyte. 

cCompounds were tentatively identified using spectral matching; identifications of compounds with an asterisks were confirmed with gas 
chromatography retention time matching. 

dOrganoleptic characteristics are from the Good Scents Company online database. 

 

Year

Primary 

Functional 

Group

Configuration
Compound 

Codeb Compoundc Organolepticsd Top 5 Mass Peaks RT (s)

2014 Hydrocarbon Alkene HC-14-1 (E,E)-2,4-nonadiene 79, 81, 53, 95, 68 624 F 14 =4.531, p =0.000

Cycloalkene HC-14-2 3,5-dimethylcyclopentene 81, 79, 41, 53, 39 749 F 14 =6.166, p =0.000

Terpene TE-14 α-copaene* woody, spicy, honey 105, 119, 91, 161, 93 1452 F 14 =5.472, p =0.000

Aldehyde Aliphatic AD-14-1 (E)-2-heptenal green, fatty, fruity 41, 83, 55, 39, 69 649 F 14 =5.857, p =0.000

AD-14-2 hexanal green, woody, fatty 41, 44, 56, 43, 57 348 F 14 =6.467, p =0.000

AD-14-3 2,4-nonadienal fatty, nutty, citrus 81, 41, 67, 39, 65 1172 F 14 =7.182, p =0.000

AD-14-4 (E)-2-octenal green, herbal, fatty 41, 55, 83, 70, 39 839 F 14 =5.802, p =0.000

AD-14-5 2-phenylacetaldehyde* honey, floral, cocoa 91, 92, 65, 93, 63 810 F 14 =2.834, p =0.001

Ketone Aliphatic KE-14-1 o-methylacetophenone floral, burnt, nutty 91, 79, 105, 134, 119 1063 F 14 =3.815, p =0.000

KE-14-2 3,5-octadien-2-one fruity, green 95, 79, 81, 71, 59 914 F 14 =4.119, p =0.000

Ether Furan FU-14-1 2-n-butyl furan fruity, wine, spicy 81, 67, 95, 70, 82 1363 F 14 =5.311, p =0.000

2015 Hydrocarbon Alkane HC-15-1 3-methyl-pentane 57, 56, 53, 50, 51 226 F 13 =16.91, p =0.000

HC-15-2 2,2,3,4-tetramethyl-pentane 57, 41, 43, 56, 71 818 F 13 =5.047, p =0.000

HC-15-3 saturated hydrocarbon 1 57, 41, 43, 71, 70 758 F 13 =4.356, p =0.000

HC-15-4 saturated hydrocarbon 2 57, 41, 56, 71, 70 795 F 13 =4.986, p =0.000

HC-15-5 saturated hydrocarbon 3 57, 41, 56, 71, 68 934 F 13 =6.042, p =0.000

Alkene HC-15-6 unsaturated hydrocarbon 1 57, 56, 55, 53, 61 144 F 13 =4.892, p =0.000

HC-15-7 unsaturated hydrocarbon 2 57, 41, 56, 55, 69 845 F 13 =3.830 p =0.000

Terpene TE-15-1 3-carene* citrus, pine 93, 67, 121, 81, 53 732 F 13 =21.520, p =0.000

TE-15-2 α-copaene* woody, spicy, honey 161, 119, 149, 204, 145 1437 F 13 =14.210, p =0.000

Alcohol Aliphatic AC-15-1 1-octen-3-ol* earthy, green, fatty 57, 69, 55, 67, 81 674 F 13 =18.000, p =0.000

AC-15-2 1-pentanol fermented, yeasty, wine 41, 55, 42, 71, 70 276 F 13 =4.955, p =0.000

AC-15-3 (Z)-2-methyl-2-penten-1-ol 72, 71, 67, 43 57 332 F 13 =16.930, p =0.000

Aldehyde Aliphatic AD-15-1 benzaldehyde nutty, fruity, fatty 77, 106, 51, 50, 52 642 F 13 =9.435, p =0.000

AD-15-2 (E)-2-heptenal green, fatty, fruity 41, 55, 57, 39, 69 632 F 13 =5.628, p =0.000

AD-15-3 1-nonanal citrus, green, potato 41, 57, 43, 55, 56 912 F 13 =3.982, p =0.000

AD-15-4 pentanal fermented, yeasty, wine 44, 58, 43, 41, 57 172 F 13 =7.753, p =0.000

Ketone Aliphatic KE-15-1 5-methyl-2-hexanone 43, 58, 81, 71, 82 503 F 13 =3.330, p =0.000

Acetophenone KE-15-2 p-methylacetophenone creamy, fruity, vanilla 91, 119, 92, 134, 65 936 F 13 =6.124, p =0.000

Cyclic KE-15-3 3,4,5-trimethyl-2-cyclopenten-1-one 109, 81, 79, 124, 53 428 F 13 =7.328, p =0.000

Ether Furan FU-15-1 2-ethylfuran musty, earthy, yeasty 81, 53, 96, 65, 82 171 F 13 =4.526, p =0.000

FU-15-2 2-pentyl-furan fruity, green, earthy 82, 81, 53, 138, 39 686 F 13 =4.901, p =0.000

Ester Phenyl Acetate PA-15-1 benzoate-3-methyl-2-buten-1-ol woody, fruity, chocolate 105, 41, 43, 55, 69 716 F 13 =3.967, p =0.000

Phenyl Acetate PA-15-2 unidentifiable phenyl acetate 105, 91, 79, 93, 106 1435 F 13 =7.430, p =0.000

Halogenic Aliphatic HA-15 1-chloro-2-methyl-butane 57, 41, 55, 39, 56 158 F 13 =1.536, p =0.000

Nitrogenous Pyrazine PZ-15 2-isopropyl-3-methoxypyrazine* earthy, chocolate, nutty 109, 152, 137, 124, 105 883 F 13 =5.268, p =0.000

Pyrrole PR-15 2-formyl-1-methylpyrrole 108, 109, 42, 40, 95 546 F 13 =4.254, p =0.000

Clone ANOVA F-test
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Figure 6.1. Spearman’s rank correlation coefficients for sensory attributesa and aroma analytesb of cooked potatoes 
aClone means estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, interactions as 
random effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects (n=17-38 hedonic scores x 15 

clones). 
bLog-transformed peak area means detected by HS-SPME GC-MS (n=10 technical replicates x 15 clones per year). 
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Figure 6.2. Spearman’s rank correlation coefficients with two-way Ward HCA for sensory attributesa and aroma 

analytesb of cooked potatoes 
aClone means estimated using REML in a mixed model analysis with session year, sample order presented to panelists, panelists, interactions as 
random effects and clone, cooking method, and the interaction between clone and cooking method as fixed effects (n=17-38 hedonic scores x 15 

clones). 
bLog-transformed peak area means detected by HS-SPME GC-MS (n=10 technical replicates x 15 clones per year). 
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Figure 6.3. Contribution plots for principle component analysis of Pareto-scaled sensory attributea and analyteb 

loadings 

aAll sensory attributes are significantly different according to mixed model ANOVA F-tests (α=0.05) for clone (n=8-21 hedonic scores x 2 
cooking methods x 15 clones). 

bAll analytes are significantly different according to ANOVA F-tests (α=0.05) for clone (n=10 technical replicates x 15 clones per year). 
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Figure 6.4. Normalized correlation R2 biplot in principle component analysis of Pareto-scaled sensory attributea and 

analyteb loadings and potato clonec scores colored by flesh color 

aAll sensory attributes are significantly different according to mixed model ANOVA F-tests (α=0.05) for clone (n=8-21 hedonic scores x 2 
cooking methods x 15 clones). 

bAll analytes are significantly different according to ANOVA F-tests (α=0.05) for clone (n=10 technical replicates x 15 clones per year). 
c95=AC00395-2RU, FR=Fortress Russet, RB=Russet Burbank, NK=Russet Norkotah, RN=Russet Nugget, 67=CO04067-8R/Y, 

99=CO04099-3W/Y, HM=Harvest Moon, MQ=Masquerade, RL=Red Luna, YG=Yukon Gold, 56=CO04056-3P/PW, PM=Purple Majesty, 
63=CO04063-4R/R, CK=Crimson King.  
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CHAPTER 7. CONCLUSION 

Sensory data suggests two opposing groups of attributes: positive attributes, where high 

hedonic scores are desirable, and negative attributes, which should have lower hedonic scores. 

Overall quality scores identify positive versus negative attributes, depending on respective 

proportional or inverse relationships. Positive attribute scores are proportional to overall quality 

scores, whereas negative attribute scores are inversely related to overall quality. Consistent 

positive attributes are appearance, buttery, creamy, fruity, sweet, overall quality, and potato-like 

flavor, whereas consistent negative attributes are aroma intensity, bitter, earthy, off-flavors other 

than bitter, and woody. Fewer sensory attributes in combined sensory and volatile metabolite 

analyses appear to be important to potato flavor. Positive attributes in combined analysis are 

buttery, sweet, and potato-like flavor and negative attributes are earthy, woody, aroma intensity, 

bitter, and off-flavors other than bitter. Sensory attribute profiles differ by clone. 

Cooking method plays a role for some potato volatile metabolites and sensory attributes, 

however, interactions between clones and cooking methods are nearly absent in sensory analysis, 

implying a limited genetic basis. Clone differences for sensory attributes, volatile metabolites, 

and clonal correlations in combined analysis suggests some degree of heritability of positive or 

negative flavor traits, as well as existing heterogeneity for those traits. Sensory perceptions seem 

to be related to flesh color in addition to clone. Sensory scores are more consistent for white-

fleshed potatoes compared to color-fleshed, most likely due to greater breeding emphasis on 

white-fleshed russet potatoes, although the appearance of colored flesh is consistently favored 

over white flesh. Because red-fleshed potatoes in particular have received less attention in 

breeding, less selection against bitterness or other off-flavors caused by phytopigments, 
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glycoalkaloids, or other secondary plant metabolites may be related to flavor inconsistencies and 

off-flavor compound abundance. 

Similarly to other studies, a large number of identified potato aroma compounds are 

aldehydes. The prominence of aldehydes and furans, which contain aldehyde functional groups, 

in significant clone by cooking method interactions suggests formation dependence on cooking, 

most likely through Maillard or Strecker reactions. Other identified aroma compounds have 

greater abundance in baked versus boiled potatoes. Since baked potatoes are subject to higher 

cooking temperatures and drier conditions, greater abundance of aroma compounds supports 

consensus of the importance of thermal reactions during cooking for aroma compound 

formation. Aroma compound profiles are different by clone. 

Sensory analysis attribute scores for mealy texture and texture instrumental analysis of 

hardness are not correlated. Sensory mealy textures scores are variable by clone but instrumental 

measurements are not. Other instrumental texture measurements may be more appropriate to 

measure mealy texture. Sensory texture differences by clone imply a genetic component for 

texture. Differences in hardness for cooking method reveal an environmental component for 

cooked potato texture as well. 

Several aroma compounds are identified as potential biomarkers of cooked potato flavor 

in combined sensory and aroma compound analyses for positive sensory attributes: buttery, 

sweet, and potato-like flavor and negative sensory attributes earthy, woody, aroma intensity, 

bitter, and off-flavors other than bitter. Potential buttery biomarkers are 1-nonanal, 

benzaldehyde, (E)-2-heptenal, pentanal, 2-phenylacetaldehyde, and (Z)-2-methyl-2-penten-1-ol, 

and 5-methyl-2-hexanone. Other potential biomarkers for positive flavor attributes, including 

buttery, are benzoate-3-methyl-2-buten-1-ol, 2-ethylfuran, and 3,4,5-trimethyl-2-cyclopenten-1-
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one. Negative flavor attributes are earthy, woody, aroma intensity, bitter, and off-flavors other 

than bitter, with 2-isopropyl-3-methoxypyrazine as a potential biomarker. Terpenes (i.e. 3-

carene, α-copaene) may also be biomarkers for bitter.  

In terms of flavor by clone, Masquerade and Harvest Moon have consistently positive 

attributes in sensory and combined sensory and aroma compound analyses. The CSU Potato 

Breeding & Selection Program developed both cultivars, which are actually half-sibs, therefore 

similarities between the two are not surprising. Fortress Russet and Russet Nugget are 

comparable to Russet Norkotah and Russet Burbank for flavor. Advanced selection AC00395-

2RU is comparable to the other white-fleshed russets as well. Masquerade and Harvest Moon are 

more favorable for flavor than the common yellow-fleshed cultivar Yukon Gold. Red Luna, 

CO04099-3W/Y, and CO04067-8R/Y are comparable to Yukon Gold. Advanced selections 

CO04056-3P/PW, CO04063-4R/R, and Crimson King are associated with a negative flavor 

compared to Purple Majesty. 

Plant breeding efforts tend to focus on yield, postharvest storage, and pest resistance, 

which is thought to have a negative influence on produce quality, including flavor. Furthermore, 

flavor is a complex trait that is difficult to select for. In this study, critical aroma compounds are 

identified by combined sensory and aroma compound analyses. Aroma compounds are 

candidates for flavor biomarkers, which may facilitate aroma phenotypic selection for improving 

potato flavor after biomarker confirmation in quantitative assays and development of more 

efficient, high-throughput methods. Identified aroma compounds may also facilitate discovery of 

flavor metabolic pathways or genes. Flavor profiles generated from sensory analysis are further 

informative to potato breeders, producers, and consumers that wish to maximize flavor quality.  
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APPENDIX 1. SENSORY ANALYSIS SCORECARD 

Sensory Panel Session #X, xx
th

 Month, 20xx 

 
Name _______________________________ Order______  Sample Code _____________ 
 
Instructions: Print your name, sample order number, and the sample code. Taste samples by ascending 

order numbers (1, 2, 3, etc.). Before tasting a potato sample, first rate the sample for appearance and 

aroma intensity. Then, you may taste the sample and rate each flavor component as well as mealy texture 
and overall quality. Place an “x” or checkmark in an empty box under a scale to provide a single rating 

for each individual characteristic. Remember to inhale through your mouth or nose and then exhale 

through your nose while chewing to maximize your flavor perception. Please be sure to rinse your 

palate between potato samples with the provided crackers and water. Reference foods for flavors 
have been provided and may be used as a reminder for individual flavors, but do not necessarily 

correspond to specific points on rating scales.  

 
Appearance 

1 2 3 4 5 6 7 8 9 

Not 
appealing 

Trace of 
appeal 

Faintly 
appealing 

Slightly 
appealing 

Moderately 
appealing 

Definitely 
appealing 

Strongly 
appealing 

Very 

strongly 

appealing 

Extremely 
appealing 

         

Aroma Intensity 

1 2 3 4 5 6 7 8 9 

No aroma 
Trace 

aromatic 

Faintly 

aromatic 

Slightly 

aromatic 

Moderately 

aromatic 

Definitely 

aromatic 

Strongly 

aromatic 

Very 
strongly 

aromatic 

Extremely 

aromatic 

         

Potato-like Flavor 

1 2 3 4 5 6 7 8 9 

Not potato-

like 

Trace 

potato-like 

Faintly 

potato-like 

Slightly 

potato-like 

Moderately 

potato-like 

Definitely 

potato-like 

Strongly 

potato-like 

Very 
strongly 

potato-like 

Extremely 

potato-like 

         

Sweetness 

1 2 3 4 5 6 7 8 9 

Not Sweet 
Trace 

sweet 

Faintly 

sweet 

Slightly 

sweet 

Moderately 

sweet 

Definitely 

sweet 

Strongly 

sweet 

Very 
strongly 

sweet 

Extremely 

sweet 
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Remember to inhale through your mouth or nose and then exhale through your nose while 

chewing to maximize your flavor perception. Please be sure to rinse your palate between 

potato samples with the provided crackers and water.  

Fruity Flavor 

1 2 3 4 5 6 7 8 9 

Not fruity 
Trace 

fruity 

Faintly 

fruity 

Slightly 

fruity 

Moderately 

fruity 

Definitely 

fruity 

Strongly 

fruity 

Very 
strongly 

fruity 

Extremely 

fruity 

         

Lemon Flavor 

1 2 3 4 5 6 7 8 9 

Not 

lemony 

Trace 

lemony 

Faintly 

lemony 

Slightly 

lemony 

Moderately 

lemony 

Definitely 

lemony 

Strongly 

lemony 

Very 

strongly 
lemony 

Extremely 

lemony 

         

Umami (Savory) Flavor 

1 2 3 4 5 6 7 8 9 

Not umami 
Trace 

umami 

Faintly 

umami 

Slightly 

umami 

Moderately 

umami 

Definitely 

umami 

Strongly 

umami 

Very 

strongly 
umami 

Extremely 

umami 

         

Buttery Flavor 

1 2 3 4 5 6 7 8 9 

Not buttery 
Trace 

buttery 

Faintly 

buttery 

Slightly 

buttery 

Moderately 

buttery 

Definitely 

buttery 

Strongly 

buttery 

Very 

strongly 
buttery 

Extremely 

buttery 

         

Creamy Flavor 

1 2 3 4 5 6 7 8 9 

Not 
creamy 

Trace 
creamy 

Faintly 
creamy 

Slightly 
creamy 

Moderately 
creamy 

Definitely 
creamy 

Strongly 
creamy 

Very 

strongly 

creamy 

Extremely 
creamy 

         

Earthy Flavor 

1 2 3 4 5 6 7 8 9 

Not earthy 
Trace 
earthy 

Faintly 
earthy 

Slightly 
earthy 

Moderately 
earthy 

Definitely 
earthy 

Strongly 
earthy 

Very 

strongly 

earthy 

Extremely 
earthy 
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Remember to inhale through your mouth or nose and then exhale through your nose while 

chewing to maximize your flavor perception. Please be sure to rinse your palate between 

potato samples with the provided crackers and water.  

Woody Flavor 

1 2 3 4 5 6 7 8 9 

Not woody 
Trace 

woody 

Faintly 

woody 

Slightly 

woody 

Moderately 

woody 

Definitely 

woody 

Strongly 

woody 

Very 
strongly 

woody 

Extremely 

woody 

         

 

Bitter Flavor 

1 2 3 4 5 6 7 8 9 

Not bitter Trace bitter 
Faintly 
bitter 

Slightly 
bitter 

Moderately 
bitter 

Definitely 
bitter 

Strongly 
bitter 

Very 

strongly 

bitter 

Extremely 
bitter 

         

Off-Flavors Other than Bitter 

1 2 3 4 5 6 7 8 9 

Not off-

flavor 

Trace off-

flavor 

Faintly off-

flavor 

Slightly 

off-flavor 

Moderately 

off-flavor 

Definitely 

off-flavor 

Strongly 

off-flavor 

Very 

strongly 

off-flavor 

Extremely 

off-flavor 

         

Mealy Texture 

1 2 3 4 5 6 7 8 9 

Not mealy 
Trace 

mealy 

Faintly 

mealy 

Slightly 

mealy 

Moderately 

mealy 

Definitely 

mealy 

Strongly 

mealy 

Very 
strongly 

mealy 

Extremely 

mealy 

         

Overall Quality 

1 2 3 4 5 6 7 8 9 

Extremely 

low quality 

Very 

strongly low 
quality 

Strongly 

low quality 

Definitely 

low quality 

Moderate 

quality 

Definitely 

high quality 

Strongly 

high quality 

Very 

strongly 
high quality 

Extremely 

high quality 

         

	


