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ABSTRACT 
 
 
 

PREDICTING STREAM TEMPERATURES FOR NATIVE FISH HABITAT  
 

MANAGEMENT IN WHITE RIVER NATIONAL FOREST, COLORADO 
 
 
 

 Stream temperature is a critical habitat parameter for many cold-water fish, particularly 

the salmonids family that includes trout.  Colorado River cutthroat trout (Oncorhynchus clarkii 

pleuriticus), a native fish in the Colorado River Basin, currently exists in fragmented, isolated 

populations as a result of degraded thermal habitat, competition with nonnative trout and other 

reasons. Managers of the White River National Forest in northwestern Colorado want to 

reintroduce this native trout to additional streams within its historic range to help protect the 

subspecies from extinction. To identify additional streams within the Forest that have the 

appropriate thermal regime for Colorado River cutthroat trout, this research has created two 

multiple regression models to predict summer stream temperature metrics related to lethal and 

sublethal thermal tolerances for the subspecies.  The 7-day mean of daily maximum stream 

temperature for the warmest 7 days can be equated with the critical thermal maximum, which is 

the extreme high temperature beyond which the fish cannot survive.  The mean temperature of 

the warmest month can be equated with the upper limit of the optimum temperature range for the 

species, beyond which the fish experience sublethal temperature effects. The models can be used 

to identify streams cool enough throughout the year to support Colorado River cutthroat trout 

populations.  The strongest predictor variables of these metrics were the drainage area, the 

discharge and the residual pool volume.  Most previous studies found that air temperature was 

the strongest predictor variable in stream temperature models, but for the mountain headwater 



 iii 

streams in this study, variables related to stream flow volume and stream morphology had better 

explanatory power.  The models, created from and tested against field data, were able to explain 

66% and 51% of the variability in monthly mean and 7-day mean stream temperatures, 

respectively, and had prediction errors of less than 2°C.  Results from the models suggest that 

many of the streams in White River National Forest still have cool enough summer thermal 

regimes to support Colorado River cutthroat trout populations.  Management of cold-water fish 

that reconnects fragmented populations by reintroducing species to thermally appropriate habitat 

is a step toward reducing the vulnerability of the species to extirpation by future climate changes 

or other disturbances.  
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1   INTRODUCTION 
 
 
 

Stream temperature is a critical habitat parameter for aquatic freshwater taxa, particularly 

cold-water fish species such as the salmonidae family that includes trout (Brookfield et al., 2009; 

Herb and Stefan, 2011). Temperature is a driver of many physiological processes such as growth 

and reproduction for these ectothermic species (Young, 2008) and, as a result, their distribution 

is closely linked to their thermal habitat (Brown et al., 1971; Dunham et al., 2003; Rieman et al., 

2007; Isaak et al., 2012; Butryn et al., 2013; Isaak and Rieman, 2013). Stream temperatures can 

have indirect effects on aquatic organisms as well as direct effects because warmer water 

temperatures are closely correlated with lower dissolved oxygen levels (Brown et al., 1971; 

Beschta, 1997; Caissie, 2006) and higher suspended sediment loads (Caissie, 2006).  Habitat for 

Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, a focal species for the research 

presented in this thesis, is limited in part by suitable thermal regimes in the streams of Colorado, 

Wyoming and Utah (Underwood et al., 2012). Stream temperatures that are too cold, as well as 

temperatures that are too warm, can have detrimental effects on individual fish growth and 

population survival (Mohseni et al., 1998). Water that is too cold, however, presents less of a 

physiological stress than water that is too warm for Colorado River cutthroat trout except for fry 

under a year old (Young, 2008) because their growth is limited by cold temperatures. 

Temperature is, of course, not the only habitat parameter that limits cold-water fish distribution 

(Hickman and Raleigh, 1982), but it is of special interest for management purposes, particularly 

with climate change models predicting warmer stream temperatures for mountain streams (Isaak 

et al., 2012; Jones et al., 2013; Isaak and Rieman, 2013).  Under modeled global warming 

scenarios, cold-water fish species are projected to lose up to 36% of their current suitable thermal 
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habitat (Mohseni et al., 2003). Native cold-water species distribution may also be reduced as a 

result of thermally induced changes in competition success with non-native species (De Staso 

and Rahel, 1994; Bear et al., 2007). 

Colorado River cutthroat trout (CRCT) populations currently occupy about 11% their 

historic range in the Colorado River basin (Hirsch et al., 2013).  The reduction in territory is the 

result of warming temperatures, habitat degradation from human activities, and competition with 

introduced, nonnative species of trout such as brook (Salvelinus fontinalis), brown (Salmo trutta) 

and rainbow trout (Oncorhynchus mykiss) (Belk et al., 2009). Reduced stream flows from water 

diversions for municipal and agricultural use and reduced water quality from mining, logging, 

agriculture and other land uses have reduced the amount of suitable habitat available to CRCT.  

Contact with nonnative trout has resulted in competitive exclusion of CRCT in much of its 

historic range (Peterson et al., 2004) and, in a few cases, hybridization with rainbow trout or 

other cutthroat subspecies (Belk et al., 2009).  Although warming temperatures have likely 

resulted in shifts upstream by CRCT, migration to higher elevation reaches is not solely (or even 

primarily) the result of temperature warming, but also competition with nonnative species and 

other factors that have excluded CRCT from habitat that would otherwise still be suitable (De 

Staso and Rahel, 1994; Bear et al., 2007; Butryn et al., 2013). 

The existing populations of genetically unique Colorado River cutthroat trout are limited 

to headwater streams, typically high elevation, that are protected from nonnative trout 

populations by either man-made or natural barriers to longitudinal stream connectivity (Young, 

2008; Hirsch et al., 2013).  These isolated CRCT populations are at increased risk of extirpation 

because they exist in small fragmented “islands” that could be eradicated by disease, lack of 

genetic diversity or by disturbance such as fire or debris flows (Young, 2008; Roberts et al., 
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2013). Climate change projections predict that CRCT suitable habitat will be further reduced as a 

result of warming stream temperatures and that existing CRCT populations will be at greater risk 

of extirpation as more extreme climate conditions decrease the recurrence interval of 

disturbances that threaten these populations (Roberts et al., 2013).  Similar subspecies of 

cutthroat trout such as the greenback cutthroat trout (Oncorhynchus clarki stomias) on the 

eastern side of the continental divide in Colorado are also at risk of extinction because of 

fragmented populations (Cooney et al., 2005). In an effort to help protect CRCT from possible 

extinction as a result of their current fragmented distribution, the Forest Service CRCT Recovery 

Team proposes to reintroduce CRCT to additional streams within their historic range in the 

White River National Forest (WRNF).  Models of stream pool temperature are useful tools to 

identify streams that have an appropriate thermal regime so that the reintroduced populations 

have the best chance of success.  

 

1.1 Literature Review 

During the 1960s, efforts to model water temperature began with an energy budget model 

that used specific physical equations for evaporation, conduction, convection, advection and net 

radiation fluxes to calculate and predict stream temperatures on a daily time-scale (Brown, 1969).  

In this early model, net radiation refers to the difference in incoming and outgoing short-wave 

and long-wave radiation at the stream surface.  Evaporation is an energy loss to the stream 

system as water at the stream surface phases from liquid to vapor.  Convection also occurs at the 

surface and refers to the transfer of heat energy between water and air molecules.  Conduction is 

the molecule-to-molecule exchange of heat energy that transfers heat through the water column.  

Advection is the heat transfer between the stream water and new water of a different starting 
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temperature entering the stream (water from precipitation, groundwater or tributaries). Brown 

(1969) found that solar radiation (or short-wave radiation) was the greatest energy input to the 

stream system, and recognized that removing riparian shade greatly increased stream 

temperatures.  

This early model evolved into studies that focused on riparian shading effects on stream 

temperatures because riparian shading was recognized as one factor that reduced solar radiation 

energy inputs to streams (Brown et al., 1971; Brown, 1972; Beschta et al., 1987; Beschta and 

Taylor, 1988; Beschta, 1997; Thompson, 2005; Leach et al., 2012). Riparian shading studies 

were particularly prevalent in the Pacific Northwest in the context of stream temperature 

response to riparian shade removal by clear-cut logging (Mellina et al., 2002; Moore et al., 

2005a; Moore et al., 2005b).  The consensus across these studies was that streams without 

shading, whether naturally un-shaded or because the riparian vegetation was removed, were 

significantly warmer (Brown et al., 1971; Brown, 1972; Beschta et al., 1987; Beschta and Taylor, 

1988; Beschta, 1997; Mellina et al., 2002; Johnson, 2004; Thompson, 2005; Moore et al., 2005a; 

Moore et al., 2005b; Gaffield et al., 2005), and could absorb up to 90% of the incoming solar 

radiation (Beschta, 1997).  This effect increased maximum daily stream temperatures as much as 

5° C (Moore et al., 2005b; Leach et al., 2012) compared to similar, shaded reaches.  Maximum 

daily temperatures, particularly in summer months, showed the greatest increase as a result of 

loss of shading. Johnson (2004) found that loss of shading did not increase the mean daily or 

minimum daily temperatures, only the maximum temperatures.  Maintaining a riparian buffer in 

clear-cut areas proved effective at preventing increases of stream temperature from logging 

(Brown et al., 1971; Beschta et al., 1987; Beschta, 1997), although Moore et al. (2005a) found 

that riparian buffer areas were not effective at cooling stream reaches that experienced un-shaded 
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warming in upstream reaches. Stream temperatures gradually cool as clear-cut riparian corridors 

recover, although this can take a decade or more (Moore et al., 2005a).  

In the course of examining riparian shading effects, some studies determined that not all 

streams or stream reaches responded to changes in riparian shading to the same degree.  Several 

studies found that smaller streams and tributaries were more susceptible to increases in summer 

peak temperatures from losses in shading because of the decreased thermal capacity of smaller 

volumes of water (Brown et al., 1971; Constantz, 1998; Poole and Berman, 2001).  Other studies 

found that, although stream temperature was positively related with solar radiation or local air 

temperature, it was negatively related with discharge (Brown, 1972; Moore et al., 2005b; Brown 

and Hannah, 2008) and that increasing flows in flow regulated streams might be even more vital 

for keeping stream temperatures cool than increasing riparian shading (Bartholow, 1991).   

Other studies found that some streams or stream reaches were buffered from changes in 

thermal regime by groundwater inputs and hyporheic exchange that ameliorated extreme 

temperatures in both summer and winter (Constantz, 1998; Poole and Berman, 2001; Mellina et 

al., 2002; Johnson et al., 2004; Gaffield et al., 2005; Moore et al., 2005b; Wondzell, 2006; 

Burkholder et al., 2008; Brookfield et al., 2009; Roy et al., 2011; Wondzell, 2011).  In stream 

reaches with riparian vegetation removal, groundwater inflow minimized increases in stream 

temperature (Mellina et al., 2002), or cooled the temperature of stream reaches subjected to 

warming in un-shaded reaches upstream (Moore et al., 2005b). Across different catchments, 

from alpine to Midwest plains, streams with large groundwater contributions had reduced diurnal 

and annual variation in stream temperature (i.e., lower daily maximum temperatures, lower 

summer maximum temperatures and higher winter minimum temperatures) (Constantz, 1998; 

Gaffield et al., 2005; Roy et al., 2011).   
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In addition to groundwater influence, water entering and exiting the channel through the 

hyporheic zone beneath the channel bottom can have an influence on habitat-scale stream 

temperatures. Hyporheic exchange was important for reach-scale heterogeneity in stream 

temperature, with cool refugia located where hyporheic water entered the channel such as at tails 

of riffles (Poole and Berman, 2001; Burkholder et al., 2008, Wondzell, 2011). Hyporheic 

residence time was greatest in unconfined reaches, and channel morphology such as step-pool 

spacing and pool-riffle development influenced hyporheic exchange (Poole and Berman, 2001; 

Wondzell, 2006). Studies on hyporheic exchange in streams agree that hyporheic upwelling 

zones commonly provide cool refuge habitat for aquatic species (Poole and Berman, 2001; 

Ebersole et al., 2003; Burkholder et al., 2008). Overall, the literature agrees that solar radiation 

input, and by extension, riparian shading, are the most important factors controlling stream 

temperatures, but that groundwater input and hyporheic exchange, and discharge or flow volume 

are also significant factors controlling stream temperatures (Caissie, 2006; Webb et al., 2008; 

Herb and Stefan, 2008; Herb and Stefan, 2011).  Groundwater input, hyporheic exchange and 

discharge are all difficult to measure at a site because they require extensive instrumentation and 

substantial time in the field.  Consequently, the ability to use proxy variables that correlate with 

these processes but can be estimated remotely from a geographic information system (GIS) layer, 

such as drainage area for discharge, would greatly facilitate understanding and predicting stream 

temperatures.  

As the importance of preserving stream temperatures for aquatic organism habitat 

became widely recognized, managers began looking for easier ways to model stream 

temperatures that were not as data-collection and computationally intensive to execute as the 

early model by Brown (1969).  With a wider understanding of the factors influencing stream 
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temperature, models were developed that used proxy variables for net radiation, groundwater 

advection and discharge that were easier to measure than the complex meteorological and 

groundwater flow variables required by Brown (1969).  Regression and stochastic models that 

utilized local air temperature as a proxy for solar radiation input became common.  These models 

rely on an empirically derived relationship between air and stream temperatures to make 

predictions at unmonitored locations (Mohseni et al., 1998; Caissie et al., 2001). Although most 

of these types of models use a linear relationship between air and stream temperatures, Mohseni 

et al. (1998) and Mohseni and Stefan (1999) have made a case for a logistic relationship instead, 

especially when predicting stream temperatures based on projected future air temperatures under 

climate warming scenarios (Mohseni et al., 2003).  The early regression and stochastic models 

utilized only air temperature as the predictor variable, although some also used parameters that 

correlated with stream flow, riparian shading and groundwater contribution (Isaak et al., 2010; 

Jones et al., 2013), in agreement with earlier studies that identified the influence of these factors 

on stream temperatures. With advances in the technology for collecting and recording 

meteorological data, new attempts at developing energy balance or deterministic models for 

stream temperature have been undertaken (Caissie, 2006; Caissie et al., 2007), although these are 

not as user-friendly for management purposes. Cassie et al. (2007) created a deterministic stream 

temperature model for a small catchment following the energy budget equations used by Brown 

(1969), populated by data from local meteorological stations and field-collected stream 

temperatures. 

The most recent work in stream temperature modeling has been in developing spatial 

models for better predictions in unmonitored locations over large management areas such as 

National Forests (Isaak et al., 2010) and in modeling stream temperatures under climate warming 
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scenarios (Hill et al., 2013; Jones et al., 2013).  Temporal and spatial heterogeneity in stream 

temperatures has long been recognized, but the spatial distribution of stream temperatures was 

ignored in early models that used simple regression relationships to predict single site, or reach-

scale stream temperatures for daily or weekly time scales.  The new spatial models rely on GIS 

layers of modeled air temperature or solar radiation (Isaak et al., 2010), and have ranged in scale 

from a single large basin (Isaak et al., 2010) to the entire conterminous United States (Hill et al., 

2013). Current spatial stream temperature models predict summer stream temperature metrics 

that are closely correlated with distribution of cold-water fish species rather than weekly or daily 

stream temperatures. These models are being utilized in conjunction with climate projections to 

estimate future distributions for these cold-water fish (Isaak et al., 2010; Jones et al., 2013; Hill 

et al., 2013; Isaak and Rieman, 2013). 

Spatial structure in stream temperature modeling can be determined using Euclidean 

distance (the shortest distance between two points) (Gardner et al., 2003), or stream distance 

(distance along the stream network) with or without ranking for tributary influence (Gardner et 

al., 2003; Isaak et al., 2010; Hill et al., 2013; Jones et al., 2013; MacDonald et al., 2014).  Spatial 

models of stream temperature attempt to capture and explain spatial heterogeneity on multiple 

spatial scales, so they commonly include meteorological, hydrological and geomorphological 

predictor variables (MacDonald et al., 2014) and variables readily available from a GIS layer 

(Isaak et al., 2010). Accounting for the spatial autocorrelation in stream temperature distribution 

when building a model commonly results in lower prediction errors, and better correlation 

coefficients (r2 values).  Jones et al. (2013) and Isaak et al. (2010) found that a model that 

accounted for spatial autocorrelation in the stream temperatures outperformed a non-spatial 

version of the model using similar predictor variables.  Many spatial stream temperature models 
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are limited by the available data, although MacDonald et al. (2014) recently had limited success 

circumventing that issue by creating a model that combines process-based modeling approaches 

with a spatial structure for mountain stream temperatures.   

Spatial statistical models can be created for a variety of scales. Hill et al. (2013) created a 

spatial stream temperature model for the contiguous United States, although most of the studies 

referenced here are for much smaller spatial extents such as a National Forest or single large 

watershed. Across spatial and non-spatial stream temperature prediction models, air temperature 

is commonly the most significant predictor variable.  

There is a substantial body of work covering human-caused alterations to stream thermal 

regimes including, but not limited to, climate-change influences.  Logging (Brown, 1972; 

Beschta and Taylor, 1988; Mellina et al., 2002; Moore et al., 2005a; Moore et al.,  2005b), flow 

regulation (Bartholow, 1991; Dickson et al., 2012), dam releases (Zolezzi et al., 2011), 

urbanization (Somers et al., 2013) and other land uses (Poole and Berman, 2001; Poole et al., 

2004), as well as climate change (Mohseni et al., 1999; Rieman et al., 2007; Isaak et al., 2012; 

Jones et al., 2013; Isaak and Rieman, 2013), have altered stream thermal regimes.  My study 

statistically models the natural condition of stream temperatures in watersheds with little human 

disturbance, so studies dealing primarily with human alteration of stream temperatures have not 

been mentioned in-depth in this review of the literature. Additional summaries of advances in 

stream temperature research, including human impacts on stream thermal regimes, can be found 

in Caissie (2006) and Webb et al. (2008).  

My study is unique relative to other studies that have modeled stream temperature in that 

I am modeling temperatures to identify streams for the possible reintroduction of CRCT for 

fisheries management over an entire National Forest, rather than to predict the current or future 
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distribution of the species.  I am modeling stream temperature for a smaller area than regional 

climate models, but a larger area than many models built to identify stream temperature controls 

on a single stream or stream reach.  The management-scale model for WRNF is based on field 

data collected at the reach scale, and focuses on predicting temperatures for pool habitat because 

pools are common thermal refugia for cold-water fish species such as CRCT (Matthews et al., 

1994; Matthews and Berg, 1997; Ebersole et al., 2001; Ebersole et al., 2003). This study directly 

measures riparian shading and air temperature, and also indirectly includes groundwater and 

hyporheic exchange as possible model parameters through the proxies of valley geometry and 

channel substrate characteristics.  

 

1.2 Objectives 

Objective 1: Collect sufficient data to empirically derive a mathematical relationship that can be 

used to predict summer stream temperature metrics in pool habitat within pool-riffle channels on 

the WRNF. 

 

The first objective of this project is to create a useable, empirically based stream 

temperature model to predict stream pool temperature in the White River National Forest 

(WRNF) of Colorado.  This model can then be applied by the Forest Service CRCT Recovery 

Team to identify or eliminate streams for reintroduction of CRCT. To create a useable model that 

serves its intended management purpose, the dominant control variables need to be identified and 

quantified (Figure 1), and their relationship to the desired output of stream temperature metrics 

that describe pool temperature in headwater streams of WRNF determined.  A model with a 

prediction error less than 2° C will be considered useful, based on similar models in the literature 
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(Isaac et al., 2010).  The metrics chosen for model output must be related to CRCT thermal 

habitats to be of use in identifying possible reintroduction locations.  In addition to creating a 

working model, the dataset collected, which encompasses the variability of stream conditions in 

the least disturbed portion of WRNF, allows for an exploration of any patterns that emerge in 

stream temperature (e.g., temperature increases downstream).  

 

 
 
Figure 1. A conceptual cartoon of reach-scale factors influencing stream temperature in pools of 
pool-riffle channels.  Three categories of factors are represented: above the stream (air 
temperature), within the stream (pool volume) and below the stream (hyporheic and groundwater 
exchange).  The three main categories are influenced by quantifiable secondary factors.  Valley 
aspect, elevation and riparian shading influence the air temperature. Substrate type and valley 
geometry influence the hyporheic and groundwater exchange.  Channel geometry, drainage area 
and flow regime influence the water depth and residual pool volume. Solar radiation is the 
primary energy input to the system. Reach pool temperature is also influenced by the 
temperature of the water flowing into the reach from upstream.  
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Objective 2: Identify the dominant control variables for stream temperature.  

Hypothesis 1, HA1: The dominant control on stream temperature is local air temperature. 

Hypothesis 2, HA2: Site-specific characteristics aside from air temperature significantly influence 

stream temperature.  

 

 Hypothesis 1 reflects the results of previous stream temperature studies that indicate a 

strong correlation between mean air temperature and stream temperature (Mohseni et al., 1998; 

Caissie et al., 2001; Caissie, 2006; Hill et al., 2013; Jones et al., 2013; Somers et al., 2013). 

Hypothesis 2 reflects other studies that indicate additional factors such as groundwater input 

(Constantz, 1998; Mellina et al., 2002; Moore et al., 2005b; Gaffield et al., 2005; Roy et al., 

2011), hyporheic exchange (Wondzell, 2006; Burkholder et al., 2008; Wondzell, 2011), or 

riparian shading (Brown et al., 1971; Brown, 1972; Beschta et al., 1987; Beschta and Taylor, 

1988; Beschta, 1997; Mellina et al., 2002; Johnson, 2004; Moore et al., 2005a; Gaffield et al., 

2005) can also have a strong control on local stream temperature. The two hypotheses are not 

mutually exclusive, but are intended to reflect that, although I expect local air temperature 

metrics to correlate most strongly with measured stream temperature at all study sites, other 

factors may also be significant controls on stream temperature, and may not be equally important 

at all sites. Site-specific characteristics that I expect to correlate strongly with stream temperature 

include: riparian shading and valley aspect, which influence the exposure of the stream to direct 

solar radiation; streambed grain size distribution and the ratio of valley width to channel width or 

confinement, which influence hyporheic exchange and groundwater input; and bankfull width to 

depth ratio, residual pool volume and drainage area, which influence temperature through 
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thermal inertia of greater discharge and pool volume (Brown, 1969; Brown et al., 1971; Brown, 

1972; Constantz, 1998).   

 

Objective 3: Explore spatial patterns in stream temperature. 

Hypothesis 3, HA3: Mean pool temperature will increase downstream in the watersheds. 

 

 Hypothesis 3 is a reflection of the expected relationship between elevation and air 

temperature, which strongly controls stream temperature, and the idea that the farther 

downstream the water travels, the more it is exposed to solar radiation energy inputs, both for 

longer duration and because the stream cross-section will generally become wider (Beschta et al., 

1987).  For air temperature, increased elevation correlates strongly with decreasing air 

temperature (Brown et al., 2005).  I expect this trend to hold for stream temperatures as well, 

with warmer stream temperatures corresponding with lower elevations and downstream locations 

in each watershed.  

 

Objective 4: Examine the relationship between watershed “clusters” and the stream temperature 

control variables. 

Hypothesis 4, HA4: The relative strength of different control variables will change across 

watershed clusters.  

 

Hypothesis 4 is a reflection of the variability that exists between watersheds in WRNF. In 

an assessment of aquatic and riparian resources of the Forest, watersheds were grouped into six 

clusters with similar characteristics in terms of lithology, stream gradient, geochemistry and 
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elevation (Winters et al., 2011).  I expect that the relative importance of the driving variables will 

differ between these clusters as a result of their differences in these characteristics. Motivating 

this hypothesis is the desire to know if certain watershed clusters are more sensitive to possible 

drivers of stream temperature than others. Although all of the watershed clusters are dominated 

by steep, snowmelt-dominated streams, the percent of each watershed having calcareous 

lithology or low stream gradient varies between the clusters. Streams within a cluster dominated 

by calcareous lithology, or with greater portion of low gradient stream length, for example, 

might have greater groundwater inputs.  More detailed explanation of the cluster analysis and 

watershed assessment is included in the Methods chapter.  
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2   STUDY AREA AND METHODS 
 
 
 

2.1 Study Area 

White River National Forest (WRNF) is located in northwest and central Colorado, west 

of the Continental Divide (Figure 2).  The Forest is divided into two sections that add up to a 

total of 9,251 km2 (Toth et al., 1993).  The southern section is elongate in the east-west direction, 

stretching from Dillon to Rifle.  The second section lies to the northwest near the White River 

from which the Forest draws its name.  The northern and western areas of the Forest are 

characterized by mesas and hills dissected by stream valleys.  The southern and eastern portions 

of the Forest are more mountainous and include parts of the Sawatch, Elk and Gore mountain 

ranges (Tweto et al., 1978).  These glaciated mountain ranges include several peaks greater than 

4267 m (14,000 feet) and are home to most of Colorado’s major ski resorts (David et al., 2009).   

The watersheds within the WRNF ultimately drain into the Colorado River.  Major 

Colorado River tributaries within the Forest include the Crystal River, Blue River, Eagle River, 

Fryingpan River, Roaring Fork River and the White River. The Forest includes several 

designated wilderness areas, including Eagles Nest, Flat Tops, Holy Cross, Hunter-Fryingpan, 

Maroon Bells-Snowmass, Ptarmigan Peak and Collegiate Peaks (USDA Forest Service Land and 

Management Plan, 2002).  These wilderness areas represent the least anthropogenically 

influenced portions of the WRNF, because many activities such as motorized recreation allowed 

elsewhere in the Forest are prohibited in wilderness areas.  

The geology across the White River National Forest is diverse and complex, as the 

WRNF covers an extensive area of disparate terrain.  The eastern portion of the Forest has many  
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Figure 2: White River National Forest, Colorado.  
 
 

crystalline Precambrian granites and gneiss that weather to coarse-grained sediment (sand and 

coarser). These rocks are primarily found in higher relief, mountainous areas.  The western part 

of the Forest is primarily characterized by shale, siltstones and mudstones that weather to fine-

grained sediment, including silt and clay. The Flat Tops mesa in the northwest portion of the 

Forest has large deposits of limestone and dolomite (Tweto et al., 1978).  

Precipitation and temperature patterns across the Forest are controlled by the 

mountainous topography and vary with elevation (Doesken et al., 2003).  The majority of the 

precipitation falls as snow in the higher elevations in winter months, although summer 
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thunderstorms are also common (Doesken et al., 2003).  Average annual precipitation (rain and 

snow) in the valleys is approximately 25 to 51 cm.  On peaks and higher elevations, precipitation 

can be up to 130 cm of snow (USDA Forest Service Final Environmental Impact Statement, 

2002).  Eastern slopes tend to be drier than western-facing slopes in the eastern and southern part 

of the Forest. Prevailing winds from the west and the north-south orientation of most of 

Colorado’s mountain ranges result in the majority of precipitation occurring on western-facing 

slopes (Doesken et al., 2003).  Temperature also follows an elevation gradient in the region, with 

cooler temperatures generally occurring at higher elevations.  Average annual temperature for 

the Forest ranges from 2° to 10° C, depending on elevation and topography (USDA Forest 

Service Final Environmental Impact Statement, 2002). In general, the western half of the WRNF 

is drier and warmer than the eastern half, and these differences in climate are reflected in the 

predominant vegetation.  

Hydroclimate regime for the rivers and streams in the WRNF is primarily snowmelt, with 

the annual hydrograph peak occurring in May-June (USGS NWIS, 2014).  U.S. Geological 

Survey stream gage 09085100, with records from 1967 to present on the Colorado River below 

Glenwood Springs, CO, reports a mean annual discharge of 94 m3/s and a mean annual peak 

discharge of 429 m3/s. The peak and mean discharge on the Colorado River have decreased since 

1950 as a result of flow regulation and diversions (Pitlick et al. 1999).  The study sites chosen are 

on portions of headwater streams in the Forest that are free from flow diversion, although flow 

diversions may exist downstream of the study locations.   

 The WRNF has a wide variety of different forest stands, with the vegetation composition 

varying with topography and elevation.  In the Forest overall, the predominant species are 

quaking aspen (Populus tremuloides), Engelmann spruce (Picea engelmannii), subalpine fir 
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(Abies lasiocarpa), lodgepole pine (Pinus contorta), Douglas-fir (Pseudotsuga menziesii) and 

ponderosa pine (Pinus ponderosa).  The subalpine zone, in which this study predominantly takes 

place, is primarily Engelmann spruce-subalpine fir forest with stands of lodgepole pine and 

quaking aspen interspersed (USDA Forest Service Final Environmental Impact Statement, 2002).  

Willow species (Salix monticala, S. drummondiana), alders (Alnus incana) and currants (Ribes 

coloradense, R. wolfii) are commonly found along stream banks and valley bottoms in wetland 

areas (David et al., 2009).  The montane zone at lower elevations is dominated by Douglas-fir, 

with some ponderosa pine.  In the drier, warmer, western half of the Forest, oakbrush (Quercus 

gambelii) and a variety of mountain shrubs are commonly found on the drier eastern and 

southern facing slopes, with forest stands of spruce, fir, pine and aspen found on wetter north and 

western facing slopes.   

 The WRNF is subject to both natural and anthropogenic disturbances.  Grazing, water 

development, logging, mining and recreation are the primary human-caused disturbances in the 

Forest, but as site selection in this study has attempted to avoid locations with anthropogenic 

influence, the disturbances of concern are the natural disturbances.  The Forest is subject to 

natural disturbance by fire, insect outbreak and disease.  WRNF has been influenced by the 

recent mountain pine beetle (Dendroctonus ponderosae) population increases, with the majority 

of lodgepole pine stands experiencing outbreaks of some severity (USDA Forest Service Final 

Environmental Impact Statement, 2002).  The Forest has not experienced any significant fires in 

the last decade.  

 An assessment of WRNF aquatic and riparian resources divided “management-scale” 

watersheds within the Forest into six clusters of watersheds with similar attributes (Winters et al., 

2011). “Management-scale” watersheds were defined in the assessment as the 6th level 
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hydrologic unit boundary (HUB) subwatersheds. The U.S. Geological Survey National 

Hydrography Dataset uses HUBs to delineate watersheds and subwatersheds.  The 6th level 

HUBs within or intersecting the Forest boundary were divided into clusters based on statistical 

similarities among four ecological drivers: geochemistry, sediment production (lithology), 

hydroclimatic regime (elevation) and reach-scale stream gradient (Winters et al., 2011).  

Geochemistry refers to whether the geology of the watershed is predominantly calcareous 

(containing calcium carbonate CaCO3) or non-calcareous rocks.  Sediment production refers to 

whether the predominant lithology of the watershed is likely to weather to fine (silt and clay), 

medium (sand) or coarse-grained (gravels, cobbles and coarser) sediment. Hydroclimatic regime 

references the predominant form of precipitation, either snow or rain and snow.  The 

hydroclimatic regime is closely related to the flow regime for the watershed – whether the 

hydrograph peak is snowmelt dominated or controlled by a combination of rain and snowmelt. 

Stream gradient for each watershed is broken into three categories that reflect divisions between 

cascade/step-pool channels (high, > 4%), transitional/plane-bed channels (medium, 2-4%) and 

pool-riffle channels (low, < 2%), with the designation for the watershed assessment falling into 

the category with the greatest percentage of stream length (Winters et al., 2011).  A watershed 

classified as “high gradient” can still have low gradient reaches, but these do not make up the 

majority of stream length in the watershed. The rationale underlying the designation of 

ecological drivers and a description of the cluster analysis method is available in more detail in 

Wohl et al. (2007).  

One watershed from each cluster was chosen to adequately represent the variety of 

watersheds that exist within WRNF (Table 1, Figure 3).  Least impacted watersheds were chosen 

for the study in order to create a baseline temperature model under (mostly) undisturbed  
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Table 1: Study watersheds with their cluster characteristics and elevation ranges. Ecological 
driver information from Winters et al. (2011).  
Management 

Scale 
Aquatic and 

Riparian 
Cluster 

6th HUB 
Watersheds 

Ecological driver based on greatest mean percentage 
Elevation 
range of 
the study 
sites (m) 

Stream 
Gradient Geochemistry Sediment 

Production1 
Hydroclimate 

Regime 

1 
Upper Piney 

River high non-
calcareous fine snowfall 2550 - 

3073 140100010801 

2 
Berry Creek 

high non-
calcareous fine snowfall 2460 - 

2899 140100030304 

3 
Cross Creek 

high non-
calcareous coarse snowfall 2644 - 

2845 140100030208 

4 
Grizzly Creek 

high calcareous medium snowfall 2668 - 
3183 140100011602 

5 
North Elk Creek 

high calcareous fine snowfall 2151 - 
2497 140500050302 

6 
Beaver Creek 

high calcareous fine rain and 
snow 

2375 - 
2941 140100050701 

1 Sediment production in this context differentiates bedrock lithologies that produce 
predominantly cobble and coarser sediment (coarse), lithologies that produce sand-sized 
sediment (medium), and lithologies that produce at least some silt and clay (fine).  
 
 

conditions that can then be used for comparisons with more impacted watersheds within the 

Forest. Several of the watersheds chosen for the study lie in wilderness areas, as these areas are 

the least anthropogenically influenced locations in the Forest. With the exception of North Elk 

Creek, which is subject to mild grazing activity, the watersheds are free from heavy 

anthropogenic influence and experience only low impacts from recreation such as hiking and 

camping.  Along the primary headwater stream in each watershed, five pool-riffle reaches were 

chosen for monitoring stream pool temperature and local air temperature.  If pool-riffle reaches 

were not present, the most morphologically similar reach available was chosen: typically plane-

bed or lower gradient step-pool.  Pool temperature was chosen because pools provide thermal  
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Figure 3: The six study watersheds within White River National Forest: Beaver Creek, Berry 
Creek, Cross Creek, Grizzly Creek, North Elk Creek and Upper Piney River. 
 
 

refugia (Matthews et al., 1994; Bonneau and Scarnecchia, 1996; Matthews and Berg, 1997; 

Ebersole et al., 2001; Ebersole et al., 2003) and important habitat for cold-water fish species 

(Cooney et al., 2005; Isaak and Rieman, 2013).  An attempt was made to characterize the entire 

watershed by dispersing the study locations along the entire length of each stream, although this 

was limited by the accessibility of remote parts of the watersheds, the need to avoid flow 

diversions, and the scarcity of low gradient reaches with pool-riffle morphology (Montgomery 

and Buffington, 1997).  All the reaches fall between the uppermost reaches with suitable gradient 
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for fish habitat and the lower reaches where stream diversions occur.  As evidenced by the 

classification of all six clusters as high gradient, the majority of the channel length in all the 

chosen watersheds was cascade or step-pool morphology.  Low gradient reaches with pool-riffle 

morphology were scarce.  

 

2.2 Field Methods 

 Field data and measurements were collected between June 2012 and September 2013 

over two summers of fieldwork.  Summer 2012 was spent hiking along the main channel of the 

chosen watersheds, scouting locations with lower gradient reaches that fit pool-riffle morphology.  

In watersheds where true pool-riffle morphology was scarce, plane-bed or low gradient step-pool 

reaches were substituted.  Once a suitable reach was found and a pool chosen, HOBO U22 Water 

Temp Pro and HOBO Pendant Temp/Light dataloggers were deployed to record hourly stream 

pool and local air temperatures, respectively (Dunham et al., 2005).  The stream temperature 

dataloggers were housed in PVC casings to protect them from damage by mobile bed material or 

instream wood. The casings had holes drilled at the top and bottom and along the sides to allow 

water to flow through easily. The dataloggers were then tied to large cobbles with wire and sunk 

into the deepest, sheltered part of the chosen pools.  An additional wire tether connected the 

datalogger casings to a tree on the bank to prevent the datalogger from being swept away should 

it become bed (or suspended) load in high flows.  The air temperature dataloggers were housed 

in plastic prescription-pill bottles and attached to the north side of trees, shaded by branches, 

adjacent to the pools being monitored. The prescription bottle housings also had holes drilled in 

them to allow air to flow around the dataloggers.  In addition to the five primary sites on each 
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watershed, a few extra stream pools were also instrumented in case any dataloggers were lost as 

a result of high flows or human tampering.  

 Stream pool and local air temperature dataloggers were collected and additional field 

measurements were made in Summer 2013.  Additional field measurements included surveys of 

bankfull channel cross-section, stream reach gradient, and longitudinal pool-thalweg, and 

characterization of bed sediment, degree of riparian shading, riparian vegetation type, and valley 

aspect.  Cross-section, pool-thalweg and gradient surveys were conducted using a measuring tape, 

auto-level and stadia rod.  The cross-section for each stream pool was located perpendicular to 

flow, through the location where the datalogger was sunk (usually the deepest part of the pool).  

A tape was stretched along the cross-section for horizontal distance and elevation was measured 

at 1 m intervals or wherever breaks in bank or channel bottom slope necessitated additional 

measurements.  Bankfull elevation was identified using indicators in the field such as breaks in 

slope, changes in vegetation, tops of bars or depositional features or staining on rocks along 

channel margins (Wohl and Merritt, 2005).  Bankfull width was calculated by finding the 

difference in horizontal distance between the two points identified as bankfull elevation.  The 

pool-thalweg survey was conducted by stretching a tape along the thalweg from the riffle crest 

upstream of the pool to the riffle crest downstream of the pool.  The elevation of the pool bottom 

was measured at 1 m intervals and at any breaks in slope. Bankfull width to maximum depth and 

bankfull width to mean depth ratios were calculated from the two surveys.  The mean depth was 

calculated by finding the bankfull cross-section area and dividing that by bankfull width.  The 

max depth was the deepest point measured in either the cross-section survey or the pool-thalweg 

survey (frequently the same depth for both surveys).  Residual pool volume, or the volume of 

water left in the pool if the water depth is decreased to the height of the downstream riffle crest, 
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was calculated using both the cross-section and pool-thalweg survey to estimate the mean depth, 

length and width of each pool (Lisle, 1987; Kaufmann et al., 1999).  The gradient of the reach 

was determined from the riffle crest upstream of the pool to the riffle crest downstream of the 

pool.   

 Bed substrate was characterized using the Wolman (1954) pebble count in a riffle 

adjacent to the pool.  A Wolman pebble count involves walking a transect perpendicular to flow 

across the channel and measuring a clast at the toe of your boot for each step.  Clasts were 

measured along the median axis using either a centimeter ruler or a gravelometer.  The 

centimeter ruler was only used for clasts whose size exceeded the largest opening (7 phi or 128 

mm) of the gravelometer.  Fifty clasts were measured for each site.  Fifty clasts were considered 

sufficient to characterize the bed sediment for the purpose of determining whether hyporheic 

exchange could potentially be substantial at each site.    Half phi classes were converted to 

millimeters and D50 and D84 (the size to which 50% or 84% of the clasts are equal or smaller, 

respectively) values were calculated from the grain size distribution.  

 Riparian shading was measured as percent overstory using a convex spherical crown 

densitometer (Fiala et al., 2006).  The spherical crown densitometer has a grid of 24 quarter-inch 

squares.  To measure the percent overstory density, each of these squares is mentally subdivided 

in four and a count is made of the number of quarter-squares reflecting canopy openings (up to 

96 for a clear sky).  This value is multiplied by 1.04 to give the percent of the overhead area that 

is not canopy.  The difference between that value and 100% gives the percent of the overhead 

area that is canopy. Four measurements were made of the percent overstory above the pool, 

facing the four cardinal directions.  These measurements were then averaged to obtain the final 

value.  
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 Riparian vegetation type was characterized into one of six categories based on visual 

assessment of the dominant vegetation: coniferous, willow, grass/sedge, willow/coniferous, 

coniferous/grass or grass/willow.  Mixed categories reflect the fact that some reaches had 

distinctive vegetation on opposite sides of the channel (e.g., coniferous on the right bank, 

willows on the left bank).  Valley aspect was measured in the down-valley direction using a 

compass.  Elevation and study location coordinates were measured with a GPS unit.  

 Drainage area and two-year peak discharge for each study location were estimated using 

USGS Stream Stats (http://water.usgs.gov/osw/streamstats/colorado.html).  Stream Stats allows 

the user to delineate a watershed using the coordinates of each study site.  The delineated 

watershed was used to estimate the drainage area.  Two-year peak flow was estimated by Stream 

Stats using regression equations developed by Capesius and Stephens (2009).  Two-year peak 

flow was chosen as a common representative of the channel forming or bankfull flow.  Valley 

width was measured using a 10 m digital elevation model (DEM) in ArcMap. A 1 m contour 

map was developed from the DEM, and valley width measured perpendicular to the channel at 2 

m above stream height (two contour lines above the stream on each side).  With bankfull width, 

valley width was used to calculate the valley width to channel width ratio.  

 From the hourly stream pool temperature data, metrics that represent aspects of stream 

thermal regime important to cold-water fish thermal habitat were calculated.  The stream thermal 

regime influences the reproduction, growth, fitness and survival of aquatic species (Todd et al., 

2008), and these habitat qualities can be related to specific metrics of stream temperature 

(Roberts et al., 2013).  These metrics will be the output from the statistical models created for 

management purposes.  Criteria for protecting cold-water fish habitat include definitions for 

acute and chronic thermal tolerances.  Acute thermal limits are temperatures so extreme that 
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even short exposure (7 days or less) is lethal, and are considered the upper thermal tolerance for 

a species (Todd et al., 2008).  These thresholds include critical thermal maximum (CTM), found 

in the lab by gradually increasing the temperature until the fish loses equilibrium or dies, and the 

upper incipient lethal temperature (UILT), found by transferring fish from a tank with one 

temperature (acclimation temperature) to a tank with fixed, higher temperature (Todd et al., 

2008). The UILT is the higher temperature at which 50% of the fish population expires (Todd et 

al., 2008). The 7-day mean of daily maximum temperatures for the warmest 7-day period (7-day 

mean) is the metric that best represents these acute thermal criteria (Roberts et al., 2013). 

Underwood et al. (2012) found that the CTM for CRCT acclimated to 15°C was 26.9°C.  

Johnstone and Rahel (2003) and Wagner et al. (2001) found slightly lower CTM (at lower 

acclimatization temperature) for Bonneville cutthroat trout (Oncorhynchus clarkii utah), a 

cutthroat subspecies closely related to CRCT (Loxterman and Keeley, 2012).  Schrank et al. 

(2003) found that under diurnal fluctuations in field conditions, cutthroat trout species could 

survive temperatures up to 28°C.  Using these same studies, Roberts et al. (2013) arrived at 26°C 

as the CTM threshold for CRCT for their study.  The predicted 7-day mean can be used to 

eliminate streams within WRNF that exceed this thermal criterion from being considered as 

potential locations for CRCT reintroduction.  

Chronic thermal limits refer to sub-lethal exposure to warm temperatures that result in 

reduced fitness, growth or reproduction of cold-water fish species (Todd et al., 2008).  A 

temperature metric well suited to represent chronic thermal tolerances is mean monthly 

temperature of the warmest month, typically July or August (Roberts et al., 2013).  Bear et al. 

(2007) found that westslope cutthroat trout (Oncorhynchus clarkii lewisi), another cutthroat trout 

subspecies, had optimal growth between 9.5°C and 18°C, so 18°C would be a reasonable 
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threshold for chronic thermal criterion, above which the CRCT would be exposed to sublethal 

thermal effects. The predicted mean monthly temperature of the warmest month will be used to 

provide additional information for a stream’s habitat suitability aside from whether the stream 

has warm temperatures extreme enough to extirpate a potential CRCT population. At almost all 

the study sites, the warmest 7-days fell within the warmest month for the two field seasons. 

I calculated mean monthly temperature for the warmest month and the 7-day average of 

the daily maximum temperature for the warmest 7 days from two summers of field-collected 

local air temperature data for possible use as driving variables in the model.  Additional air 

metrics from the Parameter-elevation Relationships on Independent Slopes Model (PRISM) 

(Oregon State University, http://prism.oregonstate.edu, accessed 4/10/2014) were also used as 

potential predictor variables in the model, to better represent the air temperature information 

currently available to the Forest Service, and to determine whether the air temperature data 

available from PRISM could predict stream temperature with enough accuracy to be of use in a 

model for management applications. PRISM calculates 30-year normal temperature metrics for 

30-arcsec grids using a climate-elevation regression for each grid cell, with weighting assigned 

to the nearest meteorological station based on physiographic similarity (Daly et al., 2008).  I used 

the July maximum, July mean, annual maximum and annual mean 30-year normal temperature 

metrics for the period 1981 to 2010 as possible explanatory variables in the models, because 

these metrics most closely resembled the metrics of interest for this study from the available 

PRISM data.  
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2.3 Statistical Methods and Data Analysis 

 Once all the field data were collected, I organized the data and calculated metrics from 

the field measurements in Microsoft Excel.  I organized these metrics into potential predictor 

variables for the models, and ran common statistical tests to verify that the distribution of each 

variable satisfied the necessary assumptions for multiple regression models.  All statistical 

analysis for this project was run in R version 2.15.1 and ArcGIS versions 10 and 10.1. The 

assumptions that must be met for multiple linear regression models are normality of distribution 

of the independent and dependent variables, a linear or quadratic relationship between the 

independent (predictor) and dependent variables, and (after running the model) homoscedasticity 

of errors (i.e., the variance in the errors is equally distributed across the predicted values).  

 I used histograms and quantile-quantile (QQ) plots, along with the Shapiro-Wilk test of 

normality, to evaluate whether my potential model variables fit normality.  For normally 

distributed data, the histogram plot should display a symmetrical bell-shaped curve with equal-

size “tails.”   The QQ-plot, which displays the actual quantiles plotted against the theoretical 

quantiles if the data were normally distributed, should fall in a straight line with neither “tail” of 

the data falling off the line. For the Shapiro-Wilk test of normality, p-values greater than ! =

!0.05 significance level used in this study indicate the alternative hypothesis of non-normality 

should be rejected and the data accepted as normal. For those variables that were non-normal, I 

used a natural log transformation and then re-examined the plots and tests.  A natural log 

transformation solved the normality issue for nearly all my variables.  For the three variables that 

were still non-normal, I applied a square root transformation.  

 I created scatter plots and examined a plot of the residual versus predicted values from 

simple linear regressions run between my dependent variable – the stream temperature metrics – 
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and each potential predictor variable, to verify that a linear relationship existed between the 

independent and dependent variables being considered for the multiple regression models. With 

the wide variability in study site location characteristics, some variables had stronger linear 

relationships than others.  The residual plots show linearity when they are equally distributed 

along the line of zero residual (they do not show a curved shape).  The residual plots from these 

simple linear regression models and the scatter plots are not perfectly linear, but are close enough 

for model construction (Ott and Longnecker, 2010).  

Residual versus predicted value plots of simple linear regressions run between the 

dependent stream temperature metrics and each possible variable were also examined to verify 

homoscedasticity of variance for the model residuals.  Homoscedasticity is met when the 

residuals have an even distribution of variance across the range of predicted values. The 

residuals plots should not show a megaphone shape, or bow-tie shape. Although some of the 

original variables had heteroscedasticity in the variance pre-transformation, the transformation 

commonly aided in stabilizing the variance as well as making the data distribution more normal. 

A few variables that could not be transformed to adequately meet the assumptions of multiple 

linear regression were discarded from consideration as parameters in the models. Plots and test 

results for determining whether the variables met the model assumptions are available in 

Appendix A.  The complete list of variables, including transformations applied where necessary, 

is in Table 2.  

 To develop the models, I started with some exploratory data analysis to narrow the 

potential variables for the multiple regression models.  To examine the variance and correlation 

that existed between potential model variables, I performed a principal component analysis  
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Table 2: Complete list of directly measured variables considered for inclusion in the stream 
temperature models, including transformations, acronyms and units.  This table does not include 
temperature predictor metrics derived from regional models. 

Variable 
Acronym Variable 

logD50 Natural log of the D50 sediment size in mm 
logD84 Natural log of the D84 sediment size in mm 

logSlope Natural log of the reach slope 

W_Dmax Ratio of bankfull width to maximum channel 
depth 

logW_Dmean Natural log of the ratio of bankfull width to mean 
channel depth 

BF_Width Bankfull width in meters 

logPoolVol Natural log of the residual pool volume in m3 

SQRTOver Square root of the percent overstory density 

Elevation Elevation in meters 

SQRTAspect Square root of the valley aspect in degrees 

logVCW Natural log of the ratio of valley width to channel 
width 

SQRTDA Square root of the drainage area in km2 

QPK2_cms 2-year peak discharge in cubic meters per second 

Air_Month Mean monthly air temperature for the warmest 
month in °C 

logAir7 7-Day mean of the maximum daily air 
temperature for the warmest 7 days in °C 

 
 

(PCA).  PCA is a data transformation that produces multiple new, uncorrelated variables 

(principal components) that represent the variability in the data.  The first principal component 

contains the largest percentage of the data variance, with each successive component containing 

the next largest percentage until all the variance in the data is accounted for.  PCA biplots (e.g., 

Figure 4) can be used to reduce the number of potential variables in a multivariate analysis 

because they display the potential variables as vectors that demonstrate how much a particular 
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variable explains the variance in each principal component direction.  Variables that plot with the 

same direction and magnitude are equally able to explain the variance in that direction and only 

one of such a pair should be included in building the model.  I discarded three variables from 

consideration that plotted similarly with variables I included in the model.  The variables 

excluded were rejected over the variables they plotted with because they either explained less of 

the variability in that principal component direction or they did not satisfy the assumptions of 

multiple linear regression models as well as the variable retained.   PCA plots are also useful in 

looking at whether different study locations have similar values for different components 

(variables).   Study locations that plot close together indicate that they have similar values for the 

variables that explain the most variance in the plot’s principal component directions. I used these 

plots to help identify whether the watersheds chosen from the cluster analysis were distinct from 

one another in their variable values.  

 After narrowing potential model variables, I ran a best subsets linear models analysis.  

Best subsets in the “leaps” package in R does an exhaustive comparison of all possible models 

built using forward or backward stepwise, or sequential replacement model building methods.  

The output is a plot displaying the ten best models as evaluated by Schwartz’s information 

criterion (BIC), which is a metric for comparing model performance among different models, 

with the best model having the lowest BIC value (e.g., Figure 5).  The plot displays the BIC 

along the y-axis, and an intercept and the possible model variables along the x-axis. The best 

model appears at the top in the darkest gray and has a mark corresponding to the variables 

chosen to parameterize that particular model.  Best subsets does not actually run each of the 

models, but is a useful tool for determining which variables to include in a multiple regression 

model.  
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Best subsets analysis was run on different pools of potential model variables.  The 

complete model variable pool included some variables that are highly correlated, such as 

discharge and drainage area.  High correlation in model predictor variables in multiple linear 

regression is referred to as collinearity or multicollinearity and can have some consequences for 

conclusions drawn from the model. Multicollinearity does not affect the predictions or reliability 

of a model, but it can affect conclusions drawn about the relationship between each predictor 

variable and the dependent variable being modeled (Ott and Longnecker, 2010). When two (or 

more) predictor variables are collinear, it becomes difficult to determine which of these 

correlated variables is most correlated with the dependent variable, or explains the variation in 

the dependent variable.  Removing one or more of the correlated predictor variables can alter the 

relative strength or predictive power of the other predictor variables in the model, so conclusions 

about relative strength of predictor variables in explaining the variability in the dependent 

variable should be treated with caution.  In addition to the complete pool of model variables, best 

subsets was run on a pool of variables without multicollinearity, and on a pool that included the 

PRISM stream temperature metrics.   

 I ran the best multiple linear regression models as determined by the best subsets analysis, 

first including all the data, and afterward, using a ten-fold cross-validation to investigate the 

utility of the model at predicting stream temperature metrics. Ten-fold cross-validation divides 

the dataset into ten random subsets. Nine of the subsets are used to train the model to determine 

the intercept and coefficients of the parameters.  The model then predicts the dependent variable 

for the remaining subset. This process is repeated ten times so that during each model run, the 

sites being predicted are different.  Metrics of model performance can be calculated and 

averaged over the ten times the model was run for evaluation of the prediction error and 
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comparison with other models. I calculated the r2 value and the root mean square error (RMSE) 

of prediction to compare model performance. From these data, I chose the best model to predict 

each stream temperature metric (H2O_Month and H2O_7Day).  I divided the data into a training 

dataset (2/3) and a validation dataset (1/3) using a random number generator process and then 

determined the parameter coefficients for each model using the training dataset.  The models 

were then used to predict the stream temperature metrics for the validation datasets and metrics 

of model performance were calculated.   

The relative importance of the parameters chosen for each model were calculated, to 

determine which variable is the most important control or driving variable in explaining the 

dependent or predicted variable; in this case, the stream temperature metrics. Metrics to gauge 

relative importance include “lmg” and “pratt.”  Lmg is a metric that divides the contribution to 

the r2 among the predictor variables, normalized to 100%.  The pratt metric is the product of the 

variable coefficient and the r2 value. Relative importance of the model parameters was calculated 

for both the models that included correlated variables and the models that excluded correlated 

variables in order to make determinations about the relative explanatory strength of different 

predictor variables with confidence.  

To address alterative hypothesis HA3, a scatterplot was created with linear trend lines 

between the H2O_Month and elevation for each watershed.  The Pearson correlation coefficient 

(r2) was calculated to determine the strength of the elevation-stream temperature trend.  For two 

watersheds, an outlier study location was removed and the linear trend line and r2 value were 

calculated for the remaining study sites without any outlier effect.  The outliers were determined 

visually from the plot and using subjective knowledge of the study locations and their distinct 

differences from the rest of the sites in the respective watershed.  
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Significant differences in the means of each variable between watersheds were 

determined using boxplots, and ANOVA and Kruskall-Wallis comparisons of means tests.  

ANOVA was used for variables with equality of variance between the watersheds and normality 

of the residuals.  For watersheds that did not meet these assumptions of the ANOVA test, the 

Kruskall-Wallis non-parametric test of means was substituted.  For variables with significant 

differences in means (significant p-values from the ANOVA and Kruskall-Wallis tests), Tukey 

HSD pairwise comparison tests were run to determine which watersheds had significantly 

different means. The results are displayed on the boxplots of each variable.  
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3   RESULTS AND DISCUSSION 
 
 
 

 Results from the model-building process begin with parameter selection and culminate in 

several models created for different management purposes.  I will present the results of the 

model-building process and final models first, and address results that relate to specific 

hypotheses afterward.  The results and discussion sections have been combined so that I can 

discuss the model results as I present them. 

 

3.1 Objective 1 

Objective 1: Collect sufficient data to empirically derive a mathematical relationship that can be 

used to predict stream temperature in pool habitat within pool-riffle channels on the WRNF. 

 

The original, untransformed dataset of variables calculated from the measured field and 

ArcGIS data is available in Appendix B.  Appendix C provides a summary of the original 

variables with mean, standard deviation and range calculated for each variable, and for each 

watershed.  I originally had 38 study sites instrumented, but a few of the dataloggers were not 

recovered as a result of high flows and human tampering.  Only 31 of the total original sites had 

complete data and could be used for model building. 

 

3.1.1 Parameter and Model Selection  

Exploratory data analysis using principal components resulted in three variables being 

removed from the list of potential variables considered for the model-building portion of the 

analysis.  The D84 and D50 vectors plotted directly on top of each other in the PCA biplot of PC1 
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versus PC2 (Figure 4).  D50 had a slightly larger magnitude, indicating that it explained slightly 

more of the variability in the principal components, and it better fit the assumptions of normality 

and homoscedasticity of variance, so D50 was retained for inclusion in the model building and 

D84 was discarded.  The vectors for slope and percent overstory density also overlapped each 

other (Figure 4).  Although overstory density appears to explain more of the variability in the  

 

 
Figure 4: Principal components analysis biplot showing principal component 1 (PC1) against 
principal component 2 (PC2).  
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first principal component, it was discarded rather than slope because it did not satisfy the model 

assumptions as well as slope. The last variable eliminated from consideration was valley aspect, 

which was excluded because it could not be transformed to sufficiently satisfy the multiple linear 

regression model assumptions (Appendix A), and its explanatory power is roughly similar to that 

of the air temperature metrics.   

After the number of potential model variables was reduced, the best subsets analysis 

selected parameters for each of the two models: one to predict mean monthly stream pool 

temperature for the warmest month (H2O_Month), and one to predict the 7-day mean of the 

daily maximum temperatures for the warmest 7 days (H2O_7Day).  I conducted multiple runs of 

the best subsets procedure to compare model parameters selected from a pool of variables that 

included all the remaining potential explanatory variables, a reduced pool that excluded highly 

correlated variables, and a pool that included the PRISM air temperature metrics as potential 

variables.  Figures 5 and 6 show the best subsets plots for predicting H2O_Month and 

H2O_7Day selected from the complete pool of potential variables. The best model is the one 

with the lowest BIC value, and appears at the top of the plot, in the darkest color. The best 

H2O_Month model, Model 1.1, included elevation, 2-year peak discharge, residual pool volume 

(log-transformed), drainage area (square-root transformed), and the 7-day air temperature metric 

(log transformed) as explanatory variables (Figure 5, Table 3). The best H2O_7Day model, 

Model 2.1, did not include any air metrics, but did include the drainage area, residual pool 

volume and the 2-year peak discharge, which are all variables related to flow volume (Figure 6, 

Table 3). All of the potential models chosen by best subsets included an intercept.  The best 

H2O_Month model had better model performance than the best H2O_7Day model as evaluated 

by any of the model performance metrics (Table 3).   
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Figure 5: Best subsets plot displaying the top ten models for predicting the H2O_Month stream 
temperature selected from the complete pool of potential model variables.  The potential model 
variables are listed across the x-axis.  The y-axis is the Schwartz’s information criterion (BIC) 
used to compare the models.  The best model has the lowest BIC and is listed at the top, with the 
black boxes corresponding to the model parameters chosen. The best model in this chart 
corresponds to model 1.1 in Tables 3, 4 and 5.  
 

I ran a second set of best subsets analyses with a pool of variables that excluded one of 

each of a set of predictor variables that show high collinearity (the relationship between the two 

explanatory variables is highly correlated).  As discussed in the statistical methods section, 

multicollinearity does not affect the predictive power or the reliability of a model, but it may not 
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Figure 6: Best subsets plot displaying the ten best models for predicting the H2O_7Day stream 
temperature selected from the complete pool of potential explanatory variables. The best model 
at the top of this plot corresponds with model 2.1 in Tables 3, 4 and 5.  
 
 

result in valid conclusions about the relative predictive power of the variables themselves (i.e., 

the impact each individual variable has on the dependent variable), or whether any variables are 

redundant.  I included both the models that have some highly correlated variables and the models 

without highly correlated variables.  The models including highly correlated variables are 

superior at predicting stream temperatures to the models without them, but a model without 

bi
c

(In
te

rc
ep

t)

W
_D

m
ax

B
F_

W
id

th

E
le

va
tio

n

Q
P

K
2_

cm
s

A
ir_

M
on

th

lo
gD

50

lo
gS

lo
pe

lo
gW

_D
m

ea
n

lo
gP

oo
lV

ol

lo
gV

C
W

lo
gA

ir7

S
Q

R
TD

A

-2.8

-5.4

-7.9

-8.1

-8.6

-11

-11

-12



 40 

Table 3: Parameters, coefficients and model performance metrics calculated for the top models from each best subsets result, as well 
as models with only air metric predictor variables.  Models in bold are the best models for predicting H2O_Month and H2O_7Day. 

Response 
Variable Model Parameter Coefficient 

Estimate Std. Error P-value Adjusted 
R2 

RMSE Orig 
(°C) 

RMSE 
Pred (°C) BIC 

Mean Monthly 
Stream Pool 

Temperature (°C) 

Model 
1.1 

Intercept -25.007 8.20 0.0054* 

0.657 1.27  1.56 -18 

Elevation 0.00397 0.0014 0.0105* 
QPK2_cms -1.038 0.25 0.000292* 
logPoolVol 0.758 0.24 0.00371* 
logAir7 6.119 1.64 0.000977* 
SQRTDA 1.673 0.39 0.000212* 

Model 
N1.1 

Intercept -21.830 9.48 0.0296* 

0.535 1.51 1.88 -11 
Elevation 0.00492 0.0016 0.0057* 
QPK2_cms -1.03554 0.29 0.0013* 
logAir7 3.965 1.74 0.0311* 
SQRTDA 2.091 0.42 4.0e-05* 

Model 
1.4 

Intercept -6.806 6.41 0.297 
0.457  1.69 1.87 -11 logPoolVol 0.985 0.19 1.7e-05* 

logAir7 5.005 1.83 0.0108* 

Model 
1.6 

Intercept -5.543 6.58 0.407 

0.454 1.67 1.90 -8.3 logPoolVol 0.787 0.29 0.0112* 
logAir7 4.396 1.96 0.033* 
SQRTDA 0.176 0.19 0.373 

Model 
1.7 

Intercept 8.516 3.49 0.0212* -0.0102  2.35 2.50 6.1 Air_Month 0.191 0.23 0.4105 

7-Day Stream 
Pool Temperature 

(°C) 

Model 
2.1 

Intercept 10.694 1.45 6.32e-08* 

0.512  2.29 2.51 -12 QPK2_cms -1.029 0.36 0.00779* 
logPoolVol 0.869 0.34 0.0180* 
SQRTDA 1.668 0.50 0.00242* 

Model 
N2.1 

Intercept -4.398 7.055 0.538 

0.471 2.38 2.74 -9.3 Elevation 0.0044 0.0023 0.0615 
QPK2_cms -1.35 0.43 0.0043* 
SQRTDA 2.69 0.63 0.0002* 

Model 
2.3 

Intercept 14.5 0.57 <2e-16* 0.357  2.72 2.92 -7.9 logPoolVol 1.153 0.27 0.000232* 
Model 

2.4 
Intercept 13.165 5.13 0.0156* -0.0263  3.44 3.69 6.6 Air_Month 0.161 0.34 0.635 

Model 
2.5 

Intercept 19.044 11.58 0.111 -0.0313  3.45 3.79   logAir7 -0.996 3.35 0.768 
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Table 3: Continued 

Response 
Variable Model Parameter Coefficient 

Estimate Std. Error P-value Adjusted 
r2 

RMSE 
Orig (°C) 

RMSE 
Pred (°C) BIC 

Mean Monthly 
Stream Pool 
Temperature 

(°C) 

Model 
P1.2 

Intercept 8.035 1.04 2.58e-08* 

0.470  1.64 1.83 -9.2 QPK2_cms -0.629 0.26 0.0208* 
logPoolVol 0.536 0.25 0.0389* 
SQRTDA 1.083 0.36 0.00528* 

Model 
P1.5 

Intercept 4.858 4.26 0.264 
0.327  1.88 2.13 -4.1 PRISM_07max 1.215 0.30 0.000387* 

PRISM_07mean -1.431 0.4 0.00127* 
Model 
P1.6 

Intercept 3.220 5.03 0.527 0.0529  2.27 2.50   
PRISM_07max 0.350 0.21 0.113 

Model 
P1.7 

Intercept 13.571 4.54 0.00561* -0.0264  2.37 2.51   
PRISM_07mean -0.141 0.30 0.636 

7-Day Stream 
Pool 

Temperature 
(°C) 

Model 
P2.2 

Intercept 5.935 5.24 0.268 

0.534  2.20 2.54 -11 
PRISM_07max 1.395 0.44 0.00376* 
PRISM_07mean -1.341 0.59 0.0323* 
logPoolVol 0.677 0.29 0.0272* 
logVCW -1.607 0.77 0.0472* 

Model 
P2.3 

Intercept 3.787 5.90 0.526 
0.391  2.61 2.95 -7.2 PRISM_07max 1.918 0.42 8.38e-05* 

PRISM_07mean -2.162 0.55 0.000536* 
Model 
P2.4 

Intercept 1.313 7.17 0.856 0.0911  3.24 3.58   
PRISM_07max 0.611 0.31 0.0547 

Model 
P2.5 

Intercept 17.542 6.62 0.0129* -0.0314  3.45 3.69   
PRISM_07mean -0.127 0.43 0.771 
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multicollinearity is useful to investigate the relative importance of predictor variables. Two-year 

peak discharge and drainage area were highly correlated, as were bankfull discharge, W/Dmean 

and W/Dmax, as well as elevation and Air_Month (Appendix D).  One of each of these 

correlated variables was retained for potential inclusion in the model and the rest eliminated. The 

best models for predicting H2O_Month and H2O_7Day from the set of variables that are not 

highly correlated are shown in best subsets Figures 7 and 8.  The best model in each case did not 

include any of the variables that had high correlation with a variable that was excluded. Without 

collinear variables, the best model to predict H2O_Month included residual pool volume and the 

Air_7Day metric.  To predict H2O_7Day, the model included just the residual pool volume, and 

no other variable.   

I also ran best subsets with four different metrics from the PRISM model included as 

potential explanatory variables to compare whether air temperature metrics from regional models 

were as effective as locally collected air temperature metrics for explaining stream temperature. 

For predicting H2O_Month, with PRISM air metrics included as possible parameters, the best 

subsets indicated that the best model did not include any of the PRISM metrics.  When best 

subsets was run with only the four possible PRISM metrics included, the best models for both 

H2O_Month and H2O_7Day included the temperature metrics for July mean and July maximum 

temperature (Figure 9), although, according to the BIC, these PRISM metrics had better 

explanatory power for H2O_7Day (BIC= -7.2) than for H2O_Month (BIC= -4.1). 

 All of the best models, predicting both H2O_Month and H2O_7Day, with and without 

correlated predictor variables, included the natural log of residual pool volume as a predictor.  

This variable is one of the more difficult variables to accurately measure and requires intensive 

fieldwork to collect and calculate.  To create a less-intensive, user-friendly version of the models,  
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Figure 7: Best subsets plot showing the top ten models for predicting H2O_Month from a pool of 
potential variables that were not highly correlated with each other. The best model in this plot 
corresponds with model 1.4 in Tables 3 and 5.  
 
 

I attempted to substitute the maximum residual pool depth in meters for the log of the residual 

pool volume because these two variables are well-correlated (Figure 10, models N1.1 and N2.1) 

and maximum residual pool depth is easier to measure in the field.  The best subsets results with 

maximum residual pool depth in place of residual pool volume indicated that other variables (e.g., 

SQRTDA, Elevation) were better predictors than maximum residual pool depth in the absence of 

residual pool volume (Figure 11).  The best models without residual pool volume had poorer  
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Figure 8: Best subsets plot showing the top ten models for predicting H2O_7Day from a pool of 
potential variables that were not highly correlated with each other.  The best model in this plot 
corresponds to model 2.3 in Tables 3 and 5.  
 
 

performance compared to the models with residual pool volume, but the model to predict 

H2O_Month still had a root mean square error of prediction less than 2° C (Table 3).  The model 

to predict H2O_7Day utilized one less variable, and had a root mean square error of prediction 

greater than 2° C (Table 3).   
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Figure 9: Best subsets plots for A) H2O_Month and B) H2O_7Day when only PRISM air 
temperature variables were offered as potential predictor variables.  The best model in A) 
corresponds to model P1.5 and the best model in B) corresponds to model P2.3 in Table 3.  
 
 

3.1.2 Model Validation 

Table 3 summarizes the parameters, their coefficients and standard errors, whether the 

model parameters are significant, and several metrics of model performance for all the models 

chosen by the best subsets from the various parameter pools, as well as additional models that 

use air temperature metrics alone as predictor variables.  These models were developed using the 

entire dataset initially in order to determine the best predictor variables.  Included in the table as 

well, is the RMSE of prediction, which is a prediction error averaged over the ten model runs 

from the 10-fold cross validation procedure.  This RMSE value is naturally worse than that of the 

original model using all the study sites because it is predicting the temperature at locations not 

included in the model-training phase.  The ten-fold cross validation RMSE is only an indication 

of potential model performance for streams outside of the data collection area, and does not 

reflect the actual model performance for White River National Forest overall.  
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Figure 10: Scatterplot with linear trendline and r2 value showing the correlation between the log 
of the residual pool volume and the maximum residual pool depth.  This high correlation 
indicates that the easier-to-measure maximum residual depth might be an adequate substitute for 
the more difficult-to-obtain metric of residual pool volume as a model predictor variable.  
 
 

 
Figure 11: Best subsets plot showing the best “user-friendly” versions of the models.  The best 
models in this plot correspond to models A) N1.1 and B) N2.1 in Table 3.  
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Although many other studies have utilized air temperature in simple regression to predict 

stream temperatures, the models 1.7, 2.4 and 2.5 using only air temperature metrics as the 

predictor in this study had the poorest performance according to all the model performance 

metrics (Table 3). These models had the worst r2 values, indicating they do not capture much of 

the variability in the stream temperature metrics.  They also had the worst RMSE for the original 

models and for the 10-fold cross validation procedure, which indicates that they had poor 

prediction among all the study sites in the original model, and even poorer prediction of sites not 

included in the model training.  My results for these relations likely differ so much from the 

studies that found good correlation between air and stream temperature because of the local, site-

specific spatial and temporal scale of the dependent and independent temperature metrics I 

measured and calculated.  Most of the previous models that found strong correlation between air 

and stream temperatures were predicting temperatures on a daily or weekly time scale, and so the 

diurnal variation in both air and stream temperatures were well-correlated.  For the single 

summer stream temperature metrics I am predicting, diurnal and seasonal variation in stream and 

air temperatures that are well correlated for daily or weekly time scales may be obscured because 

the summer long data is being averaged or simplified to a single metric. Conversely, the small, 

site-specific spatial scale of my study sites includes variability that is obscured in regional 

models that average temperatures over larger stream sections.  In addition, given that my study 

sites are all mountain headwater streams, mostly well-shaded, the local air temperature is likely a 

less influential factor in controlling stream temperature than factors such as groundwater 

contribution and pool volume.  Previous studies in mountain regions have mostly focused on the 

effects of removing riparian shading and neglected the influences on mountain stream 

temperatures when the riparian corridor is intact.  
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The PRISM models also had fairly poor performance compared with the models that 

included stream and valley geomorphic characteristics.  It is interesting to note, however, that the 

models for both H2O_Month and H2O_7Day that used two PRISM air metrics performed better 

than the models that included only one locally measured air temperature metric.  The local air 

temperature metrics added more explanatory power to the models and were chosen over the 

PRISM air metrics when the best subsets analysis had both types of air metrics to choose from 

and geomorphic variables were included.  

The best model for H2O_Month and H2O_7Day was model 1.1 and 2.1, respectively.  I 

ran the same models (i.e., the same parameters from best subsets) as training runs and test or 

validation runs by dividing the dataset into thirds and using two thirds for training and the last 

third for validation. The datasets were divided randomly, using a random number generator 

process.  The RMSE and r2 values for the training and test sets are listed in Table 4. Prediction 

power of the model as measured by the RMSE of prediction for the validation dataset is reduced 

compared to the RMSE of the training dataset.  The model of H2O_Month had better 

performance at predicting and better adjusted r2 value than the model of H2O_7Day, both for the 

training data and for the validation set.   

Model 1.1 for predicting H2O_Month had some similar predictor variables as multiple 

linear regression models developed by Isaak et al. (2010) and Jones et al. (2013). Jones et al. 

(2013) included latitude, longitude, slope, local air temperature, elevation and a lake effect term 

in their model, and reported an r2 value of 0.56 and a RMSE of prediction of 1.88 °C for 

predicting August mean temperatures in their validation dataset in the Flathead River basin of 

Montana (14,430 km2).  Isaak et al. (2010) included elevation, solar radiation, mean air 

temperature and mean discharge in their model, and reported an r2 value of 0.679 and a RMSE of  
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Table 4: Parameters, coefficients and performance metrics for the training and validation datasets 
for the best models for predicting H2O_Month and H2O_7Day stream temperatures. 

   
Training Data Validation Data 

Model Parameter Coefficient  
(Std. Error) 

Adjusted 
r2 

RMSE 
Pred. (°C) 

Adjusted 
r2 

RMSE 
Pred. (°C) 

Model 
1.1 

Elevation 0.00407 (0.0017) 

0.562 1.25 0.397 1.41 
QPK2_cms -0.908 (0.29) 
logPoolVol 0.597 (0.36) 
logAir7 6.369 (1.9) 
SQRTDA 1.548 (0.43) 

Model 
2.1 

QPK2_cms -0.96 (0.5) 
0.505 2.53 -0.028 1.73 logPoolVol 0.938 (0.50) 

SQRTDA 1.623 (0.64) 
 
 

prediction of 1.53 °C for predicting summer mean stream temperatures for their pooled data in 

the Boise River basin of Idaho (6900 km2).  These results are similar to the RMSE of prediction 

of 1.41 °C for predicting mean temperature for the warmest month in the validation dataset in 

this study.  The r2 value of 0.397 for model 1.1 is lower than the r2 values achieved by Jones et al. 

(2013) in their validation dataset, although the r2 from the pooled (0.657, Table 3), and training 

(0.562, Table 4) datasets for model 1.1 are more in line with the pooled r2 for the model from 

Isaak et al. (2010) and the training dataset r2 value of 0.49 from Jones et al. (2013).  Model 1.1 to 

predict H2O_Month includes 5 predictor variables, which is likely too many predictor variables 

given there were 31 observations used to develop the multiple linear regression model. General 

consensus in the literature recommends a ratio of no more than 1 predictor variable for every 10 

observations.  Inclusion of additional variables improves model performance, but may result in 

overfitting of the model to the random error or noise in the 31 observations rather than the 

overall trends or relationships in the data.  Model 1.1 includes two very highly correlated 

variables, square root of the drainage area and 2-year peak discharge, because the Capesius and 
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Stephens (2009) equations that estimate 2-year peak flow are based on drainage area.  Excluding 

the 2-year peak flow reduces the number of predictor variables, but it also decreases the model 

performance for predicting stream temperature (Model 1.4, Table 3).  Model 2.1 has an 

appropriate ratio of predictor variables to observations.   

Isaak et al. (2010) also created a second multiple linear regression model to predict the 7-

day average of maximum daily stream temperatures for the warmest 7 days.  In their model, they 

utilized elevation, solar radiation, 7-day average of the maximum daily air temperatures for the 

warmest 7 days, and mean discharge for the basin.  The only overlapping variable between the 

model they developed and model 2.1 in this study was the discharge.  Isaak et al. (2010) report 

an r2 of 0.543 and a RMSE of prediction of 2.75 °C for their pooled dataset.  I had a similar r2 of 

0.512 and a RMSE of prediction of 2.29 °C for the pooled dataset (Table 3).   When model 2.1 

was run on the validation dataset, the adjusted r2 value dropped to -0.028, indicating it explains 

almost none of the variability in H2O_7Day temperatures across the WRNF, although the RMSE 

of prediction was also reduced to 1.73 °C.  The drop in RMSE of prediction indicates that 

although the model is poor at capturing the variability in stream temperature across the validation 

study sites, its ability to make point predictions in H2O_7Day temperature actually improved. 

My model results are comparable to results from similar studies that included a variety of 

geomorphic, meteorological and flow variables in their multiple regression models for predicting 

stream temperatures.  

 

3.1.3 Model Limitations 

 The final models for H2O_Month and H2O_7Day have several limitations that make 

them unsuitable for application outside of certain conditions.  First of all, the data that populated 
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the parameters from which the models were built were collected over two summer field seasons, 

with the temperature data only covering a single complete set of the summer months.  The 

temperature data for both streams and local air are reflective of the particular conditions in 

summer 2012 and 2013.  Temperature data collected over a longer time period would provide a 

better idea of average conditions for the streams included, rather than solely the temperatures 

under the particular temperature and precipitation or flow conditions of 2012 and 2013. In 

addition, because the data collected for this project are only for pool habitats in headwater 

streams, in this particular region of the Rocky Mountains of Colorado, the model is not 

applicable outside of headwater streams within WRNF.  The models are designed to provide 

estimates of two specific stream temperature metrics and should not be considered as models of 

the overall thermal regime of these stream environments, but rather, as a tool to be used as a very 

rough pass at eliminating unsuitable streams for CRCT reintroduction.  Finally, both of the best 

prediction stream temperature models include residual pool volume as a predictor variable.  This 

limits their ease-of-use for locations that were not included as study sites in this research because 

measuring residual pool volume requires extensive field visits with survey equipment.  Field 

visits to every potential reintroduction reach are both time and cost prohibitive.  Models N1.1 

and N2.1 that have less accuracy in prediction than the “best” models, but that only require 

predictor variables such as drainage area that are readily available from a GIS layer, might be 

more useful for management purposes than the “best” models presented here.  In addition, a 

model that accounts for spatial autocorrelation in stream temperature across the Forest could 

potentially provide more accurate predictions and wider applicability within the Forest and 

nearby environs.  A spatial model, however, was outside the scope of this study.  
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3.2 Objective 2 

Objective 2: Identify the dominant control variables for stream temperature.  

 

 Results from the model building best subsets analysis and some additional analysis were 

used to identify the dominant control variables for explaining stream pool temperature out of all 

the possible metrics I measured and calculated. 

 

Hypothesis 1, HA1: The dominant control on stream temperature is local air temperature. 

  

The results from the best subsets model-building analysis indicate that, for these models, 

local air temperature is not the dominant explanatory variable for pool stream temperature.  

Although the 7-day local air metric was included in the multiple linear regression model to 

predict H2O_Month, no air temperature metrics were included in the model for predicting 

H2O_7Day (Table 4, Figures 5 and 6).  All the models that included air temperature metrics 

alone had much poorer fit and poorer prediction than the models that included geomorphic 

variables (Table 3).  

The relative importance of the air temperature metrics in the models that included these 

metrics indicate that they are of low importance in explaining the variability in stream pool 

temperature relative to the other variables included (models 1.1, 1.4 and 1.6, Table 5).  This is 

true both for the models with collinearity (model 1.1, N1.1, 2.1, N2.1) and the ones that excluded 

highly correlated variables (models 1.4 and 1.6), whose relative importance results are a bit more 

reliable. The low relative importance of the temperature variables in each of these models further 
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supports the idea that air temperature is not the dominant control variable for stream pool 

temperature in my study.  Alternative hypothesis HA1 is not supported by my data.  

 

Table 5: Relative importance of the explanatory variables in each of the models calculated using 
the lmg and pratt metrics.  Bold variables are the dominant explanatory variables for the 
particular model. Models in italics indicate models without highly correlated predictor variables.  

  
Method 

Model Variables lmg pratt 

Model 1.1 

Elevation 0.0516 -0.0874 
QPK2_cms 0.2053 -0.9464 
logPoolVol 0.3056 0.4932 
logAir7 0.1059 0.0614 
SQRTDA 0.3317 1.4791 

Model N1.1 

Elevation 0.0855 -0.1297 
QPK2_cms 0.2969 -1.1292 
logAir7 0.0505 0.0476 
SQRTDA 0.5672 2.2112 

Model 1.4 
logPoolVol 0.855 0.9273 
logAir7 0.145 0.0727 

Model 1.6 
logPoolVol 0.503 0.72 
logAir7 0.116 0.062 
SQRTDA 0.382 0.218 

Model 2.1 
QPK2_cms 0.224 -0.79 
logPoolVol 0.365 0.508 
SQRTDA 0.411 1.282 

Model N2.1 
Elevation 0.0663 -0.11 
QPK2_cms 0.3155 -1.11 
SQRTDA 0.6181 2.22 

 
 

Hypothesis 2, HA2: Site-specific characteristics aside from air temperature significantly influence 

the stream temperature.  

 

 Across the models, residual pool volume and drainage area were the most important 

explanatory variables (Table 5).  Model 1.1 and model N1.1 have drainage area as the most 
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important explanatory variable, accounting for the most variability in stream temperature, but 

these models include predictor variables with high correlation (namely drainage area and 2-year 

peak discharge), so this result includes some uncertainty.  The models that did not have collinear 

variables both indicate that residual pool volume is the strongest predictor variable, and can be 

interpreted with more confidence than the results for model 1.1. Residual pool volume is a 

reflection of the stream geomorphic planform.  Drainage area is highly correlated with flow 

volume and both drainage area and residual pool volume indicate that cooler temperatures in 

these streams are correlated with larger volumes of water (whether measured as discharge or 

pool volume).  This result is likely a reflection of the study sites where the data were collected.  

Stream pool volume is significant, likely because of the thermal inertia of larger volumes of 

water, but also because pools are where the data collection occurred.  In addition, all the study 

sites are located on headwater streams and therefore have limited stream length over which to 

absorb solar radiation.  Smaller bankfull widths closer to the stream origin also result in greater 

shading over the channel, because there is not as much open water between the banks to be 

exposed to solar radiation.  Solar radiation (and local air temperature) effects on stream 

temperature increase downstream, and it may be that these headwater study site locations are not 

far enough downstream to include a significant effect from solar radiation and local air 

temperature.  Alternative hypothesis HA2, that other variables aside from air temperature will be 

important explanatory variables, is supported by both the model selection and the relative 

importance metrics. In fact, residual pool volume, drainage area and discharge were more 

important than local air temperature in these models.  

My results for strongest driving variables for predicting stream temperature are in 

contrast with many other studies that have found that local air temperature is strongly correlated 
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with stream temperature (Mohseni et al., 1998; Mohseni and Stefan, 1999).  The differing 

importance of the air temperature predictors between this study and others is likely the result of 

the mountain headwater location and the temperature metrics calculated in this study compared 

to earlier studies.  These results do agree with Bartholow (1991), who found that flow volume 

was a stronger influence on stream temperature than riparian shading in a stream with substantial 

flow regulation.  Although the stream reaches included in this study are free from flow regulation, 

the result that greater flow volume correlates with cooler stream temperatures is true for these 

streams, as well as the flow-regulated streams in Bartholow (1991).  

 

3.3 Objective 3 

Objective 3: Explore spatial patterns in stream temperature. 

Hypothesis 3, HA3: Mean pool temperature will increase downstream in the watersheds. 

 

Strong trends in increasing downstream temperature are present along Beaver Creek, 

Berry Creek and Piney Creek (Figure 12).  Cross Creek does not have a strong downstream trend, 

although this is likely a result of the sites being so close together in elevation and stream distance.  

Grizzly Creek shows a trend of decreasing stream temperature downstream in the watershed 

rather than increasing stream temperature, although this trend has a low correlation coefficient 

(0.217) and is the result of a single anomalous or outlier site (Figure 12).  The anomalous site has 

the highest elevation, but also the highest stream temperature as a result of having the lowest 

flow volume and lacking shading.  This site is located in a wide, flat meadow with no tall, 

shading vegetation on a section of the creek above a large drop-off into the canyon below.  The 

lack of shading exposes this site to large amounts of solar radiation and the much lower flow  
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Figure 12. Mean monthly stream pool temperature for the warmest monthly, plotted against the 
elevation of the study sites. Values of r2 in the legend correspond to the solid trend lines for all 
the data, and for each watershed.  Values of r2 in parentheses for Grizzly Creek and North Elk 
Creek correspond to the dashed trend lines for these watersheds and are the correlation 
coefficients for the watershed with the outlier study sites removed.  
 
 

volume warms quickly, likely accounting for the high stream temperatures at this site. If this 

outlier is removed, Grizzly Creek has an increasing stream temperature trend downstream with a 

high r2 value (see dashed line and r2 value in parentheses, Figure 12).   
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North Elk Creek also has an anomalous site, which has reduced the strength of the 

downstream temperature trend shown in Figure 12.  Like Grizzly Creek, this outlier is also the 

highest elevation site for this drainage, although the high temperature recorded for this site likely 

results from its location above a confluence with a tributary, whereas the rest of the study sites 

are below this confluence.  The tributary that joins the main channel downstream is likely 

carrying cooler water that “resets” the stream to cooler temperature.  If this outlier is removed, 

the downstream trend in warming stream temperature is much stronger, and the r2 value for the 

relationship is much greater (Figure 12).  The anomalous or outlier sites were identified 

subjectively based on their plotting position and subjective field knowledge of the study 

locations.   

Figure 12 is a useful tool for identifying watersheds that may have greater susceptibility 

of the stream temperatures to climate warming.  A steeper trendline in Figure 12 indicates a 

stronger relationship between elevation and stream temperature, with North Elk, Beaver and 

Berry Creek watersheds having the steepest or strongest trends.  Because elevation is known to 

have a strong relationship with local air temperature, there is an indication that the relationship 

between stream and air temperatures is stronger in these watersheds as well, and hence, they may 

be susceptible to warming if air temperatures increase in the mountain regions of Colorado.  

Grizzly Creek and Cross Creek have the weakest relationship between elevation and stream 

temperature.  For Cross Creek, the weak relationship may not be a result of a truly poor 

relationship with the elevation, but rather a lack of data that covers sufficient range in elevation 

to distinguish a trend.  For Grizzly Creek, the weak relationship is most probably a result of the 

calcareous geology in the watershed that buffers the stream from increased temperature from the 

local air by mixing with abundant groundwater sources along the channel.  Overall, hypothesis 
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HA3 is partially supported by the drainages included in this study, although it appears that there 

are local effects that can alter the hypothesized downstream increase in mean pool temperature, 

such as tributaries and shading effects.  

 

3.4 Objective 4 

Objective 4: Examine the relationship between watershed “clusters” and the stream temperature 

control variables. 

Hypothesis 4, HA4: The relative strength of different control variables will change across 

watershed clusters.  

 

 To determine whether the values of the various variables were significantly different 

across the six watershed clusters examined in this study, the principal components analysis biplot 

and a series of boxplots were utilized.  Additional ANOVA and Kruskall-Wallis comparison of 

means tests were performed and Tukey HSD pairwise comparisons used to label the boxplots 

with drainages that were (dis)similar in mean variable values. In the PCA biplot, where the study 

sites plot in the diagram is related to their values for the explanatory variables (Figure 13).  Study 

sites that plot closer together have more similar values for these variables than study sites that 

plot farther apart.  If there is a difference in the variable values between the watershed clusters, 

the study sites belonging to each watershed cluster should plot close together, but be distinct 

from the other watershed plotting positions. Figure 13 displays the watershed study sites plotted 

in the PCA biplot, with circles distinguishing each watershed from the others.  Upper Piney 

River and Grizzly Creek appear to have many similar values for the variables collected, as 

indicated by their overlapping plotting positions in the diagram. Upper Piney River appears to  
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Figure 13: PCA biplot showing clustering in the values for the unique variables among the 
watersheds.  Beaver Creek is study sites 1-5, circled in red.  Berry Creek is sites 6-9, circled in 
orange.  Cross Creek is sites 10-13, circled in green. Grizzly Creek is sites 14-18, circled in blue. 
North Elk Creek is sites 19-24, circled in purple.  Upper Piney River is sites 25-31, circled in teal.  
 
 

have greater variability in the values than Grizzly Creek, however (i.e., the study sites do not plot 

as tightly together as the sites for Grizzly Creek). Study watersheds that plot opposite each other 

along the axis of a single, or several, watershed variables have values for that variable that are 

distinct from each other.  For example, Cross Creek, one of the largest creeks, plots opposite 
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from Beaver Creek and Berry Creek, two of the smallest watersheds, along the rough axis 

direction for drainage area and two-year peak discharge (Figure 13).  Likewise, North Elk Creek, 

the lowest elevation watershed, plots opposite from Grizzly Creek and Upper Piney River, two of 

the higher elevation creeks in the study (Figure 13). Based solely on this plot, there appear to be 

differences in the variables collected for each watershed.  Some of these differences are 

potentially related to the cluster analysis drivers (sediment size and elevation), and some are not 

(such as drainage area).  

 Results from the boxplots and comparison of means tests provide clearer information on 

which watersheds are different from the others.  First, I want to point out variables that are not 

significantly different across the watersheds according to the ANOVA and Kruskall-Wallis tests.  

Although Cross Creek appears to have the largest residual pool volume, and Berry and Beaver 

Creeks appear to have the smallest, the differences in residual pool volume are not significantly 

different between the watersheds (Table 6, Figure 14).  This reflects the fact that, although small  

creeks such as Beaver Creek and Berry Creek do not have large pools (and without the aid of 

beavers or log jams are unlikely to have large pools given their low flow volume), the larger 

creeks can have pools of all sizes depending on the type of pool (channel-spanning, bend-pool or 

other). The lack of difference in residual pool volume across the watersheds suggests that there is 

no difference in sensitivity to changes in pool morphology across the watershed clusters.  This 

could be important for management decisions relating to stream temperature given that the 

strongest predictor for stream pool temperature was residual pool volume.  

 Another set of variables that were not significantly different across watersheds are the 

variables pertaining to the channel bed substrate size: D50 and D84 (Table 6).  Like residual pool 

volume, Cross Creek appears to have the largest sediment size (Figure 15), but the mean  
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Table 6:  ANOVA and Kruskall-Wallis tests for significant difference in watershed variable 
means.  Significant P-values (* ) indicate that not all the means of the variable are equal between 
the six watersheds.  

Variable P-value Test 
D50 0.071 Kruskall-Wallis 
D84 0.255 Kruskall-Wallis 
Slope 0.014* Kruskall-Wallis 
W/Dmax 0.018* ANOVA 
W/Dmean 0.298 Kruskall-Wallis 
BF Width 0.00037* Kruskall-Wallis 
Res. Pool Vol. 0.16 ANOVA 
Overstory Density 0.0013* ANOVA 
Elevation 8.3e-05* ANOVA 
Valley Aspect 0.00033* ANOVA 
V/C Width 0.094 ANOVA 
Drainage Area 0.0013* Kruskall-Wallis 
Discharge 0.00048* Kruskall-Wallis 
Air_Month 0.00031* ANOVA 
Air_7Day 0.14 ANOVA 

 
 

sediment size was not different between this and the other watersheds.  This result was somewhat 

surprising because lithology that weathers to different sediment sizes was one of the driving 

variables that distinguished watersheds in the cluster analysis (Winters et al., 2011).  Cross Creek 

is in the cluster that contains predominantly lithologies that weather to coarse sediment (Table 1), 

but it is surprising that a more significant difference was not seen between the watersheds.  This 

lack of difference could be a result of the sampling method, which has on occasion been 

considered biased toward larger clasts, the location of the sampling in the stream (riffles rather 

than pools), or a reflection of the time of year the sampling was conducted, when higher flows 

had mobilized finer sediments downstream.   

Variables that were significantly different between the watersheds include percent 

overstory density and bankfull width (Figure 16), drainage area and discharge (Figure 17), and  
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Figure 14: Boxplots of residual pool volume across the six study watersheds. The thick bar in the 
middle of each boxplot is the median value.  The box represents the middle 50% of the data and 
the whiskers extend to the maximum and minimum value.  Circles outside of the box-and-
whiskers represent outliers. There is no significant difference in mean values for residual pool 
volume across the watersheds. 
 
 

elevation (Figure 18). I grouped the variables this way because percent overstory density is 

related to bankfull width: the wider the stream is, the less that vegetation on the banks is able to 

shade the center of the channel.  The boxplots for percent overstory density and bankfull width 

support this assessment because the narrowest channels have the greatest shading (Figure 16). 
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Figure 15: Boxplots of D50 and D84 bed sediment size.  There was no significant difference in 
mean bed sediment size characteristics across the watersheds. 
 
 

 
Figure 16: Boxplots of percent overstory density and bankfull width.  The narrower streams have 
the greater percent overstory density. Boxes with the same lower case letter are statistically 
similar. 
 

The smallest streams, Beaver Creek and Berry Creek, had significantly narrower cross-sections 

and significantly more overstory density than the largest streams.  North Elk Creek, falling 
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between the smallest and largest creeks in both width and shading, was not significantly different 

from either the smallest or largest creeks. If solar radiation input and local air temperature 

become more important parameters under future climate warming, wider streams with less 

shading could potentially be at greater risk for increased stream temperatures, although this 

conclusion seems to contrast with the findings from Figure 12 that show Berry Creek, Beaver 

Creek and North Elk Creek having the strongest relationship with elevation (and hence, air 

temperature) even though they have the greatest shading and narrowest bankfull widths.  The 

contrast in these interpretations leads me to believe that pool volume or flow volume are more 

important than solar radiation and shading in modulating the air temperature/stream temperature 

relationship for these mountain streams (i.e., lower flow volume streams seem to have a stronger 

relationship with elevation and air temperature, regardless of shading). For the headwater 

streams in this study, local air temperature and shading were not significant explanatory 

variables for stream temperature, further supporting this interpretation.  For streams farther from 

the headwaters in WRNF, the increase in local air temperature from climate change could 

potentially be more of a concern.  

 Drainage area and discharge follow similar boxplot patterns, with Beaver Creek and 

Berry Creek having significantly smaller drainage areas and discharges and Cross Creek having 

significantly larger drainage area and discharge (Figure 17). Grizzly Creek, North Elk Creek and 

Upper Piney River fall somewhere between these extremes.  Grizzly Creek is an interesting case, 

as it has a comparatively small drainage area relative to its discharge.  This could be an 

indication that Grizzly Creek has substantial flow contribution from groundwater sources, which 

is a reasonable conclusion as Grizzly Creek is the only creek flowing through a predominantly 

calcium-carbonate-rich lithology. Because drainage area and discharge were both significant 
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Figure 17: Boxplots of drainage area and discharge. Larger drainage areas correspond to greater 
discharge, although Grizzly Creek has a comparatively large discharge for the size of its drainage 
area.  
 
 

variables in the stream temperature prediction models, with higher flows and larger drainages 

corresponding to cooler temperatures, those watersheds with low flow volume may be more 

susceptible to increases in stream temperature in future.  This agrees with the conclusions 

derived from Figures 12 and 16.  Watersheds or watershed clusters with high percentage of 

calcareous lithology may be somewhat buffered from changes in overland flow accumulation 

from reduced precipitation if they receive significant portions of their flow from groundwater 

sources (although reduced precipitation will also slow groundwater recharge).   

 North Elk Creek is the only drainage with significantly different elevation from most of 

the other watersheds, except Beaver Creek (Figure 18).  This result is interesting, because Beaver 

Creek is the only watershed that falls into a cluster defined by a mixed rain and snow 

hydroclimatic regime, and North Elk Creek is in a cluster defined by a snow hydroclimatic 

regime. All the streams in my study have higher elevations as a consequence of being headwater 
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streams in a mountainous region.  The watersheds are likely to have a wider range of elevations 

within each cluster than are represented in my study sites because I have only included a single  

watershed from each cluster. North Elk Creek is likely lower in elevation than many of the other 

watersheds that make up the cluster to which it belongs.  Boxplots of additional variables are 

available in Appendix F.  

 

 
Figure 18: Boxplots of elevation across the six watersheds. North Elk Creek is the only 
watershed with significantly different elevation from all the other watersheds except Beaver 
Creek. 
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4   CONCLUSIONS 
 
 
 

 From the previous work in stream temperature modeling, I expected local air temperature 

to be the strongest predictor variable in the stream temperature models for WRNF.  In contrast to 

those earlier studies, the strongest predictor variables in the models I developed were related to 

water or flow volume: residual pool volume, drainage area and discharge. Residual pool volume, 

discharge and drainage area were important predictor variables for both stream temperature 

metrics, although elevation and the 7-day mean air temperature metric were also significant 

predictor variables in the model for mean stream temperature of the warmest month. Because 

flow volume characteristics are influential, with cooler temperatures associated with larger flow 

volume, streams that receive a substantial portion of their flow from groundwater sources rather 

than overland flow accumulation could be buffered from stream temperature increases if 

mountain precipitation is reduced, as is expected in a warming climate (Mote et al., 2005).  

Downstream trends in increasing stream temperature can be seen in mountain headwater streams, 

although the trend may be interrupted or altered by tributary influence and changes in riparian 

shading between reaches.  

For mountain headwater streams, air temperature may not be as significant as 

geomorphic and stream flow variables for predicting stream temperatures because of the reduced 

length of stream exposed to solar radiation.  Particularly in natural or reference condition 

headwater streams, where riparian vegetation has not been disturbed and provides shading for 

these narrow mountain channels, the flow volume and channel morphology play a greater role in 

controlling the stream temperature.  To maintain the cool temperatures that provide refuges for 
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thermally threatened taxa, management policies that protect the riparian corridor and maintain 

complex pool-forming stream morphologies should be a priority.  

For cold-water fish, climate warming poses a threat to their already diminished habitat.  

For subspecies like CRCT, whose current range is fragmented not only by thermal conditions but 

also by competition with nonnative species and other anthropogenic factors, models can help 

identify places where habitat connectivity can be restored in least anthropogenically influenced 

streams if competition with nonnative species can be eliminated. If climate change increases 

temperatures to the point that these fishes are limited to headwater streams, not just by 

competition and human impacts, but also by thermal limitations, the fragmented populations will 

be at greater risk of extirpation.  There is an opportunity now to help reduce fragmentation by 

identifying locations farther downstream in watersheds that still have the appropriate summer 

thermal regime, and that allow connectivity between headwater stream populations.  All the sites 

included in my study are well within the thermal tolerance limits for CRCT, even with an 

increase of 2° C in stream temperatures, and reintroducing the native fish to these locations could 

potentially help make the fragmented and threatened populations more robust and better able to 

weather future climate changes and disturbances. The conclusions from this study could 

potentially apply to management opportunities for other, native cold-water fish such as other 

cutthroat trout subspecies or other salmonids that face competition and human influences, as well 

as climate pressures. 

 

4.1 Future Work 

 Many studies have found that, for predicting stream temperatures across a basin, rather 

than at a single site, spatial models are better able to capture the variability in stream temperature, 
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as well as make more accurate point predictions for stream temperature.  The reduction in error 

in these models comes from accounting for the spatial autocorrelation that exists in stream 

networks and stream temperature data.  Beneficial future work would include the development of 

a spatial model for predicting the same summer stream metrics used in this study across the 

WRNF.  I recommend further data collection in at least one additional drainage for each of the 

watershed clusters within the forest to better capture the sensitivity of specific watershed clusters 

to changes in variables driving stream temperature.  An effort to include more drainages with 

calcareous lithology in the data collection would allow for a comparison of a model created for 

drainages with greater groundwater influence (calcareous lithology) with a model created for 

predominantly overland flow drainages (non-calcareous lithology) to investigate the relative 

importance of the possible driving variables between watersheds with those distinct lithologies 

and whether one is more susceptible than the other to future climate changes.  A longer-term 

dataset, that spans at least five years, would also aid in developing a stronger multiple linear 

regression model for more average conditions than could be represented with the limited data 

collected for this thesis. A dataset that is both spatially and temporally larger will likely improve 

predictive models because of the increase in information.  
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6   APPENDICES 
 
 
 

6.1   Appendix A: Model assumption diagnostic plots and test results 

 

Table 7: Shapiro-Wilk tests of normality for original and transformed variables.  Significant p-
values* at ! = 0.05 indicate the variable is non-normal.  

Variable P-value 
D50_mm 4.7e-06* 
D84_mm 1.9e-05* 
Slope 2.1e-07* 
W_Dmax 0.24 
W_Dmean 0.003* 
BF_Width 0.28 
ResPoolVol 9.7e-07* 
Overstory_Density 0.0028* 
Elevation 0.89 
Valley_Aspect 0.0036* 
Valley_ChannelW 0.031* 
Drainage_AreaKM 0.0064* 
QPK2_cms 0.087 
Air_Month 0.32 
Air_7Day 0.011* 
logD50 0.043 
logD84 0.0059* 
logSlope 0.21 
logW_Dmean 0.20 
logPoolVol 0.62 
logOver 1.3e-06* 
logAspect 0.00022* 
logVCW 0.67 
logDA 0.040* 
logAir7 0.067 
SQRTOver 0.00063* 
SQRTAspect 0.0019* 
SQRTDA 0.082 
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Figure 19: Histograms of the original, untransformed variables to check normality. 
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Figure 20: QQ plots of the original, untransformed variables to check normality. 
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Figure 21: Scatterplots between the original variables and H2O_Month to check linearity.  
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Figure 22: Scatterplots between the original variables and H2O_7Day to check linearity. 
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Figure 23: Residual versus predicted values for simple linear regressions between the original variables and H2O_Month to check 
homoscedasticity of variance.  
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Figure 24: Residual versus predicted values for simple linear regressions between the original variables and H2O_7Day to check 
homoscedasticity of variance.  
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Figure 25: Histograms of the log transformed variables to check for normality after the transformation.  
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Figure 26: QQ plots of the log transformed variables to check for normality after the transformation. 
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Figure 27: Scatterplots between the log transformed variables and H2O_Month to check for linearity. 
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Figure 28: Scatterplots between the log transformed variables and H2O_7Day to check for linearity.  
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Figure 29: Residual versus predicted values for simple linear regressions between the log transformed variables and H2O_Month to 
check for homoscedasticity of variance.  
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Figure 30: Residual versus predicted values for simple linear regressions between the log transformed variables and H2O_7Day to 
check for homoscedasticity of variance.  
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Figure 31: Histograms of the square root transformed variables to check for normality after the transformation. 
 
 

 
Figure 32: QQ plots of the square root transformed variables to check for normality after the transformation. 
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Figure 33: Scatterplots between the square root transformed variables and H2O_Month to check linearity. 
 
 

 
Figure 34: Scatterplots between the square root transformed variables and H2O_7Day to check linearity. 
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Figure 35: Residual versus predicted values for simple linear regressions between the square root transformed variables and 
H2O_Month to check for homoscedasticity of variance. 
 

 
Figure 36: Residual versus predicted values for simple linear regressions between the square root transformed variables and 
H2O_7Day to check for homoscedasticity of variance. 
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6.2   Appendix B: Original dataset of field and GIS data 

Site 
No. Site Name UTM_X UTM_Y Mean Monthly Stream 

Pool Temp (°C) 
7-Day Stream 

Pool Temp (°C) 
D50 

(mm) D84 (mm) Slope 

1 Beaver Creek 1 255850 4363446 6.70 7.53 120 190 0.00532 
2 Beaver Creek 2 256717 4366619 10.34 12.89 64 150 0.0715 
4 Beaver Creek 4 256616 4367511 11.04 13.74 64 128 0.0602 
5 Beaver Creek 4.5 256591 4367557 11.13 13.89 64 128 0.219 
6 Beaver Creek 5 256300 4368699 12.00 15.03 91 180 0.0573 
7 Berry Creek 1 365375 4393796 9.65 13.43 27 91 0.0323 
8 Berry Creek 2 365342 4394374 9.71 12.92 45 128 0.0323 

10 Berry Creek 4 366480 4396708 5.77 8.82 45 130 0.088 
11 Berry Creek 5 366281 4396567 6.21 9.72 16 32 0.0698 
12 Cross Creek 1 376796 4377918 12.58 15.86 290 508 0.0308 
13 Cross Creek 2 375852 4376911 12.34 15.73 64 128 0.0177 
14 Cross Creek 2.5 375990 4376942 12.40 15.78 64 128 0.00625 
15 Cross Creek 3 376317 4377515 12.37 15.95 91 150 0.003 
18 Grizzly Creek 1 307697 4391112 11.32 16.53 45 128 0.0116 
19 Grizzly Creek 2 306777 4393467 10.79 14.48 91 150 0.0238 
22 Grizzly Creek 4 304692 4397552 9.81 13.44 91 199 0.0287 
23 Grizzly Creek 4.5 304700 4397541 10.09 13.79 91 199 0.0287 
24 Grizzly Creek 5 301716 4398928 14.69 19.41 64 128 0.00153 
25 North Elk Creek 1 271544 4421699 13.64 18.69 64 91 0.00304 
27 North Elk Creek 2 275749 4417163 11.07 14.71 76 190 0.0215 
28 North Elk Creek 3 274166 4416632 9.84 14.35 64 128 0.0273 
29 North Elk Creek 4 272868 4417026 11.02 15.99 64 128 0.00385 
30 North Elk Creek 5 272296 4417654 11.01 16.82 45 91 0.00241 
31 North Elk Creek 5.5 272322 4417664 11.21 17.03 45 91 0.00241 
32 Upper Piney River 1 380987 4398268 13.33 17.14 64 199 0.0109 
33 Upper Piney River 1.5 380840 4398192 13.65 17.93 16 32 0.00769 
34 Upper Piney River 2 376698 4396481 15.79 22.27 64 150 0.055 
35 Upper Piney River 3 374707 4399556 14.29 19.11 91 170 0.0142 
36 Upper Piney River 4 375590 4397454 14.98 19.85 155 260 0.00274 
37 Upper Piney River 4.5 375590 4397454 14.40 24.19 155 260 0.00591 
38 Upper Piney River 5 384251 4399261 10.62 16.82 32 64 0.00265 
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Site Name W/Dmax W/Dmean BF Width 
(m) 

Residual Pool 
Volume (m3) 

Overstory 
Density (%) 

Riparian 
Veg. Type 

Elevation 
(m) 

Valley 
Aspect (°) 

V/C 
Width 

Beaver Creek 1 6.37 8.41 3.95 1.251 80.76 coniferous 2941 355 12.1 
Beaver Creek 2 12.50 18.13 6 0.691 77.9 coniferous 2602 0 8.2 
Beaver Creek 4 7.21 12.90 4.4 0.934 83.88 willow 2483 330 6.6 
Beaver Creek 4.5 7.80 11.34 6.4 0.143 74.52 willow 2456 330 5.6 
Beaver Creek 5 6.86 11.89 4.8 0.353 97.92 willow 2375 320 12.8 
Berry Creek 1 2.28 3.07 2.6 0.645 100 willow 2550 180 6.3 
Berry Creek 2 12.50 30.06 3.50 0.177 98.7 willow 2610 160 2.0 
Berry Creek 4 7.17 16.05 3.8 0.0263 67.5 conif/grass 2899 220 9.2 
Berry Creek 5 5.00 11.20 2.4 0.628 78.42 conif/grass 2897 250 6.9 
Cross Creek 1 12.12 29.45 12.73 6.73 56.84 coniferous 2644 330 14.2 
Cross Creek 2 12.47 27.34 12.1 1.11 45.92 coniferous 2739 30 20.3 
Cross Creek 2.5 17.52 36.52 19.8 25.47 0.16 conif/grass 2729 30 9.8 
Cross Creek 3 9.06 13.29 12.9 43.84 20.18 grass/sedge 2695 50 5.1 
Grizzly Creek 1 6.99 13.44 9.3 31.99 48.26 conif/grass 2668 130 6.2 
Grizzly Creek 2 6.96 10.98 11.7 9.1 52.94 coniferous 2720 160 4.2 
Grizzly Creek 4 7.86 13.74 10.3 2.22 23.82 willow/conif 2998 90 4.1 
Grizzly Creek 4.5 9.87 19.33 7.8 2.39 30.06 willow/conif 2993 90 5.5 
Grizzly Creek 5 7.05 10.70 8.6 2.77 0.16 willow 3183 90 5.1 
North Elk Creek 1 8.16 17.46 9.3 4.06 0.16 grass/sedge 2151 340 3.1 
North Elk Creek 2 5.17 8.73 4.6 0.293 92.46 willow/conif 2497 250 9.7 
North Elk Creek 3 7.50 13.31 7.2 0.721 88.3 conif/grass 2327 270 11.7 
North Elk Creek 4 4.43 5.68 4.7 3.797 95.32 coniferous 2267 270 12.3 
North Elk Creek 5 4.85 9.91 6.3 2.95 4.06 grass/sedge 2237 340 17.0 
North Elk Creek 5.5 10.79 38.65 15.1 31.29 17.06 grass/sedge 2231 340 7.1 
Up. Piney River 1 7.43 10.22 10.4 51.76 0.16 grass/willow 2846 120 11.6 
Up. Piney River 1.5 9.73 20.07 10.7 13.4 0.16 grass/willow 2846 120 13.6 
Up. Piney River 2 11.67 16.22 8.75 4.62 27.46 grass/sedge 2735 280 4.1 
Up. Piney River 3 10.91 19.89 13.2 6.786 17.58 willow/conif 2550 320 2.2 
Up. Piney River 4 10.45 14.46 12.75 12.69 0.16 willow 2613 310 5.1 
Up. Piney River 4.5 7.27 11.85 15.2 28.79 0.16 grass/sedge 2613 310 4.3 
Up. Piney River 5 10.82 18.25 10.6 1.32 65.42 conif/grass 3073 70 5.9 
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Site Name Drainage 
Area (km2) 

QPK2 
(cms) 

MM Air 
Temp (°C) 

7-Day Air 
Temp (°C) 

PRISM July 
Max (°C) 

PRISM July 
Mean (°C) 

PRISM Annual 
Max (°C) 

PRISM Annual 
Mean (°C) 

Beaver Creek 1 6.06 1.41 13.18 23.52 20.15 14.07 7.55 1.33 
Beaver Creek 2 12.87 2.38 15.28 31.39 22.29 15.66 9.84 3.78 
Beaver Creek 4 13.83 2.46 17.37 40.59 22.29 15.66 9.84 3.78 
Beaver Creek 4.5 13.86 2.46 17.37 40.59 24.45 17.85 11.09 5.42 
Beaver Creek 5 17.12 2.69 19.58 46.40 25.70 18.41 12.18 5.93 
Berry Creek 1 10.33 1.48 16.29 40.78 24.34 16.06 11.27 4.21 
Berry Creek 2 9.71 1.44 15.20 39.61 23.29 15.98 10.79 4.29 
Berry Creek 4 2.20 0.51 12.85 31.37 21.95 14.66 9.21 2.89 
Berry Creek 5 3.26 0.69 12.73 26.58 22.83 15.62 10.18 3.85 
Cross Creek 1 83.92 10.28 15.47 29.02 24.25 15.01 11.27 3.34 
Cross Creek 2 80.03 10.08 15.19 35.05 23.58 14.51 10.53 2.78 
Cross Creek 2.5 80.29 10.08 15.20 35.05 23.58 14.51 10.53 2.78 
Cross Creek 3 83.14 10.23 16.46 30.78 23.58 14.51 10.53 2.78 
Grizzly Creek 1 72.26 12.63 14.62 28.48 21.45 15.10 8.85 2.96 
Grizzly Creek 2 58.53 11.05 14.74 35.74 23.09 15.69 10.58 4.03 
Grizzly Creek 4 27.45 6.32 13.08 28.51 19.59 12.87 7.54 1.41 
Grizzly Creek 4.5 27.45 6.35 13.08 28.51 19.59 12.87 7.54 1.41 
Grizzly Creek 5 16.47 4.16 15.29 39.97 18.91 12.36 7.00 0.93 
North Elk Creek 1 103.08 9.38 18.16 47.45 27.19 17.60 13.60 5.72 
North Elk Creek 2 9.89 1.90 16.29 35.96 23.75 15.77 11.27 4.09 
North Elk Creek 3 36.26 4.99 17.57 31.66 25.24 16.55 12.29 4.64 
North Elk Creek 4 39.11 5.16 17.38 28.61 25.40 16.71 12.41 4.79 
North Elk Creek 5 69.41 7.79 17.05 27.32 26.25 17.49 12.99 5.46 
North Elk Creek 5.5 69.41 7.79 17.05 27.32 26.25 17.49 12.99 5.46 
Up. Piney River 1 26.68 4.25 12.35 25.44 23.32 13.85 10.05 2.09 
Up. Piney River 1.5 26.94 4.25 12.35 25.44 23.32 13.85 10.05 2.09 
Up. Piney River 2 34.19 4.65 14.45 31.28 23.89 14.86 10.54 2.97 
Up. Piney River 3 90.91 8.44 14.20 26.52 24.42 14.79 11.15 2.94 
Up. Piney River 4 56.98 6.20 14.20 26.52 24.54 14.82 11.23 2.96 
Up. Piney River 4.5 56.98 6.20 14.20 26.52 24.54 14.82 11.23 2.96 
Up. Piney River 5 15.10 2.86 12.19 24.00 22.10 13.67 8.67 1.83 
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6.3   Appendix C: Summary statistics of the original field and GIS data 
 

Watershed # Sites 
n 

Summary 
Statistic 

D50 
(mm) 

D84 
(mm) Slope W/Dmax W/Dmean BF Width 

(m) 
Residual Pool 
Volume (m3) 

All 31 

Mean 76.19 152.50 0.031 8.61 16.21 8.77 9.45 
Maximum 290.00 508.00 0.219 17.52 38.65 19.80 51.76 
Minimum 16.00 32.00 0.0015 2.28 3.07 2.40 0.026 
Std. Dev. 51.47 85.20 0.042 3.11 8.41 4.28 14.04 

Beaver 
Creek 5 

Mean 80.60 155.20 0.083 8.14 12.53 5.11 0.67 
Maximum 120.00 190.00 0.219 12.50 18.13 6.40 1.25 
Minimum 64.00 128.00 0.0053 6.37 8.41 3.95 0.14 
Std. Dev. 24.94 28.87 0.080 2.49 3.55 1.05 0.44 

Berry 
Creek 4 

Mean 33.25 95.25 0.055 6.74 15.10 3.08 0.37 
Maximum 45.00 130.00 0.088 12.50 30.06 3.80 0.65 
Minimum 16.00 32.00 0.032 2.28 3.07 2.40 0.026 
Std. Dev. 14.29 45.82 0.028 4.33 11.32 0.68 0.31 

Cross 
Creek 4 

Mean 127.20 228.50 0.014 12.79 26.65 14.38 19.29 
Maximum 290.00 508.00 0.031 17.52 36.52 19.80 43.84 
Minimum 64.00 128.00 0.003 9.06 13.29 12.10 1.11 
Std. Dev. 109.24 186.62 0.013 3.50 9.73 3.63 19.40 

Grizzly 
Creek 5 

Mean 76.40 160.80 0.019 7.75 13.64 9.54 9.69 
Maximum 91.00 199.00 0.029 9.87 19.33 11.70 31.99 
Minimum 45.00 128.00 0.0015 6.96 10.70 7.80 2.22 
Std. Dev. 21.09 36.01 0.012 1.24 3.47 1.52 12.79 

North Elk 
Creek 6 

Mean 59.67 119.80 0.010 6.82 15.62 7.87 7.19 
Maximum 76.00 190.00 0.027 10.79 38.65 15.10 31.29 
Minimum 45.00 91.00 0.0024 4.43 5.68 4.60 0.29 
Std. Dev. 12.27 38.86 0.011 2.46 11.98 3.95 11.91 

Upper 
Piney 
River 

7 

Mean 82.43 162.10 0.014 9.75 15.85 11.66 17.05 
Maximum 155.00 260.00 0.055 11.67 20.07 15.20 51.76 
Minimum 16.00 32.00 0.0027 7.27 10.22 8.75 1.32 
Std. Dev. 55.14 88.78 0.018 1.74 3.87 2.17 17.71 
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Watershed # Sites   
n 

 

Overstory 
Density 

(%) 

Elevation 
(m) 

Valley 
Aspect 

(degrees) 

V/C 
Width 

Drainage 
Area 
(km2) 

QPK2 
(cms) 

Mean 
Monthly Air 
Temp (°C) 

7-Day Air 
Temp (°C) 

All 31 

Mean 46.66 2651 220.80 6.61 40.4 5.50 15.17 32.13 
Maximum 100.00 3183 360.00 20.32 103.1 12.63 19.58 47.45 
Minimum 0.16 2151 30.00 2.00 2.2 0.51 12.19 23.52 
Std. Dev. 37.04 262 111.82 4.47 30.8 3.49 1.94 6.55 

Beaver 
Creek 5 

Mean 83.00 2571 339.00 9.04 12.75 2.28 16.55 36.56 
Maximum 97.92 2941 360.00 12.77 17.12 2.69 19.58 46.40 
Minimum 74.52 2375 320.00 5.58 6.06 1.41 13.18 23.52 
Std. Dev. 9.03 222 17.46 3.23 4.07 0.50 2.43 9.03 

Berry 
Creek 4 

Mean 86.16 2739 202.50 6.11 6.38 1.03 14.27 34.58 
Maximum 100.00 2899 250.00 9.23 10.33 1.48 16.29 40.78 
Minimum 67.50 2550 160.00 2.00 2.20 0.51 12.73 26.58 
Std. Dev. 15.88 185 40.31 3.02 4.24 0.50 1.77 6.78 

Cross 
Creek 4 

Mean 30.77 2702 110.00 12.36 81.80 10.17 15.58 32.48 
Maximum 56.84 2739 330.00 20.32 83.90 10.28 16.46 35.05 
Minimum 0.16 2644 30.00 5.10 80.00 10.08 15.19 29.02 
Std. Dev. 25.55 43 146.97 6.48 1.97 0.10 0.60 3.06 

Grizzly 
Creek 5 

Mean 31.05 2912 112.00 5.03 40.40 8.10 14.16 32.24 
Maximum 52.94 3183 160.00 6.17 72.30 12.63 15.29 39.97 
Minimum 0.16 2668 90.00 4.15 16.50 4.16 13.08 28.48 
Std. Dev. 21.11 214 31.94 0.86 23.70 3.57 1.02 5.34 

North Elk 
Creek 6 

Mean 49.56 2285 301.70 10.15 54.50 6.17 17.25 33.05 
Maximum 95.32 2497 340.00 17.02 103.10 9.38 18.16 47.45 
Minimum 0.16 2151 250.00 3.10 9.90 1.90 16.29 27.32 
Std. Dev. 46.91 118 42.62 4.76 32.80 2.69 0.63 7.79 

Upper 
Piney 
River 

7 

Mean 15.87 2754 218.60 6.67 44.00 5.26 13.42 26.53 
Maximum 65.42 3073 320.00 13.58 90.90 8.44 14.45 31.28 
Minimum 0.16 2550 70.00 2.17 15.10 2.86 12.19 24.00 
Std. Dev. 24.43 182.77 109.76 4.25 26.00 1.83 1.06 2.29 
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6.4   Appendix D: Simple scatterplot matrix of potential model variables 
 

 

Figure 37: Scatterplot matrix showing correlations between the potential model variables. Variables are listed diagonally from top-left 
to bottom-right, over a histogram plot.  To the left of the histograms are scatter plots of each pair of variables. To the right of the 
histograms are r2 correlation coefficients for each pair of variables.  

x

D
en

si
ty W_Dmax

5 15

0.63***
0.16

 
2 6 10

0.34

.
0.17

 
3.0 4.5

0.20

 
0.17

 
-6 -4 -2

0.038

 
0.87***

-2 2

0.24

 
0.12

 
3.2 3.6

0.068

 
0.28

 
6 12 18

0.31

.
0.37

*

1 3 5

0.062

 

5
15

0.15

 

5
15

x

D
en

si
ty BF_Width

0.063

 
0.73*** 0.15

 
0.35

.
0.23

 
0.46

** 0.57 *** 0.76*** 0.093

 
0.26

 
0.67***

0.35

.
0.76*** 0.49

**
0.13

 

x

D
en

si
ty Elevation

0.17

 
0.81*** 0.08

 
0.03

 
0.021

 
0.062

 
0.0063

 
0.077

 
0.34

.
0.11

 
0.59 ***

0.37
*

0.034

 

22
00

0.031

 

2
8

x

D
en

si
ty QPK2_cms

0.12

 
0.36

*
0.25

 
0.40

*
0.37

* 0.70***
0.037

 
0.078

 
0.43

*
0.29

 
0.93*** 0.35

.
0.26

 

x

D
en

si
ty Air_Month

0.17

 
0.11

 
0.026

 
0.13

 
0.14

 
0.11

 
0.68***

0.23

 
0.38

*
0.24

 
0.26

 

12
18

0.058

 

3.
0

5.
5

x

D
en

si
ty logD50

0.94*** 0.064

 
0.11

 
0.22

 
0.061

 
0.002

 
0.10

 
0.22

 
0.38

*
0.021

 
0.0034

 

x

D
en

si
ty logD84

0.076

 
0.048

 
0.13

 
0.049

 
0.027

 
0.0025

 
0.16

 
0.25

 
0.023

 

3.
5

6.
0

0.091

 

-6
-3

x
D

en
si

ty logSlope
0.043

 
0.62***

0.022

 
0.32

.
0.61 ***

0.21

 
0.48

** 0.56 ***
0.12

 

x

D
en

si
ty logW_Dmean

0.18

 
0.096

 
0.091

 
0.26

 
0.20

 
0.38

*
0.086

 

1.
5

3.
5

0.13

 

-2
2

x

D
en

si
ty logPoolVol

0.057

 
0.41

* 0.68***
0.23

 
0.71*** 0.57 ***

0.13

 

x

D
en

si
ty logVCW

0.18

 
0.12

 
0.032

 
0.059

 
0.14

 

1.
0

3.
0

0.43
*

3.
2

3.
8

x

D
en

si
ty logAir7

0.22

 
0.032

 
0.075

 
0.46

**
0.26

 

x

D
en

si
ty SQRTOver

0.22

 
0.53 ** 0.59 ***

2
8

0.15

 

6
14

x

D
en

si
ty SQRTAspect

0.11

 
0.094

 
0.005

 

x

D
en

si
ty SQRTDA

0.46
**

2
8

0.20

 

1
4

x

D
en

si
ty as.numeric(wrnf.mod1vars[, 1])

0.097

 

5 10 2200 3000 12 16 3.5 5.0 1.5 3.0 1.0 2.0 3.0 2 6 10 2 6 10 1 3 5

1
4

x

D
en

si
ty as.numeric(wrnf.mod1vars[, 5])

Simple Scatterplot Matrix



 100 

6.5   Appendix E: Diagnostic plots for ANOVA and Kruskall-Wallis tests 
 

 
 

Figure 38: Residual versus fitted values plots, and QQ plots of the residuals for determining whether the ANOVA or Kruskall-Wallis 
tests for comparing means should be used.
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6.6   Appendix F: Additional boxplots 
 

 

 
Figure 39: Boxplots of variables slope, W/Dmax, valley aspect and Air_Month.  Watersheds 
with the same lower case letter do not have significantly different means for the variable.  
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Figure 40: Boxplots of variables W/Dmean, valley-channel width and Air_7Day.  There were no 
significant differences between the means of these variables across the watersheds.  
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