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ABSTRACT 

 

 

 

TRACE MINERAL SOURCE IMPACTS RUMEN TRACE MINERAL DISTRIBUTION AND 

FIBER DIGESTION IN STEERS FED A LOW-QUALITY FORAGE-BASED DIET 

 

 

 

Twelve Angus steers (BW 452.8 ± 21.8 kg) fitted with ruminal cannulae were used to 

determine the impact of trace mineral (TM) source on neutral detergent fiber (NDF) digestibility, 

short chain fatty acid (SCFA) production, ruminal solubility of Cu, Zn, and Mn, and relative 

binding strength of trace minerals located in the rumen insoluble digesta fraction. Steers were fed 

a low-quality grass hay diet (DM basis: 10.8% CP, 63.1% NDF, 6.9 mg Cu/kg, 65.5 mg Mn/kg, 

and 39.4 mg Zn/kg) supplemented with protein for 21 d. Treatments consisted of 20, 40, and 60 

mg supplemental Cu, Mn, and Zn/kg DM, respectively, from either sulfate (STM) or hydroxy 

(HTM) sources (n=6 steers/treatment). Following a 21-d adaptation period, total fecal output was 

collected for 5 d. Dry matter digestibility tended (P < 0.07) to be reduced (51.9 vs. 53.4 ± 0.52%) 

and NDF digestibility was reduced (P < 0.04; 40.4 vs. 42.7 ± 0.67%) in STM vs. HTM 

supplemented steers. On d-6, rumen fluid was collected at 0, 2, and 4 h post feeding and 

analyzed for SCFA. There were no treatment x time interactions for any response variables 

measured. However, treatment was a significant (P < 0.05) source of variation for butyric acid 

and total SCFA production. Steers receiving HTM had less (P < 0.02) butyric acid and greater (P 

< 0.05) total SCFA than STM supplemented steers. Steers were then fed the same low-quality 

grass hay diet without supplemental Cu, Zn, or Mn for 14 d. On d-15, steers received a pulse 

dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM sources (n=6 

steers/treatment). Ruminal samples were obtained at 2-h intervals starting at -4 h and ending at 
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24 h relative to dosing. There was a treatment x time interaction for ruminal soluble Cu, Mn and 

Zn concentrations. Ruminal soluble mineral concentrations were greater (P < 0.05) for Cu at 4, 

6, 8, 10, 12, and 14 h; for Mn at 4 and 6 h; and for Zn at 4, 6, and 8 h post dosing in STM 

compared to HTM supplemented steers. Concentrations of Cu and Zn in ruminal solid digesta 

were also affected by treatment, time, and treatment x time. At 12 h post dosing, Cu and Zn 

concentrations were greater (P < 0.05) in HTM supplemented steers when compared to STM 

supplemented steers. Upon dialysis against Tris-EDTA the % Zn released was greater at 12 h (P 

< 0.03) and 24 h (P < 0.05) and the % Cu released was greater (P < 0.02) at 24 h post dosing 

when compared to STM supplemented steers. Results indicate that Cu and Zn from HTM have 

low solubility in the rumen, may improve fiber digestibility and appear to be less tightly bound 

to ruminal solid digesta than Cu and Zn from STM.  
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CHAPTER 1 – REVIEW OF LITERATURE 

 

INTRODUCTION 

Micro or “trace” elements differ from macro elements based strictly on the amount 

provided in the diet (NRC, 2016). Trace elements are required at concentrations less than 100 

mg/kg diet dry matter, while macro elements are required at concentrations above 100 mg/kg 

diet dry matter (McDowell, 1992). According to NRC (2016), 15 trace elements are considered 

essential for mammals. Ten of these trace elements are considered essential for beef cattle. These 

include chromium (Cr), cobalt (Co), copper (Cu), iodine (I), iron (Fe), manganese (Mn), 

molybdenum (Mo), nickel (Ni), selenium (Se), and Zinc (Zn). Additional trace elements, 

including boron (B), fluorine (F), lithium (Li), silicon (Si), tin (Sn), and vanadium (V), have 

been previously identified as essential for certain animal species (NRC, 2016; McDowell, 1992; 

Underwood and Suttle, 1999). Although elements such as Cu, Mn, and Zn are required in many 

biochemical reactions within the animal, pure elemental sources of Cu, Mn, Zn, etc. are not fed 

to the animal. Instead, elements are typically consumed by animals associated with salts, amino 

acids, proteins, carbohydrates, halogens, etc. (e.g. Cu-sulfate, Cu-lysine, Cu-chloride) and are 

referred to as minerals. Therefore, for the purposes of this literature review, trace elements will 

be referred to as trace minerals with the understanding that the element is biologically active 

within the animal but is ingested in mineral form. 

Although uncertainty exists about which trace minerals are considered essential, trace 

minerals can be easily categorized into a subset that has been shown to be extremely important in 

livestock nutrition; Co, Cu, Fe, I, Mn, Se, and Zn. An additional 20 to 30 trace minerals occur 

naturally in feed, plant, and animal tissue, and it is unknown whether they have a biological 

function in mammals.  
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TRACE MINERAL METABOLISM 

 

It has been well documented that deficiencies of various trace minerals can result in 

metabolic diseases. However, the interactions between trace minerals and metabolic processes 

are tremendously complex. As an example, Cu, Zn, Mn, Fe, Se, Co, and I have been identified as 

crucial components for carbohydrate, lipid, protein, and vitamin metabolism and absorption. In 

addition, these trace minerals are found to be heavily involved in hormone production, immunity, 

and cellular homeostasis. Appropriate trace mineral supplementation can also improve health, 

immune response, and at much higher rates of supplementation in swine and poultry, can alter 

microbial colonization of the gut, resulting in improved gut health (Faulkner and Weiss, 2017).  

These trace minerals function primarily as catalysts in enzyme systems within cells. 

These requiring metal enzymes can be divided into two categories: 1) metal-activated enzymes 

and 2) metalloenzymes. Metal-activated enzymes may or may not have an absolute requirement 

for a metal; however, the presence of a metal is typically required for optimizing enzyme 

activity. Metalloenzymes have a very specific characteristic, and that is to hold a tightly bound 

metal ion at or near the active site of the enzyme. Metal ions bound to metalloenzymes are 

actively involved in catalysis. Removal of the metal ion will cause the enzyme to become non-

functional. Enzymes involved in electron transport, bone metabolism, immune response, gene 

expression, nutrient metabolism, and protection of cells from oxidative stressors all have been 

shown to require certain trace elements for proper function.  

When targeting optimum animal performance, carbohydrates, protein, and lipids are the 

primarily focus of ruminant nutritionists. Supplements containing trace minerals are formulated 

after the basal diet is balanced. Very little value/consideration is given to the trace minerals 

contained in the primary basal dietary ingredients. Though the minimum concentrations of 
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essential trace minerals needed to avoid deficiencies have been well researched, there is still a 

need for further research demonstrating optimal levels and sources of trace minerals for proper 

immune function and growth (Cohen, 2014; Lineman, 2013). However, identifying optimal 

concentration levels and sources of trace minerals can be challenging because of trace mineral 

complexity within the body interactions. Various studies have targeted the impact of trace 

mineral supplementation on beef cattle performance and immunity during the feedlot phase of 

beef production. However, results have been highly variable (Malcolm-Callis et al., 2000; 

Rhoads et al., 2003). A comprehensive understanding of the animal’s mineral requirements as 

well as an understanding of the mechanisms of each trace mineral with respect to digestion, 

absorption, and utilization is needed.  

Trace mineral absorption 

Zinc 

The activities of over 200 enzymes depend on Zn, of which the metalloenzyme carbonic 

anhydrase was the first to be identified (McDowell, 1992). In addition to its importance with 

respect to enzyme activity, Zn is also heavily involved in protein synthesis, carbohydrate 

metabolism, glycolysis, and transcription and translation (McDowell, 1992). Nonetheless, along 

with enzyme activity, Zn has been associated with an increase in feed intake and nucleic acid 

biosynthesis, resulting in normal growth (Hambidge et al., 1986). Throughout the absorption 

process, certain dietary factors can alter the absorption of Zn but will differ between non-

ruminants and ruminants. Certain trace minerals such as Cu and Fe can influence Zn absorption. 

Other main factors involved in Zn absorption include the levels and sources of Zn. The overall 

understanding of Zn absorption will aid in determining the optimal levels of dietary Zn, and its 

source provided to beef cattle. 
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Most studies focused on examining the mechanisms of Zn absorption have been 

conducted with mice and rats, whereas very little research has been conducted in ruminants. Zinc 

absorption takes place primarily in the first meter of the duodenum in ruminants and in the first 

portion of the jejunum in monogastric animals. These locations, respectively, are also the main 

site of Zn re-excretion (endogenous Zn) from the animal (Miller, 1970). Zinc absorption can be 

divided into four phases according to Cousins (1982). Figure 1.1 demonstrates the processes 

involved in Zn absorption across the enterocyte. The first phase involves the solubilization of Zn 

in the lumen of the intestine. Zinc typically becomes soluble at a low pH (2-4) and therefore, the 

majority of Zn is absorbed prior to the increase of duodenal pH. Once Zn is soluble, it then binds 

to a Zrt- and Irt-like protein -4 (Zip4) transporter located on the apical membrane of the 

enterocyte (Cousins et al., 2006). Zrt- and Irt-like proteins are a family of solute-linked carrier 39 

(SLC39) proteins responsible for increasing cytosolic Zn concentrations (Cousins et al., 2006). 

Once Zn is transported to the cytosol of the enterocyte, it binds to a cysteine-rich intestinal 

binding protein (CRIP) and is transported to the basolateral portion of the enterocyte where a 

solute-linked carrier 30 protein (ZnT1; SLC30A) transports Zn out of the enterocyte where it is 

bound to albumin and transported throughout the body. Although much of the Zn is absorbed 

from the lumen, Zn within the mucosal cells can also be derived from Zn reabsorbed from the 

bloodstream making Zn absorption bidirectional (Hambidge et al., 1986).  

Absorption of Zn through the small intestine is regulated by a variety of low molecular 

weight binding ligands (McDowell, 1992). The low molecular weight binding ligands include 

low molecular weight proteins, such as citrate, EDTA, or amino acids that may not require ATP 

for absorption (Hambidge et al., 1986). Metallothionein (a binding ligand) is a metal binding 

protein synthesized by hepatic and intestinal tissues and can be influenced by dietary Zn and 
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plasma Zn concentrations (McDowell, 1992). The function of intestinal metallothionein is to 

limit the absorption of Zn within the intestinal mucosal cells when dietary Zn concentrations are 

high (Cousins, 1996; Underwood and Suttle, 1999). Therefore, when dietary Zn is high, the 

production of metallothionein increases. Metallothionein binds excess Zn and prevents further 

absorption into the blood. Also, by binding to excess Zn, the metallothionein is acting as a Zn 

regulator in achieving homeostasis. However, metallothionein also functions as a regulator of Cu 

absorption in the epithelial cells of the intestine. Metallothionein production is induced by excess 

Zn but has a higher binding affinity for Cu. Therefore, high concentrations of dietary Zn would 

then influence Cu absorption when Cu is at normal concentrations. In addition, Zn that becomes 

soluble in the rumen can be absorbed through the rumen wall, and then could be reabsorbed into 

the lumen of the small intestine. However, this mechanism of Zn absorption is minimal and 

secondary to Zn absorption from the intestine.  

When dealing with ruminants, the issues with fiber-containing foods would only be an 

issue in non-functional ruminants such as young calves. The idea that high fiber diets decrease 

Zn absorption is contradicted by the NRC (2000) which states that it is unknown whether Zn’s 

association with fiber reduces absorption. However, Zn source, levels, and status should be 

considered when dealing with a high fiber diet.    

Galyean (1996) and Wedekind et al. (1992) indicate that Zn source and concentration 

should be addressed to optimize feedlot cattle performance. It has been suggested that inorganic 

and organic forms of Zn are metabolized differently following absorption (Galyean, 1996; NRC, 

1996). Galyean (1996) showed that amino acid-based trace minerals have lower 

solubility/availability in the rumen. However, polysaccharide complex organic trace minerals 

may be more available to rumen bacteria (Kennedy, 1993). It has been shown that from the 
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inorganic forms, sulfate forms of Zn seem to be the most soluble and available in the rumen. 

Additionally, organic sources tend to have equal or greater availability than sulfate forms 

(Wedekind et al., 1992).  

According to Spears et al. (1989), organic forms of Zn have been reported to enhance 

performance, improve health, and reproduction. This study also supports that Zn absorption is 

similar between Zn methionine and inorganic sources. However, evidence exists that Zn 

provided by Zn methionine is retained in the body more efficiently than inorganic Zn (Brown et 

al., 2004; Spears, 1989). Zinc absorption and the mechanisms involving absorption and retention 

are highly complex. Thus, further research is warranted to fully understand the optimum levels 

and sources of Zn to be applied in ruminant diets. 

Copper 

Intestinal absorption of Cu can be through both a passive and active process and has been 

shown to be a similar process between ruminants and non-ruminants (Underwood and Suttle, 

1999). In ruminants, the relatively low rate of Cu absorption is unique compared to non-

ruminants, primarily due to the presence of well-known antagonists such as sulfur (S) and 

molybdenum (Mo), and the conversion of sulfate to sulfite in the rumen (Underwood, 1977; 

Underwood and Suttle, 1999). When Cu is bound to either sulfide or molybdate, it is almost 

completely unabsorbed by ruminants (Huisingh and Matrone, 1976). Taking into consideration 

that the absorption of Cu in ruminants is low (<1.0-10%) when compared to non-ruminants 

(Spears, 2003), the importance of understanding how antagonists impact Cu absorption and 

metabolism is important. Furthermore, the chemical form of Cu can influence the amount of Cu 

absorbed as explained by McDowell (1992) and Underwood (1977).  
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Other Cu antagonists that reduce Cu absorption and could potentially cause Cu deficiency 

are Fe, calcium (Ca), cadmium (Cd), and silver (Ag; Underwood and Suttle, 1999; Underwood, 

1977). As discussed above, Cu absorption, under certain conditions, can also be influenced by 

dietary Zn concentrations. For instance, the concentration of Zn in the lumen of the intestine 

negatively affects Cu uptake into mucosal cells of the small intestine (Oestreicher and Cousins, 

1985).    

The process involving Cu absorption is controlled through two main mechanisms which 

consist of saturable and unsaturable mechanisms relating back to the active transport and simple 

diffusion process (McDowell, 1992). More recently, Cu was found to be absorbed primarily in 

the duodenum where it is transferred across the brush border into the enterocyte (Hill and Link, 

2009; Cater and Mercer, 2006). However, most of the research investigating Cu absorption has 

been conducted in rodents, similar to that for Zn.  

Copper is solubilized at a low pH (2-4). Once solubilized in the stomach, Cu will enter 

the small intestine. Figure 1.2 briefly shows the process of Cu absorption through the enterocyte 

into the bloodstream. Once soluble and in the lumen of the small intestine, Cu will bind to a high 

affinity copper transport protein (hCTR1) that is expressed on the apical membrane of the 

enterocyte. After Cu is transported into the intestinal cell, a P-type ATPase MNK protein 

chaperones Cu to the basolateral surface of the enterocyte where Cu is bound to albumin and 

transported throughout the circulatory system (Pena et al., 1999). Furthermore, the same 

metallothionein participating during Zn absorption, also functions as a regulator of Cu absorption 

in the epithelial cells of the intestine. Following the same concept as Zn, when Cu concentrations 

in the diet are low, then Cu absorption efficiency is increased. Copper absorption can be 

negatively influenced by the formation of Cu sulfide in the gut (NRC, 2000). Potentially 
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minimizing the interactions between Cu and other components in the diet, especially antagonists, 

would increase the absorption of Cu at the intestinal level (McDowell, 1992). However, the full 

mechanism(s) of Cu absorption is still not well understood (Hill and Link, 2009). 

Supplemental Cu in the form of CuO would be the least available form when compared 

to Cu - sulfate, carbonate, chloride, chelates, and proteinates. One of the organic forms of Cu 

such as a Cu proteinate had a greater bioavailability than CuSO4 when fed to calves receiving 

diets high in the Cu antagonist Mo (Kincaid et al., 1986; McDowell, 1992). 

Manganese  

The absorption of Mn is very low (possibly only 3 or 4%; Henry, 1995 ) in nearly all 

species, making the presence or absence of Mn deficiency dependent on variability in availability 

among feeds or supplemental sources (Underwood and Suttle, 1999; McDowell, 1992).  

There are several Mn antagonists that have been identified including phytate and fiber 

(which can substantially decrease availability; Wedekind et al., 1991), P, Ca, Fe, and Co 

(McDowell, 1992). Since the most common Mn antagonist, phytate, is mainly degraded in the 

rumen, it is assumed that Mn absorption is probably higher (around 15%) in ruminants, 

especially when Mn intake is low. However, in one study (Abrams et al., 1977), the availability 

of Mn in cattle was reported to be lower (approximately 1%) compared to the expected 

absorption rates mentioned above.  

Although little is known concerning dietary factors affecting Mn absorption (NRC, 

2000), McDowell (1992) and NRC (2016) explain that Mn absorption occurs in a two-step 

process which involves the uptake of Mn from the gut lumen and then transfer across the 

mucosal cells. Also, much like Zn and Cu, when dietary Mn concentrations are high, absorption 
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efficiency decreases, and when dietary Mn concentrations are low, absorption efficiency 

increases.   

Manganese absorption is thought to go from the intestinal lumen via a divalent metal 

transporter 1 (DMT1) which is located on the apical surface of the enterocyte. The DMT1 

transports divalent metal ions such as Mn, Fe, Zn, etc. into the cytosol of the enterocyte. 

Manganese absorption was shown by Underwood and Suttle (1999), to be like that of Fe. Once 

absorbed, Mn is transported throughout the body bound to transferrin.  

Manganese deficiency can occur in animals consuming diets composed of normal feed 

ingredients low in Mn (McDowell, 1992). It is quite controversial whether Mn homeostasis is 

primarily regulated through excretion (Thomas, 1970) or managed via absorption and fecal 

excretion via bile (NCR, 1996; Watson et al., 1973). On the other hand, Zn has been shown to be 

regulated through the absorption and excretion process.   

Manganese antagonists in the diet, such as Ca and P, may cause the Mn requirement in 

the diet to increase (Olson and Hale, 2001). Typically, Mn is thought to be poorly absorbed 

because of the substantial surplus of Mn provided by most practical rations (Underwood and 

Suttle, 1999); however, deficiencies have been noted in beef cattle, even under natural conditions 

in certain areas of the northwestern United States.   

TRACE MINERAL TRANSPORT AND STORAGE 

 

Once absorbed at the site of the small intestine, trace minerals are loosely bound to 

albumin and amino acids in the circulatory system (Underwood, 1977). Serum albumin and 

amino acids can also bind trace minerals when released by tissues based on physiological needs 

elsewhere in the body (Underwood, 1977). Once a trace mineral reaches the liver (via absorption 
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from the diet or tissue release) it is either stored in the liver, typically via the incorporation into 

mitochondria, microsomes, nuclei, and/or parenchymal cells, released for immediate 

incorporation into metalloenzymes, or excreted from the body, usually via bile (Underwood, 

1977). If absorbed and not bound to albumin, it is believed that trace minerals bind tightly to 

alpha-2 macroglobulin, with some additional metals becoming oxidized in the circulation and 

binding transferrin (Hambidge et al., 1986; Hidiroglou, 1979).  

Storage of trace minerals in body tissue can vary between species, age, diet composition 

(antagonists, sources, availability), disease conditions, and environment, while distribution of 

trace minerals in the body has been shown to only be affected by species, age, and trace mineral 

status (Underwood, 1977).  

Zinc 

Most mammalian tissues contain 30 to 250 mg Zn/kg, whereas body Zn concentration in 

cattle ranges from 20 to 30 mg Zn/kg (Hambidge et al., 1986). Once Zn is absorbed and reaches 

the liver, a substantial portion is sent back into the blood and incorporated into various tissues 

such as bone or central nervous tissue, and once incorporated into theses tissues, is unavailable 

for use by other tissues (McDowell, 1992). While in the liver, Zn is primarily bound to 

metallothionein. Metallothionein in the liver is the major storage form of Zn, and can be 

mobilized during metabolic need (McDowell, 1992). There are four isoforms of metallothionein 

present in mammals: metallothionein 1 and 2 which have ubiquitous tissue distribution with 

particular abundance in the liver, pancreas, intestine, and kidneys, whereas metallothionein 3 and 

4 are found primarily in the brain and skin (Davis and Cousins, 2000). The binding of Zn to liver 

metallothionein is relatively weak, thus giving liver metallothionein the ability to acquire and 
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release Zn. By contrast, the bond between enterocyte derived metallothionein and Zn is 

extremely tight, thus preventing absorption. 

When Zn enters the enterocyte, the absorption of Zn into the bloodstream is essentially 

dependent on concentrations of Zn itself in the circulatory system, in addition to the regulation of 

metallothionein in the enterocyte. The same would occur when Zn concentrations are high in the 

blood; less Zn is absorbed from the intestinal cells into the bloodstream.   

Whether the absorption of Zn is up or down regulated, Zn found in the plasma will most 

likely dictate only part of the Zn status within the animal. With that said, in order to assess Zn 

status within the animal, more should be evaluated than only blood status. A reasonable approach 

would be to find and identify indicators of Zn status in the serum, such as metallothionein and/or 

serum alkaline phosphatase activity. Alkaline phosphatase activity has been shown to fall during 

Zn deficiency but follows a similar time course to serum Zn (Underwood and Suttle, 1999).  

 Since Zn can be transported across the small intestine and transported in the body by 

albumin, the attachment of Zn to methionine may alter its mode of absorption and transport in 

the animal’s body compared to Zn from Zn oxide (Greene et al., 1988). Transport of Zn from the 

intestinal lumen into the bloodstream and from the bloodstream into the lumen is a bidirectional 

process for which the mechanism remains unknown (Hambridge et al., 1986). The metabolism of 

Zn in the blood after it is absorbed is affected by the ligands involved which can vary depending 

on Zn status (McDowell, 1992; Underwood and Suttle 1999). Only about two thirds of plasma 

Zn is bound to albumin in the portal bloodstream (Underwood and Suttle, 1999). The other 

portion of plasma Zn can be bound to macroglobulin or to metallothionein for example.  

Additionally, besides the liver, Zn can also be stored in the pancreas, kidneys, and spleen 

(McKenney et al., 1962; Feaster et al., 1954). However, the ability of stored Zn to be readily 



12 
 

available for use by other tissues is limited in most species (Underwood, 1977). During cases of 

low intake of Zn, the hepatic metallothionein Zn storage is primarily of immediate use (Richard 

and Cousins, 1976). 

Copper 

In the liver, adults of most species contain approximately 10 to 50 mg Cu/kg DM, with 

most animals containing 15 to 30 mg Cu/kg DM (Underwood, 1997). Adult ruminants store 

about 100 to 400 mg Cu/kg DM in the liver, possibly due to an improved capacity for sheep and 

cattle to bind Cu in the liver (Underwood, 1977). The liver is the primary storage site for excess 

Cu. Therefore, diagnosing Cu deficiency is commonly done via analysis of liver Cu 

concentrations (Underwood and Suttle, 1999). Over half of the total body Cu is contained in 

muscle and bone, even though the concentrations found in the liver are very high. Additionally, 

Cu can also be stored in the blood, heart, kidneys, brain, lungs, and skin (Underwood, 1977).  

Newer research, using molecular techniques as well as human metabolic disorders and 

single-cell organisms, have improved our understanding of the mechanisms underlying Cu 

metabolism and storage (Hill and Link, 2009). Transporter chaperones are essential for cellular 

and whole animal Cu homeostasis (Cohen, 2014; Fry et al., 2013). Once Cu is absorbed and 

enters the bloodstream, it binds to albumin and/or the amino acid histidine and is transported to 

the liver (McDowell, 1992). If Cu binds to metallothionein in the intestinal mucosa, then this 

interaction could restrict the further translocation of Cu into the bloodstream (Cousins, 1985; 

Underwood and Suttle, 1999). While Cu is transported throughout the body, antagonists such 

molybdenum (Mo), sulfur (S), and iron (Fe), could induce hypocuporsis by forming insoluble Cu 

complexes in the digestive tract, bloodstream, and tissues of ruminants (Bailey et al., 2001), thus 

affecting further storage and availability. Therefore, Bailey et al. (2001) emphasizes that it would 
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be advantageous to develop supplementation strategies that would limit these antagonistic 

effects.   

Manganese 

When compared to Cu and Zn, concentrations of Mn in tissues of livestock are 

considerably low, typically ranging from 0.5 to 3.9 mg Mn/kg in sheep and cattle carcasses 

(Underwood and Suttle, 1999). Manganese is commonly found in the liver, bones (which has a 

low concentration of Mn but contains approximately 25% of the total body Mn), pancreas, and 

kidney tissue, while very little Mn is found in muscle. It is believed that most Mn in the body is 

stored in the mitochondria, supported by evidence that tissues rich in mitochondria (liver and 

kidneys) had greatest retention rates of Mn in growing lambs (Watson et al., 1973). Although 

bone reserves are the largest in the body, Mn from bone is not as available as it is from the 

different storage tissues, especially during low Mn intake situations (McDowell, 1992). 

Interestingly, storage capacity for Mn in the liver has been shown to be limited compared to 

other trace minerals such as Cu and Zn (McDowell, 1992). 

After being absorbed, most of the Mn is transported by transferrin to the liver (Davidson, 

1989; Underwood, 1999). Since bile is a major route of excretion for excess Mn, attempting to 

understand flow rates of Mn through the digestive tract is challenging. Also, Mn excretion via 

the feces is proportionally greater as the amount of Mn absorbed increases (Underwood, 1999). 

Additionally, Genther and Hansen (2014) reported the importance of Mn superoxide dismutase 

which is an antioxidant in the mitochondria that catalyzes the conversion of the superoxide 

radical to less reactive hydrogen peroxide. Beef steers were utilized in a trace mineral repletion 

study and the authors reported that trace mineral injection of Cu, Mn, and Zn increased red blood 

cell lysate Mn superoxide dismutase activity (Genther and Hansen, 2014). However, the same 

study showed there was still a lack of a good biomarker of Mn in cattle. Superoxide dismutase 
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activity did reflect Mn supplementation via injection in their study and by dietary intake in other 

animal studies, suggesting it has a potential to be used as a biomarker of Mn status. There is also 

evidence that liver Mn concentration in various tissues responds very little or not at all to Mn 

supplementation (Carter et al., 1974), except in calves lacking a functional rumen (Howes and 

Dyer, 1971).  

 

TRACE MINERAL EXCRETION 

Zinc  

Even though the mechanisms of tissue uptake of Zn have not yet been well characterized, 

Zn complexed with albumin is readily available for uptake by tissues (McDowell, 1992). Yet not 

all tissues that take up Zn make the Zn available to other tissues. For example, the uptake of Zn 

in bone and the central nervous system is relatively slow and firmly bound once acquired by 

these tissues, making the Zn unavailable to other tissues (McDowell, 1992).   

The distribution of Zn throughout the body is well understood, but the mechanisms 

involved in Zn uptake by other tissues beyond the liver are not well known (Cousins, 1996; 

Underwood and Suttle, 1999). Subsequently, Zn is released back into the bloodstream after 

approximately 30-40% of the Zn entering through the hepatic venous supply is extracted by the 

liver (McDowell, 1992). The circulating Zn enters various extrahepatic tissues at differing rates, 

which consist of different rates of Zn turnover (Underwood and Suttle, 1999). Body tissues will 

exhibit different concentrations and turnover rates following oral administration and subsequent 

absorption (Miller et al., 1970). After an oral dosing, plasma Zn concentrations reach their peak 

within 1 to 3 d followed by a rapid decline for 3 to 4 weeks and a subsequent very slow decrease 

(Miller et al., 1970). Even though Zn tends to accumulate very slowly in some tissues, the 

amount in red blood cells, muscle, and bone continues to increase for several weeks after a single 
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oral dose (Miller et al., 1970). In the bloodstream, 80% is present in the erythrocytes, which 

contain about 1 mg Zn per 106 cells (Underwood and Suttle, 1999). The pancreas, liver, kidneys, 

and spleen have the most rapid accumulation and turnover of retained Zn (McKinney et al., 

1962).  

Most of the intracellular Zn is found in the cytosol (60-80%), with some Zn found in the 

crude nuclear fraction (10-20%) and small amounts in the microsomal and mitochondrial 

fractions (Saylor and Leach, 1980; McDowell, 1992). Zinc found in the cytosol is primarily 

bound to proteins whereas other fractions of Zn may be found on the cell membrane (McDowell, 

1992). However, Hempe et al. (1991) identified a low molecular mass, intracellular constituent 

from rat intestinal mucosa that binds Zn during transmucosal Zn transport. The low molecular 

mass was not metallothionein, based on the Cd-hemoglobin affinity assay (Hempe et al. 1991), 

indicating the possibility of other cellular homeostatic mechanisms for Zn. 

Zinc storage within an animal is minimal, leading to complications during a dietary Zn 

deficiency. Although Zn is widely distributed throughout the body, animals have limited capacity 

for storing Zn in a form where it can be mobilized rapidly to prevent a deficiency (McDowell, 

1992). Along with its importance in Zn absorption, metallothionein is also involved with being 

the major storage form of Zn within the liver (Richards and Cousins, 1976). Spears and Samsell 

(1986) reported that Zn retention was greater for lambs fed Zn methionine compared with those 

fed a control or Zn oxide-supplemented diet. Even though the absence of recognized stores exist, 

Zn may be redistributed from large pools found in bone and muscle during a deficiency 

(Underwood and Suttle, 1999). Also, when Zn is fed in large amounts, the Zn content greatly 

increases in some tissues including the blood, pancreas, kidneys, bone, hair, and liver, but may 

have little impact on other tissues such as muscle (Miller et al., 1970). 
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Copper 

The liver is the major storage organ for Cu where it is then released for incorporation into 

various enzymes (McDowell, 1992). While other organs contribute to the storage of Cu, 

approximately 20% of the animal’s Cu supply is stored in the liver and remains as the main site 

for storage (McDowell, 1992). Copper is typically stored in the liver in the form of 

mitochondrial cuprein (McDowell, 1992). Within the body, Cu will be stored in the liver in 

ruminant animals to a greater extent when compared to non-ruminants. This indicates that 

ruminants are at a greater risk of a Cu toxicity (Underwood and Suttle, 1999). Again, much like 

Zn, metallothionein will bind Cu and aid in Cu storage as well as aid in providing Cu to the rest 

of the body during a Cu deficiency (McDowell, 1992).   

Copper can be excreted through urine, bile, and sloughed intestinal cells, but the main 

excretory route is through feces (McDowell, 1992). Non-ruminants will excrete Cu at a greater 

extent when compared to ruminant animals because they tend to not be as susceptible to a Cu 

deficiency and will excrete more Cu via the bile and maintain lower concentrations of liver Cu 

(Underwood and Suttle, 1999).    

Manganese 

Manganese is mainly stored in the lowest concentrations of all trace minerals within 

tissues (Underwood and Suttle, 1999). Unlike Cu, the storage capacity for Mn in the liver is 

minimal (McDowell, 1992). Studies have shown fluctuations in liver Mn when dietary Mn is 

elevated; however, liver Mn seems to resist change when liver Mn reaches a certain 

concentration (Watson et al., 1973; McDowell, 1992). Bone growth is affected when a Mn 

deficiency is present resulting in shorter and thicker bones (McDowell, 1992). Reproductive 

effects were among the first signs of a Mn deficiency to be observed in livestock (McDowell, 
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1992); therefore, a good understanding of storage and excretion rates is necessary to maintain 

optimal reproduction. 

Manganese deficiency is most likely a result of limited concentrations of circulating Mn 

(McDowell, 1992). Manganese is primarily excreted through feces with bile being the main 

source of fecal Mn (Thomas, 1970) but also through pancreatic juice as well as secretion from 

the intestinal wall (McDowell, 1992). Also, the majority of Mn found in the body is found in the 

skeleton and is not readily available during a Mn deficiency. In calves, there were bone 

abnormalities noted when cows were supplemented with Mn at 15.8 mg/kg but not when cows 

were supplemented at 25 mg/kg (Rojas et al., 1965; NRC, 2000). The NRC (2000) also reports 

that Mn requirements for growth and skeletal development are less than for reproduction. 

Therefore, it seems that the excretion of Mn is critical regarding maintaining concentrations 

within narrow limits (Ahola et al., 2005). 

 

BIOAVAILABILITY OF TRACE MINERAL SUPPLEMENTS 

 

The number of studies that have compared availability of different trace mineral sources 

is excessive, but the results are highly variable. It has been confirmed that differences in 

availability based on chemical changes must occur since Cu from fresh forage is less effective at 

increasing Cu status than Cu from cured/silage hay, even when the concentration of Cu is similar 

in both forage sources (Underwood, 1977).  

Historically, trace minerals were only supplemented to cattle as inorganic salts (Spears, 

1996), with the trace mineral usually bound to a sulfate, carbonate, oxide, or chloride group. 

However, new technologies have been developed which enable the replacement of an inorganic 

group with one or even several amino acids, to various trace minerals (Cu, Mn, Zn, Co, and Se).  



18 
 

So far, there are five types of organic minerals that have been defined by the Association 

of American Feed Control Officials: 1) metal specific amino acid complex, 2) metal amino acid 

complex, 3) metal amino acid chelate, 4) metal proteinate, and 5) metal polysaccharide complex. 

Interest in the use of organic trace minerals has increased in recent years, mostly due to reports 

of improved growth, reproduction, and health in ruminants receiving organic trace minerals 

(Spears, 1996). When comparing the impact of various forms of trace minerals on beef cattle 

performance, results have been highly inconsistent. Reasons for observed differences in 

performance have not been fully identified.  

The theory that organic trace minerals are more available than inorganic trace minerals is 

based on the thought that organic forms are more like the physiological forms found in the body 

(Spears, 1996). It is hypothesized that the differences in availability may be due to variability of 

absorption of organic trace minerals and that they are able to remain intact until the absorption 

site is reached. However, no data have been reported to validate this theory (Spears, 1996). 

Additionally, based on in vitro evaluation of the solubility and structural integrity of organic 

trace minerals with gel filtration, at a low pH, a metal that was once bound to a proteinaceous 

ligand became dissociated (Brown and Zeringue, 1994). The same authors therefore 

hypothesized that it is unlikely that organic trace minerals, once at the site of absorption, are 

absorbed differently from inorganic trace minerals.  

Currently, trace minerals are available in both organic and inorganic forms as well as 

hydroxyl minerals. The hydroxyl trace minerals (copper hydroxychloride, zinc hydroxychloride, 

and manganese hydroxychloride) having their unique chemical characteristics, belong to a 

separate group of trace minerals. Zinc hydroxychloride differs from Zn sulfate because of the 

covalent bonds located between the Zn ion, multiple hydroxyl groups and the chloride ions, but 
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Zn sulfate contains an ionic bond where the Zn ion is connected with the sulfate group by a weak 

ionic bond (Mn hydroxychloride and Cu hydroxychloride contain the covalent bonds as well). 

Therefore, the covalent bonds are thought to increase the amount of biologically active Zn 

delivered to the intestine, resulting in higher Zn absorption (Cohen and Steward). The sulfate 

sources of Zn, Cu, and Mn contain the ionic bond and perhaps disassociate once in contact with 

moisture allowing the metal ions to bind with many diet antagonists (Cohen and Steward, 

unknown). Limited research has indicated that tribasic Cu chloride is more bioavailable than 

CuSO4 when added to diets high in the Cu antagonists Mo and S (Spears et al., 2004). 

Source and amount of trace mineral can heavily influence rumen fermentation (Faulkner 

and Weiss, 2017). Organic trace minerals (Cu, Zn, Mn, Se, and Co) had no effect on nutrient 

digestibility by dairy heifers, however, increased total volatile fatty acid (VFA) production was 

noted compared with sulfate minerals (Pino and Heinrichs, 2016). Excessive in vitro Cu (Durand 

and Kawashima, 1980) and Zn (Aerlovich et al., 2000; Eryavuz and Dehority, 2009) 

supplementation negatively affects rumen microbial populations, rumen fermentation, and 

nutrient digestibility. Ruminal solubility of trace mineral is likely a factor that influences how 

trace minerals affects rumen fermentation and microbial populations, which may in turn affect 

nutrient digestibility (Faulkner and Weiss, 2017). Therefore, reducing the concentration of 

soluble trace minerals, particularly Cu, by feeding hydroxy minerals may increase ruminal 

digestibility (Faulkner et al., 2017).   

Hydroxy Cu and Mn are less soluble in the rumen when compared to sulfate trace 

mineral sources, whereas differences in solubility of hydroxy Zn and Zn sulfate are inconsistent 

(Cao et al., 2000; Genther and Hansen, 2015; Caldera et al., 2018). Furthermore, it is very 

challenging to interpret data from different studies because researchers have used various 
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methods of supplementation, different sources of trace minerals, a variety of different cattle 

types, and highly variable experimental designs. Moreover, breed of cattle, antagonists present in 

the diet, as well as physiological status of the animal must be taken into consideration when 

comparing the results from trace mineral source studies. Therefore, the objectives of the current 

study were to examine the influence of trace mineral source on: 1) fiber digestion and rumen 

fermentation characteristics in cattle fed a low-quality, high fiber diet, 2) rumen solubility of Cu, 

Mn, and Zn, and 3) the relative binding strength of trace minerals located in the rumen insoluble 

digesta fraction.  

 

Figure 1.1. Mechanisms underlying Zn absorption [Adapted from J. NUTR. 122:89-95 (1992)]. 
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Figure 1.2. Mechanisms underlying Cu absorption [Adapted from J. NUTR. 122:89-95 (1992)]. 
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CHAPTER 2 – TRACE MINERAL SOURCE IMPACTS RUMEN TRACE MINERAL 

DISTRIBUTION AND FIBER DIGESTION IN STEERS FED A LOW-QUALITY FORAGE-

BASED DIET 

 

 

SUMMARY 

Twelve Angus steers (BW 452.8 ± 21.8 kg) fitted with ruminal cannulae were used to 

determine the impact of trace mineral (TM) source on neutral detergent fiber (NDF) digestibility, 

short chain fatty acid (SCFA) production, ruminal solubility of Cu, Zn, and Mn, and relative 

binding strength of trace minerals located in the rumen insoluble digesta fraction. Steers were fed 

a low-quality grass hay diet (DM basis: 10.8% CP, 63.1% NDF, 6.9 mg Cu/kg, 65.5 mg Mn/kg, 

and 39.4 mg Zn/kg) supplemented with protein for 21 d. Treatments consisted of 20, 40, and 60 

mg supplemental Cu, Mn, and Zn/kg DM, respectively, from either sulfate (STM) or hydroxy 

(HTM) sources (n=6 steers/treatment). Following a 21-d adaptation period, total fecal output was 

collected for 5 d. Dry matter digestibility tended (P < 0.07) to be reduced (51.9 vs. 53.4 ± 0.52%) 

and NDF digestibility was reduced (P < 0.04; 40.4 vs.42.7 ± 0.67%) in STM vs. HTM 

supplemented steers. On d-6, rumen fluid was collected at 0, 2, and 4 h post feeding and 

analyzed for SCFA. There were no treatment x time interactions for any response variables 

measured. However, treatment was a significant (P < 0.05) source of variation for butyric acid 

and total SCFA production. Steers receiving HTM had less (P < 0.02) butyric acid and greater (P 

< 0.05) total SCFA than STM supplemented steers. Steers were then fed the same low-quality 

grass hay diet without supplemental Cu, Zn, or Mn for 14 d. On d-15, steers received a pulse 

dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM sources (n=6 

steers/treatment). Ruminal samples were obtained at 2-h intervals starting at 4 h and ending at 24 

h relative to dosing. There was a treatment x time interaction for ruminal soluble Cu, Mn, and Zn 

concentrations. Ruminal soluble mineral concentrations were greater (P < 0.05) for Cu at 4, 6, 8, 
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10, 12, and 14 h; for Mn at 4 and 6 h; and for Zn at 4, 6, and 8 h post dosing in STM compared to 

HTM supplemented steers. Concentrations of Cu and Zn in ruminal solid digesta were also 

affected by treatment, time, and treatment x time. At 12 h post dosing, Cu and Zn concentrations 

were greater (P < 0.05) in HTM supplemented steers when compared to STM supplemented 

steers. Upon dialysis against Tris-EDTA the % Zn released was greater at 12 h (P < 0.03) and 24 

h (P < 0.05) and the % Cu released was greater (P < 0.02) at 24 h post dosing when compared to 

STM supplemented steers. Results indicate that Cu and Zn from HTM have low solubility in the 

rumen, may improve fiber digestibility and appear to be less tightly bound to ruminal solid 

digesta than Cu and Zn from STM. 
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INTRODUCTION 

 

In 2017, Faulkner and Weiss reported that lactating dairy cows supplemented with 

hydroxy TM (HTM) had greater NDF digestibility than those supplemented with sulfate TM 

(STM) sources. The authors suggested that the impact of trace mineral source on fiber digestion 

may be due to differences in rumen solubility of Cu and Zn (Faulkner and Weiss, 2017). In 

agreement with these findings, Caldera et al. (2019) reported that NDF digestibility tended to be 

lower in STM compared to HTM supplemented steers. Furthermore, Caldera et al. (2019) 

reported that rumen soluble Cu and Zn concentrations were greater (at multiple time points over 

a 24 h period) in STM compared to HTM supplemented steers following a single bolus dose of 

Cu, Mn, and Zn from either STM or HTM sources. Diets used by Faulkner and Weiss (2017) and 

Caldera et al. (2019) were primarily composed of corn silage and corn and ranged from 28.3 – 

36.4% NDF. Although not measured by Falkner and Weiss (2017), rumen pH averaged 6.23 in 

the Caldera et al. (2019) study. The finding of Caldera et al. (2019) agrees with earlier in vitro 

and in vivo research indicating that HTM forms of Cu and Zn are relatively insoluble under basic 

pH conditions and increase in solubility as pH decreases. By contrast, STM forms of Cu and Zn 

are almost completely soluble under basic and acidic conditions (Spears et al., 2004; Shaeffer, 

2006).  

Collectively, these data suggest that rumen solubility of Cu and Zn may influence rumen 

fermentation. Based on these data we hypothesized that rumen solubility of HTM forms of Cu 

and Zn would be low and that NDF digestibility would be greater with lower rumen solubility of 

Cu and Zn in cattle fed low-quality, high fiber diets. Therefore, the objectives of the current 

study were to examine the influence of TM source on: 1) fiber digestion and rumen fermentation 

characteristics in cattle fed a low-quality, high fiber diet, 2) rumen solubility of Cu, Mn, and Zn, 
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and 3) the relative binding strength of trace minerals located in the rumen insoluble digesta 

fraction.  

MATERIALS AND METHODS 

 

Prior to the initiation of this study, all animal care, handling, and procedures described 

herein were approved by the Colorado State University Animal Care and Use Committee 

(IACUC approval #17-7182A). 

Cattle and feeding procedures: Twelve crossbred Angus steers fitted with ruminal 

cannulae (initial BW 452.8 ± 21.8 kg) were utilized in this study. Steers were housed at Colorado 

State University’s Agriculture, Research, Development, and Education Center (ARDEC) in Fort 

Collins, CO. Steers were initially stratified by BW and housed in two feedlot pens (6 steers per 

pen) and fed a high fiber, low-quality hay (chopped) diet balanced to meet the CP, Na, Cl, Ca, P, 

Se, I, Co, and vitamin A, D and E requirements for growing steers (Table 2.1) with no 

supplemental Cu, Mn, or Zn for 21 d. After the 21-d adaptation period, steers received one of 

two treatments. Treatments consisted of 20 mg Cu/kg DM, 40 mg Mn/kg DM, and 60 mg Zn/kg 

DM, from either sulfate (SO4) or hydroxy (IntelliBond C, M, and Z; Micronutrients USA LLC., 

Indianapolis, IN) sources. After receiving treatments for 7 d, steers were moved to individual 

pens in the metabolism building (2.5 m x 2.5 m pens equipped with automatic waters, individual 

feeders, and rubber matted floors) for 2 d and allowed to acclimate to their new surroundings. 

Steers were then relocated into individual metabolism stalls (3.0 m x 1.1 m pens equipped with 

automatic waters, individual plastic feeders, and rubber matted floors) for a 5-d acclimation 

period. During the acclimation period, Dry matter intake (DMI)for each steer was determined. At 

the end of the acclimation period, steers were paired across treatments based on their mean DMI 
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over the 5-d period. Once animals were appropriately paired by DMI, each steer within a pair 

was fed the same amount of feed. Feed delivered to each steer within a pair was calculated to be 

90.0% of the steer within the pair with the lowest average DMI during the acclimation period. 

This ensured equal amounts of feed intake for individual steers within a pair (block) during the 

5-d total fecal and urine collection period.  

Diets were fed twice daily (60% of the ration in the morning and 40% of the ration in the 

afternoon). Appropriate TM treatment supplements were manufactured prior to the initiation of 

the study. Soybean meal corn was used as the carrier for the TM treatments. Immediately after 

feeding the basal diet, the appropriate TM supplement amounts (60% of the ration in the morning 

and 40% of the ration in the afternoon) were top-dressed and mixed thoroughly by hand for each 

feeding within a day.  

 Sample collection and analysis: Total fecal and urinary output was measured daily for 

individual steers during the 5-d collection period as described by Caldera et al. (2019). Briefly, 

100 ml of 6N HCl was added daily to carboys used for urine collection to prevent N loss. Feces 

and urine collected each day (over a 24-h period) were quantified by wet-weight (feces) or 

volume (urine), thoroughly mixed, and sampled (10.0% of wet weight or volume). Duplicate, 

individual fecal samples were sealed in plastic bags, labeled, and stored at -20ºC. Urine samples 

were stored in acid washed polypropylene storage containers. Prior to DM, NDF, ADF, and 

nitrogen analysis of feces, urine, and feed, samples were proportionally composited across all 

collection days for each animal. Dry matter analysis was determined by placing a known mass of 

wet material in a forced-air drying oven for 48 h at 100ºC. After drying, samples were allowed to 

cool in a desiccator and then weighed. Neutral detergent fiber and ADF were analyzed using an 

Ankom 200 Fiber analyzer (Ankom Technology Corp.; Van Soest et al., 1991). All TM were 
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quantified via inductively coupled plasma-mass spectrometry (PerkinElmer; NexION 2000 B) 

and N was quantified using the TruSpec CN Carbon/Nitrogen LECO system (Leco Corp., St. 

Joseph, MI).   

 Following the 5-d fecal and urine collection (i.e., day 6) rumen samples were collected at 

0, 2, and 4 h post-feeding for determination of short chain fatty acids (SCFA) and rumen pH. 

Rumen contents were centrifuged at 28,000 x g at 5°C for 30 min. A 2.0 ml aliquot of the 

supernatant was acidified with 25% (vol/vol) meta-phosphoric acid, and frozen at -80°C until 

analyzed for SCFA concentrations via gas chromatography. Rumen pH was determined by 

inserting a portable pH meter (EcoTestr pH 2+; Oaktron 153 Instruments, Vernon Hills, IL) into 

the geometric center of the rumen at the time of rumen content collection.  

 Rumen soluble concentration: At the end of the experiment, steers were placed in 

individual pens within the metabolism building and fed the basal diet without supplemental Cu, 

Mn, and Zn for 7 d. During this time, steers had ad libitum access to drinking water and the basal 

diet was fed as described above. On d-8, steers received a pulse dose of the TM sources being 

evaluated. Individual trace mineral treatments were thoroughly mixed with 0.23 kg of ground 

corn and administered as a single bolus-dose via the rumen fistula to provide two times the 

NASEM (2016) requirement for Cu (20 mg Cu/kg DM), Mn (40 mg Mn/kg DM), and Zn (60 mg 

Zn/kg DM). Immediately after bolus dose administration, the rumen contents were thoroughly 

mixed by hand. Rumen samples were then obtained at 2 h intervals beginning at 4 h and ending 

at 24 h post dosing; time zero being the administration of bolus + feeding of the basal diet. 

Before each sampling time, the rumen contents were thoroughly mixed by hand and a sample 

was obtained from the geometric center of the rumen (approximately 250 g). After each 

collection time, ruminal samples were centrifuged 28,000 x g in graduated centrifuge tubes. 
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Once centrifuged, the volume of the supernatant was determined and frozen at -20°C until TM 

analysis was performed. The Cu, Mn, and Zn concentrations of the supernatant and pellet 

fractions were considered to be the soluble and solid (insoluble) fractions of these elements, 

respectively.  

 Dialysis of ruminal insoluble digesta: Ruminal solid digesta samples from three different 

collection times (0, 12, and 24 h) were exposed to dialysis. Briefly, the insoluble fraction of the 

rumen digesta collected was dried at 60°C for 48 h in a forced air drying oven, ground in a Wiley 

mill to fit through a 2 mm screen, analyzed for Cu, Mn, and Zn, and dialyzed against 0.01M 

ethylenediaminetetraacetate (EDTA) in 0.05 M Tris (Tris-EDTA). Regenerated cellulose dialysis 

tubing (31.8 mm diameter, 30 µm wall thickness, MWCO 6,000 to 8,000; Fisher Scientific) was 

cut into 10 cm segments and treated to remove metal contamination. Dialysis tubing was stored 

in solution comprised of 50% ethanol; 50% deionized water; 1mM EDTA at 4°C prior to use. 

The chelating buffer was as follows: 0.01M EDTA in 0.05 M Tris (Tris-EDTA). The diluted 

buffer was prepared immediately prior to use and the pH adjusted to 6.8. Samples were placed 

into 10 ml of the appropriate buffer, then placed into dialysis tubing pre-wet with deionized 

water, and the tubing was then sealed with clips. The samples were then dialyzed against 1.0 liter 

of the same buffer for 16 h at 4°C with continuous stirring. The buffer was changed, and dialysis 

continued for another 6 h. Samples were removed from dialysis bags, placed into pre-weighed 

acid-washed crucibles, and dried overnight at 60°C. After drying, samples were weighed, and 

then ashed at 600°C in a Thermo-Fisher Thermolyne muffle furnace overnight. After cooling, 

ashed samples were then weighed and re-suspended in 5 ml of boiling 1.2 M HCl and analyzed 

for Cu, Mn, and Zn as described above.  
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STATISTICAL ANALYSIS 

 

Total tract apparent digestibility of DM, ADF, and NDF and initial and post dialysis Cu, Mn, and 

Zn concentrations of insoluble digesta at times 0, 12, and 24 h were analyzed using a mixed 

effects model (PROC MIXED, SAS Inst. Inc., Cary, NC) for a completely randomized block 

design. A mixed effects model repeated measures analysis (PROC MIXED) for a completely 

randomized block design was used to analyze rumen soluble Cu, Mn and Zn concentrations, pH, 

and SCFA proportions and total concentrations. The fixed effects were treatment, time, and the 

treatment x time interaction. For all response variables measured, individual animal was 

considered the experimental unit. Several covariance structures were compared to determine the 

most appropriate covariance structure for data analysis. For all response variables, significance 

was determined at P ≤ 0.05 and tendencies were determined at P > 0.05 and ≤ 0.10. When a 

significant treatment × time interaction was detected, treatment means were separated using the 

PDIFF option of the LSMEANS statement of SAS. 

RESULTS 

 

The influence of TM source on dry matter, ADF, NDF, and CP digestibility is shown in 

Table 2.2. By design, dry matter intake was similar across the treatments. Dry matter (P < 0.07; 

51.9 vs. 53.4±0.52%) and CP (P < 0.06; 51.2 vs. 54.3 ±0.58%) digestibility tended to be reduced 

and NDF (P < 0.04; 40.4 vs. 42.7 ±0.67%) and ADF (P < 0.05; 32.4 vs. 34.1 ±0.49%) 

digestibility were reduced in STM vs. HTM supplemented steers.  

The influence of trace mineral source on rumen soluble Cu, Mn, and Zn concentrations of 

steers receiving a pulse dose of TM is presented in Figure 2.1a-c. There was a treatment x time 

interaction for Cu (P < 0.03), Mn (P < 0.03), and Zn (P < 0.02). Ruminal soluble concentrations 
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were greater (P < 0.05) for Cu at 4, 6, 8, 10, 12, and 16 h post dosing in STM compared to HTM 

supplemented steers. Manganese rumen soluble concentrations were greater for STM 

supplemented steers at 4 and 6 h post dosing and lower at 18 h post dosing when compared to 

HTM supplemented steers. Rumen soluble Zn concentrations were greater in STM supplemented 

steers at 4, 6, and 8 h post dosing compared to HTM steers.  

 Table 2.3 shows the influence of trace mineral source on rumen pH and SCFA production 

at 0, 2, and 4 h post feeding. There were no treatment x time interactions detected so overall 

treatment main effects are presented in Table 2.3. Steers receiving HTM had less (P < 0.02) 

butyric acid and greater (P < 0.05) total SCFA than STM supplemented steers. Isovaleric acid 

tended (P < 0.09) to be greater in HTM compared to STM supplemented steers. Rumen pH and 

all other SCFA measured were similar across treatments.  

 The influence of dialysis against Tris-EDTA on the percent of Cu, Mn, and Zn released 

from the rumen solid digesta at 0, 12, and 24 h post bolus dose administration is shown in Table 

2.4. Initial (0 h) rumen solid digesta Cu, Mn, and Zn concentrations were similar across 

treatments. At 12 h post bolus dose administration, Cu concentrations of rumen solid digesta 

were greater (P < 0.05) in HTM compared to STM supplemented steers. Manganese and Zn 

concentrations were similar across treatments. At 24 h post bolus dose administration, Cu (P < 

0.03) and Zn (P < 0.001) concentrations were greater in HTM compared to STM supplemented 

steers, while Mn concentrations were similar across treatments. 

 Following dialysis against Tris-EDTA, the percentages of Cu, Mn, and Zn released at 0 h 

were similar across treatments. At 12 h post bolus dose administration, the percentage Zn 

released was greater (P < 0.03) and Cu tended (P < 0.06) to be greater in HTM vs STM steers. 

At 24 h post bolus dose administration, the percentage Cu (P < 0.02) and Zn (P < 0.05) were 
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greater in HTM compared to STM supplemented steers. The percentage of Mn released at 12 h 

and 24 h post bolus dose administration was similar between treatments.  

DISCUSSION 

 

 The role that trace minerals have in rumen microbial fermentation is not well understood. 

However, in vitro, and in vivo studies have reported that Cu and Zn concentrations supplemented 

above NASEM (2016) requirements can reduce fiber digestion (Durand and Kawashima, 1980; 

Arelovich et al., 2000). Furthermore, data indicate that practical diets fed to ruminants without 

Cu and Zn supplementation can meet the microbial Cu and Zn requirements (Emmanuel and 

Staples, 1990).  

 Most research suggests that excessive supplemental trace minerals (specifically Cu and 

Zn) can negatively affect rumen microorganism populations, which could potentially reduce 

nutrient digestion. However, omission of trace minerals, specifically Zn, can decrease protozoal 

growth in pure cultures. As reported by Faulkner and Weiss (2017), the NDF fiber digestibility 

increase in cows supplemented with hydroxy trace minerals compared to that of cows 

supplemented with sulfate trace minerals was suggested to be caused by reduced concentrations 

of soluble Cu, thereby reducing inhibitory effects of rumen bacteria. This could explain the 

improvement in fiber digestibility in steers receiving HTM when compared to STM in the 

present study. These data also agree with data reported by Caldera et al. (2019) in a study 

conducted with beef cattle, where NDF fiber digestibility tended to also be greater in steers fed 

HTM compared to steers fed STM. The lower ruminal soluble TM concentration observed in 

steers dosed with HTM is most likely the main affect for differences in fiber digestibility. 

Trace minerals coming from feedstuff or supplemental sources can become soluble in the 

rumen and interact with rumen metabolites, other feed ingredients, and microorganisms. These 
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interactions can produce insoluble complexes. Trace minerals that end up insoluble in the 

ruminal environment could be less accessible for absorption in the small intestine. The solubility 

data presented in the current study agrees with those presented by Shaeffer et al. (2017). It has 

been well established that Zn and Cu HTM sources are insoluble in water and highly soluble at 

lower pH. Cao et al. (2000) reported that Zn hydroxychloride had lower solubility in water than 

ZnSO4, and Spears et al. (2004) reported that Cu from Cu hydroxychloride was relatively 

insoluble (0.6%) in water (pH 7.0) and highly soluble (81.4%) at a low pH (2.2), whereas Cu 

from CuSO4 was almost completely soluble in both water (94.5%) and at a low pH (97.6%). 

Several in vitro studies have indicated that Zn and Cu can negatively affect fiber digestion 

(Durand and Kawashima, 1980). 

 Ruminal soluble Cu concentrations reported in the present study were increased at 4 h 

post dosing through 12 h post dosing in STM compared to HTM supplemented steers. 

Additionally, the percent soluble Mn was greater at 4 h and 6 h post dosing in STM dosed steers. 

Furthermore, soluble Zn concentrations were greater at 4, 6, and 8 h post dosing in STM than in 

HTM steers. A study by Genther and Hansen (2015) also reported ruminal concentrations of 

soluble Cu that were greater in steers fed diets supplemented with CuSO4 compared with 

CuOHCl. Steers supplemented with ZnSO4 had greater ruminal soluble Zn concentrations at 2 h 

post feeding than those receiving ZnOHCl (Shaeffer, 2006). In addition, Caldera et al. (2019) 

demonstrated that soluble concentrations of Zn and Cu were greater from 2 – 10 h post-dosing, 

whereas percent soluble Cu and Zn was greater at 6 and 12 h post dosing, respectively in STM 

dosed steers. However, Genther and Hansen (2015) reported that steers supplemented with 

ZnOHCl had greater ruminal soluble Zn concentrations than those supplemented with ZnSO4. 

The difference in findings from the two studies may be related to how ruminal content 
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collections were processed after sampling. In the present study, and in the Caldera et al. (2019) 

and Shaeffer (2006) studies, ruminal samples were centrifuged shortly after being collected and 

the supernatant was collected before storing at -20°C for later determination of ruminal soluble 

TM. In the Genther and Hansen (2015) study, ruminal samples were frozen prior to 

centrifugation and separation of the soluble and insoluble fractions. Freezing and thawing may 

have altered the distribution of Cu and Zn between the soluble and insoluble fraction in the 

Genther and Hansen (2015) study. 

 Steers dosed with MnOHCl had greater soluble Mn concentrations relative to 0 h values 

at all times post dosing. It is uncertain if Mn released from MnOHCl in the ruminal soluble 

fraction was present in the ionic form or as a soluble complex. Compared to baseline 0 h values, 

ruminal soluble Mn concentrations in steers dosed with STM did not increase until 4 h and 

remained greater only until 6 h. In contrast, ruminal soluble Zn and Cu concentrations were 

greater by 2 h post dosing but returned to pre-dosing values by 10 to 16 h post dosing in steers 

given STM. Differences among TM sources in ruminal distribution were also smaller for Mn 

than those observed for Zn and Cu. Similar results were found by Genther and Hansen (2015) 

reporting that steers supplemented with MnSO4 had greater ruminal soluble Mn concentrations 

than those fed diets supplemented with MnOHCl. 

 Trace minerals derived from dietary feedstuffs or supplemental sources can become 

soluble in the rumen. As solubility increases these elements can interact with ruminal contents to 

form insoluble complexes. Depending on how strong the binding is, TM becoming insoluble in 

the ruminal environment most likely would be less available for absorption in the small intestine 

than forms that remain soluble. In some cases, the insoluble complexes are so strongly bound 

that the compounds formed never become absorbed. In the present study, ruminal solid digesta 
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(pellet) was dialyzed against two chelating agents to assess the strength in which TM were bound 

in digesta. Histidine is a relatively weak chelator while EDTA is a stronger chelating agent. 

Previous research has shown that the ability of chelators to remove Zn from protein sources 

during dialysis may be useful in estimating in vivo bioavailability (Jones et al., 1985). Dialysis 

data from the current study suggest that Cu and Zn in the ruminal solid fraction from steers 

dosed with STM was more tightly bound and less available for absorption in the small intestine. 

These data are similar to those reported by Caldera et al. (2019). Strength of binding to the solid 

rumen digesta appeared to be in the order of Cu > Zn > Mn based on the extent of dissolution of 

the metals with acid or EDTA (Bremner, 1970). By contract, Caldera et al. (2019) reported the 

binding strength to the solid digesta in steers receiving STM was Cu > Zn > Mn (P < 0.05) when 

dialyzed against EDTA at 6 and 12 h post dosing. In the present study, binding strength to the 

solid digesta was reported to be Cu > Zn > Mn based on the mineral release percentage.   

 In summary, results from this study indicate that Cu and Zn from HTM have low 

solubility in the rumen. Increased NDF digestibility when hydroxy minerals were fed could 

indicate that HTM supplementation is favorable for cellulolytic bacteria, and perhaps protozoa 

growth. However, a more promising explanation is that sulfate trace minerals are inhibitory to 

fiber digesting microorganisms. Although further research is needed to understand the effects of 

trace mineral supplementation using different sources on microbiome populations, it appears that 

increased rumen solubility of Cu and Zn can decrease fiber digestion.   
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Table 2.1. Ingredient composition of high forage diet (% DM) 
Ingredient %DM 

 

Grass hay 90.0  

Soybean meal (46%) 4.7  

Beet Pulp 4.6  

Salt - white 0.35  

Urea 0.18  

Vit A 0.03  

Vit E                                              0.013  

Selenium (06)                                      0.003  

Cobalt Sulfate  0.00005  

Iodine (EDDI)a                               0.00005  

TOTAL                                 100.00  

   

Chemical Compositionb    

Dry Matter, %                        91.8  

Crude Protein, % 13.0  

NEm, Mcal/kg 1.25  

Neg, Mcal/kg 1.4  

Fat, % 2.8  

Acid detergent fiber, %                 29  

Neutral detergent fiber, % 49.0  

Calcium, % 0.65  

Phosphorus, % 0.30  

Sulfur, % 0.30  

Copper, mg/kg 6.6  

Manganese, mg/kg 58.4  

Zinc, mg/kg 37.4  
aIodine ethylenediamine dihydroiodide. 
bChemical composition of the basal diet. 
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Table 2.2. Influence of trace mineral source on dry matter (DM), acid detergent fiber (ADF), 

neutral detergent fiber (NDF), and crude protein (CP) digestibility in steers fed a low-quality 

high forage diet. 

 Treatment    

Item HTMa STMb SEM P < 

n = 6 6 --- --- 

DM intake, kg 

DM/hd/d 

7.4 7.4 --- --- 

DM digestibility, % 53.4 51.9 0.52 0.07 

ADF digestibility, % 34.1 32.4 0.49 0.05 

NDF digestibility, % 42.7 40.4 0.67 0.04 

CP digestibility, % 54.3 51.2 0.58 0.06 
aHydroxy trace minerals: 20 mg Cu/kg DM from CuOHCl; 40 mg Mn/kg DM from 

MnOHCl; 60 mg Zn/kg DM from ZnOHCl. 
bSulfate trace minerals: 20 mg Cu/kg DM from CuSO4; 40 mg Mn/kg DM from MnSO4; 

60 mg Zn/kg DM from ZnSO4. 

 

Table 2.3. Influence of trace mineral source on short chain fatty acid production at 0, 2, and 4 h 

post feeding steers a high forage diet. 
 Treatment  P < 

Item HTM STM SEM Trt Time Trt*time 

n = 6 6 --- --- --- --- 

pH, s.u. 6.68 6.59 0.087 0.47 0.01 0.57 

       

Short chain fatty acid, 

mM/100mM 

      

Acetic acid 49.15 48.89 0.539 0.74 0.05 0.92 

Propionic acid 21.21 22.38 0.824 0.34 0.44 0.45 

Isobutyric acid 5.80 5.57 0.232 0.51 0.001 0.61 

Butyric acid 14.93 16.28 0.346 0.02 0.001 0.93 

Isovaleric acid 5.09 4.08 0.374 0.09 0.001 0.43 

Valeric acid 3.83 3.71 0.220 0.71 0.001 0.91 

Total short chain fatty 

acids, mM 

72.26 59.81 3.93 0.05 0.85 0.86 

                 
aHydroxy trace minerals: 20 mg Cu/kg DM from CuOHCl; 40 mg Mn/kg DM from MnOHCl; 

60 mg Zn/kg DM from ZnOHCl. 
bSulfate trace minerals: 20 mg Cu/kg DM from CuSO4; 40 mg Mn/kg DM from MnSO4; 60 mg 

Zn/kg DM from ZnSO4. 
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Table 2.4. Influence of dialysis on copper, manganese, and zinc release from rumen solid 

digesta collected at 0, 12, and 24 h after receiving a pulse dose of 20 mg copper, 40 mg 

manganese, and 60 mg zinc/kg DM from either hydroxy or sulfate trace mineral sources.   
 Treatment    

Item HTMa STMb SEM P < 

Digesta, initial mineral concentration, 

mg/kg DM 

    

   0h     

 Copper 1.4 1.5 0.34 0.95 

 Manganese 8.4 8.6 1.1 0.91 

 Zinc 9.3 10.2 0.91 0.78 

   12h     

 Copper 21.2 6.5 2.8 0.05 

 Manganese 15.3 14.9 2.9 0.65 

 Zinc 47.3 21.3 7.2 0.11 

   24h     

 Copper 28.2 5.1 2.3 0.03 

 Manganese 28.3 24.5 4.2 0.89 

 Zinc 112.3 30.2 10.3 0.001 

     

Mineral released, %c     

   0h     

   Copper 24.5 29.3 1.9 0.82 

 Manganese 37.2 41.2 4.3 0.72 

 Zinc 54.3 46.9 3.8 0.73 

   12h     

 Copper 61.2 28.3 7.1 0.06 

 Manganese 71.2 75.9 21.3 0.82 

 Zinc 92.3 37.2 12.3 0.03 

   24h     

 Copper 84.5 24.3 18.4 0.02 

 Manganese 91.2 94.3 15.3 0.73 

 Zinc 92.3 28.6 12.7 0.05 
aHydroxy trace minerals: 20 mg Cu/kg DM from CuOHCl; 40 mg Mn/kg DM from MnOHCl; 

60 mg Zn/kg DM from ZnOHCl. 
bSulfate trace minerals: 20 mg Cu/kg DM from CuSO4; 40 mg Mn/kg DM from MnSO4; 60 mg 

Zn/kg DM from ZnSO4. 
cDialyzed against Tris-EDTA (0.01M ethylenediaminetetraacetate in 0.05M tris-

hydroxymethyl-aminomethane) at 4°C for 22 h. 
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Figure 2.1a: The influence of trace mineral source on soluble copper, within the ruminal contents 

of steers receiving a pulse dose of either sulfate trace minerals (STM;  20 mg Cu/kg DM from 

CuSO4; or hydroxy trace minerals (HTM; 20 mg Cu/kg DM from CuOHCl; The x-axis denotes 

sampling time in hours, the y-axis denotes rumen soluble copper. Error bars represent standard 

errors.  
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Figure 2.1b: The influence of trace mineral source on soluble manganese, within the ruminal 

contents of steers receiving a pulse dose of either sulfate trace minerals (40 mg Mn/kg DM from 

MnSO4) or hydroxy trace minerals (HTM; 40 mg Mn/kg DM from MnOHCl). The x-axis 

denotes sampling time in hours, the y-axis denotes rumen soluble manganese. Error bars 

represent standard errors.  
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Figure 2.1c: The influence of trace mineral source on soluble zinc, within the ruminal contents of 

steers receiving a pulse dose of either sulfate trace minerals (STM; 60 mg Zn/kg DM from 

ZnSO4) or hydroxy trace minerals (HTM; 60 mg Zn/kg DM from ZnOHCl). The x-axis denotes 

sampling time in hours, the y-axis denotes rumen soluble zinc. Error bars represent standard 

errors.  
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