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ABSTRACT

SURROGATE MODELING FOR EFFICIENT ANALYSIS AND DESIGN OF ENGINEERING

SYSTEMS

Surrogate models, trained using a data­driven approach, have been extensively used to approx­

imate the input/output relationship for expensive high­fidelity models (e.g., large­scale physical

experiments and high­resolution computationally expensive numerical simulations). The compu­

tational efficiency of surrogate models is greatly increased compared with the high­fidelity models.

Once trained, the original high­fidelity models can be replaced by the surrogate models to facilitate

efficient subsequent analysis and design of engineering systems. The quality of surrogate based

analysis and design of engineering systems relies largely on the prediction accuracy of the con­

structed surrogate model. To ensure the prediction accuracy, the training data should be adequate

in terms of the size of the training data and their sampling. Unfortunately, constrained by limited

computational budgets, typically it is challenging to obtain a lot of training data by running high­

fidelity models. Furthermore, significant challenge arises in obtaining sufficient training data for

problems with high­dimensional model inputs due to the well­known curse of dimensionality.

In order to build surrogate models with high prediction accuracy and generalization perfor­

mance while using as less computational resources as possible, this dissertation proposes several

advanced strategies and examines their performances within several practical engineering appli­

cations. The fundamental idea of the proposed strategies is to embed extra knowledge about the

high­fidelity models in the surrogate model by enriching the training data (e.g., leverage additional
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low­fidelity data, or censored/bounded data) and enhancing model assumption (e.g., explicitly in­

corporate prior knowledge about the physics of the problem, or explore low­dimensional latent

structures/features), which reduces the required size of high­fidelity training data and meanwhile

effectively boosts the prediction accuracy of the established surrogate model. Among different

surrogate models, Gaussian process models have been gaining popularity due to its flexibility in

modeling complex functions and ability to provide closed­form predictive distributions. Therefore,

the strategies are developed in the context of Gaussian process model, but the ideas are expected

to be applicable to other types of surrogate models. In particular, this dissertation (i) develops a

physics­constrained Gaussian process model to efficiently incorporate our prior knowledge about

physical constraints/characteristics of the input/output relationship by designing specific kernels,

(ii) proposes a general multi­fidelity Gaussian process model capable of integrating training data

with different level of accuracy (i.e., both high­fidelity data and low­fidelity data) and complete­

ness (i.e., both accurate data and censored data), and (iii) develops an efficient surrogate modeling

approach for problems with high­dimensional binary model inputs by integrating dimension reduc­

tion technique and Gaussian process model, and investigates its application in design optimization

problems. The excellent performance of the proposed strategies are then validated through anal­

ysis and design of several different engineering systems, including (i) calculating hydrodynamic

characteristics of wave energy converters (WECs) in an array, (ii) predicting the deformation capac­

ity of reinforced concrete columns under cyclic loading, and (iii) optimizing topology of periodic

structures.
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CHAPTER 1:

INTRODUCTION

1.1 Background

Physical experiments or numerical simulations are usually carried out to explore the behav­

ior of engineering systems. However, physical experiments can be extremely expensive in many

situations, such as destructive tests and prototyping (Durrande and Le Riche 2017). Numerical

simulations, as an alternative to physical experiments, are less expensive to perform. Nevertheless,

to capture the behavior of engineering systems with high accuracy, many detailed simulations are

extremely time­consuming to run. Moreover, in situations where a large number of system model

evaluations are needed (e.g., parametric study, design optimization, uncertainty quantification), di­

rect adoption of physical experiments or detailed numerical simulations (hereinafter referred to as

high­fidelity models) becomes prohibitive from the cost or time perspective (Huang et al. 2011).

One way to circumvent the challenges associated with running the high­fidelity models is to

construct surrogate models to approximate the input­output relationship for the high­fidelity mod­

els. As a special case of supervised machine learning, surrogate models have been applied in the

engineering field for efficient analysis and design. Surrogate models are built based on a database

obtained by evaluating the high­fidelity models, formally denoted as training data. The computa­

tional efficiency of surrogate models is greatly increased compared with the high­fidelity models.

Therefore, once trained, the original high­fidelity models can be replaced by the surrogate mod­

els for efficient analysis and design of engineering systems (Jin et al. 2002, 2003; Kaymaz 2005;

Xiong et al. 2007; Sudret 2008; Huang et al. 2011; Taflanidis et al. 2013; Tao et al. 2017). Vari­

ous surrogate models have been used in the literature, for example, polynomial response surfaces
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(Bucher and Bourgund 1990;Wang 2003), artificial neural networks (Hassoun et al. 1995; Jain et al.

1996; Hurtado and Alvarez 2001; Deng et al. 2005), support vector machines (Hearst et al. 1998;

Gunn et al. 1998; Hurtado 2004; Steinwart and Christmann 2008), polynomial chaos expansions

(Sudret and Der Kiureghian 2002; Choi et al. 2004; Sudret 2008; Crestaux et al. 2009), and Gaus­

sian process model (Sacks et al. 1989; Beers and Kleijnen 2003; Rasmussen 2004; Forrester et al.

2008). Comparative studies have been done by some researchers to investigate the performance

of different surrogate models (Simpson et al. 2001b; Willmes et al. 2003; Forrester et al. 2008;

Paiva et al. 2010; Luo and Lu 2014). Among different surrogate models, the Gaussian process

model has been gaining popularity due to its high flexibility in approximating complex functions.

More importantly, it not only provides the prediction but also the associated predictive uncertainty,

namely the local variance, which can be used to guide adaptive sampling and training (Picheny

et al. 2010), to guide optimization (Jones et al. 1998), and be explicitly incorporated when needed

(e.g., in the context of risk assessment (Jia and Taflanidis 2013), and sensitivity analysis (Le Gratiet

et al. 2017)).

The quality of surrogate based analysis and design of engineering systems relies largely on the

prediction accuracy of the constructed surrogate model, and therefore a high approximation accu­

racy is usually desired for surrogate modeling. Unlike typical machine learning methods involving

big data, researchers are interested in using small number of training data to obtain desired predic­

tion accuracy for surrogate models (Viana et al. 2010; Sudret et al. 2019). However, for complex

systems with highly nonlinear input­output relationship, surrogate modeling with limited training

data usually struggles to achieve the goal. To increase the prediction accuracy, a common prac­

tice is to increase the training data size so that more information about the high­fidelity model can

be incorporated. Unfortunately, limited computational budgets often makes it difficult for us to
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run more high­fidelity models. For high­dimensional model inputs, we face particularly signifi­

cant challenge in obtaining sufficient training data, since the number of required training data to

achieve desired accuracy is typically exponential with the input dimensionality (i.e., the so­called

curse of dimensionality) (Viana et al. 2010). On the other hand, although sometimes we might be

able to obtain a large number of high­fidelity data, the training cost of the surrogate model could

also be beyond our affordability. This is especially the case for kernel­based surrogate models such

as Gaussian process models and support vector machines, since their training time scales at least

quadratically to the number of training data (DeCoste and Schölkopf 2002). As a results, how to

use as less computational cost as possible to efficiently inform an accurate surrogate model has

attracted extensive research interests.

In light of the high efficiency of using surrogate models for analysis and design of complex

engineering systems, and the significant challenge in developing accurate surrogate models using

limited computational budget, this dissertation aims at proposing strategies from different perspec­

tives in order to effectively reduce the computational cost of surrogate modeling and improve the

prediction performance. The fundamental idea of the proposed strategies is to embed extra knowl­

edge about the high­fidelity models in the surrogate model by enriching the training data (e.g.,

leverage additional low­fidelity data, or censored/bounded data) and enhancing model assumption

(e.g., explicitly incorporate prior knowledge about the physics of the problem, or explore low­

dimensional latent structures/features), which reduces the required size of high­fidelity training

data and meanwhile effectively boosts the prediction accuracy of the established surrogate model.

Among various surrogate models proposed in the literature, Gaussian process models (Sacks et al.

1989; Rasmussen 2004) have been gaining popularity due to its flexibility in modeling complex

functions and ability to provide closed­form predictive distributions. The predictive mean of Gaus­

3



sian process model is known as the Best Linear Unbiased Predictor (BLUP), and for prediction it

is based on only matrix manipulations. More importantly, the Gaussian process model not only

gives the mean prediction but also the associated uncertainty. This information can be further ex­

plicitly incorporated to adaptively improve the prediction accuracy and facilitate effective analysis

or design (Jones et al. 1998; Jia and Taflanidis 2013; Le Gratiet et al. 2017). Therefore, the specific

strategies are developed in the context of Gaussian process model, but the ideas are expected to be

applicable to other types of surrogate models.

1.2 Literature Review

This section reviews the past research dedicated to improving the computational efficiency in

building accurate surrogate models.

1.2.1 Physics­constrained surrogate model

In many practical engineering problems, we have some prior knowledge about the behavior

of the interested system, and one example is that some transformations on the model input do not

change the model output (i.e., symmetry or invariance). For example, in a chemical environment,

the interatomic potential of a molecule or crystal is permutation invariant with respect to the or­

dering of the atoms in the same species (Bartók et al. 2013). In disaster assessment, the model

used for super­resolving remote sensing imagery is invariant to temporal ordering of the collected

low­resolution images (Valsesia and Magli 2021). In a group pile foundation system where all

piles have the same design parameters, the seismic performance of the whole system will not be

impacted if the ordering of the piles is switched. Additionally, power generation of a wave farm

is permutation invariant to the ordering of the wave energy converters in the array. Another ex­

ample of the physical constraints is the additivity feature. Mathematically, a model function can

4



be decomposed/expanded as the sum of the contributions from all orders of interactions between

different input dimensions, and this concept is similar to the well­known high­dimensional model

representation (HDMR) (Sobol’ 1993; Li et al. 2001; Sobol’ 2003). The function decomposition

can be physically interpretable for many engineering problems. A good example is the classical

many­body interaction problems in the field of quantummechanics andmolecular dynamics, where

the system model output (i.e., the total potential) can be decomposed to the sum of the output from

sub­systems, represented by many­body terms (i.e., individual terms and interaction terms) (Yao

et al. 2017; Zhang et al. 2020a).

Standard way of building surrogate model (i.e., simply relying on input­output data, or so­

called data­driven model) ignores prior knowledge on physical characteristics of the problem or

input­output relationship (e.g., the aforementioned symmetry, invariance and additivity), which

may increase the training cost and lead to surrogate models with lower prediction accuracy and

generalization ability (Karniadakis et al. 2021). The available prior knowledge about the physical

characteristics of the input­output relationship should be incorporated into surrogate modeling,

since it may potentially reduce the required training cost, and improve the prediction accuracy and

generalization ability of the surrogate model under the same number of training data (Rasmussen

2004; Haasdonk and Burkhardt 2007; Zhu et al. 2019).

Data augmentation is a common way to encode the prior knowledge about the symmetry and

invariance features. By transforming the original training data based on the invariance informa­

tion while keeping the corresponding response unchanged, new training data can be generated and

added to the training set (Beymer and Poggio 1995; Niyogi et al. 1998; Dao et al. 2019). The

augmented training set then constrains the surrogate model to produce predictions which are phys­

ically plausible (van der Wilk et al. 2018). However, the direct data augmentation may result in
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additional computational cost to the training of surrogate models, since completely encoding some

prior knowledge can easily increase the data size to the hundreds or thousands of times (DeCoste

and Schölkopf 2002; Rasmussen 2004). On the other hand, for system models which demonstrate

additivity features, surrogate models can be separately constructed for sub­systems and then added

together to obtain the total response (Zhang et al. 2020a). However, to apply the approach, infor­

mation on the contributions from subsets of the multiple­body system is needed; however, such

information is not always available, and its availability (i.e., whether it can be calculated) depends

on the (numerical) model used.

In recent years, physics­informed or physics­constrained techniques have emerged in the sur­

rogate modeling community. Physics­constrained surrogate modeling aims to introduce physical

laws and constraints (e.g., partial differential equations, boundary conditions) to the model con­

struction and thus guide the model training to produce physically consistent predictive response

(Frankel et al. 2020; Karniadakis et al. 2021). Such surrogate models are able to integrate additional

information about the physical laws/constraints to enhance the efficiency of the pure data­driven

learning, and this potentially reduce the demand for a large training set (Zhang et al. 2020b). In

general, a surrogate model can be made physics­aware by introducing observational biases, induc­

tive biases or learning biases (Karniadakis et al. 2021). The aforementioned data augmentation

is often used to introduce observational biases, since the underlying laws of physics are encoded

in the augmented data and the surrogate model trained based on adequate data is able to generate

predictions following the corresponding physical principles. Inductive biases (i.e., model assump­

tions (Marino and Manic 2019)) describes the prior knowledge about the physical laws which can

be incorporated by designing specific model architectures. Such prior knowledge is usually re­

lated to some symmetry/invariance features, i.e., transformations (such as reflection, permutation,
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translation, and rotation) on model input do not change the model output. A example of surrogate

models designed to implicitly learn symmetric/invariant features is the well­known convolutional

neural network. Its architecture is designed based on convolution operations which enables the

network to be invariant to some degrees of object/pixel translation, scaling and local deformation

(Lawrence et al. 1997; Albawi et al. 2017). Recently, a new neural network architecture, named Set

Transformer (Lee et al. 2019), was proposed to preserve the permutation invariance of problems

involving multiple instance learning (e.g., three­dimensional shape recognition). Such problems

involve set inputs rather than the conventional vector inputs, and the solutions do not rely on the

ordering of the elements in a set. In addition to these neural networks, there are many examples of

network architectures designed for the purpose of enforcing symmetry/invariance properties (see

Bronstein et al. (2017); Zaheer et al. (2017); Tai et al. (2019); Cohen et al. (2019)). Finally, learning

biases correspond to the prior knowledge about the physical constraints that can be enforced by pe­

nalizing loss functions. Many of currently well­known physics­informed neural networks (Raissi

2018; Raissi et al. 2019; Zhu et al. 2019; Sun et al. 2020) are in this category. These networks are

mainly designed for problems governed by partial differential equations (PDEs), and by encoding

PDEs into the loss functions, the networks are constrained to satisfy the underlying physical laws.

1.2.2 Multi­fidelity surrogate model

To build surrogate models, training data obtained by evaluating high­fidelity models is needed.

For some extremely expensive high­fidelity models such as large­scale experiments and detailed

numerical simulations, the number of high­fidelity runs is usually limited (e.g., due to the insuffi­

cient computational resources). With a small amount of high­fidelity data, the accuracy of estab­

lished surrogate model might be compromised (Xia and Shi 2018). The aforementioned training

7



data is typically accurate (i.e., reflect the behavior of a system model with acceptable accuracy

(Fernández­Godino et al. 2016)) but costly to obtain. By contrast, low­fidelity data is less com­

putationally demanding to establish, such as data from coarse­resolution numerical simulations or

reduced order models (Willcox 2000; Lucia et al. 2004; Willcox and Megretski 2005). Although

lacking accuracy, the low­fidelity data also contains useful information about the system model

(e.g., the general trend of the output from the high­fidelity model) (Liu et al. 2018a) and can be

used for surrogate model training, especially considering that the low­fidelity data can be efficiently

collected. However, only using low­fidelity data may also result in low prediction accuracy or bias

of the surrogate model (Cheng et al. 2021).

To address the constraint, multi­fidelity surrogate models (Kennedy and O’Hagan 2000; For­

rester et al. 2007; Qian and Wu 2008; Le Gratiet 2013a), which can leverage the accuracy of high­

fidelity data and the efficiency of low­fidelity data, have been proposed. By integrating a limited

number of high­fidelity training data and a large quantity of low­fidelity training data (Tao et al.

2019; Hao et al. 2020), the prediction accuracy and computational efficiency can be enhanced com­

pared to the surrogate models using only single­fidelity data. This approach is helpful in the context

of building predictive model using multi­fidelity data, since for many problems the simulations can

be run at different fidelity level with different costs. Kennedy and O’Hagan (2000) suggested that

multi­level simulations can be used to make inference about the results from the most complex sim­

ulation, and the computational efficiency can be greatly improved. Qian and Wu (2008) developed

a multi­fidelity Gaussian process model that can incorporate uncertainties in the model parameters

using a Bayesian approach. However, the posterior distributions of the model parameters do not

have a closed form expression. To address this problem, LeGratiet (2013a,b) proposed a newmulti­

fidelity Gaussian process model which extends the scaling parameter to a more practical condition
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and can give the analytical expressions of the posteriors of the model parameters. These research

works mainly focus on developing various model forms (e.g., using different scaling/additive terms

to describe the difference between the low­fidelity model and the high­fidelity model), and then

establish a Bayesian framework to calibrate the introduced model parameters. Another research

focus of the multi­fidelity surrogate models is to investigate their applications in design optimiza­

tion (Gano et al. 2004; Forrester et al. 2007; Keane 2012; Liu et al. 2018b). For example, Gano

et al. (2004) have studied Variable Fidelity Optimization (VFO) where the high­fidelity models

are approximated by the low­fidelity models and a scaling function generated by Gaussian process

model. Compared to the single­fidelity surrogate model based optimization approach, the predic­

tion accuracy of the surrogate model can be enhanced and the the optimal solutions can be found

more quickly when using multi­fidelity surrogate model based optimization (Forrester et al. 2007).

Although there are also different types of surrogate models (e.g., radial basis function and poly­

nomial chaos expansion) established based on data of different levels of accuracy and cost (Ng

and Eldred 2012; Cai et al. 2017; Durantin et al. 2017; Palar et al. 2018), existing multi­fidelity

surrogate models are mainly developed based on Gaussian process models.

1.2.3 Surrogate model considering data censoring

Standard surrogate models usually deal with high­fidelity data that are “accurate”. Here “ac­

curate” means the high­fidelity model provides exact values for the interested output. However,

in many engineering applications, for various reasons the outputs of physical experiments or com­

putational simulations are not always the exact values of interested output. Frequently, instead of

accurate data, we have the so­called censored data (Quesenberry Jr et al. 1989; Lin et al. 1997).

For example, when doing experiments to investigate the deformation capacity of a reinforced con­
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crete (RC) column, we define the deformation capacity as the displacement of the column when the

lateral resistance drops to 20% of its peak value (Gardoni et al. 2002; Wu et al. 2004). However, for

some columns we can often observe that even when the lateral resistance has dropped below 80%

of its peak value, the column still does not reach its ultimate deformation. In this case, we can only

obtain a certain range of the deformation capacity. Such type of practical problems are called cen­

soring, and the corresponding inputs/outputs of the experiments or simulation are called censored

data. Another common example for censored data is the data from partially converged numerical

simulations, which instead of providing the the exact values for the interested output provides an

upper bound or lower bound or both for the interested output. Censored data also contains useful

information about the system model (i.e., interval of the responses), and this type of information

can be fully exploited to establish better surrogate models.

Regression models have been developed to fit censored data (i.e., censored regression models),

and most of these regression models are of parametric forms (e.g., Weibull or Gamma distributions)

(DeMaris 2004; Hashimoto et al. 2010; Prataviera et al. 2019) or semi­parametric forms (e.g., pro­

portional hazard models) (Fox and Weisberg 2002; Harrell 2015). Many research efforts have also

been devoted to modeling censored data using surrogate models such as support vector machines

(Shivaswamy et al. 2007; Khan and Zubek 2008; Goldberg and Kosorok 2017) and neural networks

(Zhu et al. 2016; Luck et al. 2017; Gensheimer and Narasimhan 2019). These surrogate models

mainly focus on designing specific loss/cost functions to deal with censored data (Zhao and Feng

2020). In the field of Gaussian process model, in order to address censored data, many approaches

have been proposed (Dubrule and Kostov 1986; Kostov and Dubrule 1986; Stein 1992; Militino

and Ugarte 1999; Abrahamsen and Benth 2001). Nevertheless, these methods all suffer from some

drawbacks, e.g., the amount of information contained in accurate data and censored data is not
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differentiated (De Oliveira 2005). To address the issues, De Oliveira (2005) proposed to use data

augmentation (note: different from the aforementioned one for incorporating prior knowledge) to

deal with the censored data. This approach treats the censored data as unknown model parame­

ters and the extended model with these parameters is then built. Later, in Groot’s study (2012),

the likelihood of the model parameters based on data subject to censoring is presented. The like­

lihood results in no analytical expressions for the posterior distributions of the model parameters,

so expectation propagation (Minka 2001, 2013) is applied to approximately make inference for

the model. Similarly, Gammelli et al. (2020) developed a censored likelihood function based on

the Tobit censored regression model (Chib 1992), and then approximately estimated the posterior

predictive distribution via expectation propagation. Essentially, the aforementioned methods uti­

lizes Bayesian approaches for inference purpose and the censored data are taken into account by

modifying the likelihood functions.

1.2.4 Dimension reduction assisted surrogate model

Parametrization and training of many surrogate models typically face difficulties when the

model inputs becomes high­dimensional (Lataniotis et al. 2020). This is because the surrogate

models suffer from the curse of dimensionality (Verleysen and François 2005), and the number of

training data required for model construction (to achieve desired prediction accuracy) grows ex­

ponentially with the input dimension (Tripathy et al. 2016). Many engineering problems involve

high­dimensional inputs, and directly building surrogate models using the high­dimensional inputs

may result in low approximation quality (Palar and Shimoyama 2018).

To address the challenges in building surrogate models for problems with high­dimensional

inputs, many approaches have been proposed in previous literature. One common case is to build
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surrogate models for models with high­dimensional structured data (Ramsay and Dalzell 1991; Tri­

pathy et al. 2016), which shows strong correlations between different dimensions (i.e., time­series

or spatial quantities) (Lataniotis et al. 2020). In such problems, some general dimension reduction

techniques can be applied to the model input before surrogate modeling, which involves projecting

the original high­dimensional input to a lower­dimensional latent space (Lataniotis et al. 2018).

Typically, the dimension reduction techniques can be categorized to two classes: unsupervised di­

mension reduction and supervised dimension reduction (Joy et al. 2019). One of the supervised

dimension reduction techniques having attracted extensive attention is the active subspace (Con­

stantine et al. 2014; Constantine 2015), which is a low­dimensional representative subspace of the

model input obtained by detecting and exploiting the most important directions of the model out­

put, i.e., the directions of strongest variability of the model. An active subspace involves finding

a orthogonal projection matrix to project the model input to a low­dimensional subspace, and one

needs to evaluate the gradients of the model at a number of input sample points to obtain the projec­

tion matrix (Constantine 2015). This method has been successfully used to reduce input dimension

in surrogate model based aerodynamic shape optimization (Grey and Constantine 2018; Li et al.

2019a). However, one drawback of this method is that for those models with a high­dimensional

input which do not have explicit mathematical expressions or computer functions, the computa­

tion of the gradients typically involves significant or sometimes even prohibitive computational

efforts (Palar and Shimoyama 2018). An alternative approach is the partial least­squares algorithm

(Bouhlel et al. 2016a,b; Papaioannou et al. 2019). This method identifies the directions with largest

significance by analyzing the covariance between the model input and output, and does not require

the calculation of the gradients.
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For unsupervised dimension reduction, commonly used techniques include Karhunen–Loève

(KL) expansion (Ghanem and Spanos 2003), principal component analysis (PCA) (Jolliffe 2002),

kernel PCA (Wu et al. 1997), and locally linear embedding method (Roweis and Saul 2000). These

dimension reduction methods have been successfully applied to address the issues with surrogate

modeling for high­dimensional inputs. For example, KL expansion has been combined with poly­

nomial chaos expansion to explore a high­dimensional groundwater model (Zhang et al. 2015; Dai

et al. 2016). Kernel PCA was also used with radial basis function networks to accelerate the high­

dimensional evolutionary optimization (Kapsoulis et al. 2016). Raponi et al. (2020) addressed

the scalability of surrogate­assisted global optimization by integrating it with PCA. In addition

to optimization tasks, unsupervised dimension reduction techniques have also been used to high­

dimensional reliability analysis (Zhou and Peng 2020). Among these techniques, PCA discovers

the linear projections of the data with maximum variance, or equivalently, the lower dimensional

subspace that yields the minimum squared reconstruction error (Tipping and Bishop 1999). Com­

pared to other techniques, PCA has the advantage of simplicity in implementation, and more im­

portantly, PCA provides a bidirectional transformation between the original space and the latent

space (Jolliffe 2002). This especially is of great importance to optimization problems since the

optimal design established in the latent input space needs to be transformed back to the original

input space.

1.2.5 Surrogate model based optimization

Considering the high efficiency of surrogate models, any global optimization algorithm can

be used to efficiently find the optimum by replacing the high­fidelity models with the surrogate

models. Early surrogate based optimization methods mainly focused on response surface surrogate
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models (Jones et al. 1998) where response surfaces were used to fit a small number of high­fidelity

data, and then used in global optimization instead of the expensive high­fidelity models. Later,

optimization approaches based on other alternative surrogate models were investigated as well, e.g.,

Gaussian process models (Simpson et al. 2001a; Forrester and Keane 2009), radial basis functions

(Regis and Shoemaker 2005; Jakobsson et al. 2010), and neural networks (Muralitharan et al. 2018;

Zou and Chen 2021). Different ways of constructing surrogate models for optimization and their

advantages have been summarized (Jin et al. 2001; Forrester et al. 2008; Forrester and Keane 2009).

However, directly replacing the high­fidelitymodel with the surrogatemodel for optimization could

easily lead to a local optimal solution. This is because this way of search essentially assumes that

the predictor is an accurate prediction of the actual output values, i.e., it puts too much emphasis

on exploiting the predictor but puts no emphasis on exploring points where we are uncertain (Jones

et al. 1998). To address this, we need to sample more at points where the uncertainty is high.

Therefore, another focus of the research on surrogate based optimization is how to adaptively select

the infill points so that the optimum can be obtained quickly and accurately. In order to trade­off

between exploiting the predictor and exploring the uncertain regions, some infill criteria have been

developed to guide the adaptive design of experiment. Among those infill criteria which balance

exploitation and exploration (see Forrester et al. (2008)), expected improvement is commonly used,

where infill points are adaptively added at locations that give the largest expected improvement in

the objective function based on the surrogate model (Forrester and Keane 2009; Jones 2001).

1.3 Research Gaps and Motivation

This dissertation focuses on proposing multiple strategies to efficiently train accurate Gaussian

process models (i.e., obtain high prediction accuracy and generalization ability with as less compu­
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tational cost as possible) from different perspectives. More specifically, we enhance the Gaussian

process models by (i) embedding physical constraints, (ii) integrating high­fidelity training data

and low­fidelity training data as well as incorporating both accurate and censored training data,

and (iii) applying dimension reduction to handle high­dimensional inputs. Section 1.2 has already

reviewed the existing research on these topics. In this section, the research gaps in these topics will

be identified and also the research motivation of this dissertation will be stated.

1.3.1 Physics­constrained Gaussian process model

Existing research on physics­constrained surrogate models is mainly related to neural networks,

including proposing specialized network architectures to include symmetry/invariance features of

the problems, or imposing loss function penalty constraints to enable the predictions to satisfy

the governing partial differential equations (PDEs) of the problems. However, currently there is

only a few literature on physics­informed or physics­constrained Gaussian process models, and

the existing limited research works are focusing on physical knowledge represented in the form of

PDEs (Yang et al. 2018;Wu et al. 2019; Albert 2019; Hanuka et al. 2019; Tong et al. 2020). In many

engineering problems, we frequently have prior knowledge about the symmetry/invariance features

of the input­output relationship, and current physics­constrained Gaussian process models has little

research on how to incorporate such physical constraints. In addition, the prior knowledge about

the additivity feature (i.e., the many­body expansion principle) has not exploited under the topic of

physics­constrained Gaussian process models. Overall, there is strong need to develop Gaussian

process models that can explicitly incorporate symmetry, invariance, and additivity features.
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1.3.2 Multi­fidelity Gaussian process model considering censored data

There have been a lot of research works on multi­fidelity Gaussian process models, but existing

multi­fidelity Gaussian process models usually use a constant scaling factor to match the low­

fidelity model to the high­fidelity model (Forrester et al. 2008; Kennedy and O’Hagan 2000; Kuya

et al. 2011). Also, measurement error is usually not explicitly modeled. In order to accommodate

more complex relationships betweenmodels of different fidelity, a more general scaling factor (e.g.,

non­constant scaling factor that varies with the input) should be used, and also measurement error

needs to be considered. On the other hand, the focus of existing research on incorporating censored

data has been in the development of Gaussian process models rather than multi­fidelity Gaussian

process models. To the author’s best knowledge, multi­fidelity Gaussian process models that can

incorporate both accurate data and censored data have not been studied. In this setting, the inclusion

of censored data entails significant computational challenges, i.e., in establishing the likelihood

function needed for calculating the posterior distribution of the model parameters. To facilitate

the application of multi­fidelity Gaussian process models for various engineering problems where

multi­fidelity data and censored data are available, the above research gaps need to be closed and

associated challenges need to be addressed.

1.3.3 Dimension reduction assisted Gaussian process model and its application in optimization

Though effective, surrogate based optimization (also referred as efficient global optimization)

still faces challenges for problems with high­dimensional design variables stemming from the diffi­

culty in building accurate surrogate models for problems with high­dimensional inputs (i.e., design

variables). Therefore, direct application of Gaussian process model based optimization to high­

dimensional optimization faces challenges. As a popular dimension reduction technique, PCA has
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been mostly used to reduce output dimensions to facilitate efficient Gaussian process models for

high­dimensional outputs (Jia and Taflanidis 2013; Jia et al. 2016; Aversano et al. 2019; Li et al.

2020). However, it has not been thoroughly investigated in assisting input dimension reduction for

Gaussian process modeling, especially in the context of design optimization. To the author’s best

knowledge, the only literature on PCA assisted Gaussian process model for high­dimensional opti­

mization is in Raponi et al. (2020), which focused on optimization problems with high­dimensional

continuous design variables. However, for high­dimensional discrete optimization (i.e., design

variables take discrete values) or binary optimization (i.e., design variables take 0 or 1), which

is also common in engineering field (e.g., topology optimization) and typically more challenging,

there is no research yet on integrating PCA with Gaussian process model. Furthermore, PCA typ­

ically performs well when the data exhibits some latent/low­dimensional features. Consequently,

if the model inputs only demonstrate such features over part(s) of the design space rather than the

entire design space, PCA cannot be applied directly and some data processing procedures might

be needed. This issue has not been addressed in the existing literature. With the research gaps

identified, this dissertation aims to provide a deeper insight into the PCA assisted Gaussian pro­

cess model for high­dimensional optimization, with a focusing on problems with high­dimensional

binary design variables.

1.4 Summary of contributions and objectives

Overall, the proposed research seeks to facilitate efficient Gaussian process model based engi­

neering system analysis and design. The key novel contribution of this dissertation is on proposing

strategies from different perspectives in order to effectively reduce the computational cost of Gaus­

sian process modeling and improve the prediction performance. The fundamental idea of the pro­

17



posed strategies is to embed extra knowledge about the high­fidelity models in the surrogate model

by enriching the training data (e.g., leverage additional low­fidelity data, or censored/bounded data)

and enhancing model assumption (e.g., explicitly incorporate prior knowledge about the physics of

the problem, or explore low­dimensional latent structures/features), which can effectively reduce

the required size of high­fidelity training data andmeanwhile effectively boosts the prediction accu­

racy of the established Gaussian process model. The strategies are further examined in the context

of several engineering applications. In particular, the main research objectives of this dissertation

are:

• Develop a physics­constrained Gaussian process model to efficiently incorporate our prior

knowledge about physical constraints/characteristics of the input­output relationship by de­

signing specific kernels.

• Establish a more general multi­fidelity Gaussian process model integrating a small number

of expensive high­fidelity data and a large number of cheap low­fidelity data by developing

a more general model form to enhance the existing multi­fidelity Gaussian process model

and by developing a corresponding Bayesian calibration framework.

• Propose a multi­fidelity Gaussian process model capable of integrating training data with

different level of accuracy (high­fidelity data and low­fidelity data) and completeness (i.e.,

accurate data and censored data).

• Develop an efficient surrogate modeling approach for design optimization problems with

high­dimensional binary model inputs (or design variables) by integrating dimension reduc­

tion technique and Gaussian process model and by using adaptive sampling scheme.
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1.5 Outline of Dissertation

The remainder of this dissertation is organized as follows. Chapter 1 provides the research back­

ground for this dissertation and presents the literature review on four main research topics. Then,

the research gap for each research topic are identified and the research objectives are described.

Chapter 2 reviews the construction of a standard Gaussian process model, along with some related

important topics such as design of experiment and multidimensional outputs. This sets the foun­

dation for the proposed strategies for improving the performance of the Gaussian process model.

Chapter 3 proposes a physics­constrained Gaussian process model which can accurately predict re­

sponse exhibiting symmetry, invariance, and additivity features. These physical constraints are first

mathematically formulated, based on which physics­constrained kernels are then designed and used

for the Gaussian process model to effectively and efficiently incorporate the physical constraints.

An illustrative example on predicting hydrodynamic characteristics of WECs in an array using the

proposed algorithm is presented, and the corresponding research findings are summarized. Chap­

ter 4 proposes a general multi­fidelity Gaussian process model integrating low­fidelity data and

high­fidelity data considering censoring in high­fidelity data. The uncertain model parameters are

calibrated using a Bayesian approach. The likelihood function considering censored data is first

estimated by adopting data augmentation algorithm, and closed form conditional posteriors are

derived for the augmented model parameters. Then Gibbs sampling is used to efficiently gener­

ate samples from the posterior distributions for the model parameters, and the generated posterior

samples are used to establish the posterior statistics for the output predictions at new inputs. As

an illustrative example, the proposed model is applied to establish predictive model for the defor­

mation capacity of RC columns, and the results are presented and discussed. Chapter 5 proposes a
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dimension reduction assisted Gaussian process model within the context of optimization to address

the challenges stemming from high dimensionality of binary inputs (i.e., design variables take 0 or

1). An optimization problemwith high­dimensional discrete design variables is first formulated and

the associated computational challenges are discussed. The proposed algorithm is then presented,

focusing on dimension reduction of design space and adaptive surrogate based optimization. Fi­

nally, an illustrative example on topology optimization is demonstrated, and the performance of

the proposed algorithm is discussed. Chapter 6 concludes the dissertation by highlighting the main

findings and suggesting some future research directions.
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CHAPTER 2:

REVIEW OF GAUSSIAN PROCESS MODEL

2.1 Introduction

Gaussian process model has been widely used for regression and classification problems in ma­

chine learning communities (Rasmussen 2004). Compared to other surrogate models, the Gaussian

process model has been gaining popularity due to its flexibility in modeling complex functions and

ability to provide closed­form predictive distributions. In engineering fields, we are often more

interested in responses which are continuous quantities, and thus this dissertation mainly focuses

on Gaussian process model for regression tasks. A traditional regression problem typically aims

at modeling the relationship between responses (i.e., outputs) and explanatory variables (i.e., in­

puts), and describing the relationship by a function which fits the given training data the best (Gh­

anizadeh et al. 2021). In Gaussian process model, the fundamental hypothesis is that there are

infinite possible functions that can describe the input­output relationship, and any finite number of

these functions follow a multivariate Gaussian distribution (Rasmussen 2004). Note that the prob­

ability distribution corresponds to the prior distribution over the functions. After conditioning on

training data, the prior distribution over the functions is updated to the posterior distribution which

is then used to establish a predictive distribution over any new input (Ghanizadeh et al. 2021).

2.2 Gaussian Process Model

For an unknown expensive function (i.e., an alternative way of describing high­fidelity model)

with input vector x = [x1, x2, ..., xnx
] ∈ R

nx , a Gaussian process model can be adopted to approxi­

mate the deterministic function output y(x) ∈ R given a set of observations. Here, the observations
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are the function responses or the model outputs over a set of selected inputs (i.e., experiments). The

core principle is to assume the target function y(x) as a realization of a global model m(x) and a

Gaussian process ε(x). The Gaussian process model is written as

y(x) = m(x) + ε(x) where ε(x) ∼ GP(0, k(x, x′)) (2.1)

This indicates that the residual between the function and the global model is modeled by a Gaus­

sian process, and the mean of the Gaussian process prior over the target function is also m(x).

The global model m(x) is typically assumed as a regression model, constant or even zero. For

generalization and interpretability purpose, this dissertation uses a regression model, expressed by

m(x) = f(x)Tβ, where f(x) is the q­dimensional vector of basis function and β = [β1, β2, . . . , βq]
T

is the regression coefficients vector. Typically, polynomials of x are used as the basis function,

e.g., linear or quadratic functions of x. For the linear and full quadratic cases, q equals to (nx + 1)

and (nx + 1)(nx + 2)/2, respectively.

After the mean function is set, the property of the Gaussian process model is fully determined

by the covariance function or the so­called kernel, k(x, x′) = σ2Ψ(x, x′), where σ2 is the variance

and Ψ(x, x′) is the correlation function. The following equations show several commonly used

kernel functions:

• Exponential kernel

k (x, x′) = σ2

nx
∏

i=1

exp
(

−|xi − x′
i|

θi

)

(2.2)
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• Squared exponential kernel

k (x, x′) = σ2

nx
∏

i=1

exp

(

−|xi − x′
i|2

2θ2i

)

(2.3)

• Matérn 5/2 kernel

k (x, x′) = σ2

nx
∏

i=1

(

1 +

√
5|xi − x′

i|
θi

+

√
5|xi − x′

i|2
3θ2i

)

exp

(

−
√
5|xi − x′

i|
θi

)

(2.4)

• Matérn 3/2 kernel

k (x, x′) = σ2

nx
∏

i=1

(

1 +

√
3|xi − x′

i|
θi

)

exp

(

−
√
3|xi − x′

i|
θi

)

(2.5)

• Rational quadratic kernel

k (x, x′) = σ2

nx
∏

i=1

(

1 +
|xi − x′

i|2
2αθ2i

)−α

(2.6)

where xi and x′
i are the ith component of the input x and x′, respectively. θi is the scale correlation

parameter (i.e., length­scale) in the correlation function for the ith component of the inputs. Note

that we can also use the same θ for all components, and the corresponding kernel is the isotropic

kernel. For the rational quadratic kernel, α is the scale mixture parameter. If Gaussian process

is used for interpolation/regression purpose, typically positive correlation functions are used con­

sidering that closer points will behave more similarly than points that are further away and the

correlation between two points is expected to decay with the distance between the points.
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2.3 Model Parameter Calibration

The prior distribution over the functions in Eq. (2.1) is then updated by a set of given data points,

i.e., the calibration of the uncertain model parameters in the mean function and the covariance

function. The calibration of the Gaussian process model first requires the creation of a database

of n observations based on the high­fidelity model, corresponding to evaluations of the response

vector Y = {y(xh);h = 1, . . . , n} for different inputs X = {xh;h = 1, . . . , n}. The selection of

these inputs is frequently referenced as design of experiments (DOE) and will impact the accuracy

of the surrogatemodel. Typically, to ensure the surrogatemodel have good accuracy over the design

space, selections that can evenly fill the design space is used, and one popular choice is the Latin

Hypercube Sampling (LHS). Also, some adaptive sampling schemes can be applied to improve the

accuracy in target regions. More details on the DOE will be discussed later. The set {X,Y} is the

so­called training set.

The unknownmodel parameters introduced bym(x) and k(x, x′) include regression coefficients

β, variance σ2, and length­scale θ. Here, σ2 and θ introduced by k(x, x′) are frequently referred to

as hyperparameters. In order to calibrate these parameters using the training set, maximum like­

lihood estimation is usually used to obtain point estimates of the parameters. Due to the Gaussian

properties, the likelihood function p(Y|β, σ2,θ) is represented by

L(β, σ2,θ|Y) = 1

(2πσ2)n/2|Ψ|1/2 exp
[

− 1

2σ2
(Y− Fβ)TΨ−1(Y− Fβ)

]

(2.7)

where F(x) = [f(x1)T , f(x2)T , . . . , f(xn)T ]T , and Ψ is the correlation matrix with the ijth element

calculated by Ψ(xi, xj). The derivatives of the likelihood function with respect to β and σ2 can be

directly calculated, and by setting them to zero the maximum likelihood estimates (MLE) of both
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parameters can be represented by θ. Then optimization algorithms such as genetic algorithm can

then be employed to find the MLE of the parameter θ.

2.4 Prediction

Conditional on the given observationsY and the optimal selection of the model parameters, the

Gaussian process model gives a prediction at any new input x0 that follows a Gaussian distribution

with meanmy(x0) and variance s2y(x0) given by

my(x0) = f(x0)Tβ∗ + k(x0)TK−1(Y− Fβ∗) (2.8)

s2y(x0) = k(x0, x0)− k(x0)TK−1k(x0) + u(x0)T (FTK−1F)−1u(x0) (2.9)

where k(x0) is the n­dimensional covariance vector between the new input x0 and each of the inputs

in X and k(x0) = [k(x0, x1), k(x0, x2), . . . , k(x0, xn)]T . K is the covariance matrix evaluated over

X and K = K(X,X). For simplicity of the expression, u(x0) = FTK−1k(x0) − f(x0). Here

β∗ = (FTK−1F)−1(FTK−1Y) corresponds to the MLE of the parameter β. Note that the mean

prediction in Eq. (2.8) and the associated variance in Eq. (2.9) are typically used when applying

Gaussian process model. If needed, we can also calculate higher­order moments based on the

posterior predictive distribution. For illustration purpose, Figure 2.1 shows an example of the

Gaussian process model prediction, where the black line represents the unknown function to be

predicted, the red line is the mean prediction by the constructed Gaussian process model (i.e.,

my(x)), the red dots are the observations, and the shaded area corresponds to the 95% confidence

interval.
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Figure 2.1: Illustrative example of Gaussian process model (GP in the figure stands for Gaussian process
model).

The predictive mean in Eq. (2.8) is also known as the Best Linear Unbiased Predictor (BLUP).

For prediction at any new input point, it is based on only matrix manipulations, and can provide

an exact interpolation, which means that when the input is the same as one of the training data, the

prediction will have the exact value of the actual (i.e., expensive high­fidelity model based) output.

More importantly, the Gaussian process model not only gives the prediction but also the associated

uncertainty, namely the local variance of the prediction error. This local variance can be explicitly

incorporated in guiding adaptive design of experiments to adaptively improve the accuracy of the

surrogate model and further facilitating effective analysis and design (e.g., sensitivity analysis or

optimization).

2.5 Design of Experiment

The preparation of the training set {X,Y} requires the selection of a set of inputs, i.e., DOE

(Sacks et al. 1989). These experiments may significantly impact the prediction accuracy of the
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Gaussian process model. Typically, to ensure the surrogate model have good accuracy over the

entire design space, selection that can evenly fill the design space is used, i.e., space­filling tech­

niques. Such techniques usually obtain the optimal spread of the experiments based on some ge­

ometric criteria which are defined appropriately (Johnson et al. 1990; McKay et al. 2000), and

are model­independent (i.e., do not rely on the information provided by the model). One popular

choice of space­filling DOE is the Latin Hypercube Sampling (LHS). For prediction tasks, LHS is

commonly used due to its space­filling property and also convenience in implementation.

Alternatively, adaptive DOE schemes (Shewry and Wynn 1987; Sacks et al. 1989) can be ap­

plied to sequentially add samples to the training set. Under such schemes, information extracted

from the already trained surrogate model can be used to develop some criteria to determine where

the new sample(s) should be located. For example, the Gaussian process model provides predic­

tive variance (see Eq. (2.9)) which measures the level of uncertainty of the predictions, and taking

advantage of this information the surrogate model can be guided to adaptively add more samples in

locations where predictive uncertainty is higher. More importantly, in many situations where we

are more concerned about the prediction accuracy at certain region rather than the global prediction

accuracy (e.g., optimization and reliability analysis), adaptive DOE strategies are often applied to

achieve a balance between reducing the global prediction uncertainty and exploring the regions of

interest (Picheny et al. 2010). Such adaptive sampling schemes can enable more wise allocation

of the computational budget when evaluating high­fidelity model for the selected inputs for the

training data and adaptively improve the prediction accuracy of the Gaussian process model.

In the following chapters, LHS is used for prediction tasks, while for the optimization task, an

adaptive sampling scheme is used.
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2.6 Multidimensional outputs

The Gaussian process model developed above is specifically for scalar model output (i.e.,

y(x) ∈ R). In many engineering problems, the interested outputs are of multiple (or even high)

dimensions (i.e., y(x) ∈ R
ny ) where ny > 1. If there is no correlation or there are weak correlations

between different components of the model outputs and also ny is not large, we can separately build

one Gaussian process model for each dimension of the outputs (Jia and Taflanidis 2013). For all

the Gaussian process models, same type of regression model and same type of kernel function can

be selected while the uncertain model parameters for each Gaussian process model is calibrated

separately (Zhang et al. 2020a). In the end, the prediction for the multidimensional outputs are

assembled sequentially by the mean predictions from all the calibrated Gaussian process model.

However, if different components of the model outputs show strong correlations with each other

and also ny is large, building a separate Gaussian process model for each output component be­

comes computationally expensive and may lead to poor prediction accuracy due to the negligence

of the correlations between the outputs. To address the issue, dimension reduction techniques can

be adopted to explore the correlations within the high­dimensional outputs and establish a low­

dimensional latent outputs representation (Blatman and Sudret 2010; Jia et al. 2016), and the Gaus­

sian process model is then conveniently built for the low­dimensional latent outputs. Due to the

low dimensionality of the latent outputs, a single Gaussian process model can be built with respect

to each of the latent outputs, and finally, the prediction of the original multidimensional outputs

can be obtained by transforming back the predicted latent outputs.
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2.7 Derivatives of model outputs

Derivative information about the unknown function y(x) is sometimes important in engineer­

ing analysis and design, e.g., in reliability analysis, the first­order reliability method and various

optimization algorithms generally require gradients of the limit­state function (Gong et al. 2014).

To ensure the performance of such analysis and design, the derivatives should be preserved when

building a surrogate model to approximate the unknown function.

In training of the Gaussian process model, the derivative information of the output is typically

not available and not used, rather the training aims to match the model prediction to the output.

Therefore, theoretically the established Gaussian process model cannot guarantee its derivatives

will match exactly the derivatives of the underlying expensive function. However, when deriva­

tive information is available in the training data, we can incorporate it into the training of the

Gaussian process model to enhance its accuracy (including preserving the derivative information).

This corresponds to the idea of gradient­enhanced surrogate model, and is one form of the idea of

co­kriging (Forrester et al. 2008; Han et al. 2013).

On the other hand, if the Gaussian process model is accurate or as the prediction accuracy im­

proves, the derivative information is expected to be captured with increasing accuracy as well. If we

assume that the established Gaussian process model has enough accuracy, then because the predic­

tive distribution has analytical expressions, we can efficiently compute its first or even higher­order

derivatives. But note that the existence of the derivatives is determined by the differentiability of

its mean and kernel functions. For example, if squared exponential kernel is used, the Gaussian

process model will have infinitely many derivatives since the kernel is infinitely differentiable.

Note that the exponential kernel Eq. (2.2) should not be used in situations where differentiability
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is required because a Gaussian process model with such a kernel is not differentiable, although it

is integrable.
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CHAPTER 3:

PHYSICS­CONSTRAINED GAUSSIAN PROCESS MODEL THROUGH KERNEL DESIGN

3.1 Introduction

Standard way of building surrogate model solely relies on input/output data, i.e., purely data­

driven model. However, this may lead to predictions which are not physically consistent or plau­

sible (Karniadakis et al. 2021), especially when the training data is not sufficient and extrapolation

occurs, resulting in poor prediction accuracy and generalization ability. Although enriching the

training set is an intuitive way to improve the performance of the surrogate model, it is still not

efficient since extracting interpretable information from a large number of data is difficult for most

surrogate models (Karniadakis et al. 2021). Moreover, obtaining so many training data is often

impractical due to the high cost of running the high­fidelity model.

In recent years, physics­informed or physics­constrained methods have merged as an effective

way to address the aforementioned issue in surrogate modeling. In many engineering problems,

we have some prior knowledge about the behavior or fundamental physical laws of the interested

system. Physics­constrained surrogate model integrates our available prior knowledge about the

physical constraints in the model development, and in such way, a more “informative prior” is pro­

vided on top of the training data, guiding the surrogate model to learn the underlying physical laws.

This way of building surrogate model can potentially reduce the required training cost (Rasmussen

2004), and improve the prediction accuracy and generalization ability of the surrogate model under

the same number of training data (Haasdonk and Burkhardt 2007).

A physics­constrained Gaussian process model through kernel design is proposed in this chap­

ter to explicitly incorporate in the surrogate model two types of physical constraints: (i) symmetry
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and invariance features, and (ii) additivity feature. More specifically, we first mathematically for­

mulate the physical constraints including symmetry, invariance, and additivity. An invariant kernel

is then developed to incorporate the invariance and symmetry information and integrated into the

Gaussian process model. This developed invariant kernel enables efficient incorporation of the

prior knowledge in the Gaussian process model, and eliminates the need of handcrafting the input

features. Then, taking advantage of the many­body expansion principle, a new kernel is devel­

oped to embed the additive feature in the Gaussian process model. The kernel exhibits a similar

additive feature to the model output, and is thus named as additive kernel. Finally, the proposed

invariant kernel is combined with the additive kernel to establish an integrated kernel, which is

used to construct more informative Gaussian process models that explicitly include all the physi­

cal constraints. To demonstrate the performance of the proposed algorithm, it is applied to predict

hydrodynamic characteristics of wave energy converters (WECs) in an array which exhibit both

symmetry and invariance features and the additivity feature. The results show that compared to the

standard Gaussian process models, the proposed physics­constrained Gaussian process models re­

quire less training data to achieve desired accuracy in predicting the hydrodynamic characteristics,

and is less vulnerable to the curse of dimensionality.

3.2 Physical Constraints: Invariance, Symmetry, and Additivity

3.2.1 Invariance and symmetry

In many problems, the interested system often exhibits invariance or symmetry features, i.e.,

some transformations on the model input do not change the model output. For example, in a chem­

ical environment, the interatomic potential (E) of a molecule or crystal is permutation invariant

with respect to the ordering of the atoms in the same species (Bartók et al. 2013) (see Figure 3.1).
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For image recognition, the label of an image such as a handwritten digit can be invariant to the

translation and small rotation of the image pixels (LeCun et al. 1995). Following the general defi­

nition (Kondor 2008; Ginsbourger et al. 2012), such invariance and symmetry knowledge about a

function/model y(x) can be formulated as

y(x) = y(t(x)) ∀x ∈ X ∀t ∈ T (3.1)

where t(x) is an operation/transformation on the input x that determines the invariance/symmetry,

and T represents a finite group of all possible such operations. Note that the function y(x) is also

invariant to the compositions of the operations (van der Wilk et al. 2018), and thus the group T

includes both the operations and their possible compositions. For engineering problems, possible

operations typically include permutation, reflection, translation, and rotation which can be discrete

or continuous, finite or infinite transformations. Note that this chapter is mainly concerned with

discrete and finite transformations, and also problems with a small to medium number of transfor­

mations in the operation group.

Figure 3.1: Permutation invariance property of interatomic potential E.

3.2.2 Additivity

For problems with multidimensional model input, the impact of the model input on the model

output may be independent or cooperative (Li et al. 2000) (i.e., the model output may depend on

single dimensions of the input, or interactions between different dimensions of the input). Math­

33



ematically, for a function y(x) with input vector x = [x1, x2, . . . , xnx
] ∈ R

nx , two extreme cases

can be expressed by: (i) y(x) = y1(x1) + y2(x2) + · · · + ynx
(xnx

), i.e., each dimension of the

input has independent influence on the model output and (ii) y(x) = y1,2,...,nx
(x1, x2, . . . , xnx

), i.e.,

only the interactions between all the input dimensions impact the the model output. In general, the

model function y(x) can be decomposed/expanded as the sum of the contributions from all orders

of interactions between different input dimensions, and this concept is similar to the well­known

high­dimensional model representation (HDMR) (Sobol’ 1993; Li et al. 2001; Sobol’ 2003). The

decomposition can be expressed by

y(x) =
nx
∑

i=1

yi(xi) +
nx
∑

i=1

nx
∑

j=i+1

yi,j(xi, xj) + · · ·+ y1,2,...,nx
(x1, x2, . . . , xnx

) (3.2)

where yi(xi) represents the independent contribution from the ith input dimension, yi,j(xi, xj) rep­

resents the cooperative contribution from the interaction between the ith and jth input dimension,

and y1,2,...,nx
(x1, x2, . . . , xnx

) represents cooperative contribution from the interaction between all

input dimensions.

The function decomposition described by Eq. (3.2) is now based on mathematical principles,

but can be physically interpretable for many engineering problems. A good example is the classical

many­body interaction problems in the field of quantum mechanics and molecular dynamics. For

these problems, the system model output (i.e., the total potential) can be decomposed to the sum of

the output from sub­systems, represented bymany­body terms (i.e., individual terms and interaction

terms) (Yao et al. 2017; Zhang et al. 2020a). Figure 3.2 shows an example of this additivity property

for a three­body example. Moreover, from the physical model perspective, the expansion usually

converges very fast (i.e., the high­order of interactions do not contribute too much) and thus can be
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approximated by the series truncated at some finite orders. In this chapter, the additive feature of

the model output shown in Eq. (3.2) is named as additivity, and is regarded as a physical constraint

when it has physical interpretability.

Figure 3.2: Illustration of additivity property of a three­body example.

3.3 Physics­constrained Gaussian Process Model through Kernel Design

Consider a high­fidelity model y(x), which demonstrates the aforementioned invariance, sym­

metry, and additivity properties, is expensive to evaluate. A Gaussian process model is developed

to replace the high­fidelity model and improve the computational efficiency. In order to incorporate

the physical constraints, we propose a physics­constrained Gaussian process model through kernel

design. An invariant kernel is first developed based on the invariance and symmetry information

on the high­fidelity model and a base kernel (e.g., commonly used kernel functions). After that,

an additive kernel is designed to incorporate the additive characteristics of the high­fidelity model.

Finally, the additive kernel is combined with the invariant kernel, and the integrated kernel can ex­

plicitly consider the invariance, symmetry, and additivity features, and be used to build Gaussian

process models with high interpretability and generalization ability to predict the model response.
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3.3.1 Basics of kernel function

As discussed in Chapter 2, kernel is an crucial ingredient of a Gaussian process model. Consider

two input locations x, x′ and their corresponding model outputs y(x), y(x′), a kernel k(·) is used

to measure the covariance (representing similarity or distance) between the model outputs at two

input locations, written as

Cov(y(x), y(x′)) = k(x, x′) (3.3)

The kernel function in the Gaussian process model typically assumes that the covariance be­

tween twomodel outputs decays smoothly as the distance between their inputs increases (Lophaven

et al. 2002; Rasmussen 2004), i.e., if x are close to x′, y(x)will be similar to y(x′). Such kernel func­

tions lie in the category of stationary kernel function, which is a function of the distance between

inputs x − x′. Commonly used stationary kernel functions include the squared exponential kernel

(shown in Eq. (2.3)), Matérn kernels (shown in Eq. (2.4)∼(2.5)), rational quadratic kernel (shown

in Eq. (2.6)), and more details about these kernel function can be found in Rasmussen (2004). Note

that the distances between inputs are calculated in the Euclidean space in this chapter. A kernel

function have several hyperparameters, which have significant influence on the established Gaus­

sian process model. Take the squared exponential kernel in Eq. (2.3) as an example, σ2 is the

variance which tunes the amplitude of the model and θ = [θ1, . . . , θnx
] are the length­scales which

control the wiggliness of the model.

In order to obtain desired prediction performance, selecting an expressive valid kernel function

is especially important, since the kernel determines the prior function assumed for the Gaussian

process model. Therefore, here we propose to impose the already known physical constraints (in­
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cluding invariance, symmetry, and additivity described in Section 3.2) into the kernel, and in this

way amore “informative prior” can be provided for the Gaussian process model construction. In the

end, the established Gaussian process model is able to exhibit invariance, symmetry, and additivity

features.

3.3.2 Invariant kernel

First, in order to build a Gaussian process model that is invariant under the operations in T (see

Eq. (3.1)), the proposed invariant kernel function should be invariant under the same operations.

Ginsbourger et al. (2013) have shown that a Gaussian process model is invariant to the operations

in the group T if and only if k is argument­wise invariant to these operations, i.e., satisfying the

following property:

k(x, x′) = k(t(x), t′(x′)) ∀x, x′ ∈ X ∀t, t′ ∈ T (3.4)

This kernel will be established by double summing a base kernel (i.e., commonly used kernels

such as squared exponential kernel) over the orbits of the inputs, where the orbit of x is the set of

all transformed inputs obtained by applying each possible operation in T to x and can be represented

by the set A(x) = {t(x); t ∈ T }. Formally, the invariant kernel is given by

k(x, x′) =
∑

x∈A(x)

∑

x′∈A(x′)

kbase(x, x′) (3.5)

To this end, the Gaussian process model constructed using the invariant kernel function in

Eq. (3.5) will be capable of integrating our prior knowledge (i.e., invariance and symmetry in­

formation) about the physical characteristics of the problem. In order to show the performance of
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the proposed invariant kernel, it is applied to build a Gaussian process model for a toy problem

y = e−2x2

1 × cos(9x1) + e−5x2

2 where x1, x2 ∈ [−1, 1]. Figure 3.3(a) shows the contour map of the

true response, and as can be observed, the response is symmetric with respect to x1­axis and x2­axis.

For comparison purpose, a Gaussian process model using a standard kernel is also constructed, and

the predicted response is illustrated in Figure 3.3(b). Figure 3.3(c) shows the predicted response by

the Gaussian process model using the invariant kernel. The comparison between the true response

and the predictions from two Gaussian process models indicates that using the invariant kernel can

significantly improve the prediction performance and generalization ability of the Gaussian process

model when the high­fidelity model exhibits symmetry/invariance features.

Figure 3.3: Comparison between true response and predictions by Gaussian process models using standard
kernel and invariant kernel (black dots correspond to the training samples).

3.3.3 Additive kernel

Second, we embed our knowledge about the additive features of the high­fidelity model output.

To build a Gaussian process model with the additive features, a new class of kernel is defined. It

has been proved that the additivity of the Gaussian process model can be expressed by the additivity

of the corresponding kernels (Durrande et al. 2012; Duvenaud 2014). Take the two­dimensional

38



model input case considering the first order of interaction as an example (see Figure 3.4), assume

we apply one­dimensional kernel for each input dimension, and by summing them a new kernel

can be defined. Then a Gaussian process model is constructed using the new kernel, and as a result

the model will exhibit the same additive structure across two dimensions. Based on this property,

the Gaussian process model in our problem is specified by a kernel which can be decomposed into

a series of sub­kernels with each sub­kernel corresponding to the contribution from the interaction

between subsets of the inputs. Such kernel is defined as the additive kernel, and it has the following

expression

kadd(x, x′) = σ2
1

nx
∑

i1=1

ki1(xi1
, x′

i1
) + σ2

2

nx
∑

i1=1

nx
∑

i2=i1+1

ki1(xi1
, x′

i1
)ki2(xi2

, x′
i2
) + · · ·

+ σ2
j

∑

1≤i1<···<ij≤nx

j
∏

d=1

kid(xid
, x′

id
) + · · ·

(3.6)

where {kid(xid, x
′
id), d = 1, 2, . . . , nx} is a base kernel operating on the idth dimension of the input

x and x′, and σ2
j is the variance assigned to the jth interaction term. In order to specify the additive

kernel, one needs to select a base kernel function first, and then optimize the hyperparameters

including the length­scale of the base kernel and the variance σ2
j in each order based on the given

training data. Note that different variance values can be specified for each sub­kernel of the additive

kernel which also helps the Gaussian process model control the variance assigned to each order of

interaction of the input.
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Figure 3.4: Additive structure in kernel and Gaussian process model (adapted from Duvenaud (2014)).

3.3.4 Combined invariant and additive kernel

Finally, the additive kernel in Eq. (3.6) is combined with the invariant kernel in Eq. (3.5), and

more specifically, the base kernel of the invariant kernel takes the additive kernel, i.e.,

k(x, x′) =
∑

x∈A(x)

∑

x′∈A(x′)

kadd(x, x′) (3.7)

The integrated kernel is then used to develop Gaussian process models for high­fidelity model

which demonstrates invariance, symmetry, and additivity features. It is noteworthy to point out that

the computational cost of evaluating the proposed physics­constrained kernel in Eq. (3.7) is expen­

sive when the dimension of the input is large. However, if the decomposition converges fast, we

can truncate the interaction series to a low order and this will help reduce the computational effort in

building Gaussian process model. This assumption naturally suggests that, when the computational

resources are limited, one can limit the maximum considered order of interaction for the additive
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kernel without significantly impacting the prediction accuracy. In the end, the computational cost

of evaluating Eq. (3.7) can be significantly reduced.

3.4 Illustrative Example: Hydrodynamic Characteristics of WECs in an Array

To demonstrate the performance of the proposed algorithm, it is applied to predict hydrody­

namic characteristics of wave energy converters (WECs) in an array.

3.4.1 Motivation

According to the U.S. Department of Energy, the estimated total renewable wave energy re­

source in the U.S. has the potential to power over 100 million homes each year (U.S. Department

of Energy 2016). The deployment of WECs in large­scale arrays, also known as wave farms, offers

great prospects for harnessing such renewable wave energy and facilitating electrical power trans­

mission. Unlike the single­WEC configuration, a wave farm typically involves complex physical

laws (i.e., WECs interact with scattered and radiated waves) and the hydrodynamic interactions

between neighbouring WECs could have a significant impact on the total power generation of the

wave farm. By arranging the positions of WECs in array properly, the total power generation can

be greater than the power generated by the same number of isolated devices (Budal et al. 1977;

Borgarino et al. 2012). In order to improve the efficiency of wave farms and achieve the maximum

power generation, the layout of WECs needs to be carefully designed so that the hydrodynamic

interactions can be positively exploited. Therefore, hydrodynamic modeling has drawn extensive

attention in this field.

Most previous research on modeling hydrodynamic interaction has been conducted based on

linear potential flow theory (Göteman 2020), and various numerical methods have been proposed

within this context for calculating hydrodynamic interactionswithin arrays ofWECs (McIver 2002).
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The main methods can be classified into two classes : (i) analytical or semi­analytical methods,

such as point­absorber approximation (Falnes 1980), plane­wave approximation (McIver 1994),

and multi­scattering method (Twersky 1952); and (ii) numerical methods, such as boundary ele­

ment method and finite element method. However, if high accuracy is desired, the computational

efforts may still be burdensome, especially when the number of WECs is large and higher­fidelity

models are used. Moreover, additional challenges also arise when dealing with problems such as

uncertainty quantification and design optimization which typically require a large number of model

evaluations.

To address the above computational challenges, this chapter proposes a Gaussian process model

based approach for predicting hydrodynamic interactions between WECs. To the author’s best

knowledge, few research has investigated the prediction of hydrodynamic interactions using surro­

gate models. The main difficulties are two­folds. First, standard way of building surrogate model

fails to incorporate available prior physical knowledge about the problem or input­output relation­

ship. The direct surrogate modeling option is to take the layout of a WEC array (i.e., represented

by a vector consisting of the coordinates of the WECs) as the model input, and the hydrodynamic

characteristics as the model output. However, the hydrodynamic characteristics could be permuta­

tion invariant with respect to the ordering of the WECs given an array layout, or be symmetric with

respect to the axes. In addition, the WEC interaction problem is similar to the classical many­body

interaction problem (Zhang et al. 2020a), and the hydrodynamic characteristics can demonstrate the

additivity feature. Directly taking the coordinates as inputs and applying commonly used product

kernels for training Gaussian process model cannot incorporate the above prior knowledge into the

surrogate modeling. Instead, these features (i.e., invariance, symmetry, and additivity) can only be

learned by a large number of training data if directly using the common way to train the surrogate
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models. However, a lot of times obtaining many training data for the hydrodynamic characteristics

is impractical due to the high computational cost of running expensive models (e.g., MS solver, or

boundary element models). The limited training data typically will lead to lower prediction accu­

racy and generalization ability of the established surrogate model. Second, as the size of the WEC

array increases, there are additional challenges in constructing a surrogate model stemming from

the increased input dimension, which typically requires more training data to obtain desired predic­

tion accuracy, i.e., suffering from curse of dimensionality. However, the computational effort to

calculate the hydrodynamic characteristics typically increases significantly with the number of the

WECs, which means obtaining training data is more costly. In the end, building surrogate models

for prediction of hydrodynamic characteristics becomes a challenging task. To tackle these issues,

the most related research is conducted by Zhang et al. (2020a). They proposed a surrogate model

based approach to predict the hydrodynamic characteristics of multiple bodies through a hierarchi­

cal interaction decomposition method. The key idea is to decompose hydrodynamic characteristics

into contributions from clusters with fewer bodies, and then separately build lower­order surrogate

models for these components/clusters instead of the total response. This mitigates the curse of di­

mensionality of surrogate modeling. In addition, by carefully designing the model input according

to the input­output relationship, these lower­order surrogate models can include the invariance and

symmetry principles. Overall, this approach addresses some of the surrogate modeling challenges

by reducing the size of the problem and selecting the proper inputs and outputs (which involves

some relatively complex transformations on the model inputs/outputs), while no effort was placed

on modifying the Gaussian process model itself. Also, more importantly, to apply the approach, in­

formation on the contributions from subsets of the multiple­body system is needed; however, such
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information is not always available, and its availability (i.e., whether it can be calculated) depends

on the (numerical) model used.

Alternatively, this section applies the proposed physics­constrained Gaussian process model

to efficiently predict the hydrodynamic characteristics of WEC array with different layouts. The

proposed physics­constrained Gaussian process model is able to address the challenges discussed

above within the constructed Gaussian process model itself, and does not involve complex design

or transformation of the model input or output. Moreover, it is general and can be employed for

cases where only total response of the array is available from the adopted numerical model. In

the current problem, the prior knowledge about the hydrodynamic characteristics (i.e., invariance,

symmetry, and additivity) can be encoded as the physical constraints of the hydrodynamic model.

These constraints can be enforced in the surrogate model by adding operations inside the surrogate

model that gives rise to the desired features. In particular, an invariant kernel is first developed

to incorporate the invariance and symmetry information and integrated into the Gaussian process

model. This developed invariant kernel enables efficient incorporation of the prior knowledge in the

Gaussian process model, and eliminates the need of handcrafting the input features. Second, taking

advantage of the similarity to the classical many­body interaction problem (Zhang et al. 2020a),

the hydrodynamic characteristics is decomposed to the sum of the outputs from sub­systems. An

additive kernel is developed to embed the additive feature in the Gaussian process model, and the

kernel exhibits a similar additive feature to the hydrodynamic characteristics. Finally, the proposed

invariant kernel is combined with the additive kernel to establish an integrated kernel, which is used

to construct more informative Gaussian process models that explicitly include the known physical

constraints on the hydrodynamic characteristics.
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3.4.2 Problem formulation: hydrodynamic interaction between WECs

Representation of WEC array layout

Assume the considered WEC array has N identical WECs floating in the water, which are able

to oscillate inM modes of motion. Among different configurations for WECs, this chapter mainly

focuses cylindrical heave converters, which are heaving floating resonant buoys connected to a

power take­off (PTO) moored to the seafloor. A typical cylindrical heave converter is shown in

Figure 3.5(a). Therefore, the number of oscillating modesM is reduced to 1 here.

A two­dimensional Cartesian coordinate system is defined to express the locations of theWECs.

The WECs in the array are under the incident wave propagating along the positive x­axis, and the

corresponding incident angle is an arbitrary number β. Figure 3.5(c) shows an example layout of

the array with N WECs, and note that throughout the paper, an array of WEC is numbered as in

the figure. Without loss of generality, the leftmost buoy of the array is assumed to be located at the

origin of the coordinate system. The layout of the array can then be characterized by the locations

of the remainingN −1 buoys, i.e., x = [x̄2, x̄3, . . . , x̄N , ȳ2, ȳ3, . . . , ȳN ] ∈ X ⊂ R
2(N−1), where

the pair (x̄i, ȳi) represents the coordinates of the ith WEC and X denotes the admissible layout

space. For convenience, the layouts of the WEC arrays are transformed into equivalent layouts

with all buoys on the right half plane with β = 0 beforehand, which can be established by rotating

the coordinate system and adjusting the origin.

Diffraction and radiation problem

Following the assumption of classical hydrodynamics, i.e., small displacements, inviscid and

incompressible fluid and irrotational flow, the fluid motion can be described by a velocity potential

function based on linear potential theory of waves (Mavrakos and Koumoutsakos 1987). By further
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Figure 3.5: (a) Wave energy converter (WEC) (adapted from (Prakash et al. 2016)), (b) wave farm (adapted
from (Drew et al. 2009)), and (c) Cartesian representation of an array of N WECs.

assuming that all motions are time­harmonic with angular frequency ω, we can extract the time­

dependence of the velocity potential (Mavrakos andMcIver 1997), and the time­dependent velocity

potential function Φ is then written as

Φ = Re
[

ϕ · e−iωt
]

(3.8)

where i =
√
−1, and Re[·] indicates that the real part is to be taken. ω is the wave frequency,

and should satisfy the dispersion equation ω2 = gk tanh(kh), where g is the gravity acceleration,

k is the wave number and h is the water depth. Due to the linear potential theory of waves, the

complex­valued velocity ϕ can be expressed by the superposition of the incident wave potential,

the scattered wave potential and the radiated wave potential (Mavrakos and McIver 1997), i.e.,

ϕ = ϕI + ϕD +
N
∑

p=1

U (p)ϕ
(p)
R (3.9)

where ϕI is the incident wave velocity potential, ϕD describes the velocity potential of the diffracted

wave field, and ϕ
(p)
R is the velocity potential of the wave field induced by the oscillation of the

pth body in the heave motion, and U (p) is the corresponding velocity amplitude. The complex­

46



valued potential ϕ must satisfy the Laplace equation within the entire fluid domain, expressed by

∇2ϕ = 0. Also, several boundary conditions should be satisfied, and interested readers are referred

to (Mavrakos and Koumoutsakos 1987; Mavrakos 1991) for detailed descriptions of the boundary

conditions. By solving this boundary value problem, the diffracted wave potential ϕD and the

radiated wave potential ϕR can be determined.

In this chapter, we are interested in the hydrodynamic characteristics of the array of WECs, and

they can be computed based on the hydrodynamic pressure acting on the devices. More specifically,

after the velocity potential in the entire fluid domain is solved, we can calculate the hydrodynamic

pressure based on the linearized Bernoulli’s equation (Hsu and Wu 1997). Ultimately, the hydro­

dynamic forces on the WECs may be calculated by integrating the hydrodynamic pressure over the

submerged surface of the WECs (Mavrakos and McIver 1997). More specifically, the wave excita­

tion force on the pth body in the direction of heave motion due to the incident and diffracted wave,

and the hydrodynamic reaction force on the pth body in the direction of heave motion induced by

the oscillation of the qth body in the direction of heave motion are written as

F (p) = iωρ

∫ ∫

Sp

(ϕI + ϕD)νdS (3.10)

f (pq) = iωρ

∫ ∫

Sp

[

U (q)ϕ
(q)
R

]

νdS (3.11)

where ρ is the fluid density, Sp is the submerged surface of the pth body, and ν is the generalized

normal component with respect to the body p. It should be noted that the wave reaction force,

f (pq), can be reformulated to obtain the radiation­related hydrodynamic characteristics, i.e., the
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added mass coefficient a(pq), and the added damping coefficient b(pq). The reformulation is written

as the following equation:

f (pq) = iωU (q)

[

a(pq) + i
b(pq)

ω

]

(3.12)

In the end, for a WEC array with N identical buoys (shown in Figure 3.5(c)), our main pur­

pose is to calculate the hydrodynamic characteristics of the array, including wave excitation force

F (p) (corresponding to the diffraction problem), added mass coefficient a(pq), and added damping

coefficient b(pq) (corresponding to the radiation problem), where p, q = 1, . . . , N .

Multiple scattering

In this chapter, the multiple­scattering (MS) method is adopted to obtain the solution of velocity

potential of the wave field and calculate the hydrodynamic interaction within the array of WECs

due to its versatility in achieving enhanced accuracy. This method relies on estimating the single­

body hydrodynamic characteristics, and describes the interaction between the different bodies by

superimposing the incident wave potential and various orders of propagating and evanescent modes

that are scattered and radiated by all the devices in the array, so that an accurate representation of the

total wave field around each device can be obtained. The concept of theMSmethod is demonstrated

in Figure 3.6, and the steps are briefly reviewed here.

The method is applied separately to the diffraction and radiation problem. In the first step,

this approach requires the solution of the single (isolated) body problem for each body p within the

array. This solution can be established in frequency domain by solving the boundary value problem

for each body through an eigenfunction expansion approach (Mavrakos and Koumoutsakos 1987;

Mavrakos 1991; Kokkinowrachos et al. 1986). This entails an infinite series representation, using
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Figure 3.6: Illustration of hydrodynamic interactions between WECs and concept of MS approach.

Bessel functions as eigenfunctions, truncated to a proper range. It is important to mention that for

arrays of identical buoys, this solution is common for all the bodies. We refer the reader to (Scruggs

et al. 2013) for more details on the derivation for the case of upright cylindrical bodies under heave

oscillation.

In the second step, the interaction between the bodies is then addressed by considering the

implications to the other bodies (e.g., body q) of the diffracted field generated by the initial body

p. The interaction between all bodies within the array, interchanging subsequently the roles of p

and q as shown in Figure 3.6, needs to be considered this way. This new diffracted wave field

represents a new excitation for each body p in response to which it generates a new diffracted field

which influences the other bodies. This way the order of interaction is increased till the new wave

field generated to all bodies q is small. The accuracy of the MS method is influenced by both the

truncation order (i.e., for deriving the solution for specific body) as well as the interaction order
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(i.e., for addressing the coupling between the bodies). Further details about the MS approach can

be found in (Mavrakos 1991).

Ultimately, for each considered frequency ω, the MS method provides the wave excitation

forces exerted on each body by the incident wave, the added mass and damping coefficients exerted

on body p in the direction of heave motion due to the oscillation of of body q in the direction of

heave motion. In this chapter, we denote F(ω)∈ C
N as the response vector relating the incident and

diffracted wave to the wave excitation force on each body in the heave direction, and each element

of the vector corresponds to F (p). Also, we denote a(ω)∈ R
N×N and b(ω)∈ R

N×N as the added

mass and damping matrices, with the pqth element (i.e., a(pq) and b(pq)) of these matrices relating

the heave oscillations of bodies p and q. It is noteworthy to point out that the computational cost of

the MS solver can be expensive (i.e., modeling hydrodynamic interactions between WECs takes a

lot of computational time), especially when the number of WECs in the array is large. Considering

the significant computational effort in calculation of the hydrodynamic characteristics, typically,

one can limit the maximum order of interaction or the the maximum number of eigenfunction series

to a relatively small number. Although such implementation gives rise to faster computation of the

hydrodynamic characteristics, it trades off the accuracy for computational efficiency.

3.4.3 Physics­constrained Gaussian process model for predicting hydrodynamic characteristics

To alleviate the computational burden in calculating the hydrodynamic characteristics of the

WEC array, Gaussian process surrogate modeling is used. In this problem, Gaussian process mod­

els are constructed to predict the relationship between the WEC layout and the hydrodynamic char­

acteristics of each buoy. As discussed in Section 3.4.2, the layout is characterized by the locations

of the buoys, i.e., x = [x̄2, x̄3, . . . , x̄N , ȳ2, ȳ3, . . . , ȳN ], where the pair (x̄i, ȳi) represents the
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coordinates of the ith WEC. Therefore, x is taken as the input of the Gaussian process models.

For the model output, we are interested in wave excitation force vector F, added mass coefficient

matrix a, and added damping coefficient matrix b described in Section 3.4.2. In this chapter, we

build separate Gaussian process models to predict the elements of F, a, and b (i.e., F (p), a(pq), and

b(pq), where p, q = 1, . . . , N ), and the reason will be discussed later. Note that the wave excitation

forces are complex values, and we separately predict the real and imaginary parts. With the model

input and output selected, corresponding Gaussian process models can be constructed.

However, standard way of building Gaussian process model faces significant challenges. Di­

rectly taking coordinates as inputs cannot incorporate our prior knowledge about the input­output

relationship, i.e., physical constraints including invariance, symmetry, and additivity (will be dis­

cussed in details later), into the surrogate modeling. These features can only be learned by a large

number of training data, but a lot of times we cannot obtain so many training data due to the high

cost of running the numerical model (e.g., the MS solver). As a result, the prediction accuracy and

generalization ability of the Gaussian process model under limited number of training data may be

significantly reduced. This is especially the case for arrays with large number of WECs, since the

large input space typically requires more training data to obtain desired prediction accuracy. How­

ever, the computational time of calculating the hydrodynamic characteristics increases dramatically

with the number of WECs, which means obtaining training data is more costly as well.

To address the challenges in constructing Gaussian process model to predict the hydrodynamic

characteristics, this section applies the proposed physics­constrainedGaussian processmodel which

explicitly embeds the available physical constraints into the surrogate modeling process and elim­

inates the need of preparing a large training data set. This section first summarizes the physical

characteristics/constraints of the relationship between the WEC layout and the hydrodynamic char­
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acteristics of WECs. Then, for different hydrodynamic characteristics, different model inputs are

selected so that the physical constraints can be encoded appropriately and conveniently. Finally, in

order to provide “informative prior” to the Gaussian process models, a physics­constrained Gaus­

sian process model through designing specific kernels is established.

Physical constraints

In the hydrodynamic interaction problem, we also have some prior knowledge about the in­

variance and symmetry features that the hydrodynamic characteristics exhibit, and they are es­

sentially derived based on the physical laws of hydrodynamic interaction problem and based on

the underlying principles of the numerical model (i.e., MS solver) for calculating the hydrody­

namic interaction. For the WEC array with N buoys shown in Figure 3.5(c) represented by x =

[x̄2, x̄3, . . . , x̄N , ȳ2, ȳ3, . . . , ȳN ], the physical constraints are summarized as below:

(1) The wave excitation force of the buoy p (i.e., Re
[

F (p)
]

and Im
[

F (p)
]

where p = 1 . . . N ) is

permutation invariant to the ordering of the rest of the buoys in the array;

(2) The addedmass and damping coefficient matrices (i.e., a and b) are symmetric, whichmeans

the added mass and damping coefficients of buoy p due to the heave oscillation of buoy q are equal

to the added mass and damping coefficients of buoy q due to the heave oscillation of buoy p;

(3) The diagonal terms of added mass and damping coefficient matrices, i.e., a(pp) and b(pp)

where p = 1 . . . N , are permutation invariant with respect to the ordering of the rest of the buoys

in the array. The off­diagonal terms of the matrices, i.e., a(pq) and b(pq) where p, q = 1 . . . N and

p ̸= q, are permutation invariant with respect to the ordering of the rest of the buoys in the array

(i.e., all the buoys in the array excluding buoy p and buoy q themselves);
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(4) Since any layout of the WEC array can be transformed to a new one with incident wave

angle β equal to zero, under zero incident angle, the hydrodynamic characteristics of all the buoys

stay the same when the layout is reflected with respect to the x­axis. This symmetry property is

illustrated in Figure 3.7.

The invariance and symmetry information summarized above can be encoded mathematically

through Eq. (3.1). For example, suppose the array has three buoys and the coordinate vector used

to characterize the layout is x = [x̄2, x̄3, ȳ2, ȳ3]. Then the operations for the wave excitation force

of buoy 1 (i.e., F (1)) can be expressed by

g1([x̄2, x̄3, ȳ2, ȳ3]) = [x̄2, x̄3, ȳ2, ȳ3], g2([x̄2, x̄3, ȳ2, ȳ3]) = [x̄3, x̄2, ȳ3, ȳ2]

g3([x̄2, x̄3, ȳ2, ȳ3]) = [x̄2, x̄3,−ȳ2,−ȳ3], g4([x̄2, x̄3, ȳ2, ȳ3]) = [x̄3, x̄2,−ȳ3,−ȳ2]

(3.13)

where g1(·) represents “no operation”, g2(·) represents swapping WEC 2 and 3, g3(·) represents

reflecting the WEC layout with respect to x­axis, and g4(·) represents swapping WEC 2 and 3 first

and then reflecting the entire layout with respect to x­axis.

Figure 3.7: Illustration of symmetry property of hydrodynamic characteristics.
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Second, the hydrodynamic interaction problem involves wave interactions between multiple

floating bodies, and resembles the classical many­body interaction problem in many fields such

as quantum mechanics and molecular dynamics (Gordon et al. 2011; Yao et al. 2017). In some

systems such as molecule or crystal, the model output can be decomposed to the sum of the output

from sub­systems, represented by many­body terms (i.e., individual terms and interaction terms),

and approximated by the series truncated at some finite orders (Zhang et al. 2020a; Yao et al. 2017).

Inspired by this idea, we assume that the quantities of interest in our problem also have such additive

characteristics, i.e., the hydrodynamic characteristics can be decomposed into contributions from

subsets of the buoys. Mathematically, we formulate such decomposition as

y(x) =
N
∑

i=2

yi(xi) +
N
∑

i=2

N
∑

j=i+1

yij(xi, xj) + · · ·+
∑

2≤i<j<···<l≤N

yij...l(xi, xj , . . . , xl) + · · · (3.14)

where xi = (x̄i, ȳi) is the coordinate vector of the ith WEC. y represents the quantity of interest,

i.e., any element of force vector F, added mass coefficient matrix a, or added damping coefficient

matrix b. yi denotes the response attributed to the ith buoy, yij denotes the response attributed to

the interaction between the ith and the jth buoys, and yij...l denotes the response attributed to the

interaction between the ith, the jth, …, and the lth buoys. The additivity feature is illustrated in

Figure 3.8.

Figure 3.8: Illustration of decomposition of many­body systems (i.e., array of N WECs).
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The invariance, symmetry, and additivity features discussed above are deemed the physical

constraints of the hydrodynamic interaction model, and if these available prior knowledge can be

incorporated when the Gaussian process models are constructed (e.g., encoded in the prior func­

tion assumed for the Gaussian process model), the required number of training data to reach good

prediction accuracy is expected to be reduced. This reduction is especially important for build­

ing accurate Gaussian process models for arrays with relatively large number of WECs, where the

computational cost to obtain the training data is typically quite expensive.

Selection of model input

As summarized in the previous section, the permutation invariance features of wave excitation

force, added mass and added damping coefficient may involve different buoys (i.e., corresponding

to different model input), therefore we separately predict these hydrodynamic characteristics. For

different quantities of interest, we need to do some simple transformation (e.g., shift the coordi­

nate system by some distances) on the original model input x so that the invariance and symmetry

information can be appropriately and conveniently included in surrogate modeling.

First, we consider the model output y = Re
[

F (p)
]

, or Im
[

F (p)
]

, or a(pp), or b(pp), where p =

1, . . . , N . In order to include the permutation invariance of the model outputs with respect to the

ordering of all buoys except buoy p in the Gaussian process model, we move the origin of the

coordinate system to buoy p and obtain a new coordinate vector which will be used as the model

input. Take the array with three WECs as an example, if we are interested in the added mass

coefficient of WEC 2 due to the heave motion of itself (i.e., a(22)), we first augment the coordinate

vector x = [x̄2, x̄3, ȳ2, ȳ3] to xaug = [0, x̄2, x̄3, 0, ȳ2, ȳ3] and then shift the coordinate system

so that the second buoy is the new origin. Finally, the new coordinate vector used to characterize
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the array layout becomes xT = [−x̄2, x̄3, − ȳ2, ȳ3] (i.e., represented by the positions of WEC 1

and 3). It is noteworthy to point out that the added mass and damping coefficients are invariant

with respect to any translational shift of the coordinate system, and thus the above transformation

on the model input does not change the model outputs. However, any translational shift of the

coordinate system along the wave propagation direction (i.e., x direction when β = 0) can cause

changes to the wave excitation forces. Therefore, in practice, when predicting the wave excitation

force of buoy p where p = 2, . . . , N , we select the original coordinate vector as the model input

(i.e., xT = x), and release the constraint on the permutation invariance, i.e., switching the ordering

of buoys except buoy 1 and buoy p does not change F (p).

Second, for the off­diagonal terms of added mass and damping coefficient matrices, i.e., y =

a(pq) or b(pq), where p, q = 1, . . . , N and p ̸= q, we also move the origin of the coordinate system

to the body p so that the permutation invariance with respect to the ordering of the buoys except

buoy p and buoy q can be considered conveniently, and the transformed coordinate vector is also

represented by xT . It should be noted that in this case we also release the constraint on the permu­

tation invariance since switching the ordering of buoy p and buoy q also does not change the value

of a(pq) or b(pq).

Physics­constrained kernel

Once the model inputs are selected, we can establish the physics­constrained kernels based on

Eq. (3.6)∼(3.7). It is noteworthy to point out that the definition of the model input in this example

is x = [x̄2, x̄3, . . . , x̄N , ȳ2, ȳ3, . . . , ȳN ], where the pair (x̄i, ȳi) represents the coordinates of the

ith WEC. When calculating the additive kernel in Eq. (3.6), the idth dimension of the input (i.e.,
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xid in Eq. (3.6)) should correspond to (x̄id , ȳid) in this example and d takes the value from 2 to N.

The physics­constrained kernels are the used to establish the physics­constrain GP models.

Overall algorithm

The flowchart of the proposed physics­constrained Gaussian process model for predicting hy­

drodynamic characteristics of WEC arrays is illustrated in the Figure 5.3, which shows the key

steps. In the flowchart, the output of the Gaussian process model is scalar, i.e., build a separate

Gaussian process model for each element of F, a and b. Therefore, for an array of N WECs, we

need to train 2N + 2(N2 + N)/2 = N2 + 3N Gaussian process models in total. However, in

practice, we can train a model to predict some elements together if they depend on the same model

input, e.g., Re
[

F (11)
]

, Im
[

F (11)
]

, a(11), and b(11). In this way, the number of Gaussian process

model needed to be trained is reduced to N +N − 1 + (N2 −N)/2 = (N2 + 3N)/2− 1 at most,

which is less than half of the original required number of Gaussian process models.

For any new WEC array shown in Fig 3.5(c), we first transform the layout to a new one with

incident angle β = 0, and the corresponding coordinate vector is denoted x0. For any model

output of interest, we then transform x0 to appropriate x0T by simply moving the coordinate system

according to Section 3.4.3. Then the trained Gaussian process models can be used to directly

predict the elements of the hydrodynamic characteristics for the considered wave frequency ω.

Finally, the elements are assembled to establish the corresponding vector F or matrices a and b.

Note that the proposed algorithm focuses on the hydrodynamic characteristics given a specific wave

frequency. In many cases, we are interested in the hydrodynamic characteristics under a range of

wave frequencies, and the responses could correspond to high­dimensional model outputs. Instead

of building Gaussian models for the hydrodynamic characteristics under each frequency which is
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Figure 3.9: Flowchart of the proposed physics­constrained Gaussian process model for prediction of hydro­
dynamic characteristics.

computational demanding, we can apply dimension reduction technique to explore the correlations

of the characteristics between different frequencies and build a low­dimensional representation

for the original high­dimensional outputs. Then the Gaussian process model can be efficiently

constructed for low­dimensional latent outputs. More details can be found in Section 2.6.

3.4.4 Implementation details

The array is in a rectangular domain with 127.5 m along the x­axis and 255 m along the y­axis,

and the water depth is 60 m. The buoys in Jia et al. (2015), identical cylinders oscillating in heave

direction only, are considered in this example. The radius for each buoy is rb=3 meters and its mass

is mb=1.8e5 kg, corresponding to a draft of Dr=6.37 m and period of oscillation of 5.06 s. The

considered wave frequency is between 0.3 rad/s and 1.4 rad/s. The incident angle β is selected as

0 in this example, but generally it can take any values. In order to investigate the scalability of the
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proposed algorithm, it is applied to arrays with different number of WECs, and hereN in the range

of 3∼10 is considered.

To establish the training data set, n = 1000 inputs are generated by Latin Hypercube Sampling

(LHS) and the corresponding outputs are calculated by the hydrodynamic interaction model using

MS approach. For the MS solver, the order of interaction is set as 5, whereas the eigenfunction

series are truncated at 5 and 40 for the main fluid and the fluid below the cylinder, respectively,

to ensure adequate accuracy. These values are selected through a convergence study of the model.

In the proposed physics­constrained Gaussian process model, the kernel is the invariant kernel in

Eq. (3.5) taking the additive kernel in Eq. (3.6) as base kernel, and for the base kernel of additive

kernel, we select the commonly used Matérn 5/2 kernel. Since decomposition in Eq. (3.14) is ex­

pected to converge fast, we infer that only first several orders of interaction in Eq. (3.6) contribute

much to the model response. To validate this assumption with the currently available computa­

tional resource, we used the additive kernel with full orders of interaction for the WEC arrays with

3 buoys and 4 buoys, and the contribution from each order is characterized by the assigned vari­

ance σ2
j , where j = 1, 2 for 3­WEC array and j = 1, 2, 3 for 4­WEC array. After optimization of

the hyperparameters, the results for all the diffraction and radiation related hydrodynamic charac­

teristics show that for the 3­WEC array, σ2
1 ≈ 1 while σ2

2 ≈ 0. Similarly, for the 4­WEC array,

σ2
1 ≈ 1 while σ2

2, σ
2
3 ≈ 0. Both cases indicate that only the first order of interaction between

the buoys contribute most to the hydrodynamic coefficients predicted by the physics­constrained

Gaussian process model. Therefore, for all the other cases, we limit the maximum considered order

of interaction for the additive kernel to the first order and assume that this implementation will not

significantly impacting the prediction accuracy. This significantly reduces the computational effort

in evaluating the kernel functions. For comparison purpose, a standard Gaussian process model,
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which is the same with the proposed model but uses the standard base kernel, is constructed to

predict the same output. For the kernels in the proposed Gaussian process model and the standard

Gaussian process model, we use the same length­scale value for all input dimensions. The reason

of this selection here is that the computational effort in optimizing single length­scale is typically

much less than optimizing multiple length­scales especially when the input dimensionality is high,

and more importantly in this example using the same length­scale for all the input dimensions can

already inform an accurate Gaussian process model.

To assess the accuracy of the Gaussian process models in predicting the hydrodynamic char­

acteristics, validation metric are calculated over a testing set for each case. The test size is set as

nt = 1000, and the testing data is also generated by LHS. Here the coefficient of determination R2

is used as the validation metric,

R2 = 1−
∑nt

i=1(y
i − ŷi)2

∑nt

i=1(y
i −
∑nt

i=1 y
i/nt)2

(3.15)

where ŷi is the prediction from the established Gaussian process model for the ith data in testing

set. Large R2 values (e.g., closer to 1) indicate that the trained model has good accuracy.

3.4.5 Prediction accuracy

To investigate the prediction accuracy of the proposed physics­constrained Gaussian process

model, we calculate the coefficient of determination R2 for all cases (i.e., arrays with different

numbers ofWECs). Here we only list the results for arrays of 3, 5, 8 and 10WECs, while the results

for other cases show similar pattern. The prediction accuracy metrics are calculated separately for

different elements of the hydrodynamic characteristic matrices F, a and b. For illustration purpose,

the elements are classified into four groups: (1) real and imaginary parts of F (1), (2) real and
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imaginary parts of F (p) where p = 2, . . . , N , (3) a(pp) and b(pp) where p = 1, . . . , N , and (4) a(pq)

and b(pq) where p, q = 1, . . . , N and p ̸= q. The reason for such classification is that the prediction

accuracies for the real and imaginary parts of F are close, and also the prediction accuracies for a

and b are close. Additionally, when modeling F (1), a(pp), and b(pp), the strict invariance information

is incorporated while only partial invariance information is considered when modeling F (p), a(pq),

and b(pq). For each group, the mean of the accuracy metrics is calculated, and to show the spread

of prediction accuracy between different elements within a group, the minimum and maximum of

the accuracy metrics are also calculated. Since the variation of wave frequency ω may impact the

prediction accuracy of the Gaussian process model, we show the results for three different cases:

ω = 0.3 rad/s, ω = 0.85 rad/s, and ω = 1.4 rad/s. When ω = 0.3 rad/s, all the calculated accuracy

metrics mentioned above are over 0.989 for each case (i.e., under different number of WECs).

Similar observation can be made for ω = 0.85 rad/s: all the calculated R2 are over 0.980. This

indicates excellent prediction accuracy of the physics­constrained Gaussian process model for the

hydrodynamic characteristics when ω = 0.3 or 0.85 rad/s, and also there is little difference between

all cases in terms of prediction accuracy. For this reason, the detailed prediction accuracy metrics

are not shown for ω = 0.3 or 0.85 rad/s. Here we only report the detailed prediction accuracy

metrics for ω = 1.4 rad/s, which are shown in Table 3.1.

Compared to ω = 0.3 or 0.85 rad/s, the prediction accuracy metrics are relatively lower when

ω = 1.4 rad/s, especially for arrays of 8 or 10 WECs. For diffraction­related characteristics (i.e.,

elements of F), as can be observed from the table, the R2 for all cases are close to one, which

reveals very good prediction accuracy of the proposed physics­constrainedGaussian processmodel.

In each case, by comparing the mean, minimum and maximum of the R2 within a group of the

hydrodynamic characteristics, we can find that the values are very close, which means there is
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Table 3.1: Prediction accuracy metrics of physics­constrained Gaussian process model for ω = 1.4 rad/s

# of WECs Re[F (1)](Im[F (1)]) Re[F (p)](Im[F (p)])
mean min max mean min max

3 0.986(0.987) 0.986(0.987) 0.986(0.987) 0.975(0.978) 0.975(0.975) 0.975(0.980)
5 0.972(0.966) 0.972(0.966) 0.972(0.966) 0.940(0.939) 0.935(0.936) 0.951(0.942)
8 0.935(0.939) 0.935(0.939) 0.935(0.939) 0.886(0.877) 0.871(0.864) 0.895(0.888)
10 0.910(0.925) 0.910(0.925) 0.910(0.925) 0.848(0.845) 0.817(0.827) 0.862(0.860)

# of WEC a(pp)(b(pp)) a(pq)(b(pq))
mean min max mean min max

3 0.931(0.920) 0.899(0.885) 0.978(0.976) 0.956(0.958) 0.934(0.939) 0.967(0.970)
5 0.857(0.847) 0.805(0.803) 0.950(0.943) 0.866(0.880) 0.819(0.845) 0.927(0.924)
8 0.784(0.767) 0.727(0.729) 0.906(0.875) 0.750(0.758) 0.669(0.672) 0.864(0.858)
10 0.755(0.731) 0.719(0.681) 0.868(0.879) 0.674(0.687) 0.536(0.594) 0.817(0.815)

little variation in the prediction accuracy for different elements of F. In addition, we can observe

slightly lower prediction accuracy for F (p) compared to F (1) for all cases. This is because the

physics­constrained Gaussian process model for F (1) encodes all available permutation invariance

information into the kernel, while the kernel for F (p) incorporates only part of the the permutation

invariance, i.e., switching the ordering of buoys except buoy 1 and buoy p does not changeF (p). For

radiation­related characteristics (i.e., elements of a and b), excellent prediction accuracy can also be

obtained for the arrays of 3 and 5WECs, while for arrays of 8 and 10WECs the prediction accuracy

sees an obvious drop. This is expected since the dimensionality of the model input is proportional

to the number of WECs in the array, and higher­dimensional input space requires more training

data to inform an accurate Gaussian process model. Although we can also observe a drop in the

prediction accuracy for the diffraction­related characteristics as the number of WECs increases,

the magnitude of decrease is not as large as that for radiation­related characteristics. The reason

behind might be that radiation­related characteristics show stronger non­linearity with respect to

the model input than the diffraction­related characteristics. It is noteworthy to point out that the

mean, minimum and maximum values of theR2 for radiation­related hydrodynamic characteristics
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are relatively different, especially for arrays with 8 and 10 buoys. This means that the prediction

accuracy for different elements of a(pp)/b(pp) and a(pq)/b(pq) show relatively large variability when

the number of WECs is large in the array.

Based on the above results, we can find that the wave frequency has large impact the prediction

accuracy of the proposed physics­constrained Gaussian process model. To investigate the impact

of the wave frequency, Figure 3.10 shows the variation of hydrodynamic characteristics as the

wave frequency changes for an array of 10 WECs from the testing set. Note that we only pick

some representatives from all the elements and show them in the figures. The other elements of the

hydrodynamic characteristics show similar trend in terms of the prediction accuracy based on the

results in Table 3.1, and thus are not illustrated here. From the figure, we can observe that when

the wave frequency is low (e.g., less than 1 rad/s), the prediction for all hydrodynamic characteris­

tics demonstrate a good agreement with the ground truth values. However, as the wave frequency

increases, it is sometimes more challenging to predict the hydrodynamic characteristics accurately,

especially when the response reaches it maximum or minimum. This might be because the input­

output relationship is more nonlinear when the wave frequency becomes higher. Therefore, when

predicting the hydrodynamic characteristics under relatively higher wave frequencies, more train­

ing data can be used to increase the prediction accuracy. For this particular array, the predictions

for Re
[

F (6)
]

, a(17) and a(23) have relatively large errors when the wave frequency is high, which

might still be due to the kernel design (i.e., partial invariance is used).

3.4.6 Performance of physics­constrained kernel

In this section, the performance of the kernel in the proposed physics­constrained Gaussian

process model is investigated. For comparison purpose, a standard Gaussian process model with
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Figure 3.10: Comparison of the hydrodynamic characteristics calculated by numerical model (black lines)
and predicted by physics­constrained Gaussian process model (red dots).

theMatérn 5/2 kernel is also constructedwith the same training data set and validated using the same

testing data as the physics­constrained Gaussian process model. For the convenience, the kernel

in the physics­constrained Gaussian process model and the standard Gaussian process models are

referred as physics­constrained kernel and standard kernel respectively in this section. The main
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purpose of this section is to compare the performance of the physics­constrained and the standard

Gaussian process model, and thus the prediction accuracy for a single case is less of a concern here.

As discussed in the previous section, the prediction task is less challenging when wave frequency

is small, therefore we select ω = 0.3 rad/s for demonstrating the results in this section.

The kernel function in a Gaussian process model specifies the covariance between the model

response at two input locations, which implicitly describes the distance between two input loca­

tions. In order to visualize the capability of the physics­constrained kernel and the standard kernel

in describing the similarity of the model response between the input points, Figure 3.11 illustrates

the covariance function values evaluated at a data set XT , i.e., covariance matrix k(XT ,XT ). The

data set contains four arrays of 3 WECs, characterized by XT = {x1T , x2T , x3T , x4T}, where x1T =

[123.5 93.2 − 59.2 − 116.4], x2T = [93.2 123.5 − 116.4 − 59.2], x3T = [123.5 93.2 59.2 116.4],

and x4T = [93.2 123.5 116.4 59.2]. Among these four inputs, x1T is selected from the training set,

and the other three are transformed from x1T based on the invariance and symmetry properties, as

shown in Eq. (5.5). For illustration purpose, we added some Gaussian noises to the locations of

WECs. Note that here we focus on the physics­constrained kernel used for F (1), a(pp) and b(pp),

which includes the complete permutation invariance and symmetry information available. In Fig­

ure 3.11, the value of each grid describes the covariance of the model response between two inputs,

and for comparison purpose, the values are normalized so that the diagonal terms of the covariance

matrices are equal to one. As a result, the covariance values close to onemeans that two input points

are close to each other and the their responses are also highly similar. As can be observed from

the figure, the covariance calculated by the standard kernel between xiT and xjT (i ̸= j) is nearly

zero, while the corresponding covariance calculated by the physics­constrained kernel is close to

one. However, as we mentioned earlier, xiT and xjT (i ̸= j) should give us similar model responses
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due to the invariance and symmetry features of the input­output relationship. This indicates that

the physics­constrained kernel has the capability of encoding the invariance and symmetry features

into the Gaussian process model, while the standard kernel is not able to capture such properties.

Figure 3.11: Covariance matrix calculated by physics­constrained kernel and standard kernel.

To further demonstrate the performance of the physics­constrained Gaussian process model

and the standard Gaussian process model in recovering the ground truth input­output relationship,

Figure 3.12 and Figure 3.13 show the model responseF (1) calculated by the true function, predicted

by the physics­constrained Gaussian process model and the standard Gaussian process model. In

order to visualize the permutation invariance and symmetry features of the model response, we pick

the array of 3 WECs and plot the contour map of F (1) with respect to xT,2 and xT,3, where xT,2 and

xT,3 are the positions of the two WECs (i.e., WEC 2 and WEC 3) except the one at the origin of

the coordinate system. First, Figure 3.12 shows the contour map of F (1) in terms of the positions

of WEC 2 and WEC 3 characterized by some ID numbers. More specifically, the input domain is

divided into a 5­by­9 grid, and the nodes of the grid are assigned a sequence of ID numbers. As a

result, each ID number represents a position that WEC 2 and WEC 3 may take in the input domain,
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and thus in Figure 3.12 the horizontal and vertical axes correspond to the positions of WEC 2 and

WEC 3, respectively. As can be observed from the figure, the true function of F (1) is symmetrical

with respect to the diagonal line, which means switching the position of WEC 2 and WEC 3 does

not change the model response. Note that the diagonal line in the figure is blank because the

two buoys cannot be overlapped with each other physically. The physics­constrained Gaussian

process model can correctly recover such permutation invariance feature since such feature has

been entirely coded in to the kernel, while the standard Gaussian process model fails to capture

the permutation invariance. However, we can find some slight symmetry property with respect

to the diagonal line predicted by the standard Gaussian process model, which might have been

learned by the training data, and if more training data is used, it is expected that the constructed

standard Gaussian process might be able to capture more of the permutation invariance. Second,

Figure 3.13 shows the contour map of F (1) in terms of the position of WEC 2 characterized by

its [x, y] coordinate. Here WEC 3 moves symmetrically with respect to x­axis, and also in order

to make sure the whole array is not symmetrical with respect to the x­axis, we set the distance of

WEC 3 to the x­axis as 2/3 of the corresponding distance of WEC 2 to the x­axis. In this case, if

we reflect WEC 2 with respect to the x­axis, the whole layout of the array will also be reflected

with respect to the x­axis. Based on the true function in Figure 3.13, we know the model response

is symmetrical with respect to x­axis. Again, the physics­constrained Gaussian process models

perfectly captures the symmetry feature because of the use of kernels that explicitly incorporate

symmetry, while the standard Gaussian process model can not capture the symmetry feature.

Table 3.2 reports the accuracy metrics of the predictions from the physics­constrained and the

standard Gaussian process models. Note that the metrics are averaged over the elements of each

hydrodynamic characteristics (i.e., F, a, and b), and these hydrodynamic characteristics are calcu­
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Figure 3.12: Permutation invariance of F (1) from true function, physics­constrained Gaussian process
model and standard Gaussian process model (GP in the figure stands for Gaussian process model).

Figure 3.13: x­axis symmetry of F (1) from true function, physics­constrained Gaussian process model and
standard Gaussian process model (GP in the figure stands for Gaussian process model).

lated for ω = 0.3 rad/s. From Table 3.2, we can conclude that the physics­constrained Gaussian

process model significantly outperforms the standard Gaussian process model in terms of the pre­

diction accuracy, especially when the array has a large number of WECs. When the array has 3

WECs, the standard Gaussian process model trained with 1000 data can also obtain a relatively

good prediction. However, when the number of WECs in the array reaches 5, its prediction accu­
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racy drops drastically, and 1000 training data is not enough for a standard Gaussian process model

to correctly learn the input­output relationship. Therefore, the standard Gaussian process model

cannot explain the highly nonlinear relationship with limited training data and also suffers severely

from the curse of dimensionality. In comparison, for physics­constrained Gaussian process model,

the R2 values calculated in all cases are close to or equal to 1, which indicates excellent predic­

tion accuracy. This validates that encoding the invariance, symmetry, and additivity features into

the kernel according to the input­output relationship can significantly improve the prediction ac­

curacy. More importantly, with the same number of training data, the prediction accuracy for 10

WECs almost does not change/reduce compared to that for 3 WECs, which means the prediction

is less prone to the curse of dimensionality when wave frequency ω = 0.3 rad/s. One possible

reason is that using the physics­constrained kernel can build interpretable Gaussian process model

directly rather than learning the features from a large number of training data and thus can help

reduce the required number of training data. Also, it has been proved that kernels which include

lower­order additive structures sometimes allow us to make predictions over data far away from

the training data (i.e., extrapolation) (Duvenaud 2014). For example, additive kernels of first or­

der give high covariance between model response at input locations that are similar in any one

dimension. This is of significant importance to arrays with a large number of WECs, where the

computational effort in running the MS solver is quite expensive and obtaining a large number of

training data is sometimes impractical. Additionally, the results prove that the physics­constrained

kernel has included the most contributed part of the model response, and this ensures that our com­

putation in evaluating the proposed physics­constrained kernel can be efficient. It is noteworthy

to point out that if the wave frequency is high, the model input­output relationship may become

more nonlinear and thus the prediction accuracy for both the physics­constrained and the standard
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Table 3.2: Prediction accuracy metrics from physics­constrained Gaussian process model and standard
Gaussian process model

# of WECs Physics­constrained Gaussian process model Standard Gaussian process model
F a b F a b

3 1.000 0.999 1.000 0.709 0.695 0.750
5 1.000 0.999 0.999 0.089 0.082 0.091
8 1.000 0.999 0.999 0.000 0.000 0.000
10 1.000 0.999 0.999 0.000 0.000 0.000

Gaussian process models might decrease with the same set of training data. For example, from

Table 3.1, we can observe a drop in the prediction accuracy for radiation­related characteristics as

the number of WEC in the array increases when ω = 1.4 rad/s. The physics­constrained kernel

alleviates the curse of dimensionality to some extent, however due to the high non­linearity, 1000

training data is still not enough to obtain accurate predictions for arrays with 8 and 10 WECs. In

this case, the straightforward way is to increase the number of training data to increase prediction

accuracy. However, overall the physics­constrained Gaussian process model still outperforms the

standard Gaussian process model in terms of obtaining ideal prediction accuracy with a relatively

small number of training data.

3.4.7 Computational efficiency

In this section, we discuss the efficiency gain provided by the physics­constrained Gaussian

process model. On average, one evaluation of the numerical model for calculating the hydrody­

namic characteristics of arrays of 3, 5, 8, and 10 WECs takes 2.5s, 9.6s, 37.7s, 73.1s, respectively.

Overall, the computational time increases dramatically with the number of WECs in the numerical

model, further highlighting the computational challenges in modeling large array. On the other

hand, the physics­constrained Gaussian process model trained using 1000 training data takes only

around 0.001s, 0.020s, 0.081s, 0.163s to obtain all the hydrodynamic characteristics. Therefore,
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several orders­of­magnitude speedup can be obtained. Note that when more expensive numerical

models (such as boundary element models) are used, the computational gain by using the physics­

constrained model will be even greater.

3.5 Conclusions

This chapter proposed a physics­constrained Gaussian process model to efficiently predict re­

sponses that show invariance, symmetry, and additivity features. Instead of building a standard

Gaussian process model and learning the physical constraints (i.e., invariance, symmetry, and addi­

tivity features) of the problem through a large training data set which is computationally inefficient

or even prohibitive, the proposed physics­constrained Gaussian process model directly encodes

these physical constraints/features into the model development. More specifically, the known phys­

ical constraints are encoded into the kernel by designing and integrating the invariant kernel and

the additive kernel, and in this way a more “informative prior” can be provided for the Gaussian

process model construction. Once trained, the physics­constrained Gaussian process model can be

employed to directly and efficiently predict the responses.

Application to prediction of the hydrodynamic characteristics of arrays with different number

of wave energy converters (WECs) demonstrates the high accuracy and efficiency of the proposed

approach. The results show that the designed integrated kernel is able to correctly capture the

invariance, symmetry, and additivity features of the problem. The proposed physics­constrained

Gaussian process model can accurately predict the hydrodynamic characteristics with a relatively

small number of training data, especially when the wave frequency is low. More importantly, the

proposed physics­constrained Gaussian process model is much less vulnerable to curse of dimen­
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sionality compared to standard Gaussian process model, and such good scalability is crucial for

analyzing arrays with relatively large number of WECs.

One limitation of the proposed physics­constrained Gaussian process model is that if the de­

composition of the many­body system does not converge fast (e.g., requires much more than first

three orders of interaction), the computational cost of evaluating the proposed kernel might be

high and thus it might take longer time to train the Gaussian process model. Also, the application

only investigated arrays with up to 10 WECs. Future research work will investigate the scalability

of the proposed model to arrays with even larger sizes (e.g., with 20 to 50 WECs). Another fu­

ture research topic of interest is to use the hydrodynamic characteristics predicted by the proposed

physics­constrained Gaussian process model to calculate the total power generation of the WEC

array and also optimize the layout of the WEC array.
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CHAPTER 4:

MULTI­FIDELITY GAUSSIAN PROCESS MODEL INTEGRATING LOW­ AND

HIGH­FIDELITY DATA CONSIDERING CENSORING1

4.1 Introduction

The prediction accuracy of surrogate models highly depends on the given training data. How­

ever, for many systems, the accurate evaluation of high­fidelity system models is time consuming

and/or costly, which limits the size of the training data. Smaller training data will lead to incom­

plete coverage of the input space and reduced accuracy of the established Gaussian process model

in making predictions at new inputs. On the other hand, while low­fidelity system models can be

evaluated more efficiently, they lack accuracy in predicting the system response/output. However,

the low­fidelity system models do provide some information on the system behavior. Therefore,

to leverage the high accuracy of high­fidelity data and the high efficiency of low­fidelity data,

multi­fidelity Gaussian process have been proposed in the literature (Kennedy and O’Hagan 2000;

Forrester et al. 2007; Qian and Wu 2008; Le Gratiet 2013a). The basic idea is to integrate in­

formation from a small number of high­fidelity data with a large number of low­fidelity data and

leverage the correlations between the outputs from different fidelity to efficiently establish an ac­

curate Gaussian process model that can be used for prediction at new design sites in place of the

high­fidelity model. However, existing multi­fidelity Gaussian process models mainly use constant

scaling factors to accommodate the difference between the high­fidelity part and the low­fidelity

part, and also measurement error is usually not taken into account when constructing the model.

On the other hand, for many engineering applications, the outputs of high­fidelity models are not

1This chapter is adapted from a published paper by the author (Li and Jia 2020).
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always the exact values of the interested output, rather, censored data, which only provide bounds

for the interested output, are given. Gaussian process models that can address censored data and

make best use of limited number of high­fidelity data and leverage the information from data with

different levels of accuracy are needed.

To bridge the research gap, this chapter proposes a general multi­fidelity Gaussian process

model integrating low­fidelity data and high­fidelity data considering censoring in high­fidelity

data. To alleviate the cost associated with establishing high­fidelity data, the proposed model inte­

grates information from a small number of expensive high­fidelity data and information provided

by a large number of cheap low­fidelity data to efficiently inform a more accurate surrogate model.

Censored data are explicitly considered in calibration of the multi­fidelity Gaussian process model.

Posterior distributions of the model parameters are established in the context of Bayesian updating

to explicitly take into account the uncertainties in the model parameters and the measurement er­

rors in the data. To address the computational challenges in estimating the likelihood function of

model parameters when considering censored data, data augmentation algorithm is adopted where

the censored data are treated as additional uncertain model parameters and closed form conditional

posterior distributions are derived for the model parameters. Gibbs sampling is then used to effi­

ciently generate samples from the posterior distributions for the model parameters, which are used

to establish the posterior statistics for the output predictions at new inputs. The effectiveness of

the proposed model is illustrated in an example to establish predictive model for the deformation

capacity of reinforced concrete (RC) columns using limited number of high­fidelity experimental

data (the majority of which are censored data) and a large number of low­fidelity data established

from analytical and numerical modeling.
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4.2 Multi­Fidelity Gaussian Process Prediction Model

TheGaussian processmodel has been reviewed inChapter 2, and the formulation discussed only

works well when the observations have single fidelity. This section extends the model formulation

to a multi­fidelity version, i.e., multi­fidelity Gaussian process model. This section presents the

proposed multi­fidelity Gaussian process model and establishes the posterior prediction equation

when the multi­fidelity Gaussian process model is used for response prediction at new inputs.

4.2.1 Model formulation

For a system model with input x = [x1, x2, . . . , xnx
] ∈ R

nx and corresponding output/response

y(x) ∈ R, a multi­fidelity Gaussian process model can be trained to approximate the system input­

output relationship based on some training set. Let yh(x) and yl(x) denote the outputs from high­

fidelity model and low­fidelity model, respectively. The multi­fidelity Gaussian process model can

be written as

yh(x) = ρ(x)yl(x) + δ(x) + ϵ (4.1)

where ρ(x) is the scaling factor, and yl(x) and δ(x) are modeled as Gaussian processes, and ϵ

denotes the measurement error term and is assumed to be Gaussian with zero mean and variance of

σ2
ϵ . Existing multi­fidelity Gaussian process models usually use a constant scaling factor (Kennedy

and O’Hagan 2000; Forrester et al. 2008; Kuya et al. 2011), i.e., ρ(x) = ρ. Also, measurement

error is usually not explicitly modeled. Here we use a non­constant scaling factor ρ(x) that varies

with the input x to accommodate more complex relationships between yh(x) and yl(x), and also

use ϵ to explicitly consider the measurement error. For the model in Eq. (4.1), ρ(x) corresponds

to the scaling correction term, while δ(x) corresponds to the additive bias correction term; both

terms are used to correct the low­fidelity model to match the high­fidelity model. Compared to
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Gaussian process models in the literature where typically only scaling correction (e.g., constant

scaling) or additive correction is used, the model proposed here includes both correction terms to

make the overall model more general and have more flexibility in capturing the potentially complex

correction relationship between the low­fidelity model and the high­fidelity model over different

input values x. More specifically, here ρ(x) will be modeled as ρ(x) = fρ(x)Tβρ where fρ(x) is the

qρ­dimensional vector of basis function andβρ = [βρ1, βρ2, . . . , βρqρ ]
T is the regression coefficients

vector. The use of ρ(x) does increase the complexity in the calibration of themulti­fidelity Gaussian

process, and steps to calibrate βρ will be developed and discussed in detail in later sections.

In general, when analytical expressions for yl(x) are available, they can be directly used instead

of usingGaussian processmodel; however, inmany cases, analytical models may not exist and even

low­fidelity models may still take a lot of computational effort. Therefore, considering the more

general case for yl(x), in the context of multi­fidelity Gaussian process model, Gaussian process is

applied to model yl(x) as well. For yl(x) and δ(x), since they are modeled as Gaussian processes,

we can write yl(x) ∼ N(fl(x)Tβl, σ
2
l ) and δ(x) ∼ N(fδ(x)Tβδ, σ

2
δ ). Similar to the notations in the

previous section, fl(x) and fδ(x) are ql­dimensional and qδ­dimensional vectors of basis functions,

and βl and βδ are the regression coefficient vectors. The correlation parameters of the Gaussian

process models for yl(x) and δ(x) are denoted by θl and θδ, respectively. Note that in the model

in Eq. (4.1), yl(x) and δ(x) are two separate terms in the multi­fidelity Gaussian process model.

Instead of explicitly modeling them as dependent processes, here their dependence is implicitly

modeled through (i) their common dependence on x, and (ii) δ(x) depends on the difference between

yh(x) and yl(x). Later for model calibration, the model parameters in yl(x) and δ(x) will also be

calibrated jointly to capture the dependence between them.
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The multi­fidelity Gaussian process model can be calibrated using a combination of high­

fidelity data and low­fidelity data. Let Y = [yl; yh] = [yl(x1l ), . . . , yl(x
nl

l ), yh(x1h), . . . , yh(x
nh

h )]T

denote the training data/observations including nl low­fidelity data yl = [yl(x1l ), . . . , yl(x
nl

l )]T and

nh high­fidelity data yh = [yh(x1h), . . . , yh(x
nh

h )]T with the corresponding design sites denoted by

X = [xl; xh] = [x1l , . . . , x
nl

l , x1h, . . . , x
nh

h ]T . Here we use the common assumption that xh is a subset

of xl. Intuitively, this assumption allows direct comparison between high­fidelity data and low­

fidelity data for the design sites in xh, guiding how the low­fidelity data should be “corrected” to

match the high­fidelity data. This assumption will also facilitate deriving analytical expressions for

the posterior of the model parameters, and this derivation will be discussed in later section. Given

the training data, all the model parameters in the multi­fidelity Gaussian process model, denoted

here by η = [βρ,βl, σ
2
l ,θl,βδ, σ

2
δ ,θδ, σ

2
ϵ ], can be calibrated. Using the calibrated model, the pre­

diction or more specifically the predictive distribution of yh(x0) at a new design point x0 can be

obtained, which is discussed next.

As an illustration, Figure 4.1 shows an example of themulti­fidelity Gaussian processmodeling,

where the red dots and blue squares are the high­fidelity and low­fidelity training data, respectively.

The black solid line represents the unknown function to be predicted (i.e., high­fidelity model), the

blue solid line represents the low­fidelity model, the blue dashed line is the scaled low­fidelity

model, and the green dashed line corresponds the prediction by the multi­fidelity Gaussian process

model.

4.2.2 Posterior predictions at new inputs

In this section we will discuss the prediction of yh at new input x0. Based on the observations

yl and yh, η can be calibrated. Let p(η|yh, yl) denote the posterior distribution for η, which will be
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Figure 4.1: Illustrative example of multi­fidelity Gaussian process model (MFGP in the figure stands for
multi­fidelity Gaussian process model).

discussed in detail in next section. Conditional on given observations yl and yh and specific values

of the model parameters η, the multi­fidelity Gaussian process model gives a prediction of yh that

follows a Gaussian distribution and can be denoted as p[yh(x0)|yh, yl,η]. Therefore, propagating

the uncertainty in η, we can establish the predictive distribution for yh, denoted p[yh(x0)|yh, yl],

p[yh(x0)|yh, yl] =
∫

p[yh(x0)|yh, yl,η]p(η|yh, yl)dη (4.2)

With p[yh(x0)|yh, yl] or samples from it, we can then easily calculate the statistics (e.g., mean

and variance) for yh(x0) as well. To establish p[yh(x0)|yh, yl], we need to figure out (i) what is the

expression for p[yh(x0)|yh, yl,η], and (ii) what is the posterior distribution p(η|yh, yl) and how to

sample from it. These two aspects are discussed in detail in the following sections with a focus on

(ii).
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First, for the conditional distribution p[yh(x0)|yh, yl,η] in Eq. (4.2), it corresponds to a Gaussian

with meanmyh(x0) and variance s2yh(x
0), which are given by

myh(x
0) = ρ(x0)fl(x0)Tβl + fδ(x0)Tβδ + kTV−1(Y−M) (4.3)

s2yh(x
0) = khh(x0, x0)− kTV−1k (4.4)

with ρ(x0) = fρ(x0)Tβρ, k = [khl(x0, xl)T , khh(x0, xh)T ]T , and

V =









Kll(xl, xl) Klh(xl, xh)

Khl(xh, xl) Khh(xh, xh)









,M =









Fl(xl)βl

P(xh) · (Fl(xh)βl) + Fδ(xh)Tβδ









The analytical form of the conditional distribution p[yh(x0)|yh, yl,η] is derived from the fol­

lowing joint distribution,

















yh(x0)

yl(xl)

yh(xh)

















∼ N

































ρ(x0)(fl(x0)
T
βl) + fδ(x0)

T
βδ

Fl(xl)βl

P(xh)(Fl(xh)βl) + Fδ(xh)βδ

















,

















khh(x0, x0) khl(x0, xl)
T khh(x0, xh)

T

klh(xl, x0) Kll(xl, xl) Klh(xl, xh)

khh(xh, x0) Khl(xh, xl) Khh(xh, xh)

































(4.5)

withFl(xl) = [fl(x1l )T , . . . , fl(x
nl

l )T ]T , Fl(xh) = [fl(x1h)T , . . . , fl(x
nh

h )T ]T , Fδ(xh) = [fδ(x1h)T , . . . ,

fδ(xnh

h )T ]T , P(xh) = diag[ρ(x1h), . . . , ρ(x
nh

h )], kst(xs, x0) = kts(x0, xs) = [kst(x1s, x0), . . . ,

kst(xns
s , x0)]T , and kst(xis, x

j
t) denotes the covariance between ys(xis) and yt(x

j
t), where s and t
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represent low­fidelity or high­fidelity. Additionally, we have

Kst(xs, xt) =

















kst(x1s, x1t ) · · · kst(x1s, x
nt
t )

... . . . ...

kst(xns
s , x1t ) · · · kst(xns

s , xnt
t )

















(4.6)

4.3 Posterior Distributions of Model Parameters

To obtain the predictive distribution of yh(x0), we also need to establish the posterior distri­

butions of the unknown parameters η, which is proportional to the prior p(η) multiplied by the

likelihood function L(D|η) = p(yh, yl|η), i.e., p(η|yh, yl) ∝ p(η)p(yh, yl|η), where D represents

the training data including both high­fidelity data and low­fidelity data. This section first discusses

the selection of the prior distributions forη, and then derives the expressions for the likelihood func­

tions when there is censored data in the observations. The latter is part of the novelty of this chapter,

since existing models only consider accurate (or equality) data (i.e., without censored data). In this

section, the unknown parameters are collected into two groups: η1 = [βl, σ
2
l ,θl] associated with

low­fidelity response yl(x), and η2 = [βρ,βδ, σ
2
δ ,θδ, σ

2
ϵ ] associated with high­fidelity response

yh(x).

4.3.1 Prior distributions of model parameters

Assuming independence between the model parameters, the prior distribution of the unknown

model parameter η can be written as

p(η) = p(η1,η2) = p(η1)p(η2) = p(βl, σ
2
l ,θl)p(βρ,βδ, σ

2
δ ,θδ, σ

2
ϵ ) (4.7)
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Either informative and non­informative priors can be used. To establish analytical posterior distri­

butions of the parameters, the following priors are adopted: βl, βρ, βδ are assumed to follow the

multivariate normal distribution, σ2
l , σ2

δ , σ2
ϵ are assumed to follow the inverse gamma distribution

and θl, θδ are assumed to follow the gamma distribution. More specifically, we have

βl ∼ N
(

ml,Vl
−1
)

, σ2
l ∼ IG (αl, γl) , θl,i ∼ G (al, bl) ,βρ ∼ N

(

mρ,Vρ
−1
)

,

βδ ∼ N
(

mδ,Vδ
−1
)

, σ2
δ ∼ IG (αδ, γδ) , θδ,i ∼ G (aδ, bδ) , σ

2
ϵ ∼ IG (αϵ, γϵ)

(4.8)

where i = 1, 2, . . . , nx, ml, mρ, mδ are the mean vectors of βl, βρ, βδ, and Vl, Vρ, Vδ are the

precision matrices of βl, βρ, βδ. One option to select values for the mean vectors is to set ml =

mleql , mρ = mρeqρ , mδ = mδeqδ , and ek is a k × 1 vector of ones and k = ql or qρ or qδ. For the

precision matrices, Vl = (vl/σ
2
l )Iql×ql , Vρ = vρIqρ×qρ , Vδ = (vδ/σ

2
δ )Iqδ×qδ can be used where Ik×k

is a k × k identity matrix. To establish more informed priors, another option is to use least square

regression to get a better estimate/guess of the values forml,mρ,mδ. For example,ml can be taken

as the least square regression values for βl based on low­fidelity data. Similarly, mδ can be taken

as the least square regression values for βδ by setting the scaling factor ρ(x) equal to 1 and using

the difference between high­fidelity and low­fidelity data. Formρ, it can be taken as a q× 1 vector

with value of 1 for the first element and 0 for the rest of the elements or more generally uniform

random values between 0 and 1 for all the elements. Note that the procedure affects the selection

of priors, which in turn will to some extent affect the posterior distribution of the uncertain model

parameters since the posterior is proportional to product of the prior and the likelihood. Depending

on the amount of data, the impact of such selection of priors varies, e.g., when the data is extremely

limited the selection of the prior is expected to have larger impact on the posterior, but when there
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is enough data and the likelihood dominates the posterior, the selection of the prior will have less

impact on the posterior.

4.3.2 Likelihood functions of model parameters

In this section, we derive the likelihood functions of the unknown parameters based on the

training data set D. Depending on the type of data (e.g., accurate data or censored data) in the

training data, the likelihood function will be different. Here we will derive the likelihood function

for two cases. The first case is when the training data D only includes accurate responses, and the

second case is when the training set includes both censored responses and accurate responses. Also,

here we only consider censored responses in the high­fidelity data/responses, which is the more

common case, while the derivation process can be easily extended to consider censored responses

in low­fidelity data/responses.

Likelihood function considering only accurate data

The training data D can be represented by Y = [yl; yh], where yl = [y1l , y
2
l , . . . , y

nl

l ]T , yh =

[y1h, y
2
h, . . . , y

nh

h ]T . To simplify the notation, we also define ξ(x) = δ(x) + ϵ = yh(x) − ρ(x)yl(x).

Then the likelihood function of the unknown model parameters η = [η1,η2] can be written as

L(D|η) = p(yh, yl|η1,η2) = p(yl|η1)p(yh|yl,η2)

= L(y1l , y
2
l , . . . , y

nl

l |βl, σ
2
l ,θl)L(ξ

1, ξ2, . . . , ξnh |βρ,βδ, σ
2
δ ,θδ, σ

2
ϵ )

(4.9)
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Since yl(x) and δ(x) are Gaussian process models and ϵ corresponds to Gaussian random error,

using the joint Gaussian PDF (e.g., over the low­fidelity data and high­fidelity data), we have

L(y1l , y
2
l , . . . , y

nl

l |βl, σ
2
l ,θl)

=
1

(2π)nl/2 |Ψl|1/2
exp

[

−1

2
(yl − Fl(xl)βl)

TΨ−1
l (yl − Fl(xl)βl)

] (4.10)

L(ξ1, ξ2, . . . , ξnh |βρ,βδ, σ
2
δ ,θδ, σ

2
ϵ )

=
1

(2π)nh/2|Ψξ|1/2
exp

[

−1

2
(yh − AylFρ(xh)βρ − Fδ(xh)βδ)

T
Ψξ

−1(yh − AylFρ(xh)βρ − Fδ(xh)βδ)

]

(4.11)

with Ayl = diag[yl(x1h), . . . , yl(x
nh

h )], Fρ(xh) = [fρ(x1h)T , . . . , fρ(x
nh

h )T ]T . Ψl and Ψξ are the co­

variance matrices of yl and ξ(xh) = [ξ(x1h), ξ(x2h), . . . , ξ(x
nh

h )]T , and have the expressions Ψl =

σ2
l Rl andΨξ = σ2

δRδ + σ2
ϵ Inh×nh

, where Rl and Rδ are the correlation matrices of yl and δ(xh) =

[δ(x1h), δ(x2h), . . . , δ(x
nh

h )]T , respectively.

Likelihood function considering both censored data and accurate data

Now suppose the high­fidelity data set includes both censored and accurate responses, denoted

by yh,I and yh,J , respectively. In this case, the likelihood function of the unknown parameters

η = [η1,η2] can be written as L(D|η) = p(yh,I , yh,J , yl|η1,η2), which can be expanded as

L(D|η) = p(yl|η1)p(yh,J |yl,η2)

∫

∏
i∈I Ai

p(yh,I |yh,J , yl,η2)dyh,I (4.12)

where i represents the ith censored response, I is the index set for the censored responses, and Ai

represents the censoring interval. Evaluation of the likelihood in Eq. (4.12) for given η involves

evaluation of a potentially high­dimensional integral over the “failure region” defined by
∏

i∈I Ai.
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While Monte Carlo simulation (MCS) can be used to evaluate the integral, it typically requires

large number of simulations, entailing huge computational efforts. Within the context of Bayesian

updating for establishing or sampling from the posterior distributions for η, where many repeated

evaluations of the likelihood function for different values of η is required, direct adoption of MCS

for each evaluation of the likelihood function is computationally expensive.

To address the above challenge, here we propose a data augmentation approach where the cen­

sored data are treated as unknown model parameters (e.g., augmented on top of the existing un­

known model parameters). This will eliminate the need to evaluate the high­dimensional integrals

when sampling from the posterior distribution. Details of using data augmentation to facilitate sam­

pling from the posterior distribution are presented in the next section, and the posterior sampling

using data augmentation within the context of multi­fidelity Gaussian process model considering

both censored data and accurate data is a novel contribution of this chapter, which has not been

considered in existing research.

4.4 Sampling from Posterior Distributions of Model Parameters

4.4.1 Posterior distributions of model parameters

Using the prior distribution and likelihood function of model parameters established in the

previous section, we can establish the posterior distributions of the unknown model parameters.

While Qian and Wu (2008) have derived the posterior distributions of model parameters for the

multi­fidelity Gaussian process model based on only accurate data, here we derive the posterior

distributions of model parameters for the multi­fidelity Gaussian process model considering data

with both censored and accurate data (in the high­fidelity data). To facilitate the sampling from

the posterior distributions, here we use data augmentation to augment the posterior distribution
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by treating the censored data as unknown uncertain model parameters. This will be the focus of

this section. More specifically, the censored responses, yh,I = [y1h, y
2
h, . . . , y

nI

h ]T , are regarded as

uncertain parameters, denoted by ỹh,I = [ỹ1h, ỹ
2
h, . . . , ỹ

nI

h ]T . Note that for notation convenience,

we arrange the data so that the elements of yh,I are the first nI elements of yh. The posterior joint

distribution for [ỹh,I ,η] can be written as

p(ỹh,I ,η|yh, yl) ∝ p(η)p(ỹh,I |η)p(yh, yl|ỹh,I ,η) (4.13)

where p(ỹh,I |η) =
∏

i∈I

1{ỹi
h
∈Ai} and Ai is defined by the actual censored data/responses yh,I .

Although Eq. (4.13) provides the full joint posterior distribution for [ỹh,I ,η] , it is not practical to

directly generate samples from it. On the other hand, with the selection of the priors discussed ear­

lier and using the Gaussian nature of the likelihood functions, we can derive analytical expressions

for the conditional posterior distributions of the model parameters. With analytical expressions,

we can directly and efficiently sample from these conditional posterior distributions. Within this

context, we will use Gibbs sampling and the analytical expressions for the conditional posterior

distributions to efficiently generate samples from the joint posterior distribution. Next, we present

the derived conditional posterior distributions for all the parameters.

(1) ỹih

p(ỹih|yh,I , yh,J , yl,η, ỹ
(i)
h,I) ∝ N

(

myh(x
i
h), s

2
yh
(xih)

)

1{ỹi
h
∈Ai} (4.14)

where ỹih(i = 1, 2, . . . , nI) is the ith element of ỹh,I , and

myh(x
i
h) = ρ(xih)fl(x

i
h)

Tβl + fδ(xih)
Tβδ + [khl(xih, xl)

T , khh(xih, x
(i)
h )T ][V(i)]−1

(

[yl, ỹ
(i)
h,I , yhJ

]
T
−M(i)

)

s2yh(x
i
h) = khh(xih, xih)− [khl(xih, xl)T , khh(xih, x

(i)
h )T ][V(i)]−1[klh(xl, xih), khh(x

(i)
h , xih)]T
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and ρ(xih) = fρ(xih)Tβρ, x
(i)
h corresponds to xh with the ith input xi removed, ỹ(i)h,I corresponds

to ỹh,I with the ith element ỹih removed, V(i) is V with the (nl + i)th column and (nl + i)th row

removed,M(i) isM with the (nl + i)th row removed.

(2) βl

p(βl|yh,I , yh,J , yl, β̄l) = p(βl|yh, yl, β̄l) = N(m̃l, Ṽ−1
l ) (4.15)

where β̄l represents the rest of the parameters excluding βl (similar notation is used for the follow­

ing derivations), and m̃l = Ṽ−1
l [Vlml + Fl(xl)TΨl

−1yl], Ṽl = Vl + Fl(xl)TΨl
−1Fl(xl).

(3) βρ

p(βρ|yh,I , yh,J , yl, β̄ρ) = p(βρ|yh, yl, β̄ρ) = N(m̃ρ, Ṽ−1
ρ ) (4.16)

where m̃ρ = Ṽ−1
ρ [Vρmρ + (AylFρ(xh))TΨξ

−1(yh − Fδ(xh)βδ)] and Ṽρ = Vρ +

(AylFρ(xh))TΨξ
−1(AylFρ(xh)).

(4) βδ

p(βδ|yh,I , yh,J , yl, β̄δ) = p(βδ|yh, yl, β̄δ) = N(m̃δ, Ṽ−1
δ ) (4.17)

where m̃δ = Ṽ−1
δ [Vδmδ + Fδ(xh)TΨξ

−1(yh −AylFρ(xh)βρ] and Ṽδ = Vδ + Fδ(xh)TΨξ
−1Fδ(xh).

(5) σ2
l

p(σ2
l |yh,I , yh,J , yl, σ̄2

l ) = p(σ2
l |yh, yl, σ̄2

l ) = IG(α̃l, γ̃l) (4.18)

where α̃l =
nl

2
+ ql

2
+αl and γ̃l = vl

2
(βl−ml)

T (βl−ml)+
1
2
[yl − Fl(xl)βl]

TR−1
l [yl−Fl(xl)βl]+γl.

Note that the derivation of the posterior distributions for βl, βρ, βδ and σ2
l is based on the property

of conjugate prior (Gelman et al. 2013). For βl, βρ and βδ, the likelihood is a normal distribution

with known variance and the prior distributions of these parameters are normal distributions, which

are the conjugate priors, therefore the posterior distributions will be in the same probability density
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family as the priors (i.e., normal distributions). Similarly, the posterior distribution for σ2
l is an

inverse gamma because the likelihood is a normal distribution with known mean and the conjugate

prior distribution is an inverse gamma.

(6) σ2
δ and σ2

ϵ

p(σ2
δ , σ

2
ϵ |yh,I , yh,J , yl, σ2

δ , σ
2
ϵ ) ∝ (σ2

δ )
−nh/2−αδ−1(σ2

ϵ )
−αϵ−1 exp

[

− γϵ

σ2
ϵ

− γδ

σ2
δ

]

1

|Rξδ|1/2

× exp

[

−
(yh − AylFρ(xh)βρ − Fδ(xh)βδ)

TRξδ
−1(yh − AylFρ(xh)βρ − Fδ(xh)βδ)

2σ2
δ

] (4.19)

where Rξδ = Rδ + (σ2
ϵ/σ

2
δ )Inh×nh

.

(7) θl and θδ

p(θl|yh,I , yh,J , yl, θ̄l) ∝ p(θl)
1

(σ2
l )

nl/2 |Rl|1/2
exp

[

−(yl − Fl(xl)βl)
TR−1

l (yl − Fl(xl)βl)

2σ2
l

]

(4.20)

p(θδ|yh,I , yh,J , yl, θ̄δ) ∝ p(θδ)
1

(σ2
δ )

nh/2|Rξδ|1/2

× exp

[

−
(yh − AylFρ(xh)βρ − Fδ(xh)βδ)

TRξδ
−1(yh − AylFρ(xh)βρ − Fδ(xh)βδ)

2σ2
δ

] (4.21)

4.4.2 Sampling from posterior distributions of model parameters

As can be seen from the above expressions, the posterior distributions for ỹih, βl, βρ, βδ, σ2
l are

of standard forms, which means samples for these parameters can be directly generated from the

corresponding distributions. By contrast, the samples for σ2
δ , σ2

ϵ , θl and θδ cannot be directly gen­

erated since the conditional posterior distributions for these parameters do not have closed­form

analytical expressions (or do not correspond to standard distributions, e.g., Gaussian or inverse

Gamma or other known distributions). To generate samples from these distributions, the general
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Metropolis­Hastings algorithm will be applied. For ease of the posterior sampling, we will use

point estimates for the correlation parameters θl and θδ instead of sampling from the correspond­

ing posterior distributions. In this case, for selected values of θl and θδ, the posterior predictive

distribution of yh(x0) is given by

p[yh(x0)|yh, yl] =
∫

p[yh(x0)|yh, yl,η]p(yh,I , θ̄|yh, yl,θl,θδ)dyh,Idθ̄ (4.22)

where we use the notation η = [θ, θ̄], θ = [θl,θδ], and θ̄ = [βl,βρ,βδ, σ
2
l , σ

2
δ , σ

2
ϵ ].

Point estimates for correlation parameters

To use point estimates for θl and θδ in Eq. (4.22), we need to first establish these point esti­

mates. For this, we use the marginal posterior distribution for θl and θδ, which has the following

expression,

p(θl,θδ|yh,I , yh,J , yl) ∝
∫

σ2

δ
,σ2

ϵ

p(θl)p(θδ)(σ
2
δ )

−(nh−qρ)/2|Rl|−1/2|Rξδ|−1/2|al|−1/2|aρ|−1/2|aδ|−1/2

×
(

γl +
4cl − blTal−1bl

8

)−αl−nl/2

exp
[

−4cδ − bδTaδ−1bδ
8σ2

δ

]

dσ2
δdσ

2
ϵ

(4.23)

The derivation of this marginal distribution involves complicated mathematical operations to in­

tegrate out each of the parameters in θ̄ = [βl,βρ,βδ, σ
2
l , σ

2
δ , σ

2
ϵ ]. The detailed derivations are

presented in Appendix A.

Then the Maximum A Posteriori (MAP) estimate for θ can be established by

θMAP = max
θl,θδ

p(θl,θδ|yh,I , yh,J , yl) (4.24)
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This optimization problem is complicated. To evaluate the objective function, which corresponds

to the multi­dimensional integral with respect to σ2
δ and σ2

ϵ in Eq. (4.23), Eq. (4.23) is rewritten

by multiplying and dividing the probability distribution p (σ2
δ , σ

2
ϵ ) = p (σ2

δ ) p (σ
2
ϵ ) with p (σ2

δ ) ∝

(σ2
δ )

−αδ−1 exp (−γδ/σ
2
δ ) and p (σ2

ϵ ) ∝ (σ2
ϵ )

−αϵ−1 exp (−γϵ/σ
2
ϵ ). That is, the integral is explicitly

written as expectation with respect to p (σ2
δ , σ

2
ϵ ), which allows the use of stochastic simulation to

evaluate the integral. In the end, we consider the following equivalent optimization,

θMAP = max
θl,θδ

∫

σ2

δ
,σ2

ϵ

p(θl)p(θδ)(σ
2
δ )

−(nh−qρ)/2+αδ+1(σ2
ϵ )

αϵ+1|Rl|−1/2|Rξδ|−1/2|al|−1/2|aρ|−1/2|aδ|−1/2

×
(

γl +
4cl − blTal−1bl

8

)−αl−nl/2

exp
[

−4cδ − bδTaδ−1bδ
8σ2

δ

+
γδ

σ2
δ

+
γϵ

σ2
ϵ

]

p(σ2
δ , σ

2
ϵ )dσ

2
δdσ

2
ϵ

= max
θl,θδ

∫

σ2

δ
,σ2

ϵ

F (θl,θδ, σ
2
δ , σ

2
ϵ )p(σ

2
δ , σ

2
ϵ )dσ

2
δdσ

2
ϵ = max

θl,θδ

E[F (θl,θδ, σ
2
δ , σ

2
ϵ )]

(4.25)

The optimization problem in Eq. (4.25) can be solved by a sample based approach, i.e., sample

average approximation (Ruszczynski and Shapiro 2003). We first generateK samples for σ2
δ and σ2

ϵ

from the prior distribution p(σ2
δ , σ

2
ϵ ) and then evaluate the expectation of F (θl,θδ, σ

2
δ , σ

2
ϵ ) based on

these sample, i.e.,E[F (θl,θδ, σ
2
δ , σ

2
ϵ )] ≈ 1

K

∑K

k=1 F (θl,θδ, σ
2
δ,k, σ

2
ϵ,k). Therefore, the optimization

problem in Eq. (4.25) can be replaced by

θMAP = max
θl,θδ

1

K

K
∑

k=1

F (θl,θδ, σ
2
δ,k, σ

2
ϵ,k) (4.26)

which can be solved using general nonlinear optimization algorithms. To address the estimation

error of E[F (θl,θδ, σ
2
δ , σ

2
ϵ )] for different values of θl,θδ due to randomness in the samples for

[σ2
δ , σ

2
ϵ ], Common Random Numbers (CRNs) will be used (i.e., the same set of samples for [σ2

δ , σ
2
ϵ ]

will be used for estimation of E[F (θl,θδ, σ
2
δ , σ

2
ϵ )] in the optimization in Eq. (4.26)).
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Sampling for other parameters

With point estimates for θl and θδ, we can use Gibbs sampling to generate samples for other

parameters where samples for ỹih, βl, βρ, βδ, σ2
l can be directly generated from their conditional

posterior distributions which are of standard forms. However, for σ2
δ and σ2

ϵ , since their conditional

posteriors are not of standard form, Metropolis­Hastings algorithmwill be used to generate samples

for σ2
δ and σ2

ϵ within each step of Gibbs sampling. In the end, we can generate samples from the

joint posterior distributions for the model parameters, which can be used to establish the posterior

predictive distribution for yh(x0) (as shown in Eq. (4.22)).

4.5 Illustrative Example: Probabilistic Deformation Capacity of RC Columns

Accurate prediction of deformation capacity of reinforced concrete (RC) columns under re­

peated cyclic loading is critical for assessing performance of RC bridges under seismic loading

(e.g., for predicting damage, establishing fragility curves, assessing failure probability). Tradi­

tional deformation capacity model for RC columns is derived based on the mechanics rules, and

the uncertainties in model parameters are not taken into account. The deterministic model often

gives conservative predictions for the deformation capacity (Gardoni et al. 2002). Some previous

studies (Gardoni et al. 2002, 2003) have proposed probabilistic capacity models to account for the

uncertainty in predicting the capacity of RC columns. These models are calibrated using exist­

ing experimental data. In this section, we will apply the multi­fidelity Gaussian process model to

establish a probabilistic predictive model for the deformation capacity of RC columns and demon­

strate the performance of the proposed multi­fidelity Gaussian process model. This application

will integrate limited high­fidelity experimental data with large number of low­fidelity data (that

is easier, cheaper to obtain compared to high­fidelity data), and will explicitly incorporate the cen­
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sored data in the high­fidelity data and the uncertainties in the Gaussian process model parameters

as well as the measurement errors in the data. In the end, the established predictive model can be

used to predict the deformation capacity (or posterior distribution of the deformation capacity, i.e.,

probabilistic deformation capacity) for any new RC column that is not in the existing database.

Similar to Gardoni et al. (2002), we consider the deformation capacity of cantilever RC columns

fixed at the base. The deformation capacity of the RC column is defined as the maximum drift ratio

at the top of the column. Eleven inputs (capturing key geometric and material properties of the col­

umn) are considered, including x1 = dimension of column sectionDcol, x2 = height of columnHc,

x3 = cover thickness of concrete c, x4 = compressive strength of concrete fc, [x5, x6, x7] = dimen­

sion, yield strength, and ratio of longitudinal reinforcement ds, fys, ρs, [x8, x9, x10] = dimension,

yield strength, ratio of volumetric transverse reinforcement dsv, fyv, ρsv, and x11 = axial load N .

Therefore, in this example, we have nx = 11 inputs.

4.5.1 High­fidelity database with censored data

The behavior of RC columns under repeated cyclic loading has been investigated using ex­

perimental tests by many researchers over the years. Many of the results have been collected at

a database (see at https://nisee.berkeley.edu/spd/index.html). The high­fidelity data for this study

will be established from this database. The latest database contains the experimental data of 253

rectangular columns and 163 circular columns under cyclic lateral loads. For this study, we focus

on the circular columns. Some of the 163 circular columns were excluded from this study, includ­

ing: (1) columns 13, 25, 34, 135 with varying axial loads; (2) column 38, 69, 75, 82 without spiral

reinforcement; (3) columns 39, 40, 144­149 with 28­day concrete strength unreported; (4) columns

61­66 with square cross sections; (5) columns 141, 154 which are retrofitted or sliced columns.
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Therefore, the experimental data of the remaining 139 columns are selected for this study. Among

the 139 columns, 69 columns are removed in order to avoid ill­conditioned covariance matrices

when building the Gaussian process model since some of these columns have close to identical

inputs. The final high­fidelity database consists of 17 accurate responses (i.e., with direct mea­

surement of the deformation capacity) and 53 censored responses (i.e., with measurement of the

deformation capacity values before reaching failure). The detailed information about the final high­

fidelity database is presented in Appendix B.

As can be seen, we only have a limited number of high­fidelity data. If relying on the high­

fidelity data alone to establish a Gaussian process model, due to the small number of training data,

the established Gaussian model is not expected to have high accuracy or generalize well to other

inputs not in the database. Therefore, we use the multi­fidelity Gaussian process model to integrate

this limited number of high­fidelity data with large number of low­fidelity data to inform a better

Gaussian process model.

4.5.2 Low­fidelity database

Though accurate, high­fidelity data from running physical experiments is expensive to estab­

lish. On the other hand, cheaper computational simulation or theoretical analysis requiring less

resources can be applied to investigate the deformation capacity of RC columns; however, the re­

sults may not be as accurate as the high­fidelity experimental data. In this study, the low­fidelity

data will be obtained from the combination of computational simulation and theoretical analysis. A

theoretical model has been given by Gardoni et al. (2002) for calculating the deformation capacity

of RC columns. Based on the model, the deformation capacity is decomposed into two parts, the

elastic deformation δy and the plastic deformation δp, i.e., δ = δy + δp = (∆y + ∆p)/Hc, where
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∆y is the lateral displacement of the top when the column yields,∆p is the lateral displacement of

the top from when the column yields to a plastic hinge forms at the bottom.

The elastic displacement of the top can be obtained as (Gardoni et al. 2002; Priestley et al. 1996;

Pujol 2002)∆y = ϕyl
2
eff/3+(VyHc)/(GAve)+(ϕyfysdsHc)/(8.64

√
fc), where ϕy is the curvature

of the bottom section when the column yields, leff is the effective height of the columnwhich can be

estimated byHc+0.022fysds. Vy is the shear force when the column yields,G is the shear modulus

of concrete and Ave is the effective shear area which can be calculated by Ave = (Ie/I)ksA, where

Ie and I are the effective moment of inertia and the gross moment of inertia of the cross section

respectively, ks is the cross­sectional shape factor, and A is the area of the gross section. The

plastic deformation can be calculated as (Priestley et al. 1996) ∆p = (ϕu − ϕy)lpHc, where ϕu is

the curvature of the bottom section when the column fails, lp the equivalent plastic hinge length

which can be estimated by 0.08Hc+0.022fysds. Note that lp should not be smaller than 0.044fysds.

The values of the parameters ϕy, ϕu, Vy and Ie need to be calculated from the moment­curvature

relationship based on the cross section analysis for RC columns. In this study, the cross section anal­

yses are done in OpenSees for all the columns in the training dataset. More specifically, the columns

are modeled using fiber section elements, and pushover analyses are done for the columns to get the

moment­curvature relationship of the bottom cross section. Among the parameters, ϕy, ϕu, Vy can

be obtained directly according to the definition, while the effective moment of inertia Ie can be cal­

culated by Ie = (Mcr/Ma)
3
Ig +

[

1− (Mcr/Ma)
3]
Icr ≤ Ig, whereMcr = (0.84

√
fc)Ig/(Dcol/2)

is the cracking moment, Ma is the maximum moment and Icr is the moment of inertia of cracked

section.

93



4.5.3 Implementation details

In this example, we select ln(δ) as the output, i.e., y(x) = ln(δ(x)). When building the multi­

fidelity Gaussian process model, for the high­fidelity data, we consider two cases. The first case

uses all the high­fidelity data, i.e., including both the accurate responses and the censored responses.

The corresponding high­fidelity data will be referred as “complete data”. The second case only uses

the accurate responses. The corresponding high­fidelity data will be referred as “accurate data”.

The performance of the multi­fidelity Gaussian process models built under these two cases will be

investigated to illustrate the impact of including censored data. On the other hand, for the low­

fidelity data xl, we know that xl is a superset of xh. When creating the low­fidelity data, except the

inputs in xh, the rest of the low­fidelity data inputs are generated using Latin Hypercube Sampling

(LHS). Linear basis functions are used in the Gaussian process models (e.g., for fl(x), fρ(x) and

fδ(x)). Take fl(x) for example, it corresponds to fl(x) = [1, x1, . . . , x11]. Other basis functions can

be used as well; alternatively, the basis functions can be optimally selected using optimization.

To evaluate the accuracy of the prediction model, error statistics are calculated using leave­

one­out cross validation (LOOCV), which is performed as follows. First, the observations from

the high­fidelity data set is sequentially removed, and the corresponding training data set will be

composed of the remaining high­fidelity data and the original low­fidelity data. Then the Gaus­

sian process model built using the corresponding training set is used to predict the response over

the removed data point. The error between the prediction and the high­fidelity observation at the

removed data point is then calculated. In the end, averaging errors over all the high­fidelity data

points gives the overall LOOCV error. Here we use the mean errorME as the error statistics, and

the LOOCV ME is given by: ME =
∑nh

i=1 |yh(xih)− E[ŷh(xih)]|/
∑nh

i=1 |yh(xih)|, where ŷh(xih)
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is the prediction from the established multi­fidelity Gaussian process model and E[ŷh(xih)] corre­

sponds to the mean of the predictive distribution for ŷh(xih). If the values for ME is small, the

model fits the data well. For the “complete data” case, the responses of the censored data only

correspond to lower bounds of the actual responses with the actual responses unknown. For cal­

culatingME in this case, the censored responses will be artificially treated as the actual response

so that we can establish the ME value for this case. The ME in this case needs to be interpreted

accordingly.

It is expected that the number of low­fidelity data (i.e., nl) will to some extent impact the

accuracy of the established multi­fidelity Gaussian process model. nl is selected to strike a balance

between computational efficiency and model accuracy. While larger number of low­fidelity data

might help improve the accuracy, the computational efficiency could reduce. To select nl, we

run the algorithm with different nl values. The results indicated that when nl is larger than 300,

the ME has little change, and in the end nl = 300 is used. Regarding prior distributions for

the unknown model parameters, we choose priors as mentioned earlier. More specifically, for

Eq. (4.8), we determine ml, mρ, mδ using the least square regression approach discussed earlier.

For the other parameters, we select [αl, αδ, αϵ] = [2, 2, 2], [γl, γδ, γϵ] = [1, 1, 1], [al, aδ] = [2, 2],

and [bl, bδ] = [1, 1]. It should be noted that, the prior values are selected based on the consideration

that the corresponding model parameters have reasonable mean values and also a large spread for

the prior distributions. More specifically, to get a sense of the values for σ2
l , we established a

Gaussian process model for yl(x) based on only low­fidelity data, which gives a point estimate of

around 0.148. For σ2
δ + σ2

ϵ , since we have δ(x) + ϵ = yh(x) − ρ(x)yl(x), by assuming ρ(x) is

zero we establish a Gaussian process model for δ(x) + ϵ is estimated to be around 0.139. Then an

inverse Gamma prior with shape parameter α = 2 and scale parameter γ = 1 is selected for σ2
l ,
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σ2
δ , and σ2

ϵ , which has mode of 1/3 (which is around twice of 0.148 and 0.139) and also ensures

that the prior has large spread. For θl,i and θδ,i, gamma distribution G(2,1) is selected as the prior.

The mean and variance of this distribution are both 2 and the coefficient of variation is around 0.7

which means the distribution has a wide spread. In addition, the distribution covers a region from 0

to 10 and these values are typically used for θi in Gaussian correlation functions. To establish point

estimates for θl and θδ, K = 2000 samples for σ2
δ and σ2

ϵ from their prior distributions are used

in the optimization problem in Eq. (4.26). The proposed approach discussed in earlier sections is

then used for sampling from the posterior distribution of the model parameters and establishing the

predictive distributions for the outputs at new inputs.

4.5.4 Posterior statistics of model parameters

Here we present the posterior statistics of model parameters established under the “complete

data” case. By solving the optimization in Eq. (4.26) (i.e., maximizing the marginal posterior for θl

and θδ), the MAP estimates of correlation parameters θl and θδ are obtained, which are presented

in Table 4.1. Using MAP estimates for θl and θδ, we can then use Gibbs sampling discussed earlier

to generate posterior samples for other parameters where samples for ỹih, βl, βρ, βδ, σ2
l are directly

generated from their conditional posterior distributions while samples for σ2
δ and σ2

ϵ are generated

using Metropolis­Hastings algorithm. The posterior means, standard deviations and correlation

matrices of βl, βρ and βδ are then estimated based on the generated samples and are reported in

Tables 4.2, 4.3 and 4.4, respectively.

Fig. 4.2 shows the prior and posterior distributions of parameters σ2
l , σ2

δ and σ2
ϵ . Note that the

posterior distributions are obtained using kernel density estimation based on the generated posterior

samples for these parameters. The big differences between the priors and posteriors of σ2
l , σ2

δ and σ2
ϵ
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Table 4.1: MAP estimates for θl and θδ

Parameter Component Estimation

θl

θl1 0.536
θl2 0.196
θl3 0.046
θl4 0.043
θl5 0.084
θl6 0.081
θl7 0.118
θl8 0.012
θl9 1.444
θl10 0.689
θl11 4.802

θδ

θδ1 1.180
θδ2 1.270
θδ3 1.152
θδ4 0.180
θδ5 0.732
θδ6 0.317
θδ7 0.238
θδ8 0.413
θδ9 0.436
θδ10 0.971
θδ11 0.520
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Table 4.2: Posterior statistics of βl

Parameter Mean
Standard Correlation Coefficient
deviation βl1 βl2 βl3 βl4 βl5 βl6 βl7 βl8 βl9 βl10 βl11 βl12

βl1 ­0.002 0.001 1
βl2 ­0.300 0.029 0.00 1
βl3 0.381 0.026 ­0.01 ­0.37 1
βl4 0.027 0.010 0.00 ­0.16 ­0.01 1
βl5 ­0.178 0.020 ­0.04 0.13 0.02 ­0.03 1
βl6 0.217 0.021 ­0.03 ­0.20 ­0.03 0.08 0.01 1
βl7 0.158 0.020 ­0.03 ­0.05 0.00 0.02 ­0.06 0.04 1
βl8 ­0.029 0.012 0.02 0.05 0.01 ­0.01 0.01 ­0.01 0.01 1
βl9 0.006 0.003 0.04 ­0.03 ­0.04 ­0.03 0.04 ­0.02 ­0.02 0.00 1
βl10 0.516 0.030 ­0.05 0.08 ­0.08 0.00 ­0.03 ­0.03 0.02 0.03 ­0.01 1
βl11 0.484 0.028 0.03 0.08 ­0.05 ­0.01 ­0.04 ­0.02 ­0.01 ­0.02 ­0.01 0.01 1
βl12 0.229 0.028 0.03 0.37 0.06 0.00 0.29 0.03 0.02 0.11 0.01 0.04 0.01 1

Table 4.3: Posterior statistics of βρ

Parameter Mean
Standard Correlation Coefficient
deviation βρ1 βρ2 βρ3 βρ4 βρ5 βρ6 βρ7 βρ8 βρ9 βρ10 βρ11 βρ12

βρ1 0.725 0.198 1
βρ2 0.012 0.006 ­0.02 1
βρ3 0.002 0.001 0.00 0.03 1
βρ4 ­0.013 0.006 0.05 0.01 0.00 1
βρ5 ­0.001 0.001 0.01 0.04 ­0.04 ­0.05 1
βρ6 ­0.003 0.001 0.01 ­0.03 0.02 0.03 ­0.01 1
βρ7 ­0.011 0.005 0.00 0.03 ­0.01 ­0.05 0.01 ­0.03 1
βρ8 0.005 0.002 0.00 0.04 ­0.03 ­0.02 0.01 0.05 ­0.06 1
βρ9 ­0.009 0.005 0.02 0.05 0.01 0.04 ­0.02 0.02 ­0.01 ­0.01 1
βρ10 ­0.003 0.002 0.07 0.01 ­0.01 0.00 ­0.01 ­0.04 0.03 0.00 0.04 1
βρ11 0.011 0.006 0.03 0.04 0.02 ­0.06 0.04 ­0.01 0.04 0.00 0.03 0.00 1
βρ12 0.022 0.011 ­0.06 ­0.01 ­0.01 0.02 ­0.01 0.01 0.01 0.00 0.00 0.02 ­0.01 1
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Table 4.4: Posterior statistics of βδ

Parameter Mean
Standard Correlation Coefficient
deviation βδ1 βδ2 βδ3 βδ4 βδ5 βδ6 βδ7 βδ8 βδ9 βδ10 βδ11 βδ12

βδ1 0.627 0.265 1
βδ2 0.012 0.006 0.02 1
βδ3 ­0.085 0.047 ­0.03 ­0.02 1
βδ4 0.539 0.252 0.76 ­0.01 ­0.11 1
βδ5 0.159 0.134 0.00 ­0.01 ­0.04 ­0.01 1
βδ6 ­0.229 0.128 ­0.61 ­0.03 ­0.14 ­0.61 ­0.01 1
βδ7 0.352 0.181 0.03 0.02 ­0.02 0.09 0.05 ­0.16 1
βδ8 ­0.359 0.161 0.10 0.01 0.10 0.06 0.07 ­0.03 ­0.04 1
βδ9 0.139 0.072 0.06 0.02 ­0.04 ­0.08 0.00 ­0.10 ­0.02 ­0.05 1
βδ10 ­0.298 0.141 0.14 0.00 0.01 0.18 ­0.34 ­0.02 ­0.17 ­0.01 0.01 1
βδ11 0.277 0.196 0.25 0.04 0.08 0.11 ­0.40 ­0.03 0.15 ­0.30 ­0.12 0.35 1
βδ12 0.170 0.107 ­0.06 ­0.02 0.00 0.14 ­0.07 0.09 0.04 0.00 0.00 0.14 0.19 1

Figure 4.2: Prior and posterior distributions for σ2
l , σ

2
δ and σ

2
ϵ .

indicate that the training data effectively updated the probability distributions of these parameters.

We can also observe that most proportions of the posterior distributions of these parameters are

concentrated in small regions between 0 and 1, which indicates small variances. The posterior

sample means of σ2
l , σ2

δ and σ2
ϵ are 0.165, 0.342 and 0.245 respectively. The posterior sample

standard deviations of σ2
l , σ2

δ and σ2
ϵ are 0.011, 0.131 and 0.087 respectively.
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4.5.5 Posterior predictive distributions for the outputs

Fig. 4.3 (a) shows a comparison between the mean predictions by the multi­fidelity Gaussian

process model built using “complete data” and high­fidelity observations of the deformation ca­

pacity of the experimental columns. The censored observations and accurate observations are also

labeled in the figure. Fig. 4.3 (b) shows the same comparison but with the multi­fidelity Gaussian

process model built using only “accurate data”. From Fig. 4.3 (a), we can see that the predictions

for most of the accurate data are above the 1:1 line which indicates over­prediction for those data.

This is expected since the prediction model is constructed using the complete high­fidelity data set

where the accurate data only accounts for one fourth of the total data. For censored data points,

reasonable predictions should be larger than the observed values considering that the censored data

correspond to lower bound data. In Fig. 4.3 (a), 47 out of 53 censored data points are distributed

over the 1:1 line which indicates a relatively good fit.

In comparison, the prediction model in Fig. 4.3 (b) fits the accurate data well. However, the

predictions over the censored data points have large errors. Unlike the case in Fig. 4.3 (a), only

33 out of 53 censored data points lie over 1:1 line. For those below the 1:1 line, the deformation

capacities are largely under­predicted, since those observations are already lower bounds of the

actual deformation capacities. Themulti­fidelity Gaussian processmodel built using only “accurate

data” leads to predictions even lower than the lower bounds for some of the data points, indicating

large under­prediction of the actual deformation capacities.

To quantitatively compare the performance of the two models, the LOOCV ME’s are calcu­

lated. Note that we do not know the actual responses over the censored data points, but reasonable

predictions over censored data points should be larger than the corresponding observations (which
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Table 4.5: Comparison of the mean errors

Model type
Mean errors over Mean errors over

censored data points accurate data points
Complete data model 0.0266 (0.0841) 0.3547 (0.2772)
Accurate data model 0.1072 (0.1264) 0.1770 (0.2584)

are low bounds for the actual responses). Therefore, in calculating theME, for the censored data

points, we assume the errors are zero for those whose mean predictions are larger than the observa­

tions. Table 4.5 gives the mean errors of the mean predictions over the high­fidelity censored data

points and the high­fidelity accurate data points. As expected, the “complete data” model gives

much smaller mean error over the censored data points than the “accurate data” model. In addi­

tion, as mentioned earlier, we have 69 column test results which were initially removed to avoid

ill­conditioned covariance matrices when establishing the model. These data can actually be used

as a further validation set for model predictions. The prediction errors over these 69 columns are

also calculated and reported in Table 4.5 (i.e., inside the parenthesis). Similar trends for theMEs

are observed though with slightly larger values for the censored data points.

By comparing Fig. 4.3 (a) and (b) and observing the results in Table 4.5, we can see that it is

important to include the censored data in building the multi­fidelity Gaussian process model, since

they also provide information regarding the underlying model. This is especially true when only a

limited number of accurate data are available in which case it is critical to extract information also

from the censored data. Relying only on limited accurate data would likely to lead to Gaussian

process models that have low accuracy and cannot generalize well to inputs that are not in the

training data.

In addition to the mean prediction, with samples from the posterior predictive distribution, we

also calculated the standard deviation. Fig. 4.4 presents the mean predictions with ± one standard
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Figure 4.3: Comparison between the observations and the mean predictions by the multi­fidelity Gaussian
process model established using (a) “complete data”, (b) “accurate data”.

-3 -2 -1 0 1 2 3

Observations y

-3

-2

-1

0

1

2

3

censored data

accurate data

-5 -4 -3 -2 -1 0 1 2 3 4 5

Observations y

-5

-4

-3

-2

-1

0

1

2

3

4

5

censored data

accurate data(a) (b)

Figure 4.4: Comparison between the observations and the predictive distributions (showing µ ± σ) by the
multi­fidelity Gaussian process model established using (a) “complete data”, (b) “accurate data”.

deviation (i.e., µ ± σ). Here the plotted predictions are the normalized natural logarithms of the

original responses (i.e., the deformation capacity). Fig. 4.4 gives an indication of statistically how

likely the model predictions will be larger than the observations for both censored data and accurate

data. In order to quantify the probability that the Gaussian process model gives reasonable predic­

tions over censored data points, the probabilities that the predictions will exceed observations over
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Figure 4.5: Probabilities that predictions by the multi­fidelity Gaussian process models will exceed the
observations for the censored data points.

all the censored data points are calculated (i.e., using samples from the posterior predictive distribu­

tion). The results are shown in Fig. 4.5. For the Gaussian process model built using only accurate

data, almost half of the predictions have less than 50% probability to give predictions that exceed

the corresponding lower bound observations. By contrast, for the Gaussian process model built us­

ing complete data, over half of the predictions have more than 80% probability to give predictions

that exceed the corresponding lower bound observations. The comparison further demonstrates

that Gaussian process model built using data including the censored data can give more reasonable

predictions over censored data points than model built only using accurate data.

4.6 Conclusions

This chapter proposed a general multi­fidelity Gaussian process model to integrate data with

different levels of accuracy. The idea is to leverage the trend information provided by a large num­

ber of low­fidelity data and the accuracy provided by a small number of expensive high­fidelity

data to establish a model that is better than Gaussian process models built using either the high­
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fidelity data or low­fidelity data alone. In calibration of the multi­fidelity Gaussian process model,

censoring in the high­fidelity data, which is common in experimental testings and high­fidelity

numerical simulations (e.g., with partially converged results), and the measurement errors were

explicitly considered. Posterior distributions of the model parameters were established to explic­

itly take into account the uncertainties in the model parameters. To address the computational

challenges in estimating the likelihood function for censored data, a data augmentation algorithm

was proposed, which artificially treats the censored data as unknown parameters in addition to the

original model parameters. Then closed form conditional posteriors were derived for these param­

eters, which were used in the context of Gibbs sampling to facilitate efficient sampling from the

posterior distributions for the model parameters. In the end, the posterior samples for the model

parameters were used to establish the posterior statistics for the output predictions at new inputs.

As an illustrative example, the proposed multi­fidelity Gaussian process model was applied

to establish predictive model for the deformation capacity of RC columns. The results showed

that it is important to explicitly integrate the information from censored data in establishing the

multi­fidelity Gaussian process model, rather than only relying on accurate data, especially when

censored data account for a significant portion of the high­fidelity data. Overall, the proposedmulti­

fidelity Gaussian process model is expected to be useful for problems when (i) only limited number

of high­fidelity data are available, (ii) censored data account for a significant portion of the high­

fidelity data, (iii) low­fidelity data can be established relatively efficiently, and (iv) uncertainties in

the model parameters need to be explicitly considered.
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CHAPTER 5:

DIMENSION REDUCTION ASSISTED GAUSSIAN PROCESS MODEL FOR

HIGH­DIMENSIONAL INPUTS AND ITS APPLICATION IN OPTIMIZATION2

5.1 Introduction

Building accurate Gaussian process models for problems with high­dimensional inputs typi­

cally faces significant challenges or is even computationally prohibitive due to the curse of dimen­

sionality (Viana et al. 2010). As a result, surrogate model based optimization for problems with

high­dimensional inputs (i.e., design variables) is still difficult, although the surrogate model can

help reduce the computational cost in evaluating the high­fidelity model, not to mention the com­

putational challenges due to large design space. To address the challenges in training the Gaussian

process model stemming from high dimensionality of inputs, here we propose a dimension re­

duction assisted Gaussian process model. In this chapter, to demonstrate the performance of the

proposed model, it is developed in the context of optimization for problems with high­dimensional

design variables. To reduce the dimension of the high­dimensional design variables, first a set

of reference inputs that have better (or more desirable) objective function values are established.

Then principal component analysis (PCA), as a dimension reduction technique, is applied to this

database to establish a low­dimensional representation of the design variables in latent design space.

To reduce the computational effort in calculation of objective function values for each design, a

Gaussian process model is established with respect to the low­dimensional latent design variables.

This surrogate model is then used in place of the original high­fidelity model to facilitate efficient

optimization. The low­dimensionality of the latent design variables also facilitates much easier

2This chapter is adapted from a published paper by the author (Li et al. 2019b).
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optimization. To improve the accuracy of the surrogate model and facilitate efficient and effective

search for the optimal, an adaptive approach that sequentially add more support points for the surro­

gate model is used. Once the optimal is established in the latent space, the original design variable

can be easily established through the PCA transformation. Overall, the proposed approach facili­

tates efficient optimization for problems with high­dimensional design variables. Note that for the

optimization problems, here the focus is on high­dimensional discrete/binary design optimization,

which is typically more challenging than optimization problems with continuous design variables

and more importantly there is no research yet on integrating PCA with Gaussian process model for

high­dimensional discrete/binary optimization. But the proposed dimension reduction and surro­

gate based optimization framework is general and can also be applied to problems with continuous

or other discrete design variables. The effectiveness and great efficiency of the proposed approach

are verified through an example on topology optimization of 2D periodic structures to maximize

the frequency bandgaps.

5.2 Problem Formulation: Optimization for Problems with High­dimensional Inputs

For a general optimization problem, assume the input is represented by a vector b = [b1, . . . , bi,

. . . , bnb
] where bi is the ith design variable. The input might be continuous or discrete, i.e., bi could

be continuous values or discrete values. A special case is that the design variables vector b is a

binary vector where bi takes values of either 0 or 1, and this dissertation mainly focuses on the

binary design variables. Typically, a general optimization problem can be defined as

b∗ = argmax f(b) s.t. : C(b) > 0 (5.1)
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where f(b) is the objective function, andC(b) > 0 is the constraint on the design variable b. When

the objective function is expensive to evaluate, the optimization problem is a computationally chal­

lenging problem since a large number of evaluations of the objective function are usually required

for finding the optimum. Furthermore, if nb is a large number (e.g., > 100), b corresponds to

high­dimensional design variables and the optimization becomes a high­dimensional optimization

problem which is a more difficult task due to the extremely large design space.

To address the challenges stemming from high computational effort and high dimensionality

of the design variables and to facilitate efficient optimization for problems with high­dimensional

design variables, this chapter proposes an efficient dimension reduction and surrogate based opti­

mization approach.

5.3 Low­dimensional Representation of High­dimensional Inputs

5.3.1 Set of reference inputs

To reduce the dimensionality of the design problem, we propose to establish a low­dimensional

representation of b. For this purpose, we first collect a set of m reference inputs. We call this set

the reference set, which can be represented through the reference set matrix B = [b1, . . . , bm]T

with dimensionm× nb. As to the selection of the reference set, since the goal of the optimization

in Eq. (5.1) is find the design that maximizes the objective function, intuitively it makes sense to

include design variables that have better performance (i.e., larger objective function values). With

this idea in mind, we can first generate m0 basic inputs using Latin Hypercube Sampling (LHS),

and then pick the topm inputs based on the objective function values. Thesem inputs will form the

reference set. Then a low­dimensional representation of b is established by exploring correlation
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characteristics in the set of reference inputsB, and here we use principal component analysis (PCA)

for this purpose.

As a popular dimension reduction technique, PCA finds a low­dimensional representation, typ­

ically called principal components or latent input/outputs, of the high­dimensional data. PCA dis­

covers the linear projections of the data (e.g., B) with maximum variance, or equivalently, the

lower dimensional subspace that yields the minimum squared reconstruction error (Schein et al.

2003; Jolliffe 2002). It has been used to reduce output dimensions to facilitate surrogate models

for high­dimensional outputs (Jia and Taflanidis 2013; Jia et al. 2016). Here we propose to use PCA

to reduce the dimension of design variables (inputs) by applying PCA to the reference set of inputs

(i.e., the matrix B). For the case of binary input, since B corresponds to a binary matrix, instead of

linear PCA, we use logistic PCA, which has been found to be better suited to reconstruction of bi­

nary data than linear PCA. In the end, we can establish a transformation between high­dimensional

binary design variables b and the low­dimensional continuous latent design variables.

5.3.2 Dimension reduction by logistic PCA

Given binary datamatrixB, a low­dimensional representation that maximizes the log­likelihood

of the data matrix B can be established. More specifically, let Z with dimensionm× nb represent

the corresponding log­odds matrix for B. In the end, logistic PCA establishes a low­dimensional

representation of B,

Z = XP+∆ (5.2)

whereX is them×nx coefficient matrix or the latent design variables matrix, and nx is the number

of latent design variables, where typically nx ≪ nb ; and X corresponds to a low­dimensional
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representation of Z; P is the nx × nb projection matrix with each column vector corresponding to

a basis vector; and ∆ is the m × nb bias matrix with each row corresponding to the same 1 × nb

bias vector δ.

Note that the low­dimensional representation X takes continuous real values, which means Z

also takes continuous real values. To convert Z to the corresponding binary matrix B, we can

simply use a thresholding approach. More specifically, if the value of elements in Z is larger than

a threshold z0, then the corresponding element in B will take value of 1, otherwise, it will take

value of 0. This threshold z0 can be established for a given reference set matrix and for selected

value of nx by choosing a z0 value that minimizes the overall error rates (i.e., misclassification rates

between the reconstructed binary matrix and the original binary reference set matrix).

The relationship in Eq. (5.2) essentially defines a transformation between low­dimensional la­

tent design variables x and original high­dimensional design variables z or b. More specifically,

we can write

z = xP+ δ (5.3)

where x is the 1× nx vector of latent design variables. Using the threshold z0, we can convert z to

the corresponding vector of high­dimensional binary design variables b through

bi = IF (zi); i = 1, . . . nb (5.4)

where IF (.) is the indicator function, IF (zi) = 1, if zi > z0; 0, otherwise. In the end, we can define

a transformation
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b = T (z) = T (xP+ δ) (5.5)

where T (.) (i.e., defined by P and δ) is the transformation from latent design variables x to original

design variables b.

Note that when more latent design variables are used (i.e., larger values for nx), Eq. (5.2) will

create a more accurate reconstruction of the original reference set or Z; however, from a trans­

formation perspective, once the number of latent design variables nx is chosen, regardless it is a

large number or small number, the transformation T (.) in Eq. (5.5) will correspond to a specific

transformation from latent space to the original design space. Later, we will use this transforma­

tion to convert from latent space to original space. Note that, in the current context, the reference

set is only used to establish a certain transformation, therefore, maintaining a high reconstruction

accuracy of the original reference set is desirable but not a big concern.

5.4 Optimization in Low­dimensional Continuous Design Space

In the end, we can define an equivalent optimization problem with respect to the low­

dimensional latent design variables x

x∗ = argmin y(x) s.t. : C(x) > 0 (5.6)

Here, besides reducing the dimension of the design variables, for convenience we also write the

maximization problem in Eq. (5.1) in its minimization form by setting y(x) = −f(x). In the end,

we want to solve the equivalent minimization problem in Eq. (5.6).
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Compared to the original optimization formulation in Eq. (5.1), the formulation in Eq. (5.6) has

two attractive properties. First, the latent design variables x take continuous real values, rather than

discrete values. Second, the latent design variables have much lower dimension than the original

design variables, i.e., nx ≪ nb. Both of these properties facilitate less challenging optimization

compared to the original optimization in Eq. (5.1). In the end, it is much more efficient to explore

different designs in the low­dimensional latent space, compared to the original high­dimensional

design space. Surrogate based optimization will be used to substantially improve the optimization

efficiency, which is discussed in the next section. In the end, once x∗ is established, the correspond­

ing optimal design b∗ can be simply established as b∗ = T (x∗P+ δ) using Eq. (5.5).

5.5 Surrogate based Optimization with Adaptive Design of Experiment

For the optimization in Eq. (5.6), for given value of x, we need to repeatedly calculate the cor­

responding objective function value using expensive high­fidelity models. To alleviate the compu­

tational effort in this calculation, Gaussian process model is used. It not only gives the prediction

(see Eq. (2.8)) but also the associated uncertainty (see Eq. (2.9)), namely the local variance of the

prediction error (Jia and Taflanidis 2013). This local variance will be explicitly incorporated in

guiding adaptive design of experiments to adaptively improve the accuracy of the surrogate model

and facilitating effective optimization, which will be discussed later. For notation simplicity pur­

pose, the predictive mean and variance are represented by ŷ(x) and σ̂2(x) in this chapter.

To build/calibrate the surrogate model, we first calculate the objective function values for n

different the latent design variables {xh;h = 1, . . . , n} and establish the corresponding outputs

{y(xh);h = 1, . . . , n}. Using the training set {xh, y(xh);h = 1, . . . , n}, a Gaussian process model

can be established following Chapter 2. Then intuitively it can be directly used for the optimization
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in Eq. (5.6), i.e., replace y(x) with ŷ(x) from the predictor. Considering the high efficiency of the

established surrogate model, any global optimization algorithm can be used to find the correspond­

ing minimum. However, this could easily lead to a local minimum. This is because this way of

search essentially assumes that the predictor is an accurate prediction of the actual output values,

i.e., it puts too much emphasis on exploiting the predictor but puts no emphasis on exploring points

where we are uncertain (Jones et al. 1998). To address this, we need to sample more at points where

the uncertainty is high. The level of uncertainty can be measured by the local variance given in

Eq. (2.9). To adaptively improve the accuracy of the surrogate model and also the performance of

the optimization, the expected improvement (EI) function can be used, which balances exploitation

and exploration (or local and global search) (Jones et al. 1998; Forrester et al. 2008; Forrester and

Keane 2009).

Let ymin be the current minimum value out of the sample points that have been evaluated. Then

the improvement of the objective function at x can be written as

I(x) = max(ymin − y(x), 0) (5.7)

Since before we sample at x, we do not know the value of y(x) or we are uncertain about this

value. To model our uncertainty about y(x), we can treat y(x) as the realization of a normally

distributed random variable with mean given by the predictor ŷ(x) and standard deviation given by

σ̂(x). Taking expectation of I(x) with respect to this uncertainty gives the expected improvement,

which has the following closed form (Jones et al. 1998; Forrester et al. 2008; Forrester and Keane

2009)
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E[I(x)] = (ymin − ŷ(x)) Φ
(

ymin − ŷ(x)
σ̂(x)

)

+ σ̂(x)ϕ
(

ymin − ŷ(x)
σ̂(x)

)

(5.8)

where ϕ(.) and Φ(.) are the probability distribution function (PDF) and cumulative distribution

function (CDF) of the standard normal distribution.

Then the sample point x that maximizesE[I(x)] can be added to the existing training set. After

we evaluate the actual value y(x) at x using the adopted numerical model, we can then update (i)

ymin = min(ymin, y(x)), and (ii) the Gaussian process surrogate model. In addition to adding one

sample point in each iteration, in general multiple sample points can be added in each iteration (e.g.,

make use of parallel computing) (Zhang et al. 2017). This adaptive addition of new sample points

can be carried out iteratively until some convergence criterion is reached, e.g., E[I(x)]/|ymin| < ϵ,

which means the algorithm will stop when the expected improvement is less than a certain per­

centage of the current best value. Other convergence criteria can be also used, e.g., set an upper

limit on the number of iterations, or total number of model evaluations. The above described surro­

gate model based optimization is often referred to as efficient global optimization (EGO). Once the

optimal is established in the latent space, the corresponding original design variable can be easily

established through the PCA transformation.

5.6 Illustrative Example: Topology Optimization of Periodic Structures

To illustrate the performance of the proposed algorithm, it is applied to topology optimization of

2D bi­component periodic structure with square lattice (i.e., shown in Figure 5.2(a), ax = ay = a).

5.6.1 Motivation

Periodic structures, known as phononic crystals or elastic metamaterials, have the special dis­

persion frequency bandgap property (Li et al. 2017; Zhang et al. 2018; Wang and Kang 2019;
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Cheng et al. 2018b,a). In some frequency regions (passing bands), waves can propagate in periodic

structures freely; while in other frequency regions (stop bands), waves are forbidden. This filtering

effect has many potential applications in civil and mechanical engineering, such as elastic filter,

sound­proof materials, vibration isolation structures, seismic isolation systems and so on. Several

applications of periodic structures are shown in Figure 5.1.

Figure 5.1: Periodic structures for (a) sound and vibration reduction (adapted from (Bilal et al. 2018)), (b)
seismic isolation (adapted from (Kim and Das 2012)), and (c) wave guide (adapted from (Vasseur et al.
2011)).

For application purpose, periodic structures with special frequency bandgap characteristics are

usually desired. To achieve this goal, topology optimization method has drawn a lot of research

attention. Sigmund and Søndergaard Jensen (2003) first introduced the topology optimization

method to optimize phononic bandgap crystals in 2003. After that, many works on the topic of

topology optimization of frequency bandgap have been reported (Halkjær et al. 2006; Zhong et al.

2006; Dahl et al. 2008; Dong et al. 2014; Yi and Youn 2016; Xie et al. 2017). Recently, Bacigalupo

et al. (2017, 2019) proposed a parametric optimization framework to solve bandgap maximiza­

tion problems for periodic materials with beam lattice microstructure. Although it has the same

objective with topology optimization, parametric optimization tries to find optimal parameters for

cellular microstruture on the basis of an already fixed topology (Bacigalupo et al. 2017, 2019).
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From this perspective, parametric optimization can be applied successively after topology opti­

mization to further seek for the optimal material distribution of periodic cells, i.e., to tune a small

set of parameters of an optimal topology obtained by topology optimization. Overall, methods

for topology optimization can be classified into two groups: gradient­based topology optimiza­

tion (GTO) method and non­gradient­based topology optimization(NGTO) method (Gazonas et al.

2006). For GTO methods, typically sensitivity calculation will be performed first to evaluate the

influences of the system parameters on the responses, then the optimization algorithm is used to

calculate the optimal solution. However, in many cases the gradient information is unavailable or

unreliable to compute. To deal with these problems, NGTO methods have been developed. But,

as pointed out in many works these NGTO methods usually encounter computational efficiency

problems, especially when the dimension of the design variables is high. The advantages and the

disadvantages of GTO and NGTO methods have been discussed in detail in Yi and Youn (2016).

Overall, for both the GTO and NGTO methods, topology optimization typically involves many

design variables corresponding to discretization of the unit cell into many pixels/elements with

each pixel/element having specific material properties. This creates computational challenges for

both optimization (i.e., corresponding to high­dimensional optimization) and the calculation of fre­

quency bandgaps for a given design through finite element method or other numerical methods (i.e.,

finer discretization typically requires significantly higher computational effort).

To address the challenges stemming from high computational effort and high dimensionality

of the design variables and to facilitate efficient topology optimization of periodic structures, this

chapter applies the proposed efficient dimension reduction and surrogate based approach for topol­

ogy optimization and demonstrates its performances. The approach in this application is named as

Dimension REduction and Surrogate based Topology Optimization (DRESTO).
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5.6.2 Frequency bandgap of periodic structures

For the 2D periodic structure shown in Figure 5.2(a), the corresponding basic unit cell is shown

in Figure 5.2(b) with periodic constant vector A = (ax, ay). The periodic structure consists of two

materials (i.e., material for the inclusion, shown in dark color, and material for the matrix, shown in

gray color). Under the assumption of elastic, isotropic, small deformation and ignoring the effect

of damping, the governing equation of the considered periodic structure can be given as

ρ(r)
∂2u
∂t2

= ∇[(λ(r) + 2µ(r))(∇ · u)]−∇× [µ(r)∇× u] (5.9)

where u = (ux, uy, uz) is the displacement vector, r = (x, y, z) is the coordinate vector; λ and ν

are the Lame’s constants, ρ is the mass density; ∇ is the Laplace operator, t is time. According to

the Bloch­Floquet theorem, the solution of Eq. (5.9) can be written as

u(r, t) = uK(r)ei(K·r−ωt) (5.10)

whereK = (kx, ky) is the wave vector and uK(r) is the wave amplitude function. In particular, the

wave amplitude function is a periodic function of the periodic constants, i.e., uK(r) = uK(r+A),

which can be plugged into Eq. (5.10) to give

u(r+A, t) = uK(r+A)ei(K·(r+A)−ωt) = u(r, t)eiK·A (5.11)

which is the so­called periodic boundary condition. Coupling the periodic boundary condition and

the governing equation, the dispersion problem of an infinite periodic system will be transferred

into an eigenvalue problem of an finite domain. Then, the dispersion equation can be obtained
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(Ω(K)−M) · U = 0 (5.12)

whereM is the mass matrix,Ω(K) is the stiffness matrix of the considered system. Because of the

periodic boundary condition, the stiffness matrix will be a function of the wave vector. For a given

wave vectorK, the dispersion equation can be solved (e.g., by finite element numerical models (Jia

and Shi 2010)). By varying the wave vector along the boundary of the first irreducible Brillouin

zone (see Figure 5.2(c)), dispersion curves of the considered periodic system can be established.

Figure 5.2(d) shows the dispersion curves of the in­plane wave propagating in a periodic structure.

As can be seen, in some frequency regions, named frequency bandgap, no wave vector exists,

which means waves in these frequency regions cannot propagate in the periodic structure. In other

frequency regions, named passing bands, at least one wave vector exists, which means waves in

these frequency regions can propagate in the periodic structure. This special filtering effect or

frequency bandgap has many potential applications, drawing the attention of many researchers.
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Figure 5.2: Illustration of the (a) two dimensional periodic structure, (b) the unit cell, (c) the first irreducible
Brillouin zone, (d) frequency bandgap.
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5.6.3 Topology optimization of unit cell of periodic structures

To design periodic structures with desirable frequency bandgap characteristics, topology opti­

mization can be used. For topology optimization of the unit cell of periodic structures, typically the

unit cell is discretized into large number of pixels/elements (Yi and Youn 2016; Xie et al. 2017).

A pixel matrix is then defined to describe the topological distribution of materials within the unit

cell. The topology optimization of unit cell can be defined as

Σ∗ = argmax f(Σ) s.t. : C(Σ) > 0 (5.13)

where Σ denotes the topological distribution of materials within the unit cell, f(Σ) is the objective

function, and C(Σ) > 0 is the constraint on the topological distribution Σ (e.g., symmetry, filling

fraction of the inclusion). For unit cell with two types of materials, 0 and 1 can be used to represent

whether a pixel is filled with one material or the other. The pixel­wise binary design variables are

optimized to establish optimal distributions of two materials within the unit cell. As to f(Σ), two

typical objective functions are the absolute bandgap width and the relative bandgap width (Yi and

Youn 2016; Dong et al. 2014). Absolute bandgap width is defined as the difference between two

adjacent eigenfrequencies f(Σ) = ωj+1(Σ,K)− ωj(Σ,K). The relative bandgap width is defined

as

f(Σ) =
minK : ωj+1(Σ,K)−maxK : ωj(Σ,K)

(minK : ωj+1(Σ,K) +maxK : ωj(Σ,K))/2
(5.14)

where minK : ωj(Σ,K) and maxK : ωj(Σ,K) denote the minimum and maximum of the jth eigen­

frequency ωj over the entire set of discrete wave vectors along the boundaries of the irreducible
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Brillouin zone for a given design Σ of the unit cell (Yi and Youn 2016; Dong et al. 2014). Besides

the above two, which only consider one particular bandgap, the bandgaps in a certain frequency

range (e.g., in [ωlb, ωub]) can be also considered. In this case, the sum of the bandgap widths can

be used

f(Σ) =

ju
∑

j=jl

(ωj+1(Σ,K)− ωj(Σ,K)) (5.15)

where ωjl ≥ ωlb and ωju+1 ≤ ωub.

Considering the significant computational effort in calculation of the frequency band structures

and solving the high­dimensional optimization problem, typically, symmetry is assumed to reduce

the design domain, while the asymmetric unit cell has the largest design space. On the other hand,

it has also been shown that, periodic structures with asymmetrical unit cells could provide larger

relative bandgap width than those with symmetrical unit cells and changes in symmetry have large

impact on the optimized structures (Yi and Youn 2016; Dong et al. 2015). Regardless of symmetry,

topology optimization of periodic structures in general is a computationally challenging problem,

especially when large number of pixels are used (i.e., corresponding to high­dimensional optimiza­

tion) and the numerical method for calculating the bandgap for each topology is expensive.

5.6.4 DRESTO: overview

To address the above computational challenges and facilitate efficient topology optimization

of periodic structures, we applied the proposed DRESTO algorithm. The flowchart for the overall

DRESTO approach is illustrated in Figure 5.3.

Suppose the unit cell can be discretized as 2N × 2N elements/pixels with each pixel hav­

ing its corresponding material. For each topology Σ, it can be represented by a vector b =
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Figure 5.3: Flowchart for the proposed DRESTO for topology optimization of periodic structures.

[b1, . . . , bi, . . . , bnb
] where nb = 4N2 and bi is the design variable for the ith pixel. When sym­

metry is considered, the topology in the unit cell can be characterized by one­eighth of the unit cell.

Then the material distribution Σ can be represented by b with smaller nb, i.e., nb = (N + 1)N/2.

Consider the case of bi­component periodic structure, Σ can be represented by a binary matrix

with 0 and 1 as element values. The corresponding design variables vector b will be a binary vec­

tor where bi takes values of either 0 or 1. Typically, nb is a large number and b corresponds to

high­dimensional design variables.

To reduce the dimensionality of the design problem, we establish a low­dimensional repre­

sentation of b. For this purpose, we first collect a set of m reference topologies (i.e., forming the
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reference set), including some of the commonly seen topologies, represented byB = [b1, . . . , bm]T .

As to the selection of the reference set, we can first generatem0 basic topologies, which will con­

sist of commonly seen topologies (e.g., the ones shown in Figure 5.4) with different filling frac­

tions as well as corresponding topologies with the materials switched (the latter is used to further

enrich the set of basic topologies). Then we can pick the top m topologies based on the objec­

tive function values. These m topologies will form the reference set. Then as mentioned above

logistic PCA (shown in Eq. (5.2)) is used to explore the correlations in these topologies to find a

lower­dimensional representation of these topologies. In the end, we can establish a transformation

between high­dimensional binary design variables b and the low­dimensional continuous latent de­

sign variables. Later, we will use this transformation to convert from latent space to original space.

Figure 5.5 shows the latent space representation of different topologies by three­dimensional latent

inputs (i.e., with choice of nx = 3) and four example topologies corresponding to the four points

in the latent space.

To reduce the computational effort in calculation of bandgap for each design (e.g., through finite

element method or other numerical methods), a Gaussian process surrogate model is established

with respect to the low­dimensional latent design variables. This surrogate model is then used in

place of the original numerical model to facilitate efficient topology optimization. Once the optimal

is established in the latent space, the original topology can be easily established through the PCA

transformation.

5.6.5 DRESTO: implementation details

In this example, the two materials in the periodic structure correspond to Pb and epoxy. For

Pb, it has elastic modulus of Epb = 2.433 × 1010Pa, Poisson’s ratio of νpb = 0.449, and density
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Figure 5.4: Several example topologies in the set of basic topologies.

Figure 5.5: Illustration of latent space representation of different topologies Σ by three­dimensional latent
inputs x (i.e., nx = 3), and four example topologies corresponding to the four points in the latent space (red
colored ones).
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of ρpb = 11350kg/m3; for epoxy, Eep = 4.518 × 109Pa, νep = 0.399, and ρep = 1200kg/m3.

Frequency bandgaps are investigated for the in­plane modes. Since it was found in (Dong et al.

2014) that the first and second bands do not exist (because the first two in­plane eigenmodes are

both rigid ones at the Γ point) and it is impossible to open the first six bandgaps except the third

one, therefore, for comparison purpose, we consider the same two cases as in (Dong et al. 2014),

i.e., optimize the topology for the third and seventh bandgap with the relative frequency bandgap

width as the objective function. The optimal solutions are validated and compared with the results

in (Dong et al. 2014).

For the unit cell, N = 30 is used, which leads to a total of 4N2 = 3600 pixels. Pixels with

bi = 1 correspond to the material Pb, and those with bi = 0 correspond to the material epoxy.

Considering symmetry in the topology, each topology is represented by a design variables vector

b with dimension nb = 465, still corresponding to high­dimensional design variables.

To establish the reference set, a set of basic topologies with different filling fractions are first

generated. Some examples of the basic topologies are illustrated in Figure 5.4. For the current

example,m0 = 1500 basic topologies are used. Based on the objective function values, in the end,

the top m = 200 topologies are selected to form the reference set. We then apply logistic PCA

to this reference set to establish the transformation in Eq. (5.5). For the number of latent design

variables nx, it is chosen so that the misclassification rate (i.e., a measure of the reconstruction

accuracy) is below 1%. This leads to nx = 20 when the objective function corresponds to the

third bandgap and nx = 12 when the objective function corresponds tor the seventh bandgap. It

was found that further increasing nx will not lead to significant improvement in the reconstruction

accuracy. As can be seen, the dimension of the design variables is significantly reduced, i.e., from

465 to 20 and 12.
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To build the surrogate model, the inputs {xh;h = 1, . . . , n} (i.e., samples points) for the train­

ing set is established in the latent design space using LHS. The initial number of samples is selected

as n = 600. Another option is to select this number adaptively so that a certain accuracy level is

achieved. Since here we are interested in using surrogate model in the context of optimization,

EGO will adaptively select more samples to add in the training set so that the probability of find­

ing a better solution is maximized. In other words, the adaptive selection mainly happens in the

EGO. However, note that a initially large value for n typically helps improve the accuracy of the

surrogate model, which might save computational efforts in the EGO optimization process (e.g.,

requiring fewer iterations to converge). Then the corresponding topologies are established using

the transformation in Eq. (5.5), leading to a training set with 600 topologies. For each topology in

the training set, we use finite element numerical model to calculate the corresponding frequency

bandgap (Jia and Shi 2010). For EGO, the maximum number of iterations niter,max is set at 150.

5.6.6 Optimal topologies

Figure 5.6 illustrates the optimal topology for the third bandgap found by DRESTO and the

corresponding band structures (with the bandgap labeled). For comparison purpose, Figure 5.8

shows the optimal topologies for the third and seventh bandgap obtained in (Dong et al. 2014).

The maximum relative bandgap width found by DRESTO is 0.442, which is close to the value (i.e.,

0.455) in (Dong et al. 2014). Here for the optimal topology, the Pb inclusion (embedded in Epoxy

matrix) takes the form of a curved square with filling fraction of 0.312. This is slightly different

from the one established in (Dong et al. 2014) where the inclusion takes the form of a square with

round corners (see Figure 5.8) and has a filling fraction of 0.35. This can be explained by the fact
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that multiple local minimum may exist and different topologies may give similar or close relative

bandgap width values.

Figure 5.6: Optimal topology and corresponding band structures for the third bandgap of the in­plane mode.

Figure 5.7: Optimal topology and corresponding band structures for the seventh bandgap of the in­plane
mode.
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Figure 5.8: Optimal topologies for the third (left) and seventh (right) bandgap of the in­plane mode in Dong
et al. (2014).

For the seventh bandgap of the in­plane mode, the optimal topology and corresponding band

structures are presented in Figure 5.7. In this case, DRESTO finds a topology that gives a slightly

larger (16% larger) maximum relative bandgap value (i.e., 0.196) than the optimal value (i.e., 0.169)

obtained in (Dong et al. 2014). The optimal topology for the seventh bandgap has irregular shape.

When looking at the unit cell, in addition to the main inclusion (which looks like the union of a

cross and a round shape but with hollow square in the center), there are small one quarter of round­

cornered squares at the four corners. When looking at the plot in Figure 5.7, overall, the periodic

structure has some main inclusions and also some small round­cornered squares. The filling frac­

tion is around 0.357. In comparison, for the optimal topology identified in (Dong et al. 2014), the

inclusion looks like a pedal (see Figure 5.8), and the filling fraction is around 0.49. Overall, the

optimal solutions obtained by DRESTO algorithm are consistent with those in (Dong et al. 2014) in

terms of the values for the maximum relative bandgap width. For the seventh bandgap, DRESTO

gives better objective function values and identifies a different optimal topology with much smaller

filling fraction (i.e., 0.357 instead of 0.49). The above results verify the effectiveness of the pro­

posed algorithm.
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It should be noted that the optimal topologies might bring challenges to manufacturing in prac­

tice. To tackle the challenges, many research works on developing mathematical formulations of

manufacturing constraints have been proposed, such as (Zhou et al. 2002; Xia et al. 2010; Gersborg

and Andreasen 2011; Li et al. 2015). In addition, some advanced manufacturing techniques, e.g.,

additive manufacturing, can also be applied to address the difficulties in fabrication of complex

designs produced by topology optimization. Also, before being applied in practice, the actual per­

formance of the optimal topologies should be validated experimentally. Note that the focus of this

example is on developing efficient topology optimization algorithms, and the manufacturing and

experimental validation of the optimal topologies are out of the scope of this chapter, but may be

areas for future research.

5.6.7 Computational efficiency

Figure 5.9 shows the variation of the objective function value over the iterations for both the

third and seventh bandgap as well as some of the corresponding topologies identified at some of the

iterations. For the third bandgap, the final topology has been identified by around 130 iterations,

while for the seventh bandgap, the final topology has been identified by around 90 iterations. One

interesting observation for the third bandgap is that the topology evolves from inclusions that are

more spread to inclusions that are converging towards one single cluster (i.e., with fewer isolated

or segments of pixels) and eventually to a curved square. For the seventh bandgap, the several

topologies identified during the iterations all have small (round­cornered) squares and it seems that

the small (round­cornered) squares help further widen the bandgap. Compared to the initial value of

the objective function, i.e., the best value from the 600 topologies in the training set which is 0.333

and 0.116 for the third and seventh bandgap respectively, the EGO after less than 150 iterations
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gives objective function values of 0.442 and 0.196, corresponding to improvements of 33% and

69%, respectively. This shows the effectiveness of the EGO with adaptive selection of new sample

points.

Figure 5.9: Topologies identified by DRESTO over the iterations for (a) the third bandgap and (b) the
seventh bandgap.
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In terms of computational effort, to establish the optimal topology, the total number of eval­

uations of the numerical model corresponds to ntotal = m0 + n + niter. For the third bandgap,

this corresponds to ntotal = 1500 + 600 + 150 = 2250. For the seventh bandgap, to establish

the PCA transformation, the same set of basic topologies, (i.e., m0 = 1500) and the correspond­

ing eigenfrequency information can be directly used (i.e., to select the top m topologies). Only

n+ niter = 600 + 100 = 700 additional evaluations of the numerical model is needed to establish

the corresponding optimal topology. In the literature (Dong et al. 2014), for the same or similar

problem, direct search using genetic algorithm typically requires around 1000­2000 generations to

converge to the optimal with population size of at least around 20 for each generation, resulting

to around 20,000­40,000 model evaluations. In comparison, overall the proposed algorithm only

requires around 2250 model evaluations, corresponding to much better efficiency.

Figure 5.10: Optimal topology and corresponding band structures for the in­plane mode with the sum of the
bandgap widths as objective function.
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Figure 5.11: Topologies identified by DRESTO over the iterations for the sum of normalized bandgaps.

More importantly, as mentioned earlier, another advantage of the proposed algorithm is that

the same set of m0 = 1500 basic topologies and the corresponding eigenfrequency information

can be directly used for different definition of objective functions. To establish the optimal for

the new objective function, only n + niter model evaluations are needed. For example, using the

information in the same set of basic topologies, the algorithm is used to find the optimal for an­

other objective function, i.e., the sum of the bandgap width within the first ten eigenfrequencies

(see Eq. (5.15)). The optimal topology and the corresponding band structures are shown in Fig­

ure 5.10 while Figure 5.11 shows the variation of the objective function value over the iterations

and topologies identified at some of the iterations. Note that the y­axis values in these two figures

correspond to the normalized frequency and bandgap where the normalization (aω)/(2πct) is used

where ct is the shear velocity of the matrix material. All these results were established using only

n+ niter = 600 + 150 = 750 additional model evaluations.
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In addition, when more fine representation of the topology is needed, i.e., increase the value of

N , the number of design variables in the original design space would increase quadratically with

respect to N , making the resulting optimization more challenging with much larger search space.

On the other hand, for the proposed algorithm, logistic PCA is used to exploit the patterns or corre­

lations in the topologies, the number of latent design variables (i.e., nx) will typically not increase

much, which means that the search space (i.e., the latent design space) and the resulting compu­

tational efforts for the corresponding optimization problem (in the latent design space) will not

increase much. This means the proposed algorithm is especially useful for topology optimization

when very fine representation of the topology is needed.

5.7 Conclusions

This chapter proposed an efficient dimension reduction and surrogate based optimization ap­

proach for problems with expensive high­fidelity model and high­dimensional binary inputs. Us­

ing information from a set of reference inputs with better objective function values, dimension

reduction technique (i.e., logistic PCA) was used to establish a low­dimensional representation of

different inputs whose representation in the original design space corresponds to high­dimensional

design variables. To reduce the computational effort in calculation of objective function values for

each design, Gaussian process model was built with respect to the low­dimensional latent design

variables and used within efficient global optimization to adaptively identify the optimal design.

The low­dimensionality of the latent design variables facilitated much easier construction of the

surrogate model and also the optimization. Once the optimal was established in the latent space,

the original optimal design was easily established through the PCA transformation.
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The illustrative example on the topology optimization of a 2D periodic structure verified the

effectiveness and efficiency of the proposed algorithm. The proposed algorithm was able to iden­

tify the optimal topology within a small number of iterations. The proposed algorithm is especially

useful for topology optimization when very fine representation of the topology is used since for

the proposed algorithm the dimension of the latent space will not increase much while direct op­

timization in the original space would have much higher dimension for the design variables. The

proposed algorithm can be easily applied to topology optimization for the out­of­plane modes or

the joint modes. Future research will investigate how to address periodic structures with multiple

components/materials and how to incorporate constraints in the proposed algorithm, e.g., for spe­

cific filling fraction, where the selection of the set of basic topologies would need to be properly

modified. Lastly, as mentioned earlier, parametric optimization can be used as a successive re­

finement of the topology optimization, therefore topology optimization integrated with parametric

optimization is also a future research topic of great interest.
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CHAPTER 6:

SUMMARY OF DISSERTATION AND FUTURE STUDIES

6.1 Conclusions

This dissertation aimed at efficiently constructing surrogate models to facilitate efficient analy­

sis and design of complex engineering systems. The key novel contribution of this dissertation

is on proposing different novel strategies by enriching the training data and enhancing model

assumption to reduce the training cost and improve the prediction and generalization perfor­

mance of Gaussian process models. More specifically, this dissertation (i) developed a physics­

constrained Gaussian process model to efficiently incorporate our prior knowledge about physical

constraints/characteristics of the input­output relationship by designing specific kernels, (ii) estab­

lished a more general multi­fidelity Gaussian process model integrating a small number of expen­

sive high­fidelity data and a large number of cheap low­fidelity data by developing a more general

model form to enhance the existing multi­fidelity Gaussian process model and by developing a

corresponding Bayesian calibration framework, (iii) proposed a multi­fidelity Gaussian process

model capable of integrating training data with different level of accuracy (high­fidelity data and

low­fidelity data) and completeness (i.e., accurate data and censored data), and (iv) developed an

efficient surrogate modeling approach for design optimization problems with high­dimensional bi­

nary model inputs (or design variables) by integrating dimension reduction technique and Gaussian

process model and by using adaptive sampling scheme. All the above developments are the novel

contributions of this dissertation. These novel strategies can effectively reduce the required size of

high­fidelity training data and meanwhile effectively boosts the prediction accuracy of the estab­

lished Gaussian process model.
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Chapter 2 introduced the construction of a standard Gaussian process model, including the

model formulation, calibration, and prediction. Some related important topics, such as design of

experiment and multidimensional outputs, were also discussed. This chapter laid the foundation

for the proposed strategies to improve the performance of the Gaussian process model.

Chapter 3 proposed a physics­constrained Gaussian process model to efficiently and accurately

predict responses that show invariance, symmetry, and additivity features. Instead of building a

standard Gaussian process model and learning the physical constraints (i.e., invariance, symme­

try, and additivity features) of the problem through a large training data set which was computa­

tionally inefficient or even prohibitive, the proposed physics­constrained Gaussian process model

directly encoded these physical constraints/features into the model development. More specifi­

cally, the known physical constraints were encoded into the kernel by designing and integrating

the invariant kernel and the additive kernel, and in this way a more “informative prior” was pro­

vided to the Gaussian process model construction. Once trained, the physics­constrained Gaussian

process model was employed to directly and efficiently predict the responses. An application to

the prediction of the hydrodynamic characteristics of arrays with different number of wave en­

ergy converters (WECs) demonstrates the high accuracy and efficiency of the proposed approach.

The results showed that the designed integrated kernel was able to correctly capture the invariance,

symmetry, and additivity features of the problem. The proposed physics­constrained Gaussian pro­

cess model can accurately predict the hydrodynamic characteristics with a relatively small number

of training data, especially when the wave frequency was low. More importantly, the proposed

physics­constrained Gaussian process model was much less vulnerable to curse of dimensionality

compared to standard Gaussian process model, and such good scalability was crucial for analyzing

arrays with relatively large number of WECs.
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Chapter 4 established a general multi­fidelity Gaussian process model to integrate data with dif­

ferent levels of accuracy. The idea is to leverage the trend information provided by a large number

of low­fidelity (i.e., low accuracy) data and the accuracy provided by a small number of expensive

high­fidelity data to establish a model that is better than Gaussian process models built using ei­

ther the high­fidelity data or low­fidelity data alone. In calibration of the multi­fidelity Gaussian

process model, censoring in the high­fidelity data, which is common in experimental testings and

high­fidelity numerical simulations (e.g., with partially converged results), and the measurement

errors were explicitly considered. Posterior distributions of the model parameters were established

to explicitly take into account the uncertainties in the model parameters. To address the compu­

tational challenges in estimating the likelihood function for censored data, a data augmentation

algorithm was proposed, which artificially treats the censored data as unknown parameters in ad­

dition to the original model parameters. Then closed form conditional posteriors were derived for

these parameters, which were used in the context of Gibbs sampling to facilitate efficient sampling

from the posterior distributions for the model parameters. In the end, the posterior samples for the

model parameters were used to establish the posterior statistics for the output predictions at new

inputs. The proposed multi­fidelity Gaussian process model was then applied to establish predic­

tive model for the deformation capacity of RC columns. The results showed that it is important to

explicitly integrate the information from censored data in establishing the multi­fidelity Gaussian

process model, rather than only relying on accurate data, especially when censored data account for

a significant portion of the high­fidelity data. Overall, the proposed multi­fidelity Gaussian process

model is expected to be useful for problems when (i) only limited number of high­fidelity data are

available, (ii) censored data account for a significant portion of the high­fidelity data, (iii) low­
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fidelity data can be established relatively efficiently, and (iv) uncertainties in the model parameters

need to be explicitly considered.

Chapter 5 proposed an efficient dimension reduction and surrogate based optimization approach

for problems with high­dimensional binary inputs. Using information from a set of reference inputs

with better objective function values, dimension reduction technique (i.e., logistic PCA) was used

to establish a low­dimensional representation of different inputs whose representation in the orig­

inal design space corresponds to high­dimensional design variables. To reduce the computational

effort in calculation of objective function values for each design, Gaussian process model was built

with respect to the low­dimensional latent design variables and used within efficient global opti­

mization to adaptively identify the optimal topology. The low­dimensionality of the latent design

variables facilitated much easier construction of the Gaussian process model and also optimiza­

tion. Once the optimal was established in the latent space, the original optimal design was easily

established through the PCA transformation. The illustrative example to the topology optimization

of a 2D bi­component periodic structure verified the effectiveness and efficiency of the proposed

algorithm. The proposed algorithm was able to identify the optimal topology within a small num­

ber of iterations. The proposed algorithm is especially useful for topology optimization when very

fine representation of the topology is used since for the proposed algorithm the dimension of the

latent space will not increase much while direct optimization in the original space would have much

higher dimension for the design variables.
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6.2 Future directions

Although this dissertation proposed several advanced strategies to develop efficient Gaussian

process model for design and analysis of engineering systems, some possible improvements and

extensions based on the current research still require investigation in the future.

First, the proposed strategies have several limitations and require further improvements.

• For the proposed physics­constrained Gaussian process model, the computational cost of

evaluating the physics­constrained kernel (i.e., invariant kernel combined with additive ker­

nel) depends on the complexity of features exhibited by the problem. Current kernel was de­

veloped based on the assumption that the symmetry/invariance group only includes discrete

and a small/medium number of transformations. However, if the problem involves continu­

ous or a large number of transformations in the symmetry/invariance group (e.g., problems

about images which have thousands of pixels), the developed invariant kernel might require a

significant computational cost or even become prohibitive to evaluate. Therefore, the invari­

ant kernel needs some improvement to make it applicable to problems with more complex

features. On the other hand, for the additive kernel part, we assumed the decomposition

of the model responses converge fast and thus can obtain computational cost reduction by

truncating the expansion. However, if the decomposition of the many­body system does not

converge fast, e.g., some higher orders of interaction contribute more to the responses, this

truncation method will not work effectively. One way to address this issue is to optimize

the variances corresponding to each order of interaction and identify the important orders,

however this may lead to significant computational issues especially when the input dimen­

137



sionality is high. Therefore, how to establish an efficient additive kernel for many­body

problems which do not converge fast is also a topic of interest in the future.

• For the proposed multi­fidelity Gaussian process model calibrated by both accurate and

censored data, this dissertation only considered censored responses in the high­fidelity

data/responses. Nevertheless, we sometimes also have censored low­fidelity data (e.g., ob­

tained by numerical models which are not fully converged). In such case, the likelihood

function related to model parameters in low­fidelity model also needs to be modified to in­

corporate the censored low­fidelity data. As a result, how to efficiently calibrate the likeli­

hood functions still requires further exploration. In addition, this dissertation only focused

on constructing Gaussian process model using data with two levels of fidelity (i.e., high­

fidelity and low­fidelity). For many problems, the simulations can be run at more fidelity

levels with different costs (e.g., using different grid sizes in finite element model). This sug­

gests another future research direction: establishing Gaussian process models using multiple

(i.e., more than two) fidelity data when considering data censoring. The multi­fidelity model

could be based on the recursive multi­fidelity Gaussian process model proposed in Le Gratiet

(2013b) or the auto­regressive model developed in Kennedy and O’Hagan (2000). But note

that the literature only deals with accurate training data, and needs to be extended to consider

censored training data.

• The proposed dimension­reduction assistedGaussian processmodel used the commonly used

PCA technique which is a linear dimension reduction technique. In the future, research can

be extended by applying nonlinear dimension reduction techniques in order to obtain a more

realisticmapping between the high­dimensional inputs and the low­dimensional latent inputs.
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One option of the nonlinear dimension reduction is the autoencoder (Hinton and Salakhutdi­

nov 2006; Ng et al. 2011) which is a type of neural network designed for efficiently encoding

and decoding features in the data. Compared with linear PCA, autoencoders is powerful in

learning the nonlinear correlation between the model inputs, and restoring the inputs with

much less information loss. Other nonlinear dimension reduction techniques which have at­

tracted extensive research interests include variational autoencoder (Doersch 2016; Kingma

andWelling 2019), diffusion map (Ferguson et al. 2011; Giannakis 2019), and etc. Addition­

ally, this dissertation developed the dimension­reduction assisted Gaussian process model

in the context of optimization. If we are interested in other applications such as sensitivity

analysis, the applicability of the proposed model needs to be investigated.

Second, in terms of the applications, we also have some future research interests.

• For the application to the WECs in an array, the dissertation only investigated arrays with

up to 10 WECs. Future research work will investigate the scalability of the proposed model

to arrays with even larger sizes (e.g., with 20 to 50 WECs). Another future research topic

of interest is to use the hydrodynamic characteristics predicted by the proposed physics­

constrained Gaussian process model to calculate the total power generation of theWEC array

and also optimize the layout of the WEC array.

• For the application to the topology optimization of 2D bi­component periodic structures,

the proposed dimension reduction and surrogate based optimization can be easily applied

to topology optimization for the out­of­plane vibration modes or the joint modes. Fu­

ture research will investigate how to address periodic structures with multiple compo­

nents/materials and how to incorporate constraints in the proposed algorithm, e.g., for spe­
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cific filling fraction, where the selection of the set of basic topologies would need to be

properly modified.

Finally, this dissertation developed the strategies in the context of Gaussian process models, but

the ideas of these methods are general and can be applied to other surrogate models. Therefore, one

potential research direction is to investigate the development of the strategies for other commonly

used surrogate models, such as polynomial chaos expansions and support vector machines.
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APPENDIX A:

DERIVATION OF MARGINAL POSTERIOR DISTRIBUTION FOR θ IN MULTI­FIDELITY

GAUSSIAN PROCESS MODEL

To facilitate understanding and also for completeness, here we show the detailed derivation of

the marginal posterior distribution for θ = [θl,θδ] in the multi­fidelity Gaussian process model in

Chapter 4.

Based on the posterior distributions for θl and θδ given in Eq. (4.20) and Eq. (4.21), the joint

posterior distribution of θl and θδ conditional on given values of θ̄ = [βl,βρ,βδ, σ
2
l , σ

2
δ , σ

2
ϵ ] can

be written as

p(θl,θδ|yh,I , yh,J , yl, θ̄)

∝ p(θl)p(θδ)
1

(σ2
l )

nl/2|Rl|1/2
exp

[

−(yl − Fl(xl)βl)
TR−1

l (yl − Fl(xl)βl)

2σ2
l

]

1

(σ2
δ )

nh/2|Rξδ|1/2

× exp

[

−
(yh − AylFρ(xh)βρ − Fδ(xh)βδ)

TRξδ
−1(yh − AylFρ(xh)βρ − Fδ(xh)βδ)

2σ2
δ

]

(A.1)

The marginal posterior distribution for θ can be calculated as

p(θl,θδ|yh,I , yh,J , yl) =
∫

p(θl,θδ|yh,I , yh,J , yl, θ̄)p(θ̄)dθ̄

= p(θl)p(θδ)

∫

p(yh,I , yh,J , yl|θl,θδ, θ̄)p(θ̄)dθ̄

(A.2)

To simplify the above integral, we will analytically integrate out the uncertain parameters

[βl,βρ,βδ, σ
2
l ] in θ̄, which will reduce the integral to integration with respect to σ2

δ and σ2
ϵ . More

specifically, we analytically and sequentially integrate out βl, βρ, βδ, and σ2
l .
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(1) Integrate out βl

∫

βl

p(yh,I , yh,J , yl|θl,θδ, θ̄)p(βl)dβl
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(A.3)

where al = Fl(xl)TR−1
l Fl(xl) + vlI, bl = −2Fl(xl)TR−1

l yl − 2(vlI)ml, and cl = ylTR−1
l yl +

ml
T (vlI)ml.

(2) Integrate out βρ
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(A.4)
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where

aρ = [AylFρ(xh)]TRξδ
−1[AylFρ(xh)] + σ2

δVρ

bρ = −2[AylFρ(xh)]TR−1
ξδ [yh − Fδ(xh)βδ]− 2(σ2

δVρ)mρ

cρ = [yh − Fδ(xh)βδ]
TR−1

ξδ [yh − Fδ(xh)βδ] +mρ
T (σ2

δVρ)mρ

(3) Integrate out βδ: Before integrating out βδ, we first simplify our notations. The bρ and cρ

expressions above can be expanded as

bρ = −2[AylFρ(xh)]TR−1
ξδ yh − 2(σ2

δVρ)mρ + 2[AylFρ(xh)]TR−1
ξδ Fδ(xh)βδ (A.5)

cρ = yThR
−1
ξδ yh +mρ

T (σ2
δVρ)mρ − 2βT

δ Fδ(xh)TR−1
ξδ yh + βT

δ Fδ(xh)TR−1
ξδ Fδ(xh)βδ (A.6)

LetA = −2[AylFρ(xh)]TR−1
ξδ yh−2(σ2

δVρ)mρ and B = 2[AylFρ(xh)]TR−1
ξδ Fδ(xh), C = yThR

−1
ξδ yh+

mρ
T (σ2

δVρ)mρ, D = −2Fδ(xh)TR−1
ξδ yh, and E = Fδ(xh)TR−1

ξδ Fδ(xh), then we have bρ = A+Bβδ,

cρ = C + βT
δ D+ βT

δ Eβδ. Therefore, the 4cρ − bρTaρ−1bρ term in Eq. (A.4) can be written as

4cρ − bρTaρ−1bρ = 4(C + βT
δ D+ βT

δ Eβδ)− (A+ Bβδ)
Taρ−1(A+ Bβδ)

= (4C − ATaρ−1A) + βT
δ (4D− 2BTaρ−1A) + βT

δ (4E− BTaρ−1B)βδ

(A.7)
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Further, let t1 = 4C−ATaρ−1A, t2 = 4D− 2BTaρ−1A, and t3 = 4E−BTaρ−1B, we can integrate

out βδ, which leads to the following expression

∫

βδ

p(yh,I , yh,J , yl|θl,θδ, θ̄)p(βδ)dβδ
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∫

βδ
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× exp
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δ
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δ
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]

× exp
[

−4cδ − bδTaδ−1bδ
8σ2

δ

]

(A.8)

where aδ = t3 + vδI, bδ = t2 − 2(vδI)mδ, and cδ = t1 +mδ
T (vδI)mδ.

(4) Integrate out σ2
l : Lastly, we integrate out σ2

l , which leads to the following expression

∫
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In the end, the marginal posterior distribution in Eq. (A.2) can be simplified to

p(θl,θδ|yh,I , yh,J , yl)

∝
∫

σ2

δ
,σ2

ϵ

p(θl)p(θδ)(σ
2
δ )

−(nh−qρ)/2|Rl|−1/2|Rξδ|−1/2|al|−1/2|aρ|−1/2|aδ|−1/2

×
(

γl +
4cl − blTal−1bl

8

)−αl−nl/2

exp
[

−4cδ − bδTaδ−1bδ
8σ2

δ

]

dσ2
δdσ

2
ϵ

(A.10)

which reduces the integral in Eq. (A.2) to integration with respect to only σ2
δ and σ2

ϵ .
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APPENDIX B:

HIGH­FIDELITY DATABASE FOR DEVELOPING MULTI­FIDELITY GAUSSIAN

PROCESS MODEL TO PREDICT DEFORMATION CAPACITY OF REINFORCED

CONCRETE COLUMNS

This appendix presents the high­fidelity database for developing the multi­fidelity Gaussian

process model to predict deformation capacity of reinforced concrete (RC) columns under repeated

cyclic loading in Chapter 4. This database is established based on the existing experimental tests

which have been collected at https://nisee.berkeley.edu/spd/index.html. As described in Chapter 4,

the high­fidelity database after preprocessing consists of 17 accurate responses (i.e., with direct

measurement of the deformation capacity) and 53 censored responses (i.e., with measurement of

the deformation capacity values before reaching failure). Here Table B.1 and Table B.2 show the

accurate data and censored data, respectively. Note that the second column to the twelfth column

of both tables correspond to the model input x1 to x11, while the last column is the model output,

i.e., deformation capacity. In addition, Table B.3 shows the description of the involved notations

and the corresponding units.
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Table B.1: Accurate high­fidelity data

Data ID Dcol Hc c fc ds fys ρs dsv fyv ρsv N δ

1 400.0 1600.0 18.0 28.5 16.0 308.0 0.024 10.0 280.0 0.015 ­2111.0 0.031
2 400.0 800.0 18.0 29.5 16.0 448.0 0.032 6.0 372.0 0.004 0.0 0.043
3 400.0 800.0 18.0 29.9 16.0 448.0 0.032 6.0 372.0 0.005 ­751.0 0.035
4 400.0 800.0 18.0 36.2 16.0 436.0 0.032 6.0 326.0 0.010 ­455.0 0.046
5 400.0 1000.0 18.0 34.3 16.0 436.0 0.032 6.0 326.0 0.005 ­431.0 0.033
6 400.0 700.0 18.0 36.7 16.0 482.0 0.032 6.0 326.0 0.004 ­807.0 0.025
7 400.0 800.0 20.0 30.9 16.0 436.0 0.032 10.0 310.0 0.004 0.0 0.034
8 400.0 800.0 20.0 33.1 16.0 436.0 0.032 10.0 310.0 0.008 0.0 0.051
9 307.0 1910.0 36.0 38.8 12.0 240.0 0.018 6.0 240.0 0.006 ­145.0 0.042
10 152.0 1140.0 10.2 34.5 12.7 448.0 0.056 3.7 620.0 0.015 ­151.0 0.236
11 1520.0 9140.0 58.7 35.8 43.0 475.0 0.020 15.9 493.0 0.006 ­4450.0 0.081
12 250.0 750.0 9.9 24.1 7.0 446.0 0.020 3.1 441.0 0.014 ­120.0 0.094
13 250.0 1500.0 9.7 25.4 7.0 446.0 0.020 2.7 476.0 0.007 ­120.0 0.088
14 600.0 1800.0 30.2 31.4 22.2 448.0 0.019 9.5 431.0 0.005 ­400.0 0.067
15 609.6 2438.4 22.2 37.2 15.9 462.0 0.015 6.4 606.8 0.004 ­654.0 0.059
16 406.4 1047.8 10.4 34.7 12.7 458.5 0.014 4.5 691.5 0.001 0.0 0.045
17 406.4 1854.2 15.0 35.6 12.7 458.5 0.012 4.5 691.5 0.005 0.0 0.140
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Table B.2: Censored high­fidelity data.

Data ID Dcol Hc c fc ds fys ρs dsv fyv ρsv N δ

1 500.0 2750.0 20.2 33.2 18.4 373.0 0.026 6.5 312.0 0.004 ­380.0 0.040
2 500.0 2730.0 20.2 40.0 18.4 305.0 0.026 8.0 389.0 0.013 ­26.4 0.095
3 250.0 1340.0 10.8 35.1 13.0 305.0 0.026 4.4 263.0 0.019 ­16.9 0.093
4 250.0 930.0 10.2 33.0 12.0 294.0 0.022 4.3 207.0 0.025 ­550.0 0.032
5 400.0 1600.0 16.0 26.0 16.0 308.0 0.024 6.0 308.0 0.008 ­680.0 0.034
6 600.0 1200.0 25.0 28.4 24.0 303.0 0.024 10.0 300.0 0.008 ­1920.0 0.025
7 600.0 1200.0 25.0 26.6 24.0 303.0 0.024 10.0 300.0 0.011 ­4300.0 0.023
8 600.0 1200.0 28.0 32.5 24.0 307.0 0.024 16.0 280.0 0.026 ­3385.0 0.041
9 400.0 800.0 21.0 31.2 16.0 448.0 0.032 12.0 332.0 0.010 ­784.0 0.046
10 400.0 800.0 18.0 33.7 24.0 424.0 0.032 6.0 326.0 0.005 0.0 0.060
11 400.0 800.0 18.0 34.8 16.0 436.0 0.019 6.0 326.0 0.005 0.0 0.047
12 400.0 1600.0 17.0 40.0 16.0 474.0 0.018 8.0 372.0 0.006 ­2652.0 0.029
13 400.0 1600.0 18.0 39.0 16.0 474.0 0.018 10.0 338.0 0.015 ­3620.0 0.040
14 400.0 800.0 20.0 38.0 16.0 423.0 0.032 10.0 300.0 0.014 ­907.0 0.042
15 400.0 800.0 18.0 37.0 16.0 475.0 0.032 6.0 340.0 0.005 ­1813.0 0.023
16 400.0 800.0 20.0 37.0 16.0 475.0 0.032 10.0 300.0 0.014 ­1813.0 0.037
17 307.0 900.0 36.0 35.9 12.0 240.0 0.018 6.0 240.0 0.006 ­145.0 0.026
18 1520.0 4570.0 60.3 34.3 43.0 475.0 0.020 19.1 435.0 0.015 ­4450.0 0.089
19 275.0 300.0 20.0 28.8 16.0 366.0 0.039 6.0 368.0 0.005 0.0 0.054
20 275.0 300.0 20.0 31.4 16.0 366.0 0.039 6.0 368.0 0.013 ­215.0 0.087
21 275.0 300.0 20.0 30.5 16.0 366.0 0.051 6.0 368.0 0.009 ­215.0 0.063
22 275.0 300.0 20.0 30.2 16.0 366.0 0.026 6.0 368.0 0.009 ­215.0 0.068
23 275.0 300.0 20.0 31.3 16.0 366.0 0.039 6.0 368.0 0.013 ­430.0 0.074
24 275.0 450.0 20.0 31.3 16.0 363.0 0.039 6.0 381.0 0.013 0.0 0.100
25 275.0 450.0 20.0 42.2 16.0 363.0 0.039 6.0 381.0 0.006 ­215.0 0.050
26 275.0 450.0 20.0 18.9 16.0 363.0 0.039 6.0 381.0 0.006 ­430.0 0.050
27 275.0 450.0 20.0 41.3 16.0 363.0 0.039 6.0 381.0 0.006 ­430.0 0.044
28 305.0 1372.0 14.5 29.0 9.5 448.0 0.020 4.0 434.0 0.009 ­200.0 0.076
29 610.0 914.5 15.9 30.0 12.7 462.0 0.005 6.4 361.0 0.003 ­503.0 0.029
30 610.0 3660.0 27.8 41.1 22.2 455.0 0.027 9.5 414.0 0.009 ­1780.0 0.062
31 457.0 910.0 24.8 38.3 15.9 427.5 0.024 9.5 430.2 0.011 ­1928.0 0.046
32 457.0 910.0 24.8 39.4 15.9 427.5 0.024 9.5 430.2 0.011 ­970.0 0.056
33 457.0 910.0 26.4 35.0 19.0 468.2 0.052 12.7 434.4 0.027 ­850.0 0.121
34 457.0 910.0 24.8 35.2 15.9 507.5 0.024 9.5 448.2 0.009 ­490.0 0.068
35 457.0 910.0 26.4 35.0 19.0 486.2 0.052 12.7 434.4 0.030 ­1914.0 0.112
36 457.0 3656.0 30.2 36.6 15.9 477.0 0.036 9.5 445.0 0.009 ­1780.0 0.075
37 609.6 4876.8 22.2 31.0 15.9 462.0 0.015 6.4 606.8 0.007 ­653.9 0.153
38 609.6 6096.0 22.2 31.0 15.9 462.0 0.015 6.4 606.8 0.007 ­653.9 0.180
39 609.6 2438.4 22.2 31.0 15.9 462.0 0.030 6.4 606.8 0.007 ­653.9 0.080
40 609.6 1828.8 28.6 34.5 19.0 441.3 0.027 6.4 606.8 0.009 ­911.8 0.090
41 609.6 4876.8 28.6 34.5 19.0 441.3 0.027 6.4 606.8 0.009 ­911.8 0.145
42 609.6 6096.0 28.6 34.5 19.0 441.3 0.027 6.4 606.8 0.009 ­911.8 0.171
43 250.0 1645.0 13.8 65.0 16.0 419.0 0.033 7.5 1000.0 0.015 ­1000.0 0.255
44 250.0 1645.0 15.6 65.0 16.0 419.0 0.033 11.3 420.0 0.035 ­1000.0 0.119
45 250.0 1645.0 14.0 90.0 16.0 419.0 0.033 8.0 580.0 0.018 ­1850.0 0.079
46 250.0 1645.0 15.6 90.0 16.0 419.0 0.033 11.3 420.0 0.017 ­1850.0 0.051
47 250.0 1645.0 13.8 90.0 16.0 419.0 0.033 7.5 1000.0 0.015 ­925.0 0.223
48 250.0 1645.0 13.8 90.0 16.0 419.0 0.033 11.3 420.0 0.034 ­1850.0 0.087
49 508.0 1524.0 21.3 56.3 16.0 455.0 0.010 4.5 455.0 0.001 ­1243.0 0.022
50 609.6 2438.4 22.2 37.2 15.9 462.0 0.015 6.4 606.8 0.007 ­1308.0 0.077
51 419.0 1968.5 55.6 60.6 22.2 429.5 0.021 9.5 413.7 0.018 0.0 0.182
52 457.2 2438.4 12.7 32.7 19.0 565.4 0.020 9.5 434.4 0.009 ­231.3 0.109
53 609.6 1219.2 18.6 29.8 15.9 454.0 0.014 4.9 200.0 0.001 ­18.8 0.021
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Table B.3: Description and unit of notations

Notation Description Unit
Dcol Dimension of column section mm
Hc Height of column mm
c Cover thickness of concrete mm
fc Compressive strength of concrete MPa
ds Dimension of longitudinal reinforcement mm
fys Yield strength of longitudinal reinforcement MPa
ρs Longitudinal reinforcement ratio –
dsv Dimension of volumetric transverse reinforcement mm
fyv Yield strength of volumetric transverse reinforcement MPa
ρsv Volumetric transverse reinforcement ratio –
N Axial load kN
δ Deformation capacity –
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