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Abstract

Evaluation of OCO-2 Small-Scale XCO2 Variability Using Lidar Retrievals

from the ACT-America Flight Campaign

With eight 1.25 x 3 kilometer footprints across its swath and nearly 1 million observa-

tions of column-mean carbon dioxide concentration (XCO2) per day, the Orbiting Carbon

Observatory (OCO-2) presents exciting possibilities for monitoring the global carbon cy-

cle, including the detection of small-scale column CO2 variations. While the global OCO-2

dataset has been shown to be quite robust, and case studies have shown successful observa-

tion of CO2 plumes from power plants and cities, the validation of XCO2 gradients on small

spatial scales remains challenging: ground-based measurements, while extremely precise, are

sparsely scattered and often geographically stationary. In this work, we investigate the use

of an integrated path di↵erential absorption (IPDA) lidar as a source for OCO-2 small-scale

validation. As part of NASA’s ACT-America project, several campaigns over North America

have included a number of direct underflights of OCO-2 tracks with the Multi-Functional

Fiber Laser Lidar (MFLL), as well as a set of in situ instruments, to provide a precisely

collocated, high-resolution validation dataset. We explore the challenges involved in com-

paring the MFLL and OCO-2 datasets, from instrument principles to retrieval di↵erences,

and develop a method of correcting for some of these di↵erences. After nine underflights,

a combination of lidar data and a novel in situ-derived CO2 “curtain” have helped us to

identify systematic spurious small-scale features in the OCO-2 dataset due to both surface

and cloud e↵ects. We show that though real XCO2 features on scales of tens of kilometers
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remain challenging to observe and validate, the lidar and OCO-2 generally have comparable

spatial gradients on synoptic scales.
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Chapter 1

Introduction

Earth’s climate is warming significantly, and as it continues within the next few centuries,

it will bring about extreme economic, social, and ecological change. Greenhouse gases are the

key to this warming. Earth’s most influential greenhouse gas, carbon dioxide (CO2), has risen

by over 100 parts per million in atmospheric concentration since the start of the Industrial

Revolution, when the burning of fossil fuels began - and while it seems straightforward to

assume a correlation between anthropogenic emissions and atmospheric concentrations, the

relationship between the two is extremely complex. There are many mechanisms through

Figure 1.1. Human activity releases CO2 into Earth’s atmosphere, but carbon cycle feed-
backs proceed to remove approximately 50% of it for storage in other reservoirs; the net
atmospheric result is an increase of over 60 ppm since the 1960s. Figure courtesy of David
Schimel.

which carbon in all its forms is exchanged between land, atmosphere, and ocean, including

geophysical processes which constantly add and remove anthropogenic CO2 emissions from

Earth’s atmosphere. In fact, an estimated 50% of CO2 from anthropogenic sources is removed

from the atmosphere via carbon sinks. Increased understanding of those feedbacks improves

their characterization in Earth system models and thus improves scientists’ ability to predict
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future atmospheric CO2 concentrations, but remains a demanding scientific challenge. The

first step to understanding the complexity of these interactions is thorough observation,

which can help characterize the locations and magnitudes of potential carbon sources and

sinks. With a robust dataset of CO2 measurements in space and time, carbon cycle scientists

can calculate CO2 fluxes (the amount of CO2 moving through a given space at a given rate)

and attempt to figure out where atmospheric CO2 comes from, and where it goes.G. Keppel-Aleks et al.: Total column carbon dioxide 881
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Fig. 4. Daily drawdown in hCO2i at Park Falls during one week in
July 2006. Within one day, hCO2i changes by ⇠2 ppm.

diurnal variations in simulated hCO2i are only weakly corre-
lated with the underlying flux.

Although the regional flux signal is not apparent in the
total column variations on daily timescales, it does become
more apparent when we aggregate NEE on weekly and
monthly timescales (Fig. 5b, c). We use a fit that accounts for
the standard error of the mean in both eddy covariance NEE
and column NEE over the aggregated time period (York et al.,
2004). The slopes are 1.5 ± 0.2 for the weekly mean data
and 1.5±0.2 for monthly mean data, and the fits have a neg-
ative intercept of �4.9±0.8 µmol m�2 s�1 for weekly mean
data and �4.3 ± 0.7 µmol m�2 s�1 for monthly mean data.
The weighted R2 values of 0.94 and 0.86 for weekly and
monthly data account for the standard error of the mean in the
datasets and are much improved relative to the daily compar-
ison. The larger NEE inferred from the FTS column may be
attributable to column drawdown having a larger footprint.
Regional studies have shown divergent estimates for NEE in
the area around Park Falls using several bottom-up and top-
down methods (Desai et al., 2010). We have confirmed that
the offset between NEE from column drawdown and from
eddy covariance is not due to seasonal uptake by removing
the seasonal trend from hCO2i before determining the diurnal
drawdown in the column. Neither the slope nor the intercept
are significantly affected.

While horizontal and vertical advection make a negligible
contribution to daytime NEE determined from eddy covari-
ance (Wang et al., 2005; Yi et al., 2000), our results con-
firm that horizontal advection does have a large influence on
variations in the column even over four hours. We attribute
the poor comparison of column drawdown and local NEE
on daily timescales to the neglect of advection in Eq. (5).
Figure 6 shows two [CO2] profiles obtained over Park Falls
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Fig. 5. Comparison between NEE calculated from drawdown in the
total column and NEE infered from eddy covariance measurements
at Park Falls, Wisconsin. Drawdown in the column is calculated
over a 4 h period symmetric about solar noon. Eddy covariance
fluxes are averaged over the same time period. (a) NEE calculated
each day for which data are available. (b) Data aggregated by week
of year. (c) Data aggregated for each month. The dashed line rep-
resents the 1:1 line, while the solid line represents the best fit to
the data.

on 15 July 2004 during INTEX-NA. Although the two pro-
files were obtained only three hours apart, a frontal system
moved through the region and the free tropospheric [CO2]
above 5 km increased by ⇠5 ppm during this time. The draw-
down of boundary layer [CO2] over the same three hours is
much smaller. Only when we aggregate column drawdown
and eddy covariance fluxes over several synoptic cycles is
the influence of the large synoptic variability in free tropo-
spheric [CO2] reduced sufficiently to reveal a robust rela-
tionship between column drawdown and local eddy covari-
ance fluxes (Fig. 5b–c). We have investigated whether there
is a relationship between the mismatch in NEE derived from
the two measurements and meteorological variables such as
wind speed, wind direction, and diurnal changes in pres-
sure and temperature. We do not find correlations between

www.biogeosciences.net/9/875/2012/ Biogeosciences, 9, 875–891, 2012

Figure 1.2. From Keppel-Aleks et al. (2011) - Daily XCO2 (written here as <CO2>) shown
for one week in July 2006. Daily spread is consistently between 1 and 2 ppm.

There are two primary methods of calculating CO2 fluxes. The first is via a “bottom-

up” approach: from estimates of the amount of carbon stored, released, and taken up by

the terrestrial biosphere and the oceans in a small area, scientists scale up to larger areas

to calculate how much CO2 is added and removed from the atmosphere. Unfortunately,

such local data networks lack thorough spatial coverage, as measuring sites are scattered at

individual locations across the planet. Local samples may not, in fact, be representative of

the larger areas to which they are applied.

The second method of flux calculations is via a “top-down” approach, where atmospheric

CO2 concentrations are measured, and then models are used to determine the transport

2



h

Figure 1.3. Visual comparison of GOSAT and OCO-2 footprint sizes. GOSAT footprint
diameter (yellow circle) is 10.5 kilometers, and each OCO-2 footprint (small blue rectangles)
is 1.29 x 2.25 kilometers.

and source/sink strengths required to match observations in space and time. Perhaps the

seminal “top-down” study was made by Tans, Fung, and Takahashi in their seminal 1990

paper, “Observational Constraints on the Global Atmospheric CO2 budget”. Ground-based

atmospheric CO2 observing networks had grown significantly since the start of the Mauna Loa

record in 1958, and were numerous enough with long enough records by 1991 to make larger-

scale, longer-term calculations. Driven primarily by uncertainty in the terrestrial carbon

cycle, Tans, Fung, and Takahashi used atmospheric CO2 measurements from 21 sites, as well

as a thorough ocean observation dataset and several model forward runs, to identify the most

likely sources of the observed CO2 concentrations. They found a north-south hemispheric

gradient far shallower than expected - concentrations in the northern hemisphere were much

lower than modern atmospheric models driven by fossil fuel inventory records had predicted.

Due to their inclusion of comprehensive ocean data, their simple conclusion was that the

northern hemisphere terrestrial biosphere must be acting as a strong sink, unaccounted for

within flux models at the time, and contradicting a study only one year previously (1989)

by Heimann and Keeling.
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This represented a shift in carbon cycle science, but these hemispheric conclusions were

only one step forward from the broadest possible spatial resolution (global). While ground-

based observation sites resolve a number of small regions, with high precision (a few tenths of

a ppm), their sparseness does not provide a very thorough dataset in space. Only within the

past decade has remote sensing of CO2 developed the potential to fill in those spatial gaps:

both the Greenhouse Gases Observing Satellite (GOSAT, launched in 2009) and the Orbiting

Carbon Observatory 2 (OCO-2, launched in 2014) have produced CO2 column-averaged dry

air mole fraction (XCO2) datasets with global coverage and spatial resolution significantly

superior to that of any ground-based dataset - GOSAT has a footprint size of 10 by 10

kilometers, and OCO-2 averages a footprint size of 1.25 by 3 kilometers. A visualization

of their footprint sizes is shown in Figure 1.3. Such improvement in spatial resolution is

revolutionary for flux inversions: if spatial resolutions continue to improve, satellite datasets

could help top-down estimates to locate, say, CO2 fluxes from individual cities and power

plants.

Figure 1.4. CO2 dry air mole fraction across the United States at 12Z on July 27, 2016 as
simulated by the ECMWF CAMS model.
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Per in situ data, typical column-integrated values vary globally from around 380 to 420

parts per million (ppm), as illustrated in Figure 1.4, which shows a CO2 analysis from the

European CAMS model (Massart et al., 2016) for July 27, 2018. On local scales, column-

integrated variations can reach up to 2 ppm over the course of a single day. Figure 1.2

illustrates this daily variability. In order to capture realistic CO2 gradients, remote sensing

instruments must thus have a measurement uncertainty smaller than these daily fluctuations.

It is with such precision in mind that the OCO-2 instrument was designed. Its footprint is

an average size of 1.25 by 3 kilometers, and it achieves global coverage (between about 60N

and 60S) every 16 days. Two and a half years of OCO-2 data (discussed further in Section

2.1) have now successfully been shown to achieve this level of precision, 0.2-0.5%, or about

0.4-2 ppm error per individual sounding (Eldering et al., 2017). The global dataset has thus

been proven quite robust.

While these 0.4-2 ppm errors are large compared to those of ground-based in situ mea-

surements (which are on the order of 0.1 ppm), the increase in data density makes up for

this. One of the most promising studies of the OCO-2 era thus far, in terms of identifying

carbon sources and sinks, was published in Science in 2017. GOSAT and OCO-2 data were

assimilated into the NASA Carbon Monitoring System Flux inversion system for both 2011,

a La Niña year, and 2015-2016, a strong El Niño event, in an attempt to observe variability

in tropical carbon fluxes, which are notoriously di�cult to quantify. Using the assimilated

satellite data, flux di↵erences between the two events were broken into various components

in three key regions (see Figure 1.5). While the sources of these signals require further in-

vestigation, it is a promising result of the satellites’ continental coverage, and a step forward

from both hemispheric estimates and ground-based observations.
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(Fig. 2): GPP was reduced by 0.9 ± 0.96 gigatons
C and NBE increased by 0.9 ± 0.24 gigatons C,
mainly owing to the lower than average precip-
itation (3.8s) over the northern and southeast-
ern part of the region (Fig. 4A) (40). Over these
regions with extreme precipitation anomalies
(i.e., larger than

ffiffiffiffiffiffiffiffi
2s2

p
), the NBE increased by

1.0 ± 0.22 gigatons C and the GPP decreased by
0.7 ± 0.53 gigatons C (Fig. 4a). This implies that
the rest of tropical South America, where the
precipitationwas slightly higher in 2015, absorbed

0.1 ± 0.13 gigatons more carbon from the atmo-
sphere in 2015 than in 2011. This spatial gradient
in carbon flux response suggests that the tropical
South American carbon flux anomaly responded
directly to precipitation anomalies. Leaf- and
plot-level measurements also suggest that severe
drought in the Amazon suppresses photosynthesis
more than it suppresses respiration (41, 42). The
net carbon loss from the 2015–2016 drought over
tropical South America was even higher than
the 2010Amazonia drought,whichwas estimated

to range from 0.2 to 0.7 gigatons C relative to 2011
(27, 43–45), whereas the carbon loss from the
2005 drought was estimated to be lower than
from the 2010 drought (46).
High surface-temperature anomalies occurred

in tropical Africa in 2015 (fig. S2), increasing the
ecosystem respiration by 0.6 ± 1.01 gigatons C,
which dominated the NBE response (75% of the
0.8 ± 0.22–gigatons C NBE difference). The large
uncertainty in GPP led to the large uncertainty in
the residual respiration. About 40% of the NBE

Liu et al., Science 358, eaam5690 (2017) 13 October 2017 3 of 7
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Fig. 2. Carbon flux, temperature, and precipitation anomalies in
2015 relative to 2011. Magenta, red, and purple bars are NBE, biomass
burning (fire), and respiration differences between 2015 and 2011.
Upward (positive) bars represent increased carbon release into the
atmosphere in 2015 relative to 2011. The green bars show the GPP
differences between 2015 and 2011. Downward (negative) bars represent
less carbon uptake through photosynthesis in 2015 relative to 2011.

The error bars are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22011 þ s22015

q
, where s2

2011and s2
2015 are the error

variances calculated from the optimization process (28). The dark blue
bars represent precipitation differences, and the downward (negative)
direction represents less precipitation in 2015 relative to 2011. The brown
bars show temperature differences, with the upward (positive) direction
representing higher temperatures in 2015 relative to 2011, where s is
30-year (1981–2010) standard deviation. GtC, gigatons C.
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Fig. 3. NBE anomalies during the peak of the 2015–2016 El Niño
(from May 2015 to April 2016) relative to 2011. NBE anomalies indicated
by magenta arrows. Upward (positive) bars represent increased carbon
release into the atmosphere during the peak of the 2015–2016 El Niño relative
to 2011.The dark blue bars represent precipitation differences, and the

downward (negative) direction represents less precipitation during the peak of
the 2015–2016 El Niño relative to 2011.The brown bars show temperature
differences, with the upward (positive) direction representing higher
temperatures during the peak of the 2015–2016 El Niño relative to 2011,where
s is 30-year (1981–2010) standard deviation.
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Figure 1.5. From Liu et al. (2017) - 2015 El Niño carbon flux components di↵erenced
from 2011 La Niña components. Also shown are temperature and precipitation di↵erences
between 2015 and 2011. Upward bars indicate higher values in 2015 than in 2011; � in the
temperature and precipitation values is the 30-year standard deviation from 1981-2010.

With even large-scale XCO2 results still hotly contested, the validity of XCO2 gradients

on smaller spatial scales is hardly established. A comparison study by Wunch et al. (2017)

between OCO-2 and the Total Column Carbon Observing Network (TCCON) shows that

after bias correction (against TCCON) and filtering, the OCO-2 XCO2 version 7 target-mode

data can still have residual biases of up to 1.5ppm in RMS di↵erence from their collocated

TCCON sites. Comparisons between the target mode and coincident TCCON data can be

seen in Figure 1.6 on page 7. (A map of the target mode locations and TCCON sites can

be found on page 19, and an explanation of OCO-2’s observation modes is also found in the

next chapter.) In addition, sources of variability on relatively small scales (100 x 10.5 km2)

were evaluated in Worden et al. (2017), using comparisons of observed and predicted noise.

The study concluded that some uncertainty in small-scale gradients remains unaccounted

for, and that some spurious soundings may be due to variations in surface properties or

solar zenith angle. Though both studies indicate small-scale errors in the bias-corrected

data, neither attempts to validate the observed gradients in space. These gradients, which

are typically on the order of the OCO-2 single-sounding measurement precision, should be

6



observable with an ensemble of soundings, and can significantly improve local flux estimates

if measured accurately.

(a)

2214 D. Wunch et al.: OCO-2 validation

able online through the Goddard Data Center (GES-DISC,
2016) and the CO2 portal (JPL-Caltech, 2016). The bias cor-
rection procedure for the current B7r dataset is described in
Mandrake et al. (2015).

There are three key types of biases addressed by the OCO-
2 bias correction procedure: footprint-dependent biases; spu-
rious correlations of the retrieved XCO2 with other retrieval
parameters (a “parameter-dependent” bias); and a multiplica-
tive factor to scale to the World Meteorological Organiza-
tion (WMO) trace-gas standard scale (Zhao and Tans, 2006),
which we will refer to as a “scaling” bias. The parameter-
dependent bias can depend on retrieval parameters such as
the surface pressure retrieval error, signal level, airmass, sur-
face albedo, or spurious variability in the retrieved CO2 pro-
file.

Each OCO-2 spectral channel records eight spectra simul-
taneously, each with a slightly different atmospheric path,
and hence measures sunlight that has reflected off of a dif-
ferent surface location or “footprint”. The spectrally depen-
dent radiometric response of each footprint is different and
is calibrated independently. Small (< 0.1 %) uncertainties in
the calibration introduce persistent footprint-dependent bi-
ases in the retrieved XCO2 that must be removed as part of the
bias correction process. Footprint-dependent biases are cor-
rected using a subset of OCO-2 data collected over small ar-
eas around the world, in which there were at least 100 sound-
ings with low variability, and where all eight footprint mea-
surements resulted in a successful retrieval (Mandrake et al.,
2015). Note that there are two footprint-dependent correc-
tions applied to the B7r OCO-2 data: one that is applied as
part of the standard bias correction algorithm and one that
was discovered after the generation of the bias correction.
This second “residual footprint bias” correction must be ap-
plied manually by the data user (Mandrake et al., 2015). In all
subsequent analyses in this paper, both footprint-dependent
biases are removed from the data, unless otherwise specified.
In future versions of the OCO-2 algorithm, there will be no
residual footprint bias correction required.

The parameter-dependent bias correction uses a genetic al-
gorithm to determine which retrieval parameters account for
the largest fraction of the spurious variability found in the es-
timated XCO2 on large spatial scales (Mandrake et al., 2013,
2015). The algorithm uses two subsets of the OCO-2 data
for this task: a “Southern Hemisphere approximation” which
exploits the low spatial and temporal variability of XCO2 in
the Southern Hemisphere south of 25� S (e.g., Wunch et al.,
2011b) and a “small area analysis” which exploits the low
spatial variability of XCO2 within small regions (0.89� lati-
tude on a single orbit track) and can be applied at all lati-
tudes (Mandrake et al., 2015). A multivariate regression is
performed between spurious XCO2 variability and the param-
eters. The resulting slopes of the regressions allow us to then
subtract the predicted bias from the XCO2 values. In the re-
sults that follow, the footprint and parameter-dependent bi-
ases in the OCO-2 target-mode data have been removed fol-
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Figure 4. The relationship between the median value from each
OCO-2 target-mode maneuver and the median value of the coin-
cident TCCON data, typically recorded within 1 h of the maneuver.
The top plot (a) does not have the Mandrake et al. (2015) bias cor-
rection applied and the middle plot (b) is after bias correction but
before the scaling is applied. Plot (c) shows the relationship when
the scaling correction is applied and the recommended residual foot-
print correction described in Mandrake et al. (2015). Note that the
best fit line in plot (c) is much more consistent with the one-to-one
line than in plot (b). The slope and scatter in plot (c) is unaffected
by the residual footprint correction. The one-to-one line is indicated
by the dashed line, and the best fit is marked in the solid line. The
error bars represent the standard deviation about the median.

Atmos. Meas. Tech., 10, 2209–2238, 2017 www.atmos-meas-tech.net/10/2209/2017/

(b)

Figure 1.6. From Wunch et al. (2017) - Median XCO2 values of OCO-2 target mode data
against median values of coincident TCCON data. Plot (a) shows OCO-2 data with bias
correction but without a scaling correction; right plot (b) includes a scaling correction. Note
the closeness in slopes of the one-to-one line (solid) and the best fit line (dash), even though
some spread remains in the OCO-2 data.

A vertically-integrated mixing ratio, XCO2 variability is influenced by a number of factors

which are di�cult to parse and which introduce inherent complications to the measurements.

(Further detail on the calculation of XCO2 can be found in Chapter 3.) Vertical mixing within

the column, surface sources and sinks, and large-scale dynamics all have an a↵ect on the

column-integrated value. Traditional in-situ boundary layer CO2 measurements, taken at or

near the surface, are most sensitive to local surface fluxes, but Keppel-Aleks et al. (2011)

use correlation studies between XCO2 , potential temperature, and eddy covariance data to

show that regional variations in XCO2 at two TCCON sites were more highly correlated

with large-scale flux patterns than with local flux sources. Observed diurnal variations in

XCO2 only showed correlation with eddy covariance fluxes when averaged over the course of

several synoptic cycles. This finding highlights the intrinsic di↵erence between variability in

full-column measurements and measurements made within the boundary layer. Figure 1.8
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illustrates this di↵erence, showing both TCCON XCO2 and flask CO2 data from Park Falls,

one of the two sites studied in Keppel-Aleks et al. (2011). Over the course of 18 hours on

August 27, 2010, the boundary layer data (triangles) clearly show the morning convection of

high CO2 to the level of the tower (396 meters) and the subsequent decrease in CO2 over the

course of the day due to further vertical mixing and photosynthesis, but the column data

(+) shows little evidence of any of this variation.

Spatial gradients on regional scales arise from a number of mechanisms. Geographical

di↵erences in surface type result in varying magnitudes of carbon sources and sinks; regions

of strong sources have elevated CO2 concentrations, and regions of strong sinks have de-

pressed concentrations. The terrestrial biosphere switches diurnally between source and sink

- plants take up CO2 during the day to perform photosynthesis, and release it at night via

respiration. This can lead to spatial patterns that vary throughout the day based on surface

types. Anthropogenic sources such as cities and power plants emit CO2, elevating concen-

trations locally, which is often observable in the full column. (Anthropogenic emissions were

understood to be the major reason for the north-south hemispheric gradient found in the

Tans, Fung, and Takahashi study, with most human activity in the northern hemisphere.)

Topography can also cause local CO2 buildup, leading to areas of elevated XCO2 in valleys,

for example, where transport may be minimal and vertical mixing is often suppressed. Exist-

ing spatial gradients can be either enhanced or di↵used by transport as well, from mesoscale

to synoptic scales.

OCO-2 data has already proven successful at observing some of these local features

despite the complexity of the XCO2 measurement. A study by Nassar et al. (2017) diagnosed

emissions estimates from individual power plants in the U.S., India, and South Africa using
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OCO-2 overpass data. In one U.S. case over a power plant in Kansas, XCO2 enhancements

in the plume up to 60 km distant were a mere 1 ppm, and yet OCO-2 was able to observe a

distinct enhancement. Figure 1.7 shows the OCO-2 overpass as well as visualization of the

plume. A simple Gaussian plume model was used to solve for instantaneous plant emissions

using OCO-2 observations. The model estimated a value of 31.2 ± 3.7 kt CO2/day, in

remarkable agreement with the bottom-up estimate of 26.7 ktCO2/day. Six overpasses of

di↵erent plants yielded similar results, proving that OCO-2 clearly has some success in

evaluating small-scale XCO2 patterns within its target precision range. However, validation

at these spatial scales is key to our interpretation and understanding of plumes and other

surface emission features, and with as little validation as has yet been done, spurious features

in the data may yet obscure our observations. The di�culty of this level of validation is

demonstrated by the Nassar et al. dataset: in two years of data, only six clear-sky scenes

were collocated with strong point sources suitable for case studies. This dearth of clear-sky

overpasses stems primarily from the extremely narrow swath of OCO-2, which is only 5-10

large emission uncertainty in this result (see supporting information). We also estimate emissions from a
direct overpass with winds blowing across the orbit track for the J. M. Gavin and Kyger Creek Power Plants
in Ohio, which are within 2.5 km (roughly one OCO-2 footprint) and treated as a single point source
(Table 1). For a direct overpass with winds aligned across the orbit track, less of the plume is imaged and
the background can be more difficult to define.

Figure 1. Direct OCO-2 overpass in the U.S. (a) XCO2 fromOCO-2 near theWestar Jeffrey Energy Center displayed in Google Earth with ERA-Interim (red) andMERRA2
(ue) wind vectors. (b) Plume points (red), background points (ue), and the background mean (green line). (c) Observed XCO2 relative to the background. (R is the
correlation coefficient and a is the atmospheric stability parameter). (d) Gaussian plume model XCO2 plume relative to the background. (e) Gaussian plume model
XCO2 relative to the background as would be viewed by OCO-2. Solid lines in Figures 1c–1e show the model 1% plume density cutoff from the axial value.

Figure 2. Same as Figure 1 for a flyby of the Ghent Generating Station. The dotted lines in Figures 2c–2e show an offset for defining the background with respect to
the plume edges.

Geophysical Research Letters 10.1002/2017GL074702

NASSAR ET AL. POWER PLANT CO2 EMISSIONS FROM SPACE 10,049

Figure 1.7. From Nassar et al. (2017) - An overpass of the Westar power plant in Kansas.
From left to right, visualizations of the observed XCO2 , and the enhancement within the
plume compared to the perceived “background.” The enhancement is elevated by up to
1.006ppm from the “background” value and observed up to 60km from the source.
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kilometers wide and in three years has only covered about 2% of Earth’s surface, with gaps

of approximately 150 kilometers and 16 days between local swaths.

parkfalls August 27, 2010
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Figure 1.8. TCCON XCO2 data at the Park falls WLEF tall tower (+) over the course of
18 hours on August 27, 2010. Also shown are flask CO2 measurements taken at 396 meters
(triangles), and the solar zenith angle in yellow. Note the lack of correlation between the
column data and boundary layer measurements, despite the strong variations at the level of
the tower.

Spurious features in the OCO-2 dataset may arise from a few di↵erent sources. In par-

ticular, the OCO-2 instrument is passive, meaning it relies on reflected sunlight: it “sees”

all photons within its viewing angle, including those dramatically scattered by clouds and

aerosols, and it cannot di↵erentiate those severely scattered photons from others. This can

lead to modified optical path lengths, e↵ectively changing the extent of the measured col-

umn, and producing anomalous XCO2 values. In addition, the OCO-2 version 7 data revealed

some sensitivity to surface features such as topography and albedo, though the version 8 data

shows improvement.

NASA has funded the Atmospheric Carbon and Transport (ACT) - America mission

in part to deploy an active instrument which might shed light upon these types of biases

in the OCO-2 overpass-level dataset. The ACT-America mission goals are threefold: to

quantify and reduce atmospheric transport uncertainties; to improve regional-scale, seasonal
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prior estimates of CO2 and CH4 fluxes; and to evaluate the sensitivity of OCO-2 column

measurements to regional variability in tropospheric CO2 (Davis et al., 2017). The first two

goals can be achieved with in situ sensors, with which both mission aircraft (Langley C-130

and B-200) are equipped and which are utilized in both fair-weather conditions and near

frontal boundaries, to help assess both surface fluxes and transport of CO2 due to mesoscale

and synoptic transport mechanisms. In pursuit of the third goal, the C-130 aircraft flies

the Multi-Functional Fiber Laser Lidar (MFLL), developed by the NASA Langley Research

Center (LaRC) and Harris, along OCO-2 orbital tracks at (nearly) concurrent times of day

at an altitude typically between 8 and 9 kilometers. The MFLL measures tropospheric XCO2

at a frequency of 10 Hz along-track, or 8-10 km spatial resolution when data is averaged

OCO#2%under#flights%(objective%3)
Tim$Marvel,$ NASA$ Langley

• Measure$much$ of$the$atmospheric$ CO2 column$ at$<$20km$horizontal$ resolution$ across$
100’s$ of$km$below$OCOF2.$ Also$measure$ aerosols,$ clouds$ with$lidar.

• Compare$ spatial$ variability$ in$airborne$ CO2 to$OCOF2$ CO2.$$Evaluate$OCOF2$ ability$ to$
capture$tropospheric$ CO2 variability$ alongFtrack.

B-200C-130

(a)

(b)
(c)

(d)

Figure 1.9. (a) ACT-America OCO-2 underflight diagram, and flight tracks from the (b)
Summer 2016, (c) Fall 2017, and (d) Winter 2017 campaigns, provided by Davis et al.
(2017).
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into 60-second bins. A diagram of an OCO-2 underflight plan is shown in Figure 1.9a, and

the coverage of the first three flight campaigns - summer, winter, and fall - are shown in the

bottom row from left to right. A total of nine OCO-2 underflights were completed during

these three campaigns, three in each season.

An active instrument like the MFLL, carrying its own power source, has the potential

to observe small-scale XCO2 patterns without the filtering ine�ciencies of the OCO-2 instru-

ment. Retrievals near cloud and aerosol features may in principle improve significantly, since

active instruments detect the same signal that they emit. Detectors monitor the returned

signal for irregularities, such as a premature return time, which would indicate the pres-

ence of a scatterer in the column. Signals representing significantly altered path lengths can

thus be easily filtered out, eliminating any spurious measurements from clouds and scatter-

ing features. Variations due to albedo or topography can also be more easily identified by

carefully monitoring variations in the emitted signal and comparing to those in the returned

signal; signal range and surface elevation can be calculated from the data to within 3 meters’

accuracy and precision (Dobler et al., 2013, Lin et al., 2013). Section 2.3 discusses MFLL

instrument performance in further detail.

The MFLL has been developed as part of the Active Sensing of Carbon over Nights,

Days, and Seasons (ASCENDS) mission, which seeks to improve upon the global carbon

monitoring of passive sensors by deploying an active space-based instrument. Including

its range-resolving ability, the MFLL as employed in the ACT-America campaign takes

measurements at a higher spatial resolution than OCO-2 (in this study, the relative density

of MFLL to OCO-2 measurements in space is at least 20 to 3), providing a larger ensemble

of observations along-track which may better characterize XCO2 features. This volume of
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data helps to reduce noise, but there are several other di↵erences between the two datasets

which may play a role in validation success. OCO-2 samples at thousands of wavelengths

across three CO2 absorption bands, whereas the MFLL samples at only three wavelengths

across one CO2 absorption peak. This significantly lower spectral resolution in the MFLL

can lead to stronger manifestation of spectroscopy and line shape imperfections in the XCO2

retrievals, an e↵ect which has not been thoroughly studied until this point, but is discussed

at some length in Section 3.2.

The varying definition of the physical “column” in XCO2 measurements is an important

discrepancy between the two measurements as well - the MFLL measures only the tropo-

spheric column up to about 9 km, whereas OCO-2 measures close to the full atmospheric

column. Thus, the MFLL-retrieved XCO2 in its simplest form can only be used to evaluate

the column sensitivity of OCO-2 to CO2 concentrations in the troposphere, as stated in

the ACT-America mission goals. One other key di↵erence between the retrieved XCO2 from

MFLL and OCO-2 is addressed in this work: the instruments have di↵erent weighting func-

tions, meaning that they are most sensitive to di↵erent vertical locations within the column.

This could bias the results of one higher or lower than the other based on the CO2 values

in the particular part of the column to which the instrument in question is most sensitive.

These two factors, the vertical column extent and the weighting function shape, lead to fairly

significant di↵erences in the retrieved XCO2 , and our method of evaluating and addressing

these di↵erences is detailed in Chapter 4.

This work seeks to assess the agreement between the MFLL and OCO-2 datasets for

nine ACT-America underflights. Since OCO-2 has a relatively mature XCO2 dataset, but the

MFLL retrieval is extremely young and yet untested, the first step is developing a relatively
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simple MFLL retrieval and assessing its sensitivity to various assumptions. The second

step is assessing the di↵erences between the MFLL and OCO-2 retrievals and correcting for

those di↵erences. Then we can compare the MFLL and OCO-2 results - and due to the

uncertainties involved in our corrections and the MFLL retrieval itself, we explore further

’truth’ sources, both model and in situ.

Given these goals, the following questions are useful in framing the process detailed in

this paper:

(1) How well can the MFLL validate OCO-2?

(2) Is the majority of the OCO-2 observed gradient at scales of hundreds of kilometers

primarily real or spurious?

(3) Is the majority of the OCO-2 observed gradient at scales of tens of kilometers

primarily real or spurious?

(4) Can we identify spurious variability and its causes in the OCO-2 XCO2 data?

The contents of this paper are thus structured as follows. In Chapter 2, all datasets

used in comparisons are described in detail, including instrument details in the cases of

OCO-2 and the MFLL. Also described are the two in situ “curtains,” 2-D vertical fields

of CO2 constructed from ACT-America in situ data. Sources of retrieval meteorology and

spectroscopy are also provided. Chapter 3 briefly describes the key di↵erences between

OCO-2 and MFLL XCO2 retrieval algorithms, and details MFLL retrieval sensitivities to

variable spectroscopic and meteorological inputs as well as instrument wavelength variations.

We make two additional corrections to the MFLL retrievals in an attempt to equalize the

MFLL and OCO-2 measurements; these corrections are discussed in Chapter 4. A highly

detailed summary of the nine OCO-2 underflights is found in Chapter 5, and Chapter 6
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provides a more succinct overview and discussion of key comparison results. The final chapter

summarizes the findings of this work, reviews implications of the results with regards to the

questions laid out above, and considers the potential for future work.
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Chapter 2

Instruments and Datasets

2.1. OCO-2

Launched in July 2014, OCO-2 travels a sun-synchronous polar orbit in NASA’s A-Train,

and records nearly 1 million soundings per day on eight footprints across its swath, with an

average single-footprint area of about 1.25 by 3 kilometers. Around one hundred thousand

of these are su�ciently cloud-free and suitable for full-column XCO2 analysis; the XCO2 data

typically achieve a precision of 0.3% (1ppm) or better, in line with OCO-2’s mission goals

and instrument design (Eldering et al., 2017). Global XCO2 observations are shown in Figure

2.1, as well as a sample track showing observations across all eight footprints in Figure 2.3.

The OCO-2 instrument is a passive sensor, using a high-resolution grating spectrometer

to measure, from reflected sunlight, the amount of atmospheric absorption due to CO2

in two spectral bands: the weak band at 1.6 µm, and the strong band at 2.0 µm. It also

measures absorption in the O2 A-band at 7.26 µm. The instrument measures at high spectral

554 A. Eldering et al.: First 18 months of OCO-2 science data

Figure 3. Maps of total column dry air ratio of CO2 (XCO2) from
OCO-2 from October 2014 through March 2015. Data have been
bias corrected and screened using the data quality flag in the Lite
file and averaged in 2� by 2� bins.

levels values which indicate data quality (Mandrake et al.,
2013), nor has a bias correction been applied. This informa-
tion is calculated subsequently and included in the Lite files
described below.

A summary daily data product, referred to as the Lite files,
is created, to simplify data volumes and data structures. Spe-
cific files for XCO2 (Mandrake et al., 2015) and separately
for SIF product contain 1 day of data per file (Frankenberg,
2015). For XCO2 a bias correction is applied and warn levels
are assigned, with all converged soundings included in the
file.

4.3.1 L2 XCO2 results

The XCO2 data record from OCO-2 now extends more than
18 months, and Figs. 3, 4, and 5 show maps of these XCO2
measurements. These maps illustrate averages over month-
long periods, so there are nadir and glint data in each panel.
The data included in these maps and all that follow have been
screened and have had the bias correction applied (v7rB Lite
file data with the 0/1 data quality flag applied; see Mandrake
et al., 2015). These two processes will be discussed in more
detail in Sect. 4.3.4 and 4.3.6. As expected, these maps show
the large annual changes in XCO2. CO2 builds up over the
Northern Hemisphere during winter and then is rapidly re-
moved from the atmosphere as spring arrives and the terres-
trial ecosystem activity increases rapidly. This is most appar-
ent in the month of June, when the decrease of XCO2 over
northern Asia is order 10 ppm. The overall gradients of a few
ppm from north to south are apparent in the data, as well
as the secular increase in CO2 from October 2014 to March
2016. Other features are apparent in the data maps, such as
the higher CO2 concentrations over the eastern US and China
between October and December (see Figs. 3 and 5), when the
overall global XCO2 gradient is small. Enhanced XCO2 coin-

Figure 4. Maps of XCO2 from OCO-2 from April 2015 through
September 2015, bias corrected and selected with data quality flag
and averaged on 2� by 2� grid.

Figure 5. Maps of XCO2 from OCO-2 from October 2015 through
March 2016, bias corrected and selected with data quality flag and
averaged on 2� by 2� grid.

cident with biomass burning in the Amazon, central Africa,
and Indonesia (Van Der Werf et al., 2010) is also obvious in
these figures.

The latitudinal coverage of the v7r dataset is also apparent
from these maps. Data selection for processing through L2
relies on screening from the preprocessor results, as well as
limitations on geographical extent. Analysis of the prepro-
cessor data (Taylor et al., 2016) shows that a large fraction
of these higher latitude data are marked as cloudy, which
is in agreement with the MODIS cloud fields. The current
data selection does not select data south of 65� in latitude, as
experience with ACOS data showed that retrievals over ice
failed routinely. We intend to retrieve the small number of
cloud-free scenes over bare ground at these latitudes in the
next version of the retrieval. Due to clouds, solar illumina-
tion, and geometry, any given month has data that span about
100� in latitude, but the coverage band shifts north and south
with the seasons.
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(b)

Figure 2.1. From Eldering et al. 2017 - (a) OCO-2 global XCO2 from April to September
2015 and (b) October 2015 to March 2016.
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resolution, with 1016 spectral elements in each of the three bands (Eldering et al., 2017).

The absorption spectra in the weak CO2 band and the O2 A-band can be seen in Figure 2.2.

The satellite operates in three modes, depending on geographic location and science goals:

nadir mode, at which time the instrument is pointed perpendicular to the ground; glint

mode, in which the instrument is pointed at the solar “glint spot”, where solar reflectance

is greatest from Earth’s surface - this is the primary operation mode over ocean; and target

mode, in which the instrument remains pointed at one geographic location for a period of

15-20 minutes, and makes repeated measurements over that location.

Cloud-free soundings from the two CO2 bands are processed through a retrieval algo-

rithm to produce the XCO2 product. The OCO-2 retrieval algorithm employs an optimal

estimation scheme, in which, using an a priori estimate and observed values, a cost function

is minimized to determine the state vector of atmospheric variables which produce the most

probable posterior result, as described in O’Dell et al. (2012). Chapter 3 discusses the basic

mathematical principles of the XCO2 retrieval, which are common between OCO-2 and the

MFLL, but further details of the OCO-2 retrieval are not included in this work.

Though the focus of its mission is the XCO2 product, OCO-2 measures a variety of atmo-

spheric components, including water vapor and surface albedo (Eldering et al., 2017). In this

study, we use the ACOS L2 version 8 XCO2 product. Clouds and aerosol e↵ects can result

CO2
H2O

CO2

O2

O2

CO2
H2O

CO2

O2

O2

Figure 2.2. Absorption spectra of CO2 in the weak band (left) and O2 in the A-band (right).

17



Figure 2.3. OCO-2 XCO2 data from July 27, 2016 over (south to north) Maryland, Penn-
sylvania, and New York. OCO-2 data is overlaid on MODIS (Moderate Resolution Imaging
Spectrometer) visible imagery from the same day, taken merely minutes prior to the OCO-2
overpass. MODIS flies in the A-Train with OCO-2, following nearly the same ground track.

in an altered path length, scattering photons multiple times or prematurely, resulting in a

measurement that is not representative of the full vertical column. The data used in this

study has thus been cloud- and aerosol-screened using pre- and post-processing algorithms

described in Taylor et al. (2015). We further filter the dataset using the quality flag field,

which depends on a variety of factors (detailed in Mandrake et al., 2016) including observed

surface albedo, surface roughness, aerosol optical depth, and o↵set from prior model esti-

mates. The data analyzed in this study is bias-corrected per O’Dell et al. (2018, in prep)

and Osterman et al. (2017), and has quality flag = 0. As described later in the Results and

Discussion sections, some notable cloud features still remain in the data after standard cloud

screening procedures, resulting in some spurious features.

Bias correction is performed against the Total Column Carbon Observing Network. TC-

CON is a system of global ground-based FTS (Fourier transform spectrometer) instruments
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Figure 3. Map of OCO-2 target locations. Yellow circles show the locations of the targets that coincide with TCCON stations; orange stars
show the locations of targets that do not have co-located TCCON stations.

CON station (28.3� N) is at 2.37 km altitude, whereas the
Réunion (20.9� S, 0.087 km) and Ascension Island (7.9� S,
0.032 km) stations are closer to sea level.

Several TCCON target stations are near or in urban regions
with varied topography and emissions sources: Pasadena
(population ⇠ 17 million), Tsukuba (population ⇠ 228 000),
Paris (population ⇠ 2.24 million), and Karlsruhe (population
⇠ 300 000).

There are several target locations that are not TCCON sta-
tions (Fig. 3, orange stars), and, although data from those
targets will not be analyzed in this paper, the data will
help assess the radiometric calibration of the instrument, its
ability to measure large urban sources of CO2, validate its
solar-induced fluorescence observations (Frankenberg et al.,
2014), and assess its ability to measure vertically resolved
information about CO2. Railroad Valley is a heavily instru-
mented radiometric calibration site (Kuze et al., 2011), and
Libya has surface properties that are valuable for radiomet-
ric calibration. Shanghai, São Paulo, and Mexico City are
geographically well-constrained urban regions with signifi-
cant CO2 emissions. Rosemount and Litchfield have instru-
mentation that will help verify the OCO-2 solar-induced flu-
orescence observations. Boulder has frequent AirCore CO2
profile measurements (Karion et al., 2010). Fairbanks is the
location of a future TCCON station.

The OCO-2 spacecraft must be manually commanded to
perform a target maneuver. The target locations are selected
a day or two in advance, based on the weather forecast, the
operational status of the TCCON station (if the target is a
TCCON station), the importance of the projected data loss in
nadir or glint mode from performing the target-mode oper-
ation, and the historical statistics of successful target-mode
measurements over that site. The projected data loss depends
primarily on whether the nominal mode for that orbit was
nadir over land, nadir over ocean, glint over land, or glint

over ocean. If the nominal mode is nadir over ocean, little
useful data loss occurs, as nadir measurements over ocean
are usually too dark in the near-infrared for successful re-
trievals: in this case, the target is almost always selected
given a reasonable weather forecast. This has mostly been
the case for Réunion Island, which has been targeted reg-
ularly from OCO-2 nadir orbits. For the other three cases,
there will be some loss of regular science data to accom-
modate a target-mode operation. In these cases, the histori-
cal statistics of acquiring good target-mode data and weather
forecasts are weighted more heavily before enabling the tar-
get. Often, if the weather forecast is not ideal, no target-mode
measurements will be selected.

As of 31 December 2016, 264 targets have been observed,
with 230 of them over TCCON stations. The TCCON data
have been analyzed for 90 % of those targets. Of the remain-
ing 208 targets, about 59 % (123) were clear enough to obtain
sufficient high-quality OCO-2 data to compare with TCCON
data.

3.2 Target mode and the OCO-2 bias correction

All current space-based XCO2 measurements have system-
atic biases. These biases can be caused by uncertainties in
the spectroscopy, by limitations in the information content of
the measurements (i.e., the spectra do not contain enough in-
formation to resolve multiple independent vertical pieces of
information), by uncertainties or oversimplifications in the
optical properties of the atmosphere and surface – particu-
larly from low-lying cloud, haze, and aerosols – and by un-
certainties in the instrument characterization and calibration
(e.g., Crisp et al., 2017; Wunch et al., 2011a; Guerlet et al.,
2013; Schneising et al., 2012). Considerable effort is ded-
icated to creating robust “bias correction” procedures, and
these are detailed in regularly updated documentation avail-

www.atmos-meas-tech.net/10/2209/2017/ Atmos. Meas. Tech., 10, 2209–2238, 2017

Figure 2.4. All OCO-2 target mode locations, including TCCON sites as shown in Wunch
et al. 2017.

which produce XCO2 measurements at precisions high enough - 0.25%, 1ppm or less - to

match (and exceed) the measurement goals of OCO-2. In a study by Wunch et al. (2017),

123 sets of B7r OCO-2 target-mode measurements were chosen based on collocation with

TCCON sites in both space and time. Bias-corrected soundings were shown to have an R2

value of 0.86 when compared to TCCON values, and agreed within 1ppm in most cases. A

map of OCO-2 target mode locations, including TCCON sites, is shown in Figure 2.4.

For best comparison to MFLL measurements, the OCO-2 data in this study is binned in

one of two ways: (1) to spatially coincide with 60-second MFLL bins, to within about 8km

of the center of the 60-second MFLL track, yielding the same number of data points between

datasets - making correlation calculations simple; and (2) at 0.25 second intervals, in order

to su�ciently reduce measurement noise and clearly illustrate the desired spatial features.

2.2. In Situ

NASA’s Airborne Science Program has outfitted the ACT-America science team with

both a C-130 and B-200 aircraft. The C-130 carries the MFLL instrument; an in-situ PI-

CARRO instrument and several flasks, for the sampling CO2 and other greenhouse gases; the

Cloud Physics Lidar (CPL); a GPS; and a suite of instruments for measuring atmospheric
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ACT-America Science Instruments

Instrument (Platform) Variables Measured Sampling Frequency Data Latency (Archiving) Purpose of Measurement

MFLL (C-130) Column CO2 number 

density, altimetry, surface 

reflectance

10 Hz 1 day (≤6 months) Core GHG CO2 

measurement & ranging 

capability

CPL (C-130) ABL height, aerosol 

distribution

2 Hz, 30m vertical 

resolution
1 day (≤4 months) Transport model constraint, 

OCO-2 validation

PICARRO Air (C-130 & 
B-200)

CO2, CH4, CO, H2O mole 

fraction

1 Hz 1 day (≤4 months) Core GHG measurements, 

combustion & airmass 

tracer

2-B Tech. (C-130 & B-200) O3 mole fraction 1 Hz 1 day (≤4 months) Airmass tracer

Atm. state and nav. 
(C-130)

GPS lat-lon, wind speed, 

direction, pressure, temp.

1 Hz or higher 1 day (≤6 months) Evaluate atmospheric 

transport models

Atm. state and nav. 
(B-200)

GPS lat-lon, wind speed, 

direction, pressure, temp.

1 Hz or higher 1 day (≤6 months) Evaluate atmospheric 

transport models

Flasks (C-130 & B-200) Multiple trace gases 12 flasks / aircraft / flight 1 month (≤6 months) Core GHG measurements, 

GHG source tracers

PICARRO Ground CO2, CH4, H2O mole 

fraction

1 Hz 1 day (≤6 months) Core GHG measurements

�1

Figure 2.5. A table of the science instruments involved in the ACT-America campaign,
the aircraft on which they are carried, and information on their data availability and func-
tionality, from the mission website at https://act-america.larc.nasa.gov/.

variables such as wind, temperature, and pressure. The B-200 also carries a PICARRO,

some flasks, and GPS and atmospheric state instruments. In situ data principally used in

this work are PICARRO data, along with GPS data for latitude, longitude, and altitude

measurements. Figure 2.5, from the mission website at https://act-america.larc.nasa.gov/,

shows a table of instruments and the aircraft which carry them, as well as their data avail-

ability and functionality.

In this study, the PICARRO data is primarily useful for column measurements, in the

form of aircraft spirals from cruising altitude to near-surface. PICARRO instruments use a

technique called Cavity Ring-Down Spectroscopy (CRDS) to measure CO2 concentrations

with an estimated precision of 0.3ppm and a similar level of accuracy, significantly exceeding

the precision goals and capabilities of any remote sensing instrument. Combined with a me-

teorological model, the vertical resolution of the in situ data gives an accurate representation

of the CO2 profile and the XCO2 value at the spiral location. The data used to construct
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(a) July 27, 2016 (b) February 15, 2017 (c) October 22, 2017

Figure 2.6. Example in situ spiral profiles in latitude (left) and CO2 space (right) for one
flight from each of the three campaigns, flown in three di↵erent seasons - summer, winter,
and fall. Note the strong boundary layer drawdown in figure (a) in the summer.

the spiral column is most often the 1-second average PICARRO data from the “merge” files

generated by the in situ instrument team - occasionally, the raw PICARRO file is used,

where temporal resolution may be slightly finer. However, spiral data does not represent

the instantaneous column in time, nor is it taken at a single point in space. A typical air-

craft spiral spans up to 0.3 degrees in longitude and latitude, and up to 45 minutes in time.

Figure 2.6 shows one spiral profile from each of the three campaigns in both latitude and

CO2 space. As a simple means of comparison in this study, we do not attempt to “correct”

for either of these factors, because there are already discrepancies between the MFLL and

OCO-2 measurements in both time and space anyway.

The PICARRO data is secondarily used in this study to help generate an in situ “curtain”,

or a two-dimensional slice of CO2 concentrations along the OCO-2 ground track. More details

on the construction of the curtain dataset are found in Section 2.5.

2.3. MFLL

The Multi-Functional Fiber Laser Lidar (MFLL), developed by NASA’s Langley Research

Center (LaRC) and Harris (Dobbs et al. (2008), Dobler et al. (2013)), has been designed
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specifically to achieve the goals set by the ASCENDS mission and is the first Intensity-

Modulated Continuous-Wave (IM-CW) Laser Absorption Spectrometer (LAS). Figure 2.7

shows the standard setup of sampling wavelengths on the absorption line. Operational since

2005, the MFLL emits at three wavelengths on a single CO2 absorption line centered at

1571.112nm, which was chosen for MFLL operation due to its relative insensitivity to both

relative humidity (RH) and temperature. One emission wavelength is in the center of the

line (referred to as the “ON” line), and the other two are placed further out toward the

wings (“OFF” lines). For all but one flight (August 5, 2016) in this study, the configuration

had the two OFF wavelengths at ±50 pm to either side of the ON line. We refer to these as

the Short (S) and Long (L) lines, at 1571.062 and 1571.162 nm respectively. For the August

5 flight only, the Long line was moved to a position halfway between the ON and Short

lines at 1571.087 nm in attempt to reduce sensitivity to contamination by a water vapor

absorption feature. The MFLL XCO2 retrieval relies on the Integrated Path Di↵erential

Absorption (IPDA) method. The di↵erential absorption (�⌧) between two of the three

sampling wavelengths - either ON and OFF S or ON and OFF L - is calculated by taking

taking ratios of the transmitted and received powers for those two wavelengths. The two

retrieval results from the two wavelength pairs can di↵er by up to about 2 ppm along a given

flight track, as will be shown in the Results section. This is presumably due in part to the

higher water vapor sensitivity of the OFF L wavelength. The MFLL retrieval, including its

sensitivity to wavelength, spectroscopy, and meteorology, as well as its key di↵erences from

the OCO-2 retrieval, is detailed further in Chapter 3.

Early tests of the MFLL instrument demonstrated successful XCO2 measurements in a

variety of conditions and over a variety of surface types (Browell et al., 2008, Browell et al.,
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Figure 2.7. Standard MFLL sampling wavelengths: CO2 one-way OD is shown in black
and H2O in blue. The ON line is centered at 1571.11nm (dashed), and for all but one flight,
the OFF S (red) and OFF L (yellow) are positioned 50 pm to either side.

2010, Dobler et al., 2013). The first flight campaigns found signal-to-noise ratios (SNRs)

higher than 250 for 1-second averaged data over land, and yielded CO2 concentrations as

precise as 0.6ppm, in line with the 1ppm precision of OCO-2 measurements (Browell et al.,

2008, Browell et al., 2010). A series of 2010 flights measured SNRs better than 600 over

desert, 500 over vegetation, and 150 over ocean for 1-second data; 2011 flights showed XCO2

column agreement to within 0.65 ppm between MFLL and in situ measurements (Dobler

et al., 2013). Figure 2.8 shows MFLL measured optical depths (ODs) compared to ODs

derived from in situ measurements (“model”) for two of these flights; over Central Valley,

California, the average di↵erence between measured and modeled ODs was -0.28%, or about

1.1 ppm, and over the Rocky Mountains the average di↵erence was -0.44%, or 1.7 ppm.

A key feature of the MFLL as an active instrument is the identification of intermediate

scatterers in the observed column. This is accomplished via a range-encoded intensity-

modulation technique which, using the magnitude and timing of the returned signal, dif-

ferentiates surface-reflected signals from those reflected o↵ of scatterers in the midst of the

column. The timing of the returned signal can be used to calculate the range to the surface,

which has been shown to be better than 3 meters in both precision and accuracy (Dobler
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the comparison location, and when multiple in situ
spirals were conducted during a flight, we used the
spiral data closest in time to the MFLL overpass.
The MFLL OD measurements were averaged over
the time we were close to the spiral location and that
value was compared to the in situ-derived OD. The
GPS aircraft altitude, range to the surface from
the altimeter, and the Global Land One-kilometer
Base Elevation (GLOBE) database [39] were used
to eliminate cloud-obstructed data from the compar-
isons. Comparisons between the MFLL and in situ
measurements were reported as ODs and as equiva-
lent XCO2 values. The conversion to equivalent
XCO2 was accomplished by simply dividing the
ODs by the in situ-derived OD for the equivalent
of a constant 1 ppmv of CO2. The only adjustment
to the MFLL CO2 OD measurements for the 2011
campaign data was to account for differences be-
tween the PN altimeter range and the lower spatial
resolution of the digitized modulation signals. An
empirical relationship was established between
these ranges and the measured OD on one flight
leg on 9 August 2011, which exhibited a wide span
of range differences over a short flight distance,
and it was applied uniformly to all MFLL CO2 OD
measurements on all other flights legs throughout
the campaign. It should be noted that this correction
was small and upgrading the MFLL to higher digiti-
zation rates in the future should eliminate the need
for this type of correction.

2. Most Recent Comparisons of MFLL and In Situ
CO2 Measurements
During the 2011 DC-8 flight test campaign, the
MFLL system was modified to operate in a swept-
frequency mode to provide the potential for range
discrimination in the CO2 measurements. This
modification will eventually eliminate the need for
the separate altimeter in the MFLL system, as
briefly discussed in the next section. Example com-
parisons of MFLL CO2 OD measurements with

in situ-derived (modeled) ODs are presented in Fig. 6
for two very different conditions. The top example
shows the MFLL CO2 OD measurements on a con-
stant altitude flight leg over the Central Valley,
California in comparison to modeled ODs derived
from in situ CO2 data obtained on a DC-8 spiral at
the center of the leg and radiosonde data obtained
within about 1 h of the over-flight. The small varia-
tions in the modeled OD across the flight leg were
due to small changes in the range from the aircraft
to the surface. The resulting average difference be-
tween the measured and modeled ODs on the
Central Valley flight leg was found to be −0.28% or
the equivalent of ∼1.1 ppmv. The second example
at the bottom of Fig. 6 shows the OD comparison
while transiting across the Rocky Mountains. The
in situ data (spiral and radiosonde) came from
RRV, and the variation in ODs across the mountains
is almost entirely due to surface elevation changes as
the aircraft was at a constant altitude. The measured
and modeled OD comparison showed a high level of
agreement (ΔOD ! −0.44% or ∼1.7 ppmv) even
when one expects that some change in CO2 across
the mountains that could not be captured in the mod-
eled OD due to the lack of in situ data was present.

A comprehensive set of comparisons of MFLL
measured versus modeled CO2 ODs was conducted
during the 2011 DC-8 flight test campaign, and
the results are presented in Fig. 7. Six flights during
this campaign were used in these comparisons, and
the two flights that were not included had an
extremely high fraction of optically thick cloud that
precluded quantitative comparisons. When the cloud
fraction was less than about 50% below the aircraft
on a flight leg, cloud detection and filtering of data
was conducted to limit all comparisons to cloud-free
conditions. A total of 38 comparisons are shown in
the figure covering a range from the aircraft to the
surface of 3–13 km. No range-dependent trend in
the CO2 differences was found, and the average
difference (measured minus modeled) of all the

Fig. 6. Comparison of MFLLmeasured andmodeled CO2 OD’s onDC-8 flights over California’s Central Valley (top) and RockyMountains
(bottom) in route to Railroad Valley (RRV), Nevada.

20 April 2013 / Vol. 52, No. 12 / APPLIED OPTICS 2887

Figure 2.8. From Dobler et al. (2013) - Comparison of measured versus “modeled” optical
depths, derived from in situ, for two 2011 flights. The top plot shows an example from over
Central Valley, California, over relatively flat landscape; the bottom plot shows a transit
flight over the Rocky Mountains. The legend indicates the percent di↵erence between the
ODs, and the approximate equivalent di↵erence in measured CO2.

et al., 2013, Lin et al., 2013). This level of accuracy was also found in range calculations to

cloud and aerosol levels.

The MFLL measurements are provided at 10Hz, and prior to any averaging or retrieval,

some preliminary filters are applied. When a maximum returned power is reached, the

detector becomes insensitive to any changes in the signal (the signal reaches “saturation”).

The data from each of the three detected lidar signals is thus filtered out above a prescribed

threshold. The data is then averaged into 1-second bins. The reported pitch angle is adjusted

by a reported o↵set angle - unique to each flight campaign but around -3.4�on average - based

on the position of the instrument inside the C-130. Slant ranges less than 100 meters are

disposed of in order to filter out open-path calibration measurements, which are made at

close range, usually at the start of the flight. In addition, the range is highly sensitive to

the view angle, and the view angle is recorded at a lower sampling rate, which can lead
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to significant uncertainty in the range calculation when the aircraft is banking or turning

quickly. Stability filters are applied to changes in range, slant range, and elevation for this

reason.

Figure 2.9 shows a diagram of the mechanism for recording wavelength drift. Small

changes in the emitted wavelengths can a↵ect retrieved XCO2 values by up to a few tenths

of a part per million (as discussed in Chapter 3) and are monitored via a separate reference

laser, which is precisely calibrated, locked to a well-characterized acetylene gas line, and

sent through an acetylene gas chamber to a detector. If the detector finds any wavelength

drift, the laser is immediately readjusted to return to the center of the acetylene line. Some

portion of the signal from this reference laser is also sent to the same wave meter as the

three MFLL signals. Expecting the reference wavelength to remain flat due to the constant

correction of its position, it is assumed that any drift in the reference signal within the

wavemeter must be due to some environmental factor which also a↵ects the three measured

MFLL wavelengths. This o↵set, which is variable in time, is applied to each channel. All

three channels of MFLL data are then combined with GPS data into a 1-second averaged

product, and are run through the XCO2 retrieval, which is discussed in Chapter 3. (Section

3.2 discusses the potential implications of uncertainties in this system.)

A few campaign-unique issues have a↵ected the MFLL dataset. After the conclusion of

the summer 2016 ACT-America campaign, a cross-talk issue was discovered between two of

the MFLL channels, causing some additional bias in the data. A correction to this issue

was discovered and applied to a new data version; the data shown here includes the cross-

talk correction. The e↵ect on retrieved XCO2 values ranged from on the order of 1-2 ppm

for ON/OFF S and around 4-5 ppm for ON/OFF L, depending on the day. During the
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Figure 2.9. The wavemeter measuring emitted MFLL wavelengths is also connected to
a reference laser. The reference laser is calibrated to continuously adjust onto the center
of a precisely known acetylene absorption line. The measured reference wavelength is thus
expected to be constant in time; any drift in time is assumed to stem from environmental
factors which also a↵ect emission at the three MFLL channels. This time-dependent o↵set
is applied to each of the MFLL reference wavelengths.

winter 2017 campaign, a coating degradation on the MFLL viewing window on the C-130

was reported after the first test flight, on February 5. The window was unable to be replaced

during the campaign, resulting in increased MFLL measurement noise for all three flights.

In an attempt to get a reasonable SNR, the C-130 flew lower than usual on the three winter

OCO-2 underflight tracks: around five kilometers elevation, as opposed to nine.

The MFLL data also demonstrates some range dependence, which appears to vary slightly

from flight to flight. In percent di↵erence of optical depth (OD) between MFLL and in situ

data, the campaign-wide biases from campaigns 1 and 2 show a slope of up to -3 (% di↵erence

versus measured OD) and a standard deviation of up to 0.8 (% di↵erence). The cause of

this dependence is still under investigation, but a bias correction has been released for the

summer 2016 campaign data by the Langley team, and is applied in this study. The Langley

team continues to work on bias corrections for the second and third campaign data.

The level 1 data product (available only for summer 2016), which reports optical depths

for the ON/OFF S measurements only, includes a campaign-wide bias correction which was

developed by adjusting MFLL optical depths to those calculated from in situ spirals at the

spiral locations. The level 1 product also includes its own set of cloud and data quality flags,
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which have been used in this study to filter the data. Results shown for the three summer

flights include only cloud-free observations (cloud ground flag = 0) and observations with

data quality flag = 0, in which signal strength is above some minimum threshold and both

the pitch and roll angles are under five degrees.

2.4. CO2 Models

In this study, model CO2 data is used primarily for the generation of two MFLL retrieval

correction factors. The first correction accounts for di↵erences in XCO2 when identical model

profiles are weighted using the OCO-2 and MFLL weighting functions. The second correction

uses model partial column XCO2 above the plane to correct for this portion of the column,

which is absent in MFLL observations. Straight pressure-weighted XCO2 from models is also

used as a comparison for magnitude and latitudinal gradients.

2.4.1. CAMS. The European Centre for Medium-Range Weather Forecasts (ECMWF)

produces a forecast model of atmospheric components via the Copernicus Atmosphere Mod-

eling Service (CAMS). The CO2 forecasts assimilate the GOSAT BESD XCO2 product (Hey-

mann et al., 2015); data are provided to the CSU team at six-hourly time steps on a 0.25�

latitude by 0.25� longitude grid, with 137 vertical levels from surface to top of atmosphere

(TOA).

2.4.2. CarbonTracker. CarbonTracker, a post-inversion product from NOAA ESRL

in Boulder, Colorado, provides near-real-time analyses which include ground-based flask

measurements Peters et al. (2007). Model CO2 fields are provided at 3 by 2 degree spa-

tial resolution and 3-hourly time resolution. It includes 26 vertical levels between surface

and TOA. Comparisons between CAMS, CarbonTracker, and in situ data have revealed a
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slight high bias in CAMS in winter, shown in Figure 2.10, presumably due to flask measure-

ments making CarbonTracker more sensitive to subtle near-surface drawdown in wintertime.

For this reason, CarbonTracker is used for the upper column MFLL correction in winter

2017 flights. CarbonTracker data was unavailable for the fall 2017 underflight dates, but

is expected to be similarly preferable to CAMS for those flights. Data can be found at

http://carbontracker.noaa.gov.

2.5. In Situ “Curtain”

Because of the relative immaturity of the MFLL XCO2 retrieval, the desire arises for

additional datasets with which to validate OCO-2 and the MFLL. Therefore, as another

potential validation source, in situ data has been used to construct two “curtains”, or two-

dimensional CO2 fields across the latitude range of the underflight track. The ACT-America

team at the Pennsylvania State University (PSU) has generated a simple version of the

“curtain” using the PICARRO data from both the C-130 and the B-200 aircraft, which,

combined, usually fly nearly the full latitudinal range of the OCO-2 overpass at at least

three di↵erent altitudes. With a nearest-neighbor approximation, vertical and horizontal

gaps in the flight track are filled in using the in situ measurements at a relatively fine

horizontal resolution (about 1,000 points along a few degrees latitude) and relatively coarse

vertical resolution (20 points over 10 kilometers in altitude). Figure 2.11 shows the raw in

situ data and the result after nearest-neighbor interpolation. The resulting curtain yields

thousands of CO2 profiles derived from PICARRO data, which can be sampled as desired

to make XCO2 estimates along the full OCO-2 underflight track.

The PSU curtain data delivered to CSU only reaches up to the height of the C-130, around

9 kilometers. In order to achieve a more robust comparison to OCO-2, model CO2 data is
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July 27, 2016

(a) (b)

February 15, 2017

(c) (d)

Figure 2.10. Model profiles, colored in latitude, compared to in situ profiles (black), from
one summer flight (top panels) and one winter flight (bottom panels). The latitude of the in
situ profile is marked by a tick on the color bar. Note that in panel (c) the CAMS profiles
appear consistently high compared to the in situ, whereas the CarbonTracker profiles in
panel (d) are more comparable in magnitude. This is a consistent trend in the winter data,
but is absent from the summer data (panels (a) and (b)), in which CAMS agrees better
with in situ than does CarbonTracker.

used in a very simple manner to create a full column. Model data is interpolated to the precise

location and time of each curtain profile, and then layers above the highest point of the cur-

tain profile are added to the top of the curtain profile.
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(a) (b)

Figure 2.11. Figure (a) shows the PICARRO data from both the B-200 and C-130 flight
tracks on July 27, 2016. Figure (b) shows the resulting “curtain” (alternatively, “wall”)
after using nearest-neighbor approximation to fill in vertical and horizontal gaps. A total of
1,045 profiles are created along the flight track between 39 and 44N. Curtain data courtesy
of Sandip Pal, PSU.

Figure 2.12. In situ profile from July 27, 2016, black, shown with two di↵erent model
datasets used for the upper column. The ECMWF CAMS model is in light blue, and the
CarbonTracker near-real-time model is in dark blue.

The two-part full profile is used to make the XCO2 calculation used for comparison to OCO-2

and the MFLL. An example of the constructed full column, using the spiral in situ profile,

can be seen in Figure 2.12. Note that the two models shown in Figure 2.12 di↵er in varying
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amounts vertically throughout the upper column, and by up to 3 ppm in places. The reliance

on uncertain model data above the plane - a partial column which consistently represents

about one third of the total column dry air mass - introduces some uncertainty to the curtain

data as well, and can shift curtain XCO2 values slightly toward the XCO2 values of model

data. (Typical observed model biases are discussed in the next section.)

The PSU curtain used in this study does not take into account the time variability of the

flight path, but rather treats the full flight track as an instantaneous snapshot of the CO2 field

at the median time of flight. Future improvements in methodology will attempt to account for

time dependence using model data to estimate how significantly CO2 concentrations varied

over the duration of the flight. In addition, future versions will attempt to use boundary

layer data from both models and instruments (namely the Cloud Physics Lidar, or CPL, also

onboard the C-130) to adjust the height of the boundary layer in the spatial gaps of the in

situ data, and according to any strong time dependence.

Another version of the in situ “curtain” is also shown in this work, constructed by Brad

Weir at NASA’s Global Modeling and Assimilation O�ce (GMAO). Using the same in

situ data as the PSU curtain, the GMAO curtain uses a more sophisticated vertical and

horizontal interpolation to nudge CO2 model output toward the observations. The model

also provides temporal information, and decorrelation lengths are prescribed along the flight

track to incorporate predicted variability over the duration of the flight. Both the PSU an

GMAO curtains have been constructed for only the summer 2016 underflights.

31



2.6. Meteorological Models

Various meteorological models are used in this work for MFLL XCO2 retrievals. MFLL

retrievals rely on model data for vertical atmospheric state information, such as water va-

por mixing ratios, temperature profiles, and pressure profiles, all of which are required to

calculate the absorption cross-section of the column as the MFLL itself does not provide

any vertical profile information. The in situ spiral locations are an exception to this need.

Model data fields are interpolated to MFLL measurement latitude, longitude, and time. A

hypsometric adjustment is also made to model surface pressures. MFLL retrieval results

vary by a few tenths of a ppm when di↵erent meteorological models are used in the retrieval

- as discussed in more detail in the Chapter 3. Three di↵erent models are used in this work

to evaluate MFLL retrieval sensitivity.

(1) MERRA2 reanalysis data from the GMAO at NASA Goddard Space Flight Center

(GSFC) (Gelaro et al., 2017) are provided at 0.625 by 0.5 degree spatial resolution,

at 3-hourly time steps on 73 vertical pressure levels.

(2) The GEOS5-FP model data used in this study have also been provided by the

GMAO, and are produced in real time and provided at 0.3125 by 0.35 degree spatial

resolution at 3-hourly timesteps with 42 vertical pressure levels.

(3) The NCEP reanalysis product from NOAA ESRL (Kalnay et al., 1996) is provided

at 2.5 by 2.5 degree spatial resolution every 6 hours, with only 17 vertical pressure

levels.

The Results chapter shows only retrieval results using MERRA2 meteorology, but Chapter

3 discusses the observed di↵erences between the models.
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2.7. Spectroscopic Lookup Tables

This study uses a variety of spectroscopic lookup tables in di↵erent combinations to

calculate the di↵erential optical depths of CO2 and water vapor. Of primary use are the

ABSCO 4.2, HITRAN 2012, and precursors to the HITRAN 2016 tables. The ACOS/OCO-

2 absorption coe�cient (ABSCO) tables are developed by the NASA Jet Propulsion Lab

(JPL) for use with the OCO-2 retrieval algorithm, and updated versions of the table are

released with each major update to the OCO-2 Level 2 product: ABSCO version 4.2 was

released in 2013, and version 5.0 in the summer of 2017. Details on version 4.2 can be found

in Thompson et al. (2012).

HITRAN linelists are available publicly at http://hitran.org, and HITRAN 2012 docu-

mentation is provided in Rothman et al. (2013). Pre-HITRAN 2016 tables were provided by

Iouli Gordon, and the o�cial 2016 release is documented in Gordon et al. (2017).
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Chapter 3

XCO2 Retrievals

This chapter includes a high-level review of the MFLL XCO2 retrieval theory, including

an examination of the MFLL retrieval sensitivities to various inputs, including spectroscopic

lookup tables, meteorological models, and wavelength. These sensitivities have not been

studied thoroughly in the past, as the XCO2 retrieval is fairly young, and appear to have

non-negligible e↵ects on the XCO2 results.

3.1. MFLL Retrieval Overview

Remote sensing of any atmospheric component is based on a few of the same physical

principles. Some initial signal is emitted into the atmosphere, where it is is absorbed and

scattered by atmospheric components so that the signal which later escapes the top of the

atmosphere is somewhat depleted. In the case of OCO-2, the initial signal comes from the

sun, and in the case of MFLL, the initial signal comes from the laser. The basic relation to

describe the extinction of the signal is

(3.1) Prec,� = C Ptrans,� e

� 2⌧
µ

Here Prec,� is the received signal, Ptrans,� is the initially transmitted signal. The constant

C includes factors that are independent of the signal wavelength, such as surface reflectance,

and instrument factors such as receiver antenna gain. The exponential term accounts for

atmospheric extinction: the 2
µ factor describes the path length, where µ is the cosine of the

viewing angle ✓, which is equal for the MFLL transmitted and received signals, giving the
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factor of 2. This is usually not true for OCO-2, where the trasmitted (solar) angle is not

the same as the observation angle, so that 1
µout

+ 1
µin

is referred to the “airmass” or “airmass

factor.”

The optical depth of the atmosphere is represented by ⌧ , a dimensionless value which

represents the sum of the optical depths of all major atmospheric components at a given

wavelength. In the 1.6 µm band used by both OCO-2 and MFLL, the main absorbing gases

are CO2 and water vapor. Other components of extinction include Rayleigh scattering,

aerosols, and clouds. Thicker clouds are filtered out of the MFLL dataset using the MFLL’s

intensity-modulation range-gating method; thin clouds remain more di�cult to identify.

In the MFLL retrieval, these intermediate sources of extinction are largely assumed to be

wavelength-independent. For example, with Rayleigh scattering, ⌧ scales as �

4, which at

1.6 µm would change the optical depth by 0.001. Compared to the one-way di↵erential

optical depth of 0.5 for CO2 and H2O at the same wavelength, a factor of 0.001 makes very

little di↵erence in the retrieved XCO2 . As such, Rayleigh scattering and other sources of

intermediate extinction are largely assumed to be wavelength-independent and as such are

accounted for within the constant coe�cient.

A ratio of Equation 3.1 for two wavelengths (ON and OFF for MFLL) yields

(3.2) ln
Prec,�OFF

Prec,�ON

= ln(
Ptrans,�OFF

Ptrans,�ON

)
�2

µ

(�⌧CO2,� +�⌧H2O,�)

Where �⌧ = ⌧�1 � ⌧�2 , or the di↵erential optical depth (DOD). Equation 3.2 is the basis

of all di↵erential absorption lidar (DIAL) measurements, a technique originally pioneered by

Edward Browell for water vapor in the 1970s (Browell et al., 1979). In this equation, Prec
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and Ptrans are measured; �⌧H2O is assumed to be known, either from a model (in the case

of MFLL) or observations or both (in the case of OCO-2); and the target variable is �⌧CO2 .

The optical depth of any gas at a given wavelength can be calculated as the following:

(3.3) ⌧(�) =

Z Pupper

Plower

�(�, P, T, q) dNCO2

where, in the case of the MFLL, Plower is the pressure at the surface and Pupper is the

pressure at the cruising altitude of the C-130. The absorption cross-section � depends

on wavelength, temperature, pressure, and humidity. Instruments such as OCO-2 and the

MFLL, built particularly to gather data on CO2, must rely on model data for estimates of all

but wavelength. NCO2 is the moles of CO2 per square meter of dry air, which also depends

on both pressure and humidity, and thus also relies on model data. Spectroscopic tables are

used to look up estimates of the corresponding cross-sections once estimates of T, P, and q

are obtained.

Finally, XCO2 is calculated by scaling a prior profile according to observed values. As-

suming a constant prior profile (as the MFLL retrieval does), �⌧CO2 is proportional to the

CO2 concentration (from Equation 3.3), and thus:

(3.4) XCO2 =
�⌧CO2(observed)

�⌧CO2(400)
⇥ 400

The MFLL retrieval results thus relies on three particularly variable inputs: meteorology,

spectroscopy, and wavelength. The following section describes our investigation of these
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sensitivities. (Preliminary tests also show a mild dependence on the shape of the prior

profile, though detailed work has not been done on this front.)

3.2. MFLL Retrieval Input Sensitivities

Since the MFLL only measures CO2 absorption at three wavelengths, its XCO2 retrieval

can be particularly sensitive to variability in spectroscopy and meteorological inputs. The

level of these sensitivities has been only briefly studied in the past. Zaccheo et al. (2014)

used a radiative-transfer-based simulation framework to estimate that XCO2 errors for an

MFLL-like instrument can range from 0.2 to 0.8 ppm depending on line positions; Crow-

ell et al. (2015) concluded generally that uncertainty in atmospheric state estimates must

be taken into account in the process of instrument design and error analysis. In order to

quantitatively test these principles within MFLL retrievals, XCO2 in this study has been

calculated using three di↵erent meteorological models, combinations of three di↵erent spec-

troscopic databases, and with simple line position shifts. Table 3.1 provides a summary of

the findings of these sensitivity studies: in general, we find that the ON/OFF L retrievals

are more sensitive to inputs than ON/OFF S, with the exception of CO2 spectroscopy.

Table 3.1

MFLL Retrieval Sensitivities Summary
Variable �XCO2,S �XCO2,L Summary

Meteorology  0.4 ppm  0.5 ppm ON/OFF S slightly less sensitive than
ON/OFF L; � XCO2 smaller than for spec-
troscopy changes

H2O Spectroscopy 0 to 3 ppm 0 to 6 ppm ON/OFF L more sensitive to water vapor;
di↵erences larger in summer by a factor of
2 or greater

CO2 Spectroscopy 3 to 8 ppm 5 to 8 ppm ON/OFF S more sensitive to CO2; � XCO2

largest of variables tested; di↵erences similar
in winter and summer but vary by day

ON Wavelength  0.2 ppm  1.2 ppm ON/OFF L more sensitive to o↵sets in ON
wavelength; observed � variations indicate
little e↵ect on XCO2
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3.2.1. Meteorology. Meteorological models provide vertical profiles of temperature,

pressure, and water vapor, which are used in the calculation of absorption coe�cients for

each model level in the column. These are integrated vertically to get an optical depth per

Equation 3.3. With variations in the vertical profiles come variations in the � values, resulting

in di↵ering optical depths and XCO2 results. Surface pressure is of particular importance,

as di↵erences in surface pressure are equivalent to di↵erences in surface elevation and thus

vertical column extent, or path length. A di↵erence of 1 millibar in surface pressure can lead

to a di↵erence in XCO2 of 0.4 ppm.

In this work we use three di↵erent meteorological models in our MFLL retrievals to

evaluate retrieval sensitivity to atmospheric state parameters. We do not attempt to separate

changes due to temperature profiles from changes due to water vapor profiles or surface

pressure, though each has its own e↵ect on the retrieval. Figure 3.1 shows the resulting

XCO2 di↵erences (�XCO2) for two flights - one summer, one winter - when input meteorology

is changed. The black and red datasets are the �XCO2 for the ON/OFF S and ON/OFF L

retrievals, respectively. The July 27th flight is on the left, and the February 15th on the

right; all four panels hold spectroscopic inputs constant. The top panels show the di↵erence

between retrievals run with the GEOS5-FP and NCEP models, and the bottom panels show

the di↵erence between MERRA2 and NCEP. Notice that the patterns and magnitude of

both GEOS5-FP and MERRA2 (top and bottom) when di↵erenced with NCEP are similar.

MERRA2 and GEOS5-FP are both produced by NASA’s GMAO, and are similar products,

but GEOS5-FP is an analysis while MERRA2 is a reanalysis. The di↵erence between the

two is often smaller than either of their di↵erences from NCEP, which is why the di↵erence

from NCEP is shown here.
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�XCO2 values never exceed a few tenths of a ppm for any of the nine underflights, though

the variation in space does slightly change the retrieved XCO2 spatial gradients. This can

a↵ect MFLL comparisons to OCO-2, especially when best-fit slopes are used as a proxy for

similarity in latitudinal gradients. Note that �XCO2 is more variable in magnitude and in

space in the summer flight (left) than in the winter flight, and that the OFF S �XCO2 is

consistently of slightly lesser magnitude than the OFF L �XCO2 . This is because the OFF L

wavelength is slightly more sensitive to water vapor absorption. On days with higher relative

humidity, we can expect di↵erences in the prescribed water vapor profiles to have more of

an e↵ect on the XCO2 retrievals.

(a) July 27, 2016 (b) February 15, 2017

Figure 3.1. Changes in MFLL retrieved XCO2 (�XCO2) due to changing the input meteo-
rology. Black and red are the ON/OFF S and ON/OFF L retrievals. The left column shows
the July 27th flight and the right shows February 15th. The top panels di↵erence retrievals
using GEOS5-FP meteorology from those using NCEP, and the bottom di↵erences MERRA2
retrievals from NCEP. Results are variable in space and from day to day, but particularly
from season to season, as the summer months with higher humidity (a) are more sensitive
to changes in water vapor inputs. OFF S �XCO2 also tends to be smaller in magnitude,
because it is less sensitive to water vapor absorption than the OFF L wavelength.
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3.2.2. Spectroscopy. Spectroscopic lookup tables are used to find the absorption cross-

sections of water vapor and CO2 at a given wavelength, temperature, pressure, and humidity.

Lookup tables contain values measured carefully in lab settings, but measurements of � can

vary. In this work we tested several combinations of spectroscopic tables in an attempt to

learn what kind of variability � variations can induce in the MFLL retrievals. Figure 3.2

shows the results for the same two flights as Figure 3.1, but when CO2 and water vapor spec-

troscopy are changed. Each column is one flight. In the top panel, �XCO2 is the di↵erence

between retrieved values using a common meteorology (GEOS5), common CO2 spectroscopy

(ABSCO 4.2), but di↵erent water vapor spectroscopy: ABSCO 4.2 minus HITRAN 2012.

Notice that variability in the XCO2 results is far greater in the summer case (left) than in

the winter cases (right), since relative humidity is lower in the winter months. Some humid-

ity variations between winter flights do exist, but �XCO2 values largely remain at 1 ppm

or less, whereas summer flights consistently show a multiple-ppm change. Also notice that

with higher humidity, the OFF L retrieval changes more than the OFF S retrieval, since the

OFF L wavelength is more sensitive to water vapor absorption. In the summer case, �XCO2

varies by a little over 2 ppm over the length of the flight track in the OFF L retrievals, which

can significantly change the observed spatial gradient.

The bottom row shows �XCO2 when the water vapor spectroscopy is held common (HI-

TRAN 2012), but the CO2 spectroscopy is variable: ABSCO 4.2 versus pre-HITRAN 2016.

There is less variation in space than for H2O spectroscopy changes, which is no surprise,

as water vapor concentrations are far more variable in the atmosphere than CO2 concen-

trations. Again, we see changes of several parts per million, this time more consistent in

magnitude between the two seasons. Retrieval results di↵er by at least 4 parts per million
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for both OFF S and OFF L on each day, though OFF S changes most - a consistent result

throughout the nine flights. A change of similar magnitude - usually around 6 ppm - is found

when the HITRAN 2012 CO2 tables are changed to a more recent pre-HITRAN2016 CO2

version.

(a) July 27, 2016 (b) February 15, 2017

Figure 3.2. Changes in MFLL retrieved XCO2 (�XCO2) for two ACT-America OCO-2
underflights (left and right) when using di↵erent spectroscopic lookup tables. Black and red
are changes in the ON/OFF S and ON/OFF L retrievals, respectively. The top two panels
keep meteorology and CO2 spectroscopy the same, but change the H2O spectroscopy (AB-
SCO 4.2 - HITRAN 2012). Changes are far greater in the summer (a) when the humidity is
higher, and OFF L retrievals change more than OFF S retrievals because the OFF L wave-
length is more sensitive to water vapor absorption. The bottom two panels keep meteorology
and H2O spectroscopy the same, but change CO2 spectroscopy (ABSCO 4.2 - pre-HITRAN
2016). �XCO2 magnitudes are more consistent in latitude and between the two seasons in
this case, because atmospheric CO2 concentrations vary less in those dimensions than water
vapor does. The di↵erence between OFF S and OFF L changes are also more consistent -
a few ppm - between summer and winter for the same reason.

3.2.3. Wavelength. Finally, we investigate how the precision and accuracy of our wave-

length knowledge might change MFLL retrieval results. The reference laser used to track
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wavelength drift in time due to environmental variables is assumed to be locked at one wave-

length at the peak of an acetylene absorption line (see Figure 2.9 on page 26 for a diagram

of this setup), and measured with an accuracy of 0.1 pm. The July 27, 2016 retrieval was

Figure 3.3. The top panel shows wavelength drift due to environmental factors for the
July 27, 2016 underflight. Bottom panels show changes in 9-kilometer ON/OFF S retrieved
XCO2 (left) and ON/OFF L XCO2 (left) when the value of the ON wavelength is adjusted
by a constant amount (indicated by the legend in the lefthand panel) for the duration of the
flight. Note the di↵erent y axis ranges in the bottom plots. Shifts in the ON wavelength
have relatively small - but not insignificant - e↵ects on the retrieved ON/OFF S results; a
0.1 pm shift to the “short” side changes the retrieved XCO2 by nearly a tenth of a ppm.
The ON/OFF L sensitivity is far greater. When the ON wavelength is shifted 0.1 pm to the
short side, retrieved XCO2 decreases by almost 0.2 ppm. Shifting the ON wavelength by 0.4
pm can result in a full part per million change.

run using several di↵erent ON wavelength o↵sets in steps of 0.1 pm. Figure 3.3 shows the

reference wavelength drift (top) over the course of the flight, in picometers from the reference

value. This drift is assumed to be representative of environmental variations which a↵ect

the MFLL lasers as well, and is applied as a correction to the reference values for all three
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MFLL channels. The magnitude of this drift consistently spans only a few thousandths of

a picometer. The bottom panels of Figure 3.3 shows the �XCO2 of the OFF S (left) and

OFF L (right) retrievals when the value of only the ON wavelength is shifted by the values

shown in the legend. Results show that if indeed the wavelength is measured to within 0.1

pm, retrieved XCO2 from either wavelength combination should change by no more than a

few tenths of a ppm. The OFF L retrievals are more sensitive to wavelength uncertainty,

changing by more than 1 ppm when the ON wavelength is o↵set by 0.4 pm, but this appears

to be near the upper limits of a typical detected in-flight wavelength variation. If for some

reason variations of this magnitude were missed, they appear only to impose an o↵set, but

not to change the spatial variability and gradients.

We conclude from these tests that both meteorological and spectroscopic inputs can a↵ect

the magnitude and spatial variability of MFLL retrievals in non-negligible ways, but that

given the accuracy of the measured reference wavelength, wavelength variations should have

very little e↵ect in most cases.
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Chapter 4

MFLL Retrieval Vertical Sensitivity Corrections

The basic physical and mathematical principles outlined in Section 3.1 are common

between the MFLL and OCO-2 retrievals, but there are a few significant di↵erences which

may a↵ect data comparisons.

(1) The MFLL, due to its range-gating technique, is not sensitive to atmospheric scat-

tering or surface albedo, whereas OCO-2 is.

(2) Both the MFLL and OCO-2 XCO2 retrievals rely on assumed profiles of temperature,

pressure, and water vapor - but OCO-2 attempts to retrieve some information on

these quantities, where the MFLL does not. This may, as detailed in Chapter 3,

make the MFLL measurements more sensitive to meteorological errors.

(3) The MFLL appears to be more sensitive to spectroscopy because it samples only

one CO2 line at three places, whereas OCO-2 samples dozens of lines across two

CO2 absorption bands.

(4) OCO-2 and the MFLL have di↵erent vertical sensitivities, which complicates the

comparison of their column-averaged values.

This chapter discusses our attempts to address the final point in this list. Both the MFLL

and OCO-2 essentially return weighted averages of the CO2 profile, but the weights di↵er

in the vertical between the two instruments according to their relative weighting functions,

which are shown in Figure 4.1. The OCO-2 averaging kernel, shown in yellow, is near enough

to a straight-pressure weighting function (blue) that in this work, they are treated as the

same. The MFLL weighting function, however, shown in red, is di↵erent enough to change

the column average significantly. In this chapter we describe our method of “transforming”
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the MFLL retrieval into a full straight-pressure column measurement by using models to

inform the vertical shape. Using model data in this process necessarily introduces some

error, so we test two models, CAMS and CarbonTracker, and look at their di↵erences to

roughly quantify the potential errors imposed.

Figure 4.1. MFLL, OCO-2, and straight-pressure “weighting functions” for July 27, 2016,
with sample CAMS CO2 profile in black. Note that the MFLL weighting function goes to
zero above the altitude of the airplane. This missing section of the column can cause a bias
in the MFLL XCO2 compared to the full column OCO-2 value.

The MFLL, as a surface-pointing an airborne instrument, can only measure the column

below the level at which the C-130 is flying (nominally 9 kilometers for OCO-2 underflights);

OCO-2, at an altitude of 700 kilometers, e↵ectively measures the full atmospheric column.

There is thus a portion of the upper column absent from the native MFLL XCO2 measure-

ment, but which is present in OCO-2 measurements. The concentrations in this part of the

column, if substantially di↵erent from those throughout the column below the aircraft, can

change the XCO2 value noticeably: the air above 9 kilometers (about 350 hPa) accounts for

about one-third of the total column.
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The shape of the MFLL weighting function below the aircraft is also significantly di↵erent

from that of OCO-2. The OCO-2 averaging kernel is nearly straight through much of the

troposphere, peaking slightly around 600 hPa. The MFLL is most sensitive to atmospheric

layers just below the plane, and as it approaches the surface, its sensitivity tapers o↵ to

nearly one-third its maximum value.

These idiosyncrasies in the MFLL measurements can lead to XCO2 values which are up

to 1.5 ppm di↵erent from the OCO-2 XCO2 values, either higher or lower depending on the

shape of the profile. Average CO2 concentrations above 350 hPa are indeed often lower

than those in the rest of the column by several parts per million, and MFLL’s strong over-

weighting of the values just below the aircraft can shift the XCO2 results based on the relative

CO2 values in that portion of the column. This is particularly true in summer, when mid-

tropospheric concentrations are often several ppm higher than those in the lower troposphere

and boundary layer due to surface drawdown by the biosphere. A sample CO2 model profile

is included in black in Figure 4.1 to illustrate how the shape of the profile might a↵ect the

XCO2 value in these ways: mid-tropospheric values in this example are about 5 ppm higher

than boundary layer values.

In order to evaluate the general magnitude of these e↵ects on the XCO2 results, for six of

the nine flights, we sample the CAMS CO2 model along the OCO-2 ground track. We then

calculate XCO2 along the track three times, using the MFLL pressure weighting function

(PWF), OCO-2 averaging kernel, and a straight pressure-weighted average. When using

the MFLL PWF, which goes to zero above the C-130, the CO2 column is cut o↵ above

the aircraft altitude for the given flight. Figure 4.2 shows the results of this exercise for

two di↵erent underflights, one in summer (left) and one in winter (right). The top panel in
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each figure are the XCO2 values, and the bottom panels show the di↵erence from straight-

pressure weighted XCO2 (blue) when using MFLL and OCO-2 weighting (red and yellow).

The OCO-2 averaging kernel consistently yields XCO2 values only slightly lower than the

straight pressure values, by a few tenths of a ppm or less, while the MFLL results exhibit

two interesting features. First o↵, the MFLL-weighted XCO2 values are di↵erent than both

the OCO-2 and straight pressure results by up to a few parts per million. This di↵erence

is more pronounced in the winter data due to low CO2 concentrations in the missing upper

column throughout the flight track, shown in Figure 4.3, where CAMS model profiles (left)

are colored in latitude and the in situ profiles are overlaid in black. The upper column

concentrations (above the horizontal black line, the C-130 cruising altitude) in summer are

more similar to those below the plane, so exclusion of the upper column has a less dramatic

e↵ect on the column average. This is also true of the CarbonTracker profiles, in the right

hand panels of Figure 4.3. The second notable feature of the MFLL-weighted XCO2 is its

enhanced spatial variability compared to both OCO-2 and the straight pressure results.

CAMS Sampled with Di↵erent Weighting Functions

(a) July 27, 2016 (b) February 13, 2017

Figure 4.2. XCO2 calculated from CAMS model CO2 profiles, using three di↵erent vertical
weighting schemes: the MFLL weighting function, OCO-2 averaging kernel, and a “straight
pressure” weighting function. Note that the y-axes vary between plots in both top and
bottom windows. Also note that the MFLL results (red) show consistently higher values.
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      CAMS CO2     CarbonTracker CO2

July 27, 
2016

Feb. 13, 
2017

Figure 4.3. CAMS model profiles (left) along the July 27 and February 13 flight tracks,
colored by latitude. CarbonTracker profiles are on the right. Overlaid on each plot is the
in situ spiral profile, whose latitude is indicated in each case by a tick mark on the color
bar. Horizontal black lines indicate the average cruising altitude of the C-130 during the
underflight.

If either the missing upper column or the weighting function shape introduces some

spatial variability to the MFLL XCO2 data, as they appear to do in this exercise, that

variability is representative of the lower troposphere and gets averaged out in the OCO-

2 data. Parsing out this variability in comparisons between the two may be challenging.
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Thus, in order to correct for any such variability, we generate correction factors for the two

defining di↵erences: the MFLL weighting function shape and the unobserved upper column.

The left panels of Figure 4.4 provide a visualization of these two corrections (dashed lines) in

latitude for the July 27 and February 13 flights. The red lines show the di↵erence between the

MFLL-weighted CAMS XCO2 and straight pressure-weighted CAMS XCO2 , same as shown

July 27, 2016

(a) (b)

February 13, 2017

(c) (d)

MFLL$Uncorrected$– SP
Total$Correction
Correction$Below$Plane
Correction$Above$Plane

Figure 4.4. Figures (a) and (b) show, in red, the di↵erence between uncorrected MFLL-
weighted CAMS XCO2 and straight pressure-weighted CAMS XCO2 , as shown in Figure 4.2.
The corrections above and below the aircraft, in dashed lines, sum to produce the total
correction factor in black. Note that the black and red lines mirror each other, canceling to
replicate a full straight pressure-weighted average. This eliminates variability in the partial
column as observed by the MFLL.
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in the bottom panels of Figure 4.2. The black line is the total correction we apply, with

is the sum of the two dashed lines. Note that the red and black dashed lines cancel to

zero, eliminating the variability caused by the MFLL weighting function and successfully

replicating the full column straight-pressure average. The right panels of this figure show

the same corrections when this exercise is performed using CarbonTracker model profiles.

The MFLL corrections shown in Figure 4.4 are derived as follows. The column below

the plane is referred to as B, the column above as A, and the full column as X. We start

by comparing the full column average using straight pressure, X, with the MFLL-weighted

partial CAMS (or CarbonTracker) column below the aircraft, or Bm. Bm�X is the red line

in Figure 4.4. The first correction we apply, �B, the dark gray dashed line, accounts for

the shape of the MFLL weighting function: we calculate the partial column below the plane

using straight pressure (B), and use the correction

(4.1) �B = B � Bm

When applied to the MFLL-weighted value as in equation 4.2, �B gives us a straight

pressure-weighted partial column below the plane.

(4.2) Bm +�B = B

This equation seems redundant in this model exercise, as we could simply start with B,

but when dealing with real observations, Bm is measured by the MFLL from the true CO2

field. Since the MFLL does not return vertical profile information, we cannot calculate the
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corresponding true B and must use the closest model estimate, which varies by day. For

example, we use CAMS on July 27th (and for all summer flights) due to its similarity to

the in situ spiral in Figure 4.3 (left), and because CarbonTracker (right) clearly underesti-

mates concentrations near the surface. On February 13th, however, we use CarbonTracker,

because the CAMS profiles (left) are consistently a few ppm higher than the in situ suggests

they should be. The CarbonTracker profiles on the right appear to be roughly the correct

magnitude.

The correction above the aircraft, �A, the light gray dashed line, produces a full column

value by doing a weighted average of the straight pressure partial column below the plane

(B) and the straight pressure partial column above the plane (A). Weights, fA and fB, are

the fraction of total column dry air molecules in A and B. fA is typically around 0.3, or

30% of the total column. The fully corrected column-averaged XCO2 is thus

(4.3) X = fA A+ fB B

and the correction above the plane has a magnitude of

(4.4) �A = X � B

Based on the sum of the two correction factors (black line = �A + �B) in Figure 4.4,

we conclude that each correction has an e↵ect on the total, varying by day and season.

There is more small-scale variability in the summer corrections (top row) than in the winter

corrections (bottom row) from both models, due to the enhanced variability below the aircraft
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(a) July 27, 2016 (b) February 13, 2017

Figure 4.5. CarbonTracker total correction minus CAMS total correction (black lines from
Figure 4.4). The corrections are di↵erent by up to 0.71 ppm in summer (a) and up to 0.36
ppm in winter (b), and there is di↵erence in the spatial variations between them. These
di↵erences highlight the need to choose the model which best represents the true CO2 field
on a given day.

in the summer. In addition, the winter corrections from both models are due primarily to

the correction above the plane because the profiles below the plane are relatively flat (see

bottom panels of Figure 4.3), so the vertical shape of the MFLL weighting function has less

e↵ect on the column average.

Note that �A, like �B, relies on model profiles, since neither the MFLL nor in situ

sample above nine kilometers at best. The use of model data thus necessarily introduces

error through both corrections. We estimate this error by looking at the di↵erence (Figure

4.5) between the total model corrections (black lines in Figure 4.4). The summer corrections

di↵er most between the two models, by up to 0.71 ppm, and the winter corrections di↵er by

up to 0.36 ppm. In both cases they also show di↵erences in their spatial variability. This

indicates that based on the true atmospheric state at the time of the MFLL observations,

di↵erent models can produce corrected results with di↵erences on the order of a 0.3 to 0.7

ppm, which, in summer, is comparable to the size of the correction itself.

Based on these model exercises, we conclude that both the upper column and weighting

function corrections will have non-negligible e↵ects on the MFLL - OCO-2 comparison, and
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indeed should improve the comparison. We thus incorporate both of them into our XCO2

results for each set of flight comparisons. Using di↵erent models can result in di↵erences of

several tenths of a ppm in the corrected results, so we attempt to choose the model best

representative of the true CO2 field sampled by the instruments: CAMS in the summer

and CarbonTracker in the winter. CarbonTracker data were not available for fall flights but

would presumably show similar agreement to in situ as they do in winter, making them the

best source of our corrections.
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Chapter 5

Results

This chapter details at length each of the nine OCO-2 underflights completed by ACT-

America to date. Included and discussed for each flight are maps and cross-sections of the

flight track in time, cross-sections of in situ data from both the C-130 and B-200 aircraft, and

comparisons of in situ CO2 profiles to model profiles. Also shown are maps of the OCO-2

XCO2 data, and finally, comparisons of XCO2 datasets. At the end of each comparison is a

table of statistical parameters concerning each dataset and their intercomparisons, and at

the end of each flight section, a summary of key findings is provided. For a less exhaus-

tive overview of the comparison results, the reader can see Chapter 6, which will reference

particularly interesting figures from this chapter.

For each of the nine OCO-2 underflights, MFLL data evaluated is isolated to the un-

derflight track. After data and cloud filtering are applied, the MFLL data are averaged

in 60-second bins to reduce noise. Each bin is filtered by a minimum number of required

observations. To evaluate similarities in spatial variability along the flight track, OCO-2

data is collocated in space to each 60-second MFLL bin, which usually spans about 7.5 -

8 kilometers in ground area. Any OCO-2 footprint whose center is within this 8-kilometer

distance of an MFLL bin center is averaged together and taken to be the OCO-2 value at

that location; the noise on each bin after this averaging is retatively small, between 0.1 and

0.2 ppm on a typical summer day and closer to 0.3 ppm in winter, for both OCO-2 and the

MFLL. Figure 5.1 shows a flow chart of the steps taken to prepare the MFLL and OCO-2

datasets for comparison. This results in an equal number of measurements along the flight

track for both datasets, such that correlation coe�cients can be calculated without requiring
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any spatial interpolation. The r values shown in the tables for each flight are calculated in

this fashion.

Stability, signal, 
elevation filters

1-second 
filtered

Cloud, data 
density (# obs > 

20) filters

10 Hz data

60-second (~8km) 
filtered

Quality flag = 
Good

Level 2 data

Cloud, stability, 
signal filters

Collocate with 
MFLL 60-s, data 
density filter (# 

obs > 3)

~8km filtered

MFLL OCO-2
a

b

c

d

e

a

b

c

d

e

Figure 5.1. Flowchart showing the filtering and averaging process leading to MFLL and
OCO-2 data comparisons.

There is a table of statistics included for each flight. The correlation coe�cient rOCO2 is

the correlation with the OCO-2 data, and the r value in parentheses is the correlation with

OCO-2 after the latitudinal gradient is removed. This represents the correlation of XCO2

features on scales smaller than the full flight track length. The slope for each dataset in

latitude is included, calculated using the best-fit line through the length of underflight track.

Also included is the mean di↵erence from OCO-2, and the standard error of the mean, in

which the 2� standard deviation (also shown) is divided by the square root of the number

of observations in each 60-second bin.

Typical requirements for minimum number of observations per 60-second bin are di↵erent

for OCO-2 and the MFLL. OCO-2 bins require at least three soundings, and MFLL require

at least 20, unless otherwise noted. These numbers are chosen to su�ciently reduce noise

and reveal spatial gradients; OCO-2 requires less soundings than MFLL because it has less

observations along the ground track by its nature.
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The XCO2 plots in this chapter do not show this collocated, averaged version of the

data. Instead, all data available from each dataset along the length of the underflight track

is displayed, as large triangles, using an appropriate averaging window for each. This is

done to visualize the most data possible - for example, if OCO-2 loses data to clouds, we

can still see the MFLL data along that portion of the track. The MFLL data is averaged

at 60 seconds, but the OCO-2 data is averaged at 0.25 seconds, though they are similar

spatially, and curtain data (currently only available for July 27) is averaged in space at

0.1-degree latitude intervals. The small yellow triangles in the background of each plot show

the un-averaged OCO-2 data that contribute to the large triangles - these data have been

cloud-screened and quality-flagged. A green star represents the XCO2 column calculated from

the in situ spiral, including a model profile top, using a straight pressure weighting function.

Each XCO2 plot uses MERRA2 meteorology and pre-HITRAN 2016 spectroscopy. The

plot title lists the average spatial coverage of the 60-second MFLL bins (based on average

aircraft speed along the underflight track), and which CO2 model profiles were used to

conduct the column “corrections” above and below the plane. CAMS and CarbonTracker

full column XCO2 data are also shown for each flight, except for the fall 2017 campaign,

because CarbonTracker data is not yet available for that period.

Note also that the summer campaign dates show retrieval results using the MFLL Level

1 data product, which includes bias correction and several data filters di↵erent from the

proceeding campaigns (these are described in Section 2.3). The Level 1 product only reports

an optical depth using the ratio of ON to OFF S; thus there are no OFF L results pictured

in the summer results. This product has not yet been released for the winter and fall ACT-

America campaigns.
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(a) (b)

(c)

(d)

Figure 5.2. Latitude-altitude plots for each individual aircraft on July 27, 2016, and a
map of the C-130 flight track, all colored in time. Note that the underflight track, at an
altitude of approximately 9 kilometers, spans nearly two hours, whereas an OCO-2 overpass
of the same distance takes around 1.5 minutes. Also shown is the combined CO2 in situ
data from both aircraft.

5.1. July 27, 2016

The C-130 flew along the OCO-2 underflight track over Pennsylvania at an altitude of

around 9 kilometers for a period of nearly 2 hours. One spiral maneuver was completed in

the middle of the underflight; its geographic location, near State College, PA, is indicated

by the star on the map on the right hand side of Figure 5.2. The OCO-2 data is shown in

Figure 5.4, plotted on top of MODIS visible imagery to provide context for cloud cover and

surface albedo patterns along the track.
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(a) (b)

Figure 5.3. (a) July 27 in situ spiral up to the
C-130 height (black), with CAMS model profile
above (blue), which has been interpolated to lo-
cation and time. (b) In situ spiral in black, with
CAMS model profiles along-track at the median
time of the spiral, colored in latitude. The cruis-
ing altitude of the plane is marked by the black
line around 350 hPa.

Figure 5.4. OCO-2 XCO2

along the July 27 MFLL
underflight track, showing
all eight footprints atop
MODIS visible imagery.

There are a few notable features in Figures 5.2 and 5.4. Firstly, the in situ CO2 data in

5.2c displays, in both the boundary layer and at 9 kilometers, a strongly decreasing south-to-

north gradient in CO2. This is also apparent in the OCO-2 data, though the gradient is less

steep due to the data being column-averaged. A field of popcorn cumulus clouds obscures

the OCO-2 track across roughly 1.5 degrees latitude between 41 and 43N; however, a few

soundings do pass the OCO-2 cloud flag in this area, around 42N. Figure 5.5 shows that

those values do not appear in line with the larger latitudinal gradient, and hence appear to

be spurious.

Figure 5.3 a shows the in situ PICARRO CO2 spiral in black with the interpolated CAMS

profile above, which is used to make the XCO2 adjustment above the plane. The boundary
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Figure 5.5. Comparing various XCO2 datasets from the July 27 underflight. The in situ
spiral column-averaged value, with CAMS model top included, is shown as a green star.
The CAMS full column values are calculated using a straight pressure weighting function.

layer below 800 hPa shows strong surface drawdown, characteristic of the summer growing

season. Figure 5.3b shows the CAMS profiles colored in latitude, with the PICARRO spiral

profile overlaid in black and marked in location by a tick on the color bar. The decreasing

value in XCO2 to the north appears clearly in the model, due particularly to decreasing CO2

concentrations in the lower troposphere between 800 and 600 hPa.

Table 5.1. July 27, 2016 Slopes and Correlations with OCO-2

� (ppm) Mean �XCO2 ± Error (ppm) rOCO�2 Slope (ppm/�)
OCO-2 0.69 0 ± 0.24 - -0.70
MFLL S 1.1 0 0.58 ± 0.17 0.67 (-0.29) -1.06

PSU Curtain 0.10 0.40 ± 0.01 0.72 (-0.05) -0.81
GMAO Curtain 0.02 0.38 ± 0.002 0.75 (0.07) -0.84

CAMS - 0.33 0.71 (-0.30) -1.22
CarbonTracker - -2.64 0.24 (-0.64) -0.68

Visual evaluation of the XCO2 patterns from the datasets in Figure 5.5 reveals latitudinal

gradients of similar magnitude among curtains, OCO-2, CAMS, and MFLL. The MFLL

level 1 retrieval results, however, even with both the upper column and weighting function

corrections applied, shows a slightly (up to 1 ppm) lower XCO2 relative to the other datasets.

We take the magnitude of the higher datasets to be true based on their agreement with the
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in situ column value. Table 5.1 lists the slopes, standard errors, and correlations with OCO-2

for each of the datasets shown, along with their XCO2 di↵erences compared to OCO-2.

OCO-2 and CarbonTracker have the shallowest slopes over the flight track, at -0.70 and

-0.68 ppm per degree latitude respectively. However, CarbonTracker disagrees with OCO-2

on both magnitude and sub-degree spatial features, and the two have a correlation coe�cient

of only 0.24, the lowest for this day: CarbonTracker data are consistently several ppm lower

than the other datasets, consistent with discussion in 2. The in situ curtains have the next

closest slope to OCO-2 with -0.81 and -0.84 ppm/�. The MFLL and CAMS data have steeper

slopes of -1.06 and -1.22 ppm/�, starting at slightly higher concentrations at the southern

end of the track. All datasets except CarbonTracker show a relatively strong correlation

with OCO-2 in latitude space, but the GMAO curtain is strongest with r = 0.75. The PSU

curtain and MFLL level 1 ON/OFF S retrievals are next, with r values of 0.72 and 0.67. The

rOCO�2 values with latitudinal gradients removed are significantly lower, all but one below

zero. This indicates that there is little agreement of smaller-scale spatial features.

5.2. August 5, 2016

The second summer 2016 flight out of Lincoln, Nebraska crossed South and North Dakota,

flying up to the Canadian border. The underflight was completed at an altitude of about

9 kilometers, with a secondary leg along the flight track around 5.5 kilometers. The 9 kilo-

meter track was flown over the course of roughly two hours, as shown in Figure 5.6a. The

B-200 executed the spiral maneuver around 47 degrees latitude, shown in Figure 5.6b and as

a star in Figure 5.6d. The in situ data in Figure 5.6c shows decreasing CO2 concentrations

from south to north, fairly consistently in the vertical anywhere below about 8 kilometers

in altitude. Once again, the OCO-2 data (shown in Figure 5.7) appears to confirm some
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latitudinal gradient, on the order of about 2 ppm across the full flight track. The northern-

most and southernmost ends of the overpass are obscured by clouds, though a few spurious

OCO-2 soundings do pass the cloud screening process around 47.5N, visible in Figure 5.9.

(a) (b)

(c)

(d)

Figure 5.6. Both aircraft in latitude and altitude, colored in time (a, b and d) along with
a flight map, and in situ CO2 data (c) for August 5, 2016.

Table 5.2. August 5, 2016 Slopes and Correlations with OCO-2

� (ppm) Mean �XCO2 ± Error (ppm) rOCO�2 Slope (ppm/�)
OCO-2 0.63 0 ± 0.17 - -0.43
MFLL S 0.59 0.92 ± 0.08 0.71 (0.18) -0.36

PSU Curtain 0.01 2.4 ± 1E-3 0.59 (-0.07) -0.21
GMAO Curtain 4E-3 0.76 ± 5E-4 0.69 (0.24) -0.15

CAMS - 0.20 0.14 (-0.41) -0.26
CarbonTracker - 1.32 0.78 (-0.03) -0.31

The in situ profile from the B-200 is shown in Figure 5.8 with the CAMS profile, interpo-

lated in space and time, shown beside the full CAMS profiles in latitude in Figure 5.8. Both
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Figure 5.7. OCO-2 XCO2

along the August 5, 2016
underflight track.

(a) (b)

Figure 5.8. (a) August 5th in situ spiral up to
the C-130 height (black), with CAMS model pro-
file above (blue). (b) In situ spiral in black, with
CAMS model profiles along-track at the median
time of the spiral, colored in latitude. The cruis-
ing altitude of the plane is marked by the black
line.

Figure 5.9. XCO2 datasets from the August 5, 2016. The in situ spiral column-averaged
value, with CAMS model top included, is shown as a green star. The CAMS full column
values are calculated using a straight pressure weighting function.

the in situ and model data exhibit strong drawdown near the surface, and show a profile of

similar shape throughout the flight track, but much of the profile appears to shift to lower

concentrations in the north - once again indicating a decreasing XCO2 trend in latitude.

62



The XCO2 datasets consistently show this south-north gradient in Figure 5.9, but with

varying latitudinal slopes. The OCO-2 data exhibit the strongest gradient with a slope

of -0.43 ppm/�, as shown in Table 5.2. The MFLL data have the most similar slope at

-0.36 ppm/�, and are strongly correlated with OCO-2 with r = 0.71. However, both the

PSU and GMAO curtains have relatively shallow slopes (-0.15 and -0.21 ppm/�). Note the

approximately 1 ppm di↵erence between the PSU and GMAO curtain column data along

the length of the track. This is due to high CO2 concentrations in the CAMS upper column,

which fills in the PSU curtain above 10 kilometers. The same model upper column is also

used to fill in the in situ spiral (star) above 10 km; when this model data is not included,

both the in situ column and the PSU curtain data are in line with the magnitudes of the

MFLL and PSU curtain.

The CarbonTracker data have a similar slope to the MFLL retrieved values, and have

the strongest correlation with OCO-2 data (r = 0.78), notably seeing a depression in XCO2

between 45.5 and 47.5N, similar to OCO-2 (though less pronounced, and an average of

1.3 ppm higher). The full-column CAMS data on this day have mean values slightly high

(0.2 ppm) with respect to OCO-2, seemingly due in large part to a bump in CO2 in that

same location where OCO-2 sees a depression - their correlation is thus the lowest of all the

comparisons, at 0.14. Correlations on smaller scales, when a linear regression is performed

on each dataset to remove the overall latitudinal gradient, are small and sometimes negative,

once again proving small-scale OCO-2 XCO2 features di�cult to validate.

5.3. August 27, 2016

On this flight out of Shrieveport, Louisiana, almost the entirety of the OCO-2 track was

obscured by popcorn cumulus clouds, as seen in Figure 5.12. Across almost 2 degrees latitude
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Figure 5.10. XCO2 datasets from August 27, 2016. The in situ spiral column-averaged
value, with CAMS model top included, is shown as a green star. The CAMS full column
values are calculated using a straight pressure weighting function.

of the 9 kilometer flight track, shown in Figure 5.11, a span of only about 0.5 degrees yielded

any OCO-2 data. Figure 5.10 shows the available comparison data over a few small cloud-free

regions of the track. From this small dataset, it seems that both OCO-2 and the MFLL L

retrieval are in relatively good agreement with both the CAMS model and the in situ spiral

data; in the areas where there are data in common, OCO-2 and MFLL L are within 1 ppm

of each other. It does appear as though their proximity to clouds may cause the OCO-2 data

to be biased low, which a↵ects the slope of the latitudinal gradient, seen in Table 5.3. With

standard collocating of 60-second MFLL bins, and the standard three OCO-2 observations

required within each collocated circle, there are only four points of su�cient comparison; the

correlation coe�cients and �XCO2 of those four points are listed in the table.

Table 5.3. August 27, 2016 Slopes and Correlations with OCO-2

� (ppm) Mean �XCO2 ± Error (ppm) rOCO�2 Slope (ppm/�)
OCO-2 0.57 0 ± 0.24 - 1.72
MFLL S 0.85 0.83 ± 0.12 0.75 (0.65) 3.23

PSU Curtain 3E-3 -0.78 ± 4E-4 0.68 (-0.55) 0.12
GMAO Curtain 5E-3 -1.23 ± 6E-4 -0.86 (-0.83) -0.04

CAMS - 0.65 0.76 (0.91) 1.31
CarbonTracker - -0.74 -0.73 (0.99) -0.09

64



(a) (b)

(c)

(d)

Figure 5.11. Both aircraft in latitude and altitude, colored in time (a, b and d) along
with a flight map, and in situ CO2 data (c) for August 27, 2016.

The CAMS model profiles on this day, in Figure 5.13, appear to overestimate lower

tropospheric and boundary layer concentrations by at least 2 ppm at the location of the spiral,

though the upper column above the C-130 altitude looks to be of appropriate magnitude.

5.4. February 13, 2017

The first of the winter underflights took place in the midwest, across the state of South

Dakota. The B-200 executed a spiral near 43.5N spanning approximately 1.5 to 8.5 kilometers

in altitude. The C-130 flew the first segment of the underflight track, south of 43.5N, at

around 8.5 kilometers, but descended to 7.5 kilometers for the second portion of the track.

Figure 5.14c might show a shallow, 1 ppm CO2 gradient along the higher altitude flight

tracks, and there is a small point of higher XCO2 in the 7.5 kilometer track at 44.5N. There

also appears to be a source at the takeo↵ and landing site around 41N, in Lincoln, Nebraska.
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Figure 5.12. OCO-2
XCO2 along the August
27, 2016 underflight track.

(a) (b)

Figure 5.13. (a) August 27, 2016 in situ spiral
up to the C-130 height, with CAMSmodel profile
above. (b) In situ spiral in black, with CAMS
model profiles colored in latitude.

Note that the vertical CO2 gradient is reversed from the summer flights. This is clear in the

in situ profile (Figure 5.17a), which shows higher concentrations in the boundary layer rather

than the lower concentrations in summary boundary layers due to biospheric drawdown.

Much of the ground track was snow-covered, as seen in Figure 5.16 - a stretch of about 2

degrees latitude between 43 and 45N was su�ciently snow-free for OCO-2 retrievals to pass

albedo filters, but thes data that is available appears quite noisy.

In addition to the noisiness of the OCO-2 data, the MFLL data appears particularly

noisy compared to previous flights, despite flying at a lower altitude. The standard error of

the mean for the MFLL S and MFLL L both average around 0.6 ppm, with values reaching

as high as 0.9 ppm. In the summer campaign, this number was between 0.1 and 0.3 ppm.

This noisiness can be attributed to signal loss from the degradation of the coating on the

MFLL viewing window.
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(a) (b)

(c)

(d)

Figure 5.14. Both aircraft in latitude and altitude, colored in time (a, b and d) along
with a flight map, and in situ CO2 data (c) for February 13, 2017.

Figure 5.15. XCO2 datasets from February 13, 2017. The in situ spiral column-averaged
value, with CarbonTracker model top included, is shown as a green star. Both the CAMS
and CarbonTracker full column values are calculated using a straight pressure weighting
function.

There appears, in Figure 5.15, to be little to no agreement between the OCO-2 and

MFLL retrieval results, in either magnitude or spatial variability, though because of the
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Figure 5.16. OCO-2 XCO2 along the February 13, 2017 underflight track.

Table 5.4. February 13, 2017 Slopes and Correlations with OCO-2

� (ppm) Mean �XCO2 ± Error (ppm) rOCO�2 Slope (ppm/�)
OCO-2 0.72 0 ± 0.16 - -0.60
MFLL S 3.71 -1.70 ± 0.61 -0.31 (-0.41) -0.17
MFLL L 3.74 -2.01 ± 0.61 -0.40 (-0.62) -0.42
CAMS - 1.93 0.41 (-0.65) -0.45

CarbonTracker - 0.90 -0.69 (-0.63) 5E-3

MFLL viewing window issue, the MFLL data (even once bias corrected) are not likely trust-

worthy. At its largest, around 44.4 degrees north, the magnitude di↵erence between the two

is upwards of 3 ppm. There is little latitudinal variation predicted by models, and OCO-2

likely bears this out, so we expect and see low correlation coe�cients between the datasets.

Magnitude di↵erences are thus more meaningful on this day: the CAMS data exhibits is high

relative to all other datasets. In Figures 5.17c and 5.17d, we see that this high bias is con-

sistent vertically throughout the column, as well as along the full length of the flight track.

This phenomenon is also consistent for all winter flights. For this reason, CarbonTracker
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(a) (b)

(c) (d)

Figure 5.17. (a) Feburary 13, 2017 in situ spiral up to the C-130 height, with Carbon-
Tracker model profile above. (b) and (c) In situ spiral in black, with CarbonTracker model
profiles colored in latitude; (c) shows this in greater detail, for comparison with the CAMS
model profiles in (d).

proves the more suitable source for both upper column and weighting function corrections,

and is used to make these corrections for both this flight and the rest of the winter campaign

data. The CarbonTracker upper column is also included as a correction to the in situ spiral

column value (green star in Figure 5.15), and when included, the XCO2 at the spiral appears

to agree relatively well with the magnitude of the available OCO-2 data, although there is

some geographical distance between them.
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5.5. February 15, 2017

In another midwest flight, this time south through Kansas and into Oklahoma, the C-

130 under-flew OCO-2 at an altitude of about 8.7 kilometers. There were some relatively

high clouds near the northern section of flight track, which can be seen in Figure 5.20. The

in situ data (Figure 5.18c) show some small-scale variability at the 8.7 kilometer altitude

- fluctuations on the order of 1 ppm - but no systematic gradients across the full track.

The B-200 executed a spiral maneuver in the center of the underflight track just north of

38N; the spiral profile, shown in Figure 5.21 with CarbonTracker model profiles, displays a

typical winter CO2 profile shape, with concentrations peaking near the boundary layer. The

CarbonTracker profiles hardly vary by 0.5 ppm anywhere in the column across the flight

track, in agreement with the lack of spatial variability in the in situ data. Unfortunately,

this results in little to compare between datasets, aside from magnitude.

The XCO2 results in Figure 5.22 indeed show very little spatial variability. The OCO-2,

CarbonTracker, and in situ data all agree in magnitude to well within 1 ppm along much

of the track; both MFLL retrievals exhibit appear low by nearly 3 ppm relative to the

other datasets. The MFLL data also displays enhanced noise, again, characteristic of the

interference from the faulty viewing window coating.

The OCO-2 data contains one exception to the lack of spatial features, in the form of

two peaks in XCO2 near 39N. Upon closer inspection, it is believed that these soundings are

the result of a path-lengthening e↵ect caused by the presence of a high cloud or contrail.

Figure 5.19 shows the area of interest in greater detail. It is worth noting that, while the

feature remains in the data, its magnitude was significantly reduced in the OCO-2 version 8

update.
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(a) (b)

(c)

(d)

Figure 5.18. Both aircraft in latitude and altitude, colored in time (a, b and d) along
with a flight map, and in situ CO2 data (c) for February 15, 2017.

Figure 5.19. Imagery of a cloud e↵ect on the OCO-2 XCO2 measurement on February 15, 2017.

Table 5.5. February 15, 2017 Slopes and Correlations with OCO-2

� (ppm) Mean �XCO2 ± Error (ppm) rOCO�2 Slope (ppm/�)
OCO-2 0.41 0 ± 0.09 - -0.02
MFLL S 3.76 -3.82 ± 0.53 0.02 (0.01) -0.10
MFLL L 3.85 -2.98 ± 0.55 0.14 (0.12) -0.32
CAMS - 1.66 -0.34 (-0.45) -0.009

CarbonTracker - 0.32 0.05 (-0.14) -0.04
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5.6. March 8, 2017

The final flight of the winter campaign flew up the east coast. By this time, the team

was aware of the reduced SNR caused by the viewing window coating, so the C-130 flew

at a lower altitude on this day - around 6 kilometers rather than the usual 9 kilometers

Figure 5.20. OCO-2
XCO2 along the February
15, 2017 underflight track.

(a) (b)

Figure 5.21. (a) February 15, 2017 in situ spi-
ral up to the C-130 height, with CarbonTracker
model profile above. (b) In situ spiral in black,
with CarbonTracker model profiles colored in
latitude.

Figure 5.22. XCO2 datasets from February 15, 2017. The in situ spiral column-averaged
value, with CarbonTracker model top included, is shown as a green star. CarbonTracker
full column values are calculated using a straight pressure weighting function.
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- in order to improve the measurement noise. One spiral maneuver was completed by the

B-200 at 38N in the east of Virginia, indicated by the star in Figure 5.23d. The in situ

CO2 data shows some variability along the 6 km flight track on the order of 1 ppm; in

particular, a low of about 407.5 ppm at 40N. There appears to be a slight north-south

gradient as well at this altitude, also on the order of 1 ppm, between 408 and 410 ppm, with

concentrations higher in the north. A slightly stronger gradient of the same sign appears to

exist in the data below 4 kilometers, which indicates the possibility of an increasing south-

north gradient in the column data; however, a strong surface source between 36 and 37N may

dampen this latitudinal e↵ect. The B-200 spiral data unfortunately only reaches the C-130

cruising altitude of 6 kilometers. The CO2 profile is shown in Figure 5.25 along with the

CarbonTracker profile used to complete the upper column and the full CarbonTracker profiles

colored in latitude. The in situ column appears relatively well-mixed, and CarbonTracker

predicts the CO2 concentrations accurately throughout the column at the spiral location,

apart from overestimating near-surface values by a few parts per million. The upper column

profile is of consistent magnitude where it meets the in situ profile at 400 hPa.

The northern and southernmost ends of the OCO-2 track were partly obscured by scat-

tered clouds, and some high clouds interrupt the center of the track as well, as seen in Figure

5.24. The OCO-2 data, from Figures 5.24 and 5.26, show values fairly steady around 407

Table 5.6. March 8, 2017 Slopes and Correlations with OCO-2

� (ppm) Mean �XCO2 ± Error (ppm) rOCO�2 Slope (ppm/�)
OCO-2 0.72 0 ± 0.19 - -0.11
MFLL S 2.79 -0.68 ± 0.43 -0.08 (-0.07) -0.12
MFLL L 2.99 -0.38 ± 0.46 -0.10 (-0.07) -0.26
CAMS - 1.74 -0.01 (-0.05) 0.09

CarbonTracker - 0.46 0.49 (0.52) -0.02
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(a) (b)

(c)

(d)

Figure 5.23. Both aircraft in latitude and altitude, colored in time (a, b and d) along
with a flight map, and in situ CO2 data (c) for March 8, 2017.

ppm along the full track, apart from a feature at 38N which appears similar to the high

cloud feature observed in the February 13th flight.

The MFLL data show XCO2 values in line with those of OCO-2, low by less than 1 ppm

in the ON/OFF S and less than 0.5 ppm in the ON/OFF S, and SNR is clearly improved

from the previous two flights by flying at lower altitude: the standard error of the two MFLL

datasets are 0.43 and 0.46, as opposed to 0.53 and up to 0.61 in the other winter flights.

The spiral XCO2 , shown as a green star in Figure 5.26, is in agreement with the MFLL data

at that location, and though in a cloudy area with spurious OCO-2 values, appears to agree

with OCO-2 as well. CarbonTracker XCO2 estimates are slightly higher than any of the other

datasets, perhaps due to high values near the surface.
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Figure 5.24. OCO-2
XCO2 along the March 8,
2017 underflight track.

(a) (b)

Figure 5.25. (a) March 8, 2017 in situ spi-
ral up to the C-130 height, with CarbonTracker
model profile above. (b) In situ spiral in black,
with CarbonTracker model profiles colored in
latitude.

5.7. October 22, 2017

The first fall underflight saw completely clear skies over Kansas in the midwest, with

little XCO2 variability along the flight track. The MFLL viewing window received a proper

coating treatment between the winter and fall campaigns, so underflights in the fall resumed

Table 5.7. October 22, 2017 Slopes and Correlations with OCO-2

� (ppm) Mean �XCO2 ± Error (ppm) rOCO�2 Slope (ppm/�)
OCO-2 0.48 0 ± 0.11 - 0.07
MFLL S 1.63 -2.99 ± 0.24 0.19 (0.05) 0.15
MFLL L 1.67 -3.31 ± 0.25 -0.09 (-0.21) 0.10
CAMS - 0.96 0.46 (0.56) 0.15

CarbonTracker - - - -
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Figure 5.26. XCO2 datasets from March 8, 2017. The in situ spiral column-averaged
value, with CarbonTracker model top included, is shown as a green star. CarbonTracker
full column values are calculated using a straight pressure weighting function.

at an altitude of 9 kilometers. In a renewed pursuit of in situ column data, the B-200 flew a

spiral maneuver in the center of the underflight track, just north of 38N, and the C-130 also

flew two spirals: one at the southernmost end of the track, and one just north of the B-200

spiral.

The in situ data in Figure 5.27c shows slightly enhanced CO2, from what appear to be

surface sources, at the northern- and southernmost ends of the flight track, with concentra-

tions in those areas around 407.5 ppm as opposed to 406 - 406.5 ppm along the rest of the

1 km altitude track. The 9 kilometer data does not show much variability aside from an

increasing latitudinal gradient of 0.5 ppm maximum from south to north.

The OCO-2 data does show a slight latitudinal gradient as well, in Figure 5.28, though

XCO2 only varies by less than 1 part per million for the most part. Note that the color bar for

this figure only spans a range of 2 ppm. The scene is almost completely cloud-free, though

in the north there are some high clouds visible to the east of the track; it appears as though

there is no cloud interference along the track itself.
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(a) (b)

(c)

(d)

Figure 5.27. Both aircraft in latitude and altitude, colored in time (a, b and d) along
with a flight map, and in situ CO2 data (c) for October 22, 2017.

Figure 5.28. OCO-2 XCO2 along the October 22, 2017 underflight track.
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CarbonTracker data is not yet available for the fall campaign dates, so CAMS data is

used for XCO2 comparison and for weighting function and upper column corrections, with

the footnote in mind that CAMS is often biased high in the cold seasons, as discussed in

Section 5.4. This does indeed appear to be the case: in Figures 5.30, the model values at

300-350 hPa are higher than the in situ values by about 0.5 ppm. Although the model values

across the flight track in 5.30 do look approximately correct in magnitude when compared

to the upward spiral profile, the XCO2 values appear 1 ppm high compared to the OCO-2

data in Figure 5.29. The in situ values appear slightly high as well, and though they include

the CAMS upper column in the figure shown here, their partial column values are nearly 0.5

ppm higher.

In this flight we see a typical MFLL low bias - both the MFLL S and MFLL L retrievals

yield a result about 3 ppm lower than OCO-2 and the in situ spirals. Do note, however, that

the MFLL SNR returns to target levels in this dataset, with standard errors around 0.25

ppm rather than the 0.5 or 0.6 seen in winter from the window coating degradation. There

is once again not much of a latitudinal gradient and no particularly notable XCO2 features,

apart from a depression of about 1 ppm in the OCO-2 data between 36 and 37N which is

not present in either the MFLL or CAMS data, nor the PICARRO data in Figure 5.27c.

5.8. October 27, 2017

Table 5.8. October 27, 2017 Slopes and Correlations with OCO-2

� (ppm) Mean �XCO2 ± Error (ppm) rOCO�2 Slope (ppm/�)
OCO-2 0.54 0 ± 0.14 - -0.18
MFLL S 1.01 -2.71 ± 0.14 0.10 (0.27) 0.02
MFLL L 1.07 -2.81 ± 0.15 0.03 (0.05) -0.006
CAMS - 1.91 0.64 (0.10) -0.09

CarbonTracker - - - -
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Figure 5.29. XCO2 datasets October 22, 2017. The in situ spiral column-averaged value,
with CAMS model top included, is shown as a green star. CAMS full column values are
calculated using a straight pressure weighting function.

(a) C-130 South (b) B-200 Ascent (c) B-200 Descent (d) C-130 North

Figure 5.30. October 22, 2017 in situ spiral profiles in black, from south on the left (a) to
north on the right (d), with CAMS profiles colored in latitude. The location of each spiral
is marked by a tick on the color bar.

The October 27 underflight also took place over Kansas in the midwest. The C-130

completed two spirals, one at either end of the underflight track, though the spiral at the

northern end only extends down to three kilometers. The underflight track spans nearly 5

degrees latitude, was flown just above 8.5 kilometers altitude, and is completely cloud-free

as shown in Figure 5.32. The in situ data in Figure 5.31c shows some spatial variability in

CO2 at 8.5 kilometers, with concentrations increasing by up to 2 ppm from south to north
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(a) (b)

(c)

(d)

Figure 5.31. Both aircraft in latitude and altitude, colored in time (a, b and d) along
with a flight map, and in situ CO2 data (c) for October 27, 2017.

across the flight track, with a local maximum of about 406.5 ppm at 39N. However, the 3

kilometer data reveals a stronger gradient in the opposite direction, with maximum CO2 of

nearly 409 ppm throughout the southern half of the track and concentrations between 404

and 405 throughout the northern half. The combination of these opposing gradients might

lead to little observable gradient in the column-averaged values.

Four sets of in situ spiral data were taken: two by the C130 at the northern and southern

ends of the underflight track, and two by the B-200 in the middle of the track (one ascending,

one descending). The northernmost spiral and the B-200 spirals both show some significant

vertial variability between 6 and 8 kilometers in altitude, concentrations jumping by 2 to

2.5 ppm around 7 km in the B-200 profiles. Note that the northern C-130 spiral only spans
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Figure 5.32. OCO-2 XCO2 along the October 27, 2017 underflight track.

an altitude of 3 to 8 kilometers. Also note that there is some data loss from the B-200

throughout the flight track.

Two of the four spirals are shown in Figure 5.33 with upper column CAMS profiles and

with CAMS profiles in latitude. Both profiles reveal the high bias in CAMS, particularly

in the mid-troposphere above 600 hPa. The southern C-130 spiral is plotted in the left-

hand panels, and shows elevated CO2 just above the boundary layer near 700 hPa, which

CAMS does not accurately predict. Below that level, the CAMS profile (dark blue) matches

the spiral quite well, to within 0.5 ppm. The right-hand panels of Figure 5.33 show the

descending B-200 spiral. The variability in the free troposphere just below the plane is

evident between 350 and 500 hPa and not predicted by CAMS at that latitude (yellow).

There is also variability at the top of the boundary layer, at 700 hPa, that is not captured

well in the CAMS profiles, but the magnitude of the concentrations below 650 hPa do seem
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(a) (b)

(c) (d)

Figure 5.33. (a, b) October 27, 2017 in situ spirals up to the C-130 height, with CAMS
model profiles above. (c, d) In situ spiral in black, with CAMS model profiles colored in
latitude.

accurate to within 1 ppm. The high bias of the model values above 600 hPa extends into

the upper troposphere above the plane; there is an o↵set of 1-2 parts per million between

the in situ profiles and the model data at the point where they meet, clearly visible in all

four panels of Figure 5.33.

The OCO-2 data in Figure 5.35 shows a decrease in XCO2 , of approximately 1 ppm in

magnitude, from south to north across the length of the underflight track, indicating that it
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may see some of the 3-kilometer variability shown by in situ. Figure 5.35 shows that, when

the OCO-2 data is averaged, the total latitudinal change across the underflight track is just

under 1 part per million. In addition, there is a dramatic XCO2 minimum just north of 40N,

which may be due to some albedo e↵ect; Figure 5.34 shows this feature more closely, and

that some data are filtered out completely - closer inspection of warn level variables might

reveal the cause.

Figure 5.34. Unusual feature in the OCO-2 XCO2 data on October 27, 2017.

XCO2 comparisons in Figure 5.35 indeed show that the CAMS data is once more biased

high compared to OCO-2, in this case by about 1.5 ppm consistently along the flight track.

The in situ spiral data are similarly high compared to OCO-2, both as shown (with CAMS

upper column included) and without model top included. The MFLL data are low compared

to OCO-2 by 2-3 ppm along the full length of the track, but show high SNR, with standard

error of 0.14 and 0.15 ppm for MFLL S and MFLL L. The MFLL data show significant

along-track variability even with weighting function and upper column corrections included,

both of which have a tendency to smooth the data in space. The source of this pattern in

the column data is not yet known; the correlation coe�cient between either MFLL dataset

and the PICARRO CO2 data at 3km, where concentrations are quite variable, is -0.3. There
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Figure 5.35. XCO2 datasets from October 27, 2017. The in situ spiral column-averaged
value, with CAMS model top included, is shown as a green star. CAMS full column values
are calculated using a straight pressure weighting function.

are some odd gaps in the MFLL data, due to some data sparseness which does not meet the

minimum 20 observation requirement when 60-second averaging is performed.

The OCO-2 data does show some subtle smaller-scale variability of the spatial magnitude

as the MFLL features, but the the two are entirely uncorrelated. OCO-2 observes the steepest

latitudinal gradient, with a slope -0.18 ppm per degree latitude, and the MFLL and CAMS

datasets have slopes close to zero - which, given the shallowness of the gradient, is probably

within the margin of error.

5.9. November 9, 2017

Table 5.9. November 9, 2017 Slopes and Correlations with OCO-2

� (ppm) Mean �XCO2 ± Error (ppm) rOCO�2 Slope (ppm/�)
OCO-2 0.88 0 ± 0.27 - -0.14
MFLL S 1.06 -1.15 ± 0.28 0.18 (0.18) 0.09
MFLL L 1.11 -1.33 ± 0.29 0.13 (0.19) 0.45
CAMS - 2.01 0.47 (0.58) -0.20

CarbonTracker - - - -

The final fall underflight began in the northwest corner of Texas and crossed western

Oklahoma into Kansas. Four spirals were flown in total between the B-200 and C-130: the
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C-130 completed one at each end of the 8-kilometer underflight track, and the B-200 recorded

PICARRO data in both an ascending and descending spiral close to the time of the OCO-2

overpass, in the mid-northern section of the underflight track (see Figure 5.36d for spiral

locations as green stars). The C-130 flew a secondary leg at an altitude of 2.5 kilometers,

(a) (b)

(c)
(d)

Figure 5.36. Both aircraft in latitude and altitude, colored in time (a, b and d) along
with a flight map, and in situ CO2 data (c) for November 9, 2017.

while the B-200 stayed in the boundary layer, at half a kilometer. Figure 5.36c shows the

in situ CO2 data from both aircraft: the boundary layer appears shallow (about 1km) and

well-defined, with concentrations consistently within the range of 412 to 420 ppm. Above

1 kilometer, CO2 values drop to 408 or less and the column appears well-mixed along the

length of the flight track. There is little to no variability visible in the 8 kilometer data, with

concentrations between 404 and 405 ppm across nearly 5 degrees latitude.
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Unfortunately, much of the flight track, which spans from 32.5 to 38.5N, is obscured by

clouds, as shown in Figure 5.37a. Only a short section of track between 33 and 34N contains

enough clear-sky OCO-2 data for comparison to MFLL; this section is enlarged in Figure

5.37b. The clear-sky data, however, has fairly significant scatter and there are some spatial

gaps which may be due to surface features. There are thus no coherent XCO2 features visible

in the OCO-2 data.

Two of the four in situ profiles are shown in Figure 5.38, with the CAMS upper tropo-

spheric profile (interpolated to the proper location and time) in the top panels and with the

CAMS profiles in latitude at the time of the OCO-2 overpass in the bottom panels. The

left column shows the southernmost C-130 spiral data, taken about 1 hour after the OCO-2

overpass, and the right column shows the northernmost C-130 spiral, taken around 1.5 hours

prior to the overpass time. The location of the in situ spiral relative to the model profiles

is indicated by a tick mark on the color bar. In both cases, CAMS CO2 model values are

higher than in situ observations by at least 1 ppm throughout much of the sampled column,

particularly in the lower troposphere of the southern spiral between 800 and 900 hPa, where

the model does not capture the sharp boundary layer transition. The B-200 ascending and

descending spiral data, not pictured here, show a similar relation to the CAMS data.

The XCO2 data in Figure 5.39 show little agreement between CAMS, OCO-2, and MFLL

datasets. It should be noted that due to clouds, the MFLL data on this day is spatially

sparse, and looser restrictions were placed on data density when averaging: only ten MFLL

measurements are required per 60-second bin, rather than the usual twenty. The MFLL

once again displays a low bias relative to OCO-2, and shows some relatively coherent spatial

features which do not appear in the OCO-2 data. OCO-2 is higher than the MFLL by 1
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(a) (b)

Figure 5.37. OCO-2 XCO2 along the November 9, 2017 underflight track.

ppm or more along most of the track, and CAMS shows its typical seasonal high bias. The

in situ column-averaged value, including the CAMS upper tropospheric column, appears to

best match the magnitude of the OCO-2 data, but was taken in the cloudy region just south

of the area of comparison. The other three spirals were also taken in locations where there

is no OCO-2 data available for comparison.
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(a) (b)

(c) Southern C-130 spiral (d) Northern C-130 spiral

Figure 5.38. (a, b) November 9, 2017 in situ spirals up to the C-130 height, with CAMS
model profiles above. (c, d) In situ spiral in black, with CAMS model profiles colored in
latitude.
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Figure 5.39. XCO2 datasets from November 9, 2017. The in situ spiral column-averaged
value, with CAMS model top included, is shown as a green star. CAMS full column values
are calculated using a straight pressure weighting function.
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Chapter 6

Comparisons and Discussion

This chapter includes key comparison results and figures which primarily address the first

two hypotheses laid out in Chapter 1. All three campaigns are included in this discussion,

though some flights did not yield useful comparisons. For in-depth detail on each of the

nine flights, including in situ profiles, flight tracks, model evaluation, and tables of statistics,

please refer to Chapter 5.

We turn to the first question of the study from Chapter 1 to frame the discussion of our

comparisons: Is the majority of the OCO-2 observed gradient at scales of ten to hundreds

of kilometers primarily real or spurious, and does the answer to this question depend on the

scale chosen? Can the causes of apparently spurious features be individually attributed to

surface or scattering features?

After three campaigns, nine underflights of OCO-2 were completed by the MFLL and

ACT-America teams in pursuit of validation for lower tropospheric XCO2 - three flights from

each season: summer, fall, and winter. Summer flights yield the most successful comparisons

between OCO-2 and the MFLL, and though the winter campaign was plagued by high MFLL

measurement noise, winter and fall data both hold some interesting observations, particularly

regarding OCO-2.

The first summer flight holds the most successful comparisons to date. On July 27,

2016 the ACT-America team underflew OCO-2 along the east coast through the state of

Pennsylvania, with an in situ spiral flown over State College. The MFLL level 1 optical depth

product, which includes ON/OFF S values with crosstalk and bias corrections, was used in

our XCO2 retrievals. Results along the track are shown in Figure 6.1. All datasets compared
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aside from the CarbonTracker NRT model show a similar decreasing gradient in XCO2 values

from south to north along the track; OCO-2 observations have a -0.75 ppm/�slope in latitude,

while the MFLL results are steeper at -0.98 ppm/�. The MFLL data are higher than OCO-2

by an average of 0.58 ppm along the length of the flight track, which spans about 3.5 degrees

in latitude, and curtain-derived XCO2 values from PSU and GMAO are di↵erent from OCO-2

by only 0.4 and 0.38 ppm, respectively. CarbonTracker matches OCO-2 best in slope, though

final spatial features disagree, with an r value of only 0.24 between the datasets. The two

curtains are next closest to OCO-2 in slope, OCO-2 at -0.7 ppm/�and curtains near -0.8

ppm/�. The curtains also have the highest correlation with OCO-2, PSU with r =0.72 and

GMAO with r =0.75. The curtains look remarkably similar to one another despite notable

di↵erences in the methods of their construction, and both have a small mean �XCO2 of  0.4

ppm compared to OCO-2. The CAMS model data slightly overestimate the strength of the

gradient with a slope of -1.20 ppm/�, and CarbonTracker displays what we’ve observed as a

typical growing season low bias, with XCO2 � 2 ppm lower than the curtain values. Overall,

the MFLL, curtain, and model data demonstrate the fidelity of the OCO-2 observed gradient

over the nearly 400-kilometer track. When this larger latitudinal gradient is removed via

linear regression, however, no correlation to OCO-2 remains: r values actually dip negative

for all data but CAMS, with r = 0.07, indicating that OCO-2 variability on smaller scales

is not seen by any of the other datasets. A majority of the variability remaining after the

overall gradient is regressed out is quite small, a few tenths of a ppm, and though a few

ppm-sized features remain in the OCO-2 data, the MFLL and curtains, even with their fine

spatial resolution, do not see those features. This says that on scales of tens of kilometers,

OCO-2 data may be too contaminated by cloud and surface e↵ects to show realistic features.
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Figure 6.1. Comparing various XCO2 datasets from the July 27 underflight. The in situ
spiral column-averaged value, with CAMS model top included, is shown as a green star.
The CAMS full column values are calculated using a straight pressure weighting function.

Ine�ciency in OCO-2 cloud screening algorithms may be one such contributor to OCO-2

small-scale variability in this case: XCO2 values around 42�N appear to be spurious, at least 1

ppm higher than the observed latitudinal gradient predicts. These are retrieved from within

a field of popcorn cumulus clouds, seen in Figure 6.2a. In cases like this, current work by

the OCO-2 science team seeks to develop either an improved cloud screening algorithm or a

correction factor based on predicted and observed three-dimensional cloud e↵ects (Schmidt

et al. (2016), Massie et al. (2017)). This is our first example of attributing a particular

spurious feature to its cause.

In addition, there is a slight bias related to topography over the hills of Pennsylvania.

Figure 6.2b shows this section of the track, between 40 and 41N, in greater detail. The higher

XCO2 on the northern (trailing) sides of the hills in this area could be due to a pointing error

within the OCO-2 instrument, a correction for which is currently being developed by the

OCO-2 science team. Individual-track features like this may exist in areas with similar

topography throughout the dataset, contributing to unnecessary sparsity in local datasets,
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(a) (b)

Figure 6.2. OCO-2 XCO2 along the MFLL underflight track on July 27th, showing all
eight footprints atop MODIS visible imagery. Figure (a) shows the full underflight track,
and Figure (b) shows a potential filtering issue related to topography between 40 and 41N.

and also resulting in some spurious XCO2 values. We thus identify a potential cause of one

spurious feature.

The second summer flight, on August 5, 2016, also provides an interesting comparison

study, and some insight into curtain di↵erences stemming from their construction methods.

As shown in Figure 6.3, a latitudinal gradient similar to that of July 27th, decreasing to the

north, is present. However, a few other features are notably di↵erent. Firstly, all datasets

show a decrease in XCO2 at the northern end of the track between 47 and 48N. Secondly,

CarbonTracker agrees fairly well in magnitude with the MFLL and curtain data, though

slightly high.
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The OCO-2 data have a slope of -0.43 ppm/�, which is steeper than the rest of the datasets

- the MFLL slope is closest at -0.36 ppm/�. The CAMS and curtain data all have slopes

between -0.15 and -0.26 ppm/�, and CarbonTracker has a slope of -0.31 ppm/�. It appears

that the higher XCO2 values from OCO-2 at the southern end of the track may be spurious,

as these data were taken between cloud fields (see Figure 6.4). Interestingly, CarbonTracker

has the highest correlation with OCO-2 in space (r = 0.78), notably due to a similar, though

smaller, depression in XCO2 between 45.5 and 47.5N, which the other datasets do not see.

The MFLL has the next best correlation with OCO-2 at r =0.71. Once again, when the

larger latitudinal gradient is removed, there is no apparent validation agreement of OCO-2’s

smaller-scale features - the GMAO curtain has the highest correlation at 0.24. We see the

the second case the MFLL and in situ data being unable to replicate the OCO-2 features on

sub-degree-latitude scales, addressing part of our first question of the study - data on this

scale may not be representative of real gradients. It is worth noting that there appears to be

some significant small-scale variability in the MFLL data, on the order of 1 ppm, but that

neither in situ nor curtains are able to replicate those features. Remote sensing instruments

in general appear to struggle at such scales.

In addition, there is a di↵erence ranging 1.2 to 1.9 ppm between the PSU and GMAO

curtains. Closer examination has shown that this is due to the inclusion of the CAMS model

above 9 km in the PSU curtain calculations. The CAMS data above 9 km are consistently

several ppm higher than the PSU curtain values; when CAMS data is not included in the

PSU XCO2 calculation, the results below 9 km agree with the full-column GMAO results, with

an average di↵erence of only 0.25 ppm, though highly variable along-track. When compared

to partial-column GMAO results (below 9 km), the two have a similar di↵erence to that
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Figure 6.3. XCO2 datasets from the August 5, 2016. The in situ spiral column-averaged
value, with CAMS model top included, is shown as a green star. The CAMS and Carbon-
tracker full column values are calculated using a straight pressure weighting function.

shown in the Figure 6.3 - the GMAO curtain shows much lower CO2 values throughout the

troposphere, although in situ features are clearly visible, and XCO2 is nearly 1.5 ppm lower

than PSU along much of the track. The PSU curtain also washes out features within the

boundary layer, showing constant CO2 concentrations below 750 mb. These di↵erences may

be due to a variety of factors: the GMAO curtain takes temporal variations into account,

whereas the PSU curtain does not; the GMAO curtain uses all in situ data with the aid of

spatial decorrelation lengths to account for longitudinal variations, whereas the PSU does

not use any data beyond a certain distance away from the underflight track. Fine-tuning

of the curtain construction and comparison processes is thus an important factor in future

when interpreting curtain, and thus in situ, data.

The third summer underflight, August 27, 2016, is one of three underflights with rel-

atively little comparison data. With only four points of comparison after cloud and data

density screening, CAMS, MFLL, and OCO-2 have steeper slopes, while both curtains and

CarbonTracker predict a nearly flat latitudinal trend. Both CAMS and the MFLL have

correlations of 0.75 with OCO-2, but given the limited data availability, the numbers don’t
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Figure 6.4. OCO-2 XCO2 along the August 5, 2016 underflight track.

carry much weight. The February 13, 2017 flight has similarly little OCO-2 data available

along-track due to snow cover, and the November 9, 2017 underflight track is mostly obscured

by clouds as well.

Three OCO-2 underflights were completed in the winter 2017 campaign, in February and

March. All three show decreased MFLL SNR, due to a coating degradation on the MFLL

viewing window, which could not be fixed until after the campaign’s conclusion. The C-130

flew lower than 9 kilometers throughout the campaign in an attempt to improve the SNR, but

the results remain noisy: MFLL errors in the winter campaign were about 3.5 times higher

than those of the summer campaign, with typical 60-sec average errors of 0.5-0.6 ppm, large

enough to make interpretation of any MFLL small-scale variability nearly impossible. The

February 13th flight was also largely snow-covered, such that an underflight spanning nearly

41 to 47N only yielded OCO-2 data between 43.7 and 44.7N. The other two flights, February
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Figure 6.5. XCO2 datasets from October 27, 2017. The in situ spiral column-averaged
value, with CAMS model top included, is shown as a green star. CAMS full column values
are calculated using a straight pressure weighting function.

15th and March 8th, held clear skies, but both flights showed fairly flat XCO2 fields along

the track. There is consistently little to no correlation between OCO-2 and any of the other

datasets - the highest is with CarbonTracker on March 8th, at r = 0.49. It is thus di�cult

to use these flights to comment on the validation of spatial gradients, because the gradients

are nearly nonexistent.

The most interesting results from the winter campaign do not concern large-scale spatial

trends, but rather high cloud signals. In both the February 15th and March 8th flights, there

are coherent peaks in XCO2 at the location of what appear to be high clouds, via a cursory

look at MODIS cloud top heights in the regions. See Figures 6.6 and 6.7 at 39.25 and 38.2N,

respectively. Figures 6.8a and 6.8b show the MODIS visible imagery for these two OCO-2

tracks. These recurring scenes are further evidence of our ability to identify the sources of

spurious OCO-2 small-scale features. While the elimination of such features may not a↵ect

the global dataset, they do a↵ect the interpretation of local data and potentially a↵ect the

biases of small scenes such as those assimilated into regional flux inversions.
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The fall data are similar to the winter in that there are no strong spatial gradients present

in the three fights, and the MFLL demonstrates a persistent low bias, though its SNR returns

to target levels, matching that of OCO-2 with the installation of a new viewing window on

the C-130. The October 27th flight shows some interesting spatial variability in both the

MFLL and OCO-2 datasets (see Figure 6.5), but they show some of the lowest correlations of

the project thus far at 0.10 and 0.03 between OCO-2 and MFLL S and MFLL L, respectively.

In an e↵ort to understand the small-scale MFLL variability, which is on the order of 1 ppm,

we also look at the in situ data, which shows variable CO2 concentrations particularly along

the 3 km track, but the correlation between the two is -0.3. This is an example of a flight

for which an in situ curtain might prove particularly enlightening, and help us to draw some

conclusions related to our question of the scale of OCO-2 validation, as well as MFLL biases.

The CAMS model is actually the dataset most highly correlated with OCO-2 on this day,

with r = 0.64, due to the agreement of the larger gradient across the track.

We see another mysterious feature in the OCO-2 XCO2 on this day which is potentially

related to some surface feature. There is a notable drop in XCO2 near 40N which is co-located

Figure 6.6. XCO2 datasets from February 15, 2017. The in situ spiral column-averaged
value, with CarbonTracker model top included, is shown as a green star. CarbonTracker
full column values are calculated using a straight pressure weighting function.

98



Figure 6.7. XCO2 datasets from March 8, 2017. The in situ spiral column-averaged value,
with CarbonTracker model top included, is shown as a green star. CarbonTracker full
column values are calculated using a straight pressure weighting function.

(a) (b)

Figure 6.8. OCO-2 XCO2 data for (a) February 15th and (b) March 8th, 2017. Note that
the peaks in XCO2 are co-located with visible high cloud features.

with a gap in the data, shown in Figure 6.9. The cause of this feature is yet unknown, but

may be another example of a feature caused by atmospheric scattering or surface features.
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Figure 6.9. Unusual feature in the OCO-2 XCO2 data on October 27, 2017.

Both the winter and fall data display a persistent low bias in the MFLL retrievals prior

to bias correction, on the order of 2-4 ppm depending on the day. This may be due in part

to an observed range-dependent bias which is currently under investigation by the MFLL

team. A single average bias correction is applied to all flights in a campaign - but the slope

of the range-dependent bias varies from flight to flight, for reasons as yet unknown. The

summer data shown in this work prove that the bias correction largely results in a realistic,

useful dataset. Further bias corrections are currently in development.
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Chapter 7

Conclusions and Future Work

NASA’s ACT-America mission seeks in part to provide a validation source for the Or-

biting Carbon Observatory, whose millions of global XCO2 measurements each day represent

a major step forward in global monitoring of greenhouse gases. Its success at measuring

CO2 on smaller spatial scales (tens to hundreds of kilometers) is di�cult to measure be-

cause ground-based measurements are so sparse and mostly at fixed geographic locations;

the Langley C-130 underflies OCO-2 overpass tracks with a CO2 lidar in tow as part of

the ACT-America campaign in order to provide a meaningful validation source. The Multi-

Functional Fiber Laser Lidar has flown nine OCO-2 underflights across three seasons. In

this study we compare the MFLL and OCO-2 data for all nine underflights, as well as in

situ spiral and “curtain” data.

In our comparisons between the OCO-2 and ACT-America data, as well as that of two

models, we set out hoping to address the following questions:

(1) How well can the MFLL validate OCO-2?

(2) Is the majority of the OCO-2 observed gradient at scales of hundreds of kilometers

primarily real or spurious?

(3) Is the majority of the OCO-2 observed gradient at scales of tens of kilometers

primarily real or spurious?

(4) Can we identify spurious variability and its causes in the OCO-2 XCO2 data?

To test the first question, we run MFLL XCO2 retrievals using three di↵erent sets of

meteorology, several di↵erent sets of H2O and CO2 spectroscopy, and various wavelength

o↵sets. We show that the ON/OFF L retrievals are more sensitive than the ON/OFF S to

101



changes in most input variables, except for CO2 spectroscopy, which has the largest e↵ect

on the XCO2 results - up to nearly 10 ppm in some cases. Di↵erent water vapor tables can

cause similar, if slightly smaller, di↵erences in XCO2 , but meteorology di↵erences only change

results by a few tenths of a ppm. Di↵erences in water vapor vary the most in space, whereas

changes due to CO2 spectroscopy manifest in the form of a nearly-constant o↵set. When the

ON wavelength is changed by a constant amount, we also see near-constant o↵sets in the

XCO2 values across the track - larger o↵sets in the ON/OFF L than in the ON/OFF S. At a

�� of 0.4 pm, ON/OFF L XCO2 changes exceed 1 ppm. All of these results combined tells

us that the relative immaturity of the MFLL retrieval can lead to significant uncertainty in

the XCO2 product.

We show that additional uncertainties are introduced based on the di↵erent vertical

sampling of the MFLL and OCO-2. Contrary to the original intentions of the ACT-America

proposal, MFLL retrievals are shown to have systematic di↵erences from OCO-2 retrievals

due to di↵erences in both the sampled column extent and weighting function. In Chapter 4,

we show that both magnitude and spatial variability of the resulting along-track XCO2 change

when the same model profiles are sampled in the style of the two instruments. The OCO-2

results more closely resemble (within a few tenths of a ppm, consistently) the shape and size of

straight pressure-weighted XCO2 , while MFLL retrievals of the same CO2 profiles consistently

show larger magnitude di↵erences and which vary in space. We conclude that some correction

must be made for both the upper column and the weighting function shape to account

for these trends; we show that these corrections can indeed improve the retrieved results.

However, we acknowledge that such corrections as we apply them here rely necessarily on

model data, which is not always representative of the true atmospheric state. Two CO2
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models, the ECMWF CAMS model and the CarbonTracker near-real-time model, have been

tested for 6 of the 9 flights. In general, from comparisons to in situ profiles, OCO-2, and

MFLL data, the CAMS model is shown to be several ppm too high in the cold seasons, while

CarbonTracker (in winter) is on par; in the growing season, CAMS is consistently in relatively

good agreement with OCO-2 and MFLL in terms of both magnitude and spatial gradient,

but CarbonTracker is quite variable, sometimes several ppm too low, and sometimes within

1.5 ppm of the OCO-2 data with a similar latitudinal slope.

The corrections which we develop from these models can reflect this kind of unsuitable

model variability, and we must be consistently careful moving forward not to attribute those

features of the model-derived correction to the MFLL retrieval itself. In the results shown,

this kind of misinterpretation is most easily seen in the August 5th case, in which the in situ

spiral column (star) appears nearly 1 ppm higher than the MFLL data. In that particular

case, this is due to the inclusion of the CAMS upper column, which is anomalously high

above 9 km. When the CAMS upper column is not included, the in situ spiral aligns with

the MFLL results at that location. To prevent some of this potential misinterpretation,

future work involves using the in situ curtains as the source of the correction below the

plane. Unfortunately, model data above the plane in both curtains remains una↵ected by

in situ observations, which only exist up to 9 kilometers in the best cases. While the upper

tropospheric data can be quite di↵erent between models, as discussed in Chapter 4, we see

the largest di↵erence in magnitude rather than spatial variability. When the upper column

is included, its weight (by fraction of total column dry air molecules) is nearly 30% of the

total, so these e↵ects on the full column result are subtle, but present, and should be noted

with care. The high values of the in situ spirals in the fall 2017 flights, for example, include
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the CAMS upper column. We show the CAMS profiles in the cold seasons to be too high

throughout the column; once CarbonTracker data is used for the upper column correction,

agreement between the in situ profile and both OCO-2 and MFLL should improve.

Based on these uncertainties in the both MFLL retrieval and the corrections we apply, we

conclude that the ability of the MFLL to validate OCO-2 observations is relatively limited.

We thus turn to the in situ data as another potential source of validation. In situ “curtains”

are constructed, using two di↵erent methods, from 2-dimensional CO2 fields along the flight

track sampled by PICARRO instruments aboard both the C-130 and B-200 aircraft. By using

both a simple nearest-neighbor approach and a more advanced method of data assimilation,

we are able to replicate the magnitude and spatial gradients observed by the MFLL and

OCO-2 with relative success.

We can now move on to our second research question: Is the majority of the OCO-

2 observed gradient at scales of hundreds of kilometers primarily real or spurious? Our

MFLL - OCO-2 comparisons show that the ACT-America underflights have observed features

primarily on the scale of hundreds of kilometers; the slopes of the two datasets on these scales

appear largely in agreement. In addition to the MFLL data, we show in Chapter 6 that in

situ profiles, often providing multiple high-precision XCO2 estimates along the flight track,

agree with OCO-2 data to within 1 ppm in 8 of 9 cases when a model upper column is

included in the profile. On the two days when strong spatial gradients are present, the

MFLL ON/OFF S level 1 optical depths produce retrieved XCO2 results with fairly strong

correlations to OCO-2, up to r = 0.75, though their slopes di↵er slightly across the length

of the underflight track. Curtain data successfully rea�rm the observed gradients from the

first two summer flights, with similarly strong correlations to OCO-2 across the track and, in
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the July 27th case, slopes more consistent with that of OCO-2. On August 5th, the curtains

also appear to confirm the slightly higher values of the MFLL retrieval. From these two

days, we conclude that both the MFLL and in situ measurements are successfully able to

validate OCO-2 gradients on the scale of a few hundred kilometers. Unfortunately, winter

and fall flights were devoid of strong spatial gradients. On days with decent data density,

comparisons show MFLL slopes within 0.3 ppm per degree latitude of OCO-2 slopes, but

no correlation (r = 0.14 at best) due to noise and lack of strong signal. The slopes of these

datasets, however, still seem to be in agreement within the uncertainties of the data. Further

work will seek to quantify the uncertainties in these slopes and compare for the statistical

significance of their di↵erences.

These nine underflights have provided abundant opportunity to look for regional features

in OCO-2 data, in an attempt to answer our third research question: Is the majority of the

OCO-2 observed gradient at scales of tens of kilometers primarily real or spurious? When

linear regression is performed to remove the larger latitudinal gradients of each dataset, none

of the flights are able to replicate OCO-2 smaller-scale features, with r values persistently

near (and below) zero. Smaller-scale features do present themselves in the OCO-2 data, but

thus far can be largely attributed to surface and cloud e↵ects. On two occasions (February 15

and March 8), we see coherent peaks in the OCO-2 XCO2 data due to path-lengthening e↵ects

of visible, co-located high clouds. In one summer case, July 27th, we see both insu�cient

cloud filtering resulting in spurious high values, and topography-related biases over hilly

regions. While these various cloud and topography e↵ects may have small impacts when

scaled up to the global dataset, they may yet a↵ect the biases of local datasets which regional

flux inversions seek to assimilate, and may sometimes be mistaken for real sources and
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sinks. The identification of such features in this work has strengthened the motivation of

the OCO-2 science team to develop improvements for each of these e↵ects - high cloud

features, insu�cient filtering of lower cloud-contaminated scenes, and bias issues related to

topography, due to an instrument pointing error.

Curtain data has proven useful, in our work, for invalidating some of these features in

the OCO-2 dataset, and for invalidating some small-scale features of the MFLL as well. This

utilization of in situ data may prove especially enlightening in other cases where the MFLL

sees smaller-scale patterns which are not present in the OCO-2 observations, such as in the

October 27 case. Overall, both statistically and from individual attribution, we conclude

thus far that OCO-2 features on the scale of tens of kilometers are not representative of

real XCO2 patterns. We also conclude with regards to our fourth research question (Can

we identify spurious variability and its causes in the OCO-2 XCO2 data?) that the MFLL

and in situ data make the identification of spurious OCO-2 features possible, and that in

most cases, we can successfully identify the causes of such features. Once corrections are

developed for these types of features, the smoother OCO-2 datasets can be compared to the

MFLL data afresh to statistically re-evaluate their agreement.

The MFLL results have faced a few challenges over the course of the three flight cam-

paigns, including excessive SNR from a viewing window coating degradation (winter flights

only) and a mysterious range-dependent bias which varies in magnitude from flight to flight.

A campaign-wide bias correction has been developed for the summer 2016 flights, which

eliminates the low bias often seen in the MFLL XCO2 results. Similar bias corrections are

in development for the winter and fall campaigns and will presumably have similar e↵ects

on the magnitude XCO2 retrievals, in addition to some smaller e↵ect on their slopes. The
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cause of this range-dependent bias is under investigation, and until it is resolved, the team

must rely on bias corrections to address it. Once the bias-corrected, calibrated level 1 optical

depths are available for the winter and fall campaigns, XCO2 should be recalculated, and the

agreement between the MFLL and OCO-2 should be re-evaluated.

OCO-2 represents a major step forward in our observation of the global carbon cycle,

with measurements at fine enough spatial scales to observe emissions from individual cities

and power plants. Such data has the potential to significantly improve regional flux models,

but at such scales has always been di�cult to validate using stationary ground-based tech-

niques. We have shown in this work that even with directly collocated remote sensing data

at high spatial resolution, instrument di↵erences and retrieval sensitivities make the valida-

tion of small-scale OCO-2 XCO2 patterns challenging. However, though variations at tens of

kilometers remain di�cult to both observe and validate, we are generally able to reproduce

patterns on synoptic scales and directly attribute several local OCO-2 features to surface and

cloud e↵ects. Further development of the OCO-2 data product, MFLL retrieval algorithm,

and in situ curtain construction methods may yet shed light on smaller-scale patterns: the

state of greenhouse gas monitoring science continues to advance, and both OCO-2 and the

ACT-America mission are strong evidence of its progress.
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