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ABSTRACT

SIGNAL DESIGN FOR ACTIVE SENSING

Recent advances in hardware technology across the active sensing spectra, from RF to

optical, enable the construction of sophisticated excitation patterns that can be varied across

time, space, frequency, wavenumber, and polarization. In the RF band, modern radars are

increasingly being equipped with arbitrary waveform generators that allow the transmission

of different waveforms across multiple degrees of freedoms simultaneously. The emergence

of multiple-input multiple-output (MIMO) phased-array radars, with multiple degrees of

freedom at transmitter and receiver, brings the promise of improved surveillance and tracking

performance. In the optical band, the advent of spatial light modulators and digital light

processing devices allows us to construct structured excitation patterns for illuminating

objects.

These advances open up exciting possibilities for design of illumination patterns and sig-

nal processing algorithms. In this dissertation, we develop new signal design and processing

methods for a subset of active sensing problems in radar and optical imaging. In addition,

we exploit the Kalman filter as an efficient signal processing approach for sensing systems

with dynamical state update and measurement acquisition.

Radar imaging: Broadly speaking, signal designs for radar imaging can be divided into

two categories: designs for desired ambiguity functions and designs for interference rejection.

The first category typically involves designing radar waveforms of a given time-bandwidth

product, such that their ambiguity functions have narrow mainlobes and small sidelobes in

desired regions in the range-Doppler plane. The designs in this category are typically suited

for resolving point scatters in white noise. The second category typically considers the joint

design of radar transmit and receive filters, to detect or estimate a point or extended target

in the presence of interference and clutter.

ii



In conventional designs in both categories, typically, the focus has been on designing a

single transmit filter or a single transmit-receive pair to achieve a design goal. But recent

hardware advances enable the utilization of banks of transmit-receive filters across multiple

degrees of freedom, and give rise to new opportunities for radar waveform design and signal

processing. In this dissertation, we take advantage of these new capabilities to develop novel

signal design principles for MIMO radar in the first of the aforementioned categories. Our

contributions are as follows:

Doppler resilient illuminations: In radar range detection, typically, localization in range

is performed by matched filtering the received signal with the transmitted waveform. The

output of the matched filter would ideally be an impulse at the desired delay. Therefore,

waveforms with impulse-like autocorrelation functions are of great value in these applica-

tions. Such waveforms are typically constructed through phase coding a narrow pulse shape

with appropriate unimodular codes. Unimodularity is desired due to constraints set by

power amplifiers used in radar transmitters. In the absence of Doppler, the near ideal auto-

correlation property of such waveforms enables separation of closely-spaced targets in range.

However, all phase-coded waveforms are sensitive to Doppler effect; off the zero Doppler axis,

the magnitude of range sidelobe of a phase-coded waveform’s ambiguity function is typically

large. These Doppler-induced range sidelobes can in turn result in masking of a weak target

that is located in range near a strong reflector with a different Doppler frequency.

As part of this dissertation, we develop a general framework for designing Doppler re-

silient radar illuminations through proper waveform coordination across time, frequency, and

aperture. The building blocks of our Doppler resilient illuminations are phase-coded wave-

forms constructed from unimodular codes such as Golay complementary codes. We first

show that by properly coordinating these complementary waveforms across time, we can

annihilate the range sidelobe of the corresponding pulse train’s ambiguity function inside

a modest Doppler around the zero-Doppler axis. This in turn enables us to extract weak

targets that are situated near strong reflectors. However, this Doppler resilience comes at
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the expense of Doppler response. We characterize the tradeoff between the two for time-

coordinated transmissions. We then extend our design to the coordination of complementary

waveforms across both time and frequency. The added degrees of freedom for transmission

(frequency) allow us to improve Doppler response without reducing resilience to Doppler. Fi-

nally, we extend our work to the design of Doppler resilient paraunitary waveform matrices.

Construction of paraunitary illuminations has received significant attention from the MIMO

radar community. However, all designs suffer from sensitivity to Doppler. Our approach

provides a way to maintain the paraunitary property even in the presence of Doppler.

Optical imaging: The invention of charge-coupled devices and two-dimensional arrays

revolutionize optical imaging, by shifting the measurement collection paradigm in optics

from serial collection of light intensities at the detector plane to the parallel recording of

light intensities. This translates to potentially several fold increase in imaging speed in

many imaging systems operating in mid infrared to soft X-ray band. However, CCDs are

not readily available in the Terahertz to far infrared region, and optical systems in these

bands (including confocal microscopes) still rely on single pixel detectors. This has led to

investigation of techniques that employ structured illumination to eliminate the need for

pixel-wise scanning. A popular approach, based on compressive sensing theory, has been to

use random illumination patterns along with sparse reconstruction algorithms to reconstruct

the full object intensity from a small number of intensity measurements. This approach

has been mostly investigate under ideal imaging conditions, with no or very little optical

aberrations.

As part of this dissertation, we investigate the viability of such compressive sensing ap-

proaches for high resolution optical microscopy under more practical conditions. In partic-

ular, we analyze the sensitivity of compressive optical microscopy to misfcous effects, which

are inevitable in imaging most specimens. Our analysis indicates that compressive imaging

is highly sensitive to misfcous effects at high magnifications factors, which are typical in

microscopy.
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Kalman filtering: In the past few decades the invention of Kalman filters (KFs) and

their variations has led to improved adaptive signal processing performance of various sens-

ing systems whose state evolution and measurement acquisition can be characterized by

dynamical linear model equations. valued state and measurements.

Complex-valued signals are ubiquitous in science and engineering. A random complex-

valued vector x is said to be improper, if x is correlated to its complex conjugate, i.e.,

the complementary covariance ExxT is nonzero. The impropriety of complex-valued sig-

nal exists in many application including communication, smart grid, optical imaging, and

acoustic imaging. Since conventional statistical signal processing essentially treats complex-

valued signals as real-valued signals and ignores the complementary covariances, it becomes

necessary to revisit the theory. Compared to conventional strictly linear processing, the

widely linear processing is proven to be an efficient signal processing technique for resolving

improper complex signals.

As part of this dissertation, we are motivated to make use of widely linear processing

to develop novel complex KFs and their nonlinear versions for improper complex states.

We show that complementary covariance of improper states may be used to develop widely

linear complex KFs (WLCKFs) and Unscented WLCKFs. We show that, compared to the

conventional complex KFs and Unscented complex KFs which ignore the complementary

covariances, the WLCKFs and Unscented WLCKFs can significantly reduce the mean square

error of state estimation, by utilizing full first and second order statistical information of

improper complex states.
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CHAPTER 1

INTRODUCTION

1.1 Active Sensing: Waveform and Receiver Design

The task of an active sensing system is to study the environment of interest through

the functionalities of its transmitter and receiver. The transmitter excites/illuminates the

environment with a waveform. The receiver measures the return/reflection of targets in scene

and process the measurements to form an image, estimate parameters, or detect/classify

targets. For instance, a radar generates an illumination in the radio frequency band, studies

the presence of targets in scene, and estimates the targets parameters (scattering coefficient,

round-trip delay/range, and Doppler frequency/velocity); a sonar emits acoustic radiation

to the underwater environment and detects the underwater objects; ultrasound imaging

makes use of ultrasound wave propagation and diagnose subcutaneous human tissues such

as vessels and organs; optical imaging utilizes optical radiation spanning from the soft X-ray

regime to THz frequencies and has numerous applications such as microscopy and holography.

In summary, the signal design for active sensing can boil down to two aspects: transmit

waveform design and receiver design.

1.2 Conventional Active Sensing Theory

1.2.1 Radar Imaging

Broadly speaking, signal designs for radar imaging can fall in two categories: designs

for desired ambiguity functions and designs for interference rejection. The first category

typically involves designing radar waveforms of a given time-bandwidth product, such that

their ambiguity functions have narrow mainlobes and small sidelobes in desired regions in

the range-Doppler plane. The designs in this category are typically suited for resolving point
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scatters in white noise. The second category typically considers the joint design of radar

transmit and receive filters to detect or estimate a point or extended target in the presence

of interference and clutter.

• First Category: Ambiguity Function Theory

A radar is an imaging system that forms two-dimensional delay-Doppler images of the

illuminated scene. Suppose the individual scatters in scene can be viewed as point

scatters, with a specific coordinate in the two-dimensional range-Doppler plane. The

radar return is processed by receive filter banks outputing a map of the magnitude

of scattering coefficients in the range-Doppler plane. For a point scatter with round-

trip delay τ and Doppler frequency ν, its narrow-band radar return is the transmit

waveform delayed by τ and modulated by frequency ν. If the receive noise process is

white, then the output signal-to-noise ratio is maximized if the receive filter takes the

form of the complex conjugate of the time reversed transmit waveform delayed by τ and

modulated by frequency −ν, or matched filter. Therefore the two-dimensional radar

image for this single target is the point-spread function of the radar system centered

at the target coordinate (τ, ν), which is a function of the transmit waveform, called

ambiguity function of the transmit waveform, defined by Woodward [1] in early 1950’s.

Since the radar ambiguity function serves as the point-spread-function of the range-

Doppler imaging system, ideally we wish it to be a thumbtack, i.e., two-dimensional

Kronecker delta function. However, this is not possible, since Moyal [2] had shown

that the volume under ambiguity surface equals a fixed value that is the square of the

total transmit energy. In other words if we choose a specific transmit waveform whose

ambiguity function can be pushed down in some region, its ambiguity function pops

up in some other regions. Therefore in practice, we only hope for a desired transmit

waveform whose ambiguity function has narrow mainlobe, and small sidelobes (maybe

only in some regions in the range-Doppler plane). A narrow mainlobe indicates a fine
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image resolution, or the ability to separate closely-spaced targets. Small sidelobes

mean the ability to extract weak targets nearby strong reflectors.

In the past few decades there has been a number of good designs of radar transmit

waveforms. For example, many radar waveforms are generated by phase coding a

narrow pulse shape with some unimodular sequences with impulse-like aperiodic auto-

correlation sequences, such as the polyphase sequences by Heimiller [3], Frank codes [4],

polyphase codes by Chu [5], Barker sequences [6], and generalized Barker sequences by

Golomb and Scholtz [7]. However, there are still some drawbacks of the above wave-

form designs, such as sensitivity to Doppler. Woodward mentioned in his book that

“the basic question of what to transmit remains substantially unanswered” in 1953.

This is probably still true today and there exists many openings for the design of radar

waveforms with better ambiguity function properties.

• Second Category: Interference Rejection

The aforementioned ambiguity function theory is suited for resolving point scatters in

white noise. Now consider the case in which the targets are masked by a background

of clutter returns and thermal noise. In here the targets and clutters can be extended

in the range-Doppler plane. If we form a signal plus noise model for the radar return,

the noise can have structured/colored spectrum due to the clutter return, as opposed

to white spectrum required in the ambiguity function theory. Therefore employing

matched filter banks at receiver may indicate no optimality, and more sophisticated

receiver filters should be considered to reject the interference.

The signal-to-interference-noise ratio (SINR) is a major performance metric for the

interference rejection category of radar signal design. Many designs of radar transmit

and receive filters rely on an optimization of SINR subject to some transmit power con-

straint. Some fundamental works [8] consider the design of receiver with pre-selected

transmit filter. Typically the design problem involves optimizing a quadratic objective
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function, which can be transformed to an eigenvalue/generalized eigenvalue problem.

The receive filter is constructed according to the eigenvector of some semidefinite ma-

trix associated with the biggest eigenvalue. Alternatively, other researchers consider

a joint transmit-receive design for optimizing SINR [9]. This type of problems are in

general hard to solve in closed form. Usually people resort to iterative optimizations.

Each individual procedure either derives the optimal transmitter with fixed receiver,

or derives the optimal receiver with fixed transmitter. The iterative approach can be

shown to converge to a local minimum of the objective function.

1.2.2 Optical Imaging

The convectional theory of optical imaging is established on the basis of electromagnetic

theory and Fourier analysis. The Fresnel diffraction approximation enables the computation

of the field propagation at each position in space. In an optical system, the size of aperture

controls the numerical aperture (NA) value, which determines the highest spatial frequency

that can pass the system, or the bandwidth of the optical transfer function (OTF). Taking

the inverse Fourier transform of the OTF yields the point-spread function, the width of

which determines the transverse resolution of the imaging system. The Rayleigh limit clearly

demonstrates that the imaging resolution is proportional to the light wavelength and inversely

proportional to the NA. Common optical devices such as a single lens or telescope (4-f system)

can be used to form images of a object with some magnification or demagnification factors.

1.3 Advances in Active Sensing: New Degrees of Free-

dom

Advances in sensor technology are providing active sensors that are increasingly agile both

in their transmitters and receivers’ capabilities [10]. The introduction of recent hardware

across the active sensing spectra, from RF to optical, enables the construction of sophisti-

cated illumination patterns that can be varied across time, space, frequency, wavenumber,

and polarization. The enhanced measurement collection devices, together with novel signal
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processing algorithms, bring the promise to improved performance metrics.

1.3.1 Advances in Radar Imaging

Modern radars are increasingly being equipped with arbitrary waveform generators which

enable generation of different wavefields across time, frequency, polarization, aperture, and

wavenumber [10–12]. The transmission of these waveform patterns can be changed in a rapid

succession (from pulse to pulse). The degrees of freedom in time can be exploited by sepa-

rating different waveform transmissions in multiple pulse repetition intervals (PRI) [13–17].

The receiver filter bank processes radar return in each PRI, and combines the outputs across

multiple PRIs to form a radar image in the range-Doppler plane. The transmission of differ-

ent waveforms can also be coordinated in frequency [18–20], if proper signal processing on the

measurements is employed. When the target has a polarization direction-dependent scatter-

ing property, the separation of waveform transmissions across all polarization modes brings

in the additional performance gain. In this case the receiver utilizes a multi-dimensional filter

bank that is carefully designed to meet the paraunitary property [14], to facilitate the ex-

traction of the target’s scattering information. Equipped with multiple transmit and receive

antennas, the multiple-input multiple-output (MIMO) radars [21–24] are able to exploit the

increased degrees of freedom in space, by emitting arbitrary waveforms across the transmit

antenna array and processing the measurements across the receive antenna array. Proper

spatial correlation of transmit waveforms across the transmit antenna array can result in a

wide angle transmit beampatterns, as opposed to the narrow transmit beampattern in single

antenna radar systems. In additional to the range/Doppler imaging, the MIMO radars can

also integrate efficient signal processing tools to simultaneously estimate different azimuth

angles for the multiple targets in scene.
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1.3.2 Advances in Optical Imaging

In the past few decades, there has been a number of inventions of hardware in op-

tical imaging systems. Many optical imaging applications make use of a spatial modu-

lated/illumination beam which can have an arbitrary representation in space and time. This

spatially illumination can be generated by the spatial light modulators (SLM) and digital

light processing (DLP) devices. For instance, an SLM employs a micromirror array with the

flexibility to adjust the amplitude and phase of each output spatial frequency components.

Alternatives of the SLMs are the optical masks [25–30] with either transparent or blocked

elements. The opens and closes on the mask correspond to the zeros and ones in some dig-

itized space-time signals or representations. The emergence of charge-coupled devices and

two-dimensional arrays revolutionize optical imaging, by shifting the measurement collec-

tion paradigm in optics from serial collection of light intensities at the detector plane to the

parallel recording of light intensities. This translates to potentially several fold increase in

imaging speed in many imaging systems operating in mid infrared to soft X-ray band.

1.4 Summary of Contributions

In conventional designs of active sensing systems, typically, the focus has been on de-

signing a single illumination pattern or a single transmit-receive pair to achieve a design

goal. But recent hardware advances enable the utilization of banks of transmit-receive filters

across multiple degrees of freedom, and give rise to new opportunities for waveform design

and receive processing. In this dissertation, we take advantage of these new capabilities to

develop novel signal design principles for a subset of active sensing problems in radar and

optical imaging. Our contributions are as follows:

1.4.1 Doppler Resilient Transmit-receive Filters for Radar

In this dissertation, we have developed a general framework for designing Doppler resilient

illuminations through waveform coordination across time, frequency, and aperture. The issue
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of sensitivity to Doppler exist for all conventional phase coded waveforms designs. A radar

waveform phase coded by an unimodular sequence with impulse-like aperiodic autocorrela-

tion sequence has an impulse-like autocorrelation function. This means that the ambiguity

function is impulse-like along the zero Doppler axis. However, off the zero Doppler axis

the impulse-like response in range is not maintained and the ambiguity function has range

sidelobe. In consequence, a weak target that is located in range near a strong reflector with

a different Doppler frequency may be masked by the range sidelobe of the radar ambiguity

function centered at the delay-Doppler position of the stronger reflector.

As part of this dissertation, we develop a general framework for designing Doppler resilient

radar illuminations through properly coordinating phase-coded waveforms constructed from

Golay complementary code across time, frequency, and aperture:

• We first show that by properly sequencing Golay complementary waveforms in time in

constructing the transmit pulse train and the receive filter, we can essentially annihilate

range sidelobes of the radar point-spread function (psf) and maintain an impulse-

like point-spread function in range over a Doppler interval around the zero-Doppler

axis. We construct the transmit pulse train by coordinating the transmission of Golay

complementary waveforms according to zeros and ones in a binary sequence P . We

refer to this pulse train as the P-pulse train. The pulse train used in the receive filter

is constructed in a similar way, in terms of sequencing the Golay waveforms, but each

waveform in the pulse train is weighted according to an element of a sequence Q. We

call this pulse train the Q-pulse train. We show that the size of the range sidelobes

of the psf is controlled by the spectrum of product of the P and Q sequences. By

selecting sequences for which the spectrum of their product has a higher-order null

around zero Doppler, we can annihilate the range sidelobe of the psf inside an interval

around the zero-Doppler axis. For the illustration purposes we first present two specific

(P ,Q) designs, namely the PTM design and the binomial design. We then establish

a necessary and sufficient condition for achieving an Mth-order spectral null with
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length-N , N > M + 1, sequences P and Q. The condition is that the product of the

P and Q sequences must be in the null space of an (M + 1)×N integer Vandermonde

matrix. We show that the above (P ,Q)-pulse train design can be extended to the cases

when we have more than two complementary waveforms components in order to shape

desired radar psf. However, with a given time-bandwidth product, the range sidelobe

suppression ability, or Doppler resilience, comes at the expense of Doppler response.

• We then characterize the tradeoff between the Doppler resilience and Doppler response

for time-coordinated transmissions. We show that by introducing new degrees of free-

dom (frequency), we are able to improve Doppler response without reducing resilience

to Doppler. Thus We extend our time-coordinated waveform design to the coordi-

nation of complementary waveforms across both time and frequency. A single time-

coordinated (P ,Q)-pulse train is assigned to 2K orthogonal frequency-division mul-

tiplexing (OFDM) subcarriers. The 2K subcarriers include K subcarriers pairs with

equal and opposite frequency offset relative to a common carrier frequency. The ef-

fective radar psf is a weighted summation of the squared cross ambiguity functions of

the (P ,Q)-pulse trains assigned to the total K subcarrier pairs. The Doppler response

is essentially controlled by of the spectrum of the weight sequence across all subcar-

riers, whose zero-crossings around zero Doppler is O(1/K). This means that Doppler

resolution for an OFDM (P ,Q)-pulse train is O(1/K) and at least K/N better than

a single frequency (P ,Q)-pulse train with N pulses. But note that a fine resolution

of our OFDM waveform design requires a huge frequency consumption, which may

not be realistic considering the intense occupation of spectral resources nowadays. We

then show that by implementing two sets of OFDM (P ,Q)-pulse trains operating over

2K1 and 2K2 subcarriers respectively, and properly performing signal processing on

the measurement, we can achieve a Doppler resolution in the order of O(1/K1K2),

provided that K1 and K2 are coprime integers. Therefore the same Doppler response

can be achieved with much less bandwidth consumption.
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• Finally, we extend our work to the design of Doppler resilient illumination design

for phased-array MIMO radars. Illumination design for phased-array MIMO radar,

based on complementary space-time waveforms has received significant attention from

the MIMO radar community. For example, the paraunitary waveform design, as one

type of complementary space time waveform design, has the desired property that the

autocorrelation matrices of individual waveform components sum up to the desired

composite auto-correlation matrix, which is a identity matrix at zero lag, and vanishes

at nonzero lags. This leads to good properties such as invariant transmit beam pattern,

zero waveform coupling, and ideal pulse compression, enabling the enhanced detection

and surveillance performance of MIMO radars. However, all complementary space-time

waveform designs suffer from sensitivity to Doppler.

We demonstrate a Doppler resilient design of space-time transmit/receive filter based

on a paraunitary waveform set with cardinality D. The transmit filter is a length-N

spatial pulse train which coordinates the transmission of waveform components in the

set using a D-ary scheduling sequence {p[n]}N−1
n=0 . The receive filter is constructed in

the similar way, except that the waveform component in n-th PRI is weight by the

n-th element of a real weighting sequence {q[0]}N−1
n=0 . The design of binary p-sequences

and real q-sequences has been ellaborated in [16,31,32] to coordinate the transmission

of Golay complementary waveforms in time for maintaining complementarity in the

presence of Doppler. We present a systematic construction of these two sequences,

which enables the cross ambiguity matrix of the transceiver filter which maintains the

paraunitarity inside a desired Doppler band around zero Doppler axis.

1.4.2 Compressive Optical Imaging and Sensitivity to Misfocus

The invention of charge-coupled devices and two-dimensional arrays revolutionize optical

imaging, by shifting the measurement collection paradigm in optics from serial collection

of light intensities at the detector plane to the parallel recording of light intensities. This
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translates to potentially several fold increase in imaging speed in many imaging systems

operating in mid infrared to soft X-ray band. However, CCDs are not readily available in

the Terahertz to far infrared region and optical systems in these bands (including confocal

microscopes) still rely on single pixel detectors. This has led to investigation of techniques

that employ structured illumination to eliminate the need for pixel-wise scanning. A spatial

structured illumination can be generated by a spatial light modulator or digital light pro-

cessing device. The single detector records inner products between the line-scans of object

and the illumination pattern. Therefore the imaging speed can be much faster than that of

the conventional pixel-wise scanning methods.

One class of structured illumination imaging approach, called SPatIal Frequency Imaging

(SPIFI), is proposed in [29, 33]. It generates a light modulation pattern whose modulation

frequency linearly increase across the spatial extent, which provides a unique modulation

frequency at each spatial point in the excitation. The recovery of the object spatial informa-

tion is performed via a simple Fourier transform. Note that in order to obtain high imaging

resolution, a large number of temporal measurements is required to meet the Nyquist con-

dition. Another popular approach, based on compressive sensing theory, has been to use

random illumination patterns along with sparse reconstruction algorithms to reconstruct the

full object intensity from a small number of intensity measurements. This approach has been

mostly investigate under ideal imaging conditions, with no or very little optical aberrations.

As part of this dissertation, we investigate the viability of such compressive sensing ap-

proaches for high resolution optical microscopy under more practical conditions. In partic-

ular, we analyze the sensitivity of compressive optical microscopy to misfcous effects, which

are inevitable in imaging most specimens. We formulate the measurement equations for mis-

focus imaging condition. The numerical analysis indicates that compressive imaging is highly

sensitive to misfcous effects at high magnifications factors, which are typical in microscopy.

Finally, inspired by the result of sensitivity to basis mismatch of compressive sensing in [34],

we present a mathematical description for the sensitivity to misfocus effect of compressive
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optical imaging. The model perturbation can be characterized by the perturbation matrix,

as a function of both the demagnification factor and misfocus distance. A theoretical upper

bound of the compressive sensing reconstruction error at given demagnification factor and

misfocus distance is developed.

1.4.3 Widely Linear Complex Kalman Filters

Complex signals are ubiquitous in science and engineering, arising as they do as complex

representations of two real channels or of two-dimensional fields. A random vector x is

said to be improper, if x is correlated to its complex conjugate, i.e., the complementary

covariance ExxT is nonzero. In communication [35], smart grid [36], optical imaging [37],

and acoustic imaging [38], the impropriety of complex-valued signal/measurement arises, due

to unbalanced channel gains, coupled dual channels, or improper noises. In these cases a good

parameter estimator may depend on both the measurement and its complex conjugate, which

is intuitively a widely linear transformation from measurement space to parameter space.

Thus for improper complex-valued signals it becomes necessary to revisit the conventional

statistical signal processing theory and incorporate the widely linear processing treatments

[39–43].

In the past few decades the invention of Kalman filters (KFs) [44] has led to improved

adaptive signal processing performance in various sensing systems whose state evolution and

measurement acquisition can be characterized by dynamical linear model equations. As

extensions of KFs, extended KFs [45] and Unscented KFs [46] have been invented to address

signal processing in systems with nonlinear models.

We are motivated to make use of widely linear processing to develop novel complex

KFs and their nonlinear versions for improper complex states. We show that for improper

complex states, complementary covariance matrices may be used to create widely linear

complex KFs (WLCKFs) and Unscented WLCKFs. We first derive the procedures of a

WLCKF, and present the duality of a WLCKF and its dual channel real KF counterpart.
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We then develop the Unscented WLCKFs to address the nonlinear dynamical models of

improper complex states. A systematic construction of modified complex sigma points is

studied whose sample mean and covariances can preserve the full first and second order

statistical information of a improper random complex vector. Our analysis and numerical

results show that, compared to the conventional complex KFs and Unscented complex KFs

which ignore the complementary covariances, the WLCKFs and Unscented WLCKFs can

significantly reduce the mean square error of state estimation.

1.5 Organization of the Dissertation

The remainder of this dissertation is organized as follows.

In Chapter 2, we present framework for designing Doppler resilient waveform via proper

coordination of complementary waveforms across time. We show that the range sidelobe of

the corresponding pulse train cross ambiguity function inside a modest Doppler around the

zero-Doppler axis can be annihilated. This in turn enables us to extract weak targets that

are situated near strong reflectors. However, this Doppler resilience comes at the expense

of Doppler response. In Chapter 3, we characterize the tradeoff between the two for time-

coordinated transmissions. We then extend the design in Chapter 2 to the coordination of

complementary waveforms across both time and frequency. The added degree of freedom

for transmission (frequency) allows us to improve Doppler response without reducing re-

silience to Doppler. In Chapter 4, we extend our work to the design of Doppler resilient

complementary space-time waveforms. Construction of complementary illuminations (for

instance, paraunitary waveform design) has received significant attention from the MIMO

radar community. However, all designs suffer from sensitivity to Doppler. Our approach

provides a way to maintain the complementarity even in the presence of Doppler. In Chap-

ter 5, we investigate the viability of such compressive sensing approaches for high resolution

optical microscopy under more practical conditions. In particular, we analyze the sensitivity

of compressive optical microscopy to misfcous effects, which are inevitable in imaging most
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specimens. Our analysis indicates that compressive imaging is highly sensitive to misfcous

effects at high magnifications factors, which are typical in microscopy. In Chapter 6, we

exploit Kalman filters as a powerful signal processing approach for sensing systems with

dynamical state update and measurement acquisitions. We illustrate that with improper

complex valued states/measurements, how we revisit the derivation of conventional Kalman

filters to account for the complementary covariances of random vectors. Finally we conclude

the dissertation in Chapter 7.
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CHAPTER 2

DOPPLER RESILIENT TRANSMIT-RECEIVE

FILTERS FOR RADAR

Modern radars are increasingly being equipped with arbitrary waveform generators which

enable generation of different wavefields across space, time, frequency, polarization, and

wavenumber; see, e.g., [10]– [17]. However, as the number of degrees of freedom for trans-

mission increases so does the complexity of the waveform design problem. This motivates

the assembly of full waveforms from a library with simple component waveforms. By choos-

ing to separate waveforms across space, time, frequency, polarization, wavenumber, or a

combination of these, we can modularize the design problem [50–54].

An ideal transmitted waveform should produce an impulse-like ambiguity function in

the range-Doppler plane. However the Moyal’s identity [55] says that there is no way to

construct such a waveform. Instead due to the sidelobes of ambiguity function a weak target

of interest can be possibly masked by the interference resulting from nearby strong reflectors.

Since different waveforms yield various distributions of the sidelobe of ambiguity function, an

attractive approach is to design a waveform library such that candidates from the library can

adaptively match with the real time radar scene. Each waveform candidate in the library

is selected offline according to some criterions, such that the online waveform generation

through optimization can be avoided. Recently some information theoretical criterions are

proposed in [56–58]. For instance, in [58] the criterion is defined as the maximum of expected

mutual information between target state and measurement over all waveforms in the library.

Correspondingly good waveform libraries are developed, such as the library consisting of two

linear frequency modulated (LFM) waveforms [59] and fractional Fourier transform based
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LFM waveforms [60].

After creating a desired waveform library, the transmit waveform design requires a wave-

form scheduler to coordinate the transmission of waveform candidates on the fly. In principle

such a waveform scheduler takes account into previous measurement as well as the dynamic

model of targets and clutters [60,61]. However, it should be noted that, the size of waveform

library has to be small, so that the computational burden on the scheduler is tolerable.

In this chapter, we consider a waveform library consisting of only two component wave-

forms. We show that by properly sequencing these component waveforms across time we

can construct transmit pulse trains and receive filters for which the radar point-spread func-

tion, given by the cross-ambiguity function of the transmit pulse train and the pulse train

used in the receive filter, is essentially free of range sidelobes inside an interval around the

zero-Doppler axis. This enables us to extract a weak target that is located in range near a

stronger reflector at a different Doppler frequency.

The component waveforms are Golay complementary and are obtained by phase coding

a narrow pulse with a pair of Golay complementary sequences (see, e.g., [62]– [64]). Golay

complementary sequences have the property that the sum of their autocorrelation functions

vanishes at all nonzero lags. Consequently, if the waveforms phase coded by complemen-

tary sequences are transmitted separately in time and their ambiguity functions are added

together the sum of the ambiguity functions will be essentially an impulse in range along

the zero-Doppler axis. This makes Golay complementary waveforms ideal for separating

point targets in range when the targets have the same Doppler frequency. However, off

the zero-Doppler axis the impulse-like response in range is not maintained and the sum of

the ambiguity functions has range sidelobes. In consequence, a weak target that is located

in range near a strong reflector with a different Doppler frequency may be masked by the

range sidelobes of the radar ambiguity function centered at the delay-Doppler position of

the stronger reflector.
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We show in this chapter that by properly designing the way Golay complementary wave-

forms are assembled across time in the transmit pulse train and the receive filter, we can

essentially annihilate range sidelobes of the radar point-spread function and maintain an

impulse-like point-spread function in range over a Doppler interval around the zero-Doppler

axis. We construct the transmit pulse train by coordinating the transmission of Golay com-

plementary waveforms according to zeros and ones in a binary sequence P . We refer to this

pulse train as the P-pulse train. The pulse train used in the receive filter is constructed

in a similar way, in terms of sequencing the Golay waveforms, but each waveform in the

pulse train is weighted according to an element of a sequence Q. We call this pulse train the

Q-pulse train. The cross-ambiguity function of the P- and Q-pulse trains gives the radar

point-spread function, whose shape determines our ability to detect point targets in range

and Doppler. We show that the size of the range sidelobes of this cross-ambiguity function

is controlled by the spectrum of the product of P and Q sequences. By selecting sequences

for which the spectrum of their product has a higher-order null around zero Doppler, we can

annihilate the range sidelobe of the cross ambiguity function inside an interval around the

zero-Doppler axis. However, the signal-to-noise ratio (SNR) at the receiver output, defined

as the ratio of the peak of the squared cross-ambiguity function to the noise power at the

receiver output, depends on the choice of Q. By jointly designing the transmit-receive se-

quences (P ,Q), we can achieve a trade-off between the order of the spectral null and the

output SNR.

We first present two specific (P ,Q) designs, namely the PTM design and the Binomial

design, corresponding to the two ends of the trade-off. In the former, the transmit sequence

P is the so-called Prouhet-Thue-Morse (PTM) sequence (see, e.g., [65]) of length N and the

weighting sequence Q at the receiver is the all one sequence. In this case, the output SNR

in white noise is maximum, as the receiver filter is in fact a matched filter. However, the

order of the spectral null is only logarithmic in the length N of the transmit pulse train. In

the latter design, P is the alternating binary sequence of length N and Q is the sequence
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of binomial coefficients in the binomial expansion (1 + x)N−1. In this case, the order of the

spectral null is N − 2, which is the largest that can be achieved with a pulse train of length

N . However, this comes at the expense of SNR.

We then establish a necessary and sufficient condition for achieving an Mth-order spectral

null with length-N , N > M + 1, sequences P and Q. The condition is that the product of

the P and Q sequences must be in the null space of an (M + 1)×N integer Vandermonde

matrix, whose (m,n)th element is (n + 1)m for m = 0, 1, . . . ,M and n = 0, 1, . . . , N − 1.

Without additional constraints, there are infinite number of solutions to the problem. In

this chapter, we constrain Q to be a positive integer sequence, though other designs are

certainly possible. Given a pulse train of length N and a desired null of order M , we can

then maximize the output SNR to determine a solution for P and Q.

The PTM design was originally proposed in our earlier papers [16, 17] for constructing

Doppler resilient pulse trains of Golay complementary waveforms. This chapter extends our

previous work to the joint design of transmit pulse trains and receive filters.

In this chapter we also derive the Cramér-Rao lower bound of Doppler estimation for a

general (P ,Q) pulse train design. We show that the Cramér-Rao lower bound is controlled

by the bandwidth of power spectrum of sequence Q. For an arbitrary (P ,Q) pulse train

design, we analyze the peak-to-sidelobe ratio of its cross ambiguity function. A simulation

also compares the peak-to-sidelobe ratio of cross ambiguity function for different (P ,Q)

designs.

We propose an systematic extension of the above (P ,Q) pulse train constructions to

waveform libraries with more than two complementary waveforms. From a binary sequences

P1 coordinating the transmission of sequences in a Golay pair, and a sequence Q1 con-

structing the receive filter such that (P1,Q1) can achieve up to M -th order null of range

sidelobes around zero Doppler, by recursive construction we can obtain a 2m-ary sequence

Pm coordinating the transmission of 2m complementary sequences, as well as a sequence Qm

constructing the receive filter as Q1 does. The design (Pm,Qm) maintain the property in
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achieving up to M -th order null of range sidelobes around zero Doppler.

2.1 (P ,Q) Pulse Trains

Definition 2.1.1. (Golay Complementary Sequences [62]) Two length L unimodular se-

quences of complex numbers x[`] and y[`] are Golay complementary if for k = −(L −

1), . . . , (L− 1) the sum of their autocorrelation functions satisfies

Cx[k] + Cy[k] = 2Lδ[k], (2.1)

where Cx[k] and Cy[k] are the autocorrelations of x[`] and y[`] at lag k respectively, and δ[k]

is the Kronecker delta function. Henceforth we may drop the discrete time index ` from x[`]

and y[`] and simply use x and y. Each member of the pair (x, y) is called a Golay sequence.

Consider a pair of baseband waveforms x(t) and y(t) that are phase coded by length-L

complementary sequences x and y: that is,

x(t) =
L−1∑
`=0

x[`]Ω(t− `Tc) and y(t) =
L−1∑
`=0

y[`]Ω(t− `Tc), (2.2)

where Ω(t) is baseband pulse shape with duration limited to a chip interval Tc and unit

energy: ∫ Tc/2

−Tc/2
|Ω(t)|2dt = 1. (2.3)

The ambiguity function χx(τ, ν) of x(t) at delay-Doppler coordinates (τ, ν) is given by

χx(τ, ν) =

∞∫
−∞

x(t)x(t− τ)e−jνtdt

=
L−1∑
`=0

L−1∑
k=−(L−1)

x[`]x([−k]

∫ ∞
−∞

Ω(t− `Tc)Ω(t− (`− k)Tc − τ)e−jνtdt

=
L−1∑
`=0

L−1∑
k=−(L−1)

x[`]x[l − k]e−jν`TcχΩ(τ − kTc, ν)

=
L−1∑

k=−(L−1)

A(k, νTc)χΩ(τ − kTc, ν),

(2.4)
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where � denotes the complex conjugate, and A(k, νTc) is given by

A(k, νTc) =
L−1∑
`=0

x[`]x[l − k]e−jν`Tc , k = −(L− 1), ..., L− 1, (2.5)

and χΩ(τ, ν) is the ambiguity function of the pulse shape Ω(t):

χΩ(τ, ν) =

∫ Tc

−Tc
Ω(t)Ω∗(t− τ)e−jνtdt. (2.6)

If the complementary waveforms x(t) and y(t) are transmitted in time separation with a T

sec time interval between the two transmissions, then the effective ambiguity function of the

radar waveform z(t) = x(t) + y(t− T ) is 1

χz(τ, ν) = χx(τ, ν) + e−jνTχy(τ, ν). (2.7)

The duration LTc of waveforms is typically much shorter than the PRI duration T . Thus

the Doppler shift over LTc is negligible compared to the Doppler shift over the PRI duration

T , and by Eq. (2.4) and (2.7) the ambiguity function χz(τ, ν) can be approximated by

χz(τ, ν) =
L−1∑

k=−(L−1)

[Cx[k] + e−jνTCy[k]]χΩ(τ − kTc, ν). (2.8)

Along the zero-Doppler axis (ν = 0), the ambiguity function χz(τ, ν) reduces to

χz(τ, 0) = 2LχΩ(τ, 0), (2.9)

due to complementarity of the Golay sequences x and y. We notice that the ambiguity

function χz(τ, ν) is “free” of range sidelobes along the zero-Doppler axis. 2 However, off the

zero-Doppler axis the ambiguity function has large sidelobes in delay (range). The range

sidelobe at non-zero Doppler may result the scenario that a weak moving target can be

masked by the range sidelobes induced by a strong reflector which is close to the target in

distance and velocity.

1The ambiguity function of z(t) has two range aliases (cross terms) which are offset from the zero-delay
axis by ±T . In this chapter, we drop the range aliasing effects and refer to χz(τ, ν) as the ambiguity function
of z(t). Range aliasing effects can be accounted for using standard techniques devised for this purpose (e.g.
see [66]) and hence will not be further discussed.

2The shape of the autocorrelation function depends on the autocorrelation function χΩ(τ, 0) for the pulse
shape Ω(t). The Golay complementary property eliminates range sidelobes caused by replicas of χΩ(τ, 0) at
nonzero integer delays.

19



Remark 2.1.1. The complementary property of Golay pair enables us to transmit the wave-

form phase coded by each sequence of one Golay pair separately in time domain, such that

sum of autocorrelation functions of each waveform is free of range sidelobes. Separating

Golay complementary waveforms in frequency, however, has more difficulty in theory. This

is because the presence of delay-dependent phase terms impairs the complementary property

of the waveforms. Recently Searle and Howard [18–20] have introduced the modified Golay

pairs for OFDM channel models. The modified Golay pairs are complementary in the sense

that sum of squared autocorrelation functions forms an impulse in range.

In the following we show that by properly coordinating the transmission of waveforms

from the library and weighting the waveforms in the receive pulse train, we can suppress the

Doppler induced range sidelobes at modest Doppler shift:

Remark 2.1.2. Throughout the dissertation, for convenience we use two representations for

the length-N sequence {p[n]}N−1
n=0 and {q[n]}N−1

n=0 . The script letters P and Q are the sequence

representation of {p[n]}N−1
n=0 and {q[n]}N−1

n=0 , whereas the bold letters p and q stands for

the N -dimensional vectors generated by {p[n]}N−1
n=0 and {q[n]}N−1

n=0 respectively, such that

p = [p[0], . . . , p[N − 1]]T , and q = [q[0], . . . , q[N − 1]]T .

Definition 2.1.2. Let P = {p[n]}N−1
n=0 be a discrete binary sequence of length N . Define the

P-pulse train zP(t) as

zP(t) =
N−1∑
n=0

p[n]x(t− nT ) + p[n]y(t− nT ), (2.10)

where p[n] = 1 − p[n] is the complement of p[n]. The nth entry in zP(t) is x(t) if p[n] = 1

and is y(t) if p[n] = 0. Consecutive entries are separated in time by a PRI T .

Definition 2.1.3. Let Q = {q[n]}N−1
n=0 be a discrete real sequence of length N , with positive

entries q[n] > 0. Define the Q-pulse train zQ(t) as

zQ(t) =
N−1∑
n=0

q[n]
[
p[n]x(t− nT ) + p[n]y(t− nT )

]
(2.11)

The nth element of zQ(t) is obtained by multiplying the nth element of zP(t) by q[n].
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If zP(t) is transmitted by the radar and the return is filtered (correlated) with zQ(t), then

the receiver point-spread function in delay and Doppler will be the cross-ambiguity function

between zP(t) and zQ(t):

χP,Q(τ, ν) =

∫ ∞
−∞

zP(t)zQ(t− τ)e−jνtdt

=
N−1∑
n=0

q[n]e−jνnT
[
p[n]χx(τ, ν) + p[n]χy(τ, ν)

]
,

(2.12)

where similar to (2.7), we have ignored the range aliases at offset ±nT , n = 1, 2, ..., N − 1.

Remark 2.1.3. When q[n] = 1 for n = 0, ..., N − 1 the receiver is a matched filter that

matches to the transmitted pulse train zP(t) and (2.12) reduces to the ambiguity function of

zP(t). The joint design of P and Q however gives us more flexibility in tailoring the shape

of the radar cross ambiguity function, as we will show in this chapter. We constrain q[n] to

be positive such that the peak value of the cross ambiguity function at (0, 0) is not reduced

compared to a conventional transmission scheme.

Similar to (2.8), since the duration of a Golay waveform is much shorter than the PRI

duration T , the cross ambiguity function χP,Q(τ, ν) can be approximated as

χP,Q(τ, ν) =
N−1∑
n=0

q[n]e−jνnT
L−1∑

k=−(L−1)

[
p[n]Cx[k] + p[n]Cy[k]

]
χΩ(τ − kTc, ν)

= L

N−1∑
n=0

q[n]e−jνnTχΩ(τ, ν)− 1

2

N−1∑
n=0

q[n]e−jνnT (−1)p[n]χ′Ω(τ, ν),

(2.13)

where

χ′Ω(τ, ν) = (Cx(k1)− Cy(k1))χΩ(τ − k1Tc, ν) + (Cx(k2)− Cy(k2))χΩ(τ − k2Tc, ν), (2.14)

and integers k1 and k2 are defined as k1 = b− τ
Tc
c, and k2 = k1 + 1. Along the zero Doppler

axis, the ambiguity function χP,Q(τ, ν) contains one copy of χΩ(τ, ν) centered at τ = 0, but

no replicas as long as sequences P and Q are chosen to satisfy
∑N−1

n=0 q[n](−1)p[n] = 0, under

which χP,Q(τ, ν) is range sidelobe ”free” at ν = 0.
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After discretizing in delay (at chip intervals), and ignoring the Doppler shift over chip

intervals compared to the Doppler shift across a PRI, this cross-ambiguity function is given

by

χP,Q (k, θ) =
1

2
[Cx[k] + Cy[k]]

N−1∑
n=0

q[n]ejnθ − 1

2
[Cx[k]− Cy[k]]

N−1∑
n=0

(−1)p[n]q[n]ejnθ (2.15)

where θ is the relative Doppler shift over a PRI T . Since x(k) and y(k) are Golay comple-

mentary, Cx[k] + Cy[k] = 2Lδ[k] and the first term on the right-hand-side of (3.33) is free

of range sidelobes. The second term represents the range sidelobes, as Cx[k] − Cy[k] does

not vanish at all k 6= 0. Therefore the question is: can sequences P and Q be designed such

that the discretized ambiguity function (3.33) acts as a Kronecker delta in delay, at least for

some modest range of Doppler frequencies.

Controlling range sidelobes. The magnitude of the range sidelobe is proportional to the

magnitude of the spectrum of the sequence (−1)p[n]q[n], which is given by

SP,Q(θ) =
N−1∑
n=0

(−1)p[n]q[n]ejnθ. (2.16)

As a result, range sidelobes inside a Doppler interval around the zero-Doppler axis can be

suppressed by selecting a sequence (−1)p[n]q[n] whose spectrum has a higher-order null at

zero Doppler.

Consider the Taylor expansion of SP,Q(θ) around θ = 0, that is,

SP,Q(θ) =
∞∑
m=0

S
(m)
P,Q(0)

θm

m!
, (2.17)

where S
(m)
P,Q(0) is the m-th order derivative of SP,Q(θ) at θ = 0. To create an Mth order null,

all S
(m)
P,Q(0) up to order M must vanish: that is,

S
(m)
P,Q(0) = 0, m = 0, 1, ...,M, (2.18)

or equivalently,
N−1∑
n=0

nm(−1)p[n]q[n] = 0, m = 0, 1, ...,M. (2.19)
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Controlling Signal-to-Noise Ratio. Suppose the noise at the receiver input is white and

has power N0. Then, the noise power at the receiver output is

η = N0

∫ ∞
−∞
|zQ(t)|2dt = N0L‖q‖2

2, (2.20)

where q = [q[0], ..., q[N − 1]]T . The SNR at the receiver output is given by

ρ =
σ2
b |χP,Q(0, 0)|2

η
=
Lσ2

b

N0

‖q‖2
1

‖q‖2
2

, (2.21)

where σ2
b is the variance of the scattering coefficient of the target.

The SNR ρ is maximized when q = α1 for some positive scalar α, meaning that zQ(t) =

αzP(t) which corresponds to the usual matched filter. Any sequence Q other than the all

one sequence results in a reduction in SNR. However, the extra degrees of freedom provided

by a more general Q can be used to create a spectral null of higher order, through the joint

design of P and Q, than what is achievable by only designing P .

Design Trade-off. The joint design of P and Q sequences enables a trade-off between

the order of the spectral null for range sidelobe suppression around zero Doppler and the

SNR at the receiver output. In the next section, we first present two examples of (P ,Q)

designs, namely the PTM design (see also [16,17]) for which the order of the spectral null is

logarithmic in the pulse train length N , and the Binomial design for which the order of the

null is linear in N . The latter design maintains an impulse-like point-spread function in range

over a wider Doppler interval around the zero-Doppler axis. But this added invariance comes

at the expense of SNR. Later, we derive necessary and sufficient conditions for achieving an

Mth order spectral null with a pulse train of length N and further investigate the trade-off.

2.2 Range Sidelobe Suppression

2.2.1 PTM vs. Binomial Design

Theorem 2.2.1. (PTM Design [16]) Let P = {p[n]}N−1
n=0 be the length N = 2M+1 Prouhet-

Thue-Morse (PTM) sequence (see, e.g., [65]), defined recursively as p[2k] = p[k] and p[2k+
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1] = 1−p[k] for all k ≥ 0, with p0 = 0, and let Q = {q[n]}N−1
n=0 be the all 1 sequence of length

N = 2M+1. Then, SP,Q(θ) has an M th-order null at θ = 0.

Example 2.2.1. The PTM sequence of length N = 8 is P = {p[k]}7
k=0 = 0 1 1 0 1 0 0 1.

The corresponding P-pulse train of Golay complementary waveforms is given by

zP(t) = x(t) + y(t− T ) + y(t− 2T ) + x(t− 3T ) + y(t− 4T ) + x(t− 5T )

+ x(t− 6T ) + y(t− 7T ).

The receive filter pulse train zQ(t) is the same as the P-pulse train. The order of the spectral

null for range sidelobe suppression is M = (log2N)− 1 = 2.

Remark 2.2.1. The PTM design was originally introduced in [16], [17] in the context of

designing Doppler resilient waveforms. In this chapter, we further investigate this design by

contrasting it against the Binomial design (to be explained next) in terms of range sidelobe

suppression and SNR.

Theorem 2.2.2. (Binomial Design.) Let P = {p[n]}N−1
n=0 be the length N = M+2 alternating

sequence, where p[2k] = 1 and p[2k + 1] = 0 for all k ≥ 0, and let Q = {q[n]}N−1
n=0 be the

length N = M + 2 binomial sequence {q[n]}N−1
n=0 = {

(
N−1
n

)
}N−1
n=0 . Then, SP,Q(θ) has an M th

order null at θ = 0.

Proof: the spectrum SP,Q(θ) for the alternating sequence P and binomial sequence Q

is

SP,Q(θ)=
N−1∑
n=0

(−1)n
(
N − 1

n

)
ejnθ

=(1− ejθ)N−1. (2.22)

A direct evaluations of S
(m)
P,Q(0), the m-th order derivative of SP,Q(θ) at θ = 0 can show that

S
(m)
P,Q(0) = 0 for m = 0, 1, ..., N − 2. Interestingly, an alternative proof is as follows. By Eq.
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(2.19), the m-th order derivative of SP,Q(θ) at θ = 0 is

S
(m)
P,Q(0) =

N−1∑
n=0

nm(−1)p[n]q[n]

=
N−1∑
n=0

nm(−1)n
(
N − 1

n

)
.

(2.23)

From the theory of finite differences, for any polynomial P (x) of x with degree less than

N − 1, the following equation holds:

N−1∑
n=0

(−1)n
(
N − 1

n

)
P (n) = 0. (2.24)

Therefore S
(m)
P,Q(0) is zero for m = 0, ..., N − 2.

Example 2.2.2. For N = 8, the P-pulse train transmitted by the radar is

zP(t) = x(t) + y(t− T ) + x(t− 2T ) + y(t− 3T ) + x(t− 4T ) + y(t− 5T )

+ x(t− 6T ) + y(t− 7T ),

and the Q-pulse train (binomial) used for filtering is

zQ(t) = q0x(t) + q1y(t− T ) + q2x(t− 2T ) + q3y(t− 3T ) + q4x(t− 4T ) + q5y(t− 5T )

+ q6x(t− 6T ) + q7y(t− 7T ),

where q[n] =
(

7
n

)
, n = 0, 1, ..., 7. The order of the spectral null for sidelobe suppression is

M = N − 2 = 6.

2.2.2 General (P ,Q) Pulse Train Design

We now give the general condition for achieving an Mth-order spectral null with P and

Q sequences of length N > M + 1.

Theorem 2.2.3. The spectrum SP,Q(θ) has an M-th order null, M < N − 1, at θ = 0 if

and only if 

1 1 · · · 1

1 2 · · · N

...
...

. . .
...

1M 2M · · · NM





(−1)p[0]q[0]

(−1)p[1]q[1]

...

(−1)p[N−1]q[N − 1]


= 0. (2.25)
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Proof: The spectrum SP,Q(θ) has an M -th order of null at θ = 0 if and only if ejθSP,Q(θ)

has an M -th order of null at θ = 0. Thus the condition (2.19) is equivalent to

N−1∑
n=0

(n+ 1)m(−1)p[n]q[n] = 0, m = 0, 1, ...,M, (2.26)

which can be written in matrix form as Eq. (2.25).

Remark 2.2.2. To avoid trivial solutions, M has to be less than N − 1. For a given pulse

train length N , the Binomial design achieves the maximum order M = N − 2 of spectral

null.

Remark 2.2.3. Let T (M ′) denote the set of product sequences {(−1)p[n]q[n]}N−1
0 that satisfy

the null space condition (2.25) for M = M ′. Then, clearly, we have T (0) ⊇ T (1) ⊇ · · · ⊇

T (N − 2).

In the following we take a close look at the structure of feasible product sequences

{(−1)p[n]q[n]}N−1
0 indicated as Eq. (2.25). Let t1 = [(−1)p[0]q[0], . . . , (−1)p[M ]q[M ]]T , and

t2 = [(−1)p[M+1]q[M + 1], . . . , (−1)p[N−1]q[N − 1]]T . Then we have

[
VM B

]t1

t2

 = 0, (2.27)

where

VM =



1 1 · · · 1

1 2 · · · M + 1

...
...

. . .
...

1M 2M · · · (M + 1)M


and B =



1 1 · · · 1

M + 2 M + 3 · · · N
...

...
. . .

...

(M + 2)M (M + 3)M · · ·NM


.

Note t1 = −V−1
M Bt2, and thus the solution t of Eq. (2.25) is

t =

t1

t2

 =

−V−1
M B

I

 t2. (2.28)

Therefore any solution to (2.25) is only governed by the vector t2 with dimension N−M−1.
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The matrix VM is a transposed M + 1 by M + 1 Vandermonde matrix consisting of

integer entries. The element of V−1
M can be written by [67,68]

(V−1
M )i,j =

M∑
l≥i,j

(−1)i+j

l!

[
l + 1

j + 1

](
l

i

)
, 0 ≤ i, j ≤M, (2.29)

where
[
n
k

]
is the unsigned Stirling number of the first type [69, 70], meaning the number

of permutations of n elements with k disjoint cycles. By the Lagrange’s polynomial in-

terpolation formula, for each j the entries (V−1
M )j,k are coefficients of following polynomial

Pj(x):

Pj(x) =
M∏
n≥0
n6=j

x− xn
xj − xn

=
M∑
k=0

(V−1
M )j,kx

k, j = 0, ...,M, (2.30)

where xn = n+ 1 for 0 ≤ n ≤M . Thus it is easy to see that

V−1
M B =



P0(M + 2) P0(M + 3) · · · P0(N)

P1(M + 2) P1(M + 3) · · · P1(N)

...
...

. . .
...

PM(M + 2) PM(M + 3) · · ·PM(N)


. (2.31)

The entry Pj(M + 2) is given by

Pj(M + 2) =
M∏
n≥0
n6=j

M − n+ 1

j − n

=
(M + 1)!/(M − j + 1)

j!(−1)M−j(M − j)!

= (−1)M−j
(
M + 1

j

)
, j = 0, ...,M.

(2.32)

Thus when M = N − 2, any solution t to Eq. (2.25) should be of the form t =

c
[
r0, r1, ..., rN−2, rN−1

]T
, where c ∈ R and ri = (−1)i

(
N−1
i

)
. This means that given a fixed

length of pulse train N , the Binomial design is the only choice of (P ,Q) pulse train design

to achieve the highest order null of range sidelobe. In general, for k = 0, ..., N −M − 2, the
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entries in the k-th column of matrix V−1
M B can be computed as

Pj(M + k + 2) =
M − j

M − j + k

(
M + k

M

)
Pj(M + 2)

=
M − j

M − j + k
(−1)M−j−1

(
M + k

M

)(
M

j

)
, j = 0, ...,M.

(2.33)

Therefore by eq. (2.28) the solution t = [t0, t1, ..., tN−1]T to Eq. (2.25) is an integer vector

if t2 is an integer vector. Recall that tn = (−1)p[n]q[n], n = 0, 1, ..., N − 1. Thus given an

integer solution vector t, the corresponding binary sequence P and positive integer sequence

Q can recovered by vector t:

p[n] =
1

2
[1− sign(tn)], q[n] = |tn|, n = 0, ..., N − 1. (2.34)

Fig. 2.1 illustrates the annihilation of range-sidelobes around the zero-Doppler axis for

three different length-16 (P ,Q) designs and compares their delay-Doppler responses with

that of a conventional design. For the ease of observing area of cleared area, in Fig. 2.2 we

present the magnified versions of plots in Fig. 2.1, whose horizontal axis covers the Doppler

band [−0.4, 0.4] rad. The conventional design uses an alternating transmission of Golay

complementary waveforms followed by matched filtering at the receiver. The scene contains

three strong reflectors of equal amplitudes at different ranges and two weak targets (each

30dB weaker) that have small Doppler frequencies relative to the stronger reflectors. Each

waveform component is generated by phase coding a length-64 Golay sequence. A raised

cosine is selected as the pulse shape. The chip interval is Tc = 100 nsec, and the length of

PRI is T = 50 µsec. The horizontal axis depicts Doppler and the vertical axis illustrates

delay. Color bar values are in dB.

In the conventional design, shown in Fig. 2.1(a) and Fig. 2.2(a), the weak targets are

almost completely masked by the range sidelobes of the stronger reflectors. With the PTM

design, shown in Fig. 2.1(b) and Fig. 2.2(b), we can clear out the range sidelobes inside

a narrow Doppler interval around the zero-Doppler axis. The order of the spectral null

for range sidelobe suppression in this case is M = log2 16 − 1 = 3. With this order, we

can bring the range sidelobes below -80dB inside the [−0.1,−0.1] rad Doppler interval and
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N=16, Optimal PQ design with M=8, output in dB
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Figure 2.1: Comparison of output delay-Doppler maps for different (P ,Q) designs: (a)
conventional design, (b) PTM design, (c) Binomial design, and (d) max-SNR design with an
8-th order null. The scene contains three strong (equal amplitude) stationary reflectors at
different ranges and two weak slow moving targets (30dB weaker).

extract the weak targets. If the difference in the Doppler frequencies of the weak and strong

reflectors is larger, we need a null of higher order to annihilate the range sidelobes inside a

wider Doppler band. Fig. 2.1(c) and Fig. 2.2(c) show that the Binomial design (of length

N = 16) can expand the cleared (below -80dB) region to [−1,−1] rad by creating a null of

order M = 16 − 2 = 14 around zero Doppler. Fig. 2.1(d) and Fig. 2.2(d) shows the delay-

Doppler response of a (P ,Q) design that has the largest SNR among all (P ,Q) designs that

achieve an (M = 8)th order spectral null. The cleared region in this case is the [−0.5, 0.5]

rad Doppler interval. In summary, the three different (P ,Q) designs simply redistribute the

volume under the ambiguity surface in different ways to push the range sidelobes outside a

Doppler interval of interest to prevent spillage of energy from a clutter mass to nearby cells.

29



Doppler [rad]

D
el

ay
 [s

ec
]

N=16, Conventional design, output in dB

 

 

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x 10
−5

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

(a)
Doppler [rad]

D
el

ay
 [s

ec
]
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Figure 2.2: Magnified output delay-Doppler maps for different (P ,Q) designs as shown in
Fig. 2.1: (a) conventional design, (b) PTM design, (c) Binomial design, and (d) max-SNR
design with an 8-th order null. The horizontal axis covers the ([-0.4 0.4] rad) Doppler band
for easier comparison of the width of cleared area.

2.3 Performance Analysis

In last section we have shown that for a fixed pulse train length N , as the order of null

M in of the spectra SP,Q(θ) increase, the range sidelobes is annihilated in a wider Doppler

interval. However, it is also seen that when M increases, the cross ambiguity function along

zero delay χP,Q(0, θ), which is proportional to the spectrum MQ(θ) of Q sequence, may

become fatter in Doppler domain. In this section we will show that for a (P ,Q) pulse

train design, the SNR and Cramér-Rao lower bound of Doppler estimation is related to the

bandwidth of power spectrum MQ(θ) = |MQ(θ)|2. The dependency of both SP,Q(θ) and

MQ(θ) on the Q sequence suggests a tradeoff between performance criterions.
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2.3.1 Peak-to-Peak-Sidelobe Ratio

For a general (P ,Q) pulse train, define the peak-to-peak-sidelobe ratio (PPSR) of its

cross ambiguity function χP,Q at a Doppler frequency ν

PPSRP,Q(ν) =
|χP,Q(0, 0)|2

max
τ∈Sd
|χP,Q(τ, ν)|2

(2.35)

as the ratio between the peak intensity of χP,Q(τ, ν) and the peak intensity of range sidelobe

of χP,Q(τ, ν) along Doppler ν. It characterizes the (P ,Q) pulse train’s ability to suppress

range sidelobes at a desired Doppler shift. The set Sd contains delays where the range

sidelobes are located. Thus from Eq. (3.33), the discretized PPSR can be written by

PPSRP,Q(θ) =

∣∣2LN−1∑
n=0

qn
∣∣2

max
k 6=0

∣∣[Cx[k]− Cy[k]]
N−1∑
n=0

(−1)pnqnejnθ
∣∣2

=
( L
mc

)2 ||q||21∣∣SP,Q(θ)
∣∣2 ,

(2.36)

where mc = maxk 6=0 |Cx[k]| = maxk 6=0 |Cy[k]|. Suppose the spectrum SP,Q(θ) =∑N−1
n=0 (−1)pnqne

jnθ has up to an M -th order null around θ = 0. Then for sufficiently small

θ, SP,Q(θ) can be dominated by the (M + 1)-th order term in its Taylor expansion. We can

derive the following lower bound of PPSRP,Q(θ):

Theorem 2.3.1. Suppose a (P ,Q) pulse train design achieves up to an M-th order null

of range sidelobe of its cross ambiguity function. At sufficiently small Doppler shift θ, the

PPSRP,Q(θ) of the cross ambiguity function χP,Q(k, θ) can be approximately 3 lower bounded

by

PPSRP,Q(θ) ≥ L0.2 [(M + 1)!]2(2M + 3)

N2M+3
θ−2(M+1). (2.37)

Proof: See appendix A.

3by approximately we mean that the powers of θ at orders higher then M + 1 in the Taylor expansion of
SP,Q(θ) are neglected.
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For a fixed choice of P and Q sequences, the lower bound of PPSRP,Q(θ) increases as

the length of Golay sequences L increases. However, it can be shown that the function

f(M) =
[(M + 1)!]2(2M + 3)

N2M+3
(2.38)

is monotonically decreasing for M ∈ [0, N − 2]. This suggests that given a fixed L, a (P ,Q)

achieving higher order null of range sidelobes does not necessarily have higher PPSR at small

Doppler shift θ.
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Figure 2.3: Comparison of PPSR for different (P ,Q) pulse train designs.

Fig. 2.3 compares the PPSR for PTM, Binomial, and conventional pulse train designs

with length 16. Within the Doppler interval ([0, 1] rad), the PPSR for Binomial design is at

most 65dB higher than alternating pulse train. Inside the Doppler interval ([0, 0.3] rad) the

PTM design outperforms the alternating pulse train with at most 50dB performance gain.

When the Doppler shift is less than 0.1 rad, PTM and Binomial designs have almost the same

performance. However, as Doppler shift increases from 0.1 rad the PPSR of PTM design

dramatically falls down, while the PPSR of Binomial design shows the invariance inside

the Doppler interval ([0, 1.2] rad). Therefore compared to the PTM design, the Binomial

design has a much wider PPSR-invariant Doppler band. For Binomial design the PPSR

is maximized at around θ = 1 rad instead zero Doppler. This is because the raised cosine
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pulse shape results in an imperfect ambiguity function which is not completely confined in

[−Tc, Tc] along zero Doppler.

2.3.2 Signal-to-Noise Ratio

Assume the transmit waveform illuminates a point target. Without loss of generality,

assume that the target is located at the origin of range-Doppler plane. In the presence of

noise, the radar return is

r(t) = bzP(t) + n(t), (2.39)

where b is the target’s random scattering coefficient with variance σ2
b which is assumed to

be constant within a PRI, and the noise n(t) is a random process which is independent with

zP(t) and satisfies E[n(t)n(t′)] = N0δ(t − t′) for all t and t′. Thus the output of matched

filter is

ξP,Q(τ, ν) =

∫ ∞
−∞

r(t)wQ(t− τ)e−jνtdt

= b

∫ ∞
−∞

zP(t)wQ(t− τ)e−jνtdt+

∫ ∞
−∞

n(t)wQ(t− τ)e−jνtdt

= bχP,Q(τ, ν) + χN ,Q(τ, ν),

(2.40)

and from independence the expected value of |ξP,Q(τ, ν)|2 is

E[|ξP,Q(τ, ν)|2] = σ2
b |χP,Q(τ, ν)|2 + E

[∫ ∞
−∞

n(t)wQ(t− τ)e−jνtdt

∫ ∞
−∞

n(t′)wQ(t′ − τ)ejνt
′
dt′
]

= σ2
b |χP,Q(τ, ν)|2 +N0

∫ ∞
−∞
|wQ(t− τ)|2dt

= σ2
b |χP,Q(τ, ν)|2 +N0L||q||22.

(2.41)

Note χP,Q(0, 0) = LqT1, thus the signal-to-noise ratio after matched filtering is

ρ =
σ2
b |χP,Q(0, 0)|2

η
=

L||q||21
N0||q||22

=
Lσ2

b

N0βQ
, (2.42)

where βQ is the effective bandwidth of power spectrumMQ(θ) = |MQ(θ)|2 of sequenceQ [71]:

βQ =
1

2π

∫ π
−πMQ(θ)dθ

MQ(0)
=

∑N−1
n=0 q[n]2(∑N−1
n=0 q[n]

)2 =
||q||22
||q||21

. (2.43)
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In general smaller value of βQ means narrower mainlobe as well as lower sidelobes ofMQ(θ).

Thus narrower spectrum MQ(θ) implies higher SNR. It is clear that ρ is maximized if and

only if q = α1 for some positive scalar α, meaning wQ(t) = αzP(t) which corresponds to the

usual matched filtering. Therefore by introducing non-trivial Q sequence we have to lose

some SNR. In other words, the increase in the order of null of range sidelobes comes at the

expense of SNR.

Table 2.1 compares the three designs in terms of the null order and the output SNR, and

shows that by jointly designing the P and Q sequences we can achieve a null of relatively

high order without considerable reduction in SNR compared to a matched filter design.

Table 2.1: Null order and SNR for different designs

(P ,Q) design Null order SNR (‖q‖2
1/‖q‖2

2)
Conventional 0 16

PTM 3 16
Max-SNR with M = 8 8 13.76

Binomial 14 6.92

With a noisy radar return, bringing out the targets is interfered by the spillage of energy

coming from nearby cells as well as noises. Consider a two point targets case in which the

two targets are θ = νT away in Doppler shift. The ratio

rP,Q(θ) =
|χP,Q(0, 0)|2

max
k 6=0
|χP,Q(k, θ)|2 + η

=

(
PPSR(θ)−1

P,Q +
N0β

L

)−1
(2.44)

characterizes the separability of two targets in the noisy environment. Note for a certain

(P ,Q) pulse train design, rP,Q(θ) is controlled by both the PPSR at Doppler shift θ and the

SNR.

Fig. 2.4 compares the ratio rP,Q(θ) for different length-16 pulse train schemes, at different

noise levels. Fig. 2.4(a)-(c) shows the comparison of rP,Q(θ) at noise power N0= -40dB, -

20dB, and 0dB respectively. When N0 = -40dB, inside the Doppler interval ([0, 0.2] rad)

34



0 0.5 1 1.5
20

30

40

50

60

70

80

Doppler (rad)
si

gn
al

−
to

−
in

te
rf

er
en

ce
 r

at
io

 (
dB

)
 

 

Binomial PTM Alternating

(a)

0 0.5 1 1.5
20

25

30

35

40

45

50

55

60

65

Doppler (rad)

si
gn

al
−

to
−

in
te

rf
er

en
ce

 r
at

io
 (

dB
)

 

 

Binomial PTM Alternating

(b)

0 0.5 1 1.5
20

22

24

26

28

30

32

34

36

38

40

Doppler (rad)

si
gn

al
−

to
−

in
te

rf
er

en
ce

 r
at

io
 (

dB
)

 

 

Binomial PTM Alternating

(c)

Figure 2.4: Comparison of signal-to-interference ratio for different (P ,Q) pulse train designs:
(a) noise power N0 = -40dB, (b) N0 = -20dB, (c) N0 = 0dB.

PTM design bits Binomial design by 4dB at most. This is because the noise power dominates

range sidelobe and Binomial design has lower SNR after matched filtering. However, inside

([0.2, 0.5π] rad) Binomial design still outperforms PTM design. When N0 = -20dB, Binomial

design remains to have much higher r(θ) then PTM design at almost each Doppler shift in

([0.3, 0.5π] rad). When N0 = 0dB, Binomial design is worse then PTM design at most

Doppler shifts. PTM design still behaves slightly better then alternating pulse train inside

([0, 0.3] rad). Note the fairly high noise level case might not be interested for the (P ,Q)

pulse train design since all weak targets are possibly to be hidden by noises.
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2.3.3 Doppler Estimation

Assume that the receiver is implemented by a square law detector. It is shown in [72]

that the likelihood function of parameters θ = [τ, ν]T is

ln Λ(θ) = c|L(τ, ν)|2 (2.45)

where the coefficient c = Er
N0

Er
Er+N0

, Er is the energy of received waveform, and N0 is the

power of white noise assumed here, and the function L(τ, ν) is

L(τ, ν) =

∫ ∞
−∞

r̃(t)w̃Q(t− τ)e−jνtdt (2.46)

The integrants r̃(t) and w̃Q(t) are the normalized radar return andQ-pulse train respectively.

For the parameter vector θ = [τ, ν]T , the corresponding Fisher information matrix is

J =

J1,1 J1,2

J1,2 J2,2

 (2.47)

where the elements of J is defined as

Ji,j = −E
[
∂2 ln Λ(θ)

∂θi∂θj

]
, 1 ≤ i, j ≤ 2. (2.48)

The Fisher information for Doppler frequency can be found as [72,73]

J2,2 = −c∂
2φ(τ, ν)

∂ν2

∣∣∣∣
τ,ν=0

, (2.49)

where φ(τ, ν) = |χP,Q(τ, ν)|2/|χP,Q(0, 0)|2 is the normalized modular square of cross ambi-

guity function χP,Q(τ, ν). Thus we have

φ(0, ν) =
MQ(νT )

MQ(0)
(2.50)

and the Fisher information of Doppler frequency is

J2,2 = −cT 2M
(2)
Q (0)

MQ(0)
=

4cT 2

γ2
Q

(2.51)
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Therefore the Cramér-Rao lower bound of Doppler estimation error is right proportional to

square of the 3-dB bandwidth γQ [71]:

γQ ≈ 2

√∣∣∣∣MQ(0)

M(2)
Q (0)

∣∣∣∣ =

2
N−1∑
n=1

q[n]√∑
i 6=j

(i− j)2q[i]q[j]
(2.52)

2.3.4 Range Estimation

The Fisher information of range estimation is

J1,1 = −c∂
2φ(τ, ν)

∂τ 2

∣∣∣∣
τ,ν=0

, (2.53)

and it’s each to check that φ(τ, 0) = |χΩ(τ, 0)2|, which is invariant to the choice of P and Q

sequences. Therefore achieving a desirable Cramér-Rao lower bound of range estimation for

(P ,Q) pulse trains is only an issue of choosing proper pulse shapes, including choosing the

function Ω(t) and chip interval Tc.

2.3.5 Tradeoff analysis for PTM and Binomial design

For general (P ,Q) pulse trains following the null space condition (2.18), it might be not

straightforward to derive the quantitative tradeoff relations. However, such a relation can

be easily analyzed for some special cases such as PTM and Binomial design.

Notation: For any (P ,Q) pulse train with length N , let MP,Q be the highest order of

null of the range sidelobes at θ = 0. For the envelop of the power spectrum MQ(θ), define

its normalized slope at the 3-dB point θ = γQ/2 as

SLQ =
1

MQ(0)

d

dθ

[
envolope(MQ(θ))

]∣∣∣∣
θ=γP,Q/2

. (2.54)

The following results give a analytical tradeoff analysis for PTM and Binomial designs:

Theorem 2.3.2. (Range Sidelobe Suppression Ability) For a length-N (P ,Q) pulse train

design,
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1. If P is a PTM sequence, and Q is an all 1 sequence, then MP,Q = O(log2N). For

sufficiently small Doppler θ, PPSRP,Q(θ) = O(θ−2 log2 N).

2. If P is an alternating sequence, and Q is a binomial sequence, then MP,Q = O(N).

For sufficiently small Doppler θ, PPSRP,Q(θ) = O(θ−2N).

Proof: (1) is proved in [16,17], and (2) has been shown in section 2.2

Theorem 2.3.3. (SNR and Doppler Estimation) For a (P ,Q) pulse train design with length

N ,

1. If P is a PTM sequence, and Q is an all 1 sequence, then βP,Q = O(N−1), γP,Q =

O(N−1), and −SLP,Q = O(N).

2. If P is an alternating sequence, and Q is a binomial sequence, then βP,Q = O(N−1/2),

γP,Q(N−1/2), and −SLP,Q = O(N1/2).

Proof: See appendix B.

2.4 (P ,Q) Pulse Train for Larger Sets of Complemen-

tary Waveforms

So far, we have studied the design of (P ,Q) pulse trains for a library consisting of only two

complementary waveforms. We now extend our constructions to larger waveform libraries.

Suppose we have a set of D-complementary length-L sequences Z = {z0, z1, ..., zD−1}, mean-

ing that the autocorrelations Czd [k] of the zd sequences satisfy

D−1∑
d=0

Czd [k] = DLδ[k]. (2.55)

We take the size D of the set Z to be a power of 2, but its elements are not necessarily

pairwise complementary. For example, for D = 4, we can choose z0, z1, z2, and z3 to form

a Golay complementary quad, satisfying Eq. (2.55), without making zi, zj, i 6= j Golay

complementary pairs. The reader is referred to [74] for construction of Golay quads. Larger

complementary sets are also possible.
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Let P = {p[n]}N−1
n=0 and Q = {q[n]}N−1

n=0 be the sequences used for waveform coordination

on transmit and receive respectively. To allow for coordination of D different waveforms

zd, d = 0, 1, ..., D − 1, we take P to be a D-ary sequence defined over the alphabet D =

{0, 1, ..., D − 1}. That is the element of P take their values from D. At the n-th PRI of

the P pulse train the waveform szd(t), phase coded by zd, is transmitted if p[n] = d. The

ordering of the waveforms in the Q pulse train is the same as that in the P pulse train, but

the n-th waveform is weighted by q[n] as before. In this case, the cross ambiguity function

χP,Q(k, θ) can be written as

χP,Q(k, θ) =
D−1∑
d=0

( N−1∑
n=0
p[n]=d

q[n]ejnθ
)
Czd(k). (2.56)

Denote ω = ej
2π
D , Note that for each d from 0 to D − 1, we have

D−1∑
r=0

ωr(p[n]−d) =


D, pn = d

0, pn 6= d

. (2.57)

Thus the cross ambiguity function can be written by

χP,Q(k, θ) =
1

D

D−1∑
d=0

Czd(k)
N−1∑
n=0

q[n]ejnθ
D−1∑
r=0

ωr(p[n]−d)

=
1

D

D−1∑
r=0

(N−1∑
n=0

ωrp[n]q[n]ejnθ
)(D−1∑

d=0

ω−rdCzd(k)

)

=
1

D

D−1∑
r=0

SP,Q,r(θ)∆r,

(2.58)

where

SP,Q,r(θ) =
N−1∑
n=0

ωrp[n]q[n]ejnθ, (2.59)

∆r =
D−1∑
d=1

ω−rdCzd [k]. (2.60)

From (2.55) we know that ∆0 is a impulse being free of Doppler effect. However ∆1, ...,∆D−1

cause the range sidelobes of cross ambiguity function χP,Q(k, θ). Rewrite χP,Q(k, θ) as

χP,Q(k, θ) =
1

D

(
DLδ[k]

N−1∑
n=0

q[n]ejnθ +
D−1∑
r=1

SP,Q,r(θ)∆r

)
. (2.61)

39



Recall that when D = 2, the term SP,Q,1(θ) is the spectrum SP,Q(θ) which has been an-

alyzed in sections 2.2 and 2.3. Therefore to suppress the range sidelobes in Eq. (2.61),

it is sufficient to suppress the spectrum SP,Q,1(θ), ..., SP,Q,D−1(θ). The following Theorem

presents a construction of P and Q sequences that render a high order of null for each of

SP,Q,1(θ), ..., SP,Q,D−1(θ):

Theorem 2.4.1. For a set of D = 2m complementary sequences, from a pair of length-N

sequences P ′ = {p′[0], . . . , p′[N − 1]} and Q′ = {q′[0], . . . , q′[N − 1]} satisfying the null space

equation (2.18) with the order of null M , if the length-Nm sequences P and Q are constructed

by following recursions:

1. At 1 < t ≤ m, if t = 2, let sequence P̃0 = P ′, otherwise set P̃0 to be the length-N t−1

sequence P generated at last iteration. Let P̃1 be the sequence obtained by adding each

element in P̃0 with 2t−1. Generate the length-N t sequence P by concatenating P̃0 and

P̃1 according to the positions of 0’s and 1’s in the length-N sequence P ′. That is, for

k = 0, ..., N − 1, the k-th block of P is P̃0 if p′[k] = 0 or P̃1 if p′[k] = 1.

2. At 1 < t ≤ m, if t = 2, let sequence Q̃ = Q′, otherwise set Q̃ to be the length-

N t−1 sequence Q generated at last iteration. Generate the length N t sequence Q by

concatenation: Q = {q′[0]Q̃, q′[1]Q̃, . . . , q′[N − 1]Q̃}. After all iterations, it can be

seen that for each n from 0 to Nm − 1, the n-th element of the length-Nm desired

sequence Q is q[n] =
∏m−1

k=0 q
′[nk], where nm−1...n1n0 is the N-ary expression for n,

i.e., n = n0 +Nn1 + · · ·+Nm−1nm−1.

Then for r = 1, ..., D − 1, each spectrum SP,Q,r(θ) has a M-th order null at θ = 0.

Proof: See appendix C.

Example 2.4.1. Suppose a set of D = 4 complementary sequence is {z0, z1, z2, z3} (Golay

complementary quad). If the length-4 sequences P ′ and Q′ are selected as P ′ = 0 1 0 1

and Q′ = 1 3 3 1 (Binomial Design), we have known that P ′ and Q′ together creates a
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second-order null of range sidelobes at θ = 0. If we generate the length-16 sequence P as

P = {p[n]}15
n=0 = 0 1 0 1 2 3 2 3 0 1 0 1 2 3 2 3,

hence the transmitted waveform can be vectorized by

s = [z0 z1 z0 z1 z2 z3 z2 z3 z0 z1 z0 z1 z2 z3 z2 z3].

Also construct the length-16 sequence Q as

Q = {q[n]}15
n=0 = 1 3 3 1 3 9 9 3 3 9 9 3 1 3 3 1,

and the receiver waveform can be vectorized by

w = [z0 3z1 3z0 z1 3z2 9z3 9z2 3z3 3z0 9z1 9z0 3z1 z2 3z3 3z2 z3].

It can be shown that the spectrum is

SP,Q,1(θ) = (1 + jejθ)3(1− ej4θ)3,

SP,Q,2(θ) = (1 + ej4θ)3(1− ejθ)3,

SP,Q,3(θ) = (1− jejθ)3(1− ej4θ)3,

Thus each of SP,Q,1(θ), SP,Q,2(θ), and SP,Q,3(θ) has a second-order null at θ = 0.

Remark 2.4.1. It can be readily shown that by oversampling the sequences P and Q, the

spectrum SP,Q,1(θ), ..., SP,Q,,D−1(θ) can be also suppressed around higher Doppler shifts.

2.5 Conclusion

In this chapter we have presented a general approach for constructing radar transmit-

receive pulse trains whose cross-ambiguity functions are free of range sidelobe inside a desired

Doppler interval. The transit pulse train is constructed by a binary sequence P which

coordinates the transmission of a pair of Golay complementary waveforms across time. For

the receiver pulse train each waveform is weighted by an entry in sequence Q. The range

sidelobe of the cross-ambiguity function is shaped by a spectra which is jointly determined
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by P and Q. By properly choosing P and Q sequences the range sidelobe can be annihilated

inside a desired Doppler interval. A detailed comparison of two special cases of (P ,Q) pulse

train design: PTM and Binomial design is demonstrated. This comparison shows that the

joint design of P and Q sequences also enables the tradeoff of Doppler resilience and output

signal-to-noise ratio.
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CHAPTER 3

DOPPLER RESILIENT OFDM ILLUMINATIONS

In Chapter 2 we constructed the transmit pulse train by coordinating the transmission of

Golay complementary waveforms according to zeros and ones in a binary sequence P . The

pulse train used in the receive filter is constructed in a similar way, in terms of sequencing the

Golay waveforms, but each waveform in the pulse train is weighted according to an element

of a sequence Q. The cross-ambiguity function of the (P ,Q) pulse trains is essentially the

radar point-spread function, describing the blurring of the radar image of a point targets

on range-Doppler plane. We show that the magnitude of the range sidelobe of this cross-

ambiguity function is controlled by the magnitude of spectrum of the product of P and Q

sequences. By selecting sequences for which the spectrum of their product has a higher-

order null around zero Doppler, we can annihilate the range sidelobe of the cross ambiguity

function inside a Doppler band around the zero-Doppler axis. This enables us to extract a

weak target that is located in range near a stronger reflector at a different Doppler frequency.

However, in Chapter 2 we also showed that with a fixed available time-bandwidth prod-

uct, the range sidelobe suppression ability, or Doppler resilience, comes at the expense of

Doppler response. This motivates an improvement of the Doppler response. In this Chap-

ter, we consider the exploration of the degrees of freedom in time and frequency for radar

imaging. We show that the Doppler response can be improved by waveform coordination

across frequency, without impacting Doppler resilience. The time-coordinated (P ,Q)-pulse

trains are assigned to 2K orthogonal frequency-division multiplexing (OFDM) subcarriers.

The 2K subcarriers include K subcarriers pairs with equal and opposite frequency offset

relative to a common carrier frequency. The effective radar psf is a weighted summation

of the squared cross ambiguity functions of the (P ,Q)-pulse trains assigned to the total K
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subcarrier pairs. The Doppler response is essentially controlled by of the spectrum of the

weight sequence across all subcarriers, whose zero-crossings around zero Doppler is O(1/K).

This means that Doppler resolution for an OFDM (P ,Q)-pulse train is O(1/K) and at least

K/N better than a single frequency (P ,Q)-pulse train with N pulses. But note that a fine

resolution of our OFDM waveform design requires a huge frequency consumption, which may

not be realistic considering the intense occupation of spectral resources nowadays. We then

show that by implementing two sets of OFDM (P ,Q)-pulse trains operating over 2K1 and

2K2 subcarriers respectively, and properly performing signal processing on the measurement,

we can achieve a Doppler resolution in the order of O(1/K1K2), provided that K1 and K2

are coprime integers. Therefore the same Doppler response can be achieved with much less

bandwidth consumption.

3.1 Tradeoff between Range Sibelobe Suppression and

Doppler Response

Controlling Range Sidelobes. The magnitude of the range sidelobes is proportional to the

magnitude of the spectrum of the sequence (−1)p[n]q[n], given by

SP,Q(θ) =
N−1∑
n=0

(−1)p[n]q[n]ejnθ. (3.1)

As a result, range sidelobes inside a Doppler interval around the zero-Doppler axis can be

suppressed by selecting a sequence (−1)p[n]q[n] whose spectrum has a higher-order null at

zero Doppler. Suppose S
(m)
P,Q(0) is the m-th order derivative of SP,Q(θ) at θ = 0. To create

an Mth order null, all S
(m)
P,Q(0) up to order M must be zero-forced.

Doppler Response. The cross ambiguity function χP,Q (k, θ) across zero delay is propor-

tional to the spectrum

SQ(θ) =
N−1∑
n=0

q[n]ejnθ, (3.2)

which is the spectrum of the Q sequence. The width ∆θ of the mainlobe of the magni-

tude spectrum |SQ(θ)| defined as the location of the first zero crossing of SQ(θ), determine
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the Doppler resolution of the (P ,Q) pulse train, which can be controlled by designing the

sequence Q.

However, there exists a tradeoff between the order of the null at θ = 0 in SP,Q(θ) and the

width of the mainlobe of SQ(θ). A high-order null comes at the expense of Doppler resolution,

and vice versa. We now present two specific design that highlight the two extremes of this

tradeoff.

The following two theorems together illustrate the tradeoff between range sidelobe sup-

pression and Doppler resolution of a (P ,Q) pulse train design:

Theorem 3.1.1. (PTM Design) Let P = {p[n]}N−1
n=0 be the length N Prouhet-Thue-Morse

(PTM) sequence [65], defined recursively as p[2k] = p[k] and p[2k+1] = 1−p[k] for all k ≥ 0,

with p0 = 0, and let Q = {q[n]}N−1
n=0 be the all 1 sequence of length N . Then, (1) the spectrum

SP,Q(θ) has a (log2(N)−1)th-order null at θ = 0, (2) the spectrum SQ(θ) = sin(Nθ
2

)/ sin(Nθ
2

)

has zero crossings at θ = ±2π
N

, and the Doppler resolution is ∆θ = 4π
N

.

Theorem 3.1.2. (Binomial Design) Let P = {p[n]}N−1
n=0 be the length N alternating sequence,

where p2k = 1 and p2k+1 = 0 for all k ≥ 0, and let Q = {q[n]}N−1
n=0 be the length N binomial

sequence {q[n]}N−1
n=0 = {

(
N−1
n

)
}N−1
n=0 . Then, (1) the spectrum SP,Q(θ) has a (N − 2)th-order

null at θ = 0, (2) the spectrum SQ(θ) = (1 + ejθ)N−1 has zero crossings at θ = ±π
2
, and the

Doppler resolution is ∆θ = π.

A revisit of Fig. 2.1 can help better understand the above tradeoff between Doppler

resilience and Doppler response. The conventional design depicted by Fig. 2.1(a) uses an

alternating transmission of Golay complementary waveforms followed by matched filtering

at the receiver. In Fig. 2.1(a), the weak targets are almost completely masked by the range

sidelobes of the stronger reflectors. The PTM design shown in Fig. 2.1(b) has an M =

log2(N) − 1 = 3 order of the spectral null for range sidelobe suppression. With this order,

we can bring the range sidelobes below -80dB inside the [−0.1,−0.1] rad Doppler interval

and extract the weak targets. The spectrum SQ(θ) has zero-crossings at θ = ±2π
N

= ±π
8
,
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Figure 3.1: Illustration of Doppler resolution improvement by using OFDM (P ,Q) pulse
train. K = 64. (a) PTM design, (b) Binomial design.

meaning Doppler resolution is roughly ∆θ = π
4

rad. Fig. 2.1(c) shows that the Binomial

design can expand the cleared (below -80dB) region to [−1,−1] rad by creating a null of

order M = N − 2 = 14 around zero Doppler. However, this increase in the order of the

range sidelobe null comes at the expense of Doppler resolution. The spectrum SQ(θ) has

zero-crossings at θ = ±π
2
, meaning Doppler resolution is roughly ∆θ = π rad.

3.2 OFDM (P ,Q) Pulse Trains

Suppose the radar can transmit a set of P-pulse trains {zP1(t), ..., zPK (t)} across K

subcarriers. Over the k-th subcarrier, k = 0, 1, ..., K − 1, the receiver correlates the radar

return with a Q-pulse train zQk(t). Denote ωc + ωk as the central carrier frequency of the

k-th subcarrier, where where ωc is the some carrier frequency which is common for all k, and

ωk is the k-th frequency offset (ω0 = 0).

Suppose there is a target in scene with range τ0 and radial velocity v. Over the k-th

subcarrier, the down-converted radar return should be

rk(t) = zPk(t− τ0)ej
2v
c

(ωc+ωk)te−j(ωc+ωk)τ0 , (3.3)

Denote νk = 2v
c

(ωc+ωk) as the target’s Doppler frequency with respect to the k-th subcarrier.
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In reality we have that v � c, and ωk � ωc, and we can reasonably assume that each Doppler

frequency νk ≈ ν0 = 2v
c
ωc for all k. Then it follows that the output of the matched filter

over the k-th subcarrier is

zk(τ, ν) =

∫ ∞
−∞

rk(t)zQk(t− τ)e−jνtdt

= e−j(ωc+ωk)τ0ej(ν0−ν)τ0χPk,Qk(τ − τ0, ν − ν0),

(3.4)

where χPk,Qk(τ, ν) is the cross ambiguity functions with respect to the pulse trains zPk(t)

and zQk(t). The phase of zk(τ, ν) includes the range-dependent term (ωc + ωk)τ0 which is

unknown. Moreover, the unknown phases (ωc +ωk)τ0 are not identical for all k. Later on we

will show that for the purpose of improving Doppler resolution, it is important to coherently

combine the cross ambiguity functions χPk,Qk , k = 0, 1, ..., K − 1. To avoid the above phase

difference we refer to the approach in [20]. Suppose we are given additional K−1 subcarriers

frequency ωc − ωk, k = 1, ..., K − 1. Over the subcarrier at central frequency ωc − ωk, if the

radar transmits the waveform zPk(t), and the receiver correlates the down-converted radar

return

r′k(t) = zPk(t− τ0)ej
2v
c

(ωc−ωk)te−j(ωc−ωk)τ0 , (3.5)

with zQk(t), then the output of matched filter is

z′k(τ, ν) = e−j(ωc−ωk)τ0ej(ν0−ν)τ0χPk,Qk(τ − τ0, ν − ν0). (3.6)

Let z′0(τ, ν) = z0(τ, ν). Then for each k = 0, 1, ..., K − 1, the product of zk(τ, ν) and z′k(τ, ν)

is

ξk(τ, ν) = zk(τ, ν)z′k(τ, ν)

= e−2jωcτ0e2j(ν0−ν)τ0χ2
Pk,Qk(τ − τ0, ν − ν0).

(3.7)

So far the complex factor e−2jωcτ0e2j(ν0−ν)τ0 is common for all k. Ignoring the common factor

and we can write
K−1∑
k=0

ξk(τ, ν) =
K−1∑
k=0

χ2
Pk,Qk(τ − τ0, ν − ν0). (3.8)
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Eq. (3.8) shows that the function
∑K−1

k=0 χ
2
Pk,Qk(τ, ν), which is the composite square of cross

ambiguity function, can be viewed as the point-spread-function of the new radar system,

where the inputs of the system are the square of targets’s scattering functions. Hence, the

remaining problem is to find candidates for pulse trains {zPk(t)}K−1
k=0 and {zQk(t)}K−1

k=0 , such

that the function
∑K−1

k=0 χ
2
Pk,Qk(τ, ν) owns a desired Doppler resolution and meanwhile keeps

a satisfactory range sidelobe suppression. To achieve the goal, we present one way to building

the pulse trains {zPk(t)}K−1
k=0 and {zQk(t)}K−1

k=0 in the following. If we select {zPk(t)}K−1
k=0 and

{zQk(t)}K−1
k=0 as 

zPk(t) = zP(t− kT/2)

zQk(t) = rkzQ(t− kT/2)

, k = 0, ..., K − 1, (3.9)

where rk is some complex scaler, and the pulse trains zP(t) and Q(t) are generated by a pair

of sequences (P ,Q) corresponding to an M -th order range sidelobe as in section 3.1. This

implies that

χPk,Qk(τ, ν) = rke
−jνkT/2χP,Q(τ, ν). (3.10)

Let θ = νT , then we have

K−1∑
i=0

χ2
Pk,Qk(τ, ν) = R(θ)χ2

P,Q(τ, ν), (3.11)

where R(θ) =
∑K−1

k=0 r
2
ke
−jkθ is the spectrum of the sequence {r2

k}K−1
k=0 .

By choosing proper sequence {r2
k}K−1

k=0 , the spectrum R(θ) can have desirably lowpass, and

thus the Doppler resolution can be controlled by R(θ). For example, if rk = 1 for all k, then

R(θ) is the well-known Dirichlet kernel whose closest zero crossings around zero Doppler are

θ = ±2π
K

. Therefore the Doppler resolution of the point-spread-function
∑K−1

i=0 χ2
Pk,Qk(τ, ν)

is O( 1
K

), which is at least N
K

time better than that of a single frequency (P ,Q) pulse train

of length N .

Remark 3.2.1. Eq. (3.9) shows that each pulse train zPk(t) is the pulse train zPk(t) delayed

by k T
2
. But this does not mean that over subcarriers with central frequencies ωc ± ωk, zP(t)

needs to be transmitted k T
2

later than over the subcarrier with central frequency ωc. This
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Figure 3.2: Implementation of OFDM radar using Golay complementary waveforms.

is because that for each k, the absolute time t does not affect the measurements zk(τ, ν)

and z′k(τ, ν) in eq. (3.4) and (3.6). Thus to let the transmission of waveforms across all the

subcarriers share the same time interval NT , one can ”tune the clock” for the subcarriers

with central frequencies ωc ± ωk with k T
2

seconds ahead of the clock for the subcarrier with

central frequency ωc.

Fig. 3.1 shows the delay-Doppler maps for a OFDM radar with 2K−1 = 127 subcarriers,

and (zP(t), zQ(t)) corresponding to the PTM (Fig. 2.1(b)) and Binomial (Fig. 2.1(c))

designs. The sequence {r2
k}K−1

k=0 is chosen to be the all 1 sequence in both cases. The OFDM

point-spread-functions have the same cleared region of range sidelobes as shown in Fig. 2.1,

but their Doppler resolution is roughly ∆θ = 4π
K

= π
16

. The implementation of the OFDM

radar is illustrated in Fig. 3.2.
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3.2.1 Spectrum Optimization

The Doppler response of the OFDM (P ,Q) pulse train is controlled by the spectrum

R(θ)S2
Q(θ). Define the sequence a(n) = (γ ∗ Q ∗ Q)(n). From the Parseval’s theorem we

have
2N+K−3∑
n=0

|a(n)|2 =

∫ π

−π
|R(θ)S2

Q(θ)|2dθ. (3.12)

And we can also show that

2N+K−3∑
n=0

|a(n)|2 = γHQH
KQH

N+K−1QN+K−1QKγ, (3.13)

where QK and QN+K−1 are the convolution matrices represented by Q, for length-K and

length-N +K−1 vectors. Note that R(0)S2
Q(0) =

∑K−1
k=0 γk(

∑N−1
n=0 q[n])2. Thus to minimize

the sidelobe to peak ratio

1

|R(0)S2
Q(0)|2

∫ π

−π
|R(θ)S2

Q(θ)|2dθ, (3.14)

it suffices to solve the optimization problem

min
γ
γHQH

KQH
N+K−1QN+K−1QKγ

s.t. |
K−1∑
k=0

γk|2 = 1.

(3.15)

3.2.2 Analysis of Nonlinearity

Suppose there are two targets in scene with coordinates (τ0, ν0) and (τ1, ν1) respectively.

From eq. (3.4) and (3.6) we know that the corresponding matched filter outputs are
zk(τ, ν) =

∑1
`=0 e

−j(ωc+ωk)τ`ej(ν`−ν)τ`e−j(ν−ν`)kT/2χP,Q(τ − τ`, ν − ν`)

z′k(τ, ν) =
∑1

`=0 e
−j(ωc−ωk)τ`ej(ν`−ν)τ`e−j(ν−ν`)kT/2χP,Q(τ − τ`, ν − ν`)

, k = 0, 1, ..., K1− 1.

(3.16)
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Therefore the product of zk(τ, ν) and z′k(τ, ν) is

ξk(τ, ν) =
1∑
`=0

e−j2ωcτ`ej2(ν`−ν)τ`e−j(ν−ν`)kTχ2
P,Q(τ − τ`, ν − ν`) + 2e−jωc(τ0+τ1) cos(ωk(τ0 − τ1))

· ej[(ν0−ν)τ0+(ν1−ν)τ1]ej(2ν−ν0−ν1)kT/2χP,Q(τ − τ0, ν − ν0)χP,Q(τ − τ1, ν − ν1),

(3.17)

and thus

K−1∑
k=0

ξk(τ, ν) =
1∑
`=0

e−j2ωcτ`ej2(ν`−ν)τ`R((ν − ν`)T )χ2
P,Q(τ − τ`, ν − ν`) +

K−1∑
k=0

cos(ωk(τ0 − τ1))

· 2ej(2ν−ν0−ν1)kT/2e−jωc(τ0+τ1)ej[(ν0−ν)τ0+(ν1−ν)τ1]χP,Q(τ − τ0, ν − ν0)χP,Q(τ − τ1, ν − ν1)

(3.18)

If |τ0 − τ1| is greater than Tc, which is the range resolution of χP,Q(τ, ν), the cross term

is close to zero due to the range sidelobe suppression ability of the (P ,Q) pulse train. If

|τ0−τ1| ≤ Tc, the cross term cannot be neglected when τ is near τ0 and τ1. Suppose ωk = kω1,

k = 0, 1, ..., K − 1, then by omitting the bulk phases in eq. (3.18), we have

K−1∑
k=0

ξk(τ, ν) =
1∑
`=0

R((ν − ν`)T )χ2
P,Q(τ − τ`, ν − ν`) + [R((ν − ν1 + ν2

2
)T − ω1(τ0 − τ1))

+R((ν − ν1 + ν2

2
)T + ω1(τ0 − τ1))]χP,Q(τ − τ0, ν − ν0)χP,Q(τ − τ1, ν − ν1).

(3.19)

Thus the above two cross terms are centered at

νcr =
ν0 + ν1

2
± ω1(τ0 − τ1)

T
(3.20)

in Doppler.

3.3 Coprime OFDM (P ,Q) Pulse Trains

Suppose the radar system can utilize two frequency bands B1 and B2. The frequency band

B1 consists of 2K1−1 subcarriers with the central frequencies ωc,1−ωK1−1,1, ..., ωc,1, ..., ωc,1 +

ωK1−1,1 respectively. The frequency band B2 consists of 2K2− 1 subcarriers with the central
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frequencies ωc,2 − ωK2−1,2, ..., ωc,2, ..., ωc,2 + ωK2−1,2 respectively. As in section 3.2, over each

subcarrier the radar transmits a time delayed P-pulse train zP(t), and the receiver correlates

the radar return with aQ-pulse train zQ(t). In specific, over the subcarriers in B1 with central

frequencies ωc,1 ± ωk,1, the transmit and receive pulse trains are
zP1,k

(t) = zP(t− kK2T/2)

zQ1,k
(t) = hkzQ(t− kK2T/2)

, k = 0, ..., K1 − 1. (3.21)

Over the subcarriers in B2 with central frequencies ωc,2±ωk,2, the transmit and receive pulse

trains are 
zP2,k

(t) = zP(t− kK1T/2)

zQ2,k
(t) = gkzQ(t− kK1T/2)

, k = 0, ..., K2 − 1. (3.22)

Accordingly, we have the following expressions of the cross ambiguity functions:

χP1,k,Q1,k
(τ, ν) = hke

−jνkK2T/2χP,Q(τ, ν), k = 0, ..., K1 − 1, (3.23)

χP2,k,Q2,k
(τ, ν) = gke

−jνkK1T/2χP,Q(τ, ν), k = 0, ..., K2 − 1. (3.24)

Denote ξ1,k as the product of two matched filters’ output over the subcarriers in B1 with

central frequencies ωc,1 ± ωk,1. By ignoring the common bulk phase term we have

K1−1∑
k=0

ξ1,k(τ, ν) =

K1−1∑
k=0

χ2
P1,k,Q1,k

(τ − τ0, ν − ν0)

, η1(τ − τ0, ν − ν0),

(3.25)

where the function η1(τ, ν) can be written by

η1(τ, ν) =

K1−1∑
k=0

h2
ke
−jνkK2Tχ2

P,Q(τ, ν)

= H(K2θ)χ
2
P,Q(τ, ν),

(3.26)

and H(θ) =
∑K1−1

k=0 h2
ke
−jkθ is the spectrum of the length-K1 sequence {h2

k}
K1−1
k=0 . Similarly,

by combining the measurements from frequency band B2, we can have

K2−1∑
k=0

ξ2,k(τ, ν) =

K2−1∑
k=0

χ2
P2,k,Q2,k

(τ − τ0, ν − ν0)

, η2(τ − τ0, ν − ν0),

(3.27)
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Figure 3.3: Range and Doppler map for the measurements collected over frequency bands
B1 and B2, K1 = 7 and K2 = 9. (a)

∑K1−1
k=0 ξ1,k(τ, ν), (b)

∑K2−1
k=0 ξ2,k(τ, ν).

where

η2(τ, ν) =

K2−1∑
k=0

g2
ke
−jνkK1Tχ2

P,Q(τ, ν)

= G(K1θ)χ
2
P,Q(τ, ν).

(3.28)

and G(θ) =
∑K2−1

k=0 g2
ke
−jkθ is the spectrum of the length-K2 sequence {g2

k}
K2−1
k=0 . Therefore,

the functions η1(τ, ν) and η2(τ, ν) are obtained by modulating the square of cross ambi-

guity function χ2
P,Q(τ, ν) with the spectrum H(K2θ) and G(K1θ) respectively. The spec-

trums H(K2θ) and G(K1θ) have periodicity 2π
K2

and 2π
K1

, and their mainlobe width are both

O( 1
K1K2

). Fig. 3.3 shows the range and Doppler map for the measurements
∑K1−1

k=0 ξ1,k(τ, ν)

and
∑K2−1

k=0 ξ2,k(τ, ν) in eq. (3.25) and (3.27). We set K1 = 7 and K2 = 9. The sequences

{hk}K1−1
k=0 and {gk}K2−1

k=0 are set to be all 1 sequences. The Doppler resolution ∆θ = 4π
K1K2

= 4π
63

.

However, since the periodic pattern of H(K2θ) and G(K1θ), some ”artificial targets” appear

in the screen. The following theorem demonstrates how to eliminate the artifact issue:

Theorem 3.3.1. Suppose the spectrum H(θ) and G(θ) are ideally lowpass such that H(θ) is

nonzero only within |θ| ≤ π
K1

, and G(θ) is nonzero only within |θ| ≤ π
K2

. If the integers K1

and K2 are coprime, then for θ ∈ [−π, π], the product spectrum H(K2θ)G(K1θ) is nonzero
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Figure 3.4: Product of measurements
∑K1−1

k=0 ξ1,k(τ, ν) and
∑K2−1

k=0 ξ2,k(τ, ν). Artificial tar-
gets are removed.

only within |θ| ≤ π
K1K2

. In other words, H(K2θ)G(K1θ) is ideally lowpass with bandwidth

2π
K1K2

.

Proof: The original proof is given in [75]. For illustration purpose, here we simply

recap the proof. The spectrum H(K2θ) has K2 passbands with width 2π
K1K2

each. The K2

passbands are centered at 2πk2

K2
= 2πK1k2

K1K2
, k2 = 0, ..., K2 − 1. Similarly, the spectrum G(K1θ)

has K1 passbands with width 2π
K1K2

each. The K1 passbands are centered at 2πk1

K1
= 2πK2k1

K1K2
,

k1 = 0, ..., K1 − 1. Since K1 and K2 are coprime, K1k2 6= K2k1 except for k1 = k2 = 0.

Theorem 3.3.1 guarantees that product of η1(τ, ν) and η2(τ, ν)

η1(τ, ν)η2(τ, ν) = H(K2θ)G(K1θ)χ
4
P,Q(τ, ν). (3.29)

has a unique peak at (0, 0) if the spectrums H(θ) and G(θ) both have lowpass behavior.

Hence the the function H(K2θ)G(K1θ)χ
4
P,Q(τ, ν) can serve as the point-spread-function of

the new radar system, where the inputs of the system are the fourth power of targets’s

scattering functions. It is clear that the Doppler resolution of the point-spread-function

H(K2θ)G(K1θ)χ
4
P,Q(τ, ν) is O( 1

K1K2
).

Fig. 3.4 shows that product of measurements Product of measurements
∑K1−1

k=0 ξ1,k(τ, ν)

and
∑K2−1

k=0 ξ2,k(τ, ν). Due to the coprimality between K1 and K2, The artifacts in Fig. 3.3
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Figure 3.5: Implementation of coprime OFDM radar using Golay complementary wave-
forms.

are removed, whereas the desired Doppler resolution is maintained.

Remark 3.3.1. Compared to the OFDM (P ,Q) pulse trains derived in section 3.2, the coprime

OFDM (P ,Q) pulse trains can significant compress the required frequency bandwidth. If the

desired Doppler resolution is O( 1
K1K2

), where K1 and K2 are coprime integers, the number

of required subcarriers for a OFDM (P ,Q) pulse train is O(K1K2), whereas the number of

required subcarriers for a coprime OFDM (P ,Q) pulse train is only O(K1 + K2). We will

see the price paid for this bandwidth compression in section 3.5. Readers can refer to Fig.

3.5 for the implementation of coprime OFDM radar.

3.4 (P ,Q) Pulse Train Obtained by Sequence Repeti-

tion

Suppose a length-N1 (P1,Q1) pulse train design has an M1-th order-null range side-

lobe of cross ambiguity function at θ = 0. From the sequences P1 = {p1[r]}N1−1
r=0

and Q1 = {q1[r]}N1−1
r=0 we construct the length-N1N2 sequences P̃1 = {p̃1[r]}N1N2−1

r=0 and

Q̃1 = {q̃1[r]}N1N2−1
r=0 as follows. Let p̃1[bN1 + r] = p1[r] and q̃1[bN1 + r] = hbq1[r] for

r = 0, 1, ..., N1 − 1 and b = 0, 1, ..., N2 − 1. In other words, the sequences P̃1 and Q̃1
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are generated by repeating sequences P1 and Q1 for N2 times. From this, the new P and Q

pulse trains are

zP̃1
(t) =

N2−1∑
b=0

zP1(t− bN1T ), (3.30)

and

zQ̃1
(t) =

N2−1∑
b=0

hbzQ1(t− bN1T ). (3.31)

The cross ambiguity function of zP̃1
(t) and zQ̃1

(t) is

χP̃1,Q̃1
(τ, ν)

=

N2−1∑
b=0

N1−1∑
r=0

q̃1[bN + r]ej(bN+r)νT

L−1∑
k=−(L−1)

[p̃1[bN + r]Cx[k] + p̃1[bN + r]Cy[k]]χΩ(τ − kTc, ν)

=

N2−1∑
b=0

ejbNθ
N1−1∑
r=0

q̃1[bN + r]ejrθ
L−1∑

k=−(L−1)

[p̃1[bN + r]Cx[k] + p̃1[bN + r]Cy[k]]χΩ(τ − kTc, ν)

=

N2−1∑
b=0

hbe
jbNθ

N1−1∑
r=0

q1[r]ejrθ
L−1∑

k=−(L−1)

[p1[r]Cy[k] + p1[r]Cy[k]]χΩ(τ − kTc, ν)

= H(−N2θ)χP1,Q1(τ, ν),

(3.32)

where H(θ) =
∑N2−1

b=0 hbe
−jbθ is the spectrum of the length-N2 sequence {hb}N2−1

b=0 .

Suppose a length-N2 (P2,Q2) pulse train design has an M2-th order-null range side-

lobe of cross ambiguity function at θ = 0. From the sequences P2 = {p2[r]}N2−1
r=0

and Q2 = {q2[r]}N2−1
r=0 we construct the length-N1N2 sequences P̃2 = {p̃2[r]}N1N2−1

r=0 and

Q̃2 = {q̃2[r]}N1N2−1
r=0 as follows. Let p̃2[bN2 + r] = p2[r] and q̃2[bN2 + r] = gbq2[r] for

r = 0, 1, ..., N2 − 1 and b = 0, 1, ..., N1 − 1. Similarly, the cross ambiguity function of

zP̃2
(t) and zQ̃2

(t) is

χP̃2,Q̃2
(τ, ν) = G(−N1θ)χP2,Q2(τ, ν), (3.33)

where G(θ) =
∑N1−1

b=0 gbe
−jbθ is the spectrum of the length-N1 sequence {gb}N1−1

b=0 .

Now let the radar transmit the P pulse trains zP̃1
(t) and zP̃2

(t). The transmission of

zP̃1
(t) and zP̃2

(t) can be separated in frequency or time. The receiver correlates the radar
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Figure 3.6: (a) Range and Doppler map of the product ξ(τ, ν) = z1(τ, ν) and z2(τ, ν),
N1 = 7 and N2 = 9, (b) length-64 PTM design.

returns of zP̃1
(t) and zP̃2

(t) with zQ̃1
(t) and zQ̃2

(t) respectively. If the radar scene contains

a target with coordinate (τ0, ν0), by omitting the bulk phases the outputs of two matched

filters are

z1(τ, ν) = H(−N2(ν − ν0)T )χP1,Q1(τ − τ0, ν − ν0), (3.34)

and

z2(τ, ν) = G(−N1(ν − ν0)T )χP2,Q2(τ − τ0, ν − ν0). (3.35)

The product of z1(τ, ν) and z2(τ, ν) is

ξ(τ, ν) = H(−N2(ν−ν0)T )G(−N1(ν−ν0)T )χP̃1,Q̃1
(τ−τ0, ν−ν0)χP̃2,Q̃2

(τ−τ0, ν−ν0). (3.36)

Therefore the function H(−N2θ)G(−N1θ)χP̃1,Q̃1
(τ, ν)χP̃2,Q̃2

(τ, ν) can be viewed as the point-

spread-function of the new radar system. If integers N1 and N2 are coprime, from theorem

3 we know that the Doppler resolution of the point-spread function is O( 1
N1N2

). And the

point spread function should have desired range sidelobe suppression ability since (P1,Q1)

and (P2,Q2) pulse train designs have good range sidelobe suppressions.

Fig. 3.6(a) illustrates the range and Doppler map of the product ξ(τ, ν) = z1(τ, ν) and

z2(τ, ν). We set N1 = 7 and N2 = 9. The sequences {hb}N2−1
b=0 and {gb}N1−1

b=0 are selected
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as all 1 sequences. The pulse train design (P1,Q1) is a length-N1 Binomial design, and the

pulse train design (P2,Q2) is a length-N2 Binomial design. Therefore, the lengths of pulse

train designs (P̃1, Q̃1, ) and (P̃1, Q̃1, ) are both N1N2 = 63, and the Doppler resolution of the

function H(−N2θ) ·G(−N1θ)χP̃1,Q̃1
(τ, ν) is ∆θ = 4π

N1N2
= 4π

63
. As a benchmark, the range and

Doppler map for the length-64 PTM design is plotted in Fig. 3.6(b). Although the length-64

PTM design presents comparable Doppler resolution, its point-spread-function has a much

narrower Doppler band. This is because for the length-64 PTM design, its range sidelobe

only has a (log2(64) − 1 = 5)th order of null at θ = 0. But for the design depicted in Fig.

3.6(a), the null order of its range sidelobe is N1+N2

2
= 8.

3.5 SNR Analysis

3.5.1 OFDM (P ,Q) Pulse Train

For simplicity, here we assume that the target’s scattering coefficients over all subcarrier

are identical (unity). The matched filter outputs are
zk = rk

[
e−j(ωc+ωk)τ0ej(ν0−ν)τ0αkχP,Q(0, 0) + χNk,Q(τ0, ν0)

]
z′k = r′k

[
e−j(ωc−ωk)τ0ej(ν0−ν)τ0α′kχP,Q(0, 0) + χN ′k,Q(τ0, ν0)

] , k = 0, 1, ..., K − 1. (3.37)

thus the product of zk and z′k is

ξk = γk[e
−j2ωcτ0ej2(ν0−ν)τ0αkα

′
kχ

2
P,Q(0, 0) + φk], (3.38)

where γk = rkr
′
k, and φk is the noise component in ξk:

φk = e−j(ωc−ωk)τ0ej(ν0−ν)τ0α′kχP,Q(0, 0)χNk,Q(τ0, ν0)

+ e−j(ωc+ωk)τ0ej(ν0−ν)τ0αkχP,Q(0, 0)χN ′k,Q(τ0, ν0) + χNk,Q(τ0, ν0)χN ′k,Q(τ0, ν0).

(3.39)

Then the signal power of the composite measurement
∑K−1

k=0 ξk is

Ps = |
K−1∑
k=0

γke
−j2ωcτ0ej2(ν0−ν)τ0αkα

′
kχ

2
P,Q(0, 0)|2

= |
K−1∑
k=0

γkαkα
′
k|2χ4

P,Q(0, 0).

(3.40)
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The noise power of
∑K−1

k=0 ξk is

Pn = E
{∣∣K−1∑

k=0

γkφk
∣∣2}

=
K−1∑
k=0

|γk|2E
{
|φk|2

}
.

(3.41)

The second equation of (3.41) is due to the noise independence. For each k, it is also easy

to show that

E
{
χNk,Q(τ0, ν0)χN ′k,Q(τ0, ν0)

}
= 0,

E
{
χNk,Q(τ0, ν0)χNk,Q(τ0, ν0)χN ′k,Q(τ0, ν0)

}
= 0,

E
{
χN ′k,Q(τ0, ν0)χNk,Q(τ0, ν0)χN ′k,Q(τ0, ν0)

}
= 0.

(3.42)

Therefore we have

Pn =
K−1∑
k=0

|γk|2
[
|α′k|2χP,Q(0, 0)2ηk + |αk|2χP,Q(0, 0)2η′k + ηkη

′
k

]
, (3.43)

where ηk = E{|χNk,Q(τ0, ν0)|2} and η′k = E{|χN ′k,Q(τ0, ν0)|2}. Define the ratios ρk =

χP,Q(0, 0)2/ηk and ρ′k = χP,Q(0, 0)2/η′k. Therefore the signal to noise ratio is

SNR =
Ps
Pn

=
|
∑K−1

k=0 γkαkα
′
k|2∑K−1

k=0 |γk|2
[
|α′k|2ρ

−1
k + |αk|2ρ′−1

k + ρ−1
k ρ′−1

k

] (3.44)

Denote SNRk = |αk|2ρk and SNR′k = |α′k|2ρ′k as the SNRs over the subcarriers at central

frequencies ωc ± ωk respectively. Since ρ−1
k ρ′−1

k = (|α′k|2ρ′k)−1|α′k|2ρ−1
k = (|αk|2ρk)−1|αk|2ρ′−1

k ,

at high SNR regime we may drop the term ρ−1
k ρ′−1

k from denominator of eq (3.44). Therefore

the SNR can be approximated by

SNR =
|
∑K−1

k=0 γkαkα
′
k|2∑K−1

k=0 |γk|2
[
|α′k|2ρ

−1
k + |αk|2ρ′−1

k

] . (3.45)

Using Cauchy-Schwarz inequality, we have

|
K−1∑
k=0

γkαkα
′
k|2 =

1

4

∣∣K−1∑
k=0

(γkα
′
k

√
ρ−1
k )(αk

√
ρk) + (γkαk

√
ρ′−1
k )(αk

√
ρ′k)
∣∣2

≤ 1

4

(K−1∑
k=0

|γk|2
[
|α′k|2ρ−1

k + |αk|2ρ′−1
k

])(K−1∑
k=0

|αk|2ρk + |α′k|2ρ′k
)
.

(3.46)
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This shows that

SNR ≤ 1

4

K−1∑
k=0

(SNRk + SNR′k). (3.47)

This means that the signal to noise ratio is attenuated at least by a factor of 4 due to the

non-linear processing.

If assume that αk = α′k = α, and ρk = ρ′k = ρ for all k, then the SNR becomes

SNR =
|α|2ρ

2

|
∑K−1

k=0 γk|2∑K−1
k=0 |γk|2

. (3.48)

Clearly, the SNR is maximized when the sequence {γk}K−1
k=0 is collinear to an all 1 sequence,

and the maximum SNR is SNRmax = K
2
|α|2ρ.

3.5.2 Coprime OFDM (P ,Q) Pulse Train

The k-th product of matched filter outputs in first and second filter-bank are
ξk,1 = γk,1[c1αk,1α

′
k,1χ

2
P,Q(0, 0) + φk,1], k = 0, ..., K1 − 1,

ξk,2 = γk,2[c2αk,2α
′
k,2χ

2
P,Q(0, 0) + φk,2], k = 0, ..., K2 − 1,

(3.49)

where the complex constants c1 and c2 are c1 = e−j2ωc,1τ0ej2(ν0−ν)τ0 , c2 = e−j2ωc,2τ0ej2(ν0−ν)τ0 .

The noise terms over φk,1 and φk,2 over OFDM blocks B1 and B2 are defined similarly as eq.

(3.39). Thus for the measurement
∑K1−1

k=0 ξk,1
∑K2−1

k=0 ξk,2, its signal power is

Ps =
∣∣c1

K1−1∑
k=0

γk,1αk,1α
′
k,1χ

2
P,Q(0, 0)c2

K2−1∑
k=0

γk,2αk,2α
′
k,2χ

2
P,Q(0, 0)

∣∣2
=
∣∣K1−1∑
k=0

γk,1αk,1α
′
k,1

∣∣2∣∣K2−1∑
k=0

γk,2αk,2α
′
k,2

∣∣2χ8
P,Q(0, 0).

(3.50)

The noise power for
∑K1−1

k=0 ξk,1
∑K2−1

k=0 ξk,2 is

p[n] = E
{∣∣K1−1∑

k=0

γk,1φk,1
∣∣2}∣∣K2−1∑

k=0

γk,2αk,2α
′
k,2

∣∣2χ4
P,Q(0, 0)

+ E
{∣∣K2−1∑

k=0

γk,2φk,2
∣∣2}∣∣K2−1∑

k=0

γk,1αk,1α
′
k,1

∣∣2χ4
P,Q(0, 0) + E

{∣∣K1−1∑
k=0

γk,1φk,1
∣∣2}E{∣∣K2−1∑

k=0

γk,2φk,2
∣∣2}.

(3.51)
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Note that

E
{∣∣∑K1−1

k=0 γk,1φk,1
∣∣2}∣∣∑K2−1

k=0 γk,2αk,2α
′
k,2

∣∣2χ4
P,Q(0, 0)

E
{∣∣∑K1−1

k=0 γk,1φk,1
∣∣2}E{∣∣∑K2−1

k=0 γk,2φk,2
∣∣2} =

∣∣∑K2−1
k=0 γk,2αk,2α

′
k,2

∣∣2χ4
P,Q(0, 0)

E
{∣∣∑K2−1

k=0 γk,2φk,2
∣∣2} , SNR2,

E
{∣∣∑K2−1

k=0 γk,2φk,2
∣∣2}∣∣∑K1−1

k=0 γk,1αk,1α
′
k,1

∣∣2χ4
P,Q(0, 0)

E
{∣∣∑K1−1

k=0 γk,1φk,1
∣∣2}E{∣∣∑K2−1

k=0 γk,2φk,2
∣∣2} =

∣∣∑K1−1
k=0 γk,1αk,1α

′
k,1

∣∣2χ4
P,Q(0, 0)

E
{∣∣∑K1−1

k=0 γk,1φk,1
∣∣2} , SNR1,

(3.52)

where SNR1 and SNR2 are the SNRs for
∑K1−1

k=0 ξk,1 and
∑K2−1

k=0 ξk,2 respectively. Thus for

large SNR1 and SNR2, we may drop the third term on the right hand side of eq. (3.51).

Therefore the SNR of
∑K1−1

k=0 ξk,1
∑K2−1

k=0 ξk,2 can be approximated by

SNR =

∣∣∑K1−1
k=0 γk,1αk,1α

′
k,1

∣∣2∣∣∑K2−1
k=0 γk,2αk,2α

′
k,2

∣∣2χ4
P,Q(0, 0)

E
{∣∣∑K1−1

k=0 γk,1φk,1
∣∣2}∣∣∑K2−1

k=0 γk,2αk,2α′k,2
∣∣2 + E

{∣∣∑K2−1
k=0 γk,2φk,2

∣∣2}∣∣∑K2−1
k=0 γk,1αk,1α′k,1

∣∣2
=

(
1

SNR1

+
1

SNR2

)−1

≤ 1

4
(SNR1 + SNR2).

(3.53)

Using eq. (3.47), we have

SNR ≤ 1

16

[K1−1∑
k=0

(SNRk,1 + SNR′k,1) +

K2−1∑
k=0

(SNRk,2 + SNR′k,2)
]
, (3.54)

where SNRk,1 and SNR′k,1 are the SNRs over the subcarriers at central frequencies ωc,1±ωk,1

in B1 respectively. And SNRk,2 and SNR′k,2 are the SNRs over the subcarriers at central

frequencies ωc,2 ± ωk,2 in B2 respectively.

As a special case, when the coefficients {αk,1, α′k,1}
K1−1
k=0 and {αk,2, α′k,2}

K2−1
k=0 all equal to

α, and the noise power over all subcarriers are identical, the maximum SNR is

SNRmax =
|α|2ρ

2
(

1

K1

+
1

K2

)−1

=
|α|2ρ

2

K1K2

K1 +K2

.

(3.55)

The condition to achieve SNRmax is that the both {γk,1}K1−1
k=0 and {γk,2}K2−1

k=0 are collinear

to some all 1 sequence. Let K = K1K2 be the integer which is inverse proportional to the

61



Doppler resolution. Then since K1 and K2 are coprime (not equal), we know that

SNRmax <
|α|2ρ

4

√
K, (3.56)

which implies that K1 and K2 should be close in value for large SNRmax.

3.5.3 (P ,Q) Pulse Train Obtained by Sequence Repetition

The first matched filter output is

z1 = α1χP̃1,Q̃1
(0, 0) + χN1,Q̃1

(τ0, ν0). (3.57)

Let n1,`(t) = n1(t− `N2T ) for `N1T + τ0 ≤ t < (` + 1)N1T + τ0. Then by the construction

of Q-pulse train zQ̃1
(t) we know that

χN1,Q̃1
(τ0, ν0) =

∫ ∞
−∞

n1(t)zQ̃1
(t− τ0)e−jν0tdt

=

N2−1∑
`=0

∫ N1T+τ0

τ0

n1,`(t)h`zQ1(t− τ0)e−jν0(t+`N1T )dt

=

N2−1∑
`=0

e−jν0`N1Th`χN1,`,Q1(τ0, ν0).

(3.58)

Thus z1 can be written by

z1 = α1χP1,Q1(0, 0)

N2−1∑
`=0

h1,` +

N2−1∑
`=0

e−jν0`N1Th∗1,`χN1,`,Q1(τ0, ν0), (3.59)

and similarly, the second matched filter output is

z2 = α2χP2,Q2(0, 0)

N1−1∑
`=0

h2,` +

N1−1∑
`=0

e−jν0`N2Th∗2,`χN2,`,Q2(τ0, ν0). (3.60)

Therefore the signal power for z1z2 is

Ps = |α1α2|2χ2
P1,Q1

(0, 0)χ2
P2,Q2

(0, 0)
∣∣N2−1∑
`=0

h1,`

∣∣2∣∣N1−1∑
`=0

h2,`

∣∣2 (3.61)

Denote η1 = E{|χN1,`,Q1(τ0, ν0)|2} for ` = 0, ..., N2 − 1 and η2 = E{|χN2,`,Q2(τ0, ν0)|2} for

` = 0, ..., N1 − 1. Ignoring the product of noises in z1 and z2, the noise power for z1z2 is

p[n] = |α1|2η2

∣∣N2−1∑
`=0

h1,`

∣∣2 N1−1∑
`=0

|h2,`|2χ2
P1,Q1

(0, 0) + |α2|2η1

∣∣N1−1∑
`=0

h2,`

∣∣2 N2−1∑
`=0

|h1,`|2χ2
P2,Q2

(0, 0).

(3.62)
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The signal to noise ratio of z1z2 is

SNR =

(( |∑N2−1
`=0 h1,`|2∑N2−1
`=0 |h1,`|2

|α1|2ρ1

)−1
+
( |∑N1−1

`=0 h2,`|2∑N1−1
`=0 |h2,`|2

|α2|2ρ2

)−1
)−1

≤
(

1

N2|α1|2ρ1

+
1

N1|α2|2ρ2

)−1

,

(3.63)

where ρ1 = χ2
P1,Q1

(0, 0)/η1, and ρ2 = χ2
P2,Q2

(0, 0)/η2. If α1 = α2 = α, the maximum SNR is

SNRmax = |α|2
(

1

N2ρ1

+
1

N1ρ2

)−1

. (3.64)

3.6 Conclusion

In this chapter, we have developed the sequencing of time-coordinated (P ,Q) pulse trains

in frequency. Through utilizing added degree of freedoms in frequency domain, we are able

to craft a point spread function of OFDM radar which owns a narrow Doppler response,

whereas the Doppler response of a single frequency radar, as the price of improved Doppler

resilience, is typically flat.
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CHAPTER 4

DOPPLER RESILIENT PARAUNITARY

ILLUMINATIONS FOR PHASED-ARRAY MIMO

RADAR

In chapters 2 and 3, we studied the design of Doppler resilient waveforms for single-input

single-output (SISO) radars. The proposed transmit-receive pulse trains are simply generated

by separating a small number of waveform components in a pre-determined waveform library

across across multiple degrees of freedom. We showed that by properly coordinating the

transmission of waveform components in time, the point spread function of a SISO radar

system can be essentially free of range sidelobe inside a desired Doppler band around zero

Doppler axis. This in turn improves the performance of range detection of weak targets that

are surrounded by strong reflectors moving at different velocities. We further demonstrated

that through carefully sequencing the transmission of waveform components in both time

and frequency, we are able to create a point spread function with a narrow Doppler response.

Therefore the Doppler response, which has been traded for Doppler resilience in a single-

frequency SISO radar, can be compensated by using an OFDM SISO radar along with proper

signaling strategy.

We mentioned earlier that modern radars are increasingly being equipped with arbitrary

waveform generators which enable generation of different wavefields across aperture, time,

frequency, polarization, and wavenumber. Recently, the advent of multiple-input multiple-

output (MIMO) radar brings the promise of increased performance for target detection and

tracking. A phased-array MIMO radar is equipped with multiple transmit and receive aper-

tures that enable the transmission of independent waveforms across the transmit array and
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parallel signal processing across the receive array. Therefore the spatial waveform diversity

brings in the promise of several performance improvements, such as enhanced target detec-

tion capability [14], and desired transmit beampattern due to the general spatial waveform

correlation [21].

Recent advances of space-time waveform design for phased-array MIMO radar essentially

fall into two categories. Works in the first category aim for seeking transmit space-time

waveform with desired ambiguity matrix. Designs of orthogonal [21] and nonorthogonal [76,

77] zero-lag ambiguity matrix (waveform spatial correlation) are carried out for addressing

transmit beamforming. Attention has been also paid to the ambiguity matrix at non-zero

lags [14, 78, 79] to reduce range sidelobe. The second category involves the optimization-

based waveform design, which is defined by [80] through joint design of transceiver filters to

optimize metrics like mean square error of target estimation or signal-to-interference-noise

ratio, to account for the statistics of clutter and noise.

In this chapter, we focus on the utilization of paraunitary waveforms [14,64,81] for phased-

array MIMO radar. A set of paraunitary waveform matrices has the property that the sum

of autocorrelation matrices of waveform components is diagonal at zero delay and vanishes at

nonzero delays. This leads to many good properties such as invariant transmit beam pattern,

zero inter-channel interference, and ideal pulse compression. However, a major challenge of

implementing the paraunitary waveforms is the sensitivity of paraunitarity to Doppler effect.

In the presence of Doppler, the combination of matched filtered returns of multiple waveform

components separated in pulse-repetition intervals (PRIs), is characterized by the ambiguity

matrix of transmit pulse train. This ambiguity matrix fails to maintain the paraunitarity off

the zero-Doppler axis, which in turn deteriorates the radar imaging capability. For instance,

a weak target can potentially be masked by the range sidelobe generated by a nearby strong

reflector moving at different velocity. Such a Doppler sensitivity needs to be mitigated for

preserving the waveform integrity for phased-array MIMO radar [82–84].

We develop a Doppler resilient design of space-time transmit/receive filter based on a
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paraunitary waveform set with cardinality D. The transmit filter is a length-N spatial

pulse train which coordinates the transmission of waveform components in the set using

a D-ary scheduling sequence {p[n]}N−1
n=0 . The receive filter is constructed in the similar

way, except that the waveform component in n-th PRI is weight by the n-th element of a

real weighting sequence {q[n]}N−1
n=0 . The design of binary p-sequences and real q-sequences

has been elaborated in [16, 31, 32] to coordinate the transmission of Golay complementary

waveforms in time for maintaining complementarity in the presence of Doppler. We present

a systematic construction of these two sequences, which enables the cross ambiguity matrix

of the transceiver filter which maintains the paraunitarity inside a desired Doppler band

around zero Doppler axis.

4.1 Complementary Space-time Waveforms

In this section we illustrate the notion of a set of complementary space-time waveform

components. For such a waveform set, the auto-correlation matrices of individual waveform

components can sum up to some composite auto-correlation matrix which carries desired

illumination property for a phased-array MIMO radar. We then emphasize the practical

concerns of implementing the complementary space-time signals, which serves as a guidance

of designing implementable and mathematically sound complementary waveforms.

4.1.1 Definition of Wavefrom Complimentarity

Consider a MIMO radar system with M colocated transmit and M colocated receive

antennas. Suppose the space-time waveform of the MIMO radar is constructed through

scheduling the components in a waveform library with cardinality D. Each component

sD,d(t) = [s1,d(t), . . . , sM,d(t)]
T ∈ (L2(R))M is a candidate of spatial illumination across the

transmit array, d = 0, . . . , D − 1. The auto-correlation of sD,d(t) is

CD,d(τ) =

∫ ∞
−∞

sD,d(t)sD,d(t− τ)Hdt. (4.1)
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We say that the waveform components s1(t), . . . , sD(t) are complementary if the sum of their

auto-correlations

CD(τ) =
D∑
d=1

CD,d(τ)

has some desired structure.

Suppose each component sD,d(t) of space-time waveform is modulated by some length-L

sequence of spatial amplitude vectors

sD,d(t) =
L−1∑
`=0

sD,d[`]Ω(t− `Tc), (4.2)

where Ω(t) is the pulse shape with unit energy and Tc is the transmitter’s chip interval. Each

spatial amplitude vector sD,d[`] = [sD,d,1[`], . . . , sD,d,M [`]]T consists of amplitudes emitted

across transmit array in the `-th chip interval associated to the d-th waveform component

sd(t). Therefore the analog waveform auto-correlation matrix can be further written by

CD,d(τ) =
L−1∑

k=−(L−1)

CD,d[k]CΩ(τ − kTc)

= CΩ(τ − k1Tc)CD,d[k1] + CΩ(τ − k1Tc)CD,d[k1],

(4.3)

where CΩ(τ) is the auto-correlation of pulse shape Ω(t), k1 = b− τ
Tc
c, and k2 = k1 + 1, and

CD,d[k] is the aperiodic auto-correlation matrix CD,d[k] of sequence sD,d[0], . . . , sD,d[L− 1]:

CD,d[k] =
L−1∑
`=0

sD,d[`]sD,d[`− k]H . k = −(L− 1), . . . , L− 1. (4.4)

Note that in deriving the second equality in eq (4.3), we presumed that CΩ(τ) vanishes

outside [−Tc, Tc]. Therefore the composite waveform auto-correlation matrix becomes

CD(τ) = CΩ(τ − k1Tc)
D∑
d=1

CD,d[k1] + CΩ(τ − k2Tc)
D∑
d=1

CD,d[k2]. (4.5)

The auto-correlation matrix CD(τ) sampled at discrete time τ = kTc is

CD[k] =
D∑
d=1

CD,d[k]

=
L−1∑
`=0

SD[`]SD[`− k]H ,

(4.6)
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where

SD[`] =

[
sD,0[`] . . . , sD,D−1[`]

]
is the amplitude matrix whose vectors corresponds to the spatial amplitude distribution of

a certain waveform component at `-th chip interval. This indicates that in order to design

proper analog component waveform vectors sd(t)’s with desired sum of auto-correlations

CD,d(τ), it is equivalent to design proper discrete amplitude component vectors sd[`]’s with

desired sum of aperiodic auto-correlations CD,d[k]. Later we will demonstrate the validity

of this statement for CD(τ) with τ off the sampling grid.

4.1.2 Short Pulse for Mitigating Chip-Level Doppler Effects

In the presence of Doppler shift, each auto-correlation matrix CD,d(τ) cannot directly

represent the point target response by using sD,d(t) as the transmit and receive waveform.

Instead it is the auto-ambiguity matrix AD,d(τ, ν) of sD,d(t) which actually captures the

time-frequency distribution of target:

AD,d(τ, ν) =

∫ ∞
−∞

sD,d(t)sD,d(t− τ)He−jνtdt

= χΩ(τ − k1Tc, ν)AD,d,ν [k1] + χΩ(τ − k2Tc, ν)AD,d,ν [k2],

(4.7)

where matrix AD,d,ν [k] is the aperiodic cross-correlation matrix of sD,d[`] and Doppler mod-

ulated sD,d[`]:

AD,d,ν [k] =
L−1∑
`=0

sD,d[`]sD,d[`− k]He−jν`Tc , (4.8)

and χΩ(τ, ν) is the scaler auto-ambiguity function of pulse shape Ω(t):

χΩ(τ, ν) =

∫ ∞
−∞

Ω(t)Ω∗(t− τ)e−jνtdt. (4.9)

However, in general, to design the sequences sD,d[0], . . . , sD,d[L − 1] such that AD,d,ν [k]’s

sum up to some desired structure at arbitrary Doppler frequency ν is not an easy problem.

And we shall not ask sD,d[0], . . . , sD,d[L− 1] for extra functionality to accomplish this goal.

Instead, a typical treatment to reduce the sensitivity of AD,d(τ, ν) to chip level Doppler shift
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is to use short pulses, i.e., L shall be a small positive integer and hence the Doppler shift LνTc

over the pulse duration is negligible fo ν inside Doppler band B of interest. From this we

have AD,d[k] ≈ CD,d[k], ∀d, and χΩ(τ, ν) ≈ CΩ(τ), which in turn yields the approximation

AD,d(τ, ν) ≈ CD,d(τ), ν ∈ B, d = 1, . . . , D, (4.10)

Therefore, to maintain complementarity of space-time waveform components sD,d(t) in the

presence of chip-level Doppler effect, each of sD,d(t) needs to have a short time duration.

4.2 Examples of Complementary Space-time Wave-

forms

In above section, we introduced the concept of complementary space-time waveforms.

We demonstrated that in order to construct a set of base-D complementary sequence-

modulated waveform components {sD,d(t)}Dd=1, it is sufficient to seek D vector sequences

sD,d[0], . . . , sD,d[L − 1], d = 1, . . . , D, whose composite aperiodic auto-correlation matrix

CD[k] has desired property. In the following we illustrate two designs of above vector se-

quences.

4.2.1 Paraunitary Waveform Vectors

Start with the notion of Golay complementary sequences. Two length L unimodular

sequences of complex numbers x[`] and y[`] are Golay complementary if the sum of their

auto-correlation functions satisfies

Cx[k] + Cy[k] = 2Lδ[k], k = −(L− 1), . . . , (L− 1), (4.11)

where Cx[k] and Cy[k] are the aperiodic auto-correlations of x[`] and y[`] at lag k respectively,

and δ[k] is the Kronecker delta function.

69



In [14,64] a sequence of 2× 2 matrices

S2[`] =

[
s2,1[`] s2,2[`]

]

=

x[`] −y∗[L− 1− `]

y[`] x∗[L− 1− `]

 , ` = 0, ..., L− 1.

(4.12)

is developed with the paraunitary property

C2[k] =
L−1∑
`=0

S2[`]SH2 [`− k] = 2δ[k]I2. (4.13)

Similarly we can derive the sequence of 2K × 2K matrices

S2K [`] =

[
s2K ,1[`], . . . , s2K ,2K [`]

]

=

S2K−1 [`] S2K−1 [`]

S2K−1 [`] −S2K−1 [`]


= H2 ⊗ · · · ⊗H2︸ ︷︷ ︸

K−1

⊗S2[`], ` = 0, ..., L− 1,

(4.14)

where H2 is the 2×2 Hadamard matrix. Thus the auto-correlation matrix of sequence S2K [`]

is the identity matrix at zero lag and vanishes at nonzero lags:

C2K [k] =
L−1∑
`=0

S2K [`]SH2K [`− k] = 2Kδ[k]I2K . (4.15)

4.2.2 Desired Waveform Spatial Correlation

The spatial correlation of radar space-time waveform has been exploited in [76, 77]. In

these works, it is demonstrated that the spatial correlation matrix, or the zero-lag waveform

auto-correlation matrix, is essential for building the desired waveform diversity as well as

detection/surveillance performance. In these works, the space-time waveform is typically

modulated by an Mt×Nc amplitude matrix S, where Mt is the number of transmit antennas,

and Nc is the total number of chip intervals included in the transmit waveform associated

to each transmit antenna. Thus spatial correlation matrix can be written by the Grammian

70



matrix

GS = SSH . (4.16)

In the presence of Doppler frequency ν, GS becomes the Doppler induced-spatial correlation

AS(ν) = SD(−ν)SH , (4.17)

where D(ν) = diag([1, ejνTc , . . . , ejν(Nc−1)Tc ]) is the diagonal Doppler modulation matrix. It

can be seen that AS(ν) equals the cross-correlation AD,d,ν [k] defined in eq (4.8), evaluated

at k = 0, with L = Nc and D = d = 1, meaning that the waveform library has only one

component.

From the analysis in section 4.1.2, we know that AS(ν) is approximately GS for ν ∈ B,

provided that the cumulative Doppler shift NcνTc is negligible. However, it turns out that

some designs in above reference actually suffers from the chip-level Doppler effect.

Fig. 4.1 illustrates the sensitivity to chip-level Doppler shifts for the spatial correlation

matrix of a space-time waveform with long time duration. In here the matrix S has dimension

128 by 128, and is constructed following [77] with α = 0.125. Fig. 4.1(a) and Fig. 4.1(d)

depict the magnitude and phase information of the 128 by 128 spatial correlation matrix in

the absence of Doppler. Set the carrier frequency as 17GHz. Fig. 4.1(b) and Fig. 4.1(e)

depict the magnitude and phase discrepancy of spatial correlation, at the Doppler frequency

corresponding to the 5m/s velocity. The amplitude discrepancy is defined as the difference

of dB magnitude of spatial correlation with Doppler effect and without Doppler effect. It can

be seen that the magnitude discrepancy on the entries in the zero-Doppler spatial correlation

matrix with low magnitude (-25dB) can be as large as 32dB. Large Doppler-induced phase

discrepancy can be also found on those entries. At the Doppler frequency corresponding

to the 10m/s velocity, the magnitude and phase mismatch of spatial correlation matrix, as

shown in Fig. 4.1(c) and Fig. 4.1(f), can be more severe.

To reduce the Doppler sensitivity as shown in the experiment, one can truncate the

space time waveform in time into several segments. This is because the cumulative Doppler
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Figure 4.1: Discussion of sensitivity to chip-level Doppler shifts of the spatial correlation
matrix of a space-time waveform with long time duration. Each individual waveform for
a 128 by 128 phased-array MIMO radar is phase coded by a length-128 matrix sequence.
(a) and (d) depict the magnitude and phase of entries in spatial correlation matrix at zero
Doppler. Colorbars are in dB and radian respectively. (b) and (e) depict the magnitude
and phase discrepancies of spatial correlation at Doppler frequency associated to velocity
5m/s. (c) and (f) characterize the magnitude and phase discrepancies at Doppler frequency
associated to velocity 10m/s.

shift inside each waveform component is much smaller than the Doppler shift we had before

waveform truncation. Mathematically, if we group the columns of matrix S by

S =

[
[sD,1[0], . . . , sD,1[L− 1]],. . . ,[sD,D[0], . . . , sD,D[L− 1]]

]
, (4.18)

then the original spatial correlation matrix now becomes the composite spatial correlation,

or composite zero-lag auto-correlation of waveform components generated by waveform trun-

cation:

GS =
L−1∑
`=0

D∑
d=1

sD,d[`]sD,d[`]
H

= CD[0].

(4.19)
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Consequently, the cumulative Doppler shift for each waveform component is LνTc =

NcνTc/D, which can be mitigated by choosing a large value of D.
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Figure 4.2: Reduction of sensitivity of spatial correlation to chip-level Doppler shift, through
waveform truncating in time by a factor of 8, and separating 8 waveform components in
time by PRI. (a) and (d) depict the amplitude and phase of entries in the composite spatial
correlation matrix. Colorbars are in dB and radian respectively. (b) and (e) depict the
amplitude and phase discrepancies of composite spatial correlations at Doppler frequency
associated to velocity 5m/s, where the carrier fequency is 17GHz. (c) and (f) characterize
the amplitude and phase discrepancies at Doppler frequency associated to velocity 10m/s.

Fig. 4.2 shows how the magnitude and phase of spatial correlation pattern is sensitive to

chip-level Doppler shift can be mitigated, by truncating the 128 by 128 amplitude matrix S to

8 blocks in time. Through waveform truncation, the Doppler-induced magnitude discrepancy

is significantly annihilated. The phase discrepancy is negligible, except along a few off-

diagonal lines in the spatial correlation matrix. However, the entries on these off-diagonal

lines are of very low magnitude.

To summarize, the complementary space-time waveform components, generated by trun-

cating the existing space-time waveform designs [76, 77] in time by a factor of D, have the
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property that the sum of their spatial correlation has desired structure. Note that the larger

library size D, the more robust each waveform component is to Doppler, but the smaller

the duty cycle of pulse train becomes. Therefore in practice D shall be chosen properly for

tradeoff.

4.3 Sensitivity of Complementarity to Doppler Shift in

PRI

The above analysis shows that by separating the transmission of complementary wave-

form components in time, one can obtain the desired composite auto-correlation matrix,

which determines the point target response in the absence of Doppler. However, the com-

plementarity shows significant sensitivity to nonzero Doppler frequency. To illustrate such

a Doppler-induced sensitivity, suppose the transmit waveform is generated by separating

s2K ,0(t) through sD,D−1(t) in time by a PRI:

z(t) =
D−1∑
d=0

sD,d(t− dT ). (4.20)

The ambiguity matrix of z(t) is

χz(τ, ν) =

∫ ∞
−∞

z(t)z(t− τ)He−jνtdt, (4.21)

which discrete samples at τ = kTc are

χz(k, θ) =
D−1∑
d=0

ejdθCD,d[k], (4.22)

where θ = νT is the Doppler shift in one PRI. In eq (4.22) we had ignored the chip-level

Doppler shifts. In general the ambiguity matrix χz(k, θ) is not equal the composite auto-

correlation CD[k] due to different phase modulation on each PRI.

Fig. 4.3 illustrates the severe sensitivity to Doppler of a 2 by 2 ambiguity matrix χz(τ, ν).

The transmit pulse train is constructed following the paraunitary design. The horizontal axis

depicts Doppler and the vertical axis illustrates delay. Color bar values are in dB. Slightly off

the zero-Doppler axis, the diagonal entry [χz(τ, ν)]1,1 has significant range sidelobe, and the
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Figure 4.3: Magnitude of 2 by 2 ambiguity matrix χz(τ, ν) corresponding to the parauni-
tary design. The length-2 pulse train is phase coded by the matrix sequence in eq (4.12).
Horizontal and vertical axis stand for Doppler shift θ = νT (in radian) and delay τ (in sec).
Color-bar uses dB scale. (a): [χz(τ, ν)]1,1, (b): [χz(τ, ν)]1,2

magnitude of off-diagonal entry [χz(τ, ν)]1,2 rapidly grows. The Doppler induced performance

deterioration can result in miss detection of weak targets masked by range sidelobes generated

by nearby strong reflectors moving at different velocity, or degraded signal-to-noise ratio due

to fluctuating transmit beampattern.

4.4 Doppler Resilient Waveform Matrices

In above sections we present the complementary space-time waveform components whose

auto-correlation matrices sum up to some desired composite auto-correlation matrix. Each

space-time waveform components is restricted to consist of a small number of chip intervals,

such that the chip-level Doppler shift is negligible. In practice, the transmission of these

waveform components is separate in time by pulse-repetition interval (PRI) T , which is

typically much longer than the

Definition 4.4.1. (p-transmit space-time waveform): Let p = [p[0], . . . , p[N − 1]]T ∈

(Z/DZ)N . Define the p-transmit space-time waveform as

zp(t) =
N−1∑
n=0

sD,p[n](t− nT ). (4.23)
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The nth temporal component in zp(t) is sD,d(t) if p[n] = d, d = 0, ..., D − 1. Consecutive

entries are separated in time by a PRI T sec.

Definition 4.4.2. (q-receive filter bank): Let q = [q[0], . . . , q[N − 1]] ∈ CN be an N -

dimensional vector. Define the q-receive filter bank as

zq(t) =
N−1∑
n=0

q[n]sD,p[n](t− nT ). (4.24)

Thus nth entry in zq(t) is obtained by multiplying the n-th temporal component of zp(t) by

q[n].

The MIMO radar cross-ambiguity matrix is

χp,q(τ, ν) =

∫ ∞
−∞

zp(t)zq(t− τ)He−jνtdt

=
N−1∑
n=0

q[n]ejνnTχsD,p[n]
(τ, ν),

(4.25)

where χsD,d(τ, ν) is the auto-ambiguity matrix of d-th waveform component sD,d(t). Note

that in the second equality of eq (4.25), we had ignored the range aliases centered at

±T,±2T, . . . ,±(N − 1)T . After discretizing in delay (at chip intervals), and ignoring the

Doppler shift over chip intervals compared to the Doppler shift across a PRI, the cross

ambiguity matrix can be written

χp,q(k, θ) =
N−1∑
n=0

q[n]ejnθCD,p[n][k]. (4.26)

where k is the discrete delay index, and θ = νT is the Doppler shift in one PRI.

Clearly, the cross-ambiguity matrix at zero Doppler χp,q(k, 0) is simply a weighted sum

of the individual auto-correlation matrices Cd[k]’s. With balanced weights, i.e.,∑
n=0
p[n]=d

q[n] =
∑
n=0

p[n]=d′

q[n], ∀1 ≤ d, d′ ≤ D, (4.27)

χp,q(k, 0) is proportional to the desired composite auto-correlation CD[k]. The goal of

designing the MIMO radar transceiver pair (zp(t), zq(t)), or specifically the vectors p ∈

(Z/DZ)N and q ∈ CN , is the Doppler resilience of χp,q(k, θ), which is χp,q(k, θ) ≈ χp,q(k, 0)

for arbitrary Doppler frequency ν = θ/T inside the desired Doppler band B.
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4.5 D = 2 Case

For the 2× 2 MIMO radar (K = 1), the cross ambiguity matrix χp,q(k, θ) is written by

χp,q(k, θ) =
N−1∑
n=0

q[n]ejnθ

∑
p[n]=0

C2,0[k] +
∑
p[n]=1

C2,1[k]


=

1

2

N−1∑
n=0

q[n]ejnθ (C2,0[k] + C2,1[k]) +
1

2

N−1∑
n=0

q[n](−1)p[n]ejnθ (C2,0[k]−C2,1[k])

,
N−1∑
n=0

q[n]ejnθC2[k] + ∆2(k, θ),

(4.28)

where the residue matrix

∆2(k, θ) =
1

2

N−1∑
n=0

q[n](−1)p[n]ejnθ (C2,0[k]−C2,1[k]) (4.29)

represents the cross-diagonal interference and range-sidelobe in the presence of Doppler.

Therefore, to maintain the waveform paraunitary property and the perfect range response,

we need to annihilate the residue matrix inside some Doppler band.

Theorem 4.5.1. The necessary and sufficient condition of zero forcing the first M Taylor

moments of all entries in ∆2(k, θ) around θ = 0 is that the spectra

Sp,q(θ) =
N−1∑
n=0

(−1)p[n]q[n]ejnθ (4.30)

has zero first M Taylor moments around θ = 0, or equivalently the vector pair (p,q) belong

to

N2(N,M) =



(p,q),

p=[p0,...,pN−1]T ,

q=[q0,...,qN−1]T ,

p∈(Z/2Z)N ,q∈CN

∣∣∣∣∣


1 1 · · · 1

1 2 · · · N
...

...
. . .

...

1M 2M · · ·NM





(−1)p0q0

(−1)p1q1

...

(−1)pN−1qN−1


= 0


. (4.31)

Proof: See theorem 2.2.3.
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Figure 4.4: Magnitude of entries (a) [χp,q(τ, ν)]1,1, and (b) [χp,q(τ, ν)]1,2 in a 2 × 2 cross
ambiguity matrix χp,q(τ, ν) corresponding to the Binomial design (p,q) ∈ N2(16, 14).

Fig. 4.4 illustrates the annihilation of the 2 by 2 residue matrix corresponding to pa-

raunitary waveforms, by using the length-16 Binomial design, which zero-forces the first 14

Taylor moments of each entry in ∆(k, θ) around θ = 0. Fig. 4.4(a) depicts the magnitude

of the northwest entry [χp,q(τ, ν)]1,1 of the 2 by 2 cross ambiguity matrix χp,q(τ, ν). Inside

the Doppler band [−1, 1] rad range sidelobe of [χp,q(τ, ν)]1,1 is 80 dB below to the mainlobe

in magnitude. The northeast entry [χp,q(τ, ν)]1,2, shown in Fig. 4.4(b), is 80 dB below

the peak of [χp,q(τ, ν)]1,1 at each delay inside the Doppler band [−1, 1] rad. Therefore the

paraunitarity of transceiver filters is well preserved.

4.6 D > 2 Case

At D > 2, denote ωD = ej
2π
D as the root of unity with order D. Note that for each

0 ≤ d ≤ D − 1, we have

1

D

D−1∑
r=0

ω
r(p[n]−d)
D = δ[p[n]− d]. (4.32)
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Therefore the cross ambiguity function for a D ×D MIMO radar can be written by

χp,q(k, θ) =
1

D

N−1∑
n=0

q[n]ejnθ
D−1∑
d=0

CD,d[k]
D−1∑
r=0

ω
r(p[n]−d)
D

=
1

D

D−1∑
r=0

(
N−1∑
n=0

ω
rp[n]
D q[n]ejnθ

)(
D−1∑
d=0

ω−rdD CD,d[k]

)

=
N−1∑
n=0

q[n]ejnθδ[k]ID +
1

D

D−1∑
r=1

Sp,q,r(θ)∆D,r[k]

= Sq(θ)δ[k]ID + ∆D(k, θ),

(4.33)

where the residue matrix is

∆D(k, θ) =
1

D

D−1∑
r=1

Sp,q,r(θ)∆D,r[k], (4.34)

and Sp,q,r(θ) and Sq(θ) are the spectra of ω
rp[0]
D q[0], . . . , ω

rp[N−1]
D q[N−1] and q[0], . . . , q[N−1]:

Sp,q,r(θ) =
N−1∑
n=0

ω
rp[n]
D q[n]ejnθ, r = 1, ..., 2K − 1, (4.35)

Sq(θ) =
N−1∑
n=0

q[n]ejnθ, (4.36)

and the rth component of residue matrix

∆D,r[k] =
D−1∑
d=0

ω−rdD CD,d[k] (4.37)

does not vanish at nonzero delay in general. In the following we show the approach of

annihilating ∆D(k, θ) by creating nulls of each Sp,q,r(θ) around zero Doppler, r = 1, . . . , D−

1.

4.6.1 Principle of Residue Spectra Anihilation

Definition 4.6.1. A sequence of amplitude vectors sD,0[`], . . . , sD,D−1[`] is said to have linear

independent auto-correlation matrices if

D−1∑
d=0

adCD,d[k] = 0, ∀1− L ≤ k ≤ L− 1 (4.38)

only when ad = 0 for all 0 ≤ d ≤ D − 1.
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Lemma 4.6.1. Thee paraunitary design established in eq. (4.14) has linear independent

auto-correlation matrices C2K ,d[k].

Proof: See appendix D.

Theorem 4.6.2. The necessary and sufficient condition of zero forcing the first M Taylor

moments of all entries in ∆D(k, θ) around θ = 0, ∀k is that the spectra

Sp,q,r(θ) =
N−1∑
n=0

ω
rp[n]
D q[n]ejnθ (4.39)

has zero first M Taylor moments around θ = 0 for r = 1, ..., D − 1, or equivalently (p,q)

belongs to

ND(N,M) =



(p,q),

p=[p[0],...,p[N−1]]T ,

q=[q[0],...,q[N−1]]T ,

p∈(Z/DZ)N , q∈CN .

∣∣∣∣∣


1 1 · · · 1

1 2 · · · N
...

...
. . .

...

1M 2M · · ·NM





ω
rp[0]
D q[0]

ω
rp[1]
D q[1]

...

ω
rp[N−1]
D q[N − 1]


= 0, r=1,...,D−1


.

(4.40)

Proof: See appendix E. In the proof we had used the result of Lemma 4.6.1.

4.6.2 Number Theoretic Interpretation

Theorem 4.6.3. The necessary and sufficient condition of zero forcing the first M Taylor

moments in Sp,q,r(θ) around θ = 0, ∀r, is that the pair (p,q) satisfies

N−1∑
n=0
p[n]=d

q[n]nm =
N−1∑
n=0

p[n]=d′

q[n]nm, 0 ≤ d, d′ ≤ D − 1, 0 ≤ m ≤M. (4.41)

Proof: By rearranging the constraints in equation (4.40), we have

1 ωD . . . ωD−1
D

1 ω2
D . . . ω

2(D−1)
D

...
...

. . .
...

1 ωD−1
D . . . ω

(D−1)2

D





ρ0,m

ρ1,m

...

ρ2K−1,m


= 0, m = 0, . . . ,M. (4.42)
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where ρd,m =
∑N−1

n=0
p[n]=d

q[n]nm, d = 0, . . . , D−1, m = 0, . . . ,M . It can be easily shown that for

each m, the vector [ρ0,m, . . . , ρD−1,m]T is of the form c · [1, . . . , 1]T , where c is some constant.

When q is chosen as q[n] = 1, n = 0, . . . , N − 1, problem (4.41) is referred to the

generalized Tarry-Escott (GTE) problem. The solution of GTE at D = 2K can be the

following:

Result 4.6.4. For each integer n between 0 and 2K(M+1)−1, write its 2K-ary representation

as n =
∑M

`=0 a`,n2K`, where 0 ≤ an,` ≤ 2K − 1, ∀`. Construct the vector p ∈ (Z/2KZ)2K(M+1)

as p[n] = (
∑M

`=0 an,`) mod 2K. Let q be the all-1 vector. Then (p,q) ∈ N2K (2K(M+1),M).

Note that our dictionary of (p,q) shall be much richer than the dictionary dictated by

the solutions of GTE, since the choice of q can be very general.

Definition 4.6.2. Let πD : Z/DZ → Z/DZ be a permutation on Z/DZ. Define A(πD) :

(Z/DZ)N → (Z/DZ)N as the permutation operator generated from πD such that A(πD)p =

[πD(p[0]), . . . , πD(p[N − 1])]T .

Corollary 4.6.5. If (p,q) ∈ ND(N,M), then for an arbitrary permutation πD, we have

(A(πD)p,q) ∈ ND(N,M).

Proof: This can be directly shown using the result of corollary 4.6.3.

Corollary 4.6.5 indicates that the set ND(N,M) is closed under permutation of vector p

by A(πD). Later we will show a PQ-pulse train based on (p,q) is equivalent to the PQ-pulse

trains based on (A(πD)p,q) in noise performance.

4.6.3 Spectral Interpretation

Theorem 4.6.6. The necessary and sufficient condition of zero forcing the first M Taylor

moments in Sp,q,r(θ) around θ = 0, ∀r, is that each spectra Sp,q,r(θ) can be factorized as

Sp,q,r(θ) = (1− ejθ)M+1Sr(θ), r = 1, . . . , D − 1, (4.43)

in other words, ejθ = 1 is at least a (M + 1)-order zero of Sp,q,r(θ), ∀r.
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Proof: This can be shown by writing the Taylor expansion of each Sp,q,r(θ) around

θ = 0.

Theorem 4.6.6 suggests that, as the spectra of the sequence ω
rp[0]
D , . . . , ω

rp[N−1]
D , each

Sp,q,r(θ) has a high-order zero at ejθ = 1 and is nonzero at high frequency, r = 1, . . . , D− 1.

Therefore, each sequence ω
rp[0]
D , . . . , ω

rp[N−1]
D can be used to construct an FIR band-pass filter

with a high-order zero at zero frequency. Later on we will use this insight to develop sequence

pairs (p,q).

4.7 Examples of Pulse Train Constructions

4.7.1 First type of Pulse Train Construction: Iterative Expansion

In this section, we present a systematic generation of sequence pairs (p,q) satisfying

the number-theoretic constraint eq (4.41). The key idea is to use sequence pairs (p,q) for

base waveform libraries to construct a (p,q) for a larger waveform library, such that the

cardinality of the larger library can factorized into product of cardinalities of base library.

4.7.1.1 General Results

Let us first consider to generate a new sequence pair based on two arbitrary existing pairs

(p1,q1) ∈ ND1(N1,M) and (p2,q2) ∈ ND2(N2,M).

Theorem 4.7.1. Suppose (p1,q1) ∈ ND1(N1,M), and (p2,q2) ∈ ND2(N2,M). Let R1, R2

are two integers such that for an arbitrary integer 0 ≤ n ≤ (N1 − 1)R1 + (N2 − 1)R2, n

can be uniquely written as the form n1R1 + n2R2, 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2 − 1.

Construct p3 ∈ (Z/D1D2Z)(N1−1)R1+(N2−1)R2+1 as p3[n1R1 + n2R2] = D2p1[n1] + p2[n2], and

q3 ∈ C(N1−1)R1+(N2−1)R2+1 as q3[n1R1 + n2R2] = q1[n1]q2[n2], 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤

N2 − 1. Then we have (p3,q3) ∈ ND1D2((N1 − 1)R1 + (N2 − 1)R2 + 1,M).

Proof: See appendix F.

Remark 4.7.1. The construction in theorem 4.7.1 picks N1N2 integers inside [0, (N1−1)R1 +

(N2 − 1)R2] as the indices of “active” PRIs in which a pulse is transmitted, received, and
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processed. Therefore for an arbitrary n ∈ [0, (N1 − 1)R1 + (N2 − 1)R2] which cannot be

written as n1R1 + n2R2, the MIMO radar is silent during the n-th PRI. To achieve highest

time efficiency, The pulse train length (N1−1)R1 +(N2−1)R2 +1 shall equal to N1N2, which

occurs if and only if R1 = 1, R2 = N1, or R1 = N2, R2 = 1. In this chapter, our analysis is

focused on the case with the above choice of R1 and R2.

Theorem 4.7.2. From the sequence pairs (p1
1,q

1
1) ∈ ND1(N1,M), . . . , (pt1,q

t
1) ∈

NDt(Nt,M), t > 1, we can obtain (p,q) ∈ ND(N,M), where D =
∏t

i=1Di and N =
∏t

i=1Nt,

based on iterative Kronecker product-construction algorithm as shown in Table 4.1.

Proof: This is a consequence of theorem 4.7.1.

Note that in above algorithm the addition and multiplication in computing the entries

in p′` is done in field (R/D′`R).

Table 4.1: First construction of (p,q) ∈ ND(N,M)

Iterative Kronecker product construction of (p,q) ∈ ND(N,M)
Begin with p′1 = p1

1, q′1 = q1
1, D′1 = D1, and N ′1 = N1;

for ` = 2 : t+ 1

Denote D′`−1 =
∏k−1

i=1 Di and N ′k−1 =
∏`−1

i=1 Ni, and construct p′` and q′` as
p′` = 1N` ⊗ p′`−1 +D′`−1 · p`−1

1 ⊗ 1N ′`−1
;

q′` = q` ⊗ q′`−1;
end

Assign p = p′t+1, q = q′t+1, D =
∏t

i=1Di, and N =
∏t

i=1 Ni. Exit.

4.7.1.2 Results for Paraunitary Waveforms

For the paraunitary waveforms presented in eq (4.14), the waveform library is of size

2K . The constructions of sequence pairs (p,q) in N2(N,M) is well-established. Such con-

struction, combined with the algorithm in Table 4.1, enables the construction of elements in

N2K (N ′,M). In specific, given K sequence pairs (p1
1,q

1
1) ∈ N2(N1,M), . . . , (pK1 ,q

K
1 ) ∈

N2(NK ,M), from the first ` terms of them we can obtain an element (p`,q`) in
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N2`(
∏`

i=1 Ni,M), ` = 2, . . . , K. By doing so we have the following recurrence relation

of residue matrices of (p`,q`):

Theorem 4.7.3. Let (p`,p`) ∈ N2`(
∏`

i=1Ni,M) be the sequence pair generated by the first

` terms of (p1
1,q

1
1) ∈ N2(N1,M), . . . , (pK1 ,q

K
1 ) ∈ N2(NK ,M), for ` = 2, . . . , K. Denote

∆2`(k, θ) as the residue matrix of (p`,q`) defined in eq (4.34). The recurrence relation of

∆2`(k, θ) is

∆2`(k, θ) = A`−1(θ)⊗∆2`−1(k, θ) + b`−1(θ)δ[k]J2 ⊗ I2`−1 , ` ≥ 2, (4.44)

where

A`(θ) = Sq`1

(∏̀
i=1

Niθ

)
I2 + Sp`1,q

`
1

(∏̀
i=1

Niθ

)
J2, (4.45)

and J2 is the 2× 2 anti-diagonal matrix whose anti-diagonal entries are all 1, and

b`(θ) = Sp`1,q
`
1

(∏̀
i=1

Niθ

)
Sq`(θ). (4.46)

Proof: See appendix G.

Corollary 4.7.4. The residue matrix ∆2K (k, θ) can be written as

∆2K (k, θ) = Ψ2K (θ)δ[k] + Φ2K (k, θ), (4.47)

where matrix Ψ2K (θ) produces the zero-lag inter-channel interference, and Φ2K (k, θ) controls

the range sidelobe at nonzero Doppler shift θ, which can be described as

Ψ2K (θ) =
K−2∑
t=1

AK−1(θ)⊗ · · · ⊗At+1(θ)⊗ bt(θ)J2 ⊗ I2t + bK−1(θ)J2 ⊗ I2K−1 ,

Φ2K (k, θ) = Sp1,q1(θ)AK−1(θ)⊗ · · · ⊗A1(θ)⊗ (C2,0[k]−C2,1[k]) .

(4.48)

Proof: This can be shown by using the result of theorem 4.7.3.

Remark 4.7.2. The structure of Ψ2K (θ) satisfies that Ψ2K (θ)[i, j] 6= 0 only if i + j is even

and i 6= j, 1 6= i, j, 2K . The magnitude of entries in the northeast and southwest corners

of Ψ2K (θ) are controlled by that of the spectra Sp1,q1(NK−1
1 θ), whereas the magnitude of
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entries in the northwest and southeast corners of Ψ2K (θ) are controlled by that of the spectra

Sp1,q1(NK−2
1 θ), · · · , Sp1,q1(N1θ). The magnitude of entries in Φ2K (k, θ) are controlled by that

of the spectra Sp1,q1(θ). Therefore, compared to the (p1,q1) design for a 2×2 MIMO radar,

the Doppler resilience of range sidelobe suppression of the (pK ,qK) design of a 2K × 2K

MIMO radar is maintained, whereas the Doppler resilience of waveform unitarity of the

(pK ,qK) design is reduced by a factor of NK−1
1 .
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Figure 4.5: Magnitude of entries (a) [χp,q(τ, ν)]1,1, (b) [χp,q(τ, ν)]1,2, (c) [χp,q(τ, ν)]1,3, and
(d) [χp,q(τ, ν)]1,4 in a 4 × 4 cross ambiguity matrix χp,q(τ, ν) corresponding to (p,q) ∈
N22(256, 14), which is generated from Binomial design (p1,q1) ∈ N2(16, 14) using first type
of construction.

Fig. 4.5 illustrates the representative entries of the 4 × 4 (K = 2) cross ambiguity

matrix. The vectors (p,q) ∈ N2(256, 14) is generated from the Binomial design (p1,q1) ∈

N2(16, 14), meaning that the first 14-th Taylor moments each entry in the residue matrix

∆4(k, θ) around θ = 0 are annihilated. Along Fig. 4.5(a) to Fig. 4.5(d) we plot the
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magnitude of entries [χp,q(τ, ν)]1,1, [χp,q(τ, ν)]1,2, [χp,q(τ, ν)]1,3, and [χp,q(τ, ν)]1,4 of the

cross ambiguity matrix χp,q(τ, ν). It can been seen that the range sidelobe in each entry of

χp,q(τ, ν), whose magnitude is proportional to that of spectra Sp1,q1(θ), is suppressed inside

the Doppler band [−1, 1] rad. However, the zero-delay response of the off-diagonal entry

[χp,q(τ, ν)]1,3 is only suppressed inside the Doppler intervals of width 1/8 rad centered at

θ = 0,±2π/16, . . . , 14π/16, and has significant peaks at θ = ±1π/16,±3π/16, . . . ,±15π/16.

Because this inter-channel interference is governed by the spectra Sp1,q1(16θ).

4.7.2 Second Type of Pulse Train Construction: Creating Band-pass Spectra

The cross-ambiguity matrix described in eq (4.33) indicates that a sequence

q[0], . . . , q[N − 1] whose spectra Sq(θ) is energy-concentrated around the zero Doppler is

desired. Intuitively, suppose Sq(θ) is ideally low-pass. If each sequences ω
rp[0]
D , . . . , ω

rp[N−1]
D ,

r = 1, . . . , D−1 is picked from the unit circle with linearly-increasing phase, then each spec-

tra Sp,q,r(θ), as a circularly-shifted Sq(θ) in frequency, would be ideally band-pass, provided

that the frequency translation is larger than the bandwidth of Sq(θ). Therefore each spectra

Sp,q,r(θ) satisfies the band-pass condition eq (4.43). In the following we give more rigorous

constraint of (p,q) to achieve the band-pass patterns Sp,q,r(θ).

Theorem 4.7.5. Let p[0], . . . , p[N − 1] be the D-ary alternating sequence, such that p[n] =

n mod D, n = 0, . . . , N − 1. Then (p,q) ∈ ND(N,M) if and only if Sq(θ) has up to M

order of nulls at θ = −r2π/D, r = 1, . . . , D − 1.

Proof: Each spectra Sp,q,r(θ) can be written by

Sp,q,r(θ) =
N−1∑
n=0

ω
rp[n]
D q[n]ejnθ

=
N−1∑
n=0

ωrnD q[n]ejnθ

= Sq(θ +
r2π

D
), r = 1, . . . , D − 1.

(4.49)

.
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Corollary 4.7.6. Given (p1,q1) ∈ N2(N1,M). Let p[0], . . . , p[(N1−1)(D−1)] be the D-ary

alternating sequence. If the product

Sq(θ) =
D−1∏
r=1

Sp1,q1(θ +
r2π

D
). (4.50)

is the spectra of q[0], . . . , q[(N1−1)(D−1)], then we have (p,q) ∈ ND((N1−1)(D−1)+1,M).

Proof: This is a direct consequence of theorem 4.7.5.

From this, a closed-form of (p,q) ∈ N2((N1 − 1)(D− 1) + 1,M) generated by (p1,q1) ∈

N2(N1,M) can be summarized in Table 4.2.

Table 4.2: Second construction of (p,q) ∈ ND(N,M)

Sequence convolution construction of (p,q) ∈ ND(N,M)
Set p[n] = n mod D, n = 0, . . . , (N1 − 1)(D − 1);
Denote hr[n] = (−1)p1[n]q1[n]ω−rnD , n1 = 0, . . . , N1 − 1, r = 1, . . . , D − 1;
Set q[n] = (h1 ∗ · · · ∗ hD−1)[n].

Corollary 4.7.7. Suppose (p,q) ∈ ND(N,M), where p[0], . . . , p[N − 1] is the D-ary alter-

nating sequence. For a fixed M , N is minimized if and only if q[0], . . . , q[N − 1] has the

spectra

Sq(θ) = c ·
D−1∏
r=1

(
1− ωrDejθ

)M+1
, (4.51)

where c is some nonzero scaler. Therefore, in this case the base sequence pair (p1,q1) ∈

N2(M + 2,M) corresponds to the binomial design, and the minimum N at M is (M +

1)(D − 1) + 1.

Proof: This can be shown using results in theorem 4.6.6 and 4.7.5.

Theorem 4.7.8. The residue matrix ∆D(k, θ) can be written by

∆D(k, θ) = J2 ⊗BK,1(k, θ) + I2 ⊗BK,2(k, θ), (4.52)

where

BK,1(k, θ) =
1

2K−1

2K−1∑
r=1

r is odd

Sq(θ +
r2π

2K
)

2K−1−1∑
d=0

ω−rd
2K

C2K−1,d[k], (4.53)
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and

BK,2(k, θ) =
1

2K−1

2K−1∑
r=1

r is even

Sq(θ +
r2π

2K
)∆2K−1, r

2
[k]. (4.54)

Proof: See appendix H.

Remark 4.7.3. As aforementioned, to ensure large diagonal values in cross-ambiguity matrix

χp,q(0, 0), we require Sq(θ) to be low-pass around zero Doppler. As a consequence of using

the D-ary alternating sequence as the transmit waveform scheduler, each spectra Sp,q,r(θ)

of the resulted (p,q) ∈ ND(N,M) is band-pass around Doppler shift θ = −2π
D

. Therefore

the “cleared Doppler band” inside which every Sp,q,r(θ) is “well annihilated” is no broader

than 4π
D

.

Fig. 4.6 illustrates the representative entries of the 4 × 4 (K = 2) cross ambiguity

matrix. The vectors (p,q) ∈ N2(3 ∗ 15 + 1, 14) is generated from the Binomial design

(p1,q1) ∈ N2(16, 14), indicating up to the 14-th order of nulls of the residue matrix ∆4(k, θ)

around θ = 0. Fig. 4.6(a)-(d) depict the magnitude of entries [χp,q(τ, ν)]1,1, [χp,q(τ, ν)]1,2,

[χp,q(τ, ν)]1,3, and [χp,q(τ, ν)]1,4 of the cross ambiguity matrix χp,q(τ, ν). Inside [−π, π]

rad, the spectra Sp,q,r(θ) = Sq(θ + r2π
4

) is nonzero at θ = − r2π
4

(wrapped) and has up to

14-th order of nulls when θ is rest multiples of 2π
4

, r = 1, 2, 3. As a result, the residues in

[χp,q(τ, ν)]1,1 and [χp,q(τ, ν)]1,2 are controlled by Sp,q,2(θ), and thus annihilated inside the

Doppler band [−3π
4
,−3π

4
] rad. The residues in [χp,q(τ, ν)]1,3 and [χp,q(τ, ν)]1,4 are controlled

by Sp,q,1(θ) and Sp,q,3(θ), and thus annihilated inside the Doppler bands of width π
2

rad

centered at θ = 0, π. In summary, the waveform paraunitary property is maintained inside

the Doppler band [−π
4
, π

4
].

88



N=46, 2nd type Binomial design, |χ
11

(k,θ)| in dB

 

 

−3 −2 −1 0 1 2 3

0.8

1

1.2

1.4

1.6

1.8

2

x 10
−5

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

(a)

N=46, 2nd type Binomial design, |χ
12

(k,θ)| in dB
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N=46, 2nd type Binomial design, |χ
13

(k,θ)| in dB
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N=46, 2nd type Binomial design, |χ
14

(k,θ)| in dB
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Figure 4.6: Magnitude of entries (a) [χp,q(τ, ν)]1,1, (b) [χp,q(τ, ν)]1,2, (c) [χp,q(τ, ν)]1,3, and
(d) [χp,q(τ, ν)]1,4 in a 4 × 4 cross ambiguity matrix χp,q(τ, ν) corresponding to (p,q) ∈
N22(46, 14), which is generated from Binomial design (p1,q1) ∈ N2(16, 14) using second
type of construction.

4.8 Noise Analysis

4.8.1 Calculation of Signal and Noise Power

With a point scatter at electrical angle φ, delay τ , and Doppler frequency ν, the radar

return is

r(t) = e−jνta(φ)a(φ)Tzp(t− τ) + n(t), (4.55)

where a(φ) = [1, ejφ, . . . , ej(D−1)φ]T is the array manifold steered to angle φ. In eq (4.55) we

had ignored the target scattering coefficient. When the receive filter matches the angle φ
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and delay τ , it outputs

y =

∫ ∞
−∞

zq(t− τ)Ha(φ)∗a(φ)Hejν0tr(t)dt

= Da(φ)Tχp,q(0, ν − ν0)a(φ)∗ +Da(φ)Hχn,q(τ,−ν0)a(φ)∗,

(4.56)

where ν0 stands for the Doppler frequency estimate, and χn,q(τ, ν) denotes the colored noise

matrix

χnq(τ, ν) =

∫ ∞
−∞

n(t)zq(t− τ)He−jνtdt. (4.57)

The detection problem can be expressed as
H0 : y = yn

H1 : y = ys + yn

. (4.58)

With sufficiently small Doppler mismatch (ν − ν0)T , the cross ambiguity matrix χp,q(τ, ν)

approximately equals Sq(ejθ)|θ=0CD[0]. Thus the signal power can be approximated by

Ps(p,q, φ) = D2 ·
∣∣Sq(ejθ)

∣∣2
θ=0
·
∣∣a(φ)TCD[0]a(φ)∗

∣∣2 . (4.59)

The noise power is

Pn(p,q, φ)

= D2E
{
a(φ)Hχnq(τ,−ν0)a(φ)∗a(φ)Tχnq(τ,−ν0)∗a(φ)

}
= D2E

{
a(φ)H

∫ ∞
−∞

∫ ∞
−∞

n(t)zq(t− τ)Hejν0ta(φ)∗a(φ)Tn(t′)∗zq(t
′ − τ)T e−jν0t′dtdt′a(φ)

}
= D2

∫ ∞
−∞

E
{
|a(φ)Hn(t)|2

}
zq(t− τ)Ha(φ)∗zq(t− τ)Ta(φ)dt

= 8Kσ2
na(φ)T

∫
zq(t)zq(t)Hdta(φ)∗

= D3σ2
na(φ)T

(
N−1∑
n=0

|q[n]|2
2K−1∑
d=0
pn=d

C2K ,d[0]

)
a(φ)∗.

(4.60)

In the rest of this section, we restrict the analysis to the paraunitary waveform case.

90



4.8.2 Achievable Upper Bound of Noise Power

Theorem 4.8.1. Suppose (p,q) ∈ N2K (N,M). Then the noise power Pn(A(π2K )p,q, φ) for

all possible pairs (A(π2K )p,q) ∈ N2K (N,M) satisfies

max
π

2K
,φ
Pn(A(π2K )p,q, φ)

= 25K−1σ2
n

(
N−1∑
n=0

p[n]=d0

|q[n]|2 +
N−1∑
n=0

p[n]=d1

|q[n]|2 + |Cxy[0]| ·

(
N−1∑
n=0

p[n]=d0

|q[n]|2 −
N−1∑
n=0

p[n]=d1

|q[n]|2
))

,

(4.61)

where

d0 = arg max
0≤d≤2K−1

N−1∑
n=0
p[n]=d

|q[n]|2, d1 = arg max
0≤d≤2K−1

d 6=d0

N−1∑
n=0
p[n]=d

|q[n]|2. (4.62)

A sufficient condition to achieve the equality in eq (4.61) is:

(1) π2K satisfies that for 1 ≤ k ≤ K − 1, we have

N−1∑
n=0

p[n]=π
2K

(i)

|q[n]|2 ≥
N−1∑
n=0

p[n]=π
2K

(i)+2k

|q[n]|2, 0 ≤ i ≤ 2k − 1; (4.63)

(2) π2K (0) = d0 if Cxy[0] ≥ 0 or π2K (0) = d1 if Cxy[0] < 0;

(3) φ = 0.

Proof: See appendix I.

Corollary 4.8.2. Suppose (p,q) ∈ N2K (N,M). Then the noise power Pn(A(π2K )p,q, φ)

for all possible pairs (A(π2K )p,q) ∈ N2K (N,M) is upper-bounded as

max
π

2K
,φ
Pn(A(π2K )p,q, φ) ≤ 25Kσ2

n max
0≤d≤2K−1

N−1∑
n=0
p[n]=d

|q[n]|2. (4.64)

Proof: This can be directly shown by using the result of theorem 4.4.13.

Remark 4.8.1. Eq. (4.64) yield an insightful interpretation: Low variation of Pn(p,q, φ)

in angle is possible the sum of |q[n]|2 over distinct index sets specified by p[n] = d, d =

0, . . . , 2K − 1 are close in value. In other words, higher value of worst-case SNR requires a

sequence q[0], . . . , q[N ] which is alphabet-wise energy-balanced conditioned on p. Naturally

we have the following result:
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4.8.3 Angle-invariant Noise Power

Theorem 4.8.3. The noise power Pn(p,q, φ) for (p,q) ∈ N2K (N,M) is a constant at all

φ if and only if
∑

p[n]=d |q[n]|2 =
∑

p[n]=d′ |q[n]|2 for 0 ≤ d, d′ ≤ 2K − 1. Consequently, if

Pn(p,q, φ) is a constant at all φ, then Pn(A(π2K )p,q, φ) equals the same constant at all φ

for all permutations π2K .

Proof: This is the direct consequence of theorem 4.8.1 and corollary 4.8.2.

4.9 Conclusion

We presented a framework for designing Doppler resilient paraunitary illumination for

MIMO radar. By properly coordinating the transmission of waveform components in time

across aperture, we can maintain the paraunitary property by annihilating the Doppler-

induced sensitivity of the cross-ambiguity matrix inside a Doppler interval around zero axis.
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CHAPTER 5

COMPRESSIVE OPTICAL IMAGING AND

SENSITIVITY TO MISFOCUS

Optical imaging is ubiquitous in science and engineering [85,86]. Recently novel imaging

methods which make use of spatial beam modulation of have been intensively studied [30,

87–89]. These techniques can spatially structure the excitation beam by using proper mask

patterns. A single pixel detector records a series of inner products between the object and

mask representations. Compared to the other imaging methods, the spatial beam modulated

imaging with a single detector has the following benefits: (1) the 2-D detectors, such as

charge-coupled semiconductor devices (CCD) and CMOS detectors, are only available in

visible and near-infrared, less common in mid-infrared and far-infrared, and almost non-

existent in Terahertz regions, whereas the single detectors can operate in most frequency

regions. (2) to acquire a high resolution image, many current imaging methods use the

point-by-point object scanning with a single-element detector [90, 91]. The drawback of

these approaches is that a long time is needed to acquire the whole image.

The image acquisition of a single-pixel detector based imaging system can be increased

by employing spatial beam modulation [29, 30, 33, 88, 89]. For instance, one unique imaging

approach among imaging methods based on spatial beam modulation is the spatial frequency

modulation for imaging (SPIFI) [29, 33]. It generates a spatially modulated excitation onto

the object, using a spinning linearly-chirped optical mask across its spatial extent. Such

a structured illumination provides a unique modulation frequency at each spatial point in

the beam. The detector temporally collects the spatial integral of incoming intensity, which

for each time sample, is seen as an inner product of a pure spatial frequency and the line
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sample of the object. The recovery of the object spatial information is performed via a simple

Fourier transform. Note that in order to obtain high imaging resolution, a large number of

temporal measurements is required to meet the Nyquist condition. However, other imaging

approaches based on structured illumination, such as compressive [30, 88], can effectively

improve the image acquisition speed by recording a small number of measurements.

In this chapter, we investigate compressive sensing as a principle for line-scanned imaging

with a single pixel detector. The optical setup is illustrated in Fig. 5.1. The object is scanned

in a line by line fashion. We spin a mask disc which spatially modulate the excitation beam,

and the detector temporally collects the spatial integral of incoming intensity, which for

each time sample, is seen as an inner product of the mask representation and the line sample

of the object. The compressive sensing method enables us to reconstruct the sparse line-

scans of the object with small number of measurements. The classical theory of compressive

sensing is developed by early literature [92–95]. Suppose the object of interest has a sparse

or compressible representation in a certain basis. If the measurement matrix satisfies the

Restricted Isometry Property (RIP), then the object can be precisely reconstructed by using

Basis Pursuit algorithm. This reconstruction algorithm also shows some robustness to the

measurement noises. Although the compressive sensing is theoretically sound, in practice we

have the following physical challenges to utilize it for optical imaging:

• Poisson Statistics. The detector spatially integrates the intensity by counting incom-

ing photons. Each temporal measurement is a discrete variable and follows Poisson

distribution [96,97].

• Model Perturbation. The actual measurement model may differ with presumed model

due to various aberrations, which can be resulted in misfocus, spherical wave, mask

wobbling, etc. This means that the actual measurement matrix may be different with

the presumed measurement matrix.

The first issue has been discussed in the papers of Raginsky, et. al [96, 97]. To improve the
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performance of compressive sensing under Poisson noise, an algorithm which optimizes the

penalized likelihood objective function is proposed for object recovery. Much attention has

been payed on the second issue [34,98–100]. The reconstruction error of Basis Pursuit with

model mismatch has been studied in [98]. The sensitivity of basis mismatch in compressive

sensing is analyzed in [34,99]. It turns out that even at small mismatch between the actual

and presumed basis in which the image sparse coefficients, the image inversion error can

be large. In [100] a sparse-total least square (S-TLS) algorithm that incorporates the total

least square and LASSO is developed to address the modal mismatch. It is numerically

shown that for some specific problems the S-TLS reduces reconstruction error compared to

traditional sparse recovery methods.

In this chapter, we investigate the sensitivity of compressive sensing to the model per-

turbation due to misfocus error in the imaging system. To the best of our knowledge, such

an analysis has not yet been presented. We first formulate general measurement equations

which can apply to both in-focus and misfocus imaging cases. We show that when a sparse

object is located at in-focus position, its reconstruction via compressive sensing approach is

precise.

We then numerically test the performance of compressive sensing versus the misfocus

effect. The simulation results show that the robustness of CS reconstruction depends on the

demagnification factor. At low to medium demagnification factors, the CS reconstruction

is robust to misfocus, when the misfocus distance is within the depth of field. However,

at high demagnification factors, the model mismatch caused by misfocus effect becomes

significant, and hence the CS algorithm fails to extract the object information from the

perturbed measurements.

We give a mathematical description of model perturbation caused by misfocus effect.

The model perturbation can be characterized by the perturbation matrix, as a function

of both the demagnification factor and misfocus distance. A theoretical upper bound of

the compressive sensing reconstruction error at given demagnification factor and misfocus
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Figure 5.1: Spatial positions of mask and object planes.

distance is developed. Compared to the theoretical performance bound proposed in [98] that

is expressed by the spectrum norm of the perturbation matrix, our performance bound has a

closed form and is easy to compute. The performance bound indicates that the reconstruction

error increases in both demagnification factor and misfocus distance.

5.1 Measurement Formation

Consider the Abbe system (4-f system) shown in Fig. 5.1. The front and back lenses

are labeled as L1 and L2. The focal lengths of L1 and L2 are f1 and f2, respectively. An

optical mask shown in Fig. 5.1 is placed in the front focal plane of L1. We assume that the

mask is composed of a set of discrete, identical binary {0, 1} (0 for close, and 1 for open)

field transmission elements (rectangular functions of width ∆) that are positioned at discrete

positions along the lateral line focus. A field g(x1) illuminates the mask and then modulates

the object representation. The object comes to focus at the back focal plane of lens L2. The

demagnification factor of the Abbe system is

M =
f1

f2

. (5.1)

In the imaging process, the optical mask is continually spun. Each time a certain radial

section of the mask modulates the excitation beam. With a sampling interval t0, the optical

detector temporally samples the spatial integration of the intensity of the object illuminated
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by the excitation beam. At t = mt0, the excitation beam is modulated by m-th radial section

of the mask, whose field transmittance is:

tmask(x1;m) =
N−1∑
`=0

am,`w(x1 − (`− N

2
)∆), (5.2)

where the binary coefficients am,0, ... ,am,N−1 indicates the open and close status of elements

along the m-th radial section of the mask. The function w(x) is a rectangular function

with support [0,∆). We introduce the spatial offset N
2

∆ to keep the function tmask(x1;m)

centered at x1 = 0. Denote g(x1) as the field that incident on the mask plane and spans all

N modulation elements. The field passing through tmask(x1;m) is

umask(x1;m) = g(x1)tmask(x1;m), (5.3)

At the back focal plane of the lens L2, the excitation field is

uexc(x3;m) = u0

∫ ∞
−∞

umask(x1;m)h(x1 +Mx3)dx1, (5.4)

where the complex-valued scaler u0 is u0 = Meikf1(1+M)e
i kM
2f1

x2
3(1+M)

f2
1λ

2 , and h(x) is the in-focus

psf of the Abbe system:

h(x) =

∫ ∞
−∞

P (x2)e
−i k

f1
x2xdx2. (5.5)

In the limit where we can treat the psf h(x) a delta function, then clearly we have that

uexc(x3;m) = umask(−Mx3;m), meaning that the excitation field illuminating the object is

a reversed, demagnified version of umask(x1;m). However, the finite width of the psf in eq.

(5.5) broadens the excitation field to

uexc(x3;m) = u0

N−1∑
`=0

am,`

∫ (`−N/2+1)∆

(`−N/2)∆

g(x1)h(x1 +Mx3)dx1

= u0

N−1∑
`=0

am,`G`(x3),

(5.6)

where the blurred window function G`(x3) is

G`(x3) =

∫ (`−N/2+1)∆

(`−N/2)∆

g(x1)h(x1 +Mx3)dx1, (5.7)
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whose major part lies in the interval [(N
2
− `− 1) ∆

M
, (N

2
− `) ∆

M
] with a narrow h(x).

The optical detector spatially integrates the intensity right behind the object:

ym =

∫ ∞
−∞
|uexc(x3;m)tobj(x3)|2dx3 (5.8)

Assume that the support of object in x3 axis is [−N∆
2M
, N∆

2M
]. Here we require that inside each

spatial bin [(` − N
2

) ∆
M
, (` − N

2
+ 1) ∆

M
], ` = 0, 1, ...N − 1, the variation of object intensity

|tobj(x3)|2 is negligible, and |tobj(x3)|2 approximately equals a constant θ`. This physically

requires that the spatial frequency components of the object are confined in |fx3| ≤ M
∆

. From

this, the m-th temporal measurement ym can be expressed as

ym =
N−1∑
`=0

θ`

∫ (`−N/2+1)∆/M

(`−N/2)∆/M

|uexc(x3;m)|2dx3

= |u0|2
N−1∑
`=0

θ`

∫ (`−N/2+1)∆/M

(`−N/2)∆/M

∣∣N−1∑
`′=0

am,`′G`′(x3)
∣∣2dx3.

(5.9)

After rewriting θ` = θN−1−` for ` = 0, 1, ..., N − 1, ym can be expressed by

ym = |u0|2
N−1∑
`=0

θ`

∫ (N/2−`)∆/M

(N/2−`−1)∆/M

∣∣N−1∑
`′=0

am,`′G`′(x3)
∣∣2dx3. (5.10)

Our goal is that by modulating the object with a certain row of the mask, the measurement

ym can be formed as a scaled inner product between the intensity of mask and object.

However, it can be seen that over each spatial interval [(N
2
−`−1) ∆

M
, (N

2
−`) ∆

M
], the intensity

integration contains the contribution from the `-th mask element am,`, as well as other mask

elements, due to the leakage of functions G`′(x3) with `′ 6= ` as a result of the finite psf

width. We will see that this leakage increases with increased misfocus error of the imaging

system. Therefore the measurement ym is a distorted inner product between the mask and

object representations. Denote d` = (N
2
− `) ∆

M
, ` = 0, 1, ..., N − 1, then using that fact that

|am,`|2 = am,` for all m and `, we can further write ym as

ym = |u0|2
N−1∑
`=0

am,`θ`

∫ d`

d`+1

|G`(x3)|2dx3 + |u0|2
N−1∑
`=0

θ`

∫ d`

d`+1

|
∑
`′ 6=`

am,`′G`′(x3)|2dx3

+ |u0|2
N−1∑
`=0

θ`

∫ d`

d`+1

∑
`′ 6=`

2Re
{
am,`am,`′G`(x3)G`′(x3)

}
dx3.

(5.11)
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Denote θ̃` = θ`
∫ d`
d`+1
|G`(x3)|2dx3 for ` = 0, 1, ..., N − 1. Then by dropping the constant

intensity |u0|2 we can write ym by

ym =
N−1∑
`=0

am,`θ̃` + pm. (5.12)

The first term of ym is a scaled inner product between the vectors am = [am,0, ..., am,N−1]T

and θ̃ = [θ̃0, ..., θ̃N−1]T . The second term pm is the measurement perturbation due to the

finite psf width:

pm =
N−1∑
`=0

θ`

∫ d`

d`+1

|
∑
`′ 6=`

am,`′G`′(x3)|2dx3

+
N−1∑
`=0

θ`

∫ d`

d`+1

∑
`′ 6=`

2Re
{
am,`am,`′G`(x3)G`′(x3)

}
dx3.

(5.13)

Note that eq. (5.11)-(5.13) are general enough for a arbitrary psf h(x).

For the in-focus psf given in eq. (5.5), with appropriate pupil size, it should be suffi-

ciently narrow in space, such that with respect to each function G`(x3), ` = 0, ..., N − 1, its

portion outside the interval [d`+1, d`] can be negligible. This means that the amplitude of

perturbations pm’s are desirably small compared to that of the signals. Hence, the vectorized

temporal measurement y = [y0, ..., yM−1]T is approximately

y = Aθ̃, (5.14)

where the matrix A = [am,`] = [a0, ..., aM−1]T is the intensity measurement matrix.

5.2 Compressive Imaging Approach

For the optical system whose measurement is well approximated characterized by eq.

(5.14), we are concerned with the following two primary questions: (1) how to design a good

matrix A, and (2) how to process the measurement y to invert the object θ. In the following

we answer above questions by introducing the rudiments of compressive sensing theory.

The key assumption of compressive sensing is that the object of interest θ̃ has a sparse or

compressible representation. Suppose theN -dimensional vector θ̃ is k-sparse or compressible,
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where k � N . Our goal is to reconstruct the object θ̃ from M measurements such that

M � N :

y = Aθ̃ + n. (5.15)

where the matrix A is an M by N underdetermined measurement matrix, and n stands for

any potential measurement perturbation. This sparse reconstruction is possible if the matrix

A satisfies the 2k-restricted isometry property (RIP), that is, for any 2k-sparse vector u,

(1− δ2kA)‖u‖2
2 ≤ ‖Au‖2

2 ≤ (1 + δA2k)‖u‖2
2, (5.16)

where δA2k is called the restricted isometry constant. If δA2k <
√

2 − 1, then θ̃ can be recon-

structed by the `1 minimization (Basis Pursuit)

θ̃∗ = arg min
θ̃
‖θ̃‖1 (5.17)

s.t. ‖y −Aθ̃‖2 ≤ ε,

where ε is an upper bound of ‖n‖2. In this case the number of measurements M isO(k log N
k

),

and the reconstruction error satisfies

‖θ̃ − θ̃∗‖2 ≤ C0k
− 1

2‖θ̃ − θ̃k‖1 + C1ε, (5.18)

where θ̃k is the best k-term approximation of θ̃, and C0 and C1 are some constants determined

by δA2k. One candidate of binary RIP matrix is the Bernoulli random matrix, in which each

entry is drawn from an identical and independent Bernoulli distribution.

Here we validate the in-focus object reconstruction of compressive imaging method. We

set the pupil radius W as 10mm. The focal lens of L1 is f1 = 40mm. The magnification

factor is M = 100, and thus the focal length of L2 is f2 = f1/100. The width of a mask

element is ∆ = 0.05mm.

The original feather object is depicted in Fig. 5.2, which has 157 rows and 256 columns.

The colorbar shows that the amplitude of each object element ranges from 0 to 255. In the

simulation, we perform a row scan of the feather object. The intensity of each row of the
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Figure 5.2: Original 2-dimensional feather object, with 157 rows and 256 columns. Source:
shutterstock.com, image ID: 4847238.

object is treated as a length-256 sparse or compressible vector θ, with sparsity k less than

30. The object is placed at the back focal plane of lens L2.

The compressive sensing mask is represented by a 96 × 256 Bernoulli matrix. Thus for

each row scan of the feather object, the number of temporal measurements required for

object inversion is only 3
8

of the object size.

Fig. 5.3 shows the reconstruction results for CS and SPIFI masks, with the 2-D object

placed at in-focus postion. The compressive sensing approach provides a faithful reconstruc-

tion of the object. The SPIFI approach also precisely recover the object, apart from little

background-noise like error. This may be resulted in the mask quantization error.

5.3 Misfocus Imaging

Now suppose the object is misplaced with distance z3 away from the back focal plane of

L2 along the optical axis. The misfocus psf of Abbe system under such condition is [101]:

h(x, z3) =

∫ ∞
−∞

P (x2)e
i k

2f2
1
M2z3x2

2
e
−i k

f1
x2xdx2, (5.19)

and the excitation field onto object is

uexc(x3;m) = u0

∫ ∞
−∞

umask(x1;m)h(x1 +Mx3, z3)dx1. (5.20)
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Figure 5.3: In-focus object reconstruction of compressive imaging approach.

Note that unlike the in-focus case, in eq (5.19) the psf is the Fourier transform of the

pupil function modulated by a spatial chirp pattern, whose chirp rate is proportional to

M2z3. Thus the higher demagnification factor M and misfocus distance z3, the wider the psf

becomes and the mask becomes more distorted. Intuitively a wide psf implies a low imaging

resolution. It will be shown that under the misfocus condition, the temporal measurements

of the detector are

y = (A + E)θ̃, (5.21)

where the matrix E is an unknown perturbation matrix depending on the parameters M

and z3. We will elaborate on the breakdown of matrix E shortly after this.

The excitation field in eq (5.20) can be also approximated as

uexc(x3;m) = {umask(−Mx;m) ∗x h̃(x, z3)}(x3), (5.22)

where ∗x denotes the convolution for variable x, and assuming that h̃(x, z3) can be adequately

approximated by a Gaussian beam to allow for an analytic result in what follows [102]:

hg(x, z3) =
h0e

ikz3

1 + 2i z3
kw2

0

exp (− x2

w2
0(1 + 2i z3

kw2
0
)
), (5.23)
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Define the parameter zR =
kw2

0

2
. Then the Gaussian beam can be rewritten as

hg(x, z3) = h0
w0

w(z3)
e
−(

x0
w(z3)

)2

e
i[kz3−η(z3)+

kx2
0

2R(z3)
]

, hg(z3)h̃g(x, z3),

(5.24)

where the function

hg(z3) = h0
w0

w(z3)
ei[kz3−η(z3)] (5.25)

is independent of x, and the function h̃g(x, z3) is

h̃g(x, z3) = e
−(

x0
w(z3)

)2

e
i
kx2

0
2R(z3) . (5.26)

The misfocus beam size w(z) is given by the classic quadratic propagation law:

w(z) = w0

√
1 + (

z

zR
)2. (5.27)

where w0 is the spot size of a focused Gaussian beam. With a pupil radius W , the width of

a focused Guassian beam w0 is

w0 =
λf1

πMW
. (5.28)

The curvature radius R(z) is defined by R(z) = z[1 + ( zR
z

)2], and the Gouy phase is η(z) =

tan−1( z
zR

). By substituting (5.24) into (5.22), we can write the excitation field uexc(x3;m)

as

uexc(x3;m) =

∫ ∞
−∞

umask(−Mx;m)hg(x3 − x, z3)dx

= hg(z3)

∫ ∞
−∞

umask(x;m)h̃g(x3 +
x

M
, z3)

1

M
dx.

(5.29)

By checking eq. (5.20), if we ignore the term hg(z3) which is independent of x, we can relate

the function h̃g(x, z3) with the misfocus psf h(x, z3) of the Abbe system as

h(x, z3) =
1

M
h̃g(

x

M
, z3) (5.30)

The misfocus temporal measurements are

ym =
N−1∑
`=0

am,`θ̃` + pm,m = 0, 1, ...,M − 1.
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where θ̃` = θ`
∫ d`+1

d`
|G`(x3)|2dx3, and the perturbation terms pm are

pm =
N−1∑
`=0

θ`

∫ d`

d`+1

|
∑
`′ 6=`

am,`′G`′(x3)|2dx3

+
N−1∑
`=0

θ`

∫ d`

d`+1

∑
`′ 6=`

2Re
{
am,`am,`′G`(x3)G`′(x3)

}
dx3.

To simplify the future analysis, we set the g(x) ≡ 1, meaning an uniform illumination on

the mask plane. In this case, the function G`(x3) becomes

G`(x3) =

∫ (`−N/2+1)∆

(`−N/2)∆

h(x1 +Mx3)dx1

=
1

M

∫ (`−N/2+1)∆

(`−N/2)∆

exp

(
−(

x1

M
+ x3

w(z3)
)2

)
exp

(
ik

(x1

M
+ x3)2

2R(z3)

)
dx1

=

∫ (`−N/2+1)∆/M

(`−N/2)∆/M

exp
(
−(
x+ x3

w(z3)
)2
)

exp
(
ik

(x+ x3)2

2R(z3)

)
dx

=

∫ (`−N/2+1)∆/M+x3

(`−N/2)∆/M+x3

e
−( x

w(z3)
)2

e
ik x2

2R(z3)dx

, G
(
x3 + (`−N/2)∆/M, z3

)
,

(5.31)

where the function G(x3, z3) is defined as

G(x3, z3) =

∫ x3+∆/M

x3

e
−( x

w(z3)
)2

e
ik x2

2R(z3)dx, (5.32)

which basically becomes wider as the misfocus distance z3 grows. Define

I(z3) =

∫ 0

−∆/M

G(x3, z3)dx3. (5.33)

It is clear that
∫ d`
d`+1
G`(x3)dx3 = I(z3) for all `. Letting p = `′ − `, and we can write each

perturbation term pm as

pm =
N−1∑
`=0

θ`

∫ 0

−∆/M

|
∑
p 6=0

am,`+pG(x3 + p∆/M, z3)|2dx3

+
N−1∑
`=0

θ`

∫ 0

−∆/M

∑
p6=0

2Re
{
am,`am,`+pG(x3, z3)G(x3 + p∆/M, z3)

}
dx3.

(5.34)

Therefore we can write each temporal measurement ym as

ym =
N−1∑
`=0

(am,` + em,`(z3))θ̃`, (5.35)
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where each perturbation coefficient em,`(z3) can be expressed as a function of misfocus dis-

tance z3:

em,`(z3) =
1

I(z3)

{∫ 0

−∆/M

|
∑
p 6=0

am,`+pG(x3 + p∆/M, z3)|2dx3

+

∫ 0

−∆/M

∑
p6=0

2Re
{
am,`am,`+pG(x3, z3)G(x3 + p∆/M, z3)

}
dx3

}
.

(5.36)

The matrix form of eq. (5.37) is

y = (A + E(z3))θ̃, (5.37)

where the perturbation matrix E(z3) = [em,`(z3)].

The amplitude of elements from matrix E(z3) characterizes the extent of modal pertur-

bation due to misfocus. Eq. (5.36) shows that |em,`| equals the interference from the mask

elements other than am,` to the `-th bin of object, divided by the illumination intensity I(z3).

Therefore the perturbation matrix E(z3) is determined by both the misfocus distance z3 and

the demagnification factor M .

5.4 Numerical Results for Misfocus Imaging

In this section we test the reconstruction performances versus misfocus distant z3 as well

as demagnification factor M , for all mask designs. In simulation we fix the focal length f1,

and vary f2 according to different M . We use the depth of field to be a unit of misfocus

distance. Given a demagnification factor M , the system’s depth of field is [103]

DOF =
λ0n

NA2 +
n

M − NA
e, (5.38)

where n is the refractive index of medium (we let it be 1.5). The numerical aperture is

NA = n sin θ = nW/
√
W 2 + f 2

2 . The variable e is the smallest distance (between a value of

4 and 24 microns) that can be resolved by a detector that is placed in the image plane of

the microscope objective. We choose it to be 10µm.

In Fig. 5.4, the magnification factor is set to M = 100. From (a) to (d), we plot the

feather reconstruction of compressive imaging method, at misfocus distance z3 = DOF,
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Figure 5.4: Reconstruction of misfocus object of compressive imaging method. Magnifica-
tion factor is M = 100. From (a) to (d) the misfocus distance z3 is z3 = DOF, z3 = 2DOF,
z3 = 5DOF, and z3 = 10DOF respectively, where DOF denotes the depth of field of the
imaging system. Colorbar is in linear scale.

z3 = 2DOF, z3 = 5DOF, and z3 = 10DOF respectively. For ease of observation, each

reconstruction has been scaled such that the largest amplitude of its elements is 255. At

z3 = DOF, the reconstruction is robust to misfocus effect. As z3 goes above the DOF

and increases, the object contour is becoming blurred, meaning a degradation of imaging

resolution. At z3 ≥ 5DOF, significant background-noise like error appear in reconstructed

object, in which the feather texture is completely lost.

Fig. 5.5 illustrate the sensitivity of compressive imaging to misfocus effect at a high

magnification factor M = 1000. From (a) to (d), we plot the feather reconstruction of

compressive imaging method, at misfocus distance z3 = 0.1DOF, z3 = 0.5DOF, z3 = DOF,

and z3 = 2DOF respectively. It can be seen that even at z3 ≤ DOF, the object reconstruction
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does not possess robustness to misfocus effect. At z3 = 2DOF, compressive imaging fails to

invert the object information from the misfocus measurements.
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Figure 5.5: Reconstruction of misfocus object of compressive imaging method. Magnifi-
cation factor is M = 1000. From (a) to (d) the misfocus distance z3 is z3 = 0.1DOF,
z3 = 0.5DOF, z3 = DOF, and z3 = 2DOF respectively, where DOF denotes the depth of
field of the imaging system. Colorbar is in linear scale.

Fig. 5.6 plots the numerical normalized reconstruction error ‖θ − θ∗(z3)‖2/‖θ‖2 of the

CS approach. At M = 100 and M = 1000, the normalized reconstruction error both linearly

increases with respect to z3. In the presence of large misfocus, the model perturbation is

such significant that the reconstruction error ‖θ − θ∗(z3)‖2 can be much bigger than the

power of object ‖θ‖2.
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Figure 5.6: Numerical normalized reconstruction error ‖θ − θ∗(z3)‖2/‖θ‖2 of compressive
sensing versus misfocus distance, (a) M=100, (b) M=1000.

5.5 Misfocus Performance Analysis

Despite of the actual physical model as shown in eq (5.21), for the object inversion, people

usually resort to the mathematical model

y = Aθ̃ + n, (5.39)

where n accounts for certain unknown measurement perturbations. Suppose we use Basis

Pursuit to reconstruct the vector θ̃, with solution θ̃∗(z3). Then the estimate of object θ is

θ∗(z3) = 1
I(z3)

θ̃∗(z3). If we were told by the prophecy that ‖E(z3)θ̃‖ ≤ ε(z3), then the object

reconstruction error follows

‖θ − θ∗(z3)‖2 ≤ C0k
− 1

2‖θ − θk‖1 + C1
ε(z3)

I(z3)
. (5.40)

In this section we derive a upper bound of noise energy ε(z) at the misfocus position z. Then

from eq. (5.40) we present a theoretical bound of reconstruction error.

Lemma 5.5.1. Let 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. If the rows eTm(z3) ∈ R1×N of E(z3)

are bounded as ‖em(z3)‖p ≤ α(z3), ∀m, then

‖n(z3)‖2 = ‖E(z3)θ̃‖2 ≤M1/2I(z3)α(z3)‖θ‖q. (5.41)
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If θ is k-sparse with support S ⊆ {1, 2, . . . , N}, then

‖n(z3)‖2 ≤M1/2I(z3)αS(z3)‖θ‖q, (5.42)

where αS(z3) is an upper bound of ‖eS,m(z3)‖p ∀m, and eS,m(z3) is the m-th row of the

partition of E(z3) with column support S. Proof: n(z3) can be written by

n(z) =



n1(z3)

n2(z3)

...

nM(z3)


=



eT1 (z3)θ

eT2 (z3)θ

...

eTM(z3)θ


. (5.43)

By Hölder’s inequality, for each m we have

|nm(z3)| = |eTm(z3)θ̃| ≤ I(z3)‖em(z3)‖p‖θ‖q ≤ I(z3)α(z3)‖θ‖q. (5.44)

This yields ‖n(z3)‖2 ≤M1/2I(z3)α(z3)‖θ‖q. The second inequality can be similarly proved.

The following theorem derives an analytical upper bound of ‖em(z3)‖p:

Theorem 5.5.2. The max norm ‖E(z3)‖max = maxm,` |em,`(z3)| of E(z3) can be upper

bounded by β(z3), where

β(z) =
4

I(z3)
(∆/M)2w(z)

[√
2

(
1 +

√
π

2
r(z)erf

(
(N − 1)r(z)

))
erf
(
r(z)

)
er

2(z)

+

(
1 +

√
π

2
r(z)erf((N − 1)r(z))

)2

erf
(√

2r(z)
)
e2r2(z)

]
,

(5.45)

and the factor r(z) is defined as r(z) = ∆√
2Mw(z)

. Therefore the p-norm of each row vector

eTm(z3) is bounded by ‖em(z3)‖p ≤ N1/pβ(z3)

Proof: see appendix J.

Corollary 5.5.3. The reconstruction error ‖θ − θ∗(z3)‖2 of Basis Pursuit satisfies

‖θ − θ∗(z3)‖2 ≤ C0k
− 1

2‖θ − θk‖1 + C1M
1/2N1/pβ(z3)‖θ‖q, (5.46)

where β(z3) is given in eq. (5.45). If θ is k-sparse, we have

‖θ − θ∗(z3)‖2 ≤ C1M
1/2k1/pβ(z3)‖θ‖q, (5.47)
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Figure 5.7: Theoretical bound of normalized reconstruction error ‖θ − θ∗(z3)‖2/‖θ‖2. (a)
M =100, (b) M =1000.

Proof: the corollary can be simply proved by combining lemma 1, theorem 2, and the

basis pursuit result in eq. (5.40).

With a k-sparse object θ, by letting p = q = 2, the normalized reconstruction error can

be bounded by

‖θ − θ∗(z3)‖2

‖θ‖2

≤ C1

√
Mkβ(z3). (5.48)

Eq. (5.48) means that, the upper bound of the normalized reconstruction increases with

increased number of measurement M and sparsity k, and linearly increases with increased

β(z3), which is an upper bound of ‖E(z3)‖max.

Fig. 5.7 shows the theoretical bound of the normalized reconstruction error as indicated

by eq. (5.48). We set N = 256 and k = 30. It can be observed that the the value of

theoretical bounds will be much higher than that of the numerical results, because to derive

the upper bound in theorem 2 we have ignored the phasing of excitation field, and using

Cauchy-Schwartz inequality may introduce large gaps. However, at M = 100, the linear

increment of the theoretical bound with respect to z3 well matches the trend of numerical

result. At M = 1000, the upper bound converges as z3 increases. Intuitively, this is since that

with large M the parameters w(z3) and R(z3) are sufficiently large, such that the function

G(x3, z3) in eq. (5.32) is close to a constant function.
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5.6 Other Discussions

5.6.1 Grid Search along Optical Axis

The intensity measurement vector is assumed to be

y = I(z)[A + E(z)]θ

=

[
A(z0) A(z1) . . . A(zG−1)

]
·



θ0

θ1

...

θG−1


,

(5.49)

which is a block-sparse signal with sparsity one:

‖[θT0 ,θT1 , . . . ,θTG−1]T‖2,0 =
G−1∑
g=0

I(‖θg‖2 > 0) = 1. (5.50)

where each block model matrix A(zg) is

A(zg) = I(zg) · [A + E(zg)], (5.51)

and I(·) is the indicator function.

The following simulation studies the effect of grid mismatch in recovery of sparse object θ,

from the block-sparse measurement written as eq. (5.50). Assume a misfocus object near the

grid point z0 on optical axis. The misfocus mismatch ∆z is the distance between the actual

object misfocus position and z0. Fig. 5.8(a)-(b) show the recovered feather object using Basis

Pursuit algorithm, with misfocus mismatch ∆z = 0.05DOF and ∆z = 0.1DOF at M = 100.

It can be seen that at low-mid magnification factor, compressive imaging of misfocus object is

robust to grid mismatch. Fig. 5.9(a)-(b) illustrate the recovered feather object with misfocus

mismatch ∆z = 0.05DOF and ∆z = 0.1DOF at M = 1000. With a misfocus ∆z = 0.1DOF,

the object recovery is significantly degraded. The misfocus mismatch can be annihilated

by using a fine grid along optical axis, which comes with the expense of model coherence

loss [104,105].
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Figure 5.8: Effect of grid mismatch in Basis-Pursuit recovery of a misfocus object. Magnifi-
cation factor M = 1000. Grid point on optical axsis is z0 = 0.5DOF. (a) Misfocus mismatch
is 0.05DOF, and (b) ∆z is 0.1DOF.
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Figure 5.9: Effect of grid mismatch in Basis Pursuit recovery of a misfocus object. Magni-
fication factor M = 100. Grid point on optical axsis is z0 = 0.5DOF. (a) Misfocus mismatch
∆z is 0.05DOF, and (b) ∆z is 0.1DOF.

5.6.2 Application of Weighted and Structured Sparse Total Least-square Ap-
proach

The weighted and structured sparse total least-square (WSSTLS) approach proposed by

[100] is to address the model mismatch in compressive sensing problems. The key assumption

in [100] is to exploit the parameterization of model perturbation matrix.

Suppose with a set of grid points z0, z1, . . . , zG−1, for a misfocus distance z ∈ [zg, zg+1],
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we can approximate the model matrix A(z) as

A(z) ≈ A(zg) + ∆zg∆A(zg), (5.52)

where ∆zg = z − zg, and ∆A(z)

∆A(z) = ∆I(z)A + ∆I(z)E(z) + I(z)∆E(z) (5.53)

is the first order derivative of A(z) with respect to z. With above approximation, the

measurement y approximately equals

y = A(z)θ

≈

[
G−1∑
g=0

egA(zg) +
G−1∑
g=0

eg∆zg∆A(zg)

]
θ.

(5.54)

where each coefficient eg = 1 if the zg is grid point closest to true misfocus distance, and

eg = 0 otherwise, and ∆zg is the misfocus offset presuming eg = 1. Eq. (5.54) describes the

parameterization of model matrix A(z).

Suppose it is known that the actual misfocus distance z is inside [zg, zg+1]. The above

parameterized measurement model is

y = [A(zg) + ∆zg∆A(zg)]θ. (5.55)

It remains to solve the misfocus mismatch ∆zg and sparse object θ from y. The WSSTLS

approach seeks ∆zg and θ by solving the following optimization:

min
θ,∆zg ,εy

[
∆zg εTy

] wAA 0T

0 Wyy


∆zg

εy

+ λ‖θ‖1

s.t. ∆zg∆A(zg)− εy = y −A(zg)θ.

(5.56)

The vector εy captures additional measurement noise.

As shown in the end of this chapter, Fig. 5.10 compares the performance of misfocus

object recovery with a grid mismatch, based on WSSTLS and Basis Pursuit (BP) methods.

Magnification factor is M = 1000. Grid point on optical axis is z0 = 0.5DOF. Along (a), (c)
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and (e) we plot WSSTLS recovery with misfocus mismatch ∆z = 0.002DOF, ∆z = 0.01DOF,

and ∆z = 0.05DOF respectively. Along (b), (d), and (f) we plot BP recovery with misfocus

mismatch ∆z = 0.002DOF, ∆z = 0.01DOF, and ∆z = 0.05DOF respectively. It can be

seen that only with minimal misfocus mismatch, WSSTLS outperforms BP in reducing

background noise in recovered image.

5.7 Conclusion

In this chapter, we investigated compressive sensing as a principle for line-scanning imag-

ing with a single pixel detector. We first show that for a in-focus sparse object, the compres-

sive sensing can precisely reconstruct the object with a fewer number of measurements. This

opens the possibility of increased imaging speed than other imaging methods based on spa-

tially structured illumination. We then considered the sensitivity of compressive imaging to

misfocus effect. Numerical results show that the compressive imaging is robust to misfocus

at low and medium demagnification factor. At high demagnification factor, which is typical

in microscopy, however, compressive imaging fail to invert the object information from the

misfocus measurements. We also mathematically formulated the model perturbation as a

function of both demagnification factor and misfocus distance. The theoretical performances

bounds explains how the reconstruction error increases with both increased demagnification

and misfocus distance.
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Figure 5.10: Comparison of misfocus object recovery with a grid mismatch, based on
Weighted and Structured Sparse Total Least-squares (WSSTLS) and Basis Pursuit (BP)
methods. Magnification factor is M = 1000. Grid point on optical axis is z0 = 0.5DOF.
Along (a), (c) and (e) we plot WSSTLS recovery with misfocus mismatch ∆z = 0.002DOF,
∆z = 0.01DOF, and ∆z = 0.05DOF respectively. Along (b), (d), and (f) we plot BP
recovery with misfocus mismatch ∆z = 0.002DOF, ∆z = 0.01DOF, and ∆z = 0.05DOF
respectively.
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CHAPTER 6

WIDELY LINEAR COMPLEX KALMAN FILTERS

Complex signals are ubiquitous in science and engineering, arising as they do as complex

representations of two real channels or of two-dimensional fields. Consider a zero mean

complex random vector x. The usual covariance matrix defined as ExxH describes its

Hermitian second order covariance. But when x and its complex conjugate x∗ are correlated,

the complementary covariance matrix ExxT does not vanish, so it carries useful second order

information about the complex random vector x. We call a complex random vector proper

as long as its complementary covariance matrix vanishes and improper otherwise. Proper

complex vectors have a statistical description similar to real vectors, but improper random

vectors do not. A comprehensive second order analysis of improper random vectors and

processes is considered in [39–43].

For any improper random vector x, for which x is correlated with its complex conjugate

x∗, intuition suggests that a good estimator of x should depend on x∗. This requires a

methodology of widely linear processing instead of strictly linear processing [39]. For random

complex signals, the merit of widely linear processing has been exploited in various papers on

estimation [41,43], filtering [40,41,106], detection [107,108], and equalization [109]. It turns

out that widely linear processing brings improvement in performance over strictly linear

processing [41,110] when there is complementary covariance to be exploited.

In the past few decades the reasoning of the Kalman filter [44] has been modified to

apply to nonlinear problems, producing Extended Kalman filters [45] and Unscented Kalman

filters [46]. The motivation of this chapter is to make use of widely linear processing to

develop novel complex Kalman filters and their nonlinear versions for improper complex

states. We show that for improper complex states, complementary covariance matrices may
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be used to create widely linear complex KFs (denoted WLCKFs) and Unscented WLCKFs.

The key contributions of this chapter are as follows:

• From a linear real dual channel dynamical model we derive an equivalent widely linear

complex single channel dynamical model, where the updates of random states and

measurements depend on both states and noises and their conjugates. For the complex

model we derive a WLCKF which is equivalent to the conventional KF for the dual

channel model. The WLCKFs proposed in [106] consider special dual channel problems

and their corresponding complex dynamical models. In these complex models the

updates of complex random states and measurements do not depend on the conjugates

of states and noises.

• We compare the performance between the WLCKFs and conventional KFs. Our an-

alytical and numerical results show that for some special distributions of states and

noises, the mean squared error (MSE) of the WLCKF is significantly smaller than the

MSE of a CKF that does not exploit non-zero complementary covariance.

• For dynamical models with complex nonlinear state and measurement equations, we

develop an Unscented WLCKF for which a systematic paradigm to construct modified

complex sigma points is studied. The property of modified sigma points is that they

preserve the complete first and second order statistical information of complex random

vectors. The UWLCKF of [106] uses sigma points that only preserve the mean and

Hermitian covariance, but not the complementary covariance of states.

6.1 Brief Review of Complex Random Vectors

6.1.1 Cartesian and Complex Augmented Representations

Let Ω be the sample space of a random experiment that generates two channels of real

signals u,v ∈ Rn defined on Ω. From this we construct the real composite random vector

z ∈ R2n as zT = [uT ,vT ], and the complex random vector x ∈ Cn, obtained by composing u

117



and v into its real and imaginary parts:

x = u + jv. (6.1)

The complex augmented random vector x corresponding to x is defined as

xT = [xT xH ]. (6.2)

From here the complex augmented random vector will always be underlined. It’s easy to

check that the real composite vector z and the complex augmented vector x are related as

x = Tnz. (6.3)

The real-to-complex transformation Tn is

Tn =

I jI

I −jI

 , (6.4)

which is unitary within a factor of 2:

TnT
H
n = TH

n Tn = 2I. (6.5)

In fact, it is equation (6.3) that governs the equivalence between dual channel filtering for z

and complex filtering for x.

6.1.2 Dual Channel and Widely Linear Transformation

Given a real linear transformation M ∈ R2m×2n and a composite real vector z ∈ R2n, then

the most general linear transformation of the real channels u and v into the real channels a,

b is a

b

 =

M11 M12

M21 M22


u

v

 , (6.6)

Call y = a + jb. Then the corresponding complex augmented vector y is

y =

 y

y∗

 = Tm

a

b

 =

(
1

2
TmMTH

n

)Tn

u

v


 = Hx, (6.7)
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The matrix H = 1
2
TmMTH

n is called an augmented matrix with the property that its south-

east block is the conjugate of its northwest block, and its southwest block is the conjugate

of the northeast block:

H =

H1 H2

H∗2 H∗1

 , (6.8)

where

H1 =
1

2
[M11 + M22 + j (M21 −M12)] , (6.9)

H2 =
1

2
[M11 −M22 + j (M21 + M12)] . (6.10)

Therefore the augmented matrix H rules the widely linear transformation

y = H1x + H2x
∗ ⇐⇒ a + jb =H1(u + jv) + H2(u− jv)

=(H1 + H2)u + j(H1 −H2)v

(6.11)

We see that if and only if H2 = 0, the widely linear transformation is a strictly linear

transformation. This corresponds to the special case M11 = M22 and M12 = −M21 in the

linear transformation of u, v into a, b.

6.1.3 Improper Complex Signal

The augmented mean vector of the complex random vector x is

µ
x

= Ex = [µTx µ
H
x ]T = [µTu + jµTv µTu − jµTv ]T = Tµz, (6.12)

and the augmented covariance matrix of x is

Rxx = E(x− µ
x
)(x− µ

x
)H =

Rxx R̃xx

R̃∗xx R∗xx

 = TRzzT
H , (6.13)

where the matrix Rxx = E(x − µx)(x − µx)H is the conventional Hermitian covariance

matrix, and the matrix R̃xx = E(x−µx)(x−µx)T is the complementary covariance matrix.

Definition 6.1.1. If the complementary covariance matrix R̃xx is zero, then x is called

proper; otherwise x is improper.

The random vector x = u + jv is proper if and only if Ruu = Rvv and Ruv = −RT
uv,

where u and v are the real and imaginary parts of x respectively.
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6.2 Dual Channel Real and Widely Linear Complex

Kalman Filter

Start with two real channels worth of random states ut,vt ∈ Rn. Denote zTt = [uTt vTt ]

as the corresponding real composite state. Suppose the composite state and measurement

equations are

zt =

ut

vt

 = Ezt−1 + Fωt−1 =

E11 E12

E21 E22


ut−1

vt−1

+

F11 F12

F21 F22


µt−1

σt−1

 , t = 1, 2, ...,

(6.14)

and

ψt =

ξt
κt

 = Gzt + ηt =

G11 G12

G21 G22


ut

vt

+

ρt
φt

 , t = 0, 1, ..., (6.15)

where ωTt = [µTt σ
T
t ] and ηTt = [ρTt φ

T
t ] are the composite real driving and measurement

noises, and ψT
t = [ξTt κ

T
t ] is the composite measurement. This dynamical model allows the

states and measurements on the respective real channels to be arbitrarily coupled. For the

real composite vectors zt, ωt, ηt, and ψt, establish their complex augmented representations

as xt = [xTt xHt ]T = Tzt, wt = [wT
t wH

t ]T = Tωt, y
t

= [yTt yHt ]T = Tψt, and nt =

[nTt nHt ]T = Tηt. Then the resulting augmented complex state and measurement equations

are

xt = Axt−1 + Bwt−1, t = 1, 2, ..., (6.16)

and

y
t

= Cxt + nt, t = 0, 1, ..., (6.17)

where the augmented matrices A, B, and C are

A =
1

2
TETH =

A1 A2

A∗2 A∗1

 ,B =
1

2
TFTH =

B1 B2

B∗2 B∗1

 ,C =
1

2
TGTH =

C1 C2

C∗2 C∗1

 .
(6.18)
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More straightforwardly, a widely linear complex Kalman filter’s dynamical model is charac-

terized by

xt = A1xt−1 + A2x
∗
t−1 + B1wt−1 + B2w

∗
t−1, t = 1, 2, ..., (6.19)

and

yt = C1xt + C2x
∗
t + nt, t = 0, 1, ..., (6.20)

Suppose the initial state has mean Ex0 = 0, and augmented covariance

Ex0x
H
0 =

Ex0x
H
0 Ex0x

T
0

Ex∗0x
H
0 Ex∗0x

T
0

 =

Π0 Π̃0

Π̃∗0 Π∗0

 = Π0. (6.21)

Assume that Eut = 0 and Ent = 0 for all t. Further assume the real and imaginary parts

of x0 are uncorrelated with the real and imaginary parts of ut and nt, meaning Ex0u
H
t = 0

and Ex0n
H
t = 0 for t ≥ 0. Using the representation advocated in [111], the augmented

second-order characterization of (x0,ut,nt) is given by

E


x0

wn

nn


[
xH0 wH

m nHm 1H
]

=


Π0 0 0 0

0 δnmQ δnmS 0

0 δnmSH δnmR 0

 ,m, n ≥ 0. (6.22)

We further assume that for n ≥ m, Ewnx
H
m = 0 and Ennx

H
m = 0, and for n > m, Ewny

H
m

=

0 and Enny
H
m

= 0. This is the same setup as that of the usual Kalman filter, but with

covariances augmented to account for non-zero complementary covariance.

Suppose the linear minimum mean squared error (LMMSE) estimator of xt−1 from mea-

surements YT
t−1 = (yT

1
, . . . ,y

t−1
)T is x̂t−1|t−1. Then the LMMSE prediction of xt from YT

t−1

is

x̂t|t−1 = Ax̂t−1|t−1, (6.23)

and the prediction of y
t

from YT
t−1 is

ŷ
t|t−1

= Cx̂t|t−1. (6.24)
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Given the error covariance matrix Pt−1|t−1 for êt−1|t−1 = x̂t−1|t−1−xt−1, the error covari-

ance matrix Pt|t−1 for êt|t−1 = x̂t|t−1 − xt is

Pt|t−1 = APt−1|t−1A
H + BQBH ,

Pt|t−1 P̃t|t−1

P̃∗t|t−1 Pt|t−1

 , (6.25)

where Pt|t−1 and P̃t|t−1 are the Hermitian and complementary error covariance respectively:

Pt|t−1 = A1Pt−1|t−1A
H
1 + A2P̃

∗
t−1|t−1A

H
1 + A1P̃t−1|t−1A

H
2 + A2P

∗
t−1|t−1A

H
2

+ B1QBH
1 + B2Q̃

∗BH
1 + B1Q̃BH

2 + B2Q
∗BH

2 ,

P̃t|t−1 = A1Pt−1|t−1A
T
2 + A2P̃

∗
t−1|t−1A

T
2 + A1P̃t−1|t−1A

T
1 + A2P

∗
t−1|t−1A

T
1

+ B1QBT
2 + B2Q̃

∗BT
2 + B1Q̃BT

1 + B2Q
∗BT

1 .

(6.26)

The error covariance matrix St|t−1 for the innovation n̂t|t−1 = ŷ
t|t−1
− y

t
is

St|t−1 = CPt|t−1C
H + R ,

St|t−1S̃t|t−1

S̃∗t|t−1S
∗
t|t−1

 , (6.27)

where St|t−1 and S̃t|t−1 are the Hermitian and complementary innovation covariance respec-

tively:

St|t−1 = C1Pt|t−1C
H
1 + C2P̃

∗
t|t−1C

H
1 + C1P̃t|t−1C

H
2 + C2P

∗
t|t−1C

H
2 + R,

S̃t|t−1 = C1Pt|t−1C
T
2 + C2P̃

∗
t|t−1C

T
2 + C1P̃t|t−1C

T
1 + C2P

∗
t|t−1C

T
1 + R̃.

(6.28)

The normal equation for the Kalman gain is

KtSt|t−1 = Pt|t−1C
H . (6.29)

The inverse error covariance matrix S−1
t|t−1 has the augmented form

S−1
t|t−1 =

 P−1
S −S−1

t|t−1S̃t|t−1P
−∗
S

−S−∗t|t−1S̃
∗
t|t−1P

−1
S P−∗S

 , (6.30)

where PS = St|t−1− S̃t|t−1S
−∗
t|t−1S̃

∗
t|t−1 is a Schur complement, namely the error covariance for

estimating n̂t|t−1 from n̂∗t|t−1. Thus the augmented Kalman gain may be written as

Kt = Pt|t−1C
HS−1

t|t−1 ,

Kt K̃t

K̃∗t K∗t

 , (6.31)
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where the diagonal and off-diagonal block matrices of the augmented Kalman gain are

Kt = (Pt|t−1C
H
1 + P̃t|t−1C

H
2 )P−1

S − (Pt|t−1C
T
2 + P̃t|t−1C

T
1 )S−∗t|t−1S̃

∗
t|t−1P

−1
S ,

K̃t = (Pt|t−1C
T
2 + P̃t|t−1C

T
1 )P−∗S − (Pt|t−1C

H
1 + P̃t|t−1C

H
2 )S−1

t|t−1S̃t|t−1P
−∗
S .

(6.32)

When complementary covariances P̃t|t−1 and S̃t|t−1 vanish, and when C2 is zero, we have

Kt = diag(Kt,K
∗
t ), where Kt = Pt|t−1C

H
1 S−1

t|t−1 is the usual KF. Finally, the WLCKF is

x̂t|t = x̂t|t−1 + Ktn̂t|t−1, (6.33)

and the error covariance matrix for êt|t = x̂t|t − xt is

Pt|t = (I−KtC) Pt|t−1 ,

Pt|t P̃t|t

P̃∗t|t P∗t|t

 . (6.34)

and the Hermitian and complementary error covariances are

Pt|t = (I−KtC1 − K̃tC
∗
2)Pt|t−1 − (KtC2 + K̃tC

∗
1)P̃∗t|t−1,

P̃t|t = (I−KtC1 − K̃tC
∗
2)P̃t|t−1 − (KtC2 + K̃tC

∗
1)P∗t|t−1.

(6.35)

Finally, the WLCKF is implemented by initializing x̂0|0 = 0 and P0|0 = Π0, and recursively

running the procedure (6.23)-(6.35). This WLCKF can be implemented in complex arith-

metic, or it can be inverted for the real KF of the dual channel real model (6.14)-(6.15) by

using real to complex connections (6.3) and (6.13).

Remark 6.2.1. In the state and measurement equations (6.16)-(6.18), the new state xt de-

pends on xt−1, x∗t−1, wt−1, and w∗t−1. And measurement yt depends on xt, x∗t , nt, and n∗t .

For the state and measurement equations of the WLCKF proposed in [106], the new state xt

depends only on xt−1 and wt−1, and measurement yt depends only on xt and nt. Thus the

WLCKF in [106] can be obtained as a special case of the WLCKF considered here by let-

ting matrices A2, B2, and C2 in (6.16)-(6.18) be zero, or equivalently assuming E11 = E22,

E12 = −E21, F11 = F22, F12 = −F21, G11 = G22, and G12 = −G21 in the real channel

equations (6.14)-(6.15).
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6.3 Performance Comparison between WLCKF and

CKF

Let’s suppose the state and measurement equations for a complex state xt are

xt = axt−1 + bwt−1, t = 1, 2, ..., (6.36)

and

yt = cxt + nt, t = 0, 1, ..., (6.37)

where a, b, c ∈ C. The augmented matrices are A = diag(a, a∗), B = diag(b, b∗), and

C = diag(c, c∗). Then the recursion for the 2 by 2 augmented covariance matrix Pt|t is

Pt|t = (P−1
t|t−1 + CHR−1C)−1

=
[
(|a|2Pt−1|t−1 + |b|2Q)−1 + |c|2R−1

]−1
, t = 1, 2, ....

(6.38)

Thus the performance of the WLCKF is determined by the impropriety of the initial state

x0 through Π0, the driving noise wt through Q, and the measurement noise nt through R.

In the following we show that for some special distributions of state and noises, the WLCKF

produces smaller MSE than the CKF.

6.3.1 Special Case: x0 Is Improper, wt and nt Are Proper

Suppose P0|0 =

(
P0|0 P̃0|0

P̃ ∗
0|0 P0|0

)
, Q = N1I, and R = N2I. Assume P0|0 has eigenvalues

{λ0
1, λ

0
2}. Given the eigenvalues {λt−1

1 , λt−1
2 } of matrix Pt−1|t−1, the eigenvalues of Pt|t are

λti = g(λt−1
i ), i = 1, 2, (6.39)

where the function g is given by

g(λ) =
N2(|a|2λ+ |b|2N1)

|c|2(|a|2λ+ |b|2N1) +N2

, (6.40)

Thus the eigenvalues {λt1, λt2} may be conveniently expressed as the function recursion

λti = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
t times

(λ0
i ) , qt(λ

0
i ) (6.41)
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Observe that g is an increasing concave function w.r.t λ. Thus we conclude that qt is

concave for each t. Next we want to compute the widely linear minimum mean squared

error (WLMMSE) at the t-th iteration for the WLCKF. This may be written

ξWL
t = E ‖ êt|t ‖2=

1

2
tr(Pt|t) =

1

2
(qt(λ

0
1) + qt(λ

0
2)). (6.42)

Note the initial scalar Hermitian covariance is P0|0. Then the t-th LMMSE for the CKF is

ξL
t = qt(P0|0). (6.43)

To achieve the maximum performance improvement of the WLCKF over the CKF for the

special case discussed here, we shall minimize ξWL
t with fixed P0|0 and variable P̃0|0. It can be

seen that at each t, ξWL
t is a Schur-concave function w.r.t all λ0

i . Since λ0
1 + λ0

2 ≤ 2P0|0 [41],

the minimum is achieved when

[λ0
1 λ

0
2] = [2P0|0 0]. (6.44)

Substituting (6.44) into (6.42), we have the minimum ξWL
t :

min ξWL
t =

1

2

(
qt(2P0|0) + qt(0)

)
(6.45)

The ratio of min ξWL
t to ξL

t is:

θt =
min ξWL

t

ξSL
t

=
qt(2P0|0) + qt(0)

2qt(P0|0)
. (6.46)

It’s obvious that 1
2
≤ θt ≤ 1. This is because qt is concave, and qt(2P0|0) + qt(0) ≤ 2qt(P0|0)

for any P0|0. Also qt(2P0|0) ≥ qt(P0|0) for any P0|0 and qt(0) ≥ 0. Actually the condition for

achieving the lower bound is N1 � N2 � 1. This coincides with the MMSE analysis in [41].

6.3.2 General Case: wt and nt Can Be Improper

In this case we have

Q = N1

 1 ρw

ρ∗w 1

 , R = N2

 1 ρn

ρ∗n 1

 , (6.47)
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Figure 6.1: MSE performance improvement of the WLCKF over the CKF. (a) N1 = −20dB,
N2 = −20dB. (b) N1 = −20dB, N2 = −40dB. (c) N1 = −40dB, N2 = −20dB.

where ρw is the complex correlation coefficient between wt and w∗t , and ρn is the complex

correlation coefficient between nt and n∗t . These determine the level of impropriety. We

can show that 0 ≤ |ρw|, |ρn| ≤ 1. Suppose the following matrix properties are satisfied: (1)

(A,C) is observable, that is, the matrix [CT |ATCT | · · · |(Am−1)TCT ] is full rank, (2) (A, Q̂)

is reachable, where Q = Q̂Q̂
H

, that is, the matrix [Q̂|AQ̂| · · · |Am−1Q̂] is full rank. Using

the argument in [112] we can show that the error covariance matrix Pt|t converges to P,

which is the unique positive semidefinite solution of

P =
[
(|a|2P + |b|2Q)−1 + |c|2R−1

]−1
. (6.48)
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The above convergence is irrespective of the initial state x0. Fig. 6.1 plots the performance

improvement of the WLCKF over the CKF at different level of impropriety of wt and nt. We

choose a = b = c = 1, and the MSE of the WLCKF converges in this case. From [112] we

can also show that the MSE of the CKF converges. The performance improvement is defined

by ratio between the convergent MSE of the CKF over that of the WLCKF. As Fig. 6.1

illustrates, the performance improvement is monotone in |ρw| for fixed |ρn|, and monotone

in |ρn| for fixed |ρw|.

6.4 Discussion on Extended Widely Linear Complex

Kalman Filter

The extended Kalman filters (EKFs) are [45] are initially proposed to address the non-

linear dynamical models for real-valued states and measurements. The essential idea of

EKFs is to linearize the nonlinear state update and measurement equations, and hence the

approximated posterior mean and covariances can be precise up to the first order in its Tay-

lor expansion. For a dynamical model for complex valued states and measurements, whose

model equations are not in the form of widely linear transformations of complex-valued

states, we can derive the extended WLCKF (EWLCKF) along the lines of Section 6.2. The

derived EWLCKF uses nonlinear model equations to predict states and measurements. And

it utilizes the complex Jacobians [113] to modify the Hermitian and complementary covari-

ance matrices and Kalman gain. This treatment is equivalent to the original treatment of

Mandic, et al. [106, 114]. Therefore our derivation of EWLCKF shall not be treated as a

novelty nor be explicitly presented in the dissertation.

6.5 Unscented Widely Linear Complex Kalman Filter

In this section we consider the following nonlinear model for dual real channel state and

measurement evolution:

zt = [ut vt]
T = ft−1(zt−1,ωt−1) = ft−1([ut−1 vt−1]T , [µt σt]

T ), t = 1, 2, ..., (6.49)
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ψt = [ξt κt]
T = ht(zt,ηt) = ht([ut vt]

T , [ρt φt]
T ), t = 0, 1, ..., (6.50)

where ft−1 and ht are time varying nonlinear transformations, and the notation for states

and noises is identical with the model equations (6.14)-(6.15). Then the induced complex

model equations are

xt = f̃t−1(xt−1,wt−1), (6.51)

and

yt = h̃t(xt,nt). (6.52)

It can be seen that for all t, f̃t−1 and h̃t are not widely linear transformations. Thus the

WLCKF developed in section 6.2 cannot be directly utilized. For such a model, the extended

WLCKF is proposed in [106, 114] to exploit the impropriety of complex states and noises.

However, the major defect of the EWLCKF is that the posterior means and covariances are

accurate only to the first order in a Taylor expansion. A conventional Unscented KF uses

the unscented transformation (UT) to generate a fixed set of sigma points to represent the

distribution of a random variable [46]. After propagating sigma points through nonlinearities,

the estimated posterior mean and covariance are precise at least to second order in a Taylor

expansion. Motivated by the power of unscented Kalman filters, in this section we present

a novel paradigm for constructing unscented widely linear complex KFs. Our UWLCKFs

use modified sigma points which preserve the Hermitian and complementary covariances

of states and noises, while the UWLCKFs proposed in [106] use sigma points which only

preserve the Hermitian covariances of states and noises.

Compose complex random states and noises into a complex vector sT = [xT wT nT ].

Suppose the augmented mean and covariance of s are

µT
s

= [µTs µHs ], Rss =

Rss R̃ss

R̃∗ss R∗ss

 . (6.53)

In [106] the authors proposed complex sigma points of s which are constructed from moments

µs and Rss. Thus these sigma points only carry µs and Rss, but not R̃ss. In fact, there may
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be multiple ways to generate sigma points for the augmented random vector s which carry

both µ
s

and Rss. But a hidden restriction imposed here is that these sigma points should

be augmented vectors. Otherwise they cannot be propagated through the UWLCKF. One

approach is to start with sigma points of the corresponding composite real random vector

ζT = [uT µT ρT vT σT φT ]. The first and second moments of ζ are

µζ =
1

2
T−1µ

s
, Rζζ =

1

4
THRssT. (6.54)

Using a Cholesky decomposition the composite covariance matrix Rζζ may be factored as

Rζζ = BBT

Denote the vector bk as the k-th column of matrix B for k = 1, 2, ..., 2N . Then the sigma

points {Zk} of ζ are [46]

Z0 = µζ , k = 0,

Zk = µζ +
√

2N + λbk, k = 1, ..., 2N,

Zk = µζ −
√

2N + λbk−2N , k = 2N + 1, ..., 4N,

(6.55)

corresponding to the mean weights {Wm(k)}4N
k=0 and covariances weights {Wc(k)}4N

k=0 defined

in [46]:

mean weights: Wm(k) =


λ/(2N + λ), k = 0,

1/[2(2N + λ)], k = 1, ..., 4N,

covariance weights: Wc(k) =


λ/(2N + λ) + (1− α2 + β), k = 0,

Wm(k), k = 1, ..., 4N,

(6.56)

where λ = α2(2N + κ)− 2N , and α, β, and κ are parameters controlling the distribution of

sigma points. Define a set of augmented vectors {X k} as

X k =

X k

X ∗k

 = TZk =


µ
s
, k = 0,

µ
s

+
√

2N + λTbk, k = 1, ..., 2N,

µ
s
−
√

2N + λTbk−2N , k = 2N + 1, ..., 4N.

(6.57)
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We can show that all the X k compose the sigma points of the augmented vector s, since

X 0 = µ
s

and

Rss = TRζζT
H

=

[
Tb1 Tb2 · · · Tb2N

] [
Tb1 Tb2 · · · Tb2N

]H
.

(6.58)

Equation (6.58) summarizes the Hermitian and complementary identities

Rss =
1

4n

4n∑
k=1

(X k − µs)(X k − µs)H (6.59)

and

R̃ss =
1

4n

4n∑
k=1

(X k − µs)(X k − µs)T . (6.60)

Therefore we have obtained the sigma points {X k} of s w.r.t weights {Wm(k),Wc(k)} from

widely linear transformation of the real composite sigma points {Zk} of ζ w.r.t weights

{Wm(k),Wc(k)}. Note that each sigma point X k is an augmented vector. Thus it follows

that the complex set {X k}, generated by extracting the top halves of {X k}, is sufficient

to capture both first and second order statistical information of the augmented random

vector s. We call {X k} the modified sigma points of s. The impact of these modified sigma

points is that {X k} preserves not only mean µs and Hermitian covariance Rss, but also

complementary covariance R̃ss.

But what really concerns us is whether the modified sigma points will refine the propa-

gation of mean and covariance through the nonlinearities f̃ and h̃. Suppose we push each

modified sigma point X k through any non-linearity g and acquire Yk = g(X k). Compute

the following deterministic sample averages:

µ̂y =
4N∑
k=0

Wm(k)Yk =
4N∑
k=0

Wm(k)g(X k),

Pyy =
4n∑
k=0

Wc(k)(Yk − µ̂y)(Yk − µ̂y)H ,

P̃yy =
4n∑
k=0

Wc(k)(Yk − µ̂y)(Yk − µ̂y)T .
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From the argument of [46], it can be verified that the sample averages µ̂y, and Pyy, and

P̃yy may be used to approximate the mean E(g(s)), the Hermitian, and complementary

covariance matrices of g(s). The approximation is precise up to at least second order in a

Taylor expansion. The unscented widely linear Kalman filter is described as following, in

notation that follows [115]:

(1) Initialize with x̂0|0 = 0, P0|0 = Π0 and P̃0|0 = Π̃0 as defined in equation (6.21).

(2) At the t-th iteration, t = 1, 2, · · · , Replace Pt−1|t−1 with Rxx, and P̃t−1|t−1 with R̃xx,

and µsx,t = [x̂Tt−1|t−1 0 0]T with µsx in (6.53). Construct effective sigma points {X s
k,t} =

{[(X x
k,t−1)T (Xw

k,t−1)T (X n
k,t)

T ]T} by using equations (6.53)-(6.57).

(3) Prediction updates:

X x
k,t|t−1 = f̃t−1(X x

k,t−1,Xw
k,t−1)

x̂t|t−1 =
4N∑
k=0

W
(m)
k X x

k,t|t−1,

Pt|t−1 =
4N∑
k=0

W
(c)
k (X x

k,t|t−1 − x̂t|t−1)(X x
k,t|t−1 − x̂t|t−1)H ,

P̃t|t−1 =
4N∑
k=0

W
(c)
k (X x

k,t|t−1 − x̂t|t−1)(X x
k,t|t−1 − x̂t|t−1)T ,

Yk,t|t−1 = h̃t(X x
k,t|t−1,X n

k,t),

ŷt|t−1 =
4N∑
k=0

W
(m)
k Yk,t|t−1.

(4) Measurement updates:

St|t−1 =
4N∑
k=0

W
(c)
k (Yk,t|t−1 − ŷt|t−1)(Yk,t|t−1 − ŷt|t−1)H ,

S̃t|t−1 =
4N∑
k=0

W
(c)
k (Yk,t|t−1 − ŷt|t−1)(Yk,t|t−1 − ŷt|t−1)T ,

Et|t−1 =
4N∑
k=0

W
(c)
k (X x

k,t|t−1 − x̂t|t−1)(Yk,t|t−1 − ŷt|t−1)H ,
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Ẽt|t−1 =
4N∑
k=0

W
(c)
k (X x

k,t|t−1 − x̂t|t−1)(Yk,t|t−1 − ŷt|t−1)T ,

where the Kalman gains Kt and K̃t are

Kt = Et|t−1P
−1
S − Ẽt|t−1S

−∗
t|t−1S̃

∗
t|t−1P

−1
S ,

K̃t = Ẽt|t−1P
−∗
S − Et|t−1S

−1
t|t−1S̃t|t−1P

−∗
S ,

then update posterior estimates

x̂t|t = x̂t|t−1 + Kt(yt − ŷt|t−1) + K̃t(yt − ŷt|t−1)∗,

Pt|t = Pt|t−1 − Et|t−1K
H
t − Ẽt|t−1K̃

H
t ,

P̃t|t = P̃t|t−1 − Et|t−1K̃
T
t − Ẽt|t−1K

T
t .

Example 6.5.1. (Phase Demodulation Problem) Consider a scalar real random phase θt

that is updated as

θt = aθt−1 + bwt−1, t = 1, 2, ..., (6.61)

where wt is a real driving noise. So, the phase is real, and it evolves or jitters according to

a first-order Markov sequence. The measurement in a quadrature demodulator is a noisy

complex signal modulated by θt:

yt = eiθt + nt, t = 0, 1, ... (6.62)

where each nt is assumed to be a zero mean, scalar complex Gaussian random variable [41]

with Hermitian variance R and complementary variance R̃. Suppose nt = ut + jvt, where

ut and vt are correlated with variances Ruu and Rvv, respectively, and covariance Ruv. The

complex correlation coefficient between nt and n∗t is

ρ =
R̃

R
=
Ruu −Rvv + 2jRuv

Ruu +Rvv

, (6.63)

which describes the impropriety of nt. When |ρ| = 1, nt is maximally improper. In the

following we let Ruu = Rvv and set ρ by changing the value of Ruv. The signal-to-noise ratio
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Figure 6.2: Comparison between UWLCKF and UCKF. (a) Phase estimated by UWLCKF
at each iteration, SNR = 20dB, |ρ| = 0.7. (b) Normalized estimation error ξ of UWLCKF
and UCKF vs SNRs, |ρ| = 0.7. (c) Performance improvement r of UWLCKF over UCKF
vs impropriety of nt.

at the receiver is SNR = R−1. In simulation we set a = 0.98, b = 0.05. Each wt is a standard

mean zero and variance one Gaussian real random variable, independent of all others.

Fig. 6.2(a) draws the outputs of the UWLCKF over time at SNR = 20dB and |ρ| = 0.7.

The widely linear Kalman gain for the UWLCKF is a 2 by 2 matrix and the estimate θ̂t|t is

always real. It can be observed that for most iterations, the estimate θ̂t|t is close to the phase

θt. Also the true θt is almost confined by the envelope θ̂t|t ±
√
Pt|t. As a benchmark, we

are plotting the estimates of an unscented complex KF that assumes the noise to be proper.

Unlike the UWLCKF above, the UCKF estimates θt from a real 2 by 1 measurement vector
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consisting of the real and imaginary part of yt collected from dual channels. At each iteration

the UCKF produces sigma points from the real mean vector [θ̂t|t µw µu µv]
T = [θ̂t|t 0 0 0]T

and covariance matrix M = diag(Pt|t, 1, Ru, Rv), and it has a 1 by 2 Kalman gain vector.

It can be observed that at most iterations, the UCKF has larger estimation error than the

UWLCKF.

Fig. 6.2(b) compares the performances of the UWLCKF and the UCKF. The complex

correlation coefficient is |ρ| = 0.7. Define the normalized squared error as ξ = ||e||22/||θ||22,

where θ and e are vectors consisting of phases and estimation errors in 500 iterations re-

spectively. In the plot each ξ is computed by averaging 1000 Monte-Carlo simulations. It

can be seen that in the low-medium SNR regime, UWLCKF requires about 2dB less SNR

than the UCKF.

Fig. 6.2(c) shows the performance improvement of the UWLCKF over the UCKF vs the

noise impropriety |ρ| at different SNRs. We use the factor r = ξUCKF/ξUWLCKF to evaluate

the advantage of UWLCKF. The normalized squared error ξUCKF and ξUWLCKF are defined

as above. Each r is computed by averaging 1000 Monte-Carlo simulations. For |ρ| ≥ 0.8,

the gain r ≥ 2.

6.6 Conclusion

In this chapter we designed widely linear and unscented WL complex Kalman filters for

complex noisy dynamical systems with improper states and noises. We show that WLCKFs

may significantly improve on the performance of a CKF that ignores corresponding covari-

ance. A simulation for real phase demodulation shows how an UWLCKF produces real

estimates from complex baseband measurements and shows the improvement of its perfor-

mance over an unscented complex KF that assumes proper states and noises.
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CHAPTER 7

CONCLUSION

Active sensing is an sensing technology with numerous applications in science and en-

gineering. Advances in sensor technology are providing active sensors that are increasingly

agile both in their transmitters and receivers’ capabilities. This enable arbitrary waveform

illumination of the environment using increased degrees of freedoms, and processing of the

scene return to form an image, estimate parameters, or detect targets.

Modern radars are increasingly being equipped with arbitrary waveform generators that

enable the transmission of different waveforms across multiple degrees of freedoms: time,

frequency, polarization, and aperture. This gives us the opportunity to revisit and extend

the classical signal design for radar imaging. We developed a general framework for design-

ing Doppler resilient illuminations through waveform coordination across time, frequency,

and aperture. We showed that for a SISO radar, by properly coordinating the waveforms

phase coded by complementary sequences, we can annihilate the range sidelobe of ambiguity

function inside a modest Doppler interval, and hence bring out the weak targets from the

range sidelobe of nearby strong reflectors. We extend such a Doppler resilience waveform

design to the MIMO radar case. By properly coordinate the complementary space-time

waveform components, the complementarity can be preserved inside a Doppler band around

zero Doppler axis.

The advances in optical imaging also promise sophisticated illumination design and re-

ceiver design. Vast combinations of structure illumination and receive processing provide

us opportunities to investigate the optical imaging methods with faster imaging speed and

higher resolution. For optical imaging, we considered an optical imaging with a single-pixel

detector. Compared to the 2-D detectors, a single detector can work in a broader band. The

135



imaging approach utilizes a spatial structured illumination generated by an SLM or optical

mask. We exploited compressive sensing (CS) as a principle for line-scanned imaging with

single-pixel detector. We studied the robustness of CS to the misfocus effect. It turns out the

CS design is reliable at moderate demagnification factors. However, at high demagnification

factors, the reconstruction performance of CS design becomes highly sensitive even to small

misfocus distance.

We exploited the Kalman filter as a powerful signal processing approach to deal with the

sensing systems with dynamical state evolution and measurement acquisition. We reasoned

that in the presence of impropriety of complex-valued random states or measurements, it is

necessary to revisit the theory of conventional Kalman filters. We showed that through incor-

porating the widely linear processing with the knowledge of complementary covariances, we

can develop a class of widely linear complex Kalman filters which better captures the second

order statistical information of states/measurements, and hence leads to better performance

in estimating the improper complex states.
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APPENDIX A

PROOF OF THEOREM 2.3.1

Proof: In [116] it has been shown that mc can be bounded by L0.9. At sufficiently small
θ, the spectrum SP,Q can be approximated by

SP,Q(θ) ≈
S

(M+1)
P,Q (0)

(M + 1)!
θM+1

=

∑N−1
n=0 n

M+1(−1)p[n]q[n]

(M + 1)!
θM+1.

(A.1)

Applying Cauchy-Schwartz inequality, we have∣∣∣∣N−1∑
n=0

nM+1(−1)p[n]q[n]

∣∣∣∣2 ≤ N−1∑
n=0

n2(M+1)||q||22. (A.2)

And it’s ready to see that

N−1∑
n=0

n2(M+1) = N2M+3

N−1∑
n=0

(
n

N
)2(M+1) · 1

N

≤ N2M+3

∫ 1

0

x2(M+1)dx

=
N2M+3

2M + 3
.

(A.3)

This yields that

PPSRP,Q(θ) =
( L
mc

)2 ||q||21∣∣S(M+1)
P,Q (0)

(M+1)!
θM+1

∣∣2
≥ L0.2 ||q||21

||q||22
[(M + 1)!]2(2M + 3)

N2M+3
θ−2(M+1)

≥ L0.2 [(M + 1)!]2(2M + 3)

N2M+3
θ−2(M+1)

(A.4)
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APPENDIX B

PROOF OF THEOREM 2.3.3

Proof: (1) For PTM design, the amplitude of MQ(θ) can be derived as

|MQ(θ)| =
∣∣N−1∑
n=0

ejnθ
∣∣ =

∣∣∣∣sin Nθ
2

sin θ
2

∣∣∣∣, (B.1)

which stands for the amplitude of Dirichlet kernel. Since Q is an all 1 sequence, βP,Q = 1/N .
The spectra MQ(θ) is

MQ(θ) =
sin2 Nθ

2

sin2 θ
2

, (B.2)

whose zero-crossings nearest θ = 0 are θ = ±2π
N

. Thus for large N the value of γP,Q/2 shall
be very small such that sin(γP,Q/2) ≈ γP,Q/2. Note MQ(0) = N2. Let MQ(θ) = 1

2
MQ(0),

then it follows that

sin
Nθ

2
≈ Nθ

2
√

2
. (B.3)

Thus Nθ/2
√

2 can be approximated by the fixed point of function sin(
√

2x), say θ0. This
yields γP,Q =

√
2θ0/N . One can readily check that the envolope ofMQ(θ) is csc2(θ/2). And

SLP,Q =
1

MQ(0)

d

dθ
csc2(θ/2)
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θ=γP,Q/2

= − 2

N2
csc2(γP,Q/4) cot(γP,Q/4)

≈ − 128

N2γ3
P,Q

= −32
√

2N

θ3
0

.

(B.4)

(2) For Binomial design, |MQ(θ)| is

|MQ(θ)| =
∣∣∣∣N−1∑
n=0

(
N − 1

n

)
ejnθ

∣∣∣∣
= |(1 + ejθ)N−1|

= 2N−1
∣∣cos

θ

2

∣∣N−1
,

(B.5)

Since q[n] =
(
N−1
n

)
for n = 0, 1, ..., N − 1, we have

N−1∑
n=0

q[n] =
N−1∑
n=0

(
N − 1

n

)
= 2N−1, (B.6)
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and
N−1∑
n=0

q[n]2 =
N−1∑
n=0

(
N − 1

n

)2

=

(
2(N − 1)

N − 1

)
≈ 4N−1√

π(N − 1)
(B.7)

for large N . Therefore βP,Q = O(N−1/2). The spectrum MQ(θ) is

MQ(θ) = 4N−1 cos2(N−1)(θ/2). (B.8)

Let MQ(θ) = 1
2
MQ(0), then it follows that cos(γP,Q/4) = (1/2)

1
2(N−1) . For large N we have

sin(γP,Q/4) =

√
1− (1/4)

1
2(N−1) ≈

√
2

√
1− (1/2)

1
2(N−1) , (B.9)

thus

γP,Q ≈ 4
√

2

√
1− (1/2)

1
2(N−1) . (B.10)

For small θ, the Taylor expansion shows that (1/2)θ ≈ 1 − ln 2 · θ. Therefore γP,Q can be
approximated as

γP,Q ≈ 4
√

ln 2

√
1

N − 1
. (B.11)

Since the envolope of MQ(θ) is itself, we have

SLP,Q =
d

dθ
cos2(N−1)(θ/2)

∣∣∣∣
θ=γP,Q/2

= −2(N − 1) sin(γP,Q/4) cos(2N−3)(γP,Q/4)

≈ −2(N − 1) · γP,Q
4
·
(1

4

) 2N−3
2N−2

≈ −
√

ln 2

2

√
N − 1.

(B.12)
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APPENDIX C

PROOF OF THEOREM 2.4.1

Proof: This Theorem can be proved by inclusion. It is obvious that the Theorem is true
for m = 1 (D = 2) by earlier discussion. Now suppose for D = 2m−1, m ≥ 2, the length-Nm−1

sequences P̃0 and Q̃ achieve M -th order nulls of the spectrum SP̃0,Q̃,1(θ), ..., SP̃0,Q̃,2m−1(θ).

When D = 2m, for even r between 0 and 2m− 1, we have ωr2
m−1

= 1. Then by construction
of the length-Nm sequences P and Q, SP,Q,r(θ) can be written by

SP,Q,r(θ) =
N−1∑
k=0

(Nm−1−1∑
n=0
p′k=0

ωrp̃0,nq′kq̃ne
j(n+kNm−1)θ +

Nm−1−1∑
n=0
p′k=1

ωr(p̃0,n+2m−1)q′kq̃ne
jn+kNm−1θ

)

=
N−1∑
k=0

q′ke
jkNm−1θ

Nt−1−1∑
n=0

(ω2)rp̃0,n/2q̃ne
jnθ

=
N−1∑
k=0

q′ke
jkNm−1θSP̃0,Q̃, r2

(θ).

(C.1)

Since r
2

goes through 1 to 2m−1−1, each SP̃0,Q̃, r2
(θ) has a M -th order null at θ = 0 and hence

so does SP,Q,r(θ).
For odd r, note ωr2

m−1
= −1. Thus SP,Q,r(θ) can be written by

SP,Q,r(θ) =
N−1∑
k=0

(Nm−1−1∑
n=0
p′k=0

ωrp̃0,nq′kq̃ne
j(n+kNm−1)θ +

Nm−1−1∑
n=0
p′k=1

ωr(p̃0,n+2m−1)q′kq̃ne
jn+kNm−1θ

)

=
Nm−1−1∑
n=0

ωrp̃0,n q̃ne
jnθ

N−1∑
k=0

(−1)p
′
kq′ke

jkNm−1θ

=
Nm−1−1∑
n=0

ωrp̃0,n q̃ne
jnθSP ′,Q′(N

m−1θ),

(C.2)

therefore each SP,Q,r(θ) has a M -th order null at θ = 0.
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APPENDIX D

PROOF OF LEMMA 4.6.1

Proof: At K = 1, matrices C2,0[k] and C2,1[k] are

C2,0[k] =

[
Cxx[k] Cxy[k]
Cyx[k] Cyy[k]

]
, C2,1[k] =

[
Cyy[k] −Cxy[k]
−Cyx[k] Cxx[k]

]
.

Thus a0C2,0[k]+a1C2,1[k] = 0, ∀k, requires that a0+a1 = 0 and a0−a1 = 0, i.e., a0 = a1 = 0.
Now suppose at K = p, we have that

2p−1∑
d=0

adC2p,d[k] = 0, ∀1− L ≤ k ≤ L− 1

only if ad = 0, d = 0, ..., 2p − 1. At K = p+ 1, the matrices C2p+1,d[k] are

C2p+1,d[k] = I0≤d≤2p−1 ·
[
1 1
1 1

]
⊗C2p,d[k] + I2p≤d≤2p+1−1 ·

[
1 −1
−1 1

]
⊗C2p,d[k],

where I· is the indicator function. Clearly, the sufficient and necessary condition of

2p+1−1∑
d=0

adC2p+1,d[k] = 0, ∀1− L ≤ k ≤ L− 1

is that
2p−1∑
d=0

adC2p,d[k] =
2p−1∑
d=0

ad+2pC2p,d[k] = 0 ∀1− L ≤ k ≤ L− 1.

This is true only if ad = 0 for 0 ≤ d ≤ 2p − 1 and 2p ≤ d ≤ 2p+1 − 1, or equivalently ad = 0
for 0 ≤ d ≤ 2p+1 − 1.
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APPENDIX E

PROOF OF THEOREM 4.6.2

Proof: Note that the first M Taylor moments of all entries in ∆2K (k, θ) around θ = 0
are zero if only if the first M Taylor moments of all entries in ejθ∆2K (k, θ) around θ = 0 are
zero. Write ejθ∆2K (k, θ) as

ejθ∆2K (k, θ) =
1

2K

2K−1∑
r=1

ejθSP,Q,r(θ)∆2K ,r[k]

=
1

2K

2K−1∑
r=1

N−1∑
n=0

∞∑
m=0

ωrpn
2K
q[n]

(n+ 1)m

m!
θm∆2K ,r[k]

=
1

2K

∞∑
m=0

θm

m!

2K−1∑
r=1

N−1∑
n=0

ωrpn
2K
q[n](n+ 1)m∆2K ,r[k]

If we have
N−1∑
n=0

ωrpn
2K
q[n](n+ 1)m = 0, r = 1, ..., 2K − 1,m = 0, ...,M,

or equivalently 
1 1 · · · 1
1 2 · · · N
...

...
. . .

...
1M 2M · · · NM




ωrp0

2K
q0

ωrp1

2K
q1

...
ω
rpN−1

2K
qN−1

 = 0, r = 1, ..., 2K − 1,

then the first M Taylor moments of all entries in ejθ∆2K (k, θ) around θ = 0 are zero for all
k.

Conversely, denote am,r =
∑N−1

n=0 ω
rpn
2K
q[n](n+ 1)m. Substitute (4.37) into (E), we have

ejθ∆2K (k, θ) =
1

2K

∞∑
m=0

2K−1∑
d=0

2K−1∑
r=1

ω−rd
2K

am,r∆2K ,d[k]

Zero forcing the first M -th Taylor moments of all entries in ejθ∆2K (k, θ) around θ = 0 are
zero for all k requires

2K−1∑
d=0

am,d∆2K ,d[k] = 0, m = 0, ...,M,
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where am,d =
∑2K−1

r=1 ω−rd
2K

am,r. Using the result in Lemma 4.4.1, we can show that am,d = 0,
d = 0, ..., 2K − 1, m = 0, ...,M . This yields the discrete Fourier transformation

1 1 1 · · · 1

1 ω−1
2K

ω−2
2K

· · · ω
−(2K−1)

2K

1
...

...
. . .

...

1 ω
−(2K−1)

2K
ω
−2(2K−1)

2K
· · · ω

−(2K−1)2

2K




0
am,1

...
am,2K−1

 = 0,m = 0, ...,M.

The Parseval’s theorem indicates that am,r = 0, r = 1, ..., 2K − 1, m = 0, ...,M .
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APPENDIX F

PROOF OF THEOREM 4.7.1

Proof: for arbitrary two integers 0 ≤ d, d′ ≤ D1D2 − 1, write d = D2d1 + d2, and
d′ = D2d

′
1 + d′2. From the construction of (p,q) we have

N−1∑
n=0
pn=d

qnn
m =

N1−1∑
n1=0

p1,n1=d1

N2−1∑
n2=0

p2,n2=d2

q1,n1q2,n2(n1R1 + n2R2)m

=
m∑
`=0

(
m

`

)
R`

1R
m−`
2

N1−1∑
n1=0

p1,n1=d1

q1,n1n
`
1 ·

N2−1∑
n2=0

p2,n2=d2

q2,n2n
m−`
2 .

and
N−1∑
n=0
pn=d′

qnn
m =

m∑
`=0

(
m

`

)
R`

1R
m−`
2

N1−1∑
n1=0

p1,n1=d′1

q1,n1n
`
1 ·

N2−1∑
n2=0

p2,n2=d′2

q2,n2n
m−`
2

Since (p1,q1) ∈ ND1(N1,M), and (p2,q2) ∈ ND2(N2,M), we have

Ni−1∑
n=0

pi,n=di

qi,nn
m =

Ni−1∑
n=0

pi,n=d′i

qi,nn
m, m = 0, . . . ,M, ∀0 ≤ di, d

′
i ≤ Di − 1, i = 1, 2,

Thus we have

N−1∑
n=0
pn=d

qnn
m =

N−1∑
n=0
pn=d′

qnn
m, ∀0 ≤ d, d′ ≤ D1D2 − 1, m = 0, . . . ,M. (F.1)
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APPENDIX G

PROOF OF THEOREM 4.7.3

Proof: Decompose the residue matrix as

∆2K (k, θ)∆2K ,odd(k, θ) + ∆2K ,even(k, θ),

where ∆2K ,odd(k, θ) is defined as

∆2K ,odd(k, θ) =
1

2K

2K−1∑
r=1

r is odd

SpK ,qK ,r(θ)∆2K ,r[k]

=
1

2K

2K∑
r=1

r is odd

NK−1−1∑
n=0

ω
rpK−1,n

2K
qK−1,ne

jnθSp1,q1(NK−1θ)
2K−1∑
d=0

ω−rd
2K

C2K ,d[k]

=
1

2K
Sp1,q1(NK−1θ)

NK−1−1∑
n=0

2K−1∑
d=0

2K∑
r=1

r is odd

ω
r(pK−1,n−d)

2K
C2K ,d[k]

 qK−1,ne
jnθ,

Using the fact that
2K−1∑
r=1

r is odd

ωrp
2K

=

{
2K−1, p = 0, 2K−1

0, otherwise
,

for p = 0, . . . , 2K − 1, we can be further write ∆2K ,odd(k, θ) as

∆2K ,odd(k, θ) =
1

2
Sp1,q1(NK−1θ)

NK−1−1∑
n=0

(C2K ,pK−1,n
[k]−C2K ,pK−1,n+2K−1 [k])qK−1,ne

jnθ

= Sp1,q1(NK−1θ)
NK−1−1∑
n=0

J2 ⊗C2K−1,pK−1,n
[k]qK−1,ne

jnθ

= Sp1,q1(NK−1θ)J2 ⊗ χpK−1,qK−1
(k, θ)

= Sp1,q1(NK−1θ)J2 ⊗
[
SqK−1

(θ)δ[k]I2K−1 + ∆2K−1(k, θ)
]
,

where J2 is the 2× 2 anti-diagonal matrix whose anti-diagonal entries are all 1.
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The term ∆2K ,even(k, θ) is defined as

∆2K ,even(k, θ) =
1

2K

2K−1∑
r=1

r is even

SpK ,qK ,r(θ)∆2K ,r[k]

=
1

2K

2K−1∑
r=1

r is even

SpK−1,qK−1,
r
2
(θ)Sq1(NK−1θ)

2K−1∑
d=0

ω−rd
2K

C2K ,d[k]

=
1

2K

2K−1∑
r=1

r is even

SpK−1,qK−1,
r
2
(θ)Sq1(NK−1θ)

2K−1−1∑
d=0

ω
− r

2
d

2K−1

(
C2K ,d[k] + C2K ,d+2K−1 [k]

)

=
1

2K−1
Sq1(NK−1θ)

2K−1−1∑
r=1

SpK−1,qK−1,r(θ)
2K−1−1∑
d=0

ω−rd
2K−1I2 ⊗C2K−1,d[k]

= Sq1(NK−1θ) · I2 ⊗∆2K−1(k, θ).

Therefore we have

∆2K (k, θ)

= ∆2K ,odd(k, θ) + ∆2K ,even(k, θ)

= Sp1,q1(NK−1θ)J2 ⊗
[
SqK−1

(θ)δ[k]I2K−1 + ∆2K−1(k, θ)
]

+ Sq1(NK−1θ)I2 ⊗∆2K−1(k, θ)

=
[
Sq1(NK−1θ)I2 + Sp1,q1(NK−1θ)J2

]
⊗∆2K−1(k, θ) + Sp1,q1(NK−1θ)SqK−1

(θ)δ[k]J2 ⊗ I2K−1 .
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APPENDIX H

PROOF OF THEOREM 4.7.8

Proof: From previous definition of ∆2K ,odd(k, θ) and ∆2K ,even(k, θ), we have

∆2K ,odd(k, θ) =
1

2K

2K−1∑
r=1

r is odd

Sq(θ +
r2π

2K
)

2K−1∑
d=0

ω−rd
2K

C2K ,d[k]

=
1

2K−1

2K−1∑
r=1

r is odd

Sq(θ +
r2π

2K
)

2K−1−1∑
d=0

ω−rd
2K

J2 ⊗C2K−1,d[k]

=
1

2K−1
J2 ⊗

 2K−1∑
r=1

r is odd

Sq(θ +
r2π

2K
)

2K−1−1∑
d=0

ω−rd
2K

C2K−1,d[k]

 ,

∆2K ,even(k, θ) =
1

2K

2K−1∑
r=1

r is even

Sq(θ +
r2π

2K
)

2K−1∑
d=0

ω−rd
2K

C2K ,d[k]

=
1

2K−1

2K−1∑
r=1

r is even

Sq(θ +
r2π

2K
)

2K−1−1∑
d=0

ω
− r

2
d

2K−1I2 ⊗C2K−1,d[k]

=
1

2K−1
I2 ⊗

 2K−1∑
r=1

r is even

Sq(θ +
r2π

2K
)∆2K−1, r

2
[k]

 .

155



APPENDIX I

PROOF OF THEOREM 4.8.1

Proof: Given (p,q) ∈ N 2K (N,M) and an arbitrary permutation π2K , denote p′ =
A(π2K )p, and write Pn(p′,q, φ) by

Pn(p′,q, φ) =
2K−1∑
d=0

(
N−1∑
n=0

p′[n]=d

|q[n]|2
)

a2K (φ)T ·C2K ,d[0] · a2K (φ)∗.

For 2 ≤ k ≤ K, we have

2k−1∑
d=0

(
N−1∑
n=0

p′[n]=d

|q[n]|2
)

a2k(φ)T ·C2k,d[0] · a2k(φ)∗

= 2
2k−1−1∑
d=0

[
(1 + cos(2k−1φ))

N−1∑
n=0

p′[n]=d

|q[n]|2+

(1− cos(2k−1φ))
N−1∑
n=0

p′[n]=d+2k−1

|q[n]|2
]
a2k−1(φ)T ·C2k−1,d[0] · a2k−1(φ)∗

≤ 4
2k−1−1∑
d=0

(
max
i∈{0,1}

N−1∑
n=0

p′[n]=d+i2k−1

|q[n]|2
)

a2k−1(φ)T ·C2k−1,d[0] · a2k−1(φ)∗,

where the last equality holds at φ = 0. Since

1∑
d=0

(
N−1∑
n=0

p′[n]=d

|q[n]|2
)

a2(φ)T ·C2,d[0] · a2(φ)∗

= 2

(
N−1∑
n=0

p′[n]=0

|q[n]|2 +
N−1∑
n=0

p′[n]=0

|q[n]|2 + Cxy[0] cosφ ·

(
N−1∑
n=0

p′[n]=0

|q[n]|2 −
N−1∑
n=0

p′[n]=0

|q[n]|2
))

≤ 2

(
N−1∑
n=0

p′[n]=0

|q[n]|2 +
N−1∑
n=0

p′[n]=0

|q[n]|2 + |Cxy[0]| ·

∣∣∣∣∣
N−1∑
n=0

p′[n]=0

|q[n]|2 −
N−1∑
n=0

p′[n]=0

|q[n]|2
∣∣∣∣∣
)
,

where the last equality holds if φ = 0. Thus the noise power Pn(p′,q, φ) when (1)∑
p′[n]=d |q[n]|2 ≥

∑
p′[n]=d+2k−1 |q[n]|2, 0 ≤ d ≤ 2k−1 − 1 for each 2 ≤ k ≤ K; (2)

156



∑
p′[n]=0 |q[n]|2 ≥

∑
p′[n]=1 |q[n]|2 if Cxy[0] ≥ 0 or

∑
p′[n]=0 |q[n]|2 ≤

∑
p′[n]=1 |q[n]|2 if

Cxy[0] < 0; (3) φ = 0. By substituting the above condition into the expression of Pn(p′,q, φ),
we get the result in theorem 4.8.1.
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APPENDIX J

PROOF OF THEOREM 5.5.2

Proof: For notation simplicity, we write x and z instead of x3 and z3 respectively. Use
triangle inequality we obtain

I(z)|em,`(z)| ≤
∣∣∣∣∫ 0

−∆/M

∣∣∑
p 6=0

am,`+pG(x+ p∆/M, z)
∣∣2dx∣∣∣∣

+ 2

∣∣∣∣Re

{
am,`

∑
p 6=0

am,`+p

∫ 0

−∆/M

G(x, z)G(x+ p∆/M, z)dx

}∣∣∣∣
≤
∫ 0

−∆/M

(∑
p6=0

am,`+p
∣∣G(x+ p∆/M)

∣∣)2
dx

+ 2am,l
∑
p 6=0

am,`+p

∫ 0

−∆/M

|G(x, z)||G(x+ p∆/M, z)|dx.

(J.1)

From Cauchy-Schwartz inequality we have

|G(x+ p∆/M, z)| =
∣∣∣∣∫ x+(p+1)∆/M

x+p∆/M

e−( y
w(z)

)2

e−i
ky2

2R(z)dy

∣∣∣∣
≤
(∫ x+(p+1)∆/M

x+p∆/M

e−( y
w(z)

)2

dy

)1/2(∫ x+(p+1)∆/M

x+p∆/M

dy

)1/2

=
√

∆/M

(∫ x+(p+1)∆/M

x+p∆/M

e−( y
w(z)

)2

dy

)1/2

.

(J.2)

It easy to show that for x ∈ [−∆/M, 0], the integral

∫ x+(p+1)∆/M

x+p∆/M

e−( y
w(z)

)2

dy ≤


∆/M exp

(
−(x+p∆/M

w(z)
)2
)
, p > 0

∆/M, p = 0

∆/M exp
(
−(x+(p+1)∆/M

w(z)
)2
)
, p < 0

. (J.3)
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Thus we have∫ 0

−∆/M

(∑
p6=0

am,`+p
∣∣G(x+ p∆/M, z)

∣∣)2
dx

≤ 2

∫ 0

−∆/M

(∑
p<0

am,`+p
∣∣G(x+ p∆/M, z)

∣∣)2
dx+ 2

∫ 0

−∆/M

(∑
p>0

am,`+p
∣∣G(x+ p∆/M, z)

∣∣)2
dx

≤ 2(∆/M)2

∫ 0

−∆/M

[ −1∑
p=−`

e
− (x+(p+1)∆/M)2

2w2(z)
]2
dx+ 2(∆/M)2

∫ 0

−∆/M

[N−`−1∑
p=1

e
− (x+p∆/M)2

2w2(z)
]2
dx

= 2(∆/M)2

∫ ∆/M

0

[ −1∑
p=−`

e
− (x+p∆/M)2

2w2(z)
]2
dx+ 2(∆/M)2

∫ ∆/M

0

[N−`−1∑
p=1

e
− (x−p∆/M)2

2w2(z)
]2
dx

= 2(∆/M)2

(∫ ∆/M

0

[∑̀
p=1

e
− (x−p∆/M)2

2w2(z)
]2
dx+

∫ ∆/M

0

[N−`−1∑
p=1

e
− (x−p∆/M)2

2w2(z)
]2
dx

)
(J.4)

For p > 0, we have

(x− p∆/M)2 = x2 − 2px∆/M + p2(∆/M)2

≥ x2 − 2p(∆/M)2 + p2(∆/M)2, x ∈ [0,∆/M ],
(J.5)

Thus it follows that

e
− (x−p∆/M)2

2w2(z) ≤ e
−x

2−2p(∆/M)2+p2(∆/M)2

2w2(z)

= e
(∆/M)2

2w2(z) e
− x2

2w2(z) e
− (p−1)2(∆/M)2

2w2(z) , x ∈ [0,∆/M ],

(J.6)

and ∫ ∆/M

0

[∑̀
p=1

e
− (x−p∆/M)2

2w2(z)
]2
dx ≤ e

(∆/M)2

w2(z)

∫ ∆/M

0

[∑̀
p=1

e
− x2

2w2(z) e
− (p−1)2(∆/M)2

2w2(z)
]2
dx

≤ e
(∆/M)2

w2(z) S2
`

∫ ∆/M

0

e
− x2

w2(z)dx,

(J.7)

where the finite sum S` is

S` =
`−1∑
p=0

e
− p

2(∆/M)2

2w2(z) . (J.8)

Similarly we have∫ ∆/M

0

[N−`−1∑
p=1

e
− (x−p∆/M)2

2w2(z)
]2 ≤ e

(∆/M)2

w2(z) S2
N−`−1

∫ ∆/M

0

e
− x2

w2(z)dx. (J.9)
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Therefore from eq (J.4) we have∫ ∆/M

0

(∑
p 6=0

am,`+p
∣∣G(x+ p∆/M, z)

∣∣)2
dx ≤ 2(∆/M)2e

(∆/M)2

w2(z) (S2
` + S2

N−`−1)

∫ ∆/M

0

e
− x2

w2(z)dx

(J.10)
The second term on the right hand side of (J.1) can be bounded as

am,`
∑
p 6=0

am,`+p

∫ 0

−∆/M

|G(x, z)||G(x+ p∆/M, z)|dx

≤ am,`(∆/M)2

{ −1∑
p=−`

am,`+p

∫ 0

−∆/M

e
− (x+(p+1)∆/M)2

2w2(z) dx+
N−`−1∑
p=1

am,`+p

∫ 0

−∆/M

e
− (x+p∆/M)2

2w2(z) dx

}

≤ am,`(∆/M)2

{∑̀
p=1

∫ ∆/M

0

e
− (x−p∆/M)2

2w2(z) dx+
N−`−1∑
p=1

∫ ∆/M

0

e
− (x−p∆/M)2

2w2(z) dx

}

≤ am,`(∆/M)2e
(∆/M)2

2w2(z) (S` + SN−`)

∫ ∆/M

0

e
− x2

2w2(z)dx.

(J.11)

In summary, the amplitude of I(z)em,`(z) can be bounded as

I(z)|em,`(z)| ≤
∫ 0

−∆/M

(∑
p6=0

am,`+p
∣∣G(x+ p∆/M)

∣∣)2
dx

+ 2am,l
∑
p6=0

am,`+p

∫ 0

−∆/M

|G(x, z)||G(x+ p∆/M, z)|dx

≤ 2(∆/M)2
[
e

(∆/M)2

2w2(z) (S` + SN−`−1)

∫ ∆/M

0

e
− x2

2w2(z)dx

+ e
(∆/M)2

w2(z) (S2
` + S2

N−`−1)

∫ ∆/M

0

e
− x2

w2(z)dx
]

(J.12)

It is obvious that for each ` we have S` +SN−`−1 ≤ 2SN , and S2
` +S2

N−`−1 < 2S2
N . Therefore

we have

I(z)|em,`(z)| ≤ 4(∆/M)2

[
e

(∆/M)2

2w2(z) SN

∫ ∆/M

0

e
− x2

2w2(z)dx+ e
(∆/M)2

w2(z) S2
N

∫ ∆/M

0

e
− x2

w2(z)dx

]
(J.13)
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Note that

SN = 1 +
N−1∑
k=1

e
− k

2(∆/M)2

2w2(z)

≤ 1 +
1

∆/M

N−1∑
k=1

∫ k∆/M

(k−1)∆/M

e
− x2

2w2(z)dx

≤ 1 +
1

∆/M

∫ (N−1)∆/M

0

e
− x2

2w2(z)dx

= 1 +

√
π

2

Mw(z)

∆
erf

(
(N − 1)∆√

2Mw(z)

)
,

(J.14)

where the error function is defined as erf(x) = 2√
π

∫ x
0
e−t

2
dt. Denote r(z) = ∆√

2Mw(z)
and the

above result can be expressed as

SN ≤ 1 +

√
π

2
r−1(z)erf

(
(N − 1)r(z)

)
. (J.15)

Also note that the integrals are∫ ∆/M

0

e
− x2

2w2(z)dx =
√

2w(z)erf
(
r(z)

)
, (J.16)

and ∫ ∆/M

0

e
− x2

w2(z)dx = w(z)erf
(√

2r(z)
)
. (J.17)

Finally, we have the bound

I(z)|em,`(z)| ≤ 4(∆/M)2

[
e

(∆/M)2

2w2(z) SN

∫ ∆/M

0

e
− x2

2w2(z)dx+ e
(∆/M)2

w2(z) S2
N

∫ ∆/M

0

e
− x2

w2(z)dx

]
≤ 4(∆/M)2w(z)

[√
2

(
1 +

√
π

2
r−1(z)erf

(
(N − 1)r(z)

))
erf
(
r(z)

)
er

2(z)

+

(
1 +

√
π

2
r−1(z)erf

(
(N − 1)r(z)

))2

erf
(√

2r(z)
)
e2r2(z)

]
.

(J.18)
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