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ABSTRACT

COMPRESSIVE MEASUREMENT DESIGN FOR DETECTION AND ESTIMATION

OF SPARSE SIGNALS

We study the problem of designing compressive measurement matrices for two sets of

problems. In the first set, we consider the problem of adaptively designing compressive mea-

surement matrices for estimating time-varying sparse signals. We formulate this problem as

a Partially Observable Markov Decision Process (POMDP). This formulation allows us to

use Bellman’s principle of optimality in the implementation of multi-step lookahead designs

of compressive measurements. We introduce two variations of the compressive measurement

design problem. In the first variation, we consider the problem of selecting a prespecified

number of measurement vectors from a predefined library as entries of the compressive mea-

surement matrix at each time step. In the second variation, the number of compressive

measurements, i.e., the number of rows of the measurement matrix, is adaptively chosen.

Once the number of measurements is determined, the matrix entries are chosen according

to a prespecified adaptive scheme. Each of these two problems is judged by a separate per-

formance criterion. The gauge of efficiency in the first problem is the conditional mutual

information between the sparse signal support and the measurements. The second problem

applies a linear combination of the number of measurements and the conditional mutual in-

formation as the performance measure. We present several simulations in which the primary

focus is the application of a method known as rollout. The significant computational load

for using rollout has also inspired us to adapt two data association heuristics in our simula-

tions to the compressive sensing paradigm. These heuristics show promising decreases in the

amount of computation for propagating distributions and searching for optimal solutions.

In the second set of problems, we consider the problem of testing for the presence (or
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detection) of an unknown static sparse signal in additive white noise. Given a fixed mea-

surement budget, much smaller than the dimension of the signal, we consider the general

problem of designing compressive measurements to maximize the measurement signal-to-

noise ratio (SNR), as increasing SNR improves the detection performance in a large class of

detectors. We use a lexicographic optimization approach, where the optimal measurement

design for sparsity level k is sought only among the set of measurement matrices that satisfy

the optimality conditions for sparsity level k− 1. We consider optimizing two different SNR

criteria, namely a worst-case SNR measure, over all possible realizations of a k-sparse signal,

and an average SNR measure with respect to a uniform distribution on the locations of the

up to k nonzero entries in the signal. We establish connections between these two criteria

and certain classes of tight frames. We constrain our measurement matrices to the class of

tight frames to avoid coloring the noise covariance matrix. For the worst-case problem, we

show that the optimal measurement matrix is a Grassmannian line packing for most—and

a uniform tight frame for all—sparse signals. For the average SNR problem, we prove that

the optimal measurement matrix is a uniform tight frame with minimum sum-coherence for

most—and a tight frame for all—sparse signals.
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CHAPTER 1

INTRODUCTION

Over the past few years, considerable progress has been made towards developing a

mathematical framework for reconstructing sparse or compressible signals.1 The most no-

table result is the development of the compressed sensing theory (see, e.g., [2]–[7]), which

shows that an unknown signal can be recovered from a small (relative to its dimension) num-

ber of linear measurements provided that the signal is sparse. Thus, compressed sensing and

related sparse recovery methods have become topics of great interest, leading to many excit-

ing developments in sparse representation theory, measurement design, and sparse recovery

algorithms (see, e.g, [8]–[14]).

Early results in compressive sensing show that the exact recovery of a sparse signal or

computing a good estimate of a compressible signal can be achieved with a high probability

if compressive measurement matrices with random Gaussian or Bernoulli entries are used for

measuring the signal. Since then, numerous methods for designing the compressive measure-

ment matrix have been proposed (see, e.g., [15]–[20]). For example, the work in [19] provides

a deterministic structure for the measurement matrix which requires more measurements

to recover the sparse signal but the overall computational cost is much lower than the ran-

dom design. Recently, more realistic settings for the sparse signal recovery problem have

been considered (see, e.g., [21] and [22]), opening new horizons for alternative compressive

measurement designs.

The traditional compressive sensing methods are non-adaptive in the sense that the

1A vector x = [x1, x2, . . . , xN ]T is sparse when the cardinality of its support S = {k : xk 6= 0} is much
smaller than its dimension N . A vector x is compressible if its entries obey a power law, i.e., the kth largest
entry in absolute value, denoted by |x|(k), satisfies |x|(k) ≤ Cr · k−r, r > 1 and Cr is a constant depending

only on r (see, e.g., [2]). Then ‖x− xk‖1 ≤
√
kC ′r · k−r+1, where xk is the best k-term approximation of x.
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measurement matrix is determined in advance, prior to receiving any measurements of the

sparse signal. The recent theoretical result in [23] shows that, in a certain asymptotic sense,

adaptive designs have limited performance advantage over traditional non-adaptive schemes.

On the other hand, several works (see, e.g., [24]–[28]) have proposed adaptive designs for

certain scenarios, showing (non-asymptotic) improvements resulting from adaptation under

these scenarios.

The above works all assume a static sparse signal. This means that over time, the

locations and values of the nonzero entries of the sparse signal stay constant. Although

this assumption is valid in some applications, in many practical scenarios, considering a

static signal seems unrealistic. Examples of time-varying sparse signals arise naturally in

target tracking, high-speed video capturing, time-varying multi-path in communication, etc.

However, little attention has so far been paid to the time-varying case (notable exceptions

being [29]–[33]), where one would expect adaptation to play a more significant role.

In the first part of this work, presented in Chapter 2, we study the problem of adaptively

designing compressive measurement matrices for estimating time-varying sparse signals. We

take a unique perspective that enables melding compressive sensing and data association

techniques for multi-target tracking: We view the time-varying s-sparse signal of dimension

N as a representation of the combination of target locations (the vector support) and target

values (the non-zero values located at the support indices) of s targets moving over N possible

locations according to a discrete motion-model. We assume that only the target locations

and not the target values vary over time.

We present two problems in which our main goal behind solving both of them is to

estimate the support of the time-varying sparse signal at different time steps. These two

problems present two variations of the support identification problem of sparse signals. Also,

both of these problems lend themselves to adaptive measurement solutions, successively

selecting action inputs as observations are collected. We formulate each problem as a finite-

horizon partially observable Markov decision process (POMDP) (see [34] and [35]). This
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formulation enables us to bring to bear Bellman’s principle of optimality.

The POMDP framework accommodates two categories of adaptive solution methods, al-

lowing their implementation and comparison. These two categories are known as “1-step

lookahead” or “myopic” and “multi-step lookahead” methods in the literature, respectively.

Throughout several simulations in Section 2.4, we show that our adaptive designs outper-

form the non-adaptive schemes in all of the presented scenarios. However, when comparing

the performance of myopic vs. multi-step lookahead designs, several factors such as the

performance criterion of the problem or the POMDP action space influence the performance

difference between these two designs. This is because the multi-step lookahead methods can

perform better than myopic solutions only when there is a benefit in accounting for “long

term” effects. We verify this claim throughout our simulations.

The work presented in Chapter 2 can be used for estimating any time-varying sparse

signal with any number of nonzero entries. Note that once we assume more than one nonzero

moving entry in the signal, we must consider the problem of data association (see, e.g., [36]–

[38]) that naturally arises in our problem. Therefore, we have to modify our POMDP

formulation (Section 2.2) accordingly to take this problem into account.

It is well known that solving a POMDP problem exactly is typically computationally

prohibitive (see, e.g., [39] and [40]). In our simulations for this work, we apply a few approx-

imation techniques that decrease the existing computation volume. We will introduce these

techniques in Section 2.2.2.

As mentioned earlier, the major part of the effort in the compressive sensing literature has

been focused on estimating sparse signals. Hypothesis testing (detection and classification)

involving sparse signal models, on the other hand, has been scarcely addressed, notable

exceptions being [41]–[45]. Detecting a sparse signal in noise is fundamentally different

from reconstructing a sparse signal, as the objective in detection often is to maximize the

probability of detection or to minimize a Bayes’ risk, rather than to find the sparsest signal

that satisfies a linear observation equation.
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We note that in the compressed sensing literature the term “sparse signal detection” often

means identifying the support of a sparse signal. However, in the second part of this work,

presented in Chapter 3, we use this term to refer to a binary hypothesis test for the presence

or absence of a sparse signal in noise. The problem is to decide whether a measurement

vector is a realization from a hypothesized noise only model or from a hypothesized signal-

plus-noise model, where in the latter model the signal is sparse in a known basis but the

indices and values of its nonzero coordinates are unknown.

Existing work (e.g., see [41]–[43]) is mainly focused on understanding how the perfor-

mance of well-known detectors (e.g., the Neyman-Pearson detector) are affected by mea-

surement matrices that have the so-called restricted isometry property (RIP). The RIP

condition for the measurement matrix is sufficient for the minimum `1-norm solution to be

exact (or near-exact when the measurements are noisy) (e.g., see [5]). A fundamental result

of compressed sensing has been to establish that random matrices, with independently and

identically distributed (i.i.d.) Gaussian or i.i.d. Bernoulli entries, satisfy the RIP condition

with high probability. The analysis presented in [41] and [42] provides theoretical bounds

on the performance of a Neyman-Pearson detector—quantified by the maximum probability

of detection achieved at a pre-specified false alarm rate—when matrices with i.i.d. Gaussian

entries are used for collecting measurements. In [43], the authors derive bounds on the total

error probability for detection, involving both false alarm and miss detection probabilities,

but again for measurement matrices with i.i.d. entries. Finally, in [44] and [45], the authors

develop compressive matched subspace detectors that also use random matrices for collecting

measurements for detecting sparse signals in known subspaces.

The body of work reported in [41]–[45] provides a valuable analysis of the performance

of different detectors, but leaves the question of how to design measurement matrices to

optimize a measure of detection performance open. As in the case of reconstruction, ran-

dom matrices have been studied in these papers in the context of signal detection primarily

4



because of the tractability of the associated performance analysis. But what are the neces-

sary and sufficient conditions a compressive measurement matrix must have to optimize a

desired measure of detection performance? How can matrices that satisfy such conditions be

constructed? Our aim in Chapter 3 is to take initial but significant steps towards answering

these questions.
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CHAPTER 2

ADAPTIVE ESTIMATION OF TIME-VARYING

SPARSE SIGNALS

2.1 Introduction

In this chapter, we study the problem of adaptively designing compressive measurement

matrices for estimating time-varying sparse signals. As mentioned in Chapter 1, we view the

time-varying s-sparse signal of dimension N as a representation of the combination of target

locations (the vector support) and target values (the non-zero values located at the support

indices) of s targets moving over N possible locations according to a discrete motion-model.

At each time step k, the locations and strength values of these targets can be represented

by an s-sparse vector xk in RN . In this chapter, we call an N -dimensional signal s-sparse if it

has at most s� N nonzero entries. Moreover, we assume that only the target locations, or

equivalently the support of the sparse signal xk, change over time and not the target values.

Our goal is to estimate the support of the sparse signal at each time step from compressive

measurements.

During each time step k, we collect 1 ≤ lk ≤ lmax measurements (lmax is a prespecified

integer), represented by the lk-vector yk = [y1, y2, . . . , ylk ]
T , according to the linear model

yk = Akxk + wk. In this model, Ak ∈ Rlk×N is a compressive measurement matrix with

rows Ak(i), i = 1, . . . , lk, and wk ∼ N (0lk , σ
2
wIlk), where N (0lk , σ

2
wIlk) denotes the lk-variate

normal distribution with the zero mean vector 0lk and the covariance matrix σ2
wIlk , and Ilk is

the (lk×lk) identity matrix. We assume that ‖Ak(i)‖2 = 1 for i = 1, . . . , lk and k = 1, . . . ,m.

Also, we assume that at each time step, the movement of the targets is independent of the

measurement matrix Ak or the number of measurements lk. Thus, at any time step, multiple

6



targets can move to the same location, effectively reducing the number of nonzero entries in

the signal to less than s.

We now introduce two problems of interest. These problems both contain the essence of

compressive sensing as described above. At the same time, each problem presents unique

goals and constraints. The differences in these problems ultimately define the type of their

favored solution methods.

Problem 1. Fix lk = l for k = 1, 2, . . . ,m, where 1 ≤ l ≤ lmax is a fixed integer. Our

goal is to sequentially select measurement matrices Ak, k = 1, 2, . . . ,m, from a prespecified

library to maximize a measure of performance for estimating locations of the nonzero entries

(support) of the sparse signal xk at each time step k. The performance measure for this

problem is the conditional mutual information between the measurement vector yk and the

support of the signal xk given the previous measurements.

Problem 2. Here, lk is not fixed and is, in fact, the action input chosen sequentially

at each time step, k = 1, 2, . . . ,m,. Once the value lk is chosen, the measurement matrix

Ak is constructed using a prespecified scheme, explained in Section 2.4. The performance

criterion in this problem is defined as a weighted sum of the number of measurements lk

and the conditional mutual information between the measurements and the support of the

sparse signal at each time step.

The problems introduced above present two variations of support identification for sparse

signals. We formulate each problem as a finite-horizon partially observable Markov decision

process (POMDP) (see [34] and [35]) in Section 2.2, which enables us to bring to bear

Bellman’s principle of optimality. When variations of Problem 1 have been considered in

the compressive sensing literature, the common solution approach is categorized as a “1-

step lookahead” or “myopic” method. In other words, only the performance at the current

time step is considered when selecting the compressive measurement matrices. Although

Section 2.4 includes results from 1-step lookahead methods, our primary focus in this work

is the application of “multi-step lookahead” solutions.
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It is important to realize that multi-step lookahead methods can perform better than

myopic solutions only when there is a benefit in accounting for long-term effects. Several

factors play a role in providing such benefits. The performance criterion of the problem

and the action space restrictions are examples of such factors. In this work, throughout

several simulations, we show that although adaptive designs outperform the non-adaptive

schemes, the performance criterion and the action space of Problem 1 preclude the multi-

step lookahead solution from surpassing the myopic solutions. The alterations in Problem 2,

namely the action space and the performance measure, exemplify long-term considerations

where the performance of multi-step lookahead solutions exceeds that of myopic schemes.

We verify this claim throughout several simulations in Section 2.4.

It is well known that solving a POMDP problem is typically computationally prohibitive.

The following approximation techniques, presented in Section 2.2.2, decrease the computa-

tion volume, alleviating some of the conventional concerns:

1) We introduce two heuristics that are motivated from the well known techniques joint

probabilistic data association (JPDA) and multiple hypothesis tracking (MHT) in the target

tracking literature (see, e.g., [46]–[48]) to simplify the update of the belief state in the

POMDP.

2) In the multi-step lookahead variation of our method, we use an approximation method,

known as rollout (see [49]), to estimate an optimal solution for the POMDP.

2.2 POMDP Formulation

First, we formulate the problems introduced above as POMDPs. Since most of the

POMDP elements for these two problems are similar, we present one POMDP formulation,

but clarify the differences in the formulation of each problem where it is necessary.

States and Transition Law: The s-sparse vector xk is fully characterized by its support

(the locations of the targets) and the strength values (the values of the nonzero entries).

Therefore, we take the state of the POMDP at time k to be sk = (dk,vk), where dk and vk

8



are (s × 1) vectors. The ith entry of these vectors, dk(i) and vk(i), represent the location

and the strength value of the ith target at time k, respectively. Let the set Ω be defined

as Ω = {1, . . . , N}. Also, let Ωs be the set containing all the (s × 1) vectors d such that

d(i) ∈ Ω for i = 1, . . . , s. Note that by using this definition for Ωs, we are allowing any

group of targets to be in the same location at the same time. Therefore, the cardinality of

the set Ωs is equal to |Ωs| = N s. The POMDP state space is then defined as the Cartesian

product S = (Ωs × Rs).

The state transition law of the POMDP, defined by the movement of the targets, is

independent of our actions. Although the above definition for the POMDP state allows for

the strength values of the targets to change over time, we make the simplifying assumption

that these values stay constant over time. Accordingly, the state transition law of the

POMDP can be described as:

P{sk+1 = (d,v)|sk = (e, z)} =

 ped, v = z,

0, otherwise,

where ped is the probability that targets in locations represented by the vector e transition

to locations represented by the vector d. Depending on the movement of the targets, the

probabilities ped could have different values. For example, if we consider the case where

targets stay in the same locations at all time steps, then ped = 1 if e = d, and ped = 0 if

otherwise.

Actions: In Problem 1, the action at each time step k is the selection of the measurement

matrix Ak. Therefore, the action space A is a prespecified subset of all matrices A ∈ Rl×N

such that, for each row A(i), i = 1, . . . , l, ‖A(i)‖2 = 1. In Problem 2, choosing the number

of measurements lk at each time step k is the POMDP action. In this case, the action space

A is the set of natural numbers. For simplicity, we use the notation uk for the POMDP

action at time k for both problems.

Observations and Observation Law: The POMDP observations are the measure-

ments yk at each time step k. The observation law can be described in the following way:
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Given sk = (d,v) and the matrix Ak = A at time step k, it can be easily shown that

yk|(sk = (d,v),Ak = A) ∼ N (Adv, σ2
wIlk), where Ad is a matrix whose ith column is the

d(i)th column of the matrix A.

Cost: Let I(yk; dk|Hk) be the conditional mutual information between the signal support

dk and the measurements yk given the history Hk = {u1,y1, . . . ,uk,yk}. The per-time-step

cost ck(sk,uk) for Problem 1 is then simply defined as ck(sk,uk) = −I(yk; dk|Hk). For

Problem 2, the cost is a combination of the number of measurements lk and the conditional

mutual information I(yk; dk|Hk) at each time step k. More specifically, the per-time-step

cost is defined as

ck(sk,uk) = lk − γI(yk; dk|Hk), (2.1)

where γ ≥ 0 is a weighting parameter chosen based on the priority of either lk or I(yk; dk|Hk).

For example, if we are not particularly concerned with the number of measurements, then we

choose a large value for γ. On the contrary, if we have to be careful with the total number

of measurements used in m steps, we use a small value for γ.

Belief State: The belief state bk at time k is defined as the posterior (conditional)

distribution of the state sk given the history Hk. Using the belief state definition, our

POMDP can be presented as an equivalent Markov Decision Process (MDP) (see [50]). This

MDP, which is also referred to as the belief MDP, has the following components:

1. A state space consisting of all the possible belief states bk for the POMDP.

2. A state transition law that is computed using the state transition law and the obser-

vation law of the POMDP. This computation is referred to as the belief state update,

shown in detail in the next section.

3. An action space which is the same as that of the POMDP.

4. A cost Ck(bk,uk), referred to as the belief cost, which is defined as:

Ck(bk,uk) = E [ck(sk,uk)|Hk,bk] , (2.2)
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where the expectation is with respect to the posterior distribution of the state sk given

the history Hk at time step k, i.e., the belief state bk.

Using the belief MDP model, we can now apply the approximation methods available in

the literature, specifically rollout [51].

2.2.1 Belief State Update

Let Pdk|Hk be the conditional probability mass function of dk given Hk, and fvk|dk,Hk be

the conditional density function of vk given dk and Hk at time step k. Consider a simple

example, shown in Fig. 2.1, where there are three nodes, e1, e2, and e3, representing the

possible signal supports at any time step. Fig. 2.1 also displays the links between nodes,

representing allowed support transitions. For example, there are two possible transitions

arriving at e1, namely, those originating from nodes e1 and e2. Attached to the initial

node of each link is a weight value, computed from a prior conditional probability mass

function, and also a prior conditional density function. Upon choosing an action and receiving

measurements, we can compute a posterior weight value as well as a posterior density function

for the terminal node of the link.

To clarify, consider the selected route, comprised of successive links and outlined in red

in Fig. 2.1, that begins at node e3 at time k = 1 and after passing through node e2 at time

k = 2, it finally arrives at node e1 at k = 3. At time k = 1, once measurement y1 is received,

we can compute the posterior weight value Pd1|H1(e3|H1) and the posterior density function

fv1|d1,H1(·|e3, H1) using the initial prior functions Pd0 and fv0|d0 (this calculation is shown

later in this section). Then, examining the link from e3 to e2, the prior weight and density

function attached to node e3 for the next time step are Pd1|H1(e3|H1) and fv1|d1,H1(·|e3, H1),

respectively. The prior values are updated using the received observations, resulting in

the posterior weight and density function Pd1|d0,H1(e2|e3, H1) and fv1|d1,d0,H1(·|e2, e3, H1),

respectively. For the next link in the route from e2 to e1, the prior weight and density

function used for e2 will be the posterior weight and density function of this node at k = 2,
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i.e., Pd1|d0,H1(e2|e3, H1) and fv1|d1,d0,H1(·|e2, e3, H1), respectively. Again, after choosing an

action and receiving measurements, the posterior weight Pd2|d1,H2(e1|e2, H2) and posterior

density function fv2|d2,d1,H2(·|e1, e2, H2) for node e1 are computed.

It is important to realize that after the first time step, the posterior weight and density

function for the ending node of any link are always conditioned on the initial node of that link.

Thus, knowing the positions of the targets and their prior weight and density at the previous

time step is required. At any time step k, given each possible link, we define an ordered tuple

τ consisting of four elements: the terminal node, the initial node, the prior weight value,

and the prior density function attached to the initial node and let τ (i) be the ith element of

the tuple. For the same route used in the above example, the tuple defined for the link from

e3 to e2 is τ =
(
e2, e3, Pd1|H1(e3|H1), fv1|d1,H1(·|e3, H1)

)
. Analogously, the tuple for the last

link in this route, from e2 to e1, is τ =
(
e1, e2, Pd2|d1,H2

(e1|e2, H2), fv2|d2,d1,H2
(·|e1, e2, H2)

)
.

At any time step, multiple tuples with the same initial and terminal nodes may exist.

For example, in Fig. 2.1, from time k = 2 to time k = 3, there are two links starting at e2

and ending at e1. These two links can be distinguished by the unique priors attached to the

starting nodes of either link. Let Tk be the set containing all the possible tuples at time step

k. Also, define Tk,d to be Tk,d = {τ : τ ∈ Tk, τ (1) = d}, the set of all tuples representing

links ending with support d at time k. At each time step k, the number of possible links,

which depends on the number of initial nodes and the state transition law, determines the

cardinality |Tk| of the set Tk, which increases exponentially as time evolves. We will discuss

Figure 2.1: A simple example showing the construction of various paths from only three
support possibilities e1, e2, and e3 over time.
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this issue later.

Recall that the state of the POMDP at time step k is sk = (dk,vk). The belief state

bk is the posterior joint distribution of dk and vk given Hk, or equivalently, the functions

Pdk|Hk and fvk|dk,Hk . Therefore, updating the belief state bk is equivalent to updating these

functions. Moreover, given yk = y and uk = u, the functions fvk|dk,Hk and Pdk|Hk can be

computed from Pdk|dk−1,Hk and fvk|dk,dk−1,Hk using Bayes’ rule and the law of total probability

in the following way:

fvk|dk,Hk(v|d, Hk) =

∑
τ∈Tk,d g(v,d, τ )Pdk|dk−1,Hk(d|τ (2), Hk)τ (3)∑

τ∈Tk,d Pdk|dk−1,Hk(d|τ (2), Hk)τ (3)
, (2.3)

and,

Pdk|Hk(d|Hk) =

∑
τ∈Tk,d Pdk|dk−1,Hk(d|τ (2), Hk)τ (3)∑

e∈Ωs

∑
τ∈Tk,e Pdk|dk−1,Hk(e|τ (2), Hk)τ (3)

, (2.4)

where g(v,d, τ ) = fvk|dk,dk−1,Hk(v|d, τ (2), Hk). Note that the value τ (3) is the prior weight

value of the starting node τ (2) for the link represented by the tuple τ . This means that to

update the belief state bk at time step k, it is sufficient to update functions Pdk|dk−1,Hk and

fvk|dk,dk−1,Hk for all the possible links that the state transition law allows at each time step.

In this work, we assume a dynamic linear model and a initial Gaussian distribution for

v0|d0 given each d0 ∈ Ωs. Each distribution can be characterized by a density function

fv0|d0 with the mean vector µd0 and the covariance matrix Cd0 . Consequently, the density

function fvk|dk,dk−1,Hk , k ≥ 1, will also be Gaussian, and we use µdk|dk−1
for the mean vector

and Cdk|dk−1
for the covariance matrix.

Given the action uk = u, the measurements yk = y, and the history Hk−1, the functions

Pdk|dk−1,Hk and fvk|dk,dk−1,Hk can be computed using the following two steps:

1. For a given any link, represented by a tuple τ in Tk, the following system of linear

equations describes the dynamics of the moving targets along that link: vk = vk−1,

yk = Aτ (1)vk + wk.
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In this system, vk ∼ N (µτ (1)|τ (2),Cτ (1)|τ (2)). The vector vk−1 also has a Gaussian dis-

tribution, which is represented by the density function τ (4) in the tuple τ . Therefore, the

values µτ (1)|τ (2) and Cτ (1)|τ (2) for the given support pair dk = τ (1) and dk−1 = τ (2) can be

computed by using a Kalman filter. Note that for each possible tuple τ ∈ Tk, we have to use

a separate Kalman filter to update the corresponding prior distribution function τ (4) of the

related link. In the next section, we will discuss the computational issues that usually arise.

Once this update is completed, the value of the function fvk|dk,dk−1,Hk(v|τ (1), τ (2), Hk) for

any v ∈ Rs can then be computed.

2. For a given tuple τ ∈ Tk, the posterior weight value is computed in the following way:

Pdk|dk−1,Hk(τ (1)|τ (2), Hk) =
f1(y,u, τ , τ )f2(τ , τ )∑
ν∈Tk f1(y,u,ν, τ )f2(ν, τ )

, (2.5)

where functions f1(y,u,ν, τ ) and f2(ν, τ ) are defined as:

f1(y,u,ν, τ ) = fyk|dk,dk−1,uk,Hk−1
(y|ν(1), τ (2),u, Hk−1),

and,

f2(ν, τ ) = Pdk|dk−1
(ν(1)|τ (2))τ (3) = pτ (2)ν(1)τ (3),

respectively. Note that the value pτ (2)ν(1), that can be computed from the state transition

law, is equal to zero for the non-existing links from τ (2) to ν(1). Moreover, for the function

f1, it can be easily shown that

yk|dk,dk−1,uk, Hk−1 ∼ N (Adkµdk|dk−1
,AdkCdk|dk−1

A′dk + σ2
wIlk),

where A′dk is the transpose of the matrix Adk . Note that the values µdk|dk−1
and Cdk|dk−1

have already been computed in the previous step.

As mentioned before, after going through the above two steps for all the tuples in Tk and

also computing the functions fvk|dk,Hk and Pdk|Hk given any dk ∈ Ωs using (2.3) and (2.4),

the update of the belief state bk is completed.
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2.2.2 Computational Issues in the Belief State Update

The belief state update procedure described in the previous section shows the computa-

tions required once measurements are received at each time step. To highlight the computa-

tional issues, consider the extreme case where the transition law Pdk|dk−1
allows the targets

to move freely to any position. Also, assume a uniform initial support density function Pd0

over Ωs. Knowing that |Ωs| = N s, then for each support candidate d0 in Ωs, there would

be N s possibilities for the support d1. Therefore, N2s Kalman filters must be employed to

update the belief state at time k = 1. Extending this line of thought, at any time k, N (k+1)s

Kalman filters are needed which is an exponential increase in computations over time.

Of course in reality, the assumed transition law Pdk|dk−1
does not provide such freedom

for the moving target(s). Although this reduces the number of possible transitions, the

exponential increase in computation remains. This is seen in the following example. Again

assume, at time k = 1, a uniform prior distribution Pd0 over Ωs. However, now assume

the transition law restricts the number of possible transitions for each support candidate to

q ≤ N s. Following the same argument as above, there are now N sq links involved in the

belief state update at time k = 1 and for time k = 2, N sq2 links are present. Similarly, N sqk

links (equivalently Kalman filters) are required for the belief state update at any time step

k.

Obviously, updating the belief state according to the above procedure requires a vast

amount of time and also computational power. To deal with the computational volume we

introduce two techniques explained below. This allows us to examine the proposed solution

methods to Problems 1 and 2 and avoid some of the related computational load.

As we have shown, propagating the entire distribution quickly becomes unmanageable

due to its exponential growth-rate in terms of the number of possible links. This issue is also

a major problem in the context of data association in the multi-target tracking problem. In

this problem, the main question asked is: At each time step, which target does of the collected

measurements at that time step represent? If all the observations-to-target associations were
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considered valid, a similar expansion of the distribution representing the current target states

would occur.

We can consider the procedure in Section 2.2.1 as one of associating the measurements yk

to the possible support-value pairs, which are characterized by their corresponding belief state

components Pdk|dk−1,Hk and fvk|dk,dk−1,Hk . The similarity to the data association problem

motivated the adaptation of available solutions in the target tracking context. We have

implemented two separate methods based on popular data association algorithms to combat

the expansion of our belief state distributions, namely: multi-hypothesis tracking (MHT)

(see [1]) and joint probabilistic data association (JPDA) (see [46] and [47]).

Algorithm 1: The essential question to ask is how to choose or approximate the proper

Gaussian distributions and weights to represent different possible support candidates along

different possible routes. There are several approaches to accomplish this, e.g., MMSE, MLE,

etc., and in the target tracking literature, there are also numerous implementations applying

these approximations. We model our first method after MHT.

The basis of MHT lies in multi-hypothesis testing wherein a choice must be made between

several concurrent hypotheses based on a sufficient statistic. Given a set of J hypotheses

H = {hi}Ji=1 and the measurements yk = y, the simplest version of multi-hypothesis testing

chooses one hypothesis h∗ based on finding an optimal solution for the following optimization

problem:

h∗ = arg max
1≤i≤J

{L (hi|y)P (hi)} ,

where L (hi|y) and P (hi) denote the likelihood given the measurement y and the prior prob-

ability of the hypothesis hi, respectively. The function L (hi|y) is equivalent to fyk|h(y|hi),

the conditional probability density function of the measurement vector yk conditioned on

the hypothesis h. Therefore, the above optimization problem will be equal to

h∗ = arg max
1≤i≤J

{fyk,h(y, hi)} .
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In our setting, similar to the target tracking setting, more measurements accrue as time

progresses, providing more information about the underlying state. Obviously, more infor-

mation can help increase the accuracy of the association process. Even in dynamic systems,

observations of future states provide valuable information about the past system states. This

is the basic motivation behind the MHT method.

Consider a time-varying signal estimation problem with a finite horizon of length κ.

At each time step, a measurement is acquired through the observation law. Then, the

most accurate selection of a hypothesis is made by collecting all of the measurements and

maintaining each possible association over the entire horizon. This results in a hypothesis

tree, κ levels deep. Each level consists of nodes representing the possible support-value pairs

(supports may be repeated) and the corresponding weights Pdk|Hk for each time step k. At

the final time step k = κ, applying a multi-hypothesis test to the set of leaf nodes selects

the leaf terminating the most probable route in the tree (most probable with respect the

posterior distribution). This selection not only yields a current estimate of the support and

values that belong to the leaf at the end of the route, but this route, itself, describes the

most probable sequence of support-value pairs. Note, in our setting, the value component

vk of the state has a static transition law, and thus the final estimate of vκ would be the

more accurate that the estimates of vk, k < κ because they would not have benefited from

the later observations.

Let ρ
(i)
k be an ordered k-tuple representing the ith possible route at time k. The first

component ρ
(i)
k (1) of this tuple is the current node of this route and the last component

ρ
(i)
k (k) is the initial node of this route. For example, for the selected route in Fig. 2.1,

which we refer to as the ith route, we have the following tuples for time steps k = 1, 2, and

k = 3, respectively: ρ
(i)
1 = e3, ρ

(i)
2 = (e2, e3), and ρ

(i)
3 = (e1, e2, e3). Note that at time

step k, the total number of possible routes is equal to |Tk|. Let h
(k)
i be the hypothesis that

at time step k, the ith route is the true route. If this hypothesis is true, then this means

that dk = ρ
(i)
k (1),dk−1 = ρ

(i)
k (2), . . . ,d1 = ρ

(i)
k (k). Additionally, let h(k) be the random
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variable representing the true hypothesis; h(k) takes values on set of all hypotheses h
(k)
i ,

i = 1, . . . , |Tk|, at time step k.

Determining the terminal node of the probable route is done by ranking the possible

routes with their track scores. Let ok be a tuple defined as ok = (y1, . . . ,yk). Then, given

the tuple oκ = o, where o = (y(1), . . . ,y(κ)), and the history Hκ = {u(1),y(1), . . . ,u(κ),y(κ)}

at time step κ, the track score S
ρ

(i)
κ

of the route i, represented by the tuple ρ
(i)
κ , is defined as

S
ρ

(i)
κ

= L(h
(κ)
i |o)P (h

(κ)
i ) = foκ,h(κ)(o, h

(κ)
i ),

where foκ,h(κ) is the joint probability density function of oκ and h(κ) at time step κ. By

expanding the function foκ,h(κ) , the value of S
ρ

(i)
κ

is equal to

fyκ|dκ,dκ−1,uκ,Hκ−1(o(κ)|ρ(i)
κ (1),ρ(i)

κ (2),u(κ), Hκ−1)

×p
ρ

(i)
κ (2)ρ

(i)
κ (1)

Pdκ−1|dκ−2,Hκ−1(ρ(i)
κ (2)|ρ(i)

κ (3), Hκ−1).

Note that all of the components in this expression can be computed using the equations

presented in Section 2.2.1. Looking at (2.5), one can conclude that S
ρ

(i)
κ

is proportional to

Seq.

ρ
(i)
κ

where

Seq.

ρ
(i)
κ

=
κ∏
k=1

t(o,ρ
(i)
k , Hk, k),

and the function t is defined as

t(o,ρ
(i)
k , Hk, k) =


fyk|dk,dk−1,uk,Hk−1

(o(k)|ρ(i)
k (1),ρ

(i)
k (2),u(k), Hk−1)

×p
ρ

(i)
k (2)ρ

(i)
k (1)

, k ≥ 2,

Pd1|H1(ρ
(i)
1 (1)|H1), k = 1.

Therefore, we can use Seq.

ρ
(i)
κ

equivalently to find most probable route at time step κ.

Practical concerns such as numerical round-off errors motivate a conversion of Seq.

ρ
(i)
κ

to a

logarithmic representation, Slog

ρ
(i)
κ

, in the following way

Slog

ρ
(i)
κ

=
κ∑
k=1

log
(
t(o,ρ

(i)
k , Hk, k)

)
.
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This alternative representation also provides a simple recursive calculation,

Slog

ρ
(i)
k

= Slog

ρ
(i)
k−1

+ log
(
t(o,ρ

(i)
k , Hk, k)

)
, k = 2, . . . , κ.

As mentioned earlier, when no approximation techniques are used, the number of pos-

sible routes increases exponentially as time evolves. To deal with this problem, most MHT

implementations use a sliding window to designate when the decision making process begins.

The sliding window heuristic limits the size of the hypothesis tree that must be maintained.

Consider a sliding window of size w. After the first w time steps, a hypothesis test is per-

formed, selecting the current leaf with the maximum track score. The route terminating with

the selected leaf is then traced back w levels in the tree. The node at the base of this branch

and all of its descendants are retained, while all other nodes and branches from time-step

(k − w) onward are discarded. At every time step k > w, a similar pruning of the tree is

performed. The larger the sliding window the better the chances of a correct association due

to the increased information accumulated. Fig. 2.2 illustrates this process for an arbitrary

time step.

The sliding window size must be balanced with the computational time and memory

constraints. The maximum reduction in computation from our MHT based algorithm would

be a sliding window of size one. Thus, a hypothesis test would be performed at every time

step. One data-association technique that uses a sliding window of size one is JPDA (see [46]

and [47]). This is the basis for Algorithm 2, described next.

Algorithm 2: Consider the set Tk defined in Section 2.2.1. Looking at the tuples in

this set, each of which is associated with a possible link, we can find multiple tuples that

all share a similar ending node. For example, in Fig. 2.1, there are 4 instances for node

e1 at time step k = 3. To cope with the computational volume we combine the posterior

weights and distributions attached to different instances of an ending node. More specifically,

at each time step k, instead of keeping all instances of a support candidate d ∈ Ωs, we

represent the candidate with only one approximate posterior weight value P̂dk|Hk(d|Hk) and

one approximate posterior distribution function f̂vk|dk,Hk(·|d, Hk). This will force each set
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Figure 2.2: This illustration (adapted from [1]) represents a possible hypothesis tree formed
from a time-varying signal scenario. Like numbered nodes indicate that the support has
remained the same over the transition. A sliding window of size w = 2 is depicted and the
pruning action has indicated that the maximum track score belongs to the route represented
by the tuple (e6, e2, e2, e1). Thus, the pruning is done as shown. This has reduced the
computation for the time step k + 1 by 50%.

Tk for k = 1, 2, . . ., to have a fixed cardinality equal to the cardinality of the set Ωs, i.e.,

|Tk| = N s.

To pursue this, consider (2.3). Define ατ ,d,Hk to be

ατ ,d,Hk =
Pdk|dk−1,Hk(d|τ (2), Hk)τ (3)∑

τ∈Tk,d Pdk|dk−1,Hk(d|τ (2), Hk)τ (3)
.

Then, equation (2.3) simplifies to

fvk|dk,Hk(v|d, Hk) =
∑
τ∈Tk,d

ατ ,d,Hkfvk|dk,dk−1,Hk(v|d, τ (2), Hk).

This is the representation of a Gaussian mixture with weight values ατ ,d,Hk and Gaussian

components fvk|dk,dk−1,Hk . Given dk = d at time step k, the mean µd of this mixture will

be equal to

µd =
∑
τ∈Tk,d

ατ ,d,Hk

∫
v

vfvk|dk,dk−1,Hk(v|d, τ (2), Hk)dv =
∑
τ∈Tk,d

ατ ,d,Hkµd|τ (2).
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Also, the covariance matrix Cd of this mixture can be computed in the following way:

Cd = E [(vk|d, Hk)(vk|d, Hk)
′]− µdµ

′

d

=
∑
τ∈Tk,d

ατ ,d,Hk

∫
v

vv′fvk|dk,dk−1,Hk(v|d, τ (2), Hk)dv − µdµ
′

d

=
∑
τ∈Tk,d

ατ ,d,Hk

(
Cd|τ (2) + µd|τ (2)µ

′

d|τ (2)

)
− µdµ

′

d.

Now, we approximate the Gaussian mixture density function with a regular Gaussian density

function f̂vk|dk,Hk(·|d, Hk) that has the mean µd and the covariance matrix Cd. We apply

this approximation to all the support candidates in Ωs.

To further decrease the computation volume, we first compute Pdk|Hk(d|Hk) for all pos-

sible support values d ∈ Ωs using (2.4). We then prune this probability function by keeping

a certain number h of the weights with the highest probability values in Pdk|Hk and forcing

the rest to be zero. Adjusting the nonzero values to sum to one will result in having an

approximate probability function P̂dk|Hk to use as the prior at time step k + 1.

This means that at each time step, we will only have h initial nodes instead of N s nodes.

Therefore, at time step k, instead of using N sqk Kalman filters for the scenario explained

above, only hq Kalman filters are required to update the belief state. This will decrease the

amount of computation significantly.

As mentioned earlier, the ideas used in Algorithm 2 are motivated by a target tracking

heuristic algorithm known as JPDA. We refer the interested reader to [46] and [47] to learn

more about this heuristic.

2.3 Rollout

In both problems introduced in Section 1, we want to make optimal decisions at each

time step (based on appropriate criteria) by either selecting the measurement matrix Ak or

choosing the number of measurements lk, given the history Hk. In Section 2.2, we formulated

these problems as POMDPs. In this section, we describe our solution approach based on
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an approximation method called rollout. Our description relies heavily on well established

ideas and terminology from POMDP theory, which are readily available in [34] and [35].

In principle, the solution to a POMDP problem is, at each time k, a mapping that takes

the history Hk and gives an optimal action from A. However, POMDP theory establishes

that is suffices to find an optimal mapping π∗k : B → A for k = 1, . . . ,m, where B is the

set of distributions over the state space S, and A is the actions space. If all actions are

chosen using these optimal mappings, then at time k = m, the predefined objective function

is optimized and the resulting optimal policy π∗ = {π∗1, . . . , π∗m} has been generated.

We refer to the objective function as the expected cumulative cost. Given a policy π =

{π1, . . . , πm} the expected cumulative cost is defined as

V π
m(b1) = E

[
m∑
k=1

Ck(bk, πk(bk))

∣∣∣∣∣b1

]
. (2.6)

Subsequently, the optimal objective function value V π∗
m is achieved when π = π∗ in (2.6).

By applying Bellman’s principle to (2.6), the optimal objective function V π∗
m and the

optimal policy π∗ can be characterized by the following two equations:

V π∗

m (b1) = min
u

(C1(b1,u) + E[V π∗

m−1(b2)|b1,u]), (2.7)

and

π∗1(b1) = arg min
u

(C1(b1,u) + E[V π∗

m−1(b2)|b1,u]). (2.8)

Let

Qm−k(bk,u) = Ck(bk,u) + E[V π∗

m−k(bk+1)|bk,u] (2.9)

be the Q-value of taking action u at belief state bk. Combining (2.8) and (2.9), we can now

view the optimal action at time k as

π∗k(bk) = arg min
u
Qm−k(bk,u).

In other words, the optimal action can be found at any time step k by identifying the action

with the minimum Q-value at belief state bk.
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The two summands in (2.9), Ck(bk,u) and E[V π∗

m−k(bk+1)|bk,u], are the immediate cost

incurred (by u) and the expected cost-to-go (ECTG) at the belief state bk, respectively.

This breakdown inspires a natural separation in action selection approaches, namely myopic

and non-myopic. Myopic action selection only considers the immediate impact (cost) of the

action u at belief state bk. These approximations yield a myopic policy π̂ which selects

actions by

π̂k(bk) = arg min
u
Ck(bk,u).

In relation to the Q-values, the myopic policy can be viewed as replacing the ECTG with a

fixed constant, which can be assumed to be zero without loss of generality. In contrast, non-

myopic methods attempt to approximate the ECTG term of the Q-value. If the estimation

of the ECTG is suitable, it will evince the impact of the current action on the future costs

to be incurred. There are several approaches for Q-value approximation [49]. We choose to

implement the rollout method.

Rollout replaces the optimal policy used in the ECTG with a so called base policy πbase,

creating the following Q-value approximation:

Q̃m−k(bk,u) = Ck(bk,u) + E[V πbase

m−k (bk+1)|bk,u].

This approximation differentiates the effects of the actions not only at the current time step

but over the future horizon, providing multi-step lookahead as opposed to the 1-step lookahead

of the myopic policy. It should also be noted that the simulation results presented in the next

section produced by rollout exploit receding horizon control, replacing the remaining horizon

m−k with a fixed value ϑ. This “artificial” horizon is regarded as the rollout horizon; rollout

defines a ϑ-lookahead policy.

The technical details justifying both receding horizon control and rollout can be found

in [49], but we provide the reader with a meaningful result which motivates the use of

rollout. By ranking actions over time with their approximate Q-values, rollout produces a
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policy π̃ = {π̃1, π̃2, . . . , π̃m}, where

π̃k(bk) = arg min
u
Q̃ϑ(bk,u).

The policy π̃ is guaranteed to perform at least as well as the base policy πbase with respect

to the objective function. In fact, it is common for rollout to out-perform its base policy.

This is related to the fundamental relation of rollout to policy improvement (see [52]).

There are obvious trade-offs between myopic and non-myopic policies. The clear benefit

of myopic policies is the relatively simple computations of Ck(bk,u) required for their greedy

action choices, based solely on the immediate cost of an action at the current belief state.

Often, this alone motivates the implementation of the myopic policy. Conversely, non-

myopic approaches must contend with the computational complexity originating from the

inclusion of the ECTG term. In particular, rollout must compute the expected cumulative

cost of the chosen base policy over ϑ− 1 time steps, and this computation is typically done

using Monte Carlo sampling. However, given a scenario where the current action choice

substantially impacts the future outlook, rollout provides a distinct advantage due to its

lookahead property. The results in the following section empirically compare and contrast

the greedy-type policies with rollout.

2.4 Simulation Results

In this section, we present numerical examples for the problems introduced in Section 1.

To better demonstrate the value of adaptivity and in particular, multi-step lookahead poli-

cies, we consider several settings in our simulations. Since each simulation contains a sig-

nificant amount of details about its settings, we briefly explain the goals and the results of

running each simulation.

Our first simulation, Simulation 1, considers a very simple case of a steady state 1-sparse

signal with a highly informative prior distribution of the location of the nonzero entry. We

find solutions for Problem 1 and evaluate the performance of adaptive methods compared

to non-adaptive methods. The results of this simulation indicate, even in such a simple
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scenario, the proposed adaptive methods provide a better performance than the traditional

non-adaptive methods. However, the various adaptive methods, i.e., 1-step and multi-step

lookahead, perform similarly. In the remaining simulations, we primarily provide results for

rollout compared to alternative adaptive methods.

In Simulation 2, an instance of Problem 1, there is a single moving target, i.e., a dynamic

1-sparse signal, that changes its location in an environment with occlusions. When the target

occupies a position with an occlusion, then the measurements are just noise samples. We

assume a uniform prior distribution on the supports, which is less informative than the prior

in Simulation 1. These results again show little-to-no difference between the performance of

1-step and multi-step lookahead policies. Even with the augmentation of the problem with

occlusions and dynamics, multi-step lookahead does not amass extra useful information

compared to the 1-step lookahead solution. This relates to the POMDP cost and action

space definitions. The simulations based on Problem 2 explicate this further.

In Simulation 3, we use the same settings of Simulation 2 but we consider solving Prob-

lem 2 instead, using a different POMDP action space and cost. By using this cost, each

method must decide between using more measurements or a reduction in support identifica-

tion accuracy at each time step. The results of this simulation show better performance for

multi-step lookahead compared to the 1-step lookahead.

Simulation 4 is an extension to the general case of having multiple dynamic targets.

This simulation considers two moving targets in a space with occlusions and assumes semi-

informative prior distribution on the supports. Algorithms 1 and 2 from Section 2.2.2 are

applied to maintain reduced computations. The conclusions from Simulation 3 are still

valid, i.e., depending on the performance criteria and the action space of the problem, the

multi-step lookahead has better performance than the 1-step lookahead.
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Figure 2.3: Prior structure used for Pd0 in Simulation 1.

2.4.1 Simulation 1: 1-Sparse Static Signal (Problem 1)

In this simulation, we consider a simple static scenario. We assume that the signal xk is

1-sparse in R75 and that its nonzero entry stays in the same location at all times. We further

assume a specific prior distribution on the support of xk. The probability mass function

(pmf) Pd0 corresponding to this prior is shown in Fig. 2.3. The prior indicates the nonzero

entry of the signal is located somewhere in the first 16 indices of the signal. Our simulations

utilize 100 signal samples and rerun the experiment 50 times for each sample. Each signal

sample is created by drawing a sample from the prior pmf Pd0 for the locations of the target

and then drawing samples from a N (0, σ2) distribution for the amplitudes.

We consider an instance of Problem 1 in this simulation, where the number lk of mea-

surements per step is set to one, and the total time steps (total number of measurements) is

m = 8. We compare five different (three non-adaptive and two adaptive) methods:

1. Random: In this method, the matrix Ak is a matrix where all its (lk × N) entries

are i.i.d. samples from a Gaussian distribution N (0, 1/N). We also normalize the rows of

each matrix Ak.

2. Limited Random: Knowing the prior Pd0 , when assembling rows of the measure-

ment matrix Ak, we divide each measurement row ak(i) into two parts: the first part is a

16-dimensional vector, and the second part is a 59-dimensional vector. We fill the first 16
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entries with i.i.d. random Gaussian samples and normalize the resulting vector to have norm

one. We fill the second part with zeros.

3. Random from Library: Similar to Limited Random, each row of the measurement

matrix Ak is broken into two parts, where the second part is a 59-dimensional vector of

zeros. However, the first part of the rows are chosen randomly from a static library of

50 measurement vectors that together, constitute a Grassmannian line packing (see [53]

and [54]) in R16.

4. Greedy: In this approach, we also break the measurements rows into two parts like

methods 2 and 3 and we determine the first 16-dimensional part of the vector. As a variation

of our POMDP, we set the decision-making horizon to 1, i.e., at each time step k, we choose

the best vector from the Grassmannian library that minimizes the one-step ahead belief cost

Ck(bk,uk). In other words, the actions are chosen in a greedy manner.

5. Rollout: This solution method is also based on the POMDP, in which at each time

step and for each action candidate from the Grassmannian library, the Q-value is approx-

imated over a four step horizon. The estimated Q-value, for each candidate action, is the

average 50 (four step) Q-value samples. The action with the minimum Q-value approxima-

tion is selected. The base policy for Rollout is the Random from Library method.

Fig. 2.4 shows the performance of the five methods introduced above. The metric used

in this figure for comparing these methods is the posterior probability of the true support

after m = 8 measurements, i.e., the value of Pd8|H8(dT |H8), where dT is the true location

of the nonzero entry of the signal. We have shown the performance of these methods for

different values of signal-to-noise-ratio (SNR), which is defined as SNR = σ2/σ2
w. This figure

shows that variations of POMDP, i.e., Greedy and Rollout, perform similar to each other in

this simple static scenario, but both perform better than the three non-adaptive methods at

moderate and high SNR.

A second experiment is run to see, on average, how many more measurements Random

and Limited Random require in order to reach the performance of Greedy when the same
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Figure 2.4: Performance comparison of all methods in Simulation 1. The dashed lines
indicate the 95% confidence intervals.

metric, Pd8|H8(dT |H8), is used for comparison. Fig. 2.5 shows the results for different values

of SNR. The number of measurements for Greedy is set to m = 8 for all SNRs. The plots

suggest that in this simple static scenario with the particular prior used, simply knowing

that the true support lies within the first 16 indices provides significant performance gains

over the random scheme. Moreover, adaptation only provides marginal gains over methods

that exploit the highly informative prior.

We anticipate similar conclusions in the context of Problem 2. That is, due to simple and

static nature of the problem, multi-step lookahead does not offer much advantage over the

single-step lookahead. Also, we anticipate that adaptivity would again offer minimal gain

over the Limited Random method, which exploits the highly informative prior used in this

scenario.

2.4.2 Simulation 2: 1-Sparse Time-Varying Signal (Problem 1 with Occlusions)

We consider a 1-sparse dynamic signal in R20 for this simulation. Differing from Simu-

lation 1, we assume a uniform prior for Pd0 and the presence of occlusions in certain areas.
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Figure 2.5: Average number of measurements required for Random and Limited Random
to reach the performance of Greedy in Simulation 1.

When the signal support corresponds to occluded locations, the received observations are

simply noise samples, i.e., yk = wk. The occlusions for Simulation 2 are located at indices

5, 6, 11 and 12. The movement of the target is modeled by the transition law shown in

Fig. 2.6. While this transition law is used as the model, the initial position of the true target

is located at the second index and the target moves one position to the right until reaching

index 20. At this point, the target begins shifting in the reverse direction back to position

one. Finally, the support would revert to its original transition procedure. The horizon of

Simulation 2 is 40 time steps so the boundary condition will be met twice, reversing the

targets motion. Furthermore, the target will be occluded at times k={4, 5, 10, 11, 27, 28,

33, 34}. Finally, we set SNR = 14 (dB) and run the experiment 36 times for both the Greedy

and Rollout and 300 times for the both the Random from Library and the Bhattacharyya

Distance algorithms, which we define below.

Similar to Simulation 1, the scenario of interest is based on Problem 1 where lk = 5. The

policies compared in this set of simulations consists of one non-adaptive and three adaptive

schemes. The action selection is again among a set of measurement matrices. To build this
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Figure 2.6: State transition law for the moving target.

set, we first import a Grassmannian packing consisting of 16 vectors in R16. The 16 vectors

that build this Grassmannian packing are then combined into different sets consisting of

five vectors. Note that we are considering every possible combination (without repeats) of

5 vectors among 16 vectors, resulting 4368 sets of vectors. Using the vectors in each set, we

build a (5 × 16) matrix. These matrices are then augmented by inserting four columns of

zeros in the respective occlusion positions. These 4368 matrices now comprise the library of

compressive measurement matrices.

Each matrix in the library is accompanied by a power-vector which will help us “classify”

the matrix. The power-vector φA of a matrix A is a (20×1) vector where its jth component

φA(j) is defined as

φA(j) =

∑5
i=1 |A(i)(j)|∑20

j=1

∑5
i=1 |A(i)(j)|

.

Note that A(i)(j) is an entry of the matrix A located at its ith row and its jth column.

These power-vectors portray how the power of the matrix is “distributed” over its different

columns and resemble probability mass functions. The matrix library is then sorted into

400 clusters using the K-medoids algorithm (see [55]). In this clustering algorithm the

Bhattacharyya distance is used to classify the measurement matrices via their corresponding
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power-vectors. Once the power-vectors, and thus the matrices, are classified, each cluster

contains a medoid as a representative member. Then the available actions at time step k are

identified as the cluster AG(k), whose medoid achieves the minimum Bhattacharyya distance

to P = T × Pdk−1|Hk−1
, where T is the transition probability matrix implied in Fig. 2.6.

These action restrictions are implemented for the adaptive methods described below.

1. Random from Library: This is the only non-adaptive scheme considered in this

set of simulations. It does not abide by the action restrictions of available measurement

matrices. Simply, a single measurement matrix is chosen from the library of 4368 matrices

at random.

2. Bhattacharyya Distance: This is an adaptive heuristic inspired by the findings

in [26] where the measurement should resemble the prior. This is really an extension of the

sorting procedure used for clustering measurement matrix library AG(k). Once the closest

medoid of the 400 groups is identified, the Bhattacharyya distance is again used to rank

the measurement matrices in the minimum medoid’s cluster. The action selected is the

measurement matrix with the minimum distance from its power-vector to the predicted

support distribution P .

3. Greedy: This action selection process is based on the POMDP with a single step

decision-making horizon. Greedy, as with the Bhattacharyya distance, only considers the

available actions based on the medoid selection. At each time step k, the best matrix is

chosen from the restriced measurement matrix library AG(k) minimizing the one-step ahead

belief cost.

4. Rollout: This solution method, also based on the POMDP, selects an action, uk ∈

AG(k), which minimizes the 3-step lookahead Q-value approximation. The base policy used

in this approximation is the Bhattacharyya Distance (method 2).

Fig. 2.7 shows the performance of each method described above over 40 time steps.

As expected, the three adaptive methods out-perform the non-adaptive method (except

in select occlusion areas). However, when comparing Greedy and Rollout, we see similar
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performances. This simulation shows an example of a case where the multi-step lookahead

approach is not gaining extra information compared to the myopic method.

Figure 2.7: Performance comparison of the four policies described in Simulation 2. The
dashed lines indicate the 85% confidence intervals.

2.4.3 Simulation 3: 1-Sparse Time-Varying Signal (Problem 2 with Occlusions)

We consider another scenario involving a moving target with occlusions. Here, a single

target moves among N = 40 possible locations. The transition law that describes the

movement of this target is shown in Fig. 2.6. Like Simulation 2, we assume a uniform

distribution as the prior Pd0 , but the occlusions are now located at indices 6 to 10, 16 to

20, and 36 to 40. For simplicity, we consider the case where the target starts in location 2

and moves one location to the right at each time step. This means that over the duration of

m = 10 time steps, the target will be behind occlusion points from time step 5 to 9. We set

γ used in (2.1) to γ = 300 and we set SNR = 2.5 (dB). Finally, in this simulation, we use

one signal sample and repeat the experiment 50 times.

We consider this scenario in the context of Problem 2. Here, we adaptively select the
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number of measurements taken at each time step. We set lmax = 65, meaning at most

65 measurements are requested per time step. After the number of measurements lk is

determined, we use a fixed scheme to design the measurement matrix Ak. The following

describes the scheme used in this simulation: At each time k the jth entry of the measurement

row Ak(i), i.e., Ak(i)(j), is generated in the following way:

Ak(i)(j) =

 0, j is an occlusion point,

xPdk|Hk (j|Hk), otherwise,

where the value xPdk|Hk (j|Hk) is a sample drawn from the normal distribution

N (0, Pdk|Hk(j|Hk)). Each row vector Ak(i) is then normalized. The idea of using the func-

tion Pdk|Hk to create row entries in the measurement matrix Ak comes from [26], one of the

early works in adaptive design (1-step) of compressive measurement matrices.

In this simulation, we consider three methods of action selection:

1. Greedy: The best number of measurements which minimizes the 1-step lookahead

POMDP belief cost.

2. Smart: A specific number of measurements lk ≤ lmax is selected using the following

rule:

lk =



0, 0.95 < α,

5, 0.8 < α ≤ 0.95,

15, 0.65 < α ≤ 0.8,

45, 0.25 < α ≤ 0.65,

35, 0.15 < α ≤ 0.25,

25, α ≤ 0.15,

(2.10)

where α is the fraction of Pdk|Hk at time step k that belongs to occlusion points. This policy

suggests that when α implies the target is somewhere far from the occlusion points with high

probability, a fair (but not exorbitant) number of measurements is used. When the target

approaches the occlusion points, the number of measurements is increased to achieve an

accurate estimate of the target location before it “disappears”.Once the target is occluded,
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there is no point in making any more measurements until the target becomes visible again.

3. Rollout: This is a 3-step lookahead solution method for the POMDP. Rollout chooses

the action which minimizes the total (approximate) cost incurred over three consecutive time

steps. For this method, the Smart policy is the base policy of Rollout. In each run,  l50

Rollout trajectories are averaged to estimate the Q-value of each action candidate.

Fig. 2.8 shows the expected cumulative cost of the above three methods. This figure shows

that the Rollout method outperforms the Greedy method, and demonstrates the value of

multi-step lookahead. Moreover, it is interesting to see that both Greedy and Smart methods

perform similarly while the amount of computation required for the Smart is much less that

for the Greedy method.

Figure 2.8: Performance comparison of all methods in Simulation 3 based on the expected
cumulative cost at different time steps. The dashed lines indicate the 90% confidence inter-
vals.

We have also plotted the posterior probability of true support, i.e., Pdk|Hk(dT |Hk), at

each time step k in Fig. 2.9. This figure clearly captures the ability of each method tracking

the moving target. When the target is outside the occlusion area, Rollout improves the
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ability to detect the target location better than the other two methods over time.

Figure 2.9: Performance comparison of all methods in Simulation 3 based on the posterior
probability of the true support at different time steps. The dashed lines indicate the 90%
confidence intervals.

2.4.4 Simulation 4: 2-Sparse Time-Varying Signal (Problem 2 with Occlusions)

Now, we consider a more general setting in which there is more than one moving target,

i.e., a dynamic s-sparse signal. To keep the amount of computation low, we make several

simplifying assumptions. First, we only consider s = 2 targets that are moving in R20. Note

that even for this case, there are N s = 400 possibilities for the support dk at each time step.

Second, we consider an initial distribution that only 25% of its entries are nonzero with equal

values. This prior distribution suggests that the first target is located at one of the locations

1, 2, or 3 and the second target is located either at location 19 or 20. We let σ2
w = 1, and

consider the strength values 1.7 and -1.5 for the first and second target, respectively, which

means that SNR = 4 dB.

Targets 1 and 2 are initially located at positions 1 and 19 and as time evolves, they move

towards each other one index at a time. The transition law that describes the movement of
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each of these targets is the same transition law that was used in Simulation 3 and shown in

Fig. 2.6. Note that these targets move independently from each other. Finally, we consider

five occlusion points located at positions 4, 5, 8, 12, and 13.

Our simulation runs for 10 time steps. During this time, the two targets pass through

each other as well as the occluded locations. Table 2.1 summarizes the position of each

target at each time step. This table indicates those time steps in which an occlusion occurs

by a “∗” sign next to the position of the target. Based on this table, we expect to see a drop

in the performance of all the methods at time steps 3, 4, 6 and in particular 7 (where both

targets are occluded). Moreover, at time step 9, when the two targets reach the location 10,

the strength value is equal to the sum of the strength values of the two targets. This means

that at time k = 9, the measurements collected are from a 1-sparse signal with the strength

value 1.7 − 1.5 = 0.2. Thus, the SNR value drops to −14 dB and dip in performance is

expected for all methods.

Similar to the previous simulations, the performance is compared across four approaches

in this simulation:

1. Fixed: This is a non-adaptive method, where a fixed value of 30 measurements are

taken at each time step.

2. Smart: This method is similar to Smart method in Simulation 3 but with two

differences: a) The method has been modified to work for 2 targets, and b) The number of

measurements for the different cases in (2.10) changes from 0, 5, 15, 45, 35, and 25 to 5, 10,

20, 55, 40, and 30, respectively.

3. Greedy: Similar to the myopic methods in previous simulations, this is the 1-step

lookahead solution.

k 1 2 3 4 5 6 7 8 9 10
dk(1) 2 3 4* 5* 6 7 8* 9 10 11
dk(2) 18 17 16 15 14 13* 12* 11 10 9

Table 2.1: Target positions over 10 decision epochs in Simulation 4.
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4. Rollout: This method is the 3-step lookahead method and Smart, introduced here,

is the base policy.

To estimate the expected cost in both Greedy and Rollout, we generate 25 samples from

the belief state at each time step and we repeat the experiment for each trajectory 20 times.

In all of the techniques introduced, once the number of measurements lk is selected at

each time step, we build the measurement matrix the same as in Simulation 3. Moreover,

the maximum number of measurements allowed at each time step is lmax = 65 and we set γ

to be equal to 293. The values shown in the results here are the average values taken over

36 rounds of simulation.

As mentioned in Section 2.2.2, we implement two heuristics, Algorithms 1 and 2, to

decrease the amount of computation. In one experiment, Algorithm 1 limits the belief state

distribution expansion by maintaining a hypothesis tree with a sliding window of size w = 4,

resulting in approximately 6000 Kalman filters per time step, after the time step k = 4

(and significantly more before this first pruning action). This is clearly more Kalman filter

computations than Algorithm 2, but yields in a higher probability of support identification.

In a separate simulation, Algorithm 2 approximates the conditional posterior distribution

of the support Pdk|Hk with a distribution P̂dk|Hk that contains only 90 nonzero entries for

k > 1. Therefore, at any point in our simulation (after the first time step), the belief state

update requires only 90 Kalman filters.

Figs. 2.10 and 2.11 show the results from running this simulation when Algorithm 1 is

used. Similarly, Figs. 2.12 and 2.13 show the results from running this simulation when

Algorithm 2 is used. In both set of results, similar to Simulation 3, Rollout has the best

performance among all the methods. Also, notice the performance drop of all methods, as

expected, in the occlusion and the low SNR areas shown in Table 2.1.
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Figure 2.10: Performance comparison of all methods in Simulation 4 based on the expected
cumulative cost at different time steps when Algorithm 1 is used. The dashed lines indicate
the 85% confidence intervals.

Figure 2.11: Performance comparison of all methods in Simulation 4 based on the posterior
probability of the true support at different time steps when Algorithm 1 is used. The dashed
lines indicate the 85% confidence intervals.
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Figure 2.12: Performance comparison of all methods in Simulation 4 based on the expected
cumulative cost at different time steps when Algorithm 2 is used. The dashed lines indicate
the 85% confidence intervals.

Figure 2.13: Performance comparison of all methods in Simulation 4 based on the posterior
probability of the true support at different time steps when Algorithm 2 is used. The dashed
lines indicate the 85% confidence intervals.
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CHAPTER 3

MEASUREMENT DESIGN FOR DETECTING

SPARSE SIGNALS

3.1 Introduction

We consider the design of low dimensional (compressive) measurement matrices, with a

pre-specified number of measurements, for detecting sparse signals in additive white Gaussian

noise. More specifically, we consider the following binary hypothesis test: H0 : x = n,

H1 : x = s + n,
(3.1)

where x is an (N×1) vector that describes the state of a physical phenomenon. Under the null

hypothesisH0, x is a white Gaussian noise vector with covariance matrix E[nnH ] = (σ2
n/N)I.

Under the alternative hypothesis H1, x = s + n consists of a deterministic signal s distorted

by additive white Gaussian noise n.

We assume s is k-sparse in a known basis Ψ. That is, to say, s is composed as

s = Ψθ, (3.2)

where Ψ ∈ RN×N is a known matrix, whose columns form an orthonormal basis for RN , and

θ ∈ RN is a k-sparse vector, i.e., it has between 1 to k � N nonzero entries. We may refer

to s as simply k-sparse for brevity.

We wish to decide between the two hypotheses based on a given number m ≤ N of linear

measurements y = Φx from x, where Φ ∈ Rm×N is a compressive measurement matrix that

we will design. The observation vector y = Φx belongs to one of the following hypothesized
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models:  H0 : y = Φn ∼ N (0, (σ2
n/N)ΦΦH),

H1 : y = Φ(s + n) ∼ N (Φs, (σ2
n/N)ΦΦH),

(3.3)

where the superscript H is the Hermitian transpose. To avoid coloring the noise vector n, we

constraint the compressive measurement matrix Φ to be right orthogonal, that is we force

ΦΦH = I.

Rather than limiting ourselves to a particular detector, we look at the general problem

of designing compressive measurements to maximize the measurement signal-to-noise ratio

(SNR), under H1, which is given by

SNR = (sHΦHΦs)/(σ2
n/N). (3.4)

This is motivated by the fact that for the class of linear log-likelihood ratio detectors, where

the log-likelihood ratio is a linear function of the data, the detection performance is improved

by increasing SNR. In particular, for a Neyman-Pearson detector, with false alarm rate γ,

the probability of detection Pd = Q(Q−1(γ) −
√

SNR) is monotonically increasing in SNR,

where Q(·) is the Q-function. In addition, maximizing SNR leads to maximum detection

probability, at a pre-specified false alarm rate, when an energy detector is used. Without

loss of generality, throughout this work we assume that σ2
n = 1 and ‖s‖2 = ‖θ‖2 = 1, and so

we design Φ to maximize the measured signal energy ‖Φs‖2.

In solving the problem, one approach is to assume a value for the sparsity level k and

design the measurement matrix Φ based on this assumption. This approach, however, runs

the risk that the true sparsity level might be different. An alternative approach is not to

assume any specific sparsity level. Instead, when designing the measurement matrix Φ, we

prioritize the level of importance of different values of sparsity k. In other words, we first

find a set of solutions that are optimal for a k1-sparse signal. Then, within this set, we find

a subset of solutions that are also optimal for k2-sparse signals. We follow this procedure

until we find a subset that contains a family of optimal solutions for sparsity levels k1, k2,

k3, · · · . This approach is known as a lexicographic optimization method (see, e.g., [56]–[58]).
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Replacing (3.2) in (3.4) yields

SNR =
‖ΦΨθ‖2

(σ2
n/N)

.

The basis matrix Ψ is known, but the k-sparse representation vector θ is unknown. That is,

the exact number of the nonzero entries in θ, their locations, and their values are unknown.

The measurement design naturally depends on one’s assumptions about the unknown vector

θ. We consider two different design problems, namely a worst-case SNR design and an

average SNR design, as explained below.

Worst-case SNR design. In the first case, we assume the vector θ is deterministic but

unknown. Then, among all possible deterministic k-sparse vectors θ, we consider the vector

that minimizes the SNR and design the matrix Φ that maximizes this minimum SNR. Of

course, when minimizing the SNR with respect to θ, we have to find the minimum SNR with

respect to locations and values of the nonzero entries in the vector θ. To combine this with

the lexicographic approach, we design the matrix Φ to maximize the worst-case detection

SNR, where the worst-case is taken over all subsets of size ki of elements of θ, where ki is

the sparsity level considered at the ith level of lexicographic optimization. This is a design

for robustness with respect to the worst sparse signal that can be produced in the basis Ψ.

The reader is referred to Section 3.2 for a complete statement of the problem.

We show (see Section 3.3) that the worst-case detection SNR is maximized when the

columns of the product ΦΨ between the compressive measurement matrix Φ and the sparsity

basis Ψ form a uniform tight frame. A uniform tight frame is a frame system in which the

frame operator is a scalar multiple of the identity operator and every frame element has the

same norm (see, e.g., [59]). We also show that when the signal is 2-sparse, the optimal frame

is a Grassmannian line packing (see, e.g., [53]). For the case where the sparsity level of the

signal is greater than two, we provide a lower bound on the worst-case performance. If the

number m of measurements allowed is greater than or equal to
√
N , then the Grassmannian

line packing frame will be an equiangular uniform tight frame (see, e.g., [60]–[67]) and the

maximal worst-case SNR can be expressed in terms of the Welch bound. Numerical examples
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presented in Section 3.6 show that Grassmannian line packing frames provide better worst-

case performance than matrices with i.i.d. Gaussian entries, which are typically used in

sparse signal reconstruction.

Average SNR design. In the second case, we assume that the locations of nonzero entries

of θ are random but their values are deterministic and unknown. We find the matrix Φ that

maximizes the expected value of the minimum SNR. The expectation is taken with respect

to a random index set with uniform distribution over the set of all possible subsets of size ki

of the index set {1, 2, . . . , N} of elements of θ. The minimum SNR, whose expected value

we wish to maximize, is calculated with respect to the values of the entries of the vector

θ for each realization of the random index set. The reader is referred to Section 3.4 for a

complete statement of the problem.

We show (see Section 3.5) that for 1-sparse signals, any right orthogonal measurement

matrix Φ, i.e., any tight frame, is optimal for maximizing the average minimum SNR. For

signals with sparsity levels higher than one, we constrain ourselves to the class of uniform

tight frames and show that optimal measurement matrix is a uniform tight frame that has

minimal sum-coherence, as described in Section 3.5. However, to the best of our knowledge

constructing such frames remains an open problem in frame theory. Therefore, we limit

ourselves to providing performance bounds in the average-case problem.

3.2 The Worst-case Problem Statement

Since all sparse signals share the fact that they have at least one nonzero entry, it seems

natural to first find an optimal measurement matrix for 1-sparse signals. Next, among the

set of optimal solutions for this case, we find matrices that are optimal for 2-sparse signals.

This procedure is continued for signals with higher sparsity levels. This is a lexicographic

optimization approach to maximizing the worst-case SNR.

Consider the kth step of the lexicographic approach. In this step, the vector θ has up to

k nonzero entries. We do not impose any prior constraints on the locations and the values
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of the nonzero entries of θ. As mentioned earlier, we assume that ‖s‖2 = ‖θ‖2 = 1 and

σ2
n = 1. We wish to maximize the minimum (worst-case) SNR, produced by assigning the

worst possible locations and values to the nonzero entries of the k-sparse vector θ. Referring

to (3.4), this is a worst-case design for maximizing the signal energy sHΦHΦs inside the

subspace 〈ΦH〉 spanned by the columns of ΦH , since ΦHΦ is the orthogonal projection

operator onto 〈ΦH〉.

To define the kth step of the optimization procedure more precisely, we need some ad-

ditional notation. Let A0 be the set containing all (m × N) right orthogonal matrices Φ.

Then, we recursively define the set Ak, k = 1, 2, . . . , as the set of solutions to the following

optimization problem:

max
Φ

min
s
‖Φs‖2,

s.t. Φ ∈ Ak−1,

‖s‖ = 1,

s is k-sparse.

(3.5)

In our lexicographic formulation, the optimization problem for the kth problem (3.5) involves

a worst-case objective restricted to the set of solutions Ak−1 from the (k−1)th problem. So,

Ak ⊂ Ak−1 ⊂ · · · ⊂ A0.

Before we present a complete solution to these problems, we first simplify them in three

steps. First, since the matrix Ψ is known, the matrix Φ can be written as Φ = CΨH , where C

is an (m×N) matrix. Then, ΦΨ = CΨHΨ = C, and also ΦΦH = CΨHΨCH = CCH = I.

Using (3.2), the max-min problems (3.5) become

max
C

min
θ
‖Cθ‖2,

s.t. C ∈ Bk−1,

‖θ‖ = 1,

θ is k-sparse,

(3.6)

where B0 = A0, and similar to the sets Ak, the sets Bk (k = 1, 2, . . . ) are recursively defined
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to contain all the optimal solutions of (3.6). It is easy to see that Bk = {C : CΨH ∈ Ak}.

Let Ω = {1, 2, . . . , N} and define Ωk to be Ωk = {E ⊂ Ω : |E| = k}. For any T ∈ Ωk,

let θT be the subvector of size (k × 1) that contains all the components of θ corresponding

to indices in T . Similarly, given a matrix C, let CT be the (m × k) submatrix consisting

of all columns of C whose indices are in T . Note that the vector θT may have zero entries.

Indeed, for cases where the k-sparse vector θ has fewer than k, e.g., l < k, nonzero entries,

the (k × 1) vector θT has k − l zero entries. This is important because our definition for

T and θT is slightly different than the common definitions used in the compressed sensing

literature, where T and θT only contain indices and values related to the nonzero entries of

the vector θ, often called the support of T . We refer to a member T of Ωk as a “k-platform”.

Thus, a k-platform T includes, but is not limited to, the support of the sparse vector θ.

Given T ∈ Ωk, the product Cθ can be replaced by CTθT instead. Now, to consider

the worst-case scenario for the SNR, as well as considering the worst θT that minimizes

‖CTθT‖2, we also have to consider the worst T ∈ Ωk. Thus, the max-min problem becomes

max
C

min
T

min
θT

‖CTθT‖2,

s.t. C ∈ Bk−1,

‖θT‖ = 1, T ∈ Ωk.

(3.7)

The solution to (3.7) is the most robust design with respect to the locations and values of

the nonzero entries of the parameter vector θ.

The solution to the minimization subproblem

min
θT

‖CTθT‖2,

s.t. ‖θT‖ = 1,

is well known; see, e.g., [68]. The optimal objective function is λmin(CH
T CT ), the smallest

eigenvalue of the matrix CH
T CT . Therefore, the max-min-min problem (3.7) simplifies to

(Pk)


max

C
min
T

λmin(CH
T CT ),

s.t. C ∈ Bk−1,

T ∈ Ωk.

(3.8)
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At each step k, the optimal compressive measurement matrix, denoted by Φ∗, is determined

from the optimizer C∗ of (3.8) as Φ∗ = C∗ΨH .

Next, we describe how to solve the max-min problem (Pk) in (3.8).

3.3 Solution to the Worst-case Problem

Let ci be the ith column of the matrix C. We first find the solution set A1 for problem

(P1). Then, we find a subset A2 ⊂ A1 as the solution for (P2). We continue this procedure

for general sparsity level k.

3.3.1 Sparsity Level k = 1

If k = 1, then any T such that |T | = 1 can be written as T = {i} with i ∈ Ω, and CT = ci

consists of only the ith column of C. Therefore, CH
T CT = cHi ci = ‖ci‖2, and the max-min

problem becomes

max
C

min
i
‖ci‖2,

s.t. C ∈ B0,

i ∈ Ω.

(3.9)

Theorem 1 The optimal value of the objective function of the max-min problem (3.9) is

m/N . A necessary and sufficient condition for a matrix C∗ to be in the solution set B1 is

that the columns {c∗i }Ni=1 of C form a uniform tight frame with norm values equal to
√
m/N .

Proof: We first prove the claim about the optimal value. Assume false, i.e., assume

there exists an optimal matrix C∗ ∈ B1 for which the value of the cost function is either

less than or greater than m/N . Suppose the former is true. Let C1 be an (m×N) matrix,

satisfying C1C
H
1 = I, whose columns have equal norm

√
m/N . Then, the value of the

objective function in (3.9) for C = C1 is m/N . This means that our proposed matrix

C1 achieves a higher SNR than C∗ which is a contradiction. Now, assume the latter is

correct, that is the value of the objective function for C∗ is greater than m/N . This means
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min
i∈Ω
‖c∗i ‖2 = ‖c∗j‖2 > m/N . Knowing this, we write

tr
(
C∗C∗H

)
= tr

(
C∗HC∗

)
=

N∑
i=1

‖c∗i ‖2 >

N∑
i=1

m/N = m.

However, from the constraint in (3.9) we know that C∗C∗H = I, and tr(C∗C∗H) = m. This

is also a contradiction. Thus, the assumption is false and the optimal value for the objective

function of (3.9) is m/N .

We now prove the claim about the optimizer C∗. From the preceding part of the proof,

it is easy to see that all columns of C∗ must have equal norm
√
m/N . If not, since none of

them can be less than
√
m/N , then the sum of all column norms will be greater than m,

which is a contradiction. Moreover, we write

C∗C∗H =
N∑
i=1

c∗i c
∗H
i = I. (3.10)

Multiplying both sides of (3.10) by an arbitrary (m × 1) vector x from the right side and

xH from the left side, we get
∑N

i=1 ‖c∗Hi x‖2 = ‖x‖2. This equation represents a tight frame

with frame elements {c∗i } and frame bound 1. In other words, it represents a Parseval frame.

Since the frame elements have equal norms, the frame is also uniform. Therefore, for a

matrix C∗ to be in B1, the columns of C∗ must form a uniform tight frame.

Remark 1: The reader is referred to [59], [63], [69], [70], and the references therein, for

examples of constructions of uniform tight frames.

3.3.2 Sparsity Level k = 2

The next step is to solve (P2). Since our solution for this case should lie among the family

of optimal solutions for k = 1, results concluded in the previous part should also be taken

into account, i.e., the columns of the optimal matrix C∗ must form a uniform tight frame,

where the frame elements c∗i have norm
√
m/N .

Given T ∈ Ω2, the matrix CT consists of two columns, e.g., ci and cj. So, the matrix
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CH
T CT in the max-min problem (3.8) is a (2× 2) matrix:

CH
T CT =

 〈ci, ci〉 〈ci, cj〉
〈ci, cj〉 〈cj, cj〉

 .
From the k = 1 case, we have ‖ci‖2 = ‖cj‖2 = m/N . Therefore,

CH
T CT = (m/N)

 1 cosαij

cosαij 1

 ,
where αij is the angle between vectors ci and cj. The minimum eigenvalue of this matrix is

λmin(CH
T CT ) = (m/N)(1− | cosαij|). (3.11)

Given any matrix C ∈ B1, define coherence µC as

µC = max
ci,cj : columns of C

|〈ci, cj〉|
‖ci‖‖cj‖

. (3.12)

Also, let µ∗ be

µ∗ = min
C∈B1

µC. (3.13)

The following theorem holds.

Theorem 2 The optimal value of the objective function of the max-min problem (P2) is

(m/N)(1−µ∗). A matrix C∗ is in B2 if and only if the columns of C∗ form a uniform tight

frame with norm values
√
m/N and µC∗ = µ∗.

Proof: Since our solution must be chosen from the family of uniform tight frames with

frame elements of equal norm
√
m/N , the objective function of (P2) is only a function of

the angle αij. Using (3.11) and (3.12), it is easy to see that the minimum λmin(CH
T CT ) is

(m/N)(1 − µC). Using (3.13), we conclude that the largest possible value of the objective

function of (P2) is (m/N)(1− µ∗).

Remark 2: Methods for constructing uniform tight frames with frame elements that have

a coherence µ∗ is equivalent to optimal Grassmannian packings of one-dimensional subspaces,

48



or Grassmannian line packings (see, e.g., [53]–[67]). We will say more about this point later

in this work.

Remark 3: In the case where k = 2, the matrix CH
T CT (where C ∈ B1), for any choice of

T ∈ Ω2, is a (2 × 2) matrix with minimum and maximum eigenvalues equal to (m/N)(1 ±

| cosαij|). Therefore, the matrix CH
T CT with eigenvalues equal to (m/N)(1 ± µC) has the

smallest minimum eigenvalue and the largest maximum eigenvalue among eigenvalues of all

matrices of the form CH
T CT (for a fixed C and a varying T ). Moreover, among all C ∈ B1,

when comparing the resulting submatrices CH
T CT for T ∈ Ω2, the matrix C∗ with coherence

µ∗ has the largest minimum eigenvalue (m/N)(1−µ∗) and the smallest maximum eigenvalue

(m/N)(1 + µ∗). This means that given any vector s ∈ R2 and T ∈ Ω2, the following

inequalities hold:

(1− µ∗)‖s‖2 ≤ ‖C∗T s‖2 ≤ (1 + µ∗)‖s‖2. (3.14)

Recall the definition of Restricted Isometry Property (RIP) (see, e.g., [7]): Let A be a

(p× q) matrix and let l ≤ q be an integer. Suppose δl ≥ 0 is the smallest constant such that,

for every (p× l) submatrix Al of A and every (l × 1) vector s,

(1− δl)‖s‖2 ≤ ‖Als‖2 ≤ (1 + δl)‖s‖2.

Then, the matrix A is said to satisfy the l-restricted isometry property (l-RIP) with the

restricted isometry constant (RIC) δl.

By comparing the 2-RIP definition with (3.14), we can conclude that the optimal matrix

C∗ not only satisfies the 2-RIP with RIC µ∗, but also among all matrices that satisfy 2-

RIP and have uniform column norms equal to
√
m/N , it provides the best RIC. Thus,

our solution for optimizing the worst-case SNR for 2-sparse signals is also the ideal matrix

for recovering 2-sparse signals based on methods that rely on the RIP condition for their

performance guarantees.
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3.3.3 Sparsity Level k > 2

We now consider the case where k > 2. In this case, T ∈ Ωk can be written as T =

{i1, i2, · · · , ik} ⊂ Ω. From the previous results, we know that an optimal matrix C∗ ∈ Bk

must already satisfy two properties, in addition to C∗C∗H = I:

• Columns of C∗ must build a uniform tight frame with equal norm
√
m/N (to be in

the set B1),

• The coherence µC∗ should be equal to µ∗ (to be in the set B2).

Taking the above properties into account for C∗, the matrix C∗HT C∗T will be a (k × k)

symmetric matrix that can be written as C∗HT C∗T = (m/N)[I + AT ] where AT is

AT =



0 cosα∗i1i2 . . . cosα∗i1ik

cosα∗i1i2 0 . . . cosα∗i2ik
...

...
. . .

...

cosα∗i1ik cosα∗i2ik . . . 0


, (3.15)

where ih 6= if ∈ T for the entry cosα∗ihif in the (ih, if )th location. Then,

λmin(C∗HT C∗T ) = (m/N)(1 + λmin(AT )). (3.16)

So, the problem simplifies to

(Pk)


max

C
min
T

λmin(AT ),

s.t. C ∈ Bk−1,

T ∈ Ωk.

(3.17)

Solving the above problem is not trivial. It is worth mentioning that, as we will discuss

later, the family of frames lying in the set B2 are known to be Grassmannian line packings.

Building such frames is known to be very hard and in fact, for a lot of values of m and N ,

no solution has been found so far (see, e.g., [53]). This means that building solutions for

problems (Pk) is even a harder task. Nevertheless, we provide bounds on the value of the

optimal objective function.
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Given T ∈ Ωk, let δ∗ihif be

δ∗ihif = µ∗ − | cosα∗ihif |, ih 6= if ∈ T. (3.18)

Also, define ∆∗ in the following way:

∆∗ = min
T∈Ωk

∑
ih 6=if∈T

δ∗ihif .

The following theorem holds.

Theorem 3 The optimal value of the objective function of the max-min problem (Pk) for

k > 2 lies between (m/N)(1−
(
k
2

)
µ∗ + ∆∗) and (m/N)(1− µ∗).

Proof: Let xij and yij be two (k × 1) vectors such that xij contains values (1/
√

2) and

(−1/
√

2) and yij contains values (1/
√

2) and (1/
√

2) in the ith and jth locations (i 6= j)

and zeros elsewhere. Then, by using Rayleigh’s inequality, i.e.,

λmin(AT ) ≤ xHATx

xHx
,

for the matrix AT defined above and the family of vectors {xij} and {yij} defined by i and j

(chosen from the set {1, 2, . . . , k}), we conclude that λmin(AT ) ≤ −| cosα∗ihif |, ih 6= if ∈ T .

Thus,

min
T∈Ωk

λmin(AT ) ≤ min
ih 6=if∈T
T∈Ωk

(−| cosα∗ihif |) = −µ∗. (3.19)

Given T ∈ Ωk, the matrix AT can be written as summation of
(
k
2

)
matrices Fihif (ih 6=

if ∈ T ) where each matrix Fihif has the entry cosα∗ihif in the (ih, if )th and (if , ih)th locations

and zeros elsewhere. Using matrix properties (see, e.g., [72]), we can write

λmin(AT ) ≥
∑

ih 6=if∈T
T∈Ωk

λmin(Fihif ) =
∑

ih 6=if∈T
T∈Ωk

−| cosα∗ihif |

=
∑

ih 6=if∈T
T∈Ωk

−µ∗ + δ∗ihif = −
(
k

2

)
µ∗ +

∑
ih 6=if∈T
T∈Ωk

δ∗ihif .
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Therefore,

min
T∈Ωk

λmin(AT ) ≥ −
(
k

2

)
µ∗ + ∆∗. (3.20)

Using (3.16), (3.19), and (3.20) we get

(m/N)(1− µ∗) ≥ min
T∈Ωk

λmin(C∗HT C∗T )

≥ (m/N)(1−
(
k

2

)
µ∗ + ∆∗). (3.21)

This completes the proof.

3.3.4 Equiangular Uniform Tight Frames and Grassmannian Packings

The inequality (3.21) in Theorem (3) suggests that if all angles between column pairs

are equal, then the optimal value of the objective function of (Pk) for k > 2 will reach its

upper bound. In this case, the columns of C∗ ∈ Bk in fact form an equiangular uniform tight

frame.

Equiangular uniform tight frames are Grassmannian packings, where a collection of N

one-dimensional subspaces are packed in Rm such that the chordal distance between each

pair of subspaces is the same (see, e.g., [53], [61], and [62]). Each one-dimensional subspace

is the span of one of the frame element vectors ci. The chordal distance between the ith

subspace 〈ci〉 and the jth subspace 〈cj〉 is given by

dc(i, j) =
√

sin2 αij, (3.22)

where αij is the angle between ci and cj. When all the αij, i 6= j, are equal and the frame

is tight, the chordal distances between all pairs of subspaces become equal, i.e., dc(i, j) = dc

for all i 6= j, and they take their maximum value. This maximum value is the simplex bound

given by

dc =
√

(N(m− 1))/(m(N − 1)). (3.23)

Alternatively, the largest absolute value of the cosine of the angle between any two frame

elements is bounded as

max
i 6=j
| cosαij| ≥

√
(N −m)/(m(N − 1)).
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The derivation of this lower bound is originally due to Welch [73]. The Welch bound, or

alternatively the simplex bound, are reached if and only if the vectors {ci}Ni=1 form an

equiangular uniform tight frame. This is possible only for some values of m and N . It is

shown in [71] that this is possible only when 1 < m < N − 1 and

N ≤ min{m(m+ 1)/2, (N −m)(N −m+ 1)/2} (3.24)

for frames with real elements, and

N ≤ min{m2, (N −m)2} (3.25)

for frames with complex elements. If the above conditions hold, then the optimal solution

for (Pk) for k > 2 is a matrix C∗ such that its columns form an equiangular uniform tight

frame with frame elements of equal norm
√
m/N and angle α defined as

α = arcsin

(√(
m− 1

m

)(
N

N − 1

))
. (3.26)

The optimal value of the objective function of (Pk) in this case is (m/N)(1 − µ∗), where

µ∗ = | cosα| =
√

(N −m)/(m(N − 1)).

In other cases where N and m do not satisfy the condition (3.24) or (3.25), the following

inequality provides a tighter bound than the simplex bound for µ∗ for some values of N and

m (see [74]):

µ∗ ≥ cos

[
π

(
(m− 1)

N
√
π

Γ(m+1
2

)

Γ(m
2

)

)1/(m−1)
]
.

Applying the above inequalities to (3.21), we conclude that by using a Grassmannian line

packing where the k largest angles among angles between column pairs of the matrix C∗ are

as close as possible to the angle α related to µ∗, the value of the SNR is guaranteed to be

higher than the computed lower bound. This is, however, a very difficult problem since even

finding Grassmannian line packings for different values of N and m is still an open problem.

The reader is referred to [53] and [62] for more details.

We have thus considered a worst-case design criterion in which we assume nothing about

the vector θ, and our design is robust against arbitrary possibilities of this unknown.
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3.4 The Average-case Problem Statement

In the worst-case problem, an optimal k-platform T for problem (Pk) is a member of Ωk

that minimizes ‖CTθT‖2. In this section, instead of finding the worst-case T , we consider

an average-case problem with a random T . Let Tk to be a random variable taking values

in Ωk, uniformly distributed over Ωk. In other words, if we let pk(t) be the probability that

Tk = t where t ∈ Ωk, then

pk(t) =

(
N

k

)−1

, ∀t ∈ Ωk.

Our goal is to find a measurement matrix Φ that maximizes the expected value of the

minimum SNR, where the expectation is with respect to the random k-platform Tk, and

the minimum is with respect to the entries of the vector θ on Tk. Taking into account the

simplifying steps used earlier for the worst-case problem in Section 3.2 and also adopting the

lexicographic approach, the problem of maximizing the average SNR can then be formulated

in the following way: Let N0 be the set containing all (m × N) right orthogonal matrices.

Then for k = 1, 2, . . . , recursively define the set Nk as the solution set to the following

optimization problem: 
max

C
ETk min

θk
‖CTkθk‖2,

s.t. C ∈ Nk−1,

‖θk‖ = 1,

(3.27)

where ETk is the expectation with respect to Tk. As before, the (m× k) matrix CTk are the

columns of C whose indices are in Tk. The above can be simplified to the following:

(Fk)

 max
C

ETkλmin(CH
Tk

CTk),

s.t. C ∈ Nk−1.
(3.28)

3.5 Solution to the Average-case Problem

To solve the lexicographic problems (Fk), we follow the same method we used earlier for

the worst-case problem, i.e., we begin by solving problem (F1). Then, from the solution set
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N1, we find optimal solutions for the problem (F2), and so on.

3.5.1 Sparsity Level k = 1

Assume that the signal s is 1-sparse. So, there are
(
N
1

)
= N different possibilities to build

the matrix CT1 from the matrix C. The expectation in problem (F1) can be written as:

ET1λmin(CH
T1

CT1) =
∑
t∈Ω1

p1(t)λmin(CH
t Ct) =

N∑
i=1

p1({i})‖ci‖2 =
m

N
. (3.29)

The following result holds.

Theorem 4 The optimal value of the objective function of problem (F1) is m/N . This value

is obtained by using any right orthogonal matrix C ∈ N0, i.e., any tight frame.

Proof: The first part is already proved. The proof for optimality is very similar to the

proof given in Theorem 1. Thus, N1 = N0.

Theorem 4 shows that unlike the worst-case problem, any tight frame is an optimal

solution for the problem (F1).

Next, we study the case where the signal s is 2-sparse.

3.5.2 Sparsity Level k = 2

For problem (F2), the expected value term ET2λmin(CH
T2

CT2) is equal to

∑
t∈Ω2

p2(t)λmin(CH
t Ct) =

N∑
j=2

j−1∑
i=1

p2({i, j})λmin(CH
{i,j}C{i,j}).

Now, since p2(t) = 1/
(
N
2

)
= 2/(N(N − 1)),∀t ∈ Ω2, we can go further and write

ET2λmin(CH
T2

CT2) as

2

N(N − 1)

N∑
j=2

j−1∑
i=1

λmin(CH
{i,j}C{i,j}). (3.30)

Solving problem (F2) with this objective function is not trivial in general. In fact, claiming

anything about solutions of the family of problems (Fk), k = 2, 3, . . . , is hard. However,

if we constrain ourselves to the class of uniform tight frames, which also arise in solving
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the worst-case problem, we can establish necessary and sufficient conditions for optimality.

Nonetheless, these conditions are different from those for the worst-case problem and as we

will show next the optimal solution here is a uniform tight frame for which a cumulative

measure of coherence is minimal.

LetM1 be defined asM1 = {C : C ∈ N1, ‖ci‖ =
√
m/N,∀i ∈ Ω}. Also, for k = 2, 3, . . . ,

recursively define the set Mk as the solution set to the following optimization problem:

(F
′

k)

 max
C

ETkλmin(CH
Tk

CTk),

s.t. C ∈Mk−1.
(3.31)

We will concentrate on solving the above problems instead of the family of problems (Fk),

k = 2, 3, . . .. For k = 2, we have the following result.

Theorem 5 The matrix C is in M2 if and only if the frame sum-coherence∑N
j=2

∑j−1
i=1 |〈ci, cj〉| is minimized.

Proof: For k = 2, the value of λmin(CH
t Ct) for t = {i, j} ∈ Ω2 is equal to

λmin(CH
{i,j}C{i,j}) = (1/2)(‖ci‖2 + ‖cj‖2 − f(i, j)),

where f(i, j) is defined as f(i, j) =
√

(‖ci‖2 − ‖cj‖2)2 + 4〈ci, cj〉2. Now, if we replace this

in (3.30), we get

1

N(N − 1)

(
N∑
j=2

j−1∑
i=1

‖ci‖2 + ‖cj‖2 − f(i, j)

)

=
1

N(N − 1)

(
(N − 1)

N∑
i=1

‖ci‖2 −
N∑
j=2

j−1∑
i=1

f(i, j)

)

=
(N − 1)m

N(N − 1)
− 1

N(N − 1)

N∑
j=2

j−1∑
i=1

f(i, j) =
m

N
− 1

N(N − 1)

N∑
j=2

j−1∑
i=1

f(i, j).

Since C ∈ M1, then using the fact that ‖ci‖ =
√
m/N , ∀i ∈ Ω, we can go one step further

and write the above objective function as

m

N
− 2

N(N − 1)

N∑
j=2

j−1∑
i=1

|〈ci, cj〉|.
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Therefore, solving problem (F
′

2) becomes equivalent to solving the following optimization

problem:

min
C

∑N
j=2

∑j−1
i=1 |〈ci, cj〉|,

s.t. C ∈M1.
(3.32)

Theorem 5 shows that for problem (F
′

2), angles between column pairs of the uniform

tight frame C should be designed in a different way than for the worst-case problem. Several

articles (though not many) discuss such frames. In [75], the authors introduce a similar

concept where instead of finding the minimum of the above summation, they are looking for

the maximum, and call it the “cluster coherence” of the frame. In [63], where the authors

use frames in coding theory applications, it is proved that the solution to one of the problems

discussed in the paper is found by solving (3.32). However, to the best of our knowledge,

finding such a frame system is still an open problem—there is no known general solution for

problem (3.32). We call the value of the optimal objective function of (3.32) the minimum

sum-coherence. The following lemma provides bounds for the objective function of this

optimization problem.

Lemma 1 For a uniform tight frame C with column norms equal to
√
m/N , the following

inequalities hold:

ab|(N/m− 1)− 2(N − 1)µ2
C| ≤

N∑
j=2

j−1∑
i=1

|〈ci, cj〉| ≤ ab(N − 1)µ2
C,

where

a =

(
(m/N)2

1− 2(m/N)

)
, b =

(
N(N − 2)

2

)
.

Proof. See Section 3.7.

3.5.3 Sparsity Level k > 2

Similar to the worst-case problem, solving problems (F
′

k) for k > 2 is not only a hard task

but also it is not known how to construct frames with the required properties in practice.
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This is because the solution sets for these problems all lie inM2 and the problem (F
′

2) is still

an open problem. The following lemma provides a lower bound for the optimal objective

function of problem (F
′

k).

Lemma 2 The optimal value of the objective function for problem (F
′

k) is bounded below by

(m/N)(1− (k(k − 1)/2)µC).

Proof. See Section 3.7.

3.6 Simulation Results

As mentioned earlier, constructing uniform tight frames with coherence µ∗ is an open

problem for arbitrary (m,N) pairs. However, examples of such frames are available for

modest values of m and N , mostly for 1 ≤ m ≤ 16 and 1 ≤ N ≤ 50 (see [76]). To be more

precise, the examples in [76] are the best uniform tight frames (in terms of coherence) that

the site publisher is aware of. In some cases, these frames in fact have coherence µ∗. In

other cases, their coherence is larger than µ∗. For the minimum sum-coherence problem, the

examples are even more scarce, and in fact we are not aware of any examples for (m,M)

dimensions large enough to be of interest to our study. Therefore, we limit our numerical

study to the worst-case problem, where we evaluate the performance of several uniform tight

frames from [76].

In all simulations, we assume σ2
n = 1 and ‖θT‖ = 1. We present plots of the worst-case

SNR/N , where the worst-case SNR is given by

SNR = min
T

min
θT
‖ΦΨTθT‖2/(σ2

n/N) = min
T
λmin(C∗HT C∗T ),

by fixing two of the three variables m, N , and k and changing the third one.

We compare the performance of our robust (worst-case) design C∗ with that of a matrix

R with i.i.d. Gaussian N (0, (1/m)) entries, which is typically used for signal recovery. To

satisfy the constraint in problem (3.8), we make R to be right orthogonal. The value of the

objective function in (3.8) is averaged over 100 realizations of the matrix R.
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Fig. 3.1(a) shows the worst-case SNR performance for a case where the signal dimension

is N = 50 and the measurement budget m is varied from 10 to 40. In this case, the

condition (3.24) is satisfied and the columns of the optimal matrix C∗ form an equiangular

uniform tight frame. We can therefore derive an exact expression for the optimal objective

function value based on the Welch bound. For k = 1, this value is equal to m/N , and for

k ≥ 2, it is equal to (m/N)(1− µ∗) where µ∗ =
√

(N −m)/(m(N − 1)).

We also consider cases where the condition (3.24) is not satisfied, due to a relatively

small measurement budget. Here we use Grassmannian line packings to form measurement

matrices. For (N,m) pairs that Grassmannian line packings are not known, we use the

best available packings reported in [76] for those dimensions. Figs. 3.1(b)-(f) show the

performance of such solutions versus the random matrix R for different case. In each case,

we have fixed two of the variables N , m, and k and have varied the third one. The values

of the objective functions in all these plots are in dB. In all scenarios, the wort-case SNR

performance corresponding to the the optimal design C∗ is better than the average taken

over 100 realization the random matrix R.

Note that our simulations are only for cases where m, k and N are not very large. As

mentioned above, one of the reasons is that the available uniform tight frames in [76] are

mostly for cases where 1 ≤ m ≤ 16 and 1 ≤ N ≤ 50. Also, for values of N bigger than 25

and k bigger than 5, finding the smallest minimum eigenvalue of all C∗T
HC∗T for different

values of T is computationally intractable.

It is important to realize that for most values of m and N , the uniform tight frames

used in our simulations have a coherence µ that is bigger than µ∗. In other words, for most

values of m and N , we are actually comparing the performance of a suboptimal solution

matrix instead of the optimal solution with the performance of the random matrix R and

interestingly, the suboptimal solution still has a better performance than the random matrix

R in most, but not all, cases. For example, we notice that in Fig. 1(f), the gap between

two curves decreases as N increases. This does not contradict with our theoretical results,
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(a) Equiangular uniform tight frames. (b) m = 8, N = 50, and k is varied.

(c) k = 2, N = 40, and m is varied. (d) k = 3, N = 40, and m is varied

(e) m = 10, k = 3, and N is varied. (f) m = 10, k = 4, and N is varies.

Figure 3.1: Performance comparison between matrices C∗ and R.
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as the plots in Fig. 3.1 do not show the performance of the optimal solution for most values

of m and N after all. Rather they show the performance of the best available uniform tight

frame example for the corresponding (m,N) values.

3.7 Appendix: Proofs of Lemma 1 and Lemma 2

3.7.1 Proof of Lemma 1.

Multiply both sides of CCH = I from the left by CH and from the right side by C to get

(CHC)2 = CHC. (3.33)

The matrix CHC = I is an (N ×N) Hermitian matrix, with (i, j)th element (m/N) cosαij

and diagonal elements m/N . Using these values, it is easy to see that the matrix (CHC)2 is

also a Hermitian matrix with the entry (m/N)2(
∑N

i=1 cos2 αji) on the jth diagonal location

and the entry

(m/N)2(2 cosαij +
N∑
l=1,
l 6=i,j

cosαil cosαlj)

located in the ith row and the jth column. By comparing the diagonal entries on each side

of equation (3.33), we will get the following family of equations:

(m
N

)2
(

N∑
i=1

cos2 αji

)
=
(m
N

)
, j = 1, . . . , N.

If we sum up all the above equations, after simplifying, we get1

N∑
i,j=1

cos2 αji =
N2

m
. (3.34)

1The relation (3.34) is the well-known frame potential condition (see [77])

FP =

N∑
i,j=1

|〈ci, cj〉|2 = m

for tight frames, after it has been simplified by enforcing the equal norm assumption.
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If we compare the off-diagonal entries of matrices on each side of equation (3.33), then for

i, j = 1, . . . , N and i 6= j, we get

(m
N

)2

2 cosαij +
N∑
l=1,
l 6=i,j

cosαil cosαlj

 =
(m
N

)
cosαij,

which simplifies to

cosαij =

(
(m/N)

1− 2(m/N)

) N∑
l=1,
l 6=i,j

cosαil cosαlj

 .

Using the triangle inequality, we write

N∑
j=2

j−1∑
i=1

|〈ci, cj〉| =
m

N

N∑
j=2

j−1∑
i=1

| cosαij|

≥ m

N

∣∣∣∣∣
N∑
j=2

j−1∑
i=1

cosαij

∣∣∣∣∣
= a

∣∣∣∣∣∣∣
N∑
j=2

j−1∑
i=1

N∑
l=1,
l 6=i,j

cosαil cosαlj

∣∣∣∣∣∣∣ .
We replace cosαil cosαlj with (1/2)(cos2 αil+cos2 αlj−(cosαil−cosαlj)

2). The term cos2 αil

is repeated 2(N − 2) times in the above summation;

• Once i and l are fixed, there are N − 2 choices left for j to choose the angle αlj in the

product term cosαil cosαlj.

• There are also N − 2 times that the term cosαjl is repeated, which is equal to cosαlj.

Therefore,

N∑
j=2

j−1∑
i=1

N∑
l=1,
l 6=i,j

cos2 αil + cos2 αlj = 2(N − 2)
N∑
j=2

j−1∑
i=1

cos2 αij

= 2(N − 2)
(N2/m)−N

2
.
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The right hand side of the above inequality simplifies to

(a/2)

∣∣∣∣∣∣∣N(N − 2)(N/m− 1)−
N∑
j=2

j−1∑
i=1

N∑
l=1,
l 6=i,j

(cosαil − cosαlj)
2

∣∣∣∣∣∣∣ .
It is easy to show that | cosαil − cosαlj| ≤ 2µC for any i 6= j 6= l = 1, . . . , N . So,

−
N∑
j=2

j−1∑
i=1

N∑
l=1,
l 6=i,j

(cosαil − cosαlj)
2 ≥ −4

N∑
j=2

j−1∑
i=1

N∑
l=1,
l 6=i,j

µ2
C.

Similarly, for a fixed i and j, there are N − 2 possibilities for l. Also, there are
(
N
2

)
ways to

choose i and j from N options. Therefore, the lower bound will be larger than

(a/2)
∣∣N(N − 2)(N/m− 1)− 2N(N − 1)(N − 2)µ2

C

∣∣
= ab|(N/m− 1)− 2(N − 1)µ2

C|.

This is the claimed lower bound.

To find the upper bound, we write

N∑
j=2

j−1∑
i=1

|〈ci, cj〉| =
m

N

N∑
j=2

j−1∑
i=1

| cosαij|

= a
N∑
j=2

j−1∑
i=1

∣∣∣∣∣∣∣
N∑
l=1,
l 6=i,j

cosαil cosαlj

∣∣∣∣∣∣∣
≤ a

N∑
j=2

j−1∑
i=1

N∑
l=1,
l6=i,j

|cosαil cosαlj|

≤ a
N∑
j=2

j−1∑
i=1

N∑
l=1,
l6=i,j

µ2
C

= ab(N − 1)µ2
C.

2
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3.7.2 Proof of Lemma 2.

Similar to the 2-sparse signals case in Section 3.3, we can write the objective function of

problem (F
′

k) in the following way:

ETkλmin(CH
Tk

CTk) =
∑
t∈Ωk

pk(t)λmin(CH
t Ct) =

(
N

k

)−1 ∑
t∈Ωk

λmin(CH
t Ct).

Since the matrix C is a uniform tight frame, for any t ∈ Ωk, the matrix CH
t Ct can be written

as (m/N)[I+At], where the (k×k) matrix At is defined in (3.15). Similar to the worst-case

design, we can derive the following inequality:

λmin(CH
t Ct) ≥ (

m

N
)(1−

∑
il 6=ih∈t,
t∈Ωk

| cosαilih|)

≥ (
m

N
)(1−

(
k

2

)
µC)

= (
m

N
)(1− (k(k − 1)/2)µC).

Taking the expectation, we get

ETkλmin(CH
Tk

CTk) ≥ p
∑
t∈Ωk

(
m

N
)(1− (k(k − 1)/2)µC)

= p

(
N

k

)
(
m

N
)(1− (k(k − 1)/2)µC)

= (
m

N
)(1− (k(k − 1)/2)µC).

This completes the proof. 2
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CHAPTER 4

SUMMARY

4.1 Conclusions

In this work, we have studied the problem of designing the compressive measurement

matrix for estimating and detecting sparse signals. In the first portion of this work (Chap-

ter 2), our concentration was on adaptively designing compressive measurements for esti-

mating supports of time-varying sparse signals. We approached this problem from a unique

perspective and studied the problem in the context of multi-target tracking, which enabled

us to apply data association techniques that are available in the literature. In addition,

we formulated this problem as a POMDP, which accommodates two categories of adaptive

methods, namely, myopic and multi-step lookahead methods. This formulation allowed us

to compare the performance of these two categories of adaptive methods not only with each

other but also with other adaptive and nonadaptive methods.

We have provided several simulations that consider different scenarios for both single mov-

ing target (1-sparse) and multiple moving targets (s-sparse). Throughout our simulations,

we have applied an approximation technique known as rollout to decrease the computation

volume that is present when solving a POMDP. Moreover, for the simulations in which there

are multiple moving targets, we have applied two approximation heuristics, that are moti-

vated from the well known techniques MHT and JPDA, to overcome the problem of data

association that naturally arises once the number of targets is more than one.

The simulation results for this work indicate that the adaptive techniques have a better

performance than the non-adaptive traditional designs. But, when comparing the myopic vs.

non-myopic designs, the performance criterion, the POMDP cost, and other factors affect

the performance of each variation with respect to the other. For example, in Simulations 3
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and 4, where we considered occlusion areas in the setting and the goal was to minimize the

total number of measurements, the non-myopic design has the best performance. On the

contrary, in cases where neither of these conditions hold, e.g., in Simulation 2, there is no

difference between the performance of myopic and non-myopic designs and using the latter

design only increases the computation volume.

In the second portion of this work (Chapter 3), we have considered the design of low-

dimensional (compressive) measurement matrices, for a given number of measurements, for

maximizing the worst-case SNR and the average minimum SNR. We have shown an inter-

esting connection between maximizing the two SNR criteria for sparse signal detection and

certain classes of frames. In the worst-case SNR problem, we have shown that the optimal

measurement matrix is a Grassmannian line packing for most—and a uniform tight frame

for all—sparse signals. In the average SNR problem, we have looked for the solution among

the class of uniform tight frames and have shown that the optimal measurement matrix is

a uniform tight frame that has minimum sum-coherence. Our solutions for both problems

provide lower bounds for the performance of the detectors.

4.2 Future Work

4.2.1 Extensions of Adaptive Sparse Signal Estimation

1) In Simulation 2 of Section 2.4, we did not see any difference between the performance

of the myopic design and the multi-step lookahead design. As discussed earlier, the main

reason behind this performance similarity is because of the choice of the action space and

the POMDP cost. We already showed in Simulations 3 and 4 that how modifying the

cost enhances the performance of the multi-step lookahead compared to that of the myopic

design. One possibility to extend the current work is to consider a different action space

for Problem 1 and see how it affects the performances of myopic and multi-step lookahead

designs. For example, the current action space of Problem 1 allows a measurement vector

from the prespecified library to be selected repeatedly. An alternative option to this action
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space would allow the elimination of the selected measurement vector from the library once

it is used. By setting such a constraint, we believe that we are providing an opportunity for

the multi-step lookahead design to over perform the myopic design.

2) The present work only provides numerical results for a limited number of scenarios.

One direction for future work is to develop analytical results that hold for a variety of settings.

For example, currently, we only have an analytical result for rollout in the literature, which

is the evaluation of its performance compared to that of its base policy. Alternatively, we

could establish a lower bound for the performance of the myopic version of our design.

3) The metric that we have commonly considered in Problems 1 and 2 in the performance

criterion is the conditional mutual information I(yk; dk|Hk). This metric is also used in most

of the available work on adaptive compressive sensing in the literature (see, e.g., [23], [24],

and [26]). One possibility for future work is to use alternative metrics as the performance

criterion and evaluate the performance of those designs with the design presented in this

work. For example, since we are currently looking at this problem of time-varying sparse

signal support identification in the context of multi-target tracking, one choice for the perfor-

mance criterion is to consider the distance between the true locations of the nonzero entries

of the signal, dtrue, and their predicted locations, dpred.. The metric can be then defined as

the error term e(dtrue,dpred.) = ‖dtrue−dpred.‖2. Solving Problems 1 and 2 using this metric

instead of I(yk; dk|Hk) will provide us with a minimum mean squared solution.

4) In this work, we have used the rollout method to find a solution for the POMDP

primarily because it decreases the POMDP computation volume and it is also guaranteed

to perform at least as well as its base policy. Although by using rollout we were able to

take advantage of these benefits, our simulations for finding solutions for the multi-step

lookahead designs still took a great amount of time to run. One possible path for future

work is to consider and possibly replace rollout with alternative approximation techniques

such as certainty equivalence control (see [51]) to decrease the POMDP computation volume

even more.
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5) In the current work, we have concentrated on the problem of measurement selection

from a prespecified library. We can alternatively consider the problem of designing the

measurement matrix, which would be similar to the goal of the work presented in Chapter 3.

To do so, we modify the POMDP action space to be the set of all matrices A ∈ Rl×N with

the property that the norm of each row of the matrix A is equal to one, i.e., ‖A(i)‖2 = 1.

4.2.2 Extensions of Sparse Signal Detection

1) The current work in Chapter 3 provides a solution for designing compressive measure-

ment matrices that maximize the SNR. Therefore, by using this design, we are guaranteed

to have good performance for any linear detector that we use. A possible extension to the

current work is to concentrate on designing compressive measurement matrices for nonlinear

signal detectors. Note that by considering any non-linear detector, the performance criterion

would probably be different from SNR.

2) The studied problem in Chapter 3 only considers the presence of measurement noise.

Alternatively, we can consider the presence of signal interference as well as noise in our

setting. This extension would probably relate our work to the matched subspace detectors,

which one can find a great amount of available work about them in the literature (see,

e.g., [78] and [79]).

3) In this work, we have designed a detector that can be considered to be non-adaptive.

A possible extension to the current work is to consider designing an adaptive detector and

evaluate the performance of this detector compared to our current design. Moreover, we can

also consider alternative variations for the adaptive design in which the sparse signal could

be either static or vary over time.

4) When the problem of adaptively designing the compressive measurement matrix for

a static sparse signal is considered, we can study the characteristics of the performance

criterion used in that problem to see if it satisfies the submodularity property (see [80]). If

so, then we can rely on only designing myopic detectors since it is shown in [81] that by using
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such detectors, we are guaranteed to have a performance that is within the 27% interval of

the performance of an optimal detector. This means that it would be very unlikely that a

multi-step lookahead detector could over perform the myopic detector.
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