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ABSTRACT

FORECASTING MONTHLY STREAMFLOW
FOR COLORADO RIVER SYSTEMS

Forecasting water supply is critical for meeting the growing demands for in-state
use of Colorado's water resources. The intensifying out-of-state demands for waters
originating in the State of Colorado underscores the necessity for maximizing beneficial
use of water within the state. The State of Colorado has 16 compacts related to water
use with other states thus, Colorado's problem in this regard is on how to make the
maximum use of our water resources while complying with compacts with other states.
Likewise, operation of complex systems such as the Colorado-Big Thompson Project, for
example, requires forecasts of inflows into the reservoirs during the spring and summer
in order to plan supplemental releases to meet irrigation, domestic and hydropower
demands. The research reported herein was aimed at improving current forecasting
procedures used in the State of Colorado.

In this study, single input-single output and multiple input-single output periodic
transfer function models have been developed for forecasting monthly streamflow. First,
the monthly streamflow is deseasonalized and filtered by a periodic autoregressive (PAR)
model. Then, a transfer function model, in which the deseasonalized snow water
equivalent is the input, and the streamflow residual from the PAR model is the output,
has been formulated. The building of the transfer function model has been carried out by
using spectral analysis and the non-linear least squares method was used for parameter
estimation. The models have been applied to forecast monthly flows of the Rio Grande
watershed system in Southern Colorado. Tests and comparisons of the proposed forecast
method were made versus multiple regression approaches currently used by agencies
responsible for managing the Colorado water resources. It was shown that the single
input-single output periodic transfer function model gives better monthly streamflow
forecasts than the multiple regression approach. Likewise, the addition of more inputs
in the transfer function model improves the forecasts. It is concluded that the forecasting
approaches developed in this research may be useful for forecasting monthly flows in the
Rio Grande system. It is expected that similar results would be obtained for other river
systems in the state.
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CHAPTER I

INTRODUCTION

1.1 General

Accurate water supply forecasting is critical for meeting the growing demands for

in-state use of Colorado's water resources. The intensifying out-of-state demands for

waters originating in our state underscore the necessity for maximizing beneficial use

within Colorado. The State of Colorado has 16 compacts related to water use with other

states. Thus, Colorado's problem in this regard is how to make the maximum use of our

water resources while complying with compacts with other states. For instance,

streamflow forecasts at the state line on the Rio Grande River are routinely made in

order to administrate more rationally the water resources available in the Rio Grande

basin. Reliable estimates of water available over the next day, week, month or season

increases the likelihood of effectively matching these supplies with estimated demands.

Water commissioners under the Office of the State Engineer and various other

water officials need accurate streamflow forecasts for filling reservoirs and delivering

supplies with a minimum of waste, in accordance with water right seniority. Likewise,

operation of complex systems such as the Colorado-Big Thompson Project, for example,

requires forecasts of inflows into the reservoirs during the spring and summer in order

to plan supplemental releases to meet irrigation, domestic and hydropower demands.

Most of the monthly streamflow in the Western United States originates as

snowfall that has accumulated in the mountains through the late fall, winter, and early
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spring. Forecasts of April through December aggregate (cumulative) runoff are generally

made from April through December by the Water Resources Division of the State

Engineer Office on the first of the month after the results of snow course surveys for the

previous month becomes available. These total seasonal runoff forecasts are further

divided into monthly values (the difference of two successive forecast values). These

forecasts are needed for maximizing use of the water resources of the state. Likewise,

shorter time interval forecasts of the order of 10 days or a week are usually needed for

the same purposes. Local agencies such as the Northern Colorado Water Conservancy

District (NCWCD) use such forecast information to plan their annual operations and to

decide on quota allocations for supplemental water for irrigation and domestic uses of

their clients. Likewise, certain state water right administrative agencies also find this

information useful for obtaining more efficient use of available water resources within

legal priorities.

Existing methods used for forecasting streamflow in the State of Colorado are

based on the usual multiple regression analysis. This method has been traditionally used

for a number of prediction and forecasting problems in water resources. However, it has

a number of shortcomings as has been documented in the literature (Tabios and Salas,

1982; Haltiner and Salas, 1988). Research developed in the past 20 years or so at a

number of universities, including Colorado State University, indicates that approaches

based on more structured models such as the so-called transfer function and ARMAX

models and threshold ARMAX models are better suited for forecasting purposes than the

conventional regression models.
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Advances in time series analysis (Box and Jenkins, 1976; Salas et al., 1980;

Brockwell and Davis, 1987) offer significant advantages over the current procedure, such

as the ability to identify the best model structure, more efficient updating of model

parameters, and the possibility of determining forecast errors (confidence limits). The

records of historical flows at a given site are analyzed and the underlying mechanism

generating this system output is identified through time series analysis. Likewise, the

system inputs such as snow-water equivalent and temperature can be analyzed and

modeled. Then, a transfer function-noise model relating the inputs to output can be

developed with consideration of the delay response time between the input occurrence

and the significant output response.

The Rio Grande River system has been selected as the pilot project to implement

and test the procedures to be developed in this study. The main reason for considering

this river as the pilot system is because of its importance in agricultural development in

the southern part of the state and because of the obligation that the state has to deliver

water in the Rio Grande at the Colorado-New Mexico state line (Rio Grande Basin

Compact). These characteristics make it extremely important for the state to forecast

streamflow at key points along the Rio Grande River. More specifically, to comply with

Rio Grande Compact the state needs to forecast streamflow at the Del Norte gaging

station along the main stem of the river, at the Mogote gaging station along the Conejos

River, Los Pinos near the Ortiz gaging station along the Los Pinos River, and at the San

Antonio at Ortiz gaging station along the San Antonio River. Thus, the main thrust of

the project has been to forecast seasonal streamflows at these four gaging stations.
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1.2 Objectives of the Research

The specific objectives of the research are:

(a) To develop new methods for streamflow forecasting in selected systems

of the State of Colorado. The Rio Grande River system was selected as

the pilot case study to apply the new methods.

(b) To test and compare the forecasting methods to be developed here with

approaches currently used by agencies responsible for administering

Colorado's water resources.

(c) To document and make available to the public the models and procedures

to be developed and the results obtained in the study.
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CHAPTER II

LITERATURE REVIEW

2.1 General Remarks

In analyzing and modeling streamflow processes in places as in the State of

Colorado, snowmelt runoff plays an important role. There are a number of driving

meteorological variables for melting snow such as solar radiation, temperature, humidity

and wind. Rainfall represents an immediate input to the runoff process. Snowfall has to

tum into snowmelt before it becomes runoff. Liquid water in the snow pack, either from

snowmelt or rainfall, must percolate through the pack before it can appear as runoff. The

overall effect of snowpack is to produce a lag between the time which melt water is

produced and the time it reaches the bottom of the snowpack. Then at the bottom of the

snow pack, the liquid water can either enter the soil system or flow through the soil

surface in a saturated zone. This produces another time lag before the water ultimately

reaches the stream.

A number of researchers have developed precipitation-runoff models that apply

to various types of watersheds. The models attempt to describe physically or conceptually

the actual physical processes of the hydrologic cycle so as to simulate hydrologic events

such as the evolution of streamflow hydrographs. While these models can be useful for

determining runoff forecasts, they usually require extensive data for calibration and

operation which often is unnecessary for runoff forecasts at the monthly and seasonal

time scales. A simple conceptual model is the "Snowmelt Runoff Model" (SRM) which
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has been used by Rango and Martinec (1979), Shafer et ale (1982) and Rango (1983).

In this study we will not consider the physics of the snowmelt process. The system that

traces precipitation from snowfall and from rainfall to streamflow will be considered as

a black box.

A great number of methods have been studied in the area of seasonal streamflow

forecasting. The multiple regression analysis method has been traditionally used in water

resources. U.S. Soil Conservation Service (1970) forecasts the seasonal flow quantity

using multiple regression techniques. These relate the runoff to base flow, fall

precipitation, spring precipitation and the snow water equivalent. Tabios and Salas (1982)

reported that improved forecasts could be obtained by applying Kalman filtering and

spatial interpolation techniques. Lang (1986) forecasts the meltwater runoff from glacier

basins by using multiple regression.

Stochastic methods have been also applied for streamflow forecasting. Although

the seasonal autoregressive integrated moving average (SARIMA) model forecasts

seasonal economic data well, this model may not be appropriate for modeling and

forecasting monthly streamflow (McLeod et al., 1987). Other stochastic approaches have

been used by hydrologists in forecasting streamflow series. One of the approaches is to

analyze streamflow based on univariate time series models. Others use an input-output

relationship for modeling the streamflow series. The literature review in this report

includes three categories: (a) the modeling of seasonal streamflow by using univariate

time series models, deseasonalized ARMA models and periodic ARMA processes; (b)

the input-output models, such as the transfer function model, the ARMAX model and the
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state space model; and (c) a brief overview of spectral analysis, a tool which is used in

this research.

2.2 Univariate Time Series Modeling of Seasonal Streamflow

Time series are periodic when their statistical properties change periodically

during the year. Before using the stationary ARMA model, the seasonal streamflow

should remove the seasonality by subtracting the seasonal mean and dividing by the

seasonal standard deviation (Salas et al., 1980). In this way, the streamflow is

transformed into a zero-mean and unit-variance series. Then, the deseasonalized series

may be analyzed by using the stationary ARMA process if this is applicable. The ARMA

process can be used to forecast streamflow from current and past values. Most

deseasonalized ARMA models used for data generation preserve the underlying historical

statistical properties, but when it is used for forecasting monthly flows, the ARMA

model underestimates the high flow in the summer time. The deseasonalized ARMA

process was used for forecasting monthly streamflow by Noakes et ale (1985). The result

of this study concluded that the deseasonalized ARMA processes does not give an

accurate forecast to streamflow.

It is known that streamflow series exhibit an autocorrelation structure that depends

not only on the time lag between observations but also on the season of the year. Thomas

and Fiering (1962) suggested an AR(1) model with periodic coefficients that may be used

to fit a time series presenting lag-one correlations. Yevjevich (1971) suggested the AR(P)

models with periodic parameters for modeling the seasonal hydrologic time series. Salas

and Yevjevich (1972) derived moment estimates of periodic parameters. Salas (1972)
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derived Yule-Walker equations for these models. Models similar to the family of PAR

models have been employed by Clarke (1973). Delleur et al. (1976) gave approximate

parameter estimates of the periodic MA(l), MA(2) and ARMA(1,1) models. These were

patterned after the Yule-Walker equations for the ARMA(p,q) process which assumes

constant parameters. A Yule-Walker equation of the periodic ARMA(p,q) process was

derived by Salas et al. (1982). They showed that the periodic autoregressive parameters

of ARMA(p, 1) models can be computed by solving a system of linear equations, and that

the periodic moving average parameters can be solved iteratively.

An exact likelihood function of the PARMA(I,I) model was developed by

Vecchia (1983), and an algorithm for computing the approximate maximum likelihood

estimates is presented. Thompstone (1983) formulated a parsimonious periodic

autoregressive model, which groups seasons that present similar autoregressive

characteristics in order to consider a single AR model for those seasons. Noakes et al.

(1985) used the PAR model in forecasting the monthly streamflow. They concluded that

the PAR model provided the most accurate forecast.

2.3 Input-Output Modeling of Seasonal Streamflow

A number of papers dealing with input-output modeling, state-space approaches

and Kalman filtering estimation are included in Chiu (1978). Mizumura and Chiu (1985)

using a combination of the tanks and autoregressive models, identified parameters using

the Kalman filtering technique for forecasting combined snowmelt and rainfall during the

snowmelt period. Burn and McBean (1985) used a different technique that incorporates

the Kalman filtering technique to reflect uncertainty in the measured data and model
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errors for forecasting the daily streamflow resulting from the combined snowmelt and

rainfall.

Some papers deal with the distribution of the forecasted runoff volume. Hoshi and

Burges (1980) suggested a method that can forecast the seasonal streamflow volumes

conditional on the forecasted total runoff volume . Given an imperfect forecast of the total

runoff volume for a season, the distribution of the forecasted runoff volume in each

subperiod was studied by Pei et al. (1987). They developed a method for finding the

conditional distribution of runoff volume in each subperiod, given the total forecast.

Krzysztofowicz and Watada (1986) described the uncertainties in the forecast of seasonal

snowmelt runoff volume by using a discrete-time, finite, continuous-space, nonstationary

Markov process. They pointed out that Bayesian forecasts offer a more explicit and

complete assessment of forecast uncertainties. This assessment can be used for optimal

decision making.

In recent years, some input-output models for streamflow forecasting have been

developed. Although these models have relatively simple formulation and data

requirements, they can be combined with modern filtering techniques to provide accurate

forecasts. These models are based on the need to formulate operational relationships

between input and output with acceptable accuracy without regard to the physics of

nature. Several black box approaches were studied during the 1960's. Prasad (1967)

presented a non-linear model to handle the nonlinearity inherent in the rainfall-runoff

process. The publication of the book on time series by Box and Jenkins (1970)

summarized and formalized the time series method, representing the beginning of a
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period of increasing interest and research in the application of time series. The transfer

function model presented by Box and Jenkins has become popular. Cooper and Wood

(1980; 1982a; 1982b) suggested a variation of Akaikie's canonical correlation procedure

to determine model order of the autoregressive moving average with exogenous input

(ARMAX) model. The ARMAX model needs a good initial parameter estimates for the

recursive parameter estimation. Haltiner and Salas (1988) use the ARMAX model for

forecasting the daily riverflow resulting from combined snowmelt and rainfall.

The application of the single input-single output transfer function model to the

Arctic data was studied by Baracos et al. (1981). The use of a transfer function model

in relating monthly river flows with precipitation and temperature was presented by Hipel

et al. (1982). Nicklin (1985) use the transfer function model for modeling irrigation

return flow problem. The forecasting of quarter-monthly riverflows by using a transfer

function model was also presented by Thompstone et al. (1985).

2.4 Spectral Analysis

Spectrum describes how the variation in a time series may be accounted for by

cyclic components at different frequencies. The procedure for estimating the spectrum

is called spectral analysis. Spectral analysis is mainly concerned with estimating the

spectrum over a whole range of frequencies. Bartlett (1966) and Tukey (1967) have been

prominent in the development of modern spectral analysis, and their techniques are now

widely used. There are a number of references which are useful for studying the

frequency domain approach. Jenkins and Watts (1968), Koopmans (1974), Bloomfield

(1976), Otnes and Enochson (1978) and Chatfield (1980) provide elementary descriptions
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of spectral analysis. Brillinger (1981) provides a classic study on the advanced level.

Priestley (1981) and Shumway (1988) gave a comprehensive treatment of spectral

methods for an intermediate level. Yevjevich (1972) used the spectrum to analyze

hydrologic time series. Canfield (1982), Canfield and Bowles (1985) suggest the

generation of the autocorrelation function by generating the Fourier coefficients. Since

the spectral density function and the autocorrelation function are equivalent

representations of the serial association characteristics of a time series, this can be

achieved. Padmanabhan and Rao (1988) applied a maximum entropy spectral analysis to

find the periodicities of hydrologic data.
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CHAPTER III

BACKGROUND ANALYSIS AND MODELS

3.1 General Remarks

Hydrological time series has been successfully used for forecasting and data

generation studies. Some of the stochastic models that will be used for modeling the

seasonal hydrological time series are: (a) deseasonalized autoregressive moving-average

(ARMA) model, (b) periodic autoregressive moving-average (PARMA) model, and (c)

transfer function model.

Among these three models, the transfer function model will become the main

subject of this research. In addition to the time domain time series analysis, the

frequency domain time series analysis is also considered here. Spectral analysis is

useful, since it can simplify the analysis of time invariant linear systems. Spectral

analysis is a non-parametric approach, which is useful as an exploratory tool for

suggesting models which can be fitted parametrically.

First , the basic statistical characteristics of time series which will be needed in

this research are described. Let x., t=1, ... ,N be a stationary time series, in which N is

the sample size. The population and sample statistical characteristics are denoted as:

(1) The mean

(3.1.1)
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The sample mean

_ 1 N

x=-Lxt· (3.1.2)N t=1

(2) The variance

0 2=E[(xt - ~)2]. (3.1.3)

The sample variance

N
2 1 L t)2Sx =-- (xt-x. (3.1.4)N-l t=1

(3) The autocovariance function

YIc =Cov(xt+lc,xt) =E[(xt+1c-~) (x,- J.1. x) ] · (3.1.5)

The sample autocovariance

N-Ic
y=l-L (xt+1c-i) (xt - X). (3.1.6)N t=1

(4) The autocorrelation function

Ylc
Pk=-· (3.1.7)Yo

The sample autocorrelation function

N-k

L (xt+ k-X)(xt-X)
"- t=1
PIc= N

L (Xt-i)2
(3.1.8)

t=1
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(5) The cross-covariance function

Yxy(k) =Cov(xt+k,Yt) =E[(xt+k- J.Lx)(Yt- J.Ly) ] .

The sample cross-covariance function

(3.1.9)

Yxy(k) =

N-k

L (xt+k-X)(Yt-Y)
t=1

N
N

L (xt+k-.i)(yt-Y)
t=l-k

N

for k=O, 1, 2,...

for k=O,-1,-2,...

(3.1.10)

(6) The cross-correlation function

p (k) = YxyCk)

xy Jyx(O) YyeO)

The sample cross-correlation function

3.2 Deseasonalized Autoregressive Moving-Average Model

3.2.1 Model Description

(3.1.11)

(3.1.12)

One approach for modeling seasonal hydrological data is to deseasonalize the

series and fit an ARMA process to the deseasonalized data (see Salas et al., 1980). Let

us assume that YV,T represents a periodic hydrologic time series, where v is the year and

7 is the month within the year. Then, the series YV,T can be deseasonalized by

(3.2.1)

where P-T and (JT are the periodic mean and periodic standard deviation, which can be
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estimated by

Nx-,
A v=l
IJ.·=-N--

N

L (r,.•- 11.)2
v=l

N-l

where N is the total number of years of record.

(3.2.2)

(3.2.3)

Now, the ZV,T series may be represented by a non-seasonal ARMA model.

Consider the series Zv,T of Eq. (3.2.1) to be represented by z, with t=(v-l)·12+T. Then,

an ARMA(p,q) process can be written as

(3.2.4)

where s, is a white noise with mean zero and variance u/; and cPb cP2, ... , cP p and 81,

82, ... , 8q are the other parameters of the model.

For hydrologic series, the orders p and q are usually small, i.e., of the order of

one or two (Salas et al., 1980; p. 125), thus low order models such as ARMA(l,O)

ARMA(2,O), ARMA(O,I), ARMA(O,2) and ARMA(l,l) model are usually popular for

most practical applications.

3.2.2 Parameters Estimation. Diagnostic Checking and Model Selection

Estimation of stationary ARMA models by the method of moments, method of

least squares and method of maximum likelihood are well understood (Box and Jenkins,

1976; Salas et al., 1980; Brockwell and Davis, 1987). The method of least squares is

an approximation of the method of maximum likelihood. It can be implemented by
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minimizing the sum of squares of the residuals

(3.2.5)

The sum of the squares of the residuals depends on the parameters mand f! and the

starting values of the e 'so Therefore, the set of parameters ~ and .e. which minimizes

the sum of the squares function is sought. At last, the independence and normality of the

residuals should be checked.

Among competing ARMA(p,q) models, the correct model can be determined by

using the Akaike Information Criterion (Akaike, 1974; Salas et al, 1980)

AIC(p,q) = N m(a:) +2(p+q) (3.2.6)

A

where N is the sample size and (1£
2 is the maximum likelihood estimate of the residual

variance.

3.2.3 Forecast Function

The ARMA(p,q) model of Eq. (3.2.4)

can be written as

where

-<I> BP
P (3.2.7a)

(3.2.7b)

and B is the backward shift operator, defined by Bi~=~_j' Then, Eq. (3.2.4) can be

written as
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z = 6(B) 8 = lJr(B)e
t <I>(B) t t

or

where '1'(B)= '1'0 + '1'1 B + '1'2B2 + ....

(3.2.8a)

(3.2.8b)

Consider now that ~+L is the process defined at time t+L which means a lead

time ofL units after the current time t. Then, from Eq. (3.2.8b) the forecasting function

can be expressed by

=(lJroe t+L +lJr1et+L - 1+...+lJrL-l et+1)+(lJrL et+lJfz-r et- 1+•••)

L-l

= L lJrj 8 t+L -j + L lJrL+/~t-j
j=O j=O

(3.2.9)

Now suppose, standing at present time t, we want to make a forecast of ~+L' that is we

want to forecast z at L time steps ahead given that we know the information of z up to

present time t. This mathematically can be represented by the conditional expectation of

A

Zt+L (for L ~ 1) given that z., ~-1' Zt-2,'" are known. Let us denote by z(L) such

conditional expectation, i.e.

(3.2.10)

Then by using Eq. (3.2.9), we can assume that

(3.2.11)
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where the weights i'L*' i'L+l*' ... are to be determined.

From Eqs. (3.2.9) and (3.2.11), we have

L-l 00

Zt+L-'ir(L)=E tJr/~t+L-j+E (tJrL+j-W~+}et-j
j=O j=O

(3.2.12)

which is the error of the forecast. The mean square error of the forecast becomes

(3.2.13)

which is minimized only if i'L+j* = i'L+j. Thus the minimum mean square error forecast

A

Zt(L) of Zt+L at origin t is given by the conditional expectation of z, at t. This expectation

is conditional on knowledge of the series from infinite past up to the present origin 1.

In addition, let us denote E[~+LlzH ~-b ••• ], the conditional expectation of ~+L

given knowledge of all the z's up to time t by [Zt+J. From Eq. (3.2.4), the lead time

L forecast equation can be written as

it(L) = <l>l[Zt+L-l] + •.. + <l>P[Zt+L-pl - [et+J
- 61[et +L- 1] - ••• - 6q[et +L_q]

where

(3.2.14)

j>O
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/5.0

j>O

From Eq. (3.2.12), the forecast error for lead time L may be written as

L-l

et(L) = L 1Jr/~t+L-j
j=O

(3.2.15)

Since E[t;(L)] =0, the forecast error is unbiased. Also, the variance of the forecast error

of Eq. (3.2.15) can be written as

J~-l ]
a;(L) = Va.~ '!Jj&'+L-j

L-l
2 ~ 2= at L lJrj

j=O
(3.2.16)

If the forecast error is normal distributed, the 95% probability limits of forecast with lead

time L are given by

3.3 Periodic Autoregressive Moving-Average Model

3.3.1 Model Description

(3.2.17)

Periodic hydrologic series such as monthly flow senes, generally have a

correlation structure which depends not only on the time lag between observations but

also depends on the season. The periodic autoregressive moving average model can

represent this seasonally-varying correlation structure. In here, the PAR(l) and

PARMA(1,1) are included as examples. The parameter estimation will follow the

procedures suggested by Salas et al. (1980; 1982).
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The PAROl Model

Let us assume that Zv,T represents a periodic time series, where v is the year and

T is the season within the year. Then a PAR(1) model is defined as

7 =<p 7 +e-V,r l,.r -V,t'-l v,t' (3.3.1)

where e; T is uncorrelated, has zero mean and has variance (1/(8). The moment estimation,

of the parameters can be written as

<1> l.t'

and

where Pl ,T is the seasonal correlation, which can be estimated by

(3.3.2)

(3.3.3)

(3.3.4)

in which ~ and ST represent the mean and standard deviation of the z's for season T.

The PARMAO.!) Model

The PARMA(1,1) model is defined as

7 = <p 7 + e -6 E •-v,.t l,t'-v,t'-l v,r l,t' v,t'-l (3.3.5)

The moment estimates of <Pl,T and 81,T can be obtained by solving the equations (see Salas

et al., 1982)

and

q>l;r =
P2,t'

Pl,r-l

for 't=1,...co

3-9

(3.3.6)



(3.3.7)

where 1"= 1,... ,w, and w is the number of seasons in the year. Once <Pl,T and 81, 7 are

determined, the noise variances o}(e) can be estimated by solving the equation

2
<PI't - 61 't aT-lee) = PI't'" ,

for T = 1,... , w.

3.3.2 Parameter Estimation and Diagnostic Checking

(3.3.8)

While the previous equations provide the moment estimates of model parameters,

least squares estimation procedure will be used here. For this purpose, the Marquardt

algorithm will be used for minimizing the sum of the squares function by using the

moment estimates as initial values. The adequacy of the PARMA model can be checked

by examining the independence of the residuals.

3.3.3 Forecast Function

Since the forecast function of the PAR(1) model can be derived from the forecast

function of the PARMA(l,l) model, only the later function is presented here.

A PARMA(l, 1) model can be written as

1-61 TB
Zv,'t = 1 ' Bev't = 'iJor(B)ev't-cp' ,

I,T

where

Then, the forecasting model can be written as

3-10
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L-l =

=E 'lTj;r+Lev;r+L-j+E 'ITL+j;r+Lell;r-F
j=O j=O (3.3.10)

By using the same method of Section 3.2.3, we know that the minimum mean square

A

error forecast zv,1'(L) of Zv,1'+L made at current time T can be written as

;','f(L)=<p l;uL[Zy,'f+L-l] - [ell,'f+V - 8t ,'C +L[ Ev;t +L-l]

where

and

(3.3.11)

1
ZlI;r:+j

[ .] =
;','C+J A (j)

Zv;r

j~O

j>O

j>O

As in Eq. (3.2.15), the forecast error for lead time L is a linear function of future noises

L-l

e;../L) =E Wj,T+Lev;r+L-j"
j=O

Likewise, E[ev,1'(L)] =0 and the variance of the forecast error can be written as

3-11
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L-1

a~(L) = LlJIJ.t+L a;+L_j(e)
or j=O

3.4 Transfer Function Model

3.4.1 Model Description

(3.3.13)

The transfer function model is a model that forecasts future values of a given time

series on the basis of current and past values of the given series and current and past

values of other time series related to it (Bowerman and O'Connell, 1987).

Suppose that x, and Yt series are , respectively, the input and output of a dynamic

system. Then, a transfer function model can be written as

Yt = L ajxt_j + N, = A(B)xt + N,
j=O

(3.4.1)

where A(B) = a, + a.B + a2B
2 +.... is the transfer function, ~, j =0,1, .. is the impulse

response function of the system, and N, is a zero mean stationary process, uncorrelated

with the input series x.,

Assuming that x, and Yt are stationary time series with zero mean, then a

systematic identification procedure can be implemented (see Box and Jenkins, 1970;

Brockwell and Davis, 1987). First, we need to prewhiten the input series x., For

instance, an ARMA model can be fitted as

/ /

<I> (B)xt = e (B)Zt

or
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where

<I> I(B)

8
/(B)

1t I (B)

I I

= 1- <l>IB - .••. - <l>pBP
I I

= 1-81B- .... -8qBq
I I I 2

= 1to+ 1t I B + +1t2B +...

and z, has zero mean and variance a/. Applying the operator '7r'(B) to each side of Eq.

(3.4.1), we have

I I I
1& (B)yt = A(B) 1t (B)xt + 1t (B)Nt

or

where {Nt'} is a zero-mean stationary process, uncorrelated with {z.}.

(3.4 .3)

By multiplying each side of Eq. (3.4.3) by ~-k and taking expectations, we have

or

where Pqik) is the cross-correlation coefficient of qt and z.,

(3.4.4)

Equation (3.4.4) gives a preliminary estimate of the impulse response function ak

for lag k. Box and Jenkins (1976) recommend choosing A(B) as the ratio of two

polynomials, i.e,
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A(B) w(B)B b
= o(B) , (3.4.5)

where w(B) = Wo - w1B - ... - wsBs, o(B) = 1 - 0lB - ... - o)3f and b is a delay parameter.

By observing the shape of the cross correlation function Pqz(k), and using the properties

of Pqz(k), the degrees of the polynomials w(B) and o(B) and the delay parameter bean

be obtained. Then, the transfer function A(B) can be computed by the Eq. (3.4.5).

The noise N, is estimated from Eq. (3.4.1), as

Nt = Yt - A(B)x t . (3.4.6)

Preliminary identification of a suitable model for the noise sequence is carried out by

fitting an ARMA processes

4>(B) Nt = 6(B) e t

or

N = B(B) e
t 4>(B) t (3.4.7)

in which e, has zero mean and variance a/. Substituting Eqs. (3.4.7) and (3.4.5) into

(3.4. 1) gives the preliminary transfer function model

CJ)(B)B b B(B)
Yt = e(B) xt + 4>(B) et

(3.4.8)

Then, the non-linear least squares method can be used to minimize the sum of square

A

errors ~ et
2

, so the final parameters of the model be estimated.

The diagnostic checking of the models includes the checking of the properties of

the residual e, and checking the independence of the two series x, and N; The forecast

function of the model shown above will not be presented here. A periodic transfer
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function model identified by spectral analysis will be presented in the next chapter, and

the forecast function of the transfer function model will be discussed there.

3.4.2 The Difficulties of Modeling the Multiple Input-Multiple Output Transfer

Function Model with the Time Domain Approach.

When a dynamic system has two or more inputs and only one output, the common

procedure for reducing the model complexity is to combine similar types of series to

form a single input system (Hipel et al., 1982). Consider the case where two input

covariate series, xt(l) and x,(2) are to be combined to form a single input covariate series

x., If Xt(i) causes Y, instantaneously, then the transfer function noise models for the two

series would be

(1) (1) N(I)
Yt = Wo Xt + t

(2) (2) N(2)
Yt = W o xt + t

(3.4.9a)

(3.4.9b)

In this case, the two series Xu and Xt2 would be combined using the relative ratio of the

transfer function coefficients such that

(1)
c.>o (1)

-----x +
(1) (2) t

U)O + c.>o

(3.4.10)

The application of two inputs, one output transfer function model was presented

by Thompstone et al. (1985). In this case, the model which gives the relationship

between the deseasonalized quarter monthly rainfall Xt,l and the deseasonalized log

transformed quarter monthly inflow z, was selected to be
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(3.4.11)

The second covariate series was a quarter-monthly snowmelt series, and it was extracted

from a conceptual model. The model relating deseasonalized quarter-monthly snowmelt

Xt ,2 and deseasonalized log-transformed quarter-monthly inflow z, was given by

(2) (2)
(i)o - co 1 B (2)

Zt = Xt + Nt'
I - o~2)B

(3.4.12)

Then, they assumed that the form of the transfer functions (3.4.11) and (3.4.12) was

conserved, and a two inputs, one output transfer function noise model was given as

(3.4.13)

The method of combining two equations of a "single input-single output model"

into a "two input-single output model" shown above, is not generally applicable. The two

inputs may be correlated between them, but the foregoing formulation does not take that

relationship into account. The time domain approach has problem in formulating

multiple input-multiple output transfer function model. Hence, the formulation of

multiple input-multiple output model by using the frequency domain technique will be

presented later.

3.5 Nonlinear Least Squares Method

Let us assume that Yt is defined by a model with parameter set D. The least

squares estimate of Dis found by minimizing the sum of squares errors
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N

S = E (Yt-Yt)2
t"'l

(3.5.1)

A

where Yt is the predicted or calculated value, Yt is the historical value and N is the

number of observations.

The sum of the squares of the residuals at all points gives an indication of

goodness of fit. Clearly, if the objective function S is equal to zero, then the parameters

has led to a perfect fit, the data points fall exactly on the predicted curve. The best

values of the model parameters are obtained when the objective function is minimized.

Methods for minimizing the sum of Eq. (3.5.1) include linear and nonlinear methods.

The nonlinear least squares methods are iterative in nature, in which beginning with some

initial values, the sum function is determined and sequentially decreased until a

convergence criterion is satisfied. In here, the Marquardt algorithm (Marquardt, 1963;

Kuester and Mize, 1973) will be presented.

The Marquardt algorithm solves the parameters in a multivariable, nonlinear

A A A A

model Y = F(xh x2, - - - , XK; Ah A2 , ... , A3) . The method allows for convergence with

relatively poor starting values for the unknown parameters. Let the model be linearized

A

by expanding Yi in a Taylor series about current trial values for the coefficients and

retaining the linear terms only,

A A *
Yl = Yl +

+
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(3.5.2)

A

in which D is the square matrix of derivatives and l1A is the vector of differences of the

A's. The linearized model is substituted into the objective function (3.5.1) and the
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normal equations are formed by setting the partial derivatives of the objective function

with respect to each coefficient equal to zero,

as = 0,
BAj

j=1,2, ...N

The resulting normal equations will be of the form

(3.5.5)

The normal equations are a system of linear algebraic equations and are solved by an

A A

appropriate technique for M. The M vector and the objective function S will approach

zero as convergence is achieved.

Equation (3.5.5) needs a good set of starting estimates of the unknown parameters

to obtain the convergence. Hence, a modified equation was suggested by Marquardt

(1963), i.e.

(3.5.6)

where Ais a factor and J is the identity matrix. The Ais added to each term of the main

diagonal of the ~T~ matrix. Thus, when A is large in Eq. (3.5.6), it would be expected

to converge for poor starting values but requires a lengthy solution time. When the A

equals zero, it will converge rapidly for good starting estimates. If the convergence is

achieved, the final coefficients are calculated from

A. = A~ + dA.,
J ) ~

j=1,2, ...,M

A

If convergence is not achieved, ~. is updated by replacing the old values by the new

values and the process repeated.
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3.6 The Forecasting of Log-Transformed Series

Monthly streamflow is a skewed hydrologic time series. A transformation can be

used to ensure that the model residuals are approximately normally distributed. For

instance, a transformation function of the form (Salas et al., 1980)

(3.6.1)

may be used.

However, the problem of using the log or square root transformation is that the

forecast of actual flows is always underestimated, because the log function is a concave

function. A function f(x) is said to be convex in an interval if r(x);;:: 0, and concave if

rex) < O. Consider a random variable y with mean E[y] and g(.) be a concave function.

Then, by the Jensen inequality (Mood et al., 1974)

E[g(y)] < g(E[YD

Thus, if the flow x, is transformed as

then, the following will hold

E[ln(xt+L IXl'···,xt)] < In(E[xt+L Ix1,· ..,xt])

or

(3.6.2)

(3.6.3)

(3.6.4)

From Eq. (3.6.4), we can see that after we find a model to forecast the log-flow, we can

not use the inverse log transformation to forecast the actual flow, i.e.
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(3.6.5)

Since the interest is in forecasting the actual streamflow, one should use instead the

method of minimum mean squared error forecasts of the actual flow, which can be

written as (Granger and Newbold, 1976)

(3.6.6)

A

where Yt+L is the L step ahead forecast produced by the model for the logged data and

A

(U*t+L(eJ)2 is the variance of the L step ahead forecast error of Yt, i.e.

yt(L) = Yt+L + et(L)

and

(3.6.7)

Var[et(L)]
(3.6.8)

where et(L) is the L steps ahead forecast error of Yt series.

3.7 Spectral Analysis

3.7.1 Introduction

In this research, the spectral analysis is used for identifying the transfer function

model. It is specially useful for formulating the transfer function model with multiple-

inputs and multiple outputs. The periodogram based spectrum estimation and the

covariance based spectrum estimation are discussed. The periodogram based spectrum

is needed for some derivations. The covariance based spectrum is difficult of

programming but it is fast to compute. Both, the periodogram based spectrum and

covariance based spectrum estimation are presented here.
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3.7.2 Discrete Fourier Transform

A physical process can be described either in the time domain or in the frequency

domain. The Fourier transform is the vehicle which transforms from one space to the

other (Jenkins and Watts, 1968). The discrete Fourier transform equations has been

discussed by Press et al. (1986). It is at least heuristically reasonable that a matching

or correlating of a sine or cosine function with strong periodic components should yield

large values when the time series looks like sine or cosine with which it is matched and

should give small values otherwise (Shumway, 1988). The two random variables that

can be formed in this manner are the cosine transform

N-l

Hc~) = L hie cos(2nfjc)
1e=0

and the sine transform

N-l

Hi!} = L hk sin(21t~k),
k=O

for j =0,1, ... , N-1, where the frequencies measured in cycles per point are

In common situations, the discrete transform pair can be written as

N-l N-l -i (21tj k)

Hif) = L h
k

e -i 21t/Je = L hie e N

k=O k=O

and

N-l N-l i (21tj k)
h

k
= 1. L Hif) e i 21t/! = ..!. L Hif) e N

N ~o N ~o
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The relations between the h, and H(~) are shown below:

hk H(~)

real and even

real and odd

imaginary and even

imaginary and odd

3.7.3 Power Spectrum and Cross Spectrum

real and even

imaginary and odd

imaginary and even

real and odd

Spectral analysis is a non-parametric approach, its usefulness in the area of model

building is limited. However, it is sometimes useful as an exploratory tool for

suggesting models which can then be fitted parametrically (Jenkins and Watts, 1968).

Many approaches can be used to estimate the power spectrum, among those, the theory

described in Jenkins and Watts (1968), Brillinger (1981), Chatfield (1980), Priestley

(1981), Robinson (1983) and Shumway (1988) will be followed.

The autocovariance depends on the lag k can be expressed as

(3.7.6)

In order to develop the frequency-dependent characteristics of a stationary time series x.,

t = 0, ±1, ±2, ... , it is essential to begin with the Fourier representation of the

autocovariance function 'Yx(k). If the autocorvariance 'Yx(k) satisfies

E IYx(k)I < 00.

k=-oo

Then, there exists a non-negative function Sx(f) satisfying
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1/2

Yi k) = f Sit> e' 21tft df
-1/2

(3.7.7)

for k = 0, ± 1, ±2, ..... The function Sx(f) is called the power spectrum of the process

x., The inverse relation

Sif) = E yx(k) e-i 21tjk

k".-CQ (3.7.8)

is also useful in certain circumstances. Since 'Yx(k) = 'Yx(-k), it follows that Sx(-f) =

The definition can be extended by noting that for two jointly stationary series x,

and Yt, the cross covariance

and the cross spectrum Sxy(f) are related by

1/2

Yxy(k) = f Sxyif> e' 21tft df
-1/2

(3.7.9)

(3.7.10)

Y (k) e-i 21tftxy (3.7.11)

The cross spectrum is generally a complex function, and writing out the exponential part

of (3.7.11) gives
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00

Sxy~)= E Yxy(k) [cos(21tfjk) - i sin(21tfjk)]
Jc=-oo

=c (f)-iq if)xy xy

where cxy(t) is called the co-spectrum and 'k is the quad-spectrum.

Now, since l'yx(k) = l'xy(-k), it follows that

Syxif) = E Yy:/k) e -i2nfk

Jc=-co

= E Yxy(-k) e- i 2rrjk

k=-oo

(3.7.12)

= E
k=-co

y (k) e i21tftxy

-
= S if)xy

where the overbar denotes the complex conjugate.

3.7.4 Periodogram Based Spectrum Estimation

(3.7.13)

Since most of the spectrum theory is related to the periodogram, some basic

knowledge about the periodogram is presented. An observed zero-mean stationary time

series {x., t=O,1, ... ,N-1} has a discrete Fourier transform

N-l

X~) = E
t=O

where ~ is defined in Eq. (3.7.3).

- i21t1;x, e ,
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Then, the periodogram is defined as

1 -P fF.) = _ XfF.) XfF.)
Xv) N Vj v)

(3.7.15)

The periodogram appears to be a natural way of estimating the power spectrum, but we

shall see that for a process with a continuous spectrum, it provides a poor estimate and

needs to be modified.

The periodogram PX<~) and the autocovariance 'Yx(k) are both quadratic forms of

the data {x.}. If x, is a zero mean stationary series, Eq. (3.7.15) can be written as

~
- l 121. E X

t
e -i21t~

N t=O

1 N-l N-l

= - IE E xtcos(2rc~t) xscos(2rc!;)
N s=O t=O

N-l N-l

+ E E xtsin(21t~t) xscos(21t!;)}
s=O t=O

+ sin(21t.t;t)sin(21t!;)]

Defining s=t+k, we have
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1
N-l N-l

Pi!) = - L L Xt+kXt cos(21t~k)
N k=O t=O

N-l s-«

LX/ N-l L Xt+kXt
t=O

+ 2 L
t=O cos(2rc/jc)=

N k=l N

N-l

= yx(O) + 2 L Yx(k) cos(21t~k)
k=l

A A

Since 'Yx(-k) = 'Yx(k), we can rewrite the above equation to another form, i.e.

p '-I') = y"x(O) e -i21t//J
xVj

N-l

+ L yx(k) [cos(21t/Je) + i sin(2rc/jc)]
k=l

N-l

+ L yx(k)[cos(21t~k) - i sin(2rc/jc)]
k=l

-1

= Yx(O) e -i21t/P + L YxC -s) e-i21t/f

s=-(N-l)

s-:
+ L Yik) e -i21t/;

k=l

N-lL Yik) e -i21t/;

k=-(N-l)

(3.7.16)

(3.7.17)

A

Equation (3.7.17) says that the finite Fourier transform of l'x(k) , which appears to be the

obvious estimate of the power spectrum

Sif> = L yx(k) e -i21tfk

k=-ca
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Although periodogram Px(~) is asymptotically unbiased, i.e.

the variance of Px(~) does not decrease as N increases. Thus, Px(~) is not a consistent

estimator of Sx(t) (see Chatfield, 1980).

The alternative way of estimating a power spectrum can be accomplished by

smoothing the periodogram. In order to develop an average spectral estimator in the

neighborhood of some center frequency fk , we define the notion of a frequency band

centered on fk as (Shumway, 1988)

with a sample series x, observed at the point t=O,1, ... ,N-1, and the L considerably less

then N, where L is some integer. The length of the interval defined by the set B, is

called the bandwidth, which is equal to B=L/N cycles per point. We may now consider

the smoothed spectral estimator, defined over the frequency interval Bk , as the average

of the periodogram (L is an odd number)

L-l

1 2

E
L. L-lj=-T

(3.7.18)

over the interval. This approach smooths the periodogram ordinates in sets of size L and
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finds their average value. It is clear that the estimator of Eq.(3.7.18) may be biased,

since

which is equal to Sx(fJ only if the spectrum is linear over the interval. The bias will be

unimportant provided that Sx(fJ is a reasonably smooth function at fk and L is not too

large compared with N (Chatfield, 1980).

The L value has to be chosen so as to balance resolution against variance. The

larger the value of L the larger will be the bias, and if L is too large then interesting

features of Sx(f), such as peaks, may be smoothed out. As N increases, we can allow

L to increase too. It seems advisable to try several values, in the region of N/40

(Chatfield, 1980). A high value should give some idea where the large peaks in Sx(f)

are, but the curve is likely to be too smooth. A low value is likely to produce a curve

showing a large number of peaks, some of which may be spurious. A compromise can

then be made.

The cross-spectral estimator is defined similarly in terms of discrete Fourier

transforms X(fJ and Y(fJ of the series x, and Yt. That is, using the cross periodogram

(3.7.19)

then the smoothed cross-spectral estimator can be obtained by
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=

1 (L-l)/2 •

= - L Pxy(fk + L)
L j= -(L-l)f2 N

1 (L-l)/2 1 . .
) - }L -X(fk+-)Y(fk+-)

L j=-(L-l)f2 N N N (3.7.20)

Historically, the periodogram based spectrum estimation was not used until recent

years because it requires much computation. Calculating the periodogram from

1 N-l 2

;;;; - {[L Xl cos(21t(;t)]
N t=O

N-l 2

+ [L x, sin(21tj/)] }
t=O

at ~ for j = 1,2, ... ,N/2, would require about W arithmetic operations (each one a

multiplication and an addition). This problem can be solved by using the technique of

Fast Fourier Transform (Cooley and Tukey, 1965; Cooley et al., 1977; Thrall, 1983).

3.7.5 Covariance Based Spectrum Estimation

For a zero mean stationary time series x., the autocovariance 'Yx(k) can be

estimated by
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for k = 0, ± 1, ±2, ... , ±(N-1). When the lag value k is large, the sample
A

autocovariance is a poor estimate, since in this tail region 'Yx(k) is based on just a small

number of pairs of observations. The periodogram of Eq. (3.7. 17)

s-:
Px~) = L Yx(k) e-i21t/Je

k=-(N-l)

shows that the periodogram contains too many sample autocovariances, which is the

reason why the variance of periodogram does not tend to zero as N increases (Priestley,

1981).

One way of obtaining an expression with a reduced variance is simply to omit

some of the terms in Eq. (3.7.17). If we omit only those terms which correspond to the

tail of the sample autocovariance function then hopefully the bias will not be affected too

seriously. These ideas suggest that we might consider as an estimator of Sx(~) an

expression of the form

M

S*(-I') "y"x(k) e -i21t/Je
xVj L...J

k=-M

where M is a truncation point.

(3.7.22)

A

The expectation of the sample autocovariance 'Yx(k) can be derived from Eq.

(3.7.21) as
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1 N-~

= - (L E[Xt+~ xt]l
N t=O

= N-~ y(k)
N

= (1 - vq) y(k)
N

(3.7.23)

From Eqs. (3.7.22) and (3.7.23), we have

and

M

E[S;(fj)] = L
k=-M

M

= L
k=-M

(1-J!9.) y(k) e- i2rcfl
N

(3.7.24)

lim E[S;Uj)] -. Sif>
s-»

Hence, if we make the value of M to depend on N in such a way that M-+oo as N-+oo,

then Sx*(~) will be an asymptotically unbiased estimator of Sx(~). Thus we may let

M-+oo as N-+oo, but sufficiently slowly relative to N so that (M/N)-+O as N--.oo, then

both the bias and variance of Sx*(~) will be a consistent estimator of Sx(~).

The general form of the power spectrum estimator can be written as

M

Sxif) = L w(k) Yx(k) e-i2rc
fl

k=-M
(3.7.25)

where w(k) is called the lag window. From Eq. (3.7.25), we can see that the values of

A A

'Yx(k) for M <k <N are no longer used, while values of 'Yx(k) for k:o::;; M are weighted by

lag window w(k). The lag window used in this research is the Parzen window
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(Parzen,1961; Robinson, 1983), which for M even is

w(k) =

k 2 k 3 M
1-6(-) +6- for IkI=O,I,...,-

M M 2
k 3 M

2(1- -) for 1kI=-+1,...,M
M 2

o for IkI > M (3.7.26)

The choice of the truncation point M is rather difficult. The smaller the value of

A

M, the smaller will be the variance of Sx(t), but the larger will be the bias. Jenkins and

Watts (1968) suggest trying three different values of M. A low value will give a smooth

curve. A high value will produce a curve with a large number of peaks. Then, a

compromise can be achieved with the third value of M. Chatfield (1980) suggested to

choose M to be about 2 times the square root of N, so that as N~oo, so does that M~oo,

but in such a way that MIN ~ O. Robinson (1983) suggested that the truncation point

M can be 10 or 20% of the number N of observations in the finite-length time series.

The cross spectrum can be estimated by using

M

S~(f) = :E w(k) Y:ey(k) e -i2n!J
k=-M

(3.7.27)

Before estimating the cross spectrum, the cross covariance should be estimated.

However, there is an important difference between the autocovariance and the cross-

covariance. The autocovariance 'YxCk) is symmetric about the origin, but the cross-

covariance is not. If a process is an exact copy of the other process but delayed by D,

then the cross-correlation function will be identical to the autocorrelation function but

centered at lag D instead of zero. The trouble is that the estimation of cross spectrum
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will be appreciable bias if the base width M of lag window is less than the delay D

(Jenkins and Watts, 1968). Further, ifD is large, the numerical value of the lag window

w(k) will be small when D equal to M, and hence very large value of M may be needed

in order to reduce the bias to a reasonable size. This effect can be remedied by aligning

the two series to ensure that the cross correlation function has a maximum in the

neighborhood of zero lag (Brillinger, 1981; Shumway, 1988).
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CHAPTER IV

SINGLE INPUT-OUTPUT PERIODIC TRANSFER FUNCTION MODEL

4.1 Introduction

In this chapter the forecast procedure is developed assuming that the transfer

function model consists of one input and one output. Furthermore, it is assumed that the

input and output are periodic processes.

4.2 Model Description

We are interested in the monthly flow forecast by using the transfer function

model with intermittent snow water equivalent data as the input. The PAR(I) model has

been considered as the model describing the input and output process. Before using the

transfer function model, a periodic autoregressive PAR(l) model was fitted to the

monthly streamflow QV,T • This is deseasonalized by

Zv;t =
o,;(Q) (4.2.1)

A A

where J.l.T(Q) is the sample mean and O"T(Q) is the sample standard deviation of monthly

streamflow for season T. Then, a PAR(1) model was fitted to the deseasonalized

streamflow ZV,T as

7 =<p 7 +y-v;. l~T -v.T-l v;. (4.2.2)

where the series YV,T is not necessarily a white noise. The parameter CPI ,Tcan be estimated

by
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(4.2.3)

The input to the transfer function model is the monthly snow water equivalent

which is an intermittent series, since in the summer time there is insignificant snow in

the mountains. The non-zero part of the snow water equivalent WV,T was deseasonalized

by

x = 0
V;t for WV;t=O

(4.2.4)
A A

where J1.T(W) is the sample mean and aT(W) is the sample standard deviation of monthly

snow water equivalent for month T.

Then, a transfer function model is formulated with deseasonalized snow water

equivalent XV,T as the input, and with the residual series YV,T of Eq. (4.2.2) as the output.

The model is written as

Yt = L
j=O

a. x, . + N,
J -J (4.2.5)

where t=(v-I) ·12+T, and the noise N, has zero mean and is assumed to be uncorrelated

with the input x, . After identifying the model order, the noise N, can be derived and an

ARMA process fitted to N,

4>(B) N, = 6(B) e t (4.2.6)

where Gt- WN(O,a/). Finally, the periodic transfer function model can be obtained from

Eqs. (4.2.2), (4.2.5) and (4.2.6).

4-2



D a(B)
7 =cp 7 +~a.x .+ - - t
-v;r l;r -v;r-l f;o J v.t -] <PCB) v,r

where D is the order of the transfer function model.

4.3 Model Identification

(4.2.7)

When the structure of the system is unknown, we need to solve the problem by

examining the relationship between input and output so as to infer the properties of the

system. This procedure is called the identification of the system. In our research here,

we are interested in the forecast of monthly streamflow in which SWE is an input. Here

we assume the physical system is linear over the range of interest. But many systems

may be contaminated by the noise N, as shown below:

Noise N(t)

input x(t) -- system t----I~~ Output y(t)

The noise N, may not be white noise, but is usually assumed to be uncorrelated with the

input process x. and have zero mean. If the input x, and output Yt are stationary with

zero mean, the Eq. (4.2.5) can be rewritten as

v, = L ajxt_j + Nt
j= -co
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with ~ = 0, for j <O. Note the integration from - 00 to 00 is needed if one uses an

estimation or identification technique based on Fourier transformation.

The objective at this stage is to obtain some idea of the order D of the transfer

function

A(B)=...+aO+a1B1+ ...+aDB D+•..

and to derive the initial guesses of the parameters ao, a., ... ,an. The impulse response

function on the negative side, i.e. a-I' a.2, ••• , was assumed to be zero. In this research,

the identification of the transfer function model was made by using spectral analysis.

First, we need to multiply Eq. (4.3.1) by Xt -k and take expectations as

E[YtXt_k] = L ajE[Xt_jXt_k] + E[Ntxt_k]
j=-oo

Since N, is uncorrelated with input x., we have

Yyx(k) = L aj Yx(k-J)
j=-oo

(4.3.2)

Take Fourier transforms on both sides of Eq. (4.3.2) by multiplying them by e-i
2-n-fk and

summing from k =-00 to + 00. Then, we have

L Yyx(k) e -i21tjk = L L a
j

Yx(k-J)e -i21tjk

k=-oo k=-oo j=-oo

or
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00

Syx(j) =L aje -i21tjj L yx(k-J) e -i21tj(k-J)

j=-oo k=-oo

Then,

A(j)
(4.3.3)

where the A(t) is called the frequency response function.

The spectrum Sit) can be computed by Eqs. (3.1. 6), (3.7.25) and (3.7.26), and

the cross spectrum Syx(t) can be computed by Eqs. (3.1.10), (3.7.26) and (3.7.27).

Then, the frequency response function A(t) can be computed by Eq. (4.3.3). The

impulse response function 3; is the Fourier transform of the frequency response function

A(t), which can be computed by

where M is the base width of lag window.

(4.3.4)

A

Let Ybe in a Hilbert space H and consider a subspace G ( Yis not in G ). If Y

is the projection of y on M, then y can be uniquely represented in the form
A

y=y+v
A

where y is in M and v is orthogonal to M, that is

A A A

E[vy] = E[(y-y) y] = 0 (4.3.5)

Now, in our case here, let the projection of the output Yt on input x, be the form
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Yt = L ajxt _j
j=-oo

then, the mean square error can be written as

=E[Yt(Yt-Yt) - Yt(Yt -Yt)]

=E[(Yt-Yt)Yt] -E[(Yt-Yt)Yt]

=E[(Yt-Yt)Yt]

A A

since from Eq. (4.3.5) we know that E[(YcyJyJ=O. Finally, we have

ClO

MSE=E[(Yt- L a/t-j)yt]
j=-OQ

00

=E[y;] - L ajE[xt_';yt]
j=-oo

= YyCO) - L ajy xyC-J)
j=-ClO

1/2 ClO 1/2

= f SyWdj- L aj f Sxy(f)e i2rtf{-j)dj

-1{2 j=-ClO -1{2

1/2 1/2 ClO

= f s/fJdj- f [L a
J
.e -i21tD]Sxy(f)df

-1/2 -1/2 j=-oo

or
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1/2

MSE= J[S/J) -A(j)Sxy(j)]df
-1/2

1/2 if)S if)
= J[5 (j) - Syx xy ]df

-1/2 Y S;xif>

1/2

= J Sy.xif>df
-1/2

where

is called the conditional power spectrum (Shumway, 1988).

(4.3.6)

(4.3.7)

A

The properties of aj of Eq. (4.3.4) follow as in Wahba (1969) and Brillinger

(1981) by considering the distributional properties, conditional on the independent

"'-

process {x.}. This leads to the conclusion that ~ is approximately normal with mean

given by (4.3.4) and variance estimated by

(4.3.8)

By using this equation, we can give an approximate 100 (I-a) percent confidence interval

of the form

(4.3.9)

for the jth component ~.

In order for a system to be physically realizable, it is necessary that the system
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respond only to the past inputs (Bendat and Piersol, 1971). This implies that

a, = 0
J for j < 0 (4.3.10)

By using Eqs. (4.3.4), (4.3.9) and (4.3.10), the order and the initial guess of impulse

response function aj can be determined.

Then, the noise sequence in Eq. (4.3.1) can be estimated by

D

Nt == s, - E o'jXt_j
j=O

(4.3.11)

where D is the order of the transfer function . Preliminary identification of a suitable

model for the noise sequence is carried out by fitting an ARMA model,

~(B)Nt == 6(B) e t (4.3.12)

Considering t = (v-I) ·12 +7", the preliminary transfer function model can be

obtained by combining Eqs. (4.2.2), (4.2.5) and (4.3.12), i.e.

D 6(B)
7 =q> 7 +~ax .+--€
-V;r l»'t-V;t-l f;o ,-V,'t-J 4>(B) V,'t (4.3.13)

which include parameters 'Pl,T' ~, 8(B) and <j>(B). The estimation of those parameters is

presented in the next section.

4.4 Parameter Estimation

Now we need to find jointly the parameters 'Pl,T' ~, (J(B) , and <j>(B) in the

tentatively identified model (4.3.13). More explicitly,
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D

+ (1-4>lB- ... -4>pB P)( q> l,rZv.1: -1+L a;:v.1:-j)
j=O

(4.4.1)

The goal of estimating these parameters is to obtain the best model fitting utilizing

the experimental data. The criterion for determining the best model parameters requires

to minimize the least squares objective function

(4.4.2)

The non-linear least squares method is used in this research for estimating the

model parameters. Let the conditional sum of squares function be

S(q> 1,1:,aj'6.,.d!) =L £v.'/(q> 1,1:,aj,6.,.d!, IZv,1:,xv,1:) (4.4.3)

Then, a nonlinear least squares algorithm suggested by Marquardt (Kuester and Mize,

1973) can be used for estimating the parameters. The Marquardt algorithm has

estimation routines which require to give the initial guesses of parameters and constrains.

The preliminary estimates of parameters obtained from Section 4.3 can be used as initial

values in the minimization.

4.5 Diagnostic Checking

The diagnostic checks are applied with the object of uncovering possible lack of

fit and diagnosing the cause. If no lack of fit is indicated, the model is ready to use. If

any inadequacy is found, the model should be modified.

All the assumptions in the model should be checked. The assumption of the

residual 8v,.,.is white noise process should be checked first. Violation of this assumption

4-9



can lead to serious model error. For the test of independence, the Anderson test of the

correlogram and the Porte Manteau lack of fit test are usually applied for testing the

independence of a hydrologic time series (Salas, et al., 1980). For an independent series

with sample size N, Anderson (1941) gave probability limits for the correlogram of an

independent series as

ri95%) = -1 ± 1.96VN-k-l
N-k

where N is the sample size.

(4.5.1)

The other assumption which should be checked is that the noise N, and the input

series x, should be uncorrelated. The procedure of testing the independence between two

stationary time series was discussed by Brockwell and Davis (1987; p. 402). Before

computing the cross-correlation of the two series, we need to prewhiten one or both of

the two series. The reason of transforming the series to white noise is because we need

to know the bounds for the independence testing. The theory says that if one of the two

.A

processes to be checked independence is white noise, then the cross-correlation P12(h)

is approximately N(0,N-1). Thus, it is simple to test the hypothesis that P12(h) =0.

4.6 Forecast Function

Forecasting future monthly streamflows is the objective of this research. Suppose

we have an observed streamflow series XVT, with v=l, ... ,N and r=1, ... ,w. Then the,

problem is to forecast xv,T+L' The forecast of xv,T+L made at time T will be denoted by

.A

xv,T(L). The integer L is called the lead time. In this research, the lead time is less than

nine months. The larger the lead time, the more unreliable the forecast. The major

application of the transfer function model is to provide more accurate forecast of the
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output ZV,7' based on past observation of Zv,7' and XV,7' than could be obtained by forecasting

Zv,7' based solely on past observation ZV,7'.

The model suggested in here is the model of Eq. (4.3.13), i.e.

(I - In B)7 =A(B)x + a(B) e
T l;t -V;t V. 't 4>(B) v,'t

where

D

A(B)=EajBj
j=O

(4.6.1)

(4.6.2)

Now, assume that an ARMA model was fitted to the non-zero deseasonalized

SWE data, i.e.

(4.6.3)

with ft- WN(O,0"/). Then, Eq. (4.6.1) can be written as

_ A(B) ax(B) + 1 a(B) e
Zv.'t - (1-<{> B) <I> (B) 'v,'t (1-<p B) 4>(B) V.'t

1,'t x l,'t

(4.6.4)

where

(4.6.5a)

(4.6.5b)

(4.6.5c)

and
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v,;(B) = A(B) 6x(B)

(1- ~ l,,;B) <px(B)

B - 1 6(B)
1JI,( ) - (1- lpl,.B) Ijl(B)

From Eqs. (4.6.4) and (4.6.5), the forecasting model can be expressed by

or

Zv,';+L = (v O,1: +L'v,·t+L +v 1,1:+L'v,1:+L-l +...+v L-l,1:+L'v,'t'+l)

L-l

= E Vj,1:+L 'v,'t+L-j +E VL+j,'t+L'V,1:-j
j=O j=O

L-l

+E tlTj,'t+Lev,'t+L-j+E tITL+j,'t' +Le V,'t'-j
j=O j=O

(4.6.6)

(4.6.7)

with the rV,T and the GV,T statistically independent. Now, suppose standing at time T, the

A

L steps ahead forecast zv,T(L) of Zv,T+L is a linear function of current and previous rV,T'

rv ,T-l,'" and GV,T' Gv,T-l"" and has the form of
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From Eqs. (4.6.7) and (4.6.8), we have

L-l

Zv;t+L-iv.'t(L) =E (Vjt't+L'v;uL-j+Wjt't+LeVt't+L-)
j=O

OIl

(4.6.9)

and

(4.6.10)

which is minimizedonly ifp*L+j,r+L =PL+j,T+Land '1'*L+j,T+L='1'L+j,T+L. Thus the minimum
A

mean square error forecast zv,T(L) of Zv,r+L at time T is the conditional expectation of

Zv,T+L at time T given that the series from infinite past up to the present origin T is

known.

The process equation defined at time v,T+L can be obtained from Eq. (4.3 .13)

as

(4.6.11)

or
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DO

Then, by letting square brackets denote conditional expectation, we have

DO

co DO

+[ev,t' +J-e1[ ev,t' +L-1] - •.• - eq[ev,t' +L-q] (4.6.12)

[ ] _ {Zv,t'+j
Zv,t'+j - i;../J)

js.O
j>O

(4.6. 13a)

and
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{
e .

[e .] = v,r+)
V;f+) 0

j5.0

j>O (4.6. 13c)

Note that, in Eq. (4.6.12) the forecast of the input series [XV,7+j] for j > 0 is based on the

AR(P) process.

From Eq. (4.6.7), the forecast error for lead time L is a linear function of Gv ,7+ 1'

Gv 7+2, ••• , i.e,,

L-l L-l

ev,'t(L)=E Vj;t+LCv,'t+L-j+ E lJIj,'t+Lev,'t+L-j
j=O j=O

(4.6.14)

Since E[eV,7(L)] = 0, the forecast is unbiased. Also, the variance of the forecast error can

be written as

2 2 2 2
Var[ev,'t(L)] =(VO,'t+L+V 1,'t+L+ ••• +VL-l,'t+z)a ,

2 2 2 2
+(WO,'t+L +Wl,'t+L+ ••• +WL-l,'t+da e

(4.6.15)

If the forecast error is a normally distributed, the 95 % probability limits of the forecast

with lead time L can be written as

L-l L-l

Zv,'t+L(±)=~,'t(L)±1.96 o~E V~t+L + a;E 1J11't+L
j=O j=O
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CHAPTER V

MULTIPLE INPUT-SINGLE OUTPUT PERIODIC TRANSFER FUNCTION MODEL

5.1 Introduction

In this chapter, the "multiple input-single output11 periodic transfer function

forecast model will be presented. A two input-single output transfer function model will

be presented as the basis for deriving the general form of the multiple input-single output

transfer function model. In addition, some computing procedure will be presented.

5.2 Multiple Input-Single Output Periodic Transfer Function Model

5.2.1 Model Identification

A system with two inputs xt(l) and x/1) and a single output Yt will be presented

first. Then, it well be generalized. This system has the impulse response function ~(l) and

~(2) and the corresponding frequency response functions AI(t) and A2(t). Assume that the

physical system is linear over the range of interest, and the system can be contaminated

by the noise N; Let the inputs Xt(I) and xt(l) be the deseasonalized SWE and temperature

series respectively, and ZV,T be the deseasonalized monthly streamflow. First, Zv,T is

filtered by a PAR(1) model

(5.2.1)

Then, the residual YV,T is considered the output of the system. The response functions a}I)

and AI(t) correspond to the input Xt(I) and the response functions a;(2) and A2(t) correspond

to the input xt(l).

The output Yt (t=(v-1)12+r) as a function of the inputs xt(l) and Xt(2) may be
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expressed as

00 co

Y =~ a~l)x(l~ +~ a~2)x(2~ + N
t L.J J t-J L.J J t-J t

j=-co j=-oo
co

=E «~,x .+ N,
. J t-J

J=-co (5.2.2)

in which the symbol' denotes transpose of a matrix, N, is assumed to be uncorrelated

with inputs x (1) and x (2) andt t ,

(I)aj
a. =

j a~2)
J

(I)xt .
-J

.x .=
t-J (2)

Xt .
-J

Multiplying both sides of Eq. (5.2.2) by [Xt_k(1), x t_k(2)] , we have

(1)
co X .

[y ] [ (I) (2)1 =~ [~1) ~2)] t-J [ (I) X
t(_2k)]t x t-k x t - kJ .L.J a) aJ (2) Xt-k

J=-OO Xt-j

+ [N] [XCI) X(2~1
t t-k t-ks

or

00
(1) (1) (I) (2)

(1)
Y~t~b =E [aj(l)

(2)]
Xt-jXt-k Xt-jXt - k

[y~t-k a j (2) (1) (2) (2)
j=-oo Xt-jXt-k Xt-jXt-k

+ [N,x(I) N~t~bt-k

Then, by taking expectation in Eq. (5.2.3) gives

co [Rx x (k-J) Rx x (k-J)]
[~'I(k) ~x,(k)]=.~ [a?l a?l] R ' '(k-" ' 2

J--CO Xr 1 JI Rx.n.(k-J)

in which Ryx(k) denotes the lag-k cross-covariance between y and x.

However, from Eq. (3.7.10), we have
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1/2

f S if)ei2rr..fkdj]
y~

-1/2

GO

~ [(1) (2)]= LJ aj aj
j=-oo

1/2

f S if)e i2rr.j(k-J)d/
xlxl

-1/2

1/2

f S ei2ttj{k-J)dj
XzXl

-1/2

1/2

f S ei2rr.j{k-J)dj
xl~

-1/2

1/2f «;(j)ei2rr.j(k-J)d
-1/2

Hence

1/2 GO

+ f s (f)ei2rr.fk(~ a~2)e-i2rr.fi)df }
XzXl LJ J

-1/2 j=-oo

1/2 co{f S (j)e i2rr..fk(~ a ~1)e -i2fCfi)dj
xl~ LJ J

-1/2 j=-oo

1/2 GO

+ f Sxrz(f)e i2rr.fk(E a;2)e -i2ttfj)dj} ]
-1/2 i-:»

SJ1X2if) ]

where

(5.2.4)
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ClO

At(f) =E afl)e-i27tfj

j=-oo

OCI

A
2
(f) =E af2)e -i27tfj

j=-oo

. Furthermore, Eq. (5.2.4) can be expressed as

s' = A 'ins if)
yx xx

Then, the frequency response function matrix can be estimated by

A 'if) = S-' if) s.-1if)
yx xx

or

(5.2.5)

(5.2.6)

(5.2.7)

Likewise, the impulse response function can be obtained by using the inverse Fourier

transform of Eq. (5.2.7), i.e.

1/2

afl) = f Al(j)ei21tfjdj
-1/2

1/2

af2) = JAz(j)eiZ1tfjdj
-l/Z

(5.2.8)

(5.2.9)

The matrix Sxx(f) can be obtained by computing the co-spectrum and quad-spectrum, i.e.
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Cx,x,.ifJ +~ qx,x,.ifJI
CXzX2(j)+ l qXzX2(j)

[

CX1X1(j) CX1.l2if> . [qXIXI(j) qx1.l2if>I
= +1

C¥lif) Cxrzif> q¥lif) qxrzif>

=~if)+iflif>
.xx .xx

Let the inverse matrix of ~(f) be defined as

Multiplying Eq. (5.2.10) by Eq. (5.2.11) gives

(~if)+ius»<SxifJ+ i ~if» == I + iQ

where J is the identity matrix and 9is a zero matrix. Then,

~ if) a; if) +a (j) ~* if) == 0.
.xx.xx xx.xx

Thus, ~.(f) can be obtained from Eq. (5.2.14) as

a; if> = -~ if) -1 g if) c: (j)
.xx .xx xx xx

Substituting Eq. (5.2.15) into Eq. (5.2.13) gives

c ifJ~*(f)+g (f)~ vr'« (f)~*if)=I
xx.xx .xx xx .xx xx

or

Hence, the matrix ~\x(f) of Eq. (5.2.11) can be obtained.

Next, write
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(5.2.10)

(5.2.11)

(5.2.12)

(5.2.13)

(5.2.14)

(5.2.15)

(5.2.16)



=[cyx/f)+iqyx/fJ c'YX2if)+iqyx./fJ]

= [CYX1(f) CYX//J] +i [qyX1(f) qy~(f)]

=c(f)+iq
yx yx (5.2.17)

Then, the frequency response function of Eq. (5.2.6) can be computed based on Eqs.

(5.2.11), (5.2.15), (5.2.16) and (5.2.17), i.e.

A. Iif) =(£ + ig '.(,* if>+ig* if))
yx y~ xx xx

+ i ( c (f)g* if) + a if),* if) )
yx xx yx xx

where

Cyxif> = [CYX1if> cyX2(f)]

gyx(f) = [qYX1(f) qYX2(f)]

(5.2.18)

,* ifJ =xx

a; (f)
xx

From the above development of two input-single output system, a general form of the

N input-single output system can be written as
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00 00 CO

~ (1) (1) ~ (2) (2) ~ (N) (N)Yt = LJ aj Xt_j + LJ aj Xt_j +... + LJ aj Xt-j +Nt
j=-oo j=-oo j=-oo

00

='" a.~ .I . + N,.L ) t-)
J=-OO

h N · led' h . (1) (2) (3) dwere t IS uncorre at Wit Inputs x, ,Xt , ••• .x, ,an

(5.2.19)

(1)
X t - j

(2)
X

t
_
j

.It .=-J

From Eq. (5.2.6) the frequency response function matrix becomes

Finally, the impulse response function can be estimated by
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1/2

a; = fA'(j)e i 21tfjdf

-1/2
(5.2.21)

The mean square error of the transfer function model can now be obtained by

using the same method as in Eq. (4.3.6). Thus, we have

1/2

MSE = f [Sy(f) -A '(f)S.xy(f)]df
-1/2

1/2

= f [SyifJ-S I (f)s.-I{f)£ (f)]df
yx xx xy

-1/2

1/2

=Js.yoXifJdf
-1/2

where

s if) = Syif> - s' if>£-lifJ£ ifJ
y-x yx xx xy

is called the conditional power spectrum.

(5.2.22)

(5.2.23)

Now, let M be the bandwidth parameter of the windows used for estimation of

spectrum. The properties of the impulse response function estimator of Eq. (5.2.21)

follow as in Wahba (1968; 1969), Brillinger (1981) and Shumway (1988). This leads to

the conclusion that the estimator of the impulse response function has variance-covariance

matrix estimated by

(5.2.24)

The noise term N, in Eq. (5.2.19) can now be estimated. An ARMA process can

be fitted to N, i.e.
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4>(B)Nt =6(B) e t (5.2.25)

in which Gt has zero mean and variance (5/. Therefore, substituting Eqs. (5.2.25) and

(5.2.19) into (5.2.1) gives a preliminary model

7 =(J) 7 +~ a I .I + 6(B) e
-V,T l,T-v,T-l L....t j Vx -] ~(B) v,'t

I=O • 'I'
(5.2.26)

Hence the structure of the multiple input-single output transfer function model has been

identified.

5.2.2 Parameter Estimation and Diagnostic Checking

The parameters in Eq. (5.2.26), <PI,T' ¢(B), 8(B) and g., can be estimated by using

the nonlinear least squares method. The Marquardt algorithm of nonlinear least squares

method is used in this research. The diagnostic checking will include the checking of

the residual Gt to be white noise, and checking that the noise N, and the inputs Xt(l) ,

(2) (N) I tedXt , ••• ,Xt are uncorre a .

5.2.3 Forecast Function

The multiple input-single output transfer function model of Eq. (5.2.26) can be

written as

or
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+•••••

+(£V T+L -61€v 't+L-l-··· -6q€ v 't+L-q)" ,

Then, the forecast equation with lead time L can be written as

where
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j5.0
j>O (5.2.29a)

(5.2.29b)

{
e .

[e .] = V.1:+J
V;t+J 0

j5.0
j>O (5.2.29c)

In the foregoing formulation it is also necessary to forecast the inputs. Let us

assume that the deseasonalized inputs were fitted by the ARMA processes

(5.2.30)

where rt(1), r?\ ... , rt(N) are white noise with mean zero and variance a/G) . Then, Eq.

(5.6.26) can be written as

A1(B) E>x.t(B) (1) A2(B) 9 x,2(B) (2)

(l-lfIl.<B) wx.1(B) ,"y,<+ (l-lfIl.<B) wx,2(B) ,"y,<+...

AJB) ex,J..B) (N) 1 o(B)

+ (l-lfIl,<B) wx~B) '"y,<+ (l-lfIl.<B) IjI(B) ev,<

where

+ljr T(B)eV,T
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and

= VV) + vf.J) B + vf.J) B 2+
Ott' Itt' 2 tt' ••••

v~\B) =
AiB) e~)(B)

(l-q>I,-rB) CP~\B)

Finally Eq. (5.2.31) can be rewritten as

"" ""

+L vj;+L'~;+L-j+L 1J1j ,-r +Lev;r+L-j
j=O j=O

From the discussion of Section 4.6, we know that the minimum mean square error

A

forecast zv,iL) of Zv,.T+L at time T is given by the conditional expectation of Zv,7"+L at time

T. Hence, the forecast error for lead time L can be expressed as

L-l L-l

ev,t'(L) =L Vj,~+L'~~~+L-j+L Vj~;+L'~~;+L-j+'"
j=O j=o

L-l L-l

+L V?}+L'~~+L-j+L Wj,-r+Lev;r+L-j
j=O j=O
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CHAPTER VI

DATA DESCRIPTION

6.1 Watershed Description

The Rio Grande River system in Colorado was selected as the pilot project to

implement and test the procedures developed in this research. The Rio Grande River

begins in Southern Colorado and passes through the states of Colorado, New Mexico and

Texas finally ending in the Republic of Mexico. It is an important water supply for these

states. The streamflow forecasting of the Rio Grande Basin in Colorado is important to

both agricultural development and fulfilling Colorado State's obligation to deliver water

from the Rio Grande to the Colorado-New Mexico stateline.

The release of any acre-foot of water from the Rio Grande to New Mexico is

considered a loss to Colorado. The amount of water sent to New Mexico each year

depends on the amount of water available. In normal years, Colorado is required under

"the Rio Grande Basin Compact" to provide about 300,000 acre-feet of water to New

Mexico and Texas. One acre-foot is about 325,000 gallons, or the amount of water used

by a typical family of four in a year. According to the Rio Grande Basin Compact, a

stream gaging station should be operated and maintained at each of the following points

in Colorado (see Fig. 6.1): (a) the Rio Grande River near Del Norte, (b) the Conejos

River near Mogote, (c) the Los Pinos River near Ortiz, and (d) the San Antonio River

at Ortiz.

The streamflow of the Rio Grande River Basin is dominated by snowpack

accumulation and melt. This results in a high flow beginning in early April and
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persisting through the summer. Snowpack, precipitation in general and temperature are

important factors for streamflow forecast. This research uses snow water equivalent

data, temperature data, and precipitation data as inputs to the system, and streamflow

data as the output.

6.2 Monthly Streamflow Data

The monthly streamflow (1948-1982) of the Los Pinos River near Ortiz is shown

in Fig. 6.2. The gaging station is located at latitude 36:58:56 and longitude 106:04:23,

and elevation 8040 feet above sea level. It has a drainage area of 167 sq-mi and the

streamflow record is from 1915 to the present. Since the record of snow water

equivalent is available only from 1948, the streamflow record used in this report will be

also from 1948. The monthly streamflow from 1948 to 1977 has been used by the

Colorado State Engineer's Office to develop a multiple regression forecasting model. The

monthly means and monthly standard deviations based on the record 1948-1977 are

shown in Table 6.1 and Fig. 6.3. They show that flow after July has nearly returned

to a baseflow condition. In order to use the time series technique for modeling

streamflow, the monthly flow record was deseasonalized by using Eq. (3.2.1). This is

shown in Fig. 6.4.

The monthly streamflow (1949-1982) of the Rio Grande River near Del Norte is

shown in Fig. 6.5. The gaging stations located at latitude 37:41:22, longitude 106:27:38

and elevation 7980.25 feet, and it has a drainage area of 1320 sq-mi. The statistical

properties of monthly streamflow 1949-1977 are shown in Table 6.2 and Fig. 6.6. The

deseasonalized flows are shown in Fig. 6.7.
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The monthly streamflow (1949-1982) of the Conejos River near Mogote is shown

in Fig. 6.8. The gaging station is located at latitude 37:03: 14, longitude 106:11:13, and

elevation 8271.54 feet. It has a drainage area of 282 sq-mi and the streamflow record is

from 1903 to the present. The statistical properties of monthly streamflow (1949-1977)

are shown in Table 6.3 and Fig. 6.9. The deseasonalized flows are shown in Fig. 6.10.

6.3 Snow Water Equivalent Data

Snow pack implies storage of water and makes a great contribution to streamflow.

In most cases, direct observations of snowcover are necessary to achieve reliable results

in snowmelt run-off forecasting. Manual point measurements are the classical way to

obtain high precision information on snowdepth and the snow water equivalent. Manual

point measurements need a trained staff for data collection. It is a very efficient and

reliable method especially in small basins or in simple terrain, where a few points are

representative of the whole area. The disadvantages of point field measurements are that

data collection is time consuming, and often delayed because of bad weather conditions.

This is particularly true in mountain areas where safety considerations must be taken into

account.

Traditionally, measurements of snow water equivalent are obtained once a month

at snow courses throughout the mountainous region. The Soil Conservation Service each

year publishes a series of snow survey data. This information summarizes the monthly

snow water equivalent data collection during each water year. Recording instrumentation

has been installed in recent years. Since these records of snow water equivalent data are

short, of the order of 5 to 10 years, we will not consider this data in our analysis. In this

research, only the snow water equivalent obtained by the "manual" point measurements
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will be used.

There is no general rule that can be given for determining the areal values from

point measurements. For the computation of basin values of average snow water

equivalent, the methods are similar to those for precipitation. In this research, the

Thiessen Polygon Approach is used to calculate the mean snow water equivalent.

The snow water equivalent data collection station of the Soil Conservation Service

in the Rio Grande Basin of Southern Colorado is shown in Fig. 6.1. The manual point

measurements of the snow water equivalent is always measured at the end of each month

or on the first day of the next month. For example, the March 30 or the April 1st snow

water equivalent will represent the existing snow water equivalent at the end of March.

Another problem with manual point measurements is that the data collection of SWE

(Snow Water Equivalent) are only available for the months of January through April, for

the other months the data were missing.

6.3.1. The SWE of the Los Pinos River Basin

There is only one location (Cumbres Pass) for collecting the SWE in the Los

Pinos River basin. Cumbres Pass is located at latitude 37'01', longitude 106<>27', and

elevation 10020 feet. The SWE at Cumbres Pass (1948-1986) is shown in Fig. 6.11. A

more clear structure of the SWE is shown in Fig. 6.12 for the year 1948-1952. The

SWE has missing observations from May to December. In order to find a more complete

record of SWE, telemetered or recording instrumented SWE data at Cumbres Trestle,

close to the Cumbres Pass, was examined. The snow pill at Cumbres Trestle (Oct. 1981 -

Sep. 1989) and the SWE at Cumbres Pass are plotted in Fig. 6.13. This figure shows

that the SWE in September can be assumed to be zero and that the SWE from September
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to January can be assumed to increase linearly. Moreover, from Fig. 6.13, we can see

that the SWE of June, July and Aug. can be assumed to be zero. Now, the only unknown

SWE is in May. This can be forecasted by using a stochastic model. Thus, a complete

data of SWE at Cumbres Pass can be obtained. Based on such complete data, the

statistical properties of SWE at Cumbres Pass were computed and are shown in Table

6.4 and Fig. 6.14.

6.3.2 The SWE of the Rio Grande River Basin above Del Norte

In the Rio Grande River basin above Del Norte, there are four sites for collecting

SWE data. The name and location of those four sites are listed below :

SITE NAME ELEVATION (ft) LATITUDE LONGITUDE

Upper Rio Grande 9400 37°43' 107°15'

Santa Maria 9600 37°49' 107007'

Lake Humphrey 9200 37°40' 106°52'

Wolf Creek Pass 11000 37~8' 106°48'

The missing SWE record for Oct., Nov. and Dec. was filled in by using linear

interpolation. The SWE for May has some non-zero value at Wolf Creek Pass, but is

equal to zero at the other three sites. In order to find the average SWE of this basin, the

Thiessen polygon approach was used. The weights for each gaging station are shown

below:

SITE NAME SWE WEIGHT

Upper Rio Grande Sl 0.186

Santa Maria S2 0.221

Lake Humphrey S3 0.450

Wolf Creek Pass S4 0.143
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Then, the average SWE can be obtained by using

average SWE = 0.18681 +0.221S2 +0.4583 +0.14384

The average SWE is shown in Fig. 6.15. The statistical properties of the average SWE

are shown in Table 6.5 and are plotted in Fig. 6.16.

6.3.3 The SWE of the Conejos River

There are two gaging stations for collecting the SWE data in the Conejos River

Basin. The name and location of these two stations are listed below:

SITE NAME ELEVATION (ft) LATITUDE LONGITUDE

Platoro 9950 37<>21' 106°33'

River Springs 9300 37°04' 106°16'

The missing SWE data for the Oct., Nov., and Dec. were filled in by using linear

interpolation. The SWE of June, July, Aug. and Sep. is equal to zero in this basin. The

average SWE was calculated using the Thiessen polygon approach. The weights for each

gaging station are :

SITE NAME SWE WEIGHT

Platoro 51 0.5

River Springs S2 0.5

Thus,the average SWE is simply the average of the 2 sites. The average 5WE is shown

in Fig. 6.17. The statistical properties of the average SWE are shown in Table 6.6 and

Fig . 6.18.

6.4 Temperature and Precipitation Data

The National Climate Data Center in Asheville, North Carolina, publishes each
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year a series of climatological data which include: daily precipitation, daily maximum

temperature and daily minimum temperature. In the Rio Grande River basin of southern

Colorado, some of the climatological data records are too short, and some are missing.

We found that only the gaging stations of the Hermit 7 ESE, Del Norte City and

Manassa City have a complete record of the precipitation and temperature data. The

location of these three gaging stations are shown in Fig. 6.1.

6.4.1 The Climatic Data of the Upper Rio Grande River Basin

The gaging stations of Hermit 7 ESE and Del Norte are located in the upper Rio

Grande River basin. The name and the location of these two sites are listed below:

SITE NAME ELEVATION (ft) LATITUDE LONGITUDE

Hermit 7 ESE 9000 37°46' 107°08'

Del Norte 7880 37°40' 106<>21'

The average climate data of these two gaging stations will be used as inputs to the upper

Rio Grande River basin. The monthly precipitation (1949-1983) is plotted in Fig. 6.19.

The monthly statistical properties are shown in Table 6.7 and Fig. 6.20. The

temperature data available from the National Climate Data Center is the daily maximum

and daily minimum temperature. After computing the average temperature, the monthly

average temperature can be obtained. The monthly temperature (1949-1983) is plotted

in Fig. 6.21. The monthly statistical properties are shown in Table 6.8 and Fig. 6.22.

6.4.2 The Climatic Data of the Conejos River Basin

From Fig. 6.1, we can see that no climatic data gaging stations are located in the

Conejos River Basin. The only climatic data available and close to the Conejos River
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Basin is the climatic data of Manassa City. Hence the climatic data of Manassa City will

be used as inputs to the Conejos River system. Since the historical precipitation record

of Manassa City has a lot of missing data before 1966, the climate data after 1966 will

be used for finding a model. The monthly precipitation (1966-1983) is shown in Fig.

6.23. The monthly statistical properties are shown in Table 6.9 and Fig. 6.24. The

temperature data (1966-1983) is plotted in Fig. 6.25. The monthly statistical properties

are shown in Table 6.10 and Fig. 6.26.

Table 6.1 The Monthly Mean and Standard Deviation of Streamflow (Los Pinos
River near Ortiz, 1948-1977)

MONTH MEAN STANDARD
DEVIATION

January 837.100 234.723

February 909.233 277.908

March 1903.867 1013.500

April 12062.870 6888.070

May 32025.830 16963.010

June 16308.870 14120.930

July 3839.067 3687.079

August 2031.200 1496.741

September 1223.000 855.834

October 1303.400 725.049

November 1140.633 467.002

December 951.300 302.836
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Table 6.2

Table 6.3

The Monthly Mean and Standard Deviation of Streamflow (Rio Grande
River near Del Norte, 1949-1977)

MONTH MEAN STANDARD
DEVIATION

January 9560.725 2139.658

February 9592.793 1825.739

March 14189.000 4070.236

April 39190.960 16929.990

May 135088.700 47149.870

June 162736.600 79068.310

July 78091.100 56614.470

August 41093.310 24659.170

September 23404.100 14423.590

October 20252.170 8474.996

November 13264.660 4449.579

December 10345.600 2422.469

The Monthly Mean and Standard Deviation of Streamflow (Conejos River
near Mogote, 1949-1977)

MONTH MEAN STANDARD
DEVIATION

January 2814.759 550.494

February 2800.759 484.685

March 4783.069 1572.386

April 16372.900 7433.529

May 59158.790 18454.680

June 62670.000 29654.320

July 26202.960 23213.990

August 11595.590 8722.024

September 6070.896 4961.366

October 5611.828 3592.012

November 8413.793 7294.174

December 2968.345 798.695
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Table 6.4

Table 6.5

The Monthly Mean and Standard Deviation of SWE (Cumbres Pass; Los
Pinos River Basin, 1948-1977)

MONTH MEAN STANDARD
DEVIATION

January 13.056 5.504

February 16.540 6.459

March 18.757 6.716

April 13.600 9.586

May ----- -----

June 0.000 0.000

July 0.000 0.000

August 0.000 0.000

September 0.000 0.000

October 3.293 1.361

November 6.585 2.723

December 9.878 4.084

The Monthly Mean and Standard Deviation of SWE (Rio Grande River
Basin above the Del Norte, 1949-1977)

MONTH MEAN STANDARD
DEVIATION

January 7.418 3.287

February 9.461 3.531

March 0.287 4.866

April 5.903 4.052

May 1.051 1.712

June 0.000 0.000

July 0.000 0.000

August 0.000 0.000

September 0.000 0.000

October 1.802 0.799

November 3.605 1.598

December 5.407 2.397
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Table 6.6

Table 6.7

The Monthly Mean and Standard Deviation of SWE (Conejos River Basin
above the Mogote, 1949-1977)

MONTH MEAN STANDARD
DEVIATION

January 8.052 3.795

February 10.195 4.716

March 11.145 5.970

April 6.060 4.902

May ----- -----

June 0.000 0.000

July 0.000 0.000

August 0.000 0.000

September 0.000 0.000

October 1.970 0.951

November 3.941 1.902

December 5.911 2.853

The Monthly Mean and Standard Deviation of Precipitation (Rio Grande
River Basin above the Del Norte, 1949-1983)

MONTH MEAN STANDARD
DEVIATION

January 0.608 0.517

February 0.460 0.350

March 0.877 0.586

April 0.914 0.663

May 0.986 0.667

June 0.711 0.562

July 1.909 0.964

August 1.847 0.810

September 1.118 0.742

October 1.236 1.140

November 0.797 0.638

December 0.860 0.836
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Table 6.8

Table 6.9

The Monthly Mean and Standard Deviation of Temperature (Rio Grande
River Basin above Del Norte, 1949-1983)

MONTH MEAN STANDARD
DEVIATION

January 6.671 4.267

February 20.929 4.668

March 27.229 3.618

April 36.957 3.368

May 46.264 1.938

June 54.436 1.943

July 59.707 1.407

August 57.950 1.640

September 51.771 1.726

October 42.579 2.342

November 29.307 4.119

December 18.836 4.391

The Monthly Mean and Standard Deviation of Precipitation (Conejos
River Basin, Manassa City, 1966-1983)

MONTH MEAN STANDARD
DEVIATION

January 0.249 0.264

February 0.230 0.198

March 0.328 0.252

April 0.287 0.183

May 0.751 0.504

June 0.604 0.687

July 1.379 0.897

August 1.424 0.696

September 0.860 0.729

October 0.610 0.421

November 0.306 0.256

December 0.348 0.262
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Table 6.10 The Monthly Mean and Standard Deviation of Temperature (Conejos
River Basin, Manassa City, 1966-1983)

MONTH MEAN STANDARD
DEVIATION

January 18.417 5.131

February 24.611 4.831

March 33.944 3.105

April 41.250 3.223

May 50.056 1.939

June 58.972 2.226

July 64.139 1.281

August 61.861 1.830

September 55.528 1.490

October 44.333 2.646

November 31.417 3.679

December 20.750 4.638
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Upper Colorado
River Basin
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New Mexico

STREAM GAGING STATIONS:
a. Rio Grande River near Del Norte
b. Conejos River near Mogote
c. Los Pinos River near Ortiz
d. San Antonio River near Ortiz

Upper Arkansas
River Basin

Fig. 6.1

SNOW WATER EQUIVALENT DATA SITES:
1. Upper Rio Grande 2. Santa Maria
3. Lake Humphrey 4. Wolf Creek Pass
5. Platoro 6. River Springs
7. Cumbres Pass and Cumbres Trestle

TEMPERATURE AND PRECIPITATION DATA SITES
1. Hermit 7 ESE

II. Del Norte
III. Manassa

The gaging stations of flow and climatological data
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CHAPTER VII

FORECASTING MONTHLY STREAMFLOW BASED ON THE
SINGLE INPUT-SINGLE OUTPUT MODEL

7.1 Univariate Time Series Model

Many types of stochastic models have been developed for modelling seasonal

hydrological time series. Seasonal autoregressive integrated moving-average (SARIMA)

models, deseasonalized autoregressive moving average (ARMA) models, and periodic

autoregressive (PAR) models are most commonly used for hydrological series modelling.

These three models have been employed to forecast monthly river flows by Noakes et

al., 1985. In that paper, they concluded that although the SARIMA model forecasts

seasonal economic data well, this model may not be appropriate for modeling and

forecasting monthly river flows. The PAR model appears to be a more suitable model

for monthly river flow modeling.

In this study, the deseasonalized ARMA model, the periodic AR(l) and periodic

ARMA(l,l) will be used for modelling monthly streamflow. Only the monthly

streamflow of the Los Pinos River near Ortiz will be analyzed by using these three

models. The forecast results show that the univariate time series models underestimate

the high flow in the summer time.

7.1.1 Deseasonalized ARMA Model

The monthly flows QV,T of the Los Pinos River (1948-1977) was transformed by

using the log transformation (base-lO), i. e.

7-1



(7.1.1)

Then, the log transformed flows were deseasonalized by

(7.1.2)

The time series Zvr is now denoted as z, t=I, ... ,360 (t=(v-1)12+1"). The Zvr was. .
checked to be normally distributed with mean zero and variance equal to 0.97. The

autocorrelation function and the partial autocorrelation function of the deseasonalized

flow were computed and are shown in Figs. 7.1 and 7.2, respectively. Then an ARMA

model was fitted to the deseasonalized log-transformed flow. The AIC Information

Criterion of Eq. (3.2.6) was used for selecting the correct model among competing

ARMA models (see Salas et al., 1980).

The analysis of the log-transformed deseasonalized monthly streamflow of the Los

Pinos River, gave the AR(4) model as the model with the smallest AIC value. Hence,

the AR(4) model will be used for streamflow forecasting. The AR(4) model of the

deseasonalized Los Pinos monthly flows is

z, = 0.636 Zt-l + 0.130 Zt-3 -0.100 Zt;-4 +Gt (7.1.3)

The residual Gt has mean of zero and a variance of 0.54. It is shown in Fig. 7.3, and the

autocorrelation function of s, is shown in Fig. 7.4. In addition, since

20

Q = N E pi(Et) = 7.326 < X20.95(16) =26.30
1=1
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the normality hypothesis of the residuals was not rejected by using the chi-square test.

The forecast function is the conditional expectation of Eq. (7.1.3), i.e.

ir(L) =O.636E[Zt+L_l] + 0.13E[Zt+L-3] - 0.1E[Zt+L-J

The AR(4) model of Eq. (7.1.3) can be written as

zt=(1 +O.636B+O.404B2+0.387B3+ ...)e t

(7.1.4)

The forecast of the deseasonalized flows z,with lead time L =1,... ,9 and 95 % confidence

limits are shown in Fig. 7.5. The one step ahead forecasts of "log-flows" Qt' (1978-

1982) are shown in Fig. 7.6. From Fig. 7.5-7.6, we can observe that the forecast of

log-flows is fairly good.

After obtaining the log-flows o., the actual flows Qt are determined by Eq.

(7.1.1), i.e.

(7.1.5)

From the discussion of Section 3.6, we know that Eq. (7.1.5) always underestimates the

forecast, hence the minimum mean squared error forecasts of the actual flows given by

Eq. (3.6.6) will be used. It is known that the forecast error of the deseasonalized

streamflow z, can be written as

L-l
et(L) = L wje t+L- j

j=O

Hence, the forecast error of the log flows Qv,'T' can be written as

L-l
e:''t'(L)=<L W/~Vt't'+L-) 0'C+L(Q I) + ~'C+L(Q I)

j=O

and the variance of the forecast error is
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(7.1.8)

Finally, the minimum mean squared error forecasts of the actual flows can be obtained

by

(7.1.9)

Based on Eq. (7.1.9) the one step ahead forecasts of the actual flows are shown in Fig.

7.7 and Table 7.1. In addition, the forecasts using Eq. (7.1.5) are also shown in Fig.

7.7. The figure says that the forecast of the actual flow is still underestimated in the

summer time.

7.1.2 The PAROl Model

The AR model with periodic coefficients was applied. After taking the logarithm

of the monthly flows QV,7' it was deseasonalized as in Eq. (7.1.2). The monthly lag-1

autocorrelation of Lv,7 was calculated by Eq. (3.3.4). It is shown in Fig. 7.8. The

PAR(1) model can be written as

7 = <p 7 + Ev '"-v,.t .,.t -V.'t -1 •• (7.1.10)

in which 4>1." = PI,'t' The estimated residual et is shown in Fig. 7.9, the autocorrelation

function of the estimated residuals is shown in Fig. 7.10, and the seasonal correlation of

the estimated residuals is shown in Fig. 7.11. The residual eV , 7 has o}(e) as shown below:

l' 1 2 3 4 5 6

u
7

2(e) 0.331 0.276 0.889 0.882 0.993 0.230

l' 7 8 9 10 11 12

u7

2(e) 0.170 0.533 0.426 0.593 0.116 0.528
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Overall the et's are verified to be normal with mean zero and variance 0.48.

The forecast function based on the PAR(1) model has the form of

~,1:(L) = PI.1:+L E[;',t+L-I]

Equation (7.1.10) can also be rewritten as

1
;',1: = I-p v-

1,1:

with

(7.1.11)

(7.1.12)

T 1 2 3 4 5 6
A

PI ,T 0.815 0.851 0.334 0.344 0.086 0.878

T 7 8 9 10 11 12
A

PI,T 0.911 0.683 0.758 0.638 0.940 0.687

Then the forecast error of the deseasonalized flow z; T can be written as

L-l

eV,1:(L) = E Vj;r+L ev;uL-j
j=O

(7.1.13)

The hypothesis of normality of the whole 360 historical residuals ~ is rejected by the chi-

square test. Several distributions including lognormal, gamma, Weibull, ...etc. were used

for fitting the residuals, but no distribution was accepted.

Since we are only interested in the 95% quantiles of the forecast error, the

cumulative relative frequency of the forecast error will be simulated. For example, by

standing in March, 1978, the forecast error with lead time L= 1,2, ... can be written as
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o
e1978,3(1) = E Vj,4e 1978,4-j

j=O

1

e1978.3(2) = E tVj,Se 1978.S-j
j=O

(7.1.14)

The 95 % probability limits of the forecast error with lead L = 1, can be obtained using

the empirical cumulative relative frequency. For the lead time L greater than 1, we can

put the historical residuals e, in a black box and sample from it randomly with

replacement. Then, the forecast error can be simulated 1000 times by using Eq. (7.1.14).

The simulated cumulative relative frequency of the forecast errors are shown in Fig.

7.12-7.18, and the 2.5% and 97.5% quantiles are listed below:

Lead Time L

1 2 3 4 5 6 7

Q97.5 1.79 1.68 2.35 2.22 1.87 2.27 2.27

q2.5 -1.40 -1.97 -2.24 -2.19 -1.50 -1.47 -1.37

Then, the forecast of the deseasonalized streamflow 'Lv,,,. with lead time L and the 95%

probability limit bound can be constructed. The forecast of the deseasonalized flow

(1978-1982) with lead time L=1, ... ,9 and the 95% confidence limits are shown in Fig.

7.19. This shows that most of the historical data fall inside the bounds.

The forecast error of the streamflow Qv,,,.' can be written as

7-6



Hence, the variance of the forecast error of Qv,'1.' can be written as

L-l
*2 2 I ~ 2 2

°V.f:+L(et) = °f:+L(Q ) L'tJrj.T+L OT;+L-iet)
j=O

(7.1.15)

(7.1.16)

and the minimum mean squared error forecast of the actual flow can be obtained by

(7.1.17)

The one step ahead forecast of the monthly flows using the PAR(l) model is shown in

Fig. 7.20 and Table 7.1. In addition, the forecast results using the deseasonalized AR

model are also shown in Fig. 7.20. The results show that the forecast using the PAR(l)

model has improved a little.

7.1.3 The PARMA(1.1) Model

The deseasonalized log-transformed flow series zv;r can be fitted to a periodic

ARMA(l,l) model, i.e.

7 =q> 7 +e -6 e
-V.t 1.T-V,t-l V,t 1.T V,t-l (7.1.18)

The moment estimation of the parameters ~l,T and 81,T can be determined by solving Eqs.

(3.3.6) and (3.3.7) in which the population coefficients Pl,T and P2,Tare substituted by the

corresponding sample estimates. The estimated parameters are:
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T 1 2 3 4 5 6
A

rt'1,7' 1.1 0.8 0.5 0.6 -1.1 0.3
A

81,7' 0.6 -0.3 0.7 0.3 -1.5 -0.7

T 7 8 9 10 11 12
A

rt'1,7' 0.8 0.7 0.9 0.5 0.9 0.8
A

81,7' -0.6 -0.1 0.3 -0.2 -0.1 0.6

By using the moment estimates as the initial values the final parameters rt'v,7' and

8v,7' are determined by the Marquardt algorithm of least squares method. The results are:

T 1 2 3 4 5 6
A

rt'1,7' 1.0 0.8 0.5 0.4 -0.7 0.6
A

81,7' 0.6 -0.3 0.7 0.3 -1.1 -0.4

T 7 8 9 10 11 12
A

rt'l,T 0.8 0.6 1.0 0.5 0.9 0.8
A

81,1' -0.6 -0.6 0.5 -0.3 0.02 0.6

Then, the residuals et are estimated and plotted in Fig. 7.21. The autocorrelation function

of the estimated residuals is shown in Fig. 7.22 and the seasonal correlation of the

estimated residual is shown in Fig. 7.23. The s, is checked to be WN(0,0.47), and the

eV,T has a monthly variance a"/(T) shown below:

T 1 2 3 4 5 6

u}(e) 0.291 0.257 0.860 0.948 1.036 0.222

T 7 8 9 10 11 12

u7'2(e) 0.176 0.530 0.365 0.575 0.117 0.492

Then, the forecast function can be written as

7-8



Eq. (7.1.18) can also be rewritten as

(1-61,;B)
7 • - t E

V
• = W.(B)E

V
••

-Vt
• (1- <p B) t • • , •

l,t

(7.1.19)

(7.1.20)

The normality hypothesis of the residual Gt is rejected by the chi-squares test. Hence the

simulated cumulative distribution frequency of the simulated forecast error is constructed

using (7.1.14). Then, the forecast of the deseasonalized flow with lead time L = 1, ... and

the 95% confidence limits are shown in Fig. 7.24.

The variance of the forecast error of log flow QV,7' can be obtained using Eq.

(7.1.16). Then, the minimum mean squared error forecast of the actual flow can be

obtained from Eq. (7.1.17).

The one step ahead forecast using the PARMA(l,l) model is shown in Fig. 7.25

and Table 7.1. In addition, the forecast results using the PAR(l) model is also shown in

Fig. 7.25 and Table 7.1. This figure shows that the PARMA(1,1) is better in certain

cases than the PAR(l) model. The PARMA(l,l) and PAR(l) model are both better than

the AR(4) model for forecasting monthly flows. However, by observing Fig. 7.25, the

forecast is still not satisfactor because most of the forecast values have a big difference

from the actual flows. In later sections, an input-output model will be used in order to

improve the forecast of monthly flows.

7.1.4 Comment

The univariate time series model can be used to generate streamflow. This may

preserve the statistical properties of the flow series, but when used for forecasting
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monthly flows, the high flows in the summer time is always underestimated. A good

forecast of the "log-flow" does not mean a good forecast of the actual flow. The

forecasted result should not be compared in the log domain.

7.2 Forecasting Snow Water Equivalent

In Section 6.3, we have discussed the properties of the snow water equivalent

(SWE). Now, we need to find a model for forecasting SWE.

The SWE data first occurs in the month of October. Figures 7.26-7.29 show the

plot of the SWE (1948-1977) of October vs. the SWE of April, March, February, and

January, respectively. They show that the SWE of October does not dependent on the

SWE of the previous months. Hence, the forecast of the SWE in October will be taken

as the historical mean value for October.

Since the SWE of June, July, Aug. and Sep. is equal to zero, and the SWE of

Oct., Nov., Dec. can be obtained by using linear interpolation between zero in

September and the value of January. The SWE of Jan., Feb., Mar., April and May can

be fitted by using ARMA model. The whole structure of SWE is shown below:

Snow Water Equivalent

Sep. Jan.
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Since the streamflow in January, February, and March are small, the agency

administering the Rio Grande Basin does not need to forecast the streamflow of these

months. The forecast of monthly streamflow from April to December is what is needed.

Before forecasting the streamflow using the input-output model, we need to forecast

SWE. First, we can forecast the SWE using the SWE series of each month. For example,

from the historical SWE record of 1948-1977, we have 30 SWE readings of January

data. We then attempt to find some correlation between these 30 data readings. The SWE

of January, February, March, April and their autocorrelations are shown in Figs. 7.30-

7.37. These show that the SWE is independent of each month, i.e, there is no correlation

between the SWE in one month to that same month in a previous year.

The next step is to fit the deseasonalized SWE of January, February, March and

April using a time series model. The autoregressive model will be used.

Because the SWE of June, July, Aug., Sep. are equal to zero, we do not need to

do any forecast for these months. The SWE of Oct., Nov. and Dec. can be estimated by

using the historical mean value of each month.

7.3 Rational Single Input-Single Output Transfer Function Model

The univariate time series model does not give a satisfactory result for forecasting

monthly flows as shown in Section 7.1. An input-output transfer function model will be

tried now. Both the transformed and the no-transformed modeling will be compared.

7.3.1 Log-Transformed Monthly Flow Modeling

The monthly flows QV,T of the Los Pinos River near Ortiz is transformed by using
the equation
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(7.3.1)
A A

Then, the monthly mean J.l-r(Q') and monthly standard deviation a.,(Q') of log-flow Qv,.,'

is calculated. The log-flow Qv,.,' is deseasonalized using

I ,

Qv;r - tl~(Q )

o,;(Q ')

The snow water equivalent Wv,r is also transformed using

(7.3.2)

, _ { log(Wv,~)
Wv,,; - 0

for Wv,,;*0
for Wv,. =0 (7.3.3)

Then the log-SWE is deseasonalized using

I I

Wv,,; -l1t (W )

xv,~ = fJ~(W ')

o
I

for Wv,~ =0
(7.3.4)

The SWE of Jan. through April has an AR(I) structure, and the SWE of May is filled

in using this structure, i.e.

(7.3.5)

in which rt is normal with mean zero and variance 0.209. Then, by denoting Zv,r as z, and

x.; as x, for t=1,2, ... , and estimating the deseasonalized SWE of May using Eq.

(7.3.5), a single input-output transfer function model can be written as

(7.3.6)

The impulse response function aj is estimated by calculating the frequency
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response function

(7.3.7)

Since the input x, is a real number, the imaginary part of spectrum Sx(t) is equal to zero.

Then, the frequency response function can be written as

Aif) = c~(/) + i ij~ifJ
cx(/) cx(/) (7.3.8)

Equation (7.3.8) needs to estimate the auto-spectrum Sx(t). First, the autocovariance "Ix

of input series x, is estimated by using Eq. (3.1.6). Then the Parzen window of Eq.

(3.7.26) and the estimated autocovariance are substituted into Eq. (3.7.25) for estimating

the auto-spectrum Sx(t). Since we are not interested in the peak of the spectrum, the

truncation point M in Eq. (3.7.25) is used following the suggestion of Chatfield (1980).

He suggests using "2 times the square root of the total number of data N". The

estimation of auto-spectrum Sx(t) is shown in Fig. 7.38.

The cross covariance "Iyx of the input x, and Yt is estimated by using Eq. (3.1.10).

Then, the Parzen window and the estimated autocovariance are substitute into Eq.

(3.7.27) to estimate the cross spectrum Syx(t). The co-spectrum cyxand the quad-spectrum

qyx can then be obtained. These are shown in Fig. 7.39 and Fig. 7.40.

By substituting the estimated values of cx(t), cyx(t) and qyx<t) into Eq. (7.3.8), the

frequency response function A(t) can be estimated. Then, the impulse response function

~ can be estimated by using the Fourier transform of Eq. (3.7.5). The variance of the

impulse response function is computed using Eq. (4.3.8). It has a value of 0.194.
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The impulse response function is shown in Fig. 7.41. This figure shows that the

values of Clo, a., and a2 are significantly different from zero. Hence, Eq. (7.3.6) can be

written as

Thus Nt can be estimated by

Nt =Zt - (-0.228xt +0.181 xt- 1+O.264xt_z)

(7.3.9)

(7.3.10)

A

Preliminary identification of a suitable model for the noise N, is carried out by fitting an

ARMA model, i.e.

A A £t
Nt=O.64Nt 1+£t =---

- 1-0.64B

in which Gt is normal with mean zero and variance 0.509.

Substituting (7.3.11) into (7.3.9) gives

z, =0.64zt_1- O.228xt + 0.327x t - 1

+ 0.148xt_2 - O.169xt_3 + £t

(7.3.11)

(7.3.12)

Since the agency administering the Rio Grande river in southern Colorado, does

not need to forecast the flows of January, February and March, the forecast of monthly

streamflow is only for the months of April through December. In this research,

minimizing the sum of square errors will be only for the monthly flow from April to

December. This considers the estimated monthly flow equal the historical monthly flow

Zv,T for 1"=1,2,3. Then, the series z, represented by Zv,T (t=(v-1)·12+1") is

" _lO~64Zv'~-1 -O.228xv.~ +0.32~xv.~_1 +0.148xVI~_2
7 - O.169xv 't _2 ' for 't' - 4,5,...,12
-V,'t •

Zvt for 1"=1,2,3.,
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where v = 1,2, ... ,N and N = the number of years of historical monthly flow. After

minimizing the sum of square errors Eet
2

, the final model can be obtained. It can be

written as

z,=0.627Z,-1 - O.266xt +O.316xt_1
+ O.16x

t
_2 - 0.Olx

t
_3 + e; (7.3.13)

The et* is checked to be white noise with mean zero and variance 0.498, which has

smaller variance then the variance of 8t in Eq. (7.3.11). Then the new estimated noise

Nt was obtained from Eq. (7.3.13),Le.

(1-0.627B)Zt= (-0.266 +0.316B + O.160B2

- 0.01 B3)x t + e;
Zt aI(-0.266 +0.149B +0.16B3 + o.i s'»,+Nt

*
A e twhere N =
t (1-O.627B)

A

Then, the cross correlation between the input x, and the residual et of the new noise N,

A

is checked. The result indicates that the x, and N, are uncorrelated. Hence, Eq. (7.3.13)

is accepted.

From Eq. (7.3.13), the forecast function of the deseasonalized log-transformed

flow z, can be written as

it(L) =0.627E[Z,+L-l] - 0.266E[xt+V +O.316E[xt+L_l]
+ O.160E[xt+L_2] - 0.01E[Xt+L_3] (7.3.14)

In Eq. (7.3.14), we need to forecast the deseasonalized log-transformed SWE x., The

deseasonalized log-transformed SWE of January using through April has an

A

autocorrelation coefficient of PI =0.52. After using the least squares method, we find that
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the deseasonalized SWE can be fitted using an AR(l) model as shown in Eq. (7.3.5), i.e,

(7.3.15)

Equation (7.3.13) can be rewritten as

Zv,.r =(-0.266-O.044B+O.221B2+...)'v,.r

+ (1+0.627B+O.393B 2+ ...)e
V,'t

Then, the forecast error of the deseasonalized flow Zv,T can be written as

L-l L-l

eV,t(L) = L vj'v,t+L-j+L 1J1jeV,t +L-j
j=O j=O

(7.3.16)

(7.3.17)

(7.3.18)

Since the normality hypothesis of the residual et is rejected by the chi-square test, we do

not need to check the normality of t. Only the linear combination of the normal variables

will give a normal variable. Then, 1000 forecast errors with lead time L=2, ... ,7 were

simulated. After obtaining the 95% quantiles, the forecast of deseasonalized flow with

lead time L=I, ... is shown in Fig. 7.42.

The log-transformed flow QVT' can be obtained by using Eq. (7.3.4), i.e,

Qv~t(L) =~,t(L) *at(Q ') + Jlt(Q ')

The one step ahead forecast of the log-flow of the Los Pinos River (1978-1982) is shown

in Fig. 7.43. Notice that this figure closely resembles the given forecast. The forecast

error of the un-deseasonalized flow QV,T' can be written as

L-l L-l

e;'t(L)=(L vj'V,t+L-j+ L 1J1j £v,t +L-j)Ot +L(Q ') + ~t+L(Q ')
j=O j=O
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Hence, the variance of the forecast error of QV,T can be written as

L-l L-l
.2 2 I 2~ 2 2~ 2,

av;r:(L)=a~+L(Q )[aCL., Vj + 0r.L., VjJ
j=O j=O

(7.3.20)

(7.3.21)

Then, the minimum mean square error forecast of the actual flow can be obtained by

A I 1 *2
A 'lH(L)+-oV'I:(L)

Q (L) = 10' 2'
V,'t'

The one step ahead forecast of the actual monthly flow (1978-1982) by using the Transfer

Function Model (TFM) is shown in Fig. 7.44 and Table 7.1. In addition, the forecast

results using the PAR(l) model are also shown in Fig. 7.44. From Fig. 7.44, we can see

that the forecast using the TFM still underestimated the high flow in the summer time,

but it is an improvement on the univariate time series model.

7.3.2 No Transformed Monthly Flow Modeling

From the forecast result shown in the last section, we can see that using log-

transformation to forecast actual flow always underestimates the high flow in the summer

time. Because this model minimizes the sum of square errors in the log domain, the

forecast of the log-flow is better than the forecasted value of the actual flow. Now, we

will not take any transformation of the original monthly flow, and attempt to fit a transfer

function noise model to it.

The monthly flow QV,T of the Los Pinos river near Ortiz was deseasonalized by

using

(7.3.22)
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and the monthly SWE WV,T of Cumbres Pass is deseasonalized by

Wv T -I1T( lY)
x =_...:...'---

V,T 0T(W)

It has an AR(1) structure, and the deseasonalized SWE of May filled in by

x t = 0.774 xt-1 + 't

(7.3.23)

(7.3.24)

in which !t zero mean and variance 0.311. Then the z; T and x, T was denoted as z, and, ,

x., respectively. The impulse response function aj of the single input-output transfer

function model is estimated and is shown in Fig. 7.45. The transfer function model can

then be written as

Zt = -0.286xt + 0.175xt_ 1 + O.270xt_2 +N,

And the noise N, can be estimated by

Nt =z, - (-0.286xt + 0.175 xt-1 + 0.27xt-2)

(7.3.25)

(7.3.26)

A

This is plotted in Fig. 7.46. The ARMA model is fitted to the noise Nt, which is an

AR(l) model of

N, = 0.593 N t - 1 + et =
1-0.593B

Substituting (7.3.27) into (7.3.25) gives

Zt=0.593zt_1 - O.286xt + O.345xt_ 1 +0.166xt_2

- O.160xt_3 + £t

After using the least squares algorithm, we have

Zt=0.581zt_l-O.340xt+O.323xt_l +O.199xt_2

- O.016xt_3 + e;

(7.3.27)

(7.3.28)

The residual Ct· shown in Fig. 7.47 has mean zero, variance 0.555 and skewness
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coefficient 1.18. The autocorrelation function of the residual et * is shown in Fig. 7.48.

This figure shows that the residual e," is white noise. The hypothesis of normality of the

residual et* is rejected by the skewness test of normality.

A

Then the cross correlation of input x, and the residual of the new noise N, is

A

checked. It is concluded that the input x, is uncorrelated with the noise N; hence the Eq.

(7.3.29) is accepted.

The forecast function of Eq. (7.3.29) can be written as

i,(L) =O.581E[Zt+L_l] -O.34E[xt+J +O.323E[xt+L_l]

+ O.199E[x
t+L_z] - O.016E[x

t
+L_3] (7.3.29)

where the SWE can be forecasted using Eq. (7.3.25). Then Eqs. (7.3.25), (7.3.30) and

(7.3.23) can be used for forecasting the monthly streamflow.

Equation (7.3.29) can be rewritten as

Zv.T = (-O.34-0.1377B+O.165B 2+O.2695B3+···)'v,T

+(1+O.581B+(O.581B)2+(O.581B)3+....)ev...

OQ

Then the forecast error can be written as

L-l L-1

ev,T(L) = L vj(v,T+L-j + L lJ1/~v,T+L-j
j=O j=O

(7.3.30)

(7.3.31)

From (7.3.31), we can see that ev,T(L) has a mean zero, but with an unknown probability

distribution. Since the distribution of ~ and et are not normally distributed, a simulation

of the forecast error will be used. After obtaining the 95 % quantiles of the simulated
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forecast error, the result of the forecasted deseasonalized flow with lead time L = 1, ... ,7

and the 95% confidence is shown in Fig. 7.49. It shows that most of the historical and

forecasted flow fall inside the 95 % confidence limit bound.

The one step ahead forecast of monthly flow (1978-1982) of the Los Pinos river

near Ortiz is shown in Fig. 7.50 and Table 7.1. In addition, the forecast result of the log-

transformed transfer function model is shown in Fig.7.50. We can see that the no-log

transformation forecasting is better then the log-transformation forecasting.

7.4 Single Input-Single Output Periodic Transfer Function Model

The rational transfer function model gave some improvement in forecasting the

streamflow when the original flow data were not transformed. Two other forecasting

schemes in using transfer function models are tried here. First is by fitting a PAR(l)

model to the noise N, and second is by filtering the deseasonalized flows with a PAR(l)

model before applying the transfer function model. The two schemes are further

discussed below.

7.4.1 Transfer Function Model With PAR!l) Noise

The noise N, of Eq. (7.3.26) of Section 7.3.3 is plotted in Fig. 7.46, and its

seasonal correlation is plotted in Fig. 7.51. Figure 7.51 shows that the noise N, has

periodic properties. Hence, a PAR(1) model may be fitted to N, instead of fitting an

ARMA model.

If the noise N, is fitted by a PAR(l) model, it can be written as

(7.4.1)

Now the transfer function model can be rewritten as
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Substituting (7.4.1) into (7.4.2) gives

co e
-~ a x + V,T

Zv,T-~ j V,T-j I-In B
J=O 'rl,t'

or

7 =<P I 7 I +~ a x .- <P I ~ a.x . I + e-v;r ,T-v;r- L..J JlI,T-J ,.r L..J J v;r-J- 1I,T
j=O j=O

(7.4.2)

(7.4.3)

From Section 7.3.3, we know that the transfer function noise model of the Los Pinos

River monthly streamflow can be written as (see Eq. (7.3.25))

Zv,'r = -0.286 XV,T + 0.175 xv,To1 + 0.270 x v,T-2 + NV'T

The parameters of the PAR(l) model of Eq.(7.4.1) fitted to the noise NV,T gave

(7.4.4)

7 1 2 3 4 5 6
A

~1,T 0.829 0.744 0.329 0.148 0.134 0.603

7 7 8 9 10 11 12
A

~1,T 0.926 0.567 0.548 0.555 0.946 0.705

In addition, substituting (7.4.1) into (7.4.4) gives

Zv.T =<Pt,TZv,T-l + (1-<Pl,TB)(-O.286xv,T +O.175xv,'t" _1

+ O.270xV,T_2) + BV;t

After minimizing the sum of square errors, we have
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T 1 2 3 4 5 6
A

~1,'T 0.829 0.752 0.326 0.237 0.017 0.483

T 7 8 9 10 11 12
A

l,Ol,'T 1.0 0.655 0.548 0.581 0.955 0.748
and

Zv,'t =4>l ..t"Zv~'t-l + (1-<9 l,'tB)(-O.105xV~'t + O.170xV,'t_l

+ O.334xV,'t_2) + £:~'t (7.4.6)

The cross correlation between the input x, and the residual of the new noise N, is

examined and found to be uncorrelated. Hence, Eq. (7.4.6) is accepted.

The forecast function of Eq. (7.4.6) can be written as

~~'t(L) = 4> 1,'t+LE[Zv~'t+L-l] + (1- <P l,'t+LB)( -0.105 E[xv,'t+J

+ 0.170E[xv,'t+L_l] + 0.334 E[xv,'t+L-2] ) (7.4.7)

The one step ahead forecast of the Los Pinos River monthly flow using the foregoing

transfer function model (TFM-PAR(l) Noise model) is shown in Fig. 7.52 and Table

7.1. In addition, the forecast using the rational transfer function model (without log-

transformation) of Eq. (7.3.30) is also shown in Fig. 7.52. From Fig. 7.52, we can see

that the transfer function model incorporating PAR(l) noise gives a similar forecast result

of the high flow in the summer time. In fact, this can be observed from Table 7.1.

7.4.2 Periodic-Transfer Function Model

In the previous section, the noise N, was fitted by a PAR(l) model. Now, the

deseasonalized streamflow Zv,'T is first filtered by a PAR(1) model before the transfer

function model is applied. The deseasonalized flows of the Los Pinos River has a

monthly correlation Pk,Tas shown in Fig. 7.53. Let the original monthly flow be denoted
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by Qv,'T. Then the deseasonalized flow Zv,'T can be computed by

Qv-r - il-r(Q)
Zv,T = '&-r(Q)

The deseasonalized flow is then filtered by PAR(l) model using

7 =cP 7 +Y-V,-r l,-r-v,-r-l v,-r

where

(7.4.8)

(7.4.9)

T 1 2 3 4 5 6
A

CPl,'T 0.829 0.771 0.226 0.227 0.170 0.751

T 7 8 9 10 11 12
A

CPl ,'T 0.960 0.584 0.548 0.587 0.950 0.714

Then, a transfer function model between the deseasonalized SWE XV,'T as the input and

the variable Yv,'T as the output can be written as

(7.4.10)

The impulse response function is estimated using spectral analysis and was shown in

Fig. 7.54. Then Eq. (7.4.10) can be written as

Yv,-r =-0.173xv, T +0.269xv;r _l +O.161xv,-r_2 +Nv,-r (7.4.11)

A

The noise Nv,'T is plotted in Fig. 7.55. An ARMA model is fitted to N, (t=(v-1)12+T),
A

but we find that the N, is white noise with mean zero and variance 0.504. Hence,

Eq. (7.4.11) can be written as

Yv,-r =-0.173xv,T +0.269xv,-r_l +0.161xv,-r_2 +ev,-r

By substituting (7.4.12) into (7.4.9), we have

Zv,.r=cPl,-rZv,-r-l-O.173xv,-r +0.269xv;r_l +0.161 xv;r - 2 + ev,-r
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where

Minimizing the sum of square errors, a final model is given as

Zv'l: =<P1 'l:Zv'l:-1 -0.207xV'l: +0.241xV'l:_1, t, , ,

+O.324xV,'l:_2 + e:,'l:
(7.4.14)

T 1 2 3 4 5 6
A

~l,T 0.829 0.771 0.226 0.216 0.126 0.462

T 7 8 9 10 11 12
A

~l,T 0.797 0.584 0.548 0.575 0.954 0.731

and v= 1,2, ... ,N and T=4,5, ... ,12 and C*V'T has mean zero and variance 0.352.

The hypothesis of independence of residuals C*V'T has been accepted. The cross

A

correlation of XV,T and the residual NV,T is shown in Fig. 7.56. It says that the two

variables are uncorrelated.

A

Then, the forecast function zv,T(L) of Eq.(7.4.14) can be written as

i; 't(L) =<p 1 1:+LE[Zv 1:+L-1] - 0.207 E[xv1:+J, J' ,

+ 0.241 E[xv"C+L-l] +O.324E[xv't+L_2], ,

and

(7.4.15)

(7.4.16)

By using Eqs. (7.4.15) and (7.4.16), the deseasonalized flow ZV,T can be forecasted.

Then, actual flow is forecasted and shown in Eq. (7.4.8), i.e

QV'l: =~'l: o,;(Q) + ~'t(Q), ,

Equation (7.4.14) can be rewritten as
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_ (-0.207+0.241B+0.324B2
) 1 ,

Zv.'t - (1- 4> B) (l-0.774B) lI,t
1,1'

(1- A B) lI,t
<Pl,'t

1
+ e

A

where vT(B) and vT(B) can be estimated by substituting <PI,T into above equation, for

7"=1,2, ... ,12.

The forecast error is obtained USing Eq.(4.6.14). The simulated cumulative

relative frequency of the forecast error with 7"=3, and lead time L=2, .. ,7 , is computed,

and the 2.5% and 97.5% quantiles are:

Lead Time L

1 2 3 4 5 6 7

Q97.5 2.19 2.00 2.27 2.01 2.39 2.17 3.07

Q2.5 -0.87 -0.71 -0.88 -1.12 -1.18 -1.04 -1.22

The forecast of deseasonalized flow Zv,T with lead time L = 1,2, .. ,7 and the bound of 95 %

confidence limits are shown in Fig. 7.57. This shows that most of the historical and

forecasted flow fall inside the bound.

The one step ahead forecast using the transfer function model (periodic-TFM

model) is shown in Fig. 7.58 and Table 7.1. For comparison, the results of the previous

section (TFM-PAR(1) Noise model) are also shown in Fig. 7.58. From Fig. 7.58 and

Table 7.1, we can see that using the residual of the PAR(1) model as the output of the

transfer function model (periodic-TFM model) gives a much better forecast result.
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7.5 Existing Forecasting Model

The forecasting method currently used by the agency responsible for administering

the Rio Grande River basin in Colorado is the multiple regression (MR) model. Multiple

regression analysis offers a way to fit linear models in which the variables are

independent of time. Standing on April 1st (or standing on March 31), the SWE and flow

of January, February and March are known. Hence, a forecast of April's streamflow can

be made depending on the flow and SWE of January, February and March. The

Colorado State Engineer's Office uses multiple regression (MR) equations for forecasting

the "cumulative" monthly streamflow of the Rio Grande River basin. The forecast results

will be compared to the results of the periodic-TFM model. This will be shown in the

next section.

The monthly streamflows (1948-1977) are analyzed by using multiple regression.

The equations are shown below :

Q1 = Cumulative flow through March

Q2 = Cumulative flow through April

Q3 = Cumulative flow through May

Q4 = Cumulative flow through June

Q5 = Cumulative flow through July

Q6 = Cumulative flow through August

Q7 = Cumulative flow through September

Q8 = Cumulative flow through October (except for Los Pinos River, it

is April through October)
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Q9 = Cumulative flow through November

Q10= Cumulative flow through December

WC1= April 1st (March 31) snow water content

WC2= May 1st (April 30) snow water content

1. Los Pinos River near Ortiz

(1) April first forecast

Q2 = 2.725 Q1 + 13.68 WC1 + 5199.7

Q3 =-0.419 Ql + 1794.26 WCI + 15565.1

Q4 =-2.580 Ql + 3277.27 WCl + 11866.8

Q5 =-3.019 Ql + 3671.35 WCl + 9972.6

Q6 =-3.183 Q1 + 3772.40 WCl + 10704.5

Q7 =-3.247 Ql + 3797.30 WCl + 11691.1

Q8 =-4.146 Q1 + 3797.60 WCl + 12637.9

(2) May first forecast

Q3 = 1.410 Q2 - 3.38 Ql + 1811.9 WCl + 0.0 WC2 + 4352.0

Q4 = 2.081 Q2 - 4.99 Ql + 0.0 WCl + 2442.9 WC2 + 16923.8

Q5 = 2.084 Q2 - 5.00 Ql + 0.0 WCl + 2753.4 WC2 + 16581.8

Q6 = 2.025 Q2 - 4.86 Ql + 0.0 WCl + 2846.3 WC2 + 17741.5

Q7 = 2.004 Q2 - 4.81 Ql + 0.0 WCl + 2888.7 WC2 + 18526.8

Q8 = 1.985 Q2 - 4.76 Ql + 0.0 WCl + 2945.8 WC2 + 15560.0

(3) June first forecast

Q4 = - 0.807 Q2 + 1.394 Q3 + 980.238 WCl + 0.0 WC2 - 8528.412
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Q5 = - 0.997 Q2 + 1.455 Q3 + 1311.911 WCl + 0.0 WC2 - 10799.074

Q6 = - 1.079 Q2 + 1.452 Q3 + 1436.511 WCl + 0.0 WC2 - 9730.125

Q7 = - 0.705 Q2 + 1.313 Q3 + 882.054 WCl + 656.969 WC2 - 6161.412

Q8 = - 0.813 Q2 + 1.338 Q3 + 852.876 WCl + 690.022 WC2 - 7880.633

(4) July first forecast

Q5 = 200.738 WCl + 1.063 Q4 - 3864.884

Q6 = 314.149 WCl + 1.061 Q4 - 3857.851

Q7 = 314.398 WCl + 1.069 Q4 - 3158.031

Q8 = 316.462 WCi + 1.080 Q4 - 6193.543

(5) August first forecast

Q6 = 1.316 Q5 - 0.33 Q4 + 1528.8

Q7 = 1.407 Q5 - 0.42 Q4 + 2407.9

Q8 = 1.566 Q5 - 0.58 Q4 - 302.0

(6) September first forecast

Q7 = 1.290 Q6 - 0.287 Q5 + 411.15

Q8 = 1.584 Q6 - 0.575 Q5 - 2916.90

(7) October first forecast

Q8 = 1.600 Q7 - 0.594 Q6 - 3501.30

II. The Conejos River at Mogote

(1) April first forecast

Q2 = 1.858 Ql + 16.302 WCl + 7478.868

Q3 = 3.352 Ql + 2672.829 WCl + 22101.048
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Q4 = 5.800 Ql + 6699.421 WCl + 14374.223

Q5 = 6.302 Ql + 9263.342 WCl + 6021.483

Q6 = 5.891 Ql + 9980.287 WCl + 13637.581

Q7 = 5.777 Ql + 10037.763 WCl + 20134.652

Q8 = 6.123 Ql + 10056.591 WCl + 21830.556

Q9 = 6.510 Ql + 10450.114 WCl + 21507.972

QI0= 6.613 Ql + 10465.899 WCl + 23212.880

(2) May first forecast

Q3 =-1.757 Ql + 1.097 Q2 + 2459.202 WCl + O. WC2 + 48409.308

Q4 = 3.322 Ql + 1.292 Q2 + 2518.432 WCl + 5134.838 WC2 + 22064.553

Q5 = 5.231 Ql + 0.515 Q2 + 3767.340 WCl + 7636.339 WC2 + 20029.543

Q6 = 5.770 Ql + O. Q2 + 4444.404 WCl + 8080.084 WC2 + 29454.527

Q7 = 5.648 Ql + O. Q2 + 4098.860 WCl + 8668.324 WC2 + 37103.312

Q8 = 5.989 Ql + O. Q2 + 3926.704 WCl + 8947.083 WC2 + 39344.727

Q9 = 6.365 Ql + O. Q2 + 3778.325 WCl + 9738.032 WC2 + 40570.700

QI0= 6.465 Ql + O. Q2 + 3696.151 WCl + 9881.006 WC2 + 42556.016

(3) June first forecast

Q4 = 2.991 Ql +0. Q2 +0.822 Q3 + 1977.3 WCl + 3687.1 WC2 + 3434.121

Q5 = 5.231 Q1 +0.515 Q2 +0. Q3 + 3767.3 WCI + 7636.3 WC2 + 20029.543

Q6 = 5.770 Q1 +0. Q2 +0. Q3 + 4444.4 WCl + 8080.1 WC2 + 29454.527

Q7 = 4.764 Ql +0. Q2 +0.264 Q3 + 3448.7 WCl + 8588.0 WC2 + 31115.731

Q8 = 5.260 Ql +0. Q2 +0.218 Q3 + 3390.1 WCI + 8880.8 WC2 + 34403.601
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Q9 = 6.365 Ql +0.

QI0= 6.465 Ql +0.

Q2 +0.

Q2 +0.

Q3 + 3778.3 WCl + 9738.0 WC2 + 40570.700

Q3 + 3696.2 WCl + 9881.0 WC2 + 42556.016

(4) July first forecast

Q5 = -0.826 Q3 + 1.479 Q4 + 2035.159 WC2 + 13737.839

Q6 = -0.941 Q3 + 1.524 Q4 + 3020.592 WC2 + 22485.564

Q7 = -0.971 Q3 + 1.541 Q4 + 3218.481 WC2 + 27368.193

Q8 = -1.019 Q3 + 1.556 Q4 + 3316.443 WC2 + 34343.324

Q9 = -1.049 Q3 + 1.550 Q4 + 4057.991 WC2 + 41688.414

Q10= -1.051 Q3 + 1.549 Q4 + 4123.882 WC2 + 44545.056

(5) August first forecast

Q6 = -0.421 Q2 +0. Q3 +0. Q4 + 1.064 Q5 +340.1 WCI + 7613.067

Q7 = -0.624 Q2 +0.233 Q3 -0.333 Q4 + 1.308 Q5 -141.3 WCl + 11253.088

Q8 = O. Q2 +0. Q3 -0.388 Q4 + 1.414 Q5 -402.2 WCl + 12903.124

Q9 = -0.526 Q2 +0.444 Q3 -0.871 Q4 + 1.719 Q5 -566.6 WCl + 17315.350

QI0= -0.532 Q2 +0.473 Q3 -0.920 Q4 + 1.759 Q5 -678.1 WCl + 19293.695

(6) September first forecast

Q7 = 1.179 Q6 - 0.170 Q5 + 2219.267

Q8 = 1.243 Q6 - 0.228 Q5 + 6127.322

Q9 = 1.261 Q6 - 0.203 Q5 + 6449.658

QI0= 1.281 Q6 - 0.221 Q5 + 8658.509

(7) October first forecast

Q8 = 1.350 Q7 - 0.347 Q6 + 2840.691
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Q9 = 1.701 Q7 - 0.663 Q6 + 2393.926

Q10= 1.772 Q7 - 0.731 Q6 + 4266.150

(8) November first forecast

Q9 = 1.640 Q8 - 0.603 Q7 - 2469.715

QI0= 1.787 Q8 - 0.747 Q7 - 955.047

(9) December first forecast

QIO = 1.067 Q9 - 0.064 Q8 + 1937.609

III. The Rio Grande River at Del Norte

(1) April first forecast

Q2 = 1.293 WCl + 2.365 Ql - 5856.478

Q3 = 8606.811 WCl + 4.602 Ql - 42285.713

Q4 = 22370.001 WCl + 5.635 Ql - 69655.461

Q5 = 31514.500 WCl + 5.322 Ql - 85845.171

Q6 = 35314.086 WCl + 4.665 Q1 - 66098.511

Q7 = 36096.973 WCI + 4.259 Ql - 38175.529

Q8 = 36663.294 WCl + 4.198 Ql - 22496.189

Q9 = 37012.085 WCl + 4.163 Ql - 13696.109

Q10= 37218.594 WCl + 4.076 Ql - 1246.523

(2) May first forecast

Q3 = 2.55836 Ql +0.86449 Q2 + 7131.365 WCl -20097.870

Q4 = 3.56534 Ql + 1.75166 Q2 + 8916.738 WCi + 14057.034 WC2-73928.i43

Q5 = 3.03514 Ql +2.39070 Q2+ 10436.153 WCi +22835.454 WC2-104461.262
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Q6 = O. Ql +4.25523 Q2 + O. WCl + 36508.462 WC2 - 75066.235

Q7 = O. Ql +4.18416 Q2 + O. WCl +37656.716 WC2 - 54726.133

Q8 = O. Ql +4.25090 Q2 + O. WCl +38137.450 WC2 - 42891.121

Q9 = O. QI +4.25746 Q2 + O. WCl +38540.780 WC2 - 33047.004

QI0= O. Ql +4.27500 Q2 + O. WCl +38776.700 WC2 - 25721.400

(3) June first forecast

Q4 = 22167.564 WCl - 0.859 Q2 + 0.406 Q3 + 99145.52

Q5 = 31323.307 WCl - 0.832 Q2 + 0.393 Q3 + 73038.82

Q6 = 35146.496 WCI - 0.832 Q2 + 0.393 Q3 + 70424.24

Q7 = 35943.968 WCl - 1.041 Q2 + 0.492 Q3 + 78923.35

Q8 = 36512.481 WCl - 1.088 Q2 + 0.514 Q3 + 91280.87

Q9 = 36862.529 WCl - 1.134 Q2 + 0.536 Q3 + 97644.04

QI0= 37072.164 WCl - 1.083 Q2 + 0.512 Q3 + 108491.5

(4) July first forecast

Q5 = O. Ql -0.375 Q3 + 1.392 Q4 + O. WCl +4374.646 WC2 -1144.079

Q6 = O. Ql -0.604 Q3 + 1.479 Q4 +4334.632 WCl +4158.530 WC2 -12675.132

Q7 =-1.943 Ql -0.520 Q3 + 1.648 Q4 + O. WCl +4713.998 WC2 +40520.499

Q8 =-2.426 Ql -0.497 Q3 + 1.686 Q4 + O. WCl +4054.769 WC2 +62172.846

Q9 =-2.569 Ql -0.528 Q3 + 1.717 Q4 + O. WCl +3944.711 WC2 +75966.596

QIO=-2.661 Ql -0.548 Q3 + 1.741 Q4 + O. WCl +3765.227 WC2 +85979.350

(5) August first forecast

Q6 = 1812.232 WeI + 1.064 Q5 - 8732.255
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Q7 = 506.971 WCl + 1.131 Q5 - 1024.515

Q8 = 231.634WCl + 1.158Q5 + 10011.53

Q9 = 640.883 WCl + 1.156 Q5 + 17800.47

QI0= - 29.040 WCl + 1.184 Q5 + 24613.21

(6) September first forecast

Q7 = 1.337 Q6 - 0.342 Q5 + 11276.498

Q8 = 1.406 Q6 - 0.398 Q5 + 23075.514

Q9 = 1.511 Q6 - 0.503 Q5 + 31805.717

QI0= 1.561 Q6 - 0.551 Q5 + 39086.83

(7) October first forecast

Q8 = 1.323 Q7 - 0.314 Q6 + 8021.127

Q9 = 1.472 Q7 - 0.455 Q6 + 14381.271

QI0= 1.548 Q7 - 0.526 Q6 + 20408.532

(8) November first forecast

Q9 = 1.394 Q8 - 0.390 Q7 + 3012.132

Q10= 1.572 Q8 - 0.563 Q7 + 7694.574

(9) December first forecast

Q10 = 1.402 Q9 - 0.399 Q8 + 3574.11

7.6 Comparison of the Forecast

From the forecast results shown in sections 7.1-7.4 , we can see that the periodic­

TFM model gives the best forecast results. In this section, we will compare the

forecasting ability of the periodic-TFM model to the Multiple Regression model. A

7-33



comparison of the forecast results will be assessed using a graphic comparison, the root

mean square deviation (RMSD) and the maximum absolute deviation (MAD), i.e.

RMSD =

and

MAD = max Iet +k I, for k=1,2,...,m

where e, is the deviation between the forecasted value and the historical value.

Since the monthly streamflows of 1948-1977 have been analyzed by the Colorado

State Engineer's Office using the multiple regression (MR) method, testing of its

forecasting ability will be proceeded by an analysis of the flow data from 1948 to 1977

and validation of the monthly flow in the years of 1978-1982. Some numerical

computation procedure will be presented.

7.6.1 The Los Pinos River Basin

The periodic-TFM method presented in Section 7.4 for forecasting the monthly

streamflow of the Los Pinos River, gives a better forecast result than other models

studied. A demonstration of the computation procedure will be presented. The forecast

equation of the periodic-TFM method for the Los Pinos River near Ortiz is given by Eq.

(7.4.15) and (7.4.16), i.e

~,1:(L) = c1> l,-r+L E[Zy,1:+L-l] - 0.207 E[xv,'t+J

+ 0.241 E[xv,'t+L-l] +0.324E[xv;c+L_2]

and
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A

where CPt,T has the values shown below:

T 1 2 3 4 5 6
A

CPt,T 0.829 0.771 0.226 0.216 0.126 0.462

T 7 8 9 10 11 12
A

CPt,T 0.797 0.584 0.548 0.575 0.954 0.731

Assume we want to forecast the streamflow of April by standing in March (or April 1)

1978. We already know the actual streamflow and the SWE of January, February and

March. These are shown below:

Streamflow SWE

Jan 1978 602 12.1

Feb. 1978 730 17.1

Mar. 1978 1073 29.7

Then, by subtracting the historical monthly mean and dividing the historical monthly

standard deviation, the deseasonalized streamflow and the deseasonalized SWE are

shown below:

Deseasonalized Flow Deseasonalized SWE

Jan 1978 -1.0016 -0.1738

Feb. 1978 -0.6449 0.0867

Mar. 1978 -0.8198 1.6293

The one step ahead forecast of the April deseasonalized streamflow can be computed by

7-35



using Eq. (7.4.15), i.e

£1978,3(1) =cPl,4E[ZI978,3] - 0.207E[X1978,J

+ O.24E[XI978,3] + O.324E[xI978.2]

=cPl,4Z1978,3 - 0.207 X I978,3(1)

+ 0.24x1978,3 + 0.324xI978.2

From Eq. (7.4.16), we know that

XI9783(1) = O.774x1978 3= 1.2610, ,

7.6.1)

(7.6.2)

Substituting (7.6.2) into (7.6.1) gives a forecast value for the April deseasonalized

streamflow; i.e.

£1978,3(1) =(0.216) (-0.8198) - (0.207)(1.2610)

+ (0.24)(1.6293) + (0.324)(0.0867)= -0.01898

The forecasted actual April streamflow can be obtained by multiplying the historical

April standard deviation and adding the April mean value, i. e.

Y19784 = (-0.01898)(6888.070) + 12062.87,
::: 11932.13

Using the same method, when we stand at the end of April (or May 1), the one

step ahead forecast for May streamflow can be obtained by using

£1978,4(1) = cP l,sE[ZI978,4] - 0.207E[XI978,S]

+ 0.24E[XI978,4] + 0.324E[XI978,3]

=cP 1,5Z1978,4 - 0.207 X I978,4(1)

+ 0.24x1978,4 + 0.324x1978,4

(7.6.3)

where only the deseasonalized SWE of May is unknown. It can be forecasted using

(7.6.4)
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£1978,4(1) = 0.774x1978,4

Then May streamflow can be forecasted by Eqs. (7.6.3) and (7.6.4).

The one step ahead forecast results of the streamflow (1978-1982) using the

periodic-TFM method are shown in Fig. 7.59. In addition, the forecast results of using

multiple regression (MR) equations of section 7.5 are also plotted in Fig. 7.59. One can

observe that the periodic-TFM method gives better forecast results than the multiple

regression model.

Next, we forecast the streamflow with lead time L=I,2, ... ,7. For example, if we

need to forecast the April, May, June,... streamflow by standing at the end of March

1978, then the only information available is the streamflow and SWE before April 1978.

The streamflow forecast can be computed by using Eqs. (7.4.15), (7.4.16) and (7.4.17),

I.e

For lead time L =1

Based on Eq. (7.6.1), the forecasted values are

A

April deseasonalized flow zl978,3(1) = -0.01898 (7.6.5)

April actual flow

For lead time L=2

Y1978,4 = 11932.13

£1978,3(2) =cPt.SE[Z1978,4] - 0.207 E[xI978.S]

+ 0.24 E[XI978,J + 0.324 E[X1978.3]

=cP15£1978 3(1)- 0.207 £19783(2)I' .

+ 0.24£1978,3(1) + 0.324x1978,3
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where

and

~1978,3(1) = 0.774 X1978,3 = 1.261
,. ,.
Xl978,3(2) = 0.774 X1978,3(1) = 0.976

(7.6.7)

(7.6.8)

Substituting Eqs. (7.6.5), (7.6.7) and (7.6.8) into (7.6.6) gives the forecasted

May deseasonalized streamflow
,.
ZI9783(2) = (0.126)(-0.01898)-(0.207)(0.976) + (0.24)(1.261),

+(0.324)(1.6293) = 0.6261

Then, May streamflow forecast is computed by
,.
Y1978,5 = (0.6261)(16963.010) + 32025.83 = 42646.37

By using the same method shown above, the forecast with lead time L=3,4, .. can

be obtained.

When we stand at the end of June, the SWE does not contribute to the streamflow

of July, August, ... ,December. This can be seen from the impulse response function of

Fig. 7.54. Hence, the streamflow forecast after June will be different from those of

earlier months. By looking at Eq. (7.4.14), we can delete all SWE terms which gives

Zv,T = CPl,T Zv,T-l (7.6.9)

This is a PAR(I) model. If we re-estimate the parameters of CPl,T by using the least

squares method, we get

T 1 2 3 4 5 6
,.
CPl ,T 0.829 0.771 0.226 0.227 0.171 0.752

T 7 8 9 10 11 12
,.
CPl,T 0.960 0.584 0.548 0.587 0.951 0.714

By standing at the end of March, the streamflow forecasts for Los Pinos River
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(7.6.10)

near Ortiz with lead times L= 1,2, ... ,7 are shown in Fig. 7.60. Then the cumulative

streamflow was computed and was shown in Fig. 7.61. By standing at the end of April

and May, the forecast of the May, June actual streamflow and the cumulative streamflow

with lead time L=1,2, ... ,6 are shown in Figs. 7.62-7.65. By standing in the June, July,

August and September, the forecast of the July, August, September and October, are

shown in Figs. 7.66-7.73.

Then, the forecasted root mean square deviation (RMSD) and the maximum

absolute deviation (MAD) are used for comparing the forecast ability of the periodic­

TFM method and the multiple regression method. The computed values of the RMSD

and MAD are shown in Table 7.2. From the Figs. 7.60-7.73 and Table 7.2, we can see

that the periodic-TFM method gives better results for forecasting the monthly streamflow

of the Los Pinos River near Ortiz than the multiple regression method.

7.6.2 The Conejos River Basin

There are two SWE collecting sites in the Conejos River Basin, the Platoro and

River Springs stations (see Fig. 6.1). The average SWE of the Platoro and the River

Springs sites will be used as the input to the Conejos River system. After the SWE's

were deseasonalized, an AR(l) model can be fitted to the deseasonalized SWE of

January, February, March and April. This is written as

xt = 0.903 Xt- 1 + e,

and it can be used for forecasting the deseasonalized SWE of May.

Then the streamflow Qv..,. is also deseasonalized by using
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and the deseasonalized streamflow was filtered by a PAR(1) model

7 =<j) 7 +y
-v,~ l,.t-v,~-l v,~

(7.6.11)

(7.6.12)

After estimating the residual YV,T , an input-output model with the residual YV,T as the

output and with the deseasonalized SWE as the input, can be formulated. The impulse

response function is computed and is shown in Fig. 7.74. This figure suggests the model

of

YV,T = -0.178 XV,T + 0.400 xv,T-l + 0.054 xv,T-2 + 0.196 xv,T-3

-0.230 XV,T-4 - 0.032 xv,T-5 + 0.221 xv,T-6 + Nv,T (7.6.13)

The noise Nv,T is estimated from equation (7.6.19) and has an AR(1) structure given by

with Gt- WN(0,0.6). Substituting (7.6.13) and (7.6.14) into (7.6.12) gives

A A

Zv,T = ('Pl,r-0.114)Zv,T-l + 0.114 'Pl,T-l Zv,T-2 - 0.178 XV,T

+ 0.38 XY,T-l + 0.100 Xy,T-2 + 0.202 Xv,T-3 - 0.208 XV,T-4

- 0.06 Xy,T-5 + 0.217 Xv ,T-6 + 0.025 Xv,T-7 + BV,T

(7.6.14)

where 'Pl,T is estimated by PI,T' Then the non-linear least squares method is used to

estimate the parameters. The final model is
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(A A
Zv,T = cP 1 T-0.263)Zv r-I + 0.263 CPl r-l z; T-2 - 0.329 x, T, , " ,.

+ 0.363 Xv,T-l + 0.167 Xv,T-2 + 0.321 Xv,T-3 + 0.01 XV,T-4

- 0.351 xv,T-5 + 0.369 xv,T-6 - 0.039 xv,T-7 + e*V'T

A

with e·V,T- WN(0,0.42) and CPl,T has values of

(7.6.15)

T 1 2 3 4 5 6
A

CPI,T 0.557 0.689 0.273 0.421 0.288 0.196

T 7 8 9 10 11 12
A

CPl,T 0.744 0.569 0.532 0.622 0.613 0.910

The cross correlation between the residual e*V'T of the noise NV,T and the input series XV,T

was checked to be uncorrelated, hence Eqs. (7.6.15) and (7.6.10) can be used to

forecast the streamflow of the Conejos River.

The one step ahead forecast of the streamflow (1978-1982) is shown in Fig. 7.75.

The forecasts with lead time L=1,2, .. by standing in the March is shown in Fig. 7.76.

In addition, the multiple regression equations of Section 7.5 are also used, and the

forecast results are shown in Figs. 7.75-7.76. From Figs. 7.75-7.76, we can see that

both forecasting methods underestimate the high flows in the summer time.

In order to overcome underestimation of the high flow, the SWE data was re-

examined. The SWE at Cumbres Pass in the Los Pinos River basin (see Fig. 6.1) was

found to have some contribution to streamflow in the Conejos River basin. By taking the

SWE at Cumbres Pass to be one of the inputs to the Conejos River basin, the average

SWE in the Conejos River basin is computed by

Average SWE = 0.44 Cumbres Pass + 0.12 Platoro + 0.44 River Springs
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The average SWE is deseasonalized and fitted to an AR(l) model, i.e.

(7.6.16)

By using the residual of Eq. (7.6.12) as the output, and using the new deseasonalized

SWE as the input to the Conejos River system, the impulse response function can be

computed and shown in Fig. 7.77. This suggests the input-output model can be written

as

Yv,T=0.36xv,T_I +0.062xv ,T_2 +0. 15xv,T_3 -0. 183Xv,T-4 + NV'T

The noise Nv,T' estimated from Eq. (7.6.23), is model as

(7.6.17)

(7.6.18)

with et - WN(0,0.68). Substituting Eqs. (7.6.17) and (7.6.18) into (7.6.12) gives

A A

Zv,T = (<PI,T -0.039)Zv,T_I +0.039 <PI,T-I Zv,T-2 +0.36 xv,T-I +0.076 xv,T-2

+ 0.152 xv ,T-3 -0.177 XV,T-4 -0.007 X V,T-5 + eV,T (7.6.19)

After re-estimating the parameters of Eq. (7.6.19) using the non-linear least squares

algorithm, the input-output model is obtained as

A A

Zv,T= (<PI ,T-0.263)Zv,T_I + 0.263<pI ,T-IZv,T-2 + O. 040Xv,T_l + 0.233xv,T_2

A

with e·V,T- WN(O,0.45) and <PI ,T has the values of
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T 1 2 3 4 5 6
A

<PI,T 0.557 0.689 0.258 0.425 0.283 0.487

T 7 8 9 10 11 12
A

<PI.T 0.620 0.533 0.480 0.681 0.645 0.883

Then, the residual e*V,T of the new noise is checked to be uncorrelated to the input XV,T as

shown in the Fig.7.78. Hence, Eq. (7.6.26) and (7.6.22) can be used to forecast the

streamflow of the Conejos River.

In order to forecast the streamflow after June, it is assumed that the SWE does

not contribute to the streamflow after June. Hence the SWE of Eq. (7.6.26) is deleted

and the parameters re-estimated. The equation for forecasting the streamflow of July,

August, September and October can be written as

A A

Zv,T = (<PI,T -0.287) Zv,T-I +0.287 <PI,r-1 Zv,T-2

A

where CPI T has the values of,

(7.6.21)

T 1 2 3 4 5 6
A

<PI,T 0.557 0.689 0.323 0.205 0.275 0.000

T 7 8 9 10 11 12
A

CPI,T 1.000 0.675 0.497 0.703 0.653 0.900

In order to compare the forecasting ability of the periodic-TFM method with the

multiple regression method, the multiple regression equations in Section 7.5 of the

Conejos River basin are re-estimated by using new SWE input data. The multiple

regression equations are shown below:
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(1) April first forecast

Q2 = 1.967 QI + 472.63 WCI + 364.948

Q3 = 3.336 Ql + 2674.360 WCl + 17548.369

Q4 = 4.461 Ql + 7402.101 WCl + 8969.909

Q5 = 3.649 Ql + 10740.964 WCl + 1553.323

Q6 = 2.831 Ql + 11649.765 WCI + 10204.634

Q7 = 2.637 Ql + 11805.732 WCl + 16328.286

Q8 = 2.958 Ql + 11884.324 WCl + 17616.392

(2) May first forecast

Q3 = 1.127 Ql + 1.123 Q2 + 2143.700 WCl + O. WC2 + 17138.616

Q4 = 1.530 Ql + 1.666 Q2 + 3087.415 WCl + 3981.357 WC2 + 18805.765

Q5 = 1.551 Ql + 1.327 Q2 + 4882.531 WCl + 5904.384 WC2 + 16557.157

Q6 = 3.238 Ql + O. Q2 + 7491.555 WCl + 4693.325 WC2 + 22515.994

Q7 = 3.107 Ql + O. Q2 + 7011.242 WCl + 5411.486 WC2 + 30523.499

Q8 = 3.460 Ql + O. Q2 + 6751.924 WCl + 5792.881 WC2 + 32812.069

(3) June first forecast

Q4 = 1.853 Q1 +0. Q2 +0.842 Q3 + 3078.4 WCI + 2337.7 WC2 + 321.436

Q5 = 1.551 Q1 + 1.327 Q2 +0. Q3 + 4882.5 WCI + 5904.4 WC2 + 16557.157

Q6 = 3.238 Q1 +0. Q2 +0. Q3 + 7491.6 WCl + 4693.3 WC2 + 22515.994

Q7 = 1.497 Ql +0. Q2 +0.492 Q3 + 5366.9 WCl + 5782.2 WC2 + 22861.493

Q8 = 1.982 Ql +0. Q2 +0.452 Q3 + 5241.8 WCl + 6133.3 WC2 + 25775.437

(4) July first forecast
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Q5 = -0.727 Q3 + 1.475 Q4 + 1715.977 WC2 + 5032.148

Q6 = -0.818 Q3 + 1.554 Q4 + 2316.507 WC2 + 7977.331

Q7 = -0.778 Q3 + 1.516 Q4 + 2837.810 WC2 + 12476.207

Q8 = -0.787 Q3 + 1.494 Q4 + 3124.460 WC2 + 19625.725

(5) August first forecast

Q6 = -0.375 Q2 +0. Q3 +0. Q4 + 1.070 Q5 + 347.1 WCl + 4978.874

Q7 = -0.639 Q2 +0.238 Q3 -0.267 Q4 + 1.283 Q5 - 319.4 WCl + 8466.812

Q8 = o. Q2 +0. Q3 -0.339 Q4 +1.407 Q5 - 686.7 wei + 11164.030

(6) September first prediction

Q7 = 1.152 Q6 - 0.139 Q5 + 2145.523

Q8 = 1.195 Q6 - 0.175 Q5 + 5879.422

(7) October first forecast

Q8 = 1.340 Q7 - 0.337 Q6 + 3061.268

The one step ahead forecast of the streamflow is shown in Fig. 7.79. This shows

that both periodic-TFM method and the multiple regression method have improved the

forecast of the high flow in the summer time compared with Fig. 7.75.

Then, by standing at the end of March, April, ... , September, the forecasts of the

streamflow and the cumulative streamflow with lead time L= 1,2, ... are shown in Figs.

7.80-7.93. The root mean square deviation and the maximum absolute deviation of both

models are shown in Table 7.3. From Figs. 7.79-7.93 and Table 7.3, we can see that

both the periodic-TFM method and the multiple regression method give a good forecast

of the Conejos River streamflow, but the periodic-TFM method gives better results.
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7.6.3 The Rio Grande River Basin

Using the same method shown in the previous sections, the deseasonalized SWE

of January, February, March and April can be fitted by

(7.6.22)

After the deseasonalized streamflow was filtered by the PAR(I) model, the impulse

response function of the Rio Grande River basin is shown in Fig. 7.94. This figure

suggests an input-output model given as

s., = -0.185 xv,,, + 0.389 Xv,.,-l + Nv,.,

The noise Nv,." estimated from Eq. (7.6.23), id fitted by

with Gt- WN(0,0.402). Substituting (7.6.23) and (7.6.24) into (7.6.12) gives

A A

4,., = (lP1,., - 0.189)4,.,_1 + 0.189 lP1,.,-1 4 ,.,-2 - 0.185 xv ,.,

+ 0.354 Xv,.,-l + 0.07 Xv,.,-2 + Gv,.,

(7.6.23)

(7.6.24)

(7.6.25)

After estimating the parameters of Eq. (7.6.25) using the non-linear least squares

method, the model can be written as

A A

Zv., = (lPl., - 0.246)Zv .,-1 + 0.246 lPl .,-1 z; .,-2 - 0.276 Xv.,
t, , " ,

+ 0.384 Xv,.,-l + 0.323 Xv,.,-2 + e*v,.,

A

with G*v,.,- WN(0,0.278) and <PI,., has values of

(7.6.26)

T 1 2 3 4 5 6
A

<PI,., 0.800 0.883 1.000 0.468 0.494 0.344

T 7 8 9 10 11 12
A

<PI,., 0.843 0.973 0.553 0.756 0.970 0.933
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In order to forecast the streamflow after June, the SWE in Eq. (7.6.26) is deleted

to obtain a forecast equation for the months of July, August, September and October.

After re-estimating the parameters, the model can be written as

(7.6.27)

A

where 'PI T has the values of,

T 1 2 3 4 5 6
A

'PI,T 0.800 0.883 0.566 0.433 0.687 0.667

T 7 8 9 10 11 12
A

'PI ,T 1.000 0.931 0.559 0.756 0.922 0.908

The one step ahead forecast of the streamflow of the Rio Grande River near Del

Norte is shown in Fig. 7.95. The forecast of streamflow and cumulative streamflow with

lead time L =1,2, ... are shown in Figs. 7.96-7.109. The root mean square deviation and

the maximum absolute deviation are listed in Table 7.4 . From Figs. 7.95-7.109 and

Table 7.4, we can see that both the periodic-TFM method and the multiple regression

method give a good forecast of the streamflow, but the periodic-TFM method gives a

better forecast results for the one step ahead forecast, and a better forecast for lead time

L=I,2, ....

7.6.4 Summary of the Forecasting Results

(1) The forecasted monthly streamflow of the Los Pinos River near Ortiz shows that

the periodic-TFM method gives a much better forecast than the multiple

regression method.

(2) The forecast of the monthly streamflow of the Conejos River near Mogote using
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the average SWE of the Platoro and River Springs under-estimates the high flow

in the summer time.

(3) The forecasts of the Conejos River streamflow where the information of the SWE

at Cumbres Pass was added to the Conejos River basin gives a much better result.

The periodic-TFM method still shows a better forecasting ability than the

multiple regression approach.

(4) The Rio Grande River near Del Norte has more SWE input information than the

other basins. The forecasted results show that both the periodic-TFM method and

the multiple regression method give a good forecast, but the periodic-TFM

method gives slightly better results.

7.7 Forecasting with the Current Data Available

A comparison of the model presented in section 6-6 and the multiple regression

model was made using data from 1948-1977 to forecast streamflows for the years 1978­

1982. The years 1948-1977 were used because the Colorado State Engineer's Office has

already analyzed the data from this time period.

Since the SWE is available from 1949 to present, the data from 1949-1983 will

be analyzed, and a validation done for the years of 1984-1988. No detail of the analysis

will be presented, only the final equation and some graphs will be given.

7.7.1 The Los Pinos River Basin

After analyzing the data of the Los Pinos River basin, the periodic -TFM method

gives

(7.7.1)
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with e*V,T- WN(0,0.333) and rp values of
I,T

r 1 2 3 4 5 6
A

<Pl,T 0.838 0.745 0.229 0.252 0.123 0.483

r 7 8 9 10 11 12
A

<PI,T 0.765 0.561 0.491 0.606 0.910 0.777

The equation for the streamflow after June can be written as
A

z..,T = <Pl,T Zv ,T-I

A

where <Pl,T has values of

(7.7.2)

r 1 2 3 4 5 6
A

<Pl,T 0.838 0.745 0.229 0.257 0.126 0.765

r 7 8 9 10 11 12
A

<Pl,T 0.946 0.561 0.491 0.626 0.911 0.750

The one step ahead forecast of the streamflow is shown in the Fig. 7. 110. The

forecasts by standing in the March with lead time L=I,2, ... ,7 is shown in Fig. 7.111.

The result shows that the high flow of summer time in the 1985 and 1986 were under-

estimated.

7.7.2 The Conejos River Basin

Using the new SWE of Section 7.6.2 as the input, the data of the year 1949-1983

were analyzed. They give the model
A A

z..,T = (<PI,T -0.238) zv,T-l +0.238 <Pl ,T-l z.. ,T-2 +0.003 xv,T-I

+0.258 xv ,T-2 + 0.324 xv ,T-3 +0.075 XV ,T-4 +0.202 XV,T-5

+0.131 xv,T-6 + 0.050 xv,T-7 + e*V,T
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with e·V,T- WN(0,0.453) and ~ has the values of
1,T

T 1 2 3 4 5 6
A

'Pl,T 0.636 0.519 0.000 0.420 0.248 0.264

T 7 8 9 10 11 12
A

'PI,T 0.541 0.545 0.469 0.716 0.559 0.746

The equation for forecasting the streamflow of July, August, September and

October can be written as

A A

Zv,T = ('Pl,T -0.281) zv,T-l +0.281 'Pl,T-l Zv,T-2
A

where 'Pl,T has the values of

(7.7.4)

T 1 2 3 4 5 6
A

'Pl,T 0.636 0.519 0.230 0.202 0.304 0.304

T 7 8 9 10 11 12
A

'Pl,T 1.000 0.684 0.487 0.744 0.610 0.782

The one step ahead forecast of the streamflow is shown in Fig.7.112. The forecast

by standing in the March with lead time L = 1,2, ... ,7 is shown in Fig. 7.113. The result

shows that the high flow of summer time in the 1985 and 1986 are under-estimated.

7.7.3 The Rio Grande River Basin

The data of the years 1949-1983 was analyzed, which give an input-output model

as

A A

Zv,T = ('Pl,T - 0.100)Zv,7_1 + 0.100 'Pl,7-1 zv,7-2 - 0.228 XV,T

+ 0.270 x, T-l + 0.229 x, 7-2 + 0.268 x, 7-3 + e·vT, , "

A

with e·V,T- WN(0,0.289) and 'Pl,T has values of
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T 1 2 3 4 5 6
A

CPI T 0.832 0.887 1.000 0.388 0.305 0.167

T 7 8 9 10 11 12
A

CPI T 0.554 0.700 0.566 0.711 0.868 0.900

The equation for the streamflow after June can be written as

A A

Zv,T = (CPI'T - 0.173)Zv,T_I + 0.173 CPI ,T-I Zv,T-2 + 8*V,T
A

where CPI T has the values of

(7.7.5)

T 1 2 3 4 5 6
A

CPI T 0.832 0.887 0.545 0.423 0.481 1.000

T 7 8 9 10 11 12
A

CPt T 0.921 0.874 0.548 0.739 0.854 0.865

The one step ahead forecast of the streamflow is shown in the Fig. 7. 114, and the

forecasting by standing at the end of March with lead time L= 1,2, ... ,7 is shown in Fig.

7.115. The results show that the high flow in summer time of 1985 and 1986 were also

underestimated.

7.7.4 Summary of the Forecasting Results

The forecast results of the monthly streamflow (1984-1988) show that the

streamflow were under-estimated in the years of 1985 and 1986. Since all three basins

have the same problem of underestimating the flow in the yearof 1985 and 1986, we will

assume that there must be some other input factor besides the SWE existing in the river

basin without being considered. In order to solve this problem, the additional input

factors will be put into the multiple input-multiple output model of the next chapter.

7-51



Table 7.1 Comparison of one step ahead forecast (Los Pinos River
near Ortiz, 1978-1982)

I Model I RMSD I MAD I
Deseasonalized ARMA [see Fig. 7.7 ] 8870 27988

PAR(l) [see Fig. 7.20 ] 7504 23316

PARMA(1,1) [see Fig. 7.25 ] 8577 29394

Log-TFM [see Fig. 7.44 ] 6714 22323

No Log-TFM [see Fig. 7.50 ] 6097 21681

TFM-PAR(I) Noise [see Fig. 7.52 ] 6573 24286

Periodic TFM [see Fig. 7.58 ] 4918 13801

Mul-Regression [see Fig. 7.59 ] 7021 78732

Table 7.2 The Comparison of the forecast ability (Los Pinos River near Ortiz, 1978­
1982)

Root Mean Square Deviation Maximum Absolute Deviation

Periodic-TFM Multi-Regres Periodic-TFM Multi-Regres

Apr 6036 7838 15636 28652

May 4918 7506 13801 27345

June 2336 3760 4493 7507

July 1510 1790 4105 3709

Aug 1121 1219 1438 1143

Sep 1179 1408 444 499

Oct 670 1187 263 353
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Table 7.3 The Comparison of the forecast ability (Conejos River near Mogote, 1978­
1982)

Root Mean Square Deviation Maximum Absolute Deviation

Periodic-TFM Multi-Regres Periodic-TFM Multi-Regres

Apr 55906 61844 21055 21635

May 56048 64419 23135 23867

June 50064 81071 21178 43920

July 35226 49492 19162 21566

Aug 27062 32800 15093 20598

Sep 23141 26627 14922 15280

Oct 16956 23345 11731 12610

Table 7.4 The Comparison of the forecast ability (Rio Grande River near Del Norte,
1978-1982)

Root Mean Square Deviation Maximum Absolute Deviation

Periodic-TFM Multi-Regres Periodic-TFM Multi-Regres

Apr 46782 48112 61786 63098

May 47578 53881 48572 74751

June 53110 39761 67243 49684

July 44282 44908 44396 48988

Aug 36902 37722 45643 45557

Sep 29311 29279 41452 39801

Oct 15798 17838 17262 35629
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Fig. 7.49

Autocorrelation function of residual (Los Pinos River Basin near Ortiz;
rational TFM model)
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Fig. 7.60 April 1st forecasting of the monthly flow (Los Pinos River Basin)
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Fig. 7.62 May 1st forecasting of the monthly flow (Los Pinos River Basin)
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Fig. 7.63 May 1st forecasting of the cumulative flow (Los Pinos River Basin)
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Fig. 7.68 August 1st forecasting of the monthly flow (Los Pinos River Basin)
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Fig. 7.69 August 1st forecasting of the cumulative flow (Los Pinos River Basin)
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Fig. 7.71 September 1st forecasting of the cumulative flow (Los Pinos River Basin)
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Fig. 7.72 October 1st forecasting of the monthly flow (Los Pinos River Basin)
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Fig. 7.74 The impulse response function (Conejos River near Mogote)
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Fig. 7.77

April 1st forecasting of the monthly flow (Conejos River near Mogote)
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Fig. 7.80 April 1st forecasting of the monthly flow (Conejos River near Mogote;
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Fig. 7.81 April 1st forecasting of the cumulative flow (Conejos River near Mogote;
new SWE)
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Fig. 7.82 May 1st forecasting of the monthly flow (Conejos River near Mogote;
new SWE)
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Fig. 7.83 May 1st forecasting of the cumulative flow (Conejos River near Mogote;
new SWE)



140..,---------------

~ 120
~

t 100
~"
g ~ 80

'-" c
~ ~ 60o ::J
-J 0
LL. ~ 40
~ .-
~'-'
LaJ 20
a::
t1 O~~~dL--1IiId!L. ..IllEL..:~&£~~

-20 "'Trrr'T'TTT1rTTTTTTTT'1"'I'T'!T"'""'T'rT"n~T'TT'M~~I"T'I""I"I'TTTT"'

19

.......... Historical • Periodic-TFM)( MR

Fig. 7.84 June 1st forecasting of the monthly flow (Conejos River near Mogote;
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Fig. 7.86 July 1st forecasting of the monthly flow (Conejos River near Mogote; new
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Fig. 7.90 September 1st forecasting of the monthly flow (Los Pinos River near
Ortiz; new SWE)
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Fig. 7.92 October 1st forecasting of the monthly flow (Los Pinos River near Ortiz;
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Fig. 7.94 The impulse response function (Rio Grande River near Del Norte)
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Fig. 7.96 April 1st forecasting of the monthly flow (Rio Grande River near Del
Norte)
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Fig. 7.97 April 1st forecasting of the cumulative flow (Rio Grande River near Del
Norte)
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Fig. 7.98 May 1st forecasting of the monthly flow (Rio Grande River near Del
Norte)
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Fig. 7.99 May 1st forecasting of the cumulative flow (Rio Grande River near Del
Norte)
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CHAPTER VIn

FORECASTING BASED ON THE MULTIPLE INPUT-SINGLE OUTPUT MODEL

8.1 Introduction

From the forecasting results shown in Chapter 7, we know that the single input­

single output PAR(l) Residual-Transfer Function Model gives better forecasting result

than other models. This was shown by comparing the plots of forecasts vs. historical

values, root mean square deviation (RMSD) and the maximum deviation (MAD) between

different models. In the last section of Chapter 7, we also found that the forecasts of

streamflow in both 1985 and 1986 underestimated the high flow in the summer time.

Since all three rivers in this research produced the same result for the summers of 1985

and 1986, the multiple input-multiple output model will be tried in an attempt to

overcome this problem. We will assume that there are some factors influencing the

streamflow in both 1985 and 1986 that we did not consider in our initial analysis. In this

chapter, the climatic factors including temperature and precipitation will be considered.

The multiple input-single output model will now be discussed. The results show

that the one step ahead forecast (with lead time L= 1) of streamflow improved by using

the multiple inputs - single output model, but the forecasts made with lead time

L= 1,2,... (stand at time t without moving) did not show significant improvement. The

reason for this was that we need to forecast the multiple inputs before forecasting the

output. When we forecast too far from the standing point, the inaccurate forecasting of

the inputs is transferred to the output.
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8.2 Multiple Input-Single Output Forecasting

8.2.1 Introduction

From the forecasting results shown in Chapter 7, we know that the no-log

transformation of the original data gives better forecasting result then the log-transformed

data. Therefore we will not do any data transformation in this section. The upper Rio

Grande River Basin above Del Norte has more climatic gaging stations than the Los

Pinos River Basin and the Conejos River Basin, hence the forecasting application of the

multiple inputs, single output model will be applied in the upper Rio Grande River Basin.

The temperature and precipitation data of the gaging station Hermit 7 ESE and

Del Norte discussed in section 6.4 will be used here. Both the temperature and

precipitation data will be used jointly with the SWE data to forecast streamflow.

Forecasts using the two input-single output model and the three input-single output model

will be compared to the single input-single output model.

8.2.2 Using SWE and Temperature to Forecast Streamflow

The SWE data and the temperature data are first used as inputs to the system for

forecasting streamflow. After using the Thiessen polygon method to compute the average

SWE and temperature in the upper Rio Grande River above Del Norte, the average SWE

(1)
Xv,'t =

WV,T(l) and the temperature WV,T(2) are deseasonalized using

~,~ - tl~(Wl)

°t(W1)
(8.2.1)

(2)
Xv,'t =

~~1 - tlt(W2)

O~(W2)
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Then the monthly flow Qv,,. of the Rio Grande River at Del Norte is deseasonalized by

using

o'[(Q)

The deseasonalized flow zv,,,. is then filtered by PAR(l) model using

7 =<p 7 +y-v,r 1.T-v.T-l V.T

with CPI,,,. shown below:

(8.2.3)

(8.2.4)

l' 1 2 3 4 5 6
A

CPI,,. 0.832 0.887 0.545 0.423 0.481 0.572

r 7 8 9 10 11 12
A

CPI,,. 0.894 0.864 0.531 0.682 0.816 0.844

After Yv,,,. is estimated, two input-single output transfer function models with inputs

Xv,,,.(l) and xv,,,.(2) , and output Yv,,,. can be written as

00 00

Y = ~ a~l)x(l~ + ~ a~2)x(2~ N
t L-i J t-J L-i J t-J + t

j=O j=O
(8.2.5)

The impulse response functions are estimated and shown in Fig. 8.1-8.2. Then, Eq.

(8.2.5) can be written as

(1) 5 (1) (2) 5 (2)Yt=-O.118xt +0.33 xt_1+0.179xt -0.14 xt- 1+Nt (8.2.6)

The noise N, was then estimated and shown in Fig. 8.3. The residual N, was found to be

white noise or

with et - WN(0,0.40) . Then, Eq. (8.2.6) can be written as
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Yt= -O.118xt,l +O.335xt_1,l +0.179xt,2-0. 145xt_1,2+et (8.2.8)

After substituting (8.2.8) into (8.2.4) and minimizing the sum of the square errors, a

final model is obtained. This model can be written as

A (1) (1) (2)
Zv,'r =<p 1,'rZv,'t_l-0.290xv,'t +O.578xv,'r_l +0.124xv,'t

O (2) •- .137xv,'t _l + tv,'t

with 8V ,T* - WN(0,0.38) and

(8.2.9)

T 1 2 3 4 5 6
A

CPl,T 0.832 0.887 0.545 0.488 0.507 0.319

T 7 8 9 10 11 12
A

CPl,T 0.893 0.835 0.568 0.630 0.776 0.873

The independence of the noise N, and the inputs Xt(l), Xt(2) were checked and found to be

uncorrelated. Hence, Eq. (8.2.9) is accepted.

Before forecasting the streamflow, we need to forecast the SWE and the tempera-

ture. The deseasonalized SWE xt(1) is fitted by an ARMA model. It can be written as

(1) = 0 925 (1) r(l)xt • xt- 1 + ~t

with 5t(l) - WN(0,0.105). The deseasonalized temperature xt(2) is fitted by

X
t(2)

= 0.274 Xt~~ + ,~2)

(8.2.10)

(8.2.11)

with 5t(2) - WN(0,0.898). By substituting (8.2.10) and (8.2.11) into (8.2.9), we have
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~.t
== -0.290+0.5788 1 ,(1)

1- A B 1-0 925B v..~<p 11: •,

+ 0.124-0.137B 1 ,(2)

1-<91,tB 1-0.274B V,t

==v~l)(B) ,~~~+v~2)(B) '~~~+q>t(B)e;.'t

(8.2.12)

Hence the forecast error can be written as

L-1

+L Vi,T+Le:,T+L-i
j=O (8.2.13)

The cumulative frequency of the simulated forecast error with T =3, and lead times

L= 1, .. ,7 are computed, and the quantiles of the 95 % probability limit obtained. Then

the forecast of the deseasonalized flow "Lv,.,. with lead time L = 1,2, ... ,7 and the 95 %

confidence limits bound are shown in Fig 8.4.

The one step ahead forecast using Eqs. (8.2.9), (8.2.10) and (8.2.11) is shown

in Fig. 8.5. In addition, the forecasting result using the single input-single output model

of Eq. (7.7.5) is also shown in Fig. 8.5. The root mean square deviation (RMSD) and

the maximum absolute deviation (MAD) of the forecast are shown in Table 8.1. From

Fig. 8.5 and the Table 8.1, we can see that the two inputs-single output model gives

better forecast result than the single input-single output model.

By standing at the end of March, the forecast with lead time L = 1, ... ,7 using the

two input-single output model and the single input-single output model are shown in Fig.

8.6. From Fig. 8.6, we can see that the forecast using the two input-single output model
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with lead time far from the standing point does not improve the forecast result of the

single input model. This is because we need to forecast the SWE and temperature before

forecasting the streamflow. The forecast error of the SWE and temperature will transfer

to the forecast values of the streamflow.

8.2.3 Using SWE and Precipitation to Forecast Streamflow

By using the same notations of Section 8.2.2, the SWE Wv,,,.(l) , the precipitation

Wv,,,.(2) and the streamflow Qv,,,. are deseasonalized using (8.2.1), (8.2.2) and (8.2.3).

Then, the deseasonalized streamflow Zv,,,. is fitted by the PAR(I) model of Eq. (8.2.4).

A two input-single output transfer function model can then be formulated by using Eq.

(8.2.5) and (8.2.6). From this point, the impulse response function is estimated and is

shown in Figs. 8.7-8.8. Hence, Eq. (8.2.5) can be written as

6 (1) (1) (1) (2)
Yt = -0.11 xt +O.246xt_l+0.144xt_l+0.07xt

(2)+ O.101xt_1 + N, (8.2.14)

The noise N, is estimated and shown in Fig. 8.9. Then, an ARMA model is fitted to the

estimated noise. This can be written as

(8.2.15)

with e- WN(O,O.413).

By substituting (8.2.15) into (8.2.14), we get

(1+0.13B)yt = (1+O.13B)(-O.116x?)+O.246xt~~

(8.2.16)

After substituting (8.2.4) into (8.2.16), Eq. (8.2.16) can be written as
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(1) (1) (1) (1)
-0.116xV.'t +0.231XV,,._1+0.176xV,'t_2+0.019xV.t_3

(8.2.17)

The non-linear least squares algorithm is then used. The algorithm suggests a final model

can be written as

(1) (1) (1) (1)
-O.259Xv, t +0.198xv.'t_l +0.184xv.'t_2+0.292xV;f_3

(8.2.18)

with Bv .; - WN(0,0.408) and,

7 1 2 3 4 5 6
A

<t'l,T 0.832 0.887 1.000 0.511 0.392 0.302

7 7 8 9 10 11 12
A

<t'l,T 0.622 0.709 0.552 0.660 0.815 0.897

The deseasonalized SWE Xt(l) is fitted to an ARMA model as shown in (8.2.10).

We try fitting the deseasonalized precipitation x?) with the ARMA model, but the

analysis shows that it is white noise, i.e.

X (2) = r(2)
t ~t

with tt(2) - WN(0,0.971).

(8.2.19)

The one step ahead forecast of the streamflow using Eqs. (8.2.18), (8.2.10) and

(8.2.19) is shown in Fig. 8.10 and Table 8.1. This graph shows that the two input-single
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output model gives a good forecast result. In order to compare the forecasting ability of

the model using temperature and SWE as the inputs and the model using precipitation

and SWE as the inputs, the forecasting results of both models are shown in Fig. 8.11 .

Results shown in Fig. 8.11 and Table 8.1 show that both model give similar forecasting

results.

8.2.4 Using SWE, Temperature and Precipitation to Forecast Streamflow

In this section, the SWE, temperature and the precipitation data will be used as

inputs to the upper Rio Grande River Basin system in order to forecast streamflow. Let

(8.2.19)
(1)

Xv,. =

the SWE Wv,T(l), temperature Wv) 2) and the precipitation Wv,T(3) be deseasonalized using

~,~ -11-c(Wt )

o-c(wt )

(2)
Xv;r =

~~;-I1-c(W2)

0-r(W2)
(8.2.20)

(3)
XV,T =

~~; -11-c(W3)

o-r(W3)
(8.2.21)

Suppose the monthly flow QV,T of the Rio Grande River near Del Norte was

deseasonalized by using

0-c(Q) (8.2.22)

and the deseasonalized flow ZV,T is filtered by a PAR(1) model of

(8.2.23)
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Then the three input-single output transfer function model can be written as

(8.2.24)

The impulse response function of (8.2.24) is estimated and shown in Fig. 8.12-8.14.

Then the Eq. (8.2.5) can be written as

(1) (1) (2) (2)
Yt=-O.169xt +O.328xt_1+O.226xt -O.139xt_1

(3) (3)+ O.118xt + O.113xt_1 +N, (8.2.25)

The noise N, in Eq. (8.2.25) is estimated and was fitted by an ARMA model. This can

be written as

(8.2.26)

with Gt- WN(O,O.362).

By substituting (8.2.23) and (8.2.26) into (8.2.25), Eq. (8.2.25) can be written

as

(8.2.27)

After minimizing the sum of square errors, a final model is obtained and is written as

;,,~=( q> l.~ -O.212)Zy.T_l +O.212q>1,~_1;'.~_2 -O.283x~.I;

(I) (1) (2) (2)
+ O.282xv;r_1 +O.366xv.~_2+0.108xv,~ +O.144xv.~_1

with Gt· - WN(O,0.443) and
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'T 1 2 3 4 5 6
A

q:;I,T 0.832 0.887 0.862 0.553 0.503 0.399

'T 7 8 9 10 11 12
A

q:;I,T 0.749 0.922 0.524 0.680 0.828 0.927

The independence between the noise N, and the inputs Xt(l) , x/1) were checked and found

to be uncorrelated. Hence, Eq. (8.2.28) is accepted.

The one step ahead forecast of the streamflow of the Rio Grande River near Del

Norte is shown in Fig. 8.15 and Table 8.1. The forecast with lead time L= 1,... ,7 is

shown in Fig. 8.16. From Figs. 8.15 and Fig. 8.16, we can see that the one step ahead

forecast using three input-single output model is improved over the single input model.

In order to compare the forecast ability of the three input-single output model to the two

inputs-single output model, the results of the one step ahead forecast of both models are

shown in Fig. 8.17. From Fig. 8.17, we can see that both models give similar

forecasting results.

Table 8.1 Comparison of one step ahead forecast (multiple input-single output
model)

I Model I RMSD I MAD I
1 in-lout [see Fig. 8.5] 31795 96447

2 in (SWE, Temp.)-1 out [see Fig. 8.5] 27424 74693

2 in (SWE, Prec. )-1 out [see Fig. 8.10] 29032 76530

3 in-lout [see Fig. 8.15] 30705 85088
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CHAPTER IX

CONCLUSIONS

The purpose of this chapter is to summarize the information presented. This

study has focused on the forecasting of monthly streamflow by using periodic transfer

function models. The emphasis and application has been to examine the streamflow

resulting from snowmelt, precipitation and temperature. The identification of the transfer

function model with intermittent input data has been done by using spectral analysis

without prewhitening the input data. The forecasting ability of the deseasonalized ARMA

model was first examined. The monthly streamflow were transformed using log­

transformation. The problems associated with forecasting a log-transformed series were

discussed. The results show that the deseasonalized ARMA model always underestimated

the high flows in the summer time.

The PARMA model was also used for modeling and forecasting the monthly

streamflow. The residual of the PAR(l) or PARMA(l,l) was verified to be non-Gaussian

distributed. This is true even if one takes the log-transformation of the original data. In

order to find the confidence limits of the forecasts, the forecast error is simulated by

randomly sampling the historical residual with replacement. The forecasting application

showed that the PAR(l) model gives a better forecasting result than the deseasonalized

ARMA model.

The single input-single output transfer function model with intermittent SWE as

the input and with the streamflow as the output was then used. Models based on the

original non-transformed data and based on log-transformation were compared. The
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results indicate that the transfer function model gives a better forecast compared to the

PAR(1) model. It also indicates that the model using the original non-transformed series

gives a better forecasting result when compared to the model using log-transformed

series.

The joint use of the PAR(l) model and transfer function model improved the

forecast. By fitting a PAR(l) model to the deseasonalized streamflow series and obtaining

the residual of the PAR(1) model, a single input-single output transfer function model,

with deseasonalized SWE as the input and the residual of PAR(1) model as the output,

can be formulated. Identification of the model is made by using spectral analysis. The

non-linear least squares method is used for estimating the parameters. The forecast error

of this modified model is derived. Since the forecast error has an unknown distribution,

the cumulative relative frequency of the forecast error was simulated in order to find the

95% probability limit bound. The selection of better forecasting models is accomplished

by comparing the plots of forecasts and historical values, root mean square deviation and

the maximum absolute deviation for all models.

The forecasting method currently used for forecasting monthly flows in the Rio

Grande River Basin is based on the multiple regression model. Data from 1948-1977

was used for comparing both the multiple regression model and the modified single input­

single output model. The validation was done based on the years 1978-1982. After

comparison, we found that the modified transfer function model gives a better forecast

result. The modified single input-single output transfer function model with SWE as the

input was then used to forecast the streamflow in the recent years (1983-1988).

The multiple input-single output model was also formulated by using the spectral
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analysis technique. The upper Rio Grande River Basin above Del Norte has several

climatic gaging stations and was used for formulating the multiple input-single output

forecast. The forecasting study showed that using the SWE and the temperature data to

forecast streamflow (1983-1988) improved the one step ahead forecasting as compared

to the single input-single output model, but that it did not give a better forecasting result

when forecasting with lead time far from the standing point. The reason for this result

was the need to forecast the inputs before forecasting the streamflow. The forecasting

error of the forecasted input series transfers to the forecasted output series.

Using SWE and precipitation to forecast the streamflow was also tried. This study

showed that the one step ahead forecasting result improved. Forecasting the streamflow

using three inputs (SWE, temperature and precipitation) was also tried. The results

showed that the one step ahead forecasting also improved. In order to compare the

forecasting ability of the multiple input-single output model with different inputs, the

forecasting results were compared. The comparison showed that all the multiple input­

single output models have a similar forecasting ability, and are better than the single

input-single output models for the one step ahead forecasting.

From the discussion shown above, we can conclude:

(1) The deseasonalized ARMA model always underestimated the high monthly flows

in the summer time.

(2) The PAR(l) model gives a better forecasting result when compared to the

deseasonalized ARMA model, but it also underestimated the high monthly flows

in the summer time.
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(3) The rational transfer function model gives a better forecasting result when

compared to both the deseasonalized ARMA model and the PARMA model.

(4) The periodic transfer function model improved the forecasting results further.

(5) The multiple input-single output model gives a forecast results that are better than

those of the single input-single output model, especially for the one step ahead

forecast.
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