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ABSTRACT 
 
 
 

DEVELOPMENT OF AN ASYMMETRIC NHC-CATALYZED CASCADE REACTION AND  
 

STUDIES TOWARDS THE ASYMMETRIC AMINOMETHYLATION OF ENALS 
	  
	  
	  
 A cascade reaction is developed to form complex cyclopentanones using an asymmetric 

Michael/Benzoin sequence.  This reaction employs simple aliphatic aldehydes and ketoesters in 

conjunction with a chiral amine catalyst and a chiral NHC catalyst.  Further investigation reveals 

a surprising interplay between these two catalysts.  This relationship is manifested in a pseudo-

dynamic kinetic resolution, which is responsible for the high diastereoselectivity observed. 

 

 Subsequent work details the discovery of the aminomethylation of enals using NHC 

catalysis.  This reaction utilizes an iminium source as well as cinnamaldehyde derivatives to 

form gamma-amino butyrate derivatives.  Rendering this reaction asymmetric has proven a 

challenge, despite extensive effort to resolve these issues.  In the course of these studies, an 

unexpected NHC-catalyzed Morita-Baylis-Hillman reaction was observed.  Optimal conditions 

for this reaction were established, proving access to useful amino-enals. 

 

 In an effort to design suitable catalysts for the asymmetric aminomethylation reaction, a 

strategy for the late-stage manipulation of NHC catalysts was developed.  Key to this strategy is 

the ‘protection’ of the triazolium salt by reduction to the triazoline.  An aryl C-Br bond is then 

exploited for cross-coupling reactions, building a small library of new catalysts.  The triazolium 

salt is then recovered by oxidation with a trityl salt.  
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CHAPTER 1 
 

BACKGROUND OF N-HETEROCYCLIC CARBENE CATALYSIS 
 
 
 

1.1  Benzoin Discovery 

 In the 1830’s, Justus von Liebig and Friedrich Wöhler undertook studies of the 

properties of bitter almond oil.1  The oil was extracted from bitter wild almonds, which 

are the highly poisonous progenitors of the modern domesticated almond.  During the 

course of their studies, they noticed formation of a new compound: benzoin (5, Figure 

1.1).  The source of this phenomenon is due to one of the key constituents of bitter 

almond oil: amygdalin (1).  This compound easily fragments to release sugars (4), 

benzaldehyde (2), and cyanide (3).  Liebig’s student, Nikolay Zinin, further studied this 

unusual reaction.  Zinin proved that the combination of benzaldehyde and only a 

catalytic amount of cyanide is needed for this reaction to proceed. 

Figure 1.1  

 In 1943, Ugai and coworkers discovered that this transformation could be 

catalyzed by a thiazolium catalyst derived from thiamine.2  Shortly after, Breslow 

proposed a mechanism for this reaction.3  This was modeled after work published by 

Lapworth in 1903.4  The first step is deprotonation of the thiazolium pre-catalyst to form 
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stabilized N-heterocyclic carbene II (Figure 1.2).    The catalytic cycle begins with the 

nucleophilic addition of the carbene catalyst onto benzaldehyde to form intermediate III.  

Proton transfer leads to the formation of the en-diaminol IV, commonly referred to as the 

“Breslow Intermediate.”  This intermediate then adds into a second equivalent of 

benzaldehyde.  Proton transfer leads to intermediate VI, which then collapses to release 

benzoin 5 and the carbene catalyst II.   

 

Figure 1.2  

1.2 Stetter Reaction 

 The most intriguing feature of the benzoin reaction is the catalytic formation of 

the acyl anion equivalent.  Formation of a transient nucleophile from an electrophilic 

species and its associated reactions is often termed Umpolung.5  The next question was 

whether this nucleophilic intermediate can add to other electrophiles.  One of the first 

answers to this question was work done by Stetter.  In 1973, he reported the coupling of 
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an aldehyde and an enone to yield a 1,4-dicarbonyl compound using either cyanide or a 

thiazolium-based carbene as a catalyst (Scheme 1.1).6  This serves as a solution in the 

synthesis of this challenging motif. 

 

Scheme 1.1  

 A key difference between the benzoin reaction and the Stetter reaction is that the 

former is occasionally reversible while the latter is not.7  In addition, several groups 

observe that the benzoin product is often formed faster than the Stetter product, but the 

dimer is eventually consumed while the ratio of Stetter product increases.8  In certain 

instances, it is possible to use a benzoin product as a source of the acyl-anion 

precursor.9   

 

 Besides enones, Stetter showed that enoates, acrylonitriles, and several other 

Michael acceptors are competent in the reaction.10  However, he also described many 

limitations.  Substitution at the α-carbon seems to be well tolerated.  In contrast, he 

reported only limited success with β-substituted Michael acceptors.  The nature of the 

aldehyde is not as stringent, with aryl and aliphatic aldehydes shown to be suitable acyl-

anion donors.  It should be noted that the use of NHC catalysts often lead to milder 

conditions when compared to the cyanide based conditions. 

 

O

HMe

O

Me
+

N S

Me

Bn

OH
Cl

Et3N, EtOH, reflux

O

Me
O

Me 68% yield
(10 mol %)

6 7

8

9



	   4	  

 The Rovis group has made a significant impact with the development of the 

asymmetric intramolecular Stetter reaction,11 based on a substrate designed by Ciganek 

(Scheme 1.2a).12  Key to the success of this reaction was the design of novel triazolium 

precatalyst 11.  Based on an aminoindanol developed at Merck,13 this catalyst maintains 

a rigid backbone that proves excellent at inducing asymmetry.  The chromanone 

product 12 is formed in both high yields and high enantioselectivity.  This initial work 

was expanded to include aldehydes with aliphatic backbones as well (Scheme 1.2b).  

Triazolium precatalyst 14 based on phenylalanine is employed in this case.    

 

Scheme 1.2  

 In addition, higher substitution on the olefin is tolerated. With β-substitution, 

products that bear an enantioenriched quaternary carbon are formed (Scheme 1.3a).14  

These quaternary centers are difficult to form asymmetrically, so this provides  
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Scheme 1.3  

a convenient route to this system.  Substitution at the α-carbon is also tolerated 

(Scheme 1.3b).  This motif allows formation of a second stereocenter, and this is formed 

in high diastereoselectivity.15  This high selectivity can be explained by an 
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desymmetrization of cyclohexadienones 22 (Scheme 1.3d).16  This motif allows for the 

rapid construction of three contiguous stereocenters. 

 Enders and coworkers first reported an asymmetric intermolecular Stetter 

reaction with chalcones as substrates.17  In the Rovis group, glyoxamides were pursued 

due to their success as donors as described by Stetter.18  For the electrophile, 

alkylidene malonates were selected for their high reactivity (Scheme 1.4a).   This 

reaction proved successful with the use of phenylalanine derived triazolium precatalyst 

26.19  High yields and enantioselectivity are maintained with a diversity of alkyl-

substituted malonates.  This system was later extended to alkylidene ketoamides 28 

(Scheme 1.4b).20  As the use of tertiary amides inhibits epimerization, these products 

are formed in both high enantio- and diastereoselectivity.  

 

Scheme 1.4  

 Heteroaryl aldehydes were next explored as donors for the asymmetric Stetter 

reaction with nitroalkenes as the Michael acceptor (Scheme 1.5).  Catalyst design 

proved crucial to improve yield and stereoselectivity.21  Precatalysts based upon amino-
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acids (26), only provided moderate selectivity.  Introduction of a fluorine in the backbone 

of catalyst 33 significantly improves selectivity.  The impact caused by this group on 

enantioselectivity while being distant from the active site of the catalyst was initially 

puzzling.  An explanation for this effect was a strong puckering of the 5-membered ring, 

which is observed by X-Ray crystallography.  This could arise from a strong 

hyperconjugation effect between an electron-rich C-H bond and the activated σ* orbital 

of the C-F bond.  Alternatively, the σ* of the C-F bond could interact and direct the ionic 

nitro moiety of the Michael acceptor.22 

 

Scheme 1.5  

 This same catalyst motif was used successfully again in the development of 

further intermolecular Stetter reactions.  New aldehyde donors include enals23 and 

aliphatic aldehydes.24  In addition, this catalyst was also employed by the Gravel group 

in the intermolecular Stetter between heteroaryl aldehydes with keto-esters.25 

  

 Glorius and coworkers have shown that unactivated alkenes26 and alkynes27 can 
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on the alkene.  We propose a ‘retro-Cope elimination’ is responsible for this 

transformation.  They have further developed this reaction to intermolecular variants.  

They demonstrate that cyclopropenes are excellent substrates.28  Additionally, they 

report that certain styrenes are also competent partners leading to ketone products.29 

Scheme 1.6  

1.3 Benzoin Reaction 

 There remains significant challenges associated with the benzoin reaction, 

including selectivity between homobenzoin vs cross-benzoin, reversibility of the benzoin 

reaction, and facile epimerization of the products.  Despite these issues, there has been 

considerable accomplishments in this area by several groups including Enders30 and 

Gravel.31 

 

 Suzuki and coworkers have successfully employed asymmetric intramolecular 

benzoin reactions in the synthesis of natural products.32  They utilize a modification of 
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 One strategy to promote cross-selectivity is to use the ‘aza-benzoin.’  This 

ultimately leads to the formation of amino-ketones selectively.  The first reports of this 

came from the López-Calahorra lab in 198834 and Merck Process in 2001.35  In 2012, 

DiRocco and Rovis reported a similar aza-benzoin using a specialized triazolium salt 42 

(Scheme 1.7a).36  Compounds were isolated in high yields and enantioselectivily.  

Iminiums are also suitable as electrophiles, and DiRocco and Rovis demonstrated  

 

Scheme 1.7  

that these could be formed catalytically through the use of photoredox catalysis 

(Scheme 1.7b).37  There are several important aspects that should be made explicit.   
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acid.  Third, this remains one of the few examples of asymmetric reactions that involve 

photoredox catalysis. 

 

1.4 Redox Chemistry 

 In the 2000’s, several groups reported an unusual transformation when α-

reducible aldehydes are used as an acyl-anion donor.  Rather than seeing nucleophilic 

behavior at the aldehydic carbon (e.g. benzoin or Stetter), what is observed is an 

oxidation of the aldehyde as well as a reduction at the α-carbon.39  This unexpected 

redox pathway can be explained by multiple possible reaction pathways after the 

formation of the acyl-anion equivalent (Figure 1.3).  When a leaving group is at  

 

Figure 1.3  
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equivalent, and is easily displaced to release the NHC catalyst and a new ester or 

amide. 

 

 In 1873, Wallach observed this transforation with the conversion of 

trichloroacetaldehyde to a dichloroacetate using a cyanide catalyst.40  This remains the 

earliest example of this type of mechanism (Scheme 1.8). 

Scheme 1.8  

 Using a chiral NHC catalyst, the Rovis group was successful in eliminating a 

single chloride from a dichlorinated aldehyde (Scheme 1.9).  The chiral enolate 

equivalent then protonates stereoselectively, and after displacement of the catalyst by 

water, provides enantioenriched α-chloro-acids.41   

 

Scheme 1.9  

 In addition, the Breslow intermediate formed from enals can impart nucleophilicity 

at the β-carbon, often called an “extended Breslow” Intermediate (V in Figure 1.3).  

Following a similar pathway as before, an ester equivalent can easily be formed.  This 

strategy can allow for the formation of enantioenriched α-fluoro amides as demonstrated 

by Wheeler, Vora, and Rovis (Scheme 1.10).42 
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Scheme 1.10  

 Rovis and coworkers further used this chemistry to form γ-lactams in high 

enantioselectivity and diastereoselectivity from enals and imines (Scheme 1.11).43  

Scheidt and coworkers reported a similar transformation, but arrive at the alternate 

diastereomer.44  Zhao and Rovis noticed the use of achiral NHC 58 and chiral 

carboxylate base 59 can impart moderate enantioselectivity.  The chiral acid formed in 

this reaction can activate the imine, thus leading to this stereoselectivity.   

 

Scheme 1.11  
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employed this strategy for the formation of delta-lactones.45  Rovis and coworkers 

applied this methodology to the synthesis of δ-lactams (Scheme 1.12).46   

Scheme 1.12  

 Recent work by White and Rovis describes the homoenolate addition of enals 

with nitroolefins to form acyclic systems.47  A more in-depth explanation of this area will 

be found in Chapter 3. 

 

 Hopefully this introduction has provided a brief insight into recent advances with 

NHC-based organocatalysis.  The key feature of this chemistry is the inversion of 

polarity of electrophilic aldehydes.  Through catalyst development, a myriad of new 

chemical transformations have been uncovered, including reactivity at both the 

aldehydic carbon and β-carbon.  The following chapters will further describe several 

new contributions to this growing field. 

 

 

 

 

 

O

HnPr

Ph Ph

N Ts+

N
N N

O

(20 mol %)

BF4

Me

Me

Me
N

N

N

N O

Me
O

Me

Me
OAc

AcO
OAc

OAc

(1 equiv.)

K2CO3, THF/MeCN, 4Å MS, AcOH, rt

N Ts
O

PhPh

nPr 93% yield
97% ee
20:1 dr

60

61

62 63

64



	   14	  

CHAPTER 2 

ASYMMETRIC MICHAEL/BENZOIN CASCADE FOR THE SYNTHESIS OF 

ENANTIOENRICHED CYCLOPENTANONES  

 

 

 
2.1 Introduction to Cascade Reactions 

 Of all the catalysts that our group has designed and created, the most utilized are 

the catalysts bearing an N-pentafluorophenyl group.48  The impact of this highly 

electron-deficient substituent can be explained by its pKa.49  The acidity of the C-H bond 

of the triazolium is increased, meaning that it can be deprotonated by a weak base.  

This leads to a higher proportion of active catalyst available.  Additionally, it is our belief 

this leads to an increased acidity of the NHC-aldehyde adduct.  This translates to easy 

and facile formation of the requisite Breslow intermediate with weak bases (see Chapter 

1).50  While this can lead to highly efficient reactions, there is another attribute that is 

often overlooked.  The ability for NHC-catalysis to exist under mild conditions can allow 

for other synthetic transformations to occur.  The best example for this strategy is 

cascade catalysis. 

 While there are many competing names for this process (e.g. cascade, domino, 

tandem), we define cascade catalysis as a reaction containing two or more independent 

catalytic cycles.51  This strategy has been popular in recent years for its many 

advantages.  By combining multiple catalytic processes in one flask, one can generate 

elaborate and complicated compounds from simple starting materials.    Cascade 
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reactions avoid extra workups and purification, which not only conserves time and 

resources, but also is essential if an intermediate is unstable to isolation.  As such, there 

are many excellent examples of this work in the literature.52 

 Our group grew interested in using NHC catalysts in cascade reactions.  There 

has been some precedent that this is feasible, such as the work of Hamada53 and 

Glorius54 combining NHC and Pd catalysis (Scheme 2.1).  In addition, Glorius has 

provided an example with NHC and base catalysis.55  There are also examples of 

cascade reactions where the NHC is responsible for multiple transformations.56  We 

focused our research on the synthesis of enantioenriched compounds using 

NHC/organocatalysis cascade reactions. 

 

Scheme 2.1  

 Stephen Lathrop reported our initial finding.  He discovered a cascade reaction 

that combines asymmetric iminium catalysis with a diastereoselective benzoin 

cyclization.57  This process leads to complex cyclopentanones 5 from an enal (1) and 
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1,3-dicarbonyl nucleophile 2 (Scheme 2.2).  This occurs via formation of an iminium 

intermediate from the amine catalyst and the enal.  This activated species undergoes 

conjugate addition from the acetyl-acetate derivative.  Release of the amine catalyst 

provides aldehyde intermediate 6.  This aldehyde is intercepted by the NHC catalyst 

and undergoes a benzoin cyclization with the ketone to form a cyclopentanone. 

 

Scheme 2.2 

There are two important attributes that should be mentioned.  Lathrop showed that 

sodium acetate is an effective base.  This is useful, as the acetic acid generated as a 

byproduct is important for turnover of the amine catalyst.  However, acetic acid has also 

shown to be excellent as a useful additive for NHC catalysis and has since become 

commonly found in recent reports.58   
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(the ‘two-pot’ reaction), Lathrop observes a diminished yield and diastereoselectivity 

(Scheme 2.3).  Unexpectedly, he noticed a significant drop in enantioselectivity.  To 

investigate this phenomenon, he conducted mechanistic studies.  The result of this work 

indicates that the first step of the reaction, the conjugate addition, is reversible.  The 

benzoin cyclization quickly consumes this intermediate, preventing complete 

racemization.  

Scheme 2.3 

 The next question to consider was if other modes of organocatalysis are 

compatible with NHC’s.  The use of base catalysis between salicylaldehyde and 

propiolates can lead to an intermediate that is suitable for an intramolecular Stetter 

reaction.  Claire Filloux studied and developed this reaction, leading to an elegant 

reaction system (Scheme 2.4).60  This reaction forms enantioenriched benzofuranones 

10 from salicylaldehydes (7) and electron-deficient alkynes (8).  She employs either 

quinuclidine or DABCO as a base catalyst and chiral triazolium 9 as an NHC source.  

This process not only allows for the asymmetric formation of benzofuranones, but also 

an excellent method for the generation of stereodefined tetra-substituted carbons. 
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Scheme 2.4 

 There are some features worth mentioning regarding Filloux’s work.  Besides 

alkynes, she demonstrated that allenes are suitable surrogates.  Additionaly, she 

conducted a ‘two-pot’ reaction, similar to Lathrop’s work.  In these experiments, Filloux 

noticed a drop in yield from this study (Scheme 2.5).   

 

Scheme 2.5 
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 Lathrop reasoned that an intermediate similar to aldehyde 6 in his earlier work 

can be obtained using enamine chemistry rather than iminium catalysis.  He drew 

inspiration from work published by Ma and coworkers.62  They reported an asymmetric 

addition of aliphatic aldehydes to activated enones using chiral amine catalyst 18 

(Scheme 2.6).  After a reductive workup and silylation, they isolate keto-alcohol 

products in high enantio- and diastereoselectivity.  Their initial product (20), before 

reduction by sodium borohydride, bears the same backbone as the intermediate seen in 

Lathrop’s work.  In theory, interception of this intermediate by benzoin cyclization would 

allow formation of new cyclopentanones 21 and a new cascade reaction can be 

developed. 

 

Scheme 2.6 
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 A new project was started to determine if this pathway was feasible.  As a safe 
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fortuitous, as we were able to isolate the desired compound (Scheme 2.7b).  This initial 

hit was very exciting, as the compound was generated in high enantioselectivity, 

moderate diastereoselectivity, and in modest yield.  However, we were delighted that 

there is no detriment with the inclusion NHC pre-catalyst 4 from the outset of the 

reaction, making this a ‘one-step, one-pot’ reaction.  It was decided to focus on 

improving the yield of the reaction (Scheme 2.7c). 

 

Scheme 2.7 

 Different bases were then screened in an effort to increase the yield of the 
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showing increased yields.  However, these results were far below expectations, so more 

options to improve the reaction was explored.  

Table 2.1 

 

 There was concern that perhaps the initial step of the reaction, the amine-

catalyzed conjugate addition of the aldehyde with the enone, was responsible for the 

poor results.  Literature has shown that a catechol additive can lead to significantly 

improved results in this type of reaction.63  In fact, our group has shown that catechol 

derivatives are superb additives for various NHC-catalyzed transformations.13a  

Catechol derivative 15 developed by Chi and Gellman was therefore employed in this 

reaction.13b  We observe dramatic improvements in yield when an achiral NHC catalyst 

is used, especially with sodium acetate as base (Scheme 2.8b).  Thrilled with this result, 

this reaction was carried out with chiral NHC catalyst 9.  Exceptional diastereoselectivity 

is achieved with this combination, but diminished yields are once again observed 

(Scheme 2.8c). 
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Scheme 2.8 

 Following advice by my colleague Phillip Wheeler, this reaction was run under 

heated conditions.  By heating this reaction to 60 ºC, high conversion to the desired 

product is achieved (Scheme 2.9a).  We were delighted that high enantioselectivty is 

maintained (94% ee).  However, diastereoselectivity remains poor, with a ratio of 9:2.  

This is resolved when a chiral NHC is used, resulting in a 19:1 dr (Scheme 2.9b).  This 

is accomplished without any loss in enantioselectivity or yield.  Choice of NHC catalyst 

is crucial though.  A bulkier aryl group leads to even higher diastereoselectivity.  The 

antipode of the catalyst leads to a 4:1 dr, and a separate chiral scaffold provides similar 

poor results (Scheme 2.9c).   
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Scheme 2.9 

 With heat as a useful additive in this reaction, a base screen was revisited.  

Bases that gave similar results to sodium acetate at room temperature also provide 

superb results at the elevated temperature (Scheme 2.10).  Other carboxylate bases are 

also advantageous in improving the diastereoselectivity, whereas the amine base 

(diisopropylethylamine) forms product in lower yield.  We also tested the reaction 

without a carboxylate base, with the hypothesis that the amine catalyst is also capable 

of deprotonating the triazolium salt.  Not only is this true, but it is accompanied by a 

dramatic improvement in diastereoselectivity, with the product formed in a 66:1 dr with 

93% ee.  Unfortunately, the yield is diminished at 62%. 
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Scheme 2.10 

 The proposed mechanism is shown in Figure 2.1.  Condensation of the amine 

catalyst 18 with butanal 16 forms the reactive enamine I.  This then undergoes Michael 

addition with the enone 17 to form II.  Hydrolysis of the iminium releases the amine 

catalyst and the aldehyde intermediate 20.  This aldehyde is intercepted by the NHC 

catalyst and forms the requisite Breslow  

Figure 2.1 

intermediate III.  This then adds onto the tethered ketone to form the cyclized 

intermediate IV.  Proton transfers, followed by ejection of the NHC catalyst, forms the 

cyclopentanone product 21. 
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2.3 Scope of Reaction64 

 With suitable conditions that provide high yield, diastereoselectivity, and 

enantioselectivity, it was deemed prudent to explore the scope of this reaction.  

Variation of the aldehyde donor was initially explored (Table 2.2).  Similar to butanal, 

other straight-chain aldehydes are suitable substrates (21b-c).  Isovaleraldehyde, which 

bears a branched group, lead to complications.  Notably, formation of Stetter product 

was observed.65  We inferred that the first catalytic  

Table 2.2 

 

cycle might have been slowed by this bulkier aldehyde.  By withholding the triazolium 

salt until complete consumption of starting materials (monitored by TLC), the desired 

cyclopentanone is formed (21d).   Larger aldehydes are also tolerated, but in lower 

yields and diastereoselectivity (21e-g). 

 Variation of the enone was then explored (Table 2.3).  Replacing the ethyl ester 

moiety with a methyl ester was successful (21h).  The benzyl ester is also competent, 

but in a lower yield (21i).  Whereas secondary amides were ineffective, tertiary amides 
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are well tolerated (21j-k).  While diastereoselectivity is moderate (about 9:1 dr), 

enantioselectivity is superb.  We also explored variation of the ketone group.  Both 

ethyl- and propyl- ketones can be used in this reaction (21l-m).  The bulkier isopropyl-

ketone does not provide product with our standard conditions (21n).  However, when 

the smaller achiral catalyst 4 is employed, formation of the desired cyclopentanone is 

achieved.  A phenyl-ketone group is also effective, in good yield and enantioselectivity 

but in lower diastereoselectivity (21o).    Diketones are also competent, albeit in lower 

yields and stereoselectivity (21p-q).  This is likely due to their higher reactivity, and side 

reactions are more prevalent with these systems.  In the case of an unsymmetrical 

diketone, only one regioisomer is formed for compound.  This indicates that the 

enamine intermediate undergoes addition onto the more electron-deficient carbon. 

Table 2.3 
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 We were curious if further transformations can be affected onto this system.  One 

key feature of these compounds is the α-hydroxy-ketone.  This system is an excellent 

substrate for a directed reduction of the carbonyl.  Treatment of this compound with 

sodium triacetoxyborohydride in acetonitrile at room temperature provides the expected 

trans-diol 25 (Scheme 2.11).  Luckily, this product can be obtained in ‘one-pot.’  After 

complete formation of cyclopentanone is observed by TLC, the reaction is cooled to 

room temperature.  Addition of acetonitrile and sodium triacetoxyborohydride provides 

the diol product in 84% yield, 88% ee, and a 40:1 dr.   

 

Scheme 2.11 

 Absolute configuration was determined by X-ray crystallography.  The ester of 

the cyclopentanone product 21i was hydrogenated to the free acid, and the ammonium 

salt was generated from a chiral phenethylamine.  This salt was recrystallized from ethyl 

acetate.  The relationship of the alcohol and alkyl groups was determined from this 

crystal.  Kevin Oberg’s work was essential for solving this crystal structure (Figure 2.2). 
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Figure 2.2 

2.4  Mechanistic Insight 
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1:1 to 3:1 dr).  This aldehyde was then exposed to the triazolium salt and acetate base 

(Scheme 2.12).  The expected cyclopentanone was isolated in similar yield and 

enantioselectivity to products from the ‘one-pot’ protocol.  This contrasts to what was 
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diastereoselectivity (4:1 dr instead of 19:1 dr).  Intriguing as this is, we conducted further 

experiments.  The benzoin catalytic cycle was repeated again, but with the amine 

catalyst also added.  This combination improves the diastereoselectivity to 10:1 

(Scheme 2.12c).  The chirality of the amine is not even essential: the use of pyrrolidine 

(27) in place of the chiral catalyst increased the dr to 20:1 (Scheme 2.12d).  However, 

pyrrolidine also initiates decomposition of the product as well as multiple side-products. 

 

Scheme 2.12 
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 These results were quite unexpected.  A dramatic improvement in 

diastereoselectivity is observed when a chiral NHC is used instead of an achiral catalyst 

(see Scheme 2.9).  This naturally led to the belief that the high diastereoselectivity is 

formed during the benzoin cyclization, catalyzed by the chiral NHC catalyst.  However, 

these ‘two-pot’ experiments seem to refute this hypothesis.  There also seems to be an 

essential role for the amine catalyst in the second catalyst.  This seems contradictory, 

as the amine catalyzed reaction provides the intermediate aldehyde 20 in low dr, but is 

somehow responsible for the high dr of the finished compound. 

 We proposed several different hypotheses to explain these findings.  One 

experiment provided useful insight and guidance for our investigation.  When the 

aldehyde intermediate is exposed to the amine catalyst in the presence of deuterated 

methanol, complete deuteration is seen at the α-carbon of the aldehyde (Scheme 2.13).  

It should be noted that this experiment is flawed, as a methanolic environment is highly 

different from the regular reaction conditions. 

 

Scheme 2.13 

 Nevertheless, this observation led us to consider this carbon as the center for the 

diastereoselectivity.  With this as a basis, we proposed a new catalytic model for this 

reaction (Scheme 2.14).  We assume that the benzoin cyclization is slow while the 

amine-catalyzed conjugate addition is fast.  We theorized that the amine catalyst also 
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epimerizes the α-carbon of the intermediate aldehyde quickly as well.  One 

diastereomer of this aldehyde (20a) is then favored for the benzoin cyclization.  The 

unfavored diastereomer is then converted to the favorable one by this epimerization. 

 

Scheme 2.14 

 While this proposal was interesting, more evidence was needed beyond the 

deuteration experiment.  Following the suggestions of my colleagues Harit Vora and 

Todd Hyster, this reaction was monitored by 1H NMR.  For the sake of simplification, we 

focused on the transformation of the aldehyde intermediate to product.  This 

intermediate was isolated in low diastereoselectivity (3:1).  Monitoring the entire spectra 

would be prohibitively complicated, so attention was paid solely to the consumption of 

the aldehyde peaks.  First, the intermediate aldehyde was combined with the triazolium 

salt and sodium acetate in deuterated chlorform at 60 °C.  NMR spectroscopy clearly 

shows consumption of one diastereomer over the other (Fig 2.3). 
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Figure 2.3 

A second experiment was conducted which combined the aldehyde intermediate with 

both catalysts and sodium acetate (Fig 2.4).  In contrast to the previous experiment, 

signals from both diastereomers persist in the reaction.  It also appears that both 

diastereomers are being consumed. 
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Figure 2.4 

Lastly, the amine catalyst is added to the reaction mixture of the first NMR experiment 

(Fig 2.5).  While one aldehyde diastereomer was completely consumed in this 

experiment, addition of the amine leads to the reemergence of both diastereomers.  

This observation provides strong evidence for the revised mechanism.   
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Figure 2.5 

 This relationship can be considered a pseudo-‘Dynamic Kinetic Resolution 

(DKR).’  A true DKR converts a racemic mixture of starting material to one enantiomer 

of product.  Normally, a DKR reaction has to differentiate between two enantiomers of 

equal energy.  Our reaction selects between two possible diastereomers, which are 

inherently of different energy.  Exposure of a cyclopentanone formed in low 

diastereoselectivity to the optimal NHC catalyst, amine catalyst, or combination showed 
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no improvement.  This indicates that the final step of this reaction is irreversible.  Thus, 

the diastereoselectivity observed is from a kinetic process, not a thermodynamic one. 

 With the correct structure and mechanism determined, we sought to rationalize 

the observed stereochemistry.  The stereochemistry α to the ester is explained by the 

chiral amine catalyst, and so this must translate to the selectivity for the next two 

stereocenters.  We also deduced that the α-carbon selectivity is formed between the 

first and second catalytic cycle, and is dependent on the structure of the NHC catalyst.  

Previous work in our group has demonstrated the importance of internal ‘proton shuttles’ 

for NHC catalysis.66  Often, this is a heteroatom found in the substrate that aids in 

deprotonation to form the Breslow intermediate.  We were curious if a carbonyl in the 

intermediate can also serve this role.  This intermediate has two carbonyls as potential 

proton shuttles: the ester and the ketone.  A transition state with the ketone as proton 

shuttle has the two substituents in an anti conformations, as what is seen in the product 

(I, Fig. 2.6).  This seven-membered transition state also orients the carbonyl oxygen at a 

larger angle, optimal for deprotonation of the pre-Breslow intermediate.  This theory can 

explain the observed configuration. 

 

Figure 2.6 
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rationale for the observed selectivity.  For example, it is still unknown if either NHC 

addition into the aldehyde or formation of the Breslow intermediate is reversible. 

 With the mechanism more clearly understood, we were curious if there is a 

strategy to ‘tune’ the stereoselectivity.  Our idea was with proper choice of NHC catalyst, 

another diastereomer could be favored.  A perfect example of this is demonstrated by 

Carreira and coworkers.67  The right combination of a chiral amine catalyst with a chiral 

Ir catalyst allows specific access to one of four isomers.  I initially explored the use of 

the antipode of the successful catalyst, but this led only to a diminished diastereomeric 

ratio, and not an inverted one.  Another chiral scaffolds also failed to show any inversion 

of this intermediate. 

 

2.5 Applications Toward the Synthesis of Natural Products. 

 Complex cyclopentanes are a motif found in many biologically active molecules 

(Fig 2.7).  For example, the cores of marine natural products massadine68 and 

palau’amine69 bear a fully substituted cyclopentane.  Both these compounds share an 

elaborated cyclopentane core, with 5-contiguous stereocenters.  They also possess a 

unique sp3 C-Cl bond that is not common in many alkaloids.  Cyclopentanes are also 

present in several terrestial-based natural products.  This includes Crescentin IV, a 

small natural product isolated from the Calabash tree.70  Even though it lacks significant 

bioactivity, it is most likely a precursor to several other iridoid products that are 

medicinally interesting.   
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Figure 2.7 

The syntheses of massadine, palau’amine, and similar compounds have elicited a fair 

amount of attention from the synthetic community.  Much of the work has been in the 

construction of the densely substituted cyclopentane core.  We were curious if our 

cascade reaction could provide a quick synthesis to this system.  However, there are 

some key differences that need to be addressed.  These natural products contain a 

tertiary amine, which is not present in our products.  There are possible routes to 

introduce this functionality.  For example, replacement of the methyl ketone of the 

Michael acceptor with an imine should lead to similar products.  However, all attempts at 

this proposed reaction were unsuccessful.  We then envisioned that this compound 

could be reached by a Ritter reaction with the tertiary alcohol of the final compound.  

While initial approaches did not lead to the desired amine, this would be an effective 

strategy. 
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We initially ventured to synthesize Crescentin IV using this methodology.  Synthetically, 

it bears a cyclopentane core that can be easily accessed through this methodology.  

Two major obstacles were present: 1) conversion of the ketone group to a 

hydroxymethyl substituent, and 2) conversion of the ester moiety to a hydroxyl group.  

Manipulation of the ketone would be straightforward, employing a methylenation of the 

carbonyl (either by Wittig or with the Petasis reagent) followed by a diastereoselective 

hydroboration (followed by oxidation).  Replacement of the ester group proved 

challenging.  Initial ideas employed the formation of an acyl-peroxide.  These are known 

to be unstable, and after decarboxylation, will leave an acyloxy group.  After critical 

thinking, we determined both of these issues can be resolved by the use of excess 

Petasis reagent.  Not only would this olefinate the ketone moiety, but also the carbonyl 

of the ester.  Mild hydrolysis would reveal the exocyclic methyl ketone.  Hydroboration of 

the newly formed alkene would install the hydroxymethyl group, and a simple Baeyer-

Villiger would form the requisite C-O bond.   

Scheme 2.16 
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Initial work lead to a cascade product with a protected propanol group, similar to the 

natural product (21r, Scheme 2.16).  Treatment of this product to the Petasis reagent 

was successful, forming the enol ether in 20% yield.  Hydrolysis led to the methyl ketone 

in a 57% yield (not shown).  Optimization shows that protection of the tertiary alcohol 

improves the reaction, and addition of silica gel to the reaction mixture allows for the in 

situ hydrolysis of the enol ether to form 29 in up to 66% yield.  Initial studies show that 

thexyl-borane is capable of the hydroboration of the alkene to form alcohol 30.  At the 

time, the determination of diastereoselectivity proved difficult.   It was also at this time 

that we decided to discontinue this synthesis.  The concurrent determination of the 

crystal structure revealed that the orientation of the tertiary alcohol formed was 

incongruent with Crescentin IV, and the synthesis of this compound was abandoned. 

 

 In conclusion, a cascade reaction was developed for the synthesis of complex 

cyclopentanones in high stereoselectivity.  This reaction compliments our previously 

established work.  In addition, our work revealed a unique synergistic cooperation 

between the amine catalyst and the NHC catalyst.  We believe that elaboration of these 

products could lead to the cores of several bioactive compounds. 
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CHAPTER 3 

ASYMMETRIC AMINOMETHYLATION OF ENALS BY NHC CATALYSIS 

 

 

3.1 Homoenolate Background 

 Formation of the Breslow Intermediate is key for observing Umpolung reactivity.  

This intermediate is formed via the addition of an NHC to an aldehyde.  With enals, 

however, complications arise as the acyl anion is now allylic.  Consequently, 

nucleophilicity can be observed β to the aldehyde (Scheme 3.1).  As such, this is 

termed as ‘homoenolate’ reactivity.71   

Scheme 3.1  

 Bode72 and Glorius73 concurrently reported an example of this with the formation 

of a γ-lactone that arises from cinnamaldehyde and aryl aldehydes (Scheme 3.2).  In 

this reaction, the enal/NHC adduct undergoes nucleophilic addition with either an 

aldehyde or ketone at the homoenolate position to form adduct III.  Proton transfers lead 

to acyl-azolium intermediate IV, which undergoes a cyclization to form a lactone 4 or 6.   
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Scheme 3.2  

 This technology has led to efficient, practical syntheses of a variety of different 

carbocycles and heterocycles.71 Recently, there has been a push to develop reactions 

that form acyclic products.  Nair and coworkers reported initial work coupling enals with 

chalcones to form straight-chain products (though this was observed as a side 

product).74  This was followed by further work employing nitro-olefins as substrates.75  

This was expanded with reports of an asymmetric variant from the Liu group76 and a 

highly enantio- and diastereoselective procedure from the Rovis group.77   
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Scheme 3.3  

 Our initial proposal intended for the catalytic formation of an acyl azolium 

intermediate by oxidative methods, leading to an activated olefin susceptible to 

cycloaddition chemistry.  This strategy has been utilized by the Lupton lab to form cyclic 

systems.78  We envisioned that a [3+2] cycloaddition between enal 3 and iminium 

precursor 18 would form pyrrolidine 20.  Unfortunately, only fa side-product was 

observed.  Elucidation by NMR indicates the side-product is a γ-aminobutyrate 
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compound 21, which seems to arise from the homoenolate addition of the 

cinnamaldehyde and the iminium (Scheme 3.4).   

 

Scheme 3.4  

 This was a fortuitous discovery, as this presents a simple strategy to construct 

substituted γ-aminobutyrates.  The backbone resembles GABA (22, Fig 3.1), an 

essential mammalian neurotransmitter.  Derivatives of this compound often display 

potent bioactivity, and have found use in medical applications. 
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3.2 Reaction Optimization 

 Attracted by the opportunity to quickly access GABA derivatives, we sought to 

optimize the reaction.  A screen of our achiral catalysts revealed that electron-deficient 

catalysts give satisfactory results, whereas the electron rich N-phenyl (23) and mesityl  

(24) catalysts yielded no desired product (Table 3.1).   

Table 3.1  

 

 While initial results were positive, the impact of the base was explored  (Table 

3.2).  A full equivalent of base was found to be optimal.  Carboxylate  

Table 3.2  

 

H

O

Ph

NMeO
Bn

Bn
+ NHC (20 mol %)

iPr2NEt (50 mol %) 
tAmOH, rt

MeO

O

Ph

N Bn

Bn

N
N N

BF4

F F
F

FF N
N N

BF4

Cl Cl

Cl N
N N

BF4

CF3

CF3
N

N N

BF4

NHC:

51% yield 21% yield 37% yield 0% yield

N
N N

BF4

Me Me

Me

0% yield

3

27

28

19 29 30 31 32

H

O

Ph

NMeO
Bn

Bn
+

N
N N

BF4

F F
F

FF

(20 mol %)

Base, tAmOH, rt MeO

O

Ph

N Bn

Bn

3

27

19

28

Base x (mol %) yield (%)

iPr2NEt
iPr2NEt
iPr2NEt
iPr2NEt (+ AcOH)
NaOAc
KOAc

CsOAc
LiOAc
NaOPiv
CsOPiv
DBU
K2CO3

20
100
150
100
100
100

35
74
50
52
57
45

100
100
100
100
100
100

19
49
50
15
0
0

Base x (mol %) yield (%)

1
2
3
4
5
6

7
8
9
10
11
12

Entry Entry



	   45	  

bases were also effective, with acetates and pivalates providing good yields.   

However, certain counterions (Li or Cs) lead to side-reactions and lower than  

expected yield.  Stronger bases, such as DBU and K2CO3, provided no product. 

 Solvent choice has a significant impact on the availability of the iminium 

precursor.  NMR experiments indicate that in tAmOH, a diamino-acetal is formed, which 

is a less reactive iminium precursor compared to the N,O-acetal (Fig 3.2).79  In contrast, 

in ethanol or methanol, the parent N,O-acetal remains intact.  Exchange of the alkoxy 

groups is also observed between the parent acetals and solvent.   The use of organic 

cosolvents, such as THF, toluene, or DCM, promoted formation of the hydrocinnamates.  

This is the product of simple protonation of the homoenolate intermediate, which is often 

termed ‘proteo-redox.’80 

 

Figure 3.2  
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observations made by my colleague Nick White who proposed increasing the steric bulk 

in the catalyst can inhibit acyl-anion reactivity and promote homoenolate chemistry. 

Table 3.3  

 

 With suitable conditions, the scope of the racemic reaction was explored (Table 

3.4).  Electron-deficient enals are tolerated in this reaction (36b and 36c) as well as 

electron-rich enals (36d, f-g).   
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Heterocycles show mixed results, with furan demonstrating success (36e) whereas 2-

pyridyl leads to no desired product (not shown).   Variation of the amine is tolerated, 

allowing for different deprotection strategies (36h). 

 

3.3 Asymmetric Homoenolate/Mannich Reaction 

 We sought to render this reaction asymmetric.  When t-amyl alcohol was used, 

none of our typical NHC catalysts induced asymmetry (Fig 3.4a).  The initial hypothesis 

was that the increased steric bulk of the chiral catalysts impeded catalyst turnover by 

methanol and interrupted the catalytic cycle.  

 

Figure 3.4  
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Scheme 3.4  

 This enantioselectivity was much higher than expected due to the small steric 

impact of the fluoride that is distant from the active site of the catalyst.  We then sought 

to improve the stereoselectivity of this reaction.  Using cosolvents such as THF or 

CHCl3 provided no product, only hydrocinnamate products (Table 3.5).  Toluene as co-

solvent improved enantioselectivity slightly to 55% ee.  Methanol effectively erases any 

enantioselectivity.  Reduction in reaction temperature also lowers yield and 

enantioselectivity. 
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 Regarding catalyst design, the introduction of the N-tribromophenyl group (39) 

led to a decrease in selectivity (Scheme 3.5).  While interesting, there were no 

promising trends with this catalyst, and alternative strategies were explored. 

 

Scheme 3.5  
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are effective in the reaction (Figure 3.3).   
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Figure 3.3 

Scaling up the reaction using the catalyst 33 in methanol reveals formation of product in 

54% yield and 38% ee (Scheme 3.6). 
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Curiously, this system was unsuitable for other catalysts.  However, using a mixture of t-

amyl alcohol and methanol allows for bulky, electron-deficient catalysts to be utilized 

(Scheme 3.7).  Unfortunately, results remain mediocre (Table 3.6). 

   

Scheme 3.7  

Table 3.6  

 

 NHC catalysts bearing a bicyclic backbone are also effective in this reaction 

(Table 3.7).  Benzyl substituted catalyst 46 formed the desired product in low yields.  

The cyclohexyl substituted catalyst 47 showed improved reactivity, with similar results 

with EtOH as the solvent.  However, not all catalyst scaffolds failed to yield any desired 

products.  Catalyst 48 promoted formation of side-products.  Also catalyst 49, which 

H

O

Ph

NMeO
Bn

Bn
+

N
N N

O

Cl Cl

Cl
BF4

(20 mol %)

NaOAc, Solvent, rt MeO

O

Ph

N Bn

Bn

3

27

28

41

with MeOH

with tAmOH/MeOH (5:1)

0% yield

20% yield, 42%ee

H

O

Ph

NMeO
Me

Bn
+

N
N N

O

Ar

BF4

(20 mol %)

NaOAc, tAmOH/MeOH (4:1) 
rt MeO

O

Ph

N Bn

Me

ClCl

Cl

Cl

Cl

20% yield
42% ee

29% yield
38% ee

Br
F

Br

Br
F

25% yield
28% ee

BrBr

Br

20% yield
38% ee

F
F

F

F
F

28% yield
26% ee

3

27

28

41 42 43 44 45



	   52	  

favors homoenolate reactivity in our work with nitroolefins,77 does not lead to product 

formation in this reaction.  

Table 3.7  

 

 The nature of the iminium precursor was also explored (Table 3.8).  Activated 

aminals proved to be highly reactive and unstable, while the substituted iminium 53 was 

unreactive as a substrate. 

Table 3.8  
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reveal no promising trends, so the best direction seems to be in the design of new 

catalysts.  Chapter 4 will provide detail in these efforts.  However, at this time a suitable 

catalyst has yet to be discovered. 

 

3.4 NHC Catalyzed Aza-Morita-Baylis-Hilman 

 A persistent challenge encountered in this chemistry is reaction selectivity.  

During the course of these studies, products formed from side reactions were isolated in 

varying amounts.  The hydrocinnamate product (54), derived from the protonation of the 

homoenolate equivalent, is one side-product that was expected (Figure 3.5). 

 

Figure 3.5  
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reaction.  This is most often seen with the use of catalyst 37.  This is not a surprising 
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between cyclic enones and tosyl-imines (Scheme 3.7a).83  In a related reaction, Scheidt 

and coworkers reported an NHC catalyzed Rauhut-Currier reaction with enals and 

bis(sulfonyl)alkenes (Scheme 3.7b).84  With few examples reported, we decided to 

explore this reaction further. 

 

Scheme 3.7  

 With the help of a talented undergraduate student, Adam Golos, the reaction was 

optimized.  The initial hit for the reaction was with chiral catalyst 64 with an N-phenyl 

group (Table 3.9).  While the yields were adequate, this catalyst demonstrated 

increased selectivity for this product.  With trifluoroethanol as solvent, the yield of the 

reaction is drastically improved.  However, we found it superfluous to use a chiral NHC 

catalyst to form achiral products.  Various achiral catalysts were screened, and catalyst 
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Table 3.9  

 

 With suitable conditions at hand, Golos worked on elucidating the scope of the 

reaction (Table 3.10).  Electron-deficient enals make excellent substrates, with cyano-

cinnamaldehyde being the exception (56b-d).   

Table 3.10  
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Electron-rich enals are not well tolerated, and a furyl group shuts down reactivity(56e-f).  

In terms of substitution, o-bromo-cinnamaldehyde (56h) performs better than p-

bromocinnamaldehyde (56g), while the m-substitution is not well tolerated (56i).  A 

butenoate substrate  provides the expected product 56j, albeit in low yields.  This is 

notable as this enal is not a suitable substrate in the homoenolate chemistry.   Alkyl-

substituted enals are not converted to product. 

 

 Substitution of the amine with various protecting groups is tolerated (Table 3.11).  

The dibenzylamine and allyl benzylamine lead to product formation in high conversion 

(56l-m).  The use of a morpholine based acetal is also effective (56o), allowing for the 

incorporation of heterocycles. 

Table 3.11  
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certainly be achieved.  In addition, we have revealed a rare case of an aza-Morita-

Baylis-Hilman reaction using NHC catalysis. 
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CHAPTER 4 

STRATEGY FOR THE LATE-STAGE MANIPULATION OF TRIAZOLIUM-BASED 

CATALYSTS 

 
 
 

 
4.1 Significance of Catalyst Design 

 In our group’s work in Rhodium catalysis, we see strong impact from the 

selection of ligand, and catalyst design has emerged as a strong tradition.  For example, 

in the Rh-catalyzed [2+2+2] cycloaddition, the use of the perfluorinated phosphoramidite 

ligand 2 shows enhanced selectivity (Scheme 4.1a).85  In the Rh(III)-catalyzed formation 

of pyridones from acrylamides, there is a substantial enhancement of regioselectivity 

with a bis(t-butyl) substituted Cp ligand 4 is used instead of pentamethyl Cp 3 (Scheme 

4.1b).86  The same is observed in recent work describing the Rh-catalyzed 

cyclopropanation of acrylates (Scheme 4.1c).87  As such, catalyst design is considered 

critical for reaction success. 

 Design and modification of N-heterocyclic carbene catalysts has also led to 

significant improvements in reaction performance.  One example is work accomplished 

by my colleague Daniel DiRocco in his work with the asymmetric intermolecular Stetter 

reaction with nitroalkenes (Scheme 4.2).  He designed NHC catalyst 7 that bears a 

single fluoride on the backbone, distant from the active site.88  The single modification 

leads to significant improvements in enantioselectivity. Lessons learned from this 
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achievement were critical for the success of future asymmetric intermolecular Stetter 

reactions, both by our group and others.89 

Scheme 4.1 

 

Scheme 4.2 
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Nicholas White explored catalyst modification to improve selectivity (Scheme 4.3).90  His 
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enhance selectivity.  Indeed, the dibutyl-catalyst 9 was key to the success of this 

reaction. 

Scheme 4.3 

 In NHC catalysis, our group employs two classes of catalysts: amino-acid based 

and aminoindanol based (Figure 4.1).91  The NHC catalysts derived from amino-acids 

have proven to be a reliable scaffold due to the variety of chiral amino-acids, both 

natural and synthetic, that can serve as starting material for catalyst synthesis.  

Inherently, a diversity of catalysts can be rapidly constructed.  

 

Figure 4.1  

 The aminoindanol scaffold, for the time being, has proven difficult to modify.  The 

enantioenriched aminoindanol (Fig 4.2) is a key structural compound of the HIV drug 

indinavir92 (trade name: Crixivan).  With large amounts of this compound available, the 

enantioenriched aminoindanol can also be found in other catalysts.  These include in 

PHOX ligands,93 BOX ligands,94 as well as chiral thiourea catalysts.95  While popular, 

there are only a few examples of modification of this motif. 
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Figure 4.2 

4.2 Modification of Aminoindanol Scaffold 

 One example is work reported by the Katsumara group.96  Their work is 

concerned with the development of an asymmetric 6π cyclization as a method to form 

enantioenriched piperidines (12, Scheme 4.4).  Crucial to this reaction was the use of 

the chiral aminoindanol 10 as an auxiliary.  Initial work with auxiliary 10a produced 

compounds in a 3:1 dr.  As a route to improve this, they explored installing alkyl groups 

to the C-7 site of the aminoindanol.  This dramatically improves diastereoselectivity to 

an impressive 40:1 dr with 10b.  It should be noted, however, that the synthesis of these 

modified amino-indanols can be lengthy, involving between 9-11 steps.  This provides a 

substantial barrier in supplying more derivatives. 
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 Work by Bode and coworkers provide another great example.  In the kinetic 

resolution of chiral secondary amines, they employ chiral hydroxamic acid co-catalyst 

14 derived from the aminoindanol (Scheme 4.5).97  An improvement in S-factor is 

observed with a catalyst bearing a bromide at C-6 (14b).  Dibromination, on the other 

hand leads to no improvement in selectivity.  In addition, these aminoindanol variants 

are fairly simple to produce: electrophilic bromination under acidic conditions yields the 

6-substituted bromide selectively from the parent lactam. 

Scheme 4.5 

 Besides electrophilic bromination, the aminoindanol scaffold is susceptible to 

nitration at the 6-position as well.  This was exploited by Takasu and Yamada for the 

synthesis of nitrated aminoindanol derivatives 16 (Scheme 4.6).98  The material was 

taken on to construct a triazolium salt used for the kinetic resolution of meso-diols 15.  

The nitrated-aminoindanol is not completely unprecedented, as a group from Eli Lilly 

used this scaffold for the synthesis of an M1 agonist.99  However, they use a parent 

nitro-indanone as starting material in contrast to the late stage installation demonstrated 

by Takasu and Yamada.  
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Scheme 4.6 

 In the course of research at CSU, we were curious about methods for late-stage 

modification of our triazolium salts.  This was inspired by work of Waser and Bode 

(Scheme 4.7).  Waser reported the late stage modification of a triazolium salt 17 by 

careful reduction of a tethered azide.100  The primary amine formed is then captured by 

a thioisocyanate to form a pendant thiourea side chain.  In a similar fashion, Bode used 

a similar starting strategy to arrive at triazolium 19 bearing a primary amine,101 which is 

then condensed with various 1,4-diketones to quickly access a variety of catalysts with 

pyrrole side chains (20). 

Scheme 4.7 
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catalysts met with failure (Scheme 4.8).  A method to ‘protect’ the triazolium from basic 

conditions would allow for easy modification, and so we sought methods that can serve 

as a way to protect the catalyst. 

 

Scheme 4.8 

 One such idea came during the discovery of the ‘aza-Breslow’ intermediate.  

DiRocco encountered this adduct in his work in the aza-benzoin reaction.102  Exposure 

of a triazolilylidene with an iminium leads to the formation of compound 24 (Scheme 

4.9).  Furthermore, this formation is reversible, and the free NHC 25 can be liberated by 

acidic conditions.  With easy formation and recovery, this showed promise as a way to 

protect the triazolium.  Unfortunately, isolation of stable aza-Breslow intermediate is 

limited to a few specific systems.   

Scheme 4.9 
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explored.  Sodium borohydride (NaBH4) is an effective reagent, but conditions proved 

harsh and yields are low.  By running the reaction at 0 °C in a 10:1 ratio of DCM/EtOH 

(or DCM/H2O), the product can be isolated cleanly (see Table 4.1).  Dependent on the 

purity of the starting material, the reduction proceeds cleanly and no further purification 

is needed.  For milder conditions, sodium triacetoxyborohydride (NaBH(OAc)3) can be 

used as well, but this is limited to electron-deficient catalysts (i.e.: catalysts bearing an 

N-pentafluorophenyl group).  Plenio and coworkers employed this strategy in their 

modification of imidazolinium-based catalysts.103   

 

4.3 Oxidation by Trityl Salts to Form Triazoliums 

 With a method to convert triazoliums to triazolines, we then explored conditions 

for the reverse reaction.  Bildstein and coworkers described the synthesis of 

benzimidazolines bearing an N-ferrocenyl group and an N-Methyl group.104   This is then 

oxidized to the benzimidazolium salt 27 by exposure to triphenylcarbenium (aka trityl) 

tetrafluoroborate (Scheme 4.10a).  We were curious if this strategy would work to form 

triazoliums.  To our delight, exposure of the triazoline 28 to trityl BF4 at room 

temperature in DCM led to clean conversion to the desired triazolium 29 (Scheme 

4.10b).  A method was then sought to separate the triphenylmethane side-product from 

the triazolium.  This can be accomplished by addition of diethyl ether to the reaction.  

The triazolium salt precipates as a powdery solid, and filtration separates the product 

from any waste material.  In contrast to our traditional catalyst synthesis, where 



	   66	  

formation of a workable solid can sometimes be elusive, this approach reliably provides 

the catalyst as a free flowing solid. 

 

Scheme 4.10 

 We then screened this method with various triazolines.  This reaction works well 

with electron-rich, electron-deficient, and bulky substrates (Table 4.1).  Additionally, the 

method can be used to introduce new counterions, such as hexafluorophosphate (29b) 

and hexachloroantimonate (29c).  Chiral substrates (30 and 31) also are competent in 

this reaction. 

 A direct synthesis of triazolines, side-stepping the reduction of a triazolium, would 

be a welcome advantage for this method.105  Similar to what Bildstein reported, we 

imagine that formation of a hydrazide followed by cyclization with formaldehyde would 

yield the triazoline.106  Unfortunately, attempts with cyclization were unsuccessful and 

only starting material was isolated (Scheme 4.11).  Under more forcing conditions, the 

hydrazide simply hydrolyzes and the amide precursor is recovered.   
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Table 4.1 

 

Other C1 sources were explored, including diiodomethane,107 dibromomethane, 

dimethoxymethane, and the Glorius reagent (chloromethyl pivalate),108 but no desired 

product was formed.    It was at this time that a visiting graduate student, Milind Jadhav 

of the University of Camerino, continued in the search for conditions to synthesize a 

triazoline.  Despite intense effort, he also was unable to find suitable conditions 

(Scheme 4.11). 
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 One issue that manifested itself during this work was the lability of triazolines.  

Under acidic conditions, these products decompose.  The electronics of the N-aryl 

group seem to have the biggest impact in this property.  Phenyl and methoxy-phenyl 

substituted triazolines decompose upon exposure to silica gel, and the methoxy-phenyl 

variant can degrade at room temperature after several days.  Electron-deficient analogs 

tend to show increased stability, and can tolerate column chromatography with silica 

gel.  With this in mind, purification of triazolines is usually accomplished with basic 

alumina as the solid phase.  Similar observations were described by Plenio and 

coworkers in their work with imdazoliniums.  In their report, symmetrical imidazolines 

are accessed by condensation with formaldehyde, but unsymmetrical analogs proved 

difficult.  They thus formed the imidazolium salt and reduced to the desired compound, 

which is the route we selected. 

 

4.4 Cross-Coupling as Strategy for Late-Stage Modfication 

 Our initial strategy involved alkylation of an NHC catalyst.  A triazoline with a free 

hydroxyl group can be accessed from pyroglutamic acid.  Our aim was to attach an 

additive at this position.  Previous work has demonstrated some key additives that 

improve various NHC catalyzed reactions, specifically carboxylic acids and 

catechol.109,110  My colleague, Phil Goldblatt, explored the syntheses of these 

compounds (Scheme 4.12).  However, this chapter will focus on the manipulation of the 

aminoindanol scaffold.   
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Scheme 4.12 

 The brominated lactam, as reported by Bode, could provide opportunity for 

downstream modifcation.  Bromination of the amide precursor formed the precursor 36 

(Scheme 4.13).  The material is carried forward through traditional catalyst synthesis,113 

then reduced with NaBH4 and purified by column chromatography (Scheme 4.13).  This 

provides product 37 as a clean solid that is easy to work with.  

 

Scheme 4.13 

 We decided the aryl bromide would serve as an excellent substrate for a Suzuki-

Miyaura cross-coupling.111  This would be useful method for the introduction of aryl 

groups to this scaffold.  To fully appreciate this, it is worth examining an X-ray crystal 

structure obtained of the aminoindanol-based catalyst (Fig 4.3).112  The aryl group of the 

aminoindanol portion is almost perpendicular to the triazole ring.  This arrangement is 
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effective in imparting enantioselectivity in acyl-anion chemistry, as seen in successful 

cases of asymmetric benzoin and Stetter reactions (see Chapter 1).  However, with the 

emergence of homoenolate chemistry with NHC catalysis, this conformation might have 

little effect in setting the more distant stereocenter.  Installing large substituents on the 

aminoindanol could be a remedy. 

 

Figure 4.3 

 To determine optimal conditions for the Suzuki coupling, High-Throughput 

Experimentation (HTE) was employed.  HPLC results from the HTE experiment show 

two promising set of conditions (Fig 4.4).  While sodium hydroxide (NaOH) proved to be 

a false positive, the potassium phosphate (K3PO4) hit gave promising results.  When 

this reaction was conducted at the bench, the desired compound was isolated in 63% 

yield using PdCl2(PPh3)2 with K3PO4 in THF/H2O. 
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Figure 4.4 

 With optimal conditions discovered, we set out to synthesize a variety of 

elaborated triazolines (Table 4.2).  Electron-rich aryl boronic acids are superb as 

substrates, whereas electron-deficient partners give product in diminished yields.  Even 

some bulky aromatic species are tolerated.  There is a limit, however, as very bulky and 

very electron-deficient aryl-boronic acids fail to yield desired product (38h and 38i). 
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Table 4.2 

 

 With elaborated triazolines at hand, we tested if trityl salt mediated oxidation will 

work on these substrates.  To our delight, this reoxidation does work to provide the 

desired triazoliums (Table 4.3).   
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Table 4.3 

 

 For a shorter synthesis, cross-coupling can be performed on the bromo-lactam 

precursor 36 followed by traditional catalyst synthesis to form 41 (Scheme 4.14).113 

 

Scheme 4.14 

 We were curious if cross-coupling can occur on the N-Aryl group as well.  The 

use of p-iodophenylhydrazine as starting material introduces a C-I bond that can be 

manipulated in similar fashion.  We also decided to attempt a C-N cross-coupling as a 
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way to introduce highly electron-releasing substituents onto the N-aryl group of the 

triazolium catalysts (Table 4.4).  NHC catalysts that contain highly electron-donating 

groups on the arene often possess unique capabilities.114  However, the parent 

hydrazines are highly unstable, so an alternative synthetic strategy would prove useful.  

Unfortunately, no desired products were formed:  the triazoline substrate 43 is unstable, 

and decomposes under attempted literature conditions.115 

Table 4.4 

 

 A future direction for this project would be the development of a simple triazoline 

precursor.  If simple N-H variant 45 can be accessed, this can serve as a substrate for 

diversification by simple alkylation or arylation (Scheme 4.15).  Oxidation to the 

triazolium would provide a convenient route to many different NHC catalysts.  This 

strategy would avoid two major pitfalls in catalyst synthesis: 1) usage of unstable aryl 

hydrazines, and 2) difficult cyclization to form the triazole core.  However, a practical 

synthesis of the precursor needs to be explored. 
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Scheme 4.15 

 In summary, a useful strategy for the diversification of aminoindanol-based NHC 

catalysts has been described.  This will serve in the exploration of new catalysts in the 

discovery and optimization of new organocatalyzed reactions. 
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APPENDIX 1 
 

Experimental And Spectral Data for Chapter 2 
 
 
 

 

General Methods: 

 

All reactions were carried out under an atmosphere of argon with magnetic stirring.  

HPLC grade Chloroform preserved with pentane was purchased from Fisher Scientific. 

Column chromatography was performed on SiliCycle®SilicaFlash®  P60, 40-63µm 60A. 

Thin layer chromatography was performed on  SiliCycle® 250µm 60A plates.  

Visualization was accomplished with UV light or p-anisaldehyde stain followed by 

heating.  This stain is highly recommended, with starting material typically staining 

orange, intermediate as brown, and final product as a dark blue. 

 

1H NMR spectra were obtained on Varian 300 or  400 MHz spectrometers at ambient 

temperature.  Data is reported as follows:  chemical shift in parts per million (δ, ppm) 

from CDCl3 (7.26 ppm)  multiplicity (s = singlet, bs = broad singlet, d = doublet, t = 

triplet, q = quartet, and m = multiplet), coupling constants(Hz).   

13C NMR  was recorded on  Varian  300 or  400 MHz spectrometers (at 75 or 100 MHz) 

at  ambient temperature.  Chemical shifts are reported in ppm from CDCl3 (77.2 ppm)  
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Varian CP-3800 Gas Chromatograph was used to determine diastereomeric and 

enantiomeric ratios.  For the achiral column, Varian CP-Sil 8CB (15m X 0.25mm) was 

used.  For the chiral column, Chiraldex BDM-1 was used, unless otherwise stated. 

 

Aldehyde substrates were purchased from Sigma-Aldrich and subsequently distilled. 

 

 
Ketoesters were prepared according to literature precedent: 
17a,1 17h,2 17i,3 17j-17k,4 17l-17p,1 17q.5 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Runcie,	  K.	  A.;	  Taylor,	  R.	  J.	  K.	  Chem.	  Commun.	  2002,	  974-‐975	  
2	  Schuda,	  P.	  F.;	  Ebner,	  C.	  B.;	  Potlock,	  S.	  J.	  Synthesis,	  1987,	  1055-‐1057.	  
3	  Gérard,	  S.;	  Raoul,	  M.;	  Sapi,	  J.	  Eur.	  J.	  Org.	  Chem.	  2006,	  2440-‐2445.	  
4	  Zigterman,	  J.	  L.;	  Woo,	  J.	  C.	  S.;	  Walker,	  S.	  D.;	  Tedrow,	  J.	  S.;	  Borths,	  C.	  J.;	  Bunel,	  E.	  E.;	  Faul,	  M.	  
M.	  J.	  Org.	  Chem.	  2007,	  72,	  8870-‐8876.	  
5	  Yu,	  J.-‐Q.;	  Corey,	  E.	  J.	  J.	  Am.	  Chem.	  Soc.	  2003,	  125,	  3232-‐3233.	  
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Amine catalyst 18 was prepared by literature reported method.6 
 

 
Triazolium catalyst 9 was prepared by literature reported method.7 

 

 

 

General procedure for synthesis of 21a: 

25 mg (0.17 mmol) of Keto-Ester 17a is added to an oven-dried 10mL round bottom 

flask.  11mg (0.2 equiv., 0.03 mmol) of amine catalyst 18 and 14 mg (0.2 equiv., 0.03 

mmol) of triazolium 9 are then added.  1 ml of CHCl3 is added and argon is bubbled into 

the mixture.  20 μl (1.2-1.5 equiv, 0.2 mmol) of butyraldehyde (16a) is then added, 

followed by 2.5mg (0.2 equiv, 0.03 mmol) of NaOAc.  The reaction is outfitted with a 

reflux condenser and stir bar, and heated to 60 °C for 12 hours.  Reaction is monitored 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  Marigo,	  M.;	  Wabnitz,	  T.	  C.;	  Fielenbach,	  	  D.;	  Jørgensen,	  K.	  A.	  Angew.	  Chem.	  Int.	  Ed.	  2005,	  44,	  
794-‐797.	  
7	  Vora,	  H.	  U.;	  Lathrop,	  S.	  P.;	  Reynolds,	  N.	  T.;	  Kerr,	  M.	  S.;	  Read	  de	  Alaniz,	  J.;	  Rovis,	  T.	  Org.	  
Synth.	  2010,	  87,	  350-‐361.	  
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by silica gel TLC.  Upon completion, the reaction is cooled to room temperature and 

filtered through a small plug (1 in) of silica gel, washing with DCM then EtOAc.  The 

solution is concentrated and purified by column chromatography, eluting with 10% 

EtOAc/DCM to 50% EtOAc/Hexanes through silica gel.  Fractions were collected and 

concentrated to provide the desired product. 

 

 

(1S,2R,4S)-ethyl 2-ethyl-4-hydroxy-4-methyl-3-oxocyclopentanecarboxylate (21a) 

Rf= 0.3 (10% Ethyl Acetate/Dichloromethane); 28 mg (72%), 94% ee, 19:1:<1:<1 dr 

[α]D21 =  -40.83 (c = 0.0024 g/ml, CHCl3) GC Analysis CP-Sil 8CB column at 110 °C, 1 

ml/min. Major: 12.07min. Minor: 12.95 min, 13.84 min, 15.14 min. BDM-1 column at 130 

°C, 1 ml/min. Major: 24.35 min. Minor: 23.81 min.  1H NMR: (300 MHz; CDCl3):  δH 4.16-

4.23 (2 H, q), 2.98 (1 H, d, J 7.2), 2.33 (1 H, ddd, J =13.7, 7.2 and 0.3), 1.94 (1 H, d, J 

=10.5), 1.63 (1 H, d, J =7.3), 1.33 (3 H, d, J =0.8), 1.25-1.33 (3 H, t, J = 7.2 ), 0.92 (3 H, 

td, J =7.5 and 0.8)..13C NMR: (100 MHz, CDCl3) δ216.7, 174.8, 75.7, 60.9, 51.7, 42.3, 

39.3, 23.0, 22.1, 14.1, 10.8. IR (NaCl, neat): 3465, 2971, 2937, 2878, 1733, 1519, 1447, 

1378, 1298, 1234, 1177. HRMS: (ESI-) calcd for C12H20O4, 227.1289. Found 227.1291. 

 

(1S,2R,4S)-ethyl 4-hydroxy-2,4-dimethyl-3-oxocyclopentanecarboxylate (21b) 

O

Me

EtO2C

Et
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O
OHMe
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Rf= 0.3 (10% Ethyl Acetate/Dichloromethane); 28 mg (78%), 88% ee, 24:1.5:1 dr [α]D21 

=  -101.82(c = 0.0011 g/ml, CHCl3) GC Analysis CP-Sil 8CB column at 110 °C, 1 

ml/min. Major: 7.54min. Minor: 8.22, 9.46 min. BDM-1 column at 130 °C, 1 ml/min. 

Major: 17.33 min. Minor: 16.82 min.  1H NMR: (300 MHz, CDCl3) δ 4.20 (q, 2H), 2.84 (q, 

1H), 2.61 (m, 1H), 2.34 (dd, 1H), 1.94 (t, 1H), 1.35 (s, 3H), 1.29 (s, 3H), 1.24 (t, 3H).  

13C NMR: (100 MHz, CDCl3) δ 217.4, 174.5, 61.2, 46.07, 45.4, 39.3, 23.5, 14.4, 13.9. IR 

(NaCl, neat): 3436, 2980, 2938, 1732, 1520, 1450, 1376, 1181. HRMS: (ESI-) calcd for 

C11H26O4, 213.1249. Found 213.1256. 

 

(1S,2R,4S)-ethyl 4-hydroxy-4-methyl-3-oxo-2-propylcyclopentanecarboxylate(21c) 

Rf= 0.3 (10% Ethyl Acetate/Dichloromethane); 31 mg (76%), 95% ee, 33:1:1 dr [α]D21 = 

-56.97( c = 0.0033 g/ml, CHCl3) GC Analysis CP-Sil 8CB column at 110 °C, 1 ml/min. 

Major: 19.66min. Minor: 20.77, 22.00 min. BDM-1 column at 100 °C, 2 ml/min. Major: 

112.04 min. Minor: 113.74 min.  1H NMR: (300 MHz, CDCl3) δ 4.20 (q, 2H), 2.95 (q, 

1H), 2.66 (m, 1H), 2.33 (dd, 1H), 1.92 (m, 1H), 1.72 (m, 1H), 1.49 (m, 1H), 1.33 (s, 3H), 

1.28 (t, 3H), 0.90 (t, 3H).  13C NMR: (100 MHz, CDCl3) δ 217.3, 175.1, 61.2, 50.2, 43.4, 

39.7, 31.9, 23.2, 20.1, 14.4, 14.2. IR (NaCl, neat): 3448, 2964, 1734, 1377, 1178, 1038, 

756 cm-1. HRMS: (ESI-) calcd for C12H20O4, 227.1289. Found 227.1291. 
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OHnPr
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(1S,2R,4S)-ethyl 2-allyl-4-hydroxy-4-methyl-3-oxocyclopentanecarboxylate (21e) 

Rf = 0.39 (10% Ethyl Acetate/Dichloromethane); 37 mg (97%), 85% ee, 15:1:0.2:0.2 dr,  

[α]D21 = -67.23 (c = 0.0047 g/ml, CHCl3) GC Analysis: CP-Sil 8CB at 110 °C, 1 ml/min. 

Major 16.70 min. Minor: 18.16 min, 20.74 min, 21.11 min.  HPLC Analysis: ChiralPak IA 

column at 97% Hexanes/iPrOH, 1 ml/min. Major: 14.346 min. Minor: 12.338 min. 1H 

NMR: (300 MHz, CDCl3): δ  5.73-5.61 (m, 1H), 5.12-5.00 (m, 2H), 4.20-4.13 (m, 2H), 

2.98 (td, J = 10.3, 7.2 Hz, 1H), 2.77 (ddd, J = 10.2, 7.3, 4.8 Hz, 1H), 2.56-2.50 (m, 1H), 

2.33 (dtd, J = 13.6, 6.8, 1.9 Hz, 2H), 1.91 (ddd, J = 13.7, 10.4, 0.4 Hz, 1H), 1.33 (d, J = 

0.7 Hz, 3H), 1.33-1.24 (m, 3H). 13C NMR: (100 MHz, CDCl3): δ 216.0, 174.5, 134.3, 

117.7, 75.6, 60.9, 49.9, 42.2, 39.3, 33.4, 23.0, 14.1 IR (NaCl, neat): 3457, 2979, 2930, 

1734, 1641, 1520, 1444, 1378, 1227, 1179 cm-1. HRMS: (APCI+) Calc’d for C12H18O4, 

227.1278. Found 227.1276. 

 

 

(1S,2R,4S)-ethyl 2-benzyl-4-hydroxy-4-methyl-3-oxocyclopentanecarboxylate (21f) 

Rf = 0.21 (5% Ethyl Acetate/Dichloromethane); 25 mg (50%), 89% ee, 9:1:0.2:0.2 dr,  

[α]D21 = -126.92 (c = 0.0013 g/ml, CHCl3) HPLC Analysis Chiracel IC at 95% 

Hexanes/iProH. Major 13.36 min. Minor: 11.36 min 1H-NMR (300 MHz; CDCl3): δ  7.32-

O
OH

EtO2C
Me

O
OHBn
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7.14 (m, 5H), 3.98-3.83 (m, 2H), 3.19 (dd, J = 13.7, 4.5 Hz, 1H), 3.04-2.89 (m, 2H), 2.81 

(dd, J = 13.7, 7.2 Hz, 1H), 2.30-2.23 (m, 1H), 1.91-1.83 (m, 2H), 1.33 (s, 3H), 1.15-1.11 

(t, J = 7.0 Hz, 3H). 13C NMR: (100 MHz, CDCl3): δ 215.9, 174.6, 138.3, 129.55, 128.55, 

126.72, 75.8, 61.1, 52.5, 42.8, 39.7, 35.4, 23.1, 14.2. IR (NaCl, neat): 3442, 2980, 1732, 

1496, 1454, 1377, 1178, 1045. HRMS: (APCI+) Calc’d for C16H19O4, 275.1289. Found 

275.1292. 

 

 

 

(1S,2R,4S)-ethyl 4-hydroxy-2-(2-((4-methoxybenzyl)oxy)ethyl)-4-methyl-3-

oxocyclopentanecarboxylate (21g) 

Rf = 0.31 (5% Ethyl Acetate/Dichloromethane); 37mg (59%), 90% ee, 9:1:0.2:0.2 dr,  

[α]D21 = -42.61 (c = 0.0023 g/ml, CHCl3) HPLC Analysis Chiracel IC at 95% 

Hexanes/iProH. Major 13.64 min. Minor: 16.34 min 1H-NMR (300 MHz; CDCl3): δ  7.23 

(d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.36 (d, J = 4.0 Hz, 2H), 4.13 (dd, J = 11.6, 

7.1 Hz, 3H), 3.80 (s, 3H), 3.55 (td, J = 4.8, 2.1 Hz, 2H), 3.09 (d, J = 7.2 Hz, 1H), 2.78 (s, 

1H), 2.38-2.34 (m, 1H), 2.04 (d, J = 5.4 Hz, 3H), 1.88 (dd, J = 13.7, 10.6 Hz, 2H), 1.31 

(s, 3H), 1.23 (t, J = 7.1 Hz, 3H).13C NMR: (100 MHz, CDCl3): δ 216.5, 191.3, 180.5, 

174.5, 159.1, 130.0, 129.2, 113.8, 113.7, 72.4, 67.1, 60.9, 55.2, 47.7, 42.7, 39.8, 29.0, 

22.7, 14.1 IR (NaCl, neat): 3445, 2936, 1730, 1611, 1514, 1444, 1376, 1301, 1247, 

1174. HRMS: (ESI-) Calc’d for C19H2506, 349.1657. Found 349.1663. 
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(1S,2R,4S)-methyl 2-ethyl-4-hydroxy-4-methyl-3-oxocyclopentanecarboxylate 

(21h) 

Rf= 0.24 (10% Ethyl Acetate/Dichloromethane); 38 mg (97%), 89% ee, 33:1:1:nd dr 

[α]D21 = -62.32 (c = 0.0043 g/ml, CHCl3) GC Analysis CP-Sil 8CB column at 110 °C, 1 

ml/min. Major: 8.33 min. Minor: 8.98, 9.51 min. BDM-1 column at 130 °C, 1 ml/min. 

Major: 18.72 min. Minor: 18.31 min.  1H NMR: (300 MHz, CDCl3) δ 3.7 (s, 3H), 2.99 (q, 

1H), 2.62 (m, 1H), 2.32 (dd, 1H), 1.93 (m, 1H), 1.77 (m, 1H), 1.63 (m, 2H), 1.33 (s, 3H), 

0.91 (t, 3H).  13C NMR: (100 MHz, CDCl3) δ 216.3, 175.6, 52.4, 52.1, 42.4, 39.6, 23.1, 

22.2, 10.9. IR 3456, 2970, 1737, 1439, 1377, 1170, 1032. HRMS: (ESI-) Calc’d for 

C10H16O4, 199.0976. Found 199.0979. 

 

 

(1S,2R,4S)-benzyl 2-ethyl-4-hydroxy-4-methyl-3-oxocyclopentanecarboxylate (21i) 

Rf= 0.31 (10% Ethyl Acetate/Dichloromethane); 24 mg (58%), 85% ee, 17:1 dr [α]D21 = -

65.38 (c = 0.0013 g/ml, CHCl3) GC Analysis CP-Sil 8CB column at 140 °C, 3 ml/min. 

Major: 17.98 min. Minor: 19.92 min. HPLC Analysis : Chiralcel IC column 95:5 
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Hexanes/Isopropanol, 1ml/min. Major: 11.03 min. Minor: 9.89 min.  1H NMR: (300 MHz, 

CDCl3) δ 7.36 (bs, 5H), 5.18 (s, 2H), 3.06 (q, 1H), 2.65 (m, 1H), 2.32 (dd, 1H), 1.94 (m, 

1H), 1.62 (m, 2H), 1.32 (s, 3H), 0.89 (t, 3H).  13C NMR: (100 MHz, CDCl3) δ 216.7, 

174.9, 135.8, 128.8, 128.6, 128.4, 67.0, 51.9, 42.6, 39.5, 23.1, 22.3, 11.0. IR (NaCl, 

neat): 3448, 3034, 2969, 2935, 2878, 1734, 1455, 1385 cm-1. HRMS: (ESI-) calcd for 

C16H19O4, 275.1289. Found 275.1292. 

 

 

(2S,4S,5R)-5-ethyl-2-hydroxy-2-methyl-4-(pyrrolidine-1-carbonyl)cyclopentanone 

(21j) 

Rf= 0.27 (50% Ethyl Acetate/Dichloromethane); 30 mg (70%), 97% ee, 8:1:0.3:0.1 dr, 

[α]D21 = -40.0 (c = 0.0017 g/ml, CHCl3) GC Analysis CP-Sil 8CB at 140 °C, 3 ml/min. 

Major: 12.52 min. Minor: 10.08min, 9.59 min,. BDM1 column at 170 °C, 3ml/min. Major: 

20.23 min. Minor: 19.75 min.  1H NMR: (300 MHz, CDCl3) δ 3.52 (quint, J = 6.6 Hz, 4H), 

3.08 (m, 1H), 2.94 (m, 1H), 2.25 (dd, J = 6.9 Hz, 1H), 1.97-1.81 (m, 5H), 1.71 (m, 2H), 

1.54 (m, 1H), 1.34 (s, 3H), 0.89 (t, J = 7.5 Hz, 3H).  13C NMR: (100 MHz, CDCl3) δ 

217.8, 172.3, 52.4, 46.8, 46.3, 42.1, 39.5, 26.2, 24.5, 23.4, 21.9, 11.3 IR (NaCl, neat): 

3354, 2969, 2876, 1746, 1622, 1518, 1452, 1343, 1255, 1229, 1165cm-1. HRMS: (ESI+) 

Calcd for C13H22NO3, 240.1594. Found 240.1596. 
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(2S,4S,5R)-5-ethyl-2-hydroxy-2-methyl-4-(morpholine-4-carbonyl)cyclopentanone 

(21k) 

Rf= 0.30 (100% Ethyl Acetate); 37 mg (99%), 98% ee, 9:1:0.4:0.1 dr, [α]D21 = -44.23 (c 

= 0.0052 g/ml, CHCl3) GC Analysis CP-Sil 8CB at 140 °C, 3 ml/min. Major: 14.49 min. 

Minor: 12.83min, 12.01 min, 12.45 min. BDM1 column at 160 °C, 3ml/min. Major: 41.07 

min. Minor: 40.48 min.  1H NMR: (300 MHz, CDCl3) δ 3.68 (m, 8H), 3.17 (m, 1H), 3.01 

(m, 1H), 2.19 (dd, J = 6.9, 13.5 Hz, 1H), 1.81 (m, 2H), 1.55 (m, 1H), 1.33 (s, 3H), 0.89 (t, 

J = 7.5 Hz, 3H) 13C NMR: (100 MHz, CDCl3) δ 217.0, 191.3, 172.0, 75.84, 66.9, 51.8, 

45.9, 42.6, 39.8, 39.5, 23.1, 21.7, 11.1 IR (NaCl, neat): 3383, 2966, 1745, 1638, 1438, 

1240, 1117 cm-1. HRMS: (ESI+) Calcd for C13H22NO3, 240.1594. Found 240.1596. 

 

 

(1S,2R,4S)-ethyl 2,4-diethyl-4-hydroxy-3-oxocyclopentanecarboxylate (21l) 

Rf= 0.21 (10% Ethyl Acetate/Dichloromethane); 42 mg (76%), 81% ee, 55:1:1 dr [α]D21 = 

-56.82( c = 0.0022 g/ml, CHCl3) GC Analysis CP-Sil 8CB at 110 °C, 1 ml/min. Major: 

20.19 min. Minor: 22.52, 24.50 min. BDM-1 column at 130 °C, 1 ml/min. Major: 35.16 
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min. Minor: 34.54 min.  1H NMR: (300 MHz, CDCl3) δ 4.20 (q, 2H), 2.94 (q, 1H), 2.61 

(m, 1H), 2.21 (dd, 1H), 1.99 (m, 1H), 1.78 (m, 1H), 1.60 (m, 3H), 1.29 (t, 3H), 0.92 (t, 

3H).  13C NMR: (100 MHz, CDCl3) δ 217.3, 175.2, 61.2, 52.6, 42.4, 36.7, 29.6, 21.9, 

14.4, 11.1, 7.8. IR (NaCl, neat): 3467, 2970, 2938, 2880, 1734, 1518, 1462, 1378, 1231, 

1179, 1035, 995, 947 cm-1. HRMS: (ESI-) calcd for C12H20O4, 227.1289. Found 

227.1292. 

 

 

 

(1S,2R,4S)-ethyl 2-ethyl-4-hydroxy-3-oxo-4-propylcyclopentanecarboxylate (21m) 

Rf= 0.24 (10% Ethyl Acetate/Dichloromethane); 19 mg (53%), 85% ee, 16:1 dr [α]D21 = -

70.0 ( c = 0.0008 g/ml, CHCl3) GC Analysis CP-Sil 8CB at 110 °C, 1 ml/min. Major: 

32.66min. Minor: 35.76 min. BDM-1 column at 130 °C, 1 ml/min. Major: 55.68 min. 

Minor: 54.01 min.  1H NMR: (300 MHz, CDCl3) δ 4.20 (q, 2H), 2.95 (q, 1H), 2.60 (m, 

1H), 2.20 (dd, 1H), 2.02 (m, 1H), 1.79 (m, 1H), 1.60 (m, 3H), 1.50 (m, 2H) 1.29 (t, 3H), 

0.92 (m, 6H).  13C NMR: (100 MHz, CDCl3) δ 217.2, 175.1, 61.2, 52.5, 42.5, 38.9, 37.2, 

21.9, 16.9, 14.6, 14.4,11.1. IR (NaCl, neat): 3437, 2957, 2865, 1720, 1462, 1377, 1232, 

1191 cm-1. HRMS: (ESI-) calcd for C13H21O4, 241.1445. Found 241.1442. 

 

 

 

O
OHEt
nPr

EtO2C



	   92	  

 

 

(1S,2R,4R)-ethyl 2-ethyl-4-hydroxy-3-oxo-4-phenylcyclopentanecarboxylate (21o) 

Rf= 0.71 (10% Ethyl Acetate/Dichloromethane); 39 mg (95%), 83% ee, 4.4:1:<1:<1 dr 

[α]D21 = -62.50 (c = 0.002 g/ml, CHCl3) GC Analysis CP-Sil 8CB at 170 °C, 2 ml/min. 

Major: 6.40min. Minor: 6.50, 7.96, 7.86 min. HPLC Analysis : Chiralcel IC column 95:5 

Hexanes/Isopropanol, 1ml/min. Major: 9.43 min. Minor: 10.13 min.  1H NMR: (300 MHz, 

CDCl3) δ 7.35 (bs, 5H), 4.15 (m, 2H), 3.13 (q, 1H), 2.83 (m, 1H), 2.60 (dd, 1H), 2.30 (m, 

0.5H), 1.74 (m, 1H), 1.27 (q, 3H), 0.98 (t, 3H).  13C NMR: (100 MHz, CDCl3) δ 215.7, 

174.7, 141.2, 128.7, 128.2, 125.6, 61.3, 53.9, 42.8, 42.0, 22.0, 14.4, 11.0. IR (NaCl, 

neat): 3442, 3062, 2973, 2938, 2878, 1733, 1496, 1448, 1376 cm-1. HRMS: (ESI+) 

calcd for C16H20O4Na, 299.1254. Found 299.1256. 

 

 

 

(2S,4S,5R)-4-acetyl-5-ethyl-2-hydroxy-2-methylcyclopentanone (21p) 

Rf= 0.3 (10% Ethyl Acetate/Dichloromethane); 24mg (58%), 68% ee, 9:1:0.4:0.6 dr, 

[α]D21 = -56.0 (c = 0.0025g/ml, CHCl3) GC Analysis [CP-Sil 8CB] at 110 °C, 1 ml/min. 

Major: 6.96. Minor: 7.37 min, 8.05 min, 8.38 min. HPLC Analysis: Chiracel IC column at 

O
OHEt
Ph

EtO2C

O
OHEt
Me

O
Me



	   93	  

98% Hexanes/Isopropanol, 1ml/min. Major: 33.32 min. Minor: 27.89 min.  1H NMR: (300 

MHz; CDCl3): δ  3.17 (td, J = 10.2, 7.4 Hz, 1H), 2.78-2.71 (m, 1H), 2.36 (dd, J = 13.5, 

7.4 Hz, 1H), 2.27 (s, 3H), 2.01-2.00 (m, 1H), 1.77-1.66 (m, 2H), 1.62-1.52 (m, 2H), 1.31 

(s, 3H), 0.88 (t, J = 7.5 Hz, 3H).13C NMR: (100 MHz, CDCl3): δ 217.1, 208.9, 75.9, 49.9, 

49.8, 39.4, 29.5, 22.9, 22.1, 11.0 IR (NaCl, neat): 3442, 2971, 2931, 1741, 1702, 1437, 

1386, 1267, 1226, 1162 cm-1. HRMS: (ESI-) calcd for C10H15O3, 183.1027. Found 

183.1027. 

 

 

(2R,4S,5R)-4-acetyl-5-ethyl-2-hydroxy-2-phenylcyclopentanone (21q) 

Rf= 0.12 (10% Ethyl Acetate/Dichloromethane); 12mg (35%), % ee, 4:1:0.4:0.6 dr, [α]D21 

= -104 (c = 0.003g/ml, CHCl3) GC Analysis: CP-Sil 8CB at 170 °C and 3 ml/min.  Major: 

25.108 min.  Minor: 26.679 min, 30.489 min, 35.243 min.  HPLC Analysis Chiracel IC 

column at 95% Hexanes/iPrOH, 1 ml/min. Major: 11.248 min. Minor 12.768 min. 1H 

NMR: (300 MHz; CDCl3): δ  7.41-7.27 (m, 5H), 3.33 (td, J = 11.0, 6.7 Hz, 1H), 2.95 (dt, 

J = 10.9, 5.6 Hz, 1H), 2.66-2.56 (m, 2H), 2.32-2.24 (m, 3H), 2.02 (ddd, J = 13.6, 11.5, 

2.0 Hz, 1H), 1.86-1.76 (m, 1H), 1.74-1.64 (m, 1H), 1.64-1.57 (m, 1H), 0.96-0.88 (m, 

3H).13C NMR: (100 MHz, CDCl3) δ215.9, 208.4, 140.9, 128.5, 128.0, 125.2, 80.2, 52.3, 

49.8, 41.9, 29.7, 21.7, 11.0  IR (NaCl, neat): 3410, 3061, 3029, 2966, 2934, 2877, 2252, 

1956, 1744, 1708, 1600, 1518, 1495, 1448, 1367, 1217 cm-1.  
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(1S,2R,4S)-ethyl 4-hydroxy-2-isopropyl-4-methyl-3-oxocyclopentanecarboxylate 

(21d) 

In a 5 ml round bottom flask, 25 mg of 2a (0.17 mmol) was combined with 10 mg of 3 

(0.2 equiv, 0.03 mmol) and 1.7 μl of AcOH (0.2 equiv., 0.03 mmol) and dissolved in 1 ml 

of chloroform.  The reaction was stirred at 60 °C for 3 hours.  The reaction was cooled 

to room temperature and 14 mg of 6 (0.2 equiv., 0.03 mmol) and 5 mg of sodium 

acetate (0.4 equiv., 0.06 mmol) were added.  The reaction was stirred at 60 °C for an 

additional 4 hours.  The reaction was cooled to room temperature and filtered through a 

plug of silica gel, washing with DCM then EtOAc.  The filtrate was concentrated and 

purified by column chromatography, eluting with 10% EtOAc/DCM to 50% 

EtOAc/Hexanes through silica gel.  Isolated a yellow oil. 

 

Rf= 0.35 (10% Ethyl Acetate/Dichloromethane); 49 mg (90%), 88% ee, 24:1:0.1 dr, 

[α]D21 = -66.96 (c = 0.0046 g/ml, CHCl3) GC Analysis CP-Sil 8CB column at 90 °C, 2 

ml/min. Major: 24.48 min. Minor: 26.62 min, 27.69 min. BDM1 column at 130 °C, 

2ml/min. Major: 18.48 min. Minor: 17.71 min.  1H NMR: (300 MHz, CDCl3) δ 4.20 (q, J = 
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6.9, 2H), 3.08 (q, J = 7.5, 1H), 2.72 (dd, J = 3.9, 9.9, 1H), 2.92 (dd, J = 7.5, 13.8, 1H), 

2.25 (m, 1H), 1.90 (m, 2H), 1.31 (s, 3H), 1.29 (t, J = 7.2, 3H), 0.97 (d, J = 6.9, 3H), 0.91 

(d, J = 6.9, 3H).  13C NMR: (100 MHz, CDCl3) δ 216.7, 175.7, 61.2, 56.7, 39.9, 39.6, 

27.9, 22.9, 20.3, 18.8, 14.3 IR (NaCl, neat): 3472, 2967, 2876, 1735, 1519, 1466, 1378, 

1338, 1239, 1177 cm-1. HRMS: (ESI-) Calcd for C12H19O4, 227.1289.  Found 227.1291. 

 

 

 

(1S,2R,4R)-ethyl 2-ethyl-4-hydroxy-4-isopropyl-3-oxocyclopentanecarboxylate 

(21n) 

In a 5 ml round bottom flask, combined 25 mg of 2o (0.15 mmol) with 10 mg of 3 (0.2 

equiv., 0.03 mmol) and 11 mg of 5 (0.2 equiv., 0.03 mmol). Dissolved in 1 ml of CHCl3 

and bubbled Ar into the reaction mixture for 1 minute.  Added 20 μl of butyraldehyde 

(1a, 1.5 equiv., 0.22 mmol) and 2.5 mg of NaOAc (0.2 equiv., 0.03 mmol).  Stirred at 80 

°C for 4 hours.  Cooled to room temperature and filtered through a plug of silica gel, 

washing with DCM then EtOAc.  Concentrated the filtrate and purified by column 

chromatography, eluting with 10% EtOAc/DCM through 50% EtOAc/Hexanes through 

silica gel.  Isolated a yellow solid (mixture of diastereomers). 

 

O

HEt

EtO2C

O+

N
H OTMS

Ph
Ph

(20 mol %)

NaOAc (20 mol%)
CHCl3, 60 °C

O
OH

Et

EtO2C

16a

17n

18

21n

N
N N C6F5

BF4

(20 mol %)
4

Me

Me

Me

Me



	   96	  

Rf= 0.3 (10% Ethyl Acetate/Dichloromethane); 25 mg (69%), 51% ee, 18:1:0.1:0.7 dr, 

[α]D21 = -44.50 (c = 0.004 g/ml, CHCl3) GC Analysis CP-Sil 8CB at 110 °C, 1 ml/min. 

Major: 27.97min. Minor: 28.35 min, 30.41 min, 32.16 min. BDM1 column at 130 °C, 

2ml/min. Major: 26.85 min. Minor: 27.55 min.  1H NMR: (300 MHz, CDCl3) δ 4.21 (q, J = 

7.2, 2H), 2.93 (q, J = 7.2, 1H), 2.54 (q, J = 5.7, 1H), 2.01 (m, 3H), 1.83 (m, 2H), 1.60 (m, 

1H), 1.29 (t, J = 6.9, 3H), 0.98 (d, J = 6.9, 3H), 0.90 (t, J = 7.5, 3H), 0.83 (d, J = 6.9, 3H).  

13C NMR: (100 MHz, CDCl3) δ 217.6, 175.2, 81.4, 61.2, 53.9, 42.2, 33.4, 33.3, 21.5, 

17.7, 16.2, 14.4, 10.9 IR (NaCl, neat): 3467, 2967, 2878, 1735, 1466, 1377, 1233, 1180 

cm-1. HRMS: (ESI-) calcd for C13H21O4, 241.1445. Found 241.1444. 

 

 

 

(1S,2R,3S,4S)-ethyl 2-ethyl-3,4-dihydroxy-4-methylcyclopentanecarboxylate (7) 

In a 5 ml round bottom flask, 25 mg (0.17 mmol) of 2a was combined with 10 mg of 3 

(0.2 equiv., 0.03 mmol) and 14 mg of 6 (0.2 equiv., 0.03 mmol).  This mixture was taken 

up in CHCl3 and bubbled with Ar for 1 minute.  18 μl of butyraldehyde (1a, 1.2 equiv., 

0.2 mmol) and 2.5 mg of NaOAc (0.2 equiv, 0.03 mmol) were added and the reaction 

was stirred at 60 °C for 5 hours.  The reaction was cooled to room temperature and 40 

mg of NaBH(OAc)3 (1.1 equiv., 0.19 mmol) and 1 ml of acetonitrile were added.  The 
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suspension was stirred at room temperature overnight.  The reaction mixture was 

filtered through silica gel, eluting with EtOAc.  The filtrate was concentrated and purified 

by column chromatography, eluting with 100% EtOAc through silica gel.  Isolated a 

yellow oil. 

 

Rf= 0.22 (100% Ethyl Acetate); 31mg (84%), 88% ee, 35:1:<1:<1 dr, [α]D21 = -67.33 (c = 

0.0015 g/ml, CHCl3) GC Analysis CP-Sil 8CB at 130 °C, 1 ml/min. Major: 8.69min. 

Minor: 5.6 min, 7.33 min, 5.12 min. BDM1 column at 120 °C, 2ml/min. Major: 62.36 min. 

Minor: 61.63 min.  1H NMR: (300 MHz, CDCl3) δH 4.13 (2 H, q, J 7.0, A), 3.55 (1 H, d, J 

6.8, B), 2.60 (1 H, d, J 8.7, C), 1.99 (3 H, m, J 8.7, D), 1.65 (1 H, d, J 7.4, E), 1.54 (1 H, 

d, J 7.3, F), 1.31 (3 H, sG), 1.22-1.27 (3 H, mH), 0.94 (3 H, t, J 7.4, I). 13C NMR: (100 

MHz, CDCl3) δC 176.0, 84.4, 80.1, 60.6, 51.2, 44.5, 41.3, 26.5, 22.9, 14.1, 11.8 IR 

(NaCl, neat): 3421, 2964, 2934, 2877, 1729, 1519, 1458, 1376, 1179 cm-1. HRMS: 

(ESI+) calcd for C11H21O4, 217.1434. Found 217.1444. 

 

 

 

(2S,3R)-ethyl 3-formyl-2-(2-oxopropyl)pentanoate (20) 8 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  Wang,	  J.;	  Ma,	  A.;	  Ma,	  D.	  Org	  Lett.	  2008,	  10,	  5425-‐5428.	  
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In a 5 ml round bottome flask, combined 200 mg of 2a (1.41 mmol) with 45 mg of 3 (0.1 

equiv, 0.14 mmol).  Dissolved in 6 ml of CHCl3 and 1 ml of MeOH, added 0.15 ml of 

butyraldehyde (1a, 1.2 equiv., 1.69 mmol) and 2 drops of acetic acid.  Stirred at 60 °C 

for 5 hours.  Cooled to room temperature and concentrated.  Purified by column 

chromatography, eluting with 10% EtOAc/Hexanes through silica gel.  Isolated as a 

mixture of diastereomers.  Product is a yellow oil. 

 

Rf= 0.45 (10% Ethyl Acetate/Dichloromethane); 301mg (99%), 96% ee, 1.1:1 dr, [α]D21 = 

+20.8 (c = 0.005 g/ml, CHCl3) GC Analysis.  1H NMR: (300 MHz, CDCl3) δH  9.65 (1 H, 

s), 4.10-4.18 (2 H, m), 3.29-3.39 (1 H, m), 2.97 (1 H, ddd, J 25.6, 17.9 and 9.3), 2.53-

2.59 (1 H, m), 2.36-2.53 (1 H, m), 2.17-2.22 (3 H, s), 1.70-1.80 (1 H, m), 1.40-1.54 (2 H, 

m), 1.22-1.32 (3 H, m), 0.94-1.00 (3 H, m). 13C NMR: (100 MHz, CDCl3) δ206.3, 206.1, 

202.4, 191.3, 178.7, 18.3, 173.2, 172.9, 61.1, 54.1, 47.8, 47.4, 41.9, 41.5, 41.3, 39.3, 

30.0, 29.9, 22.7, 21.9, 19.4, 14.0, 12.0,  IR (NaCl, neat): 2971, 2881, 1720, 1463, 1369, 

1165, 1045 cm-1. HRMS: (ESI+) calcd for C11H19O4, 215.1278. Found 215.1270. 
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NMR Studies 

In a 1 dram vial, 25 mg of 20 (0.12 mmol) was combined with 9 mg of 9 (0.2 equiv, 0.02 

mmol), 2 mg of NaOAc (0.2 equiv., 0.02 mmol), and 7 mg trimethoxybenzene (internal 

standard, 0.3 equiv., 0.04 mmol).  This mixture was taken up in CDCl3 and transferred 

to an NMR tube.  The tube was heated in an oil bath at 60 °C.  Spectra was taken at 

intervals throughout the reaction. 

 
 

 
 
 
 

After 5 hours, 6.5 mg of 18 (0.2 equiv., 0.02 mmol) was added and continued heating. 
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This experiment was repeated, but with amine catalyst 18 present from the beginning. 
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Crossover Experiments 

 

To determine if a retro-Michael was responsible for low diastereoselectivity, a crossover 

experiment was conducted by heating the intermediate aldehyde 20d with 

butyraldehyde in the presence of the amine catalyst.  No crossover product was 

observed, indicating that the amine catalyst is not responsible for this pathway. 

 

 

 

 

To determine if the NHC catalyst played a role in the retro-Michael, compound 20n was 

exposed to catalyst 9, base, and heat for one day.  The combination of the bulky 

isopropyl-ketone and a chiral catalysts prevents the benzoin cyclization.  If the retro-

Michael occurred, we would expect formation of starting material 17a.  None was 

observed.   
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In case the combination of the amine catalyst and the NHC catalyst was responsible, 

S11 was exposed to both catalysts, isovaleraldehyde, and heat for 1 day.  No crossover 

product was observed. 

 

 

 

From these results, we are confident that a retro-Michael is not a factor in this new 

cascade reaction. 
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APPENDIX 2 
 

X-RAY CRYSTAL STRUCTURE DATA FOR CHAPTER 2 
 
 
 
X-Ray Crystal Structure and Data 

 

 

 

Procedure: 

21i was combined with 10% Palladium on Carbon (10 wt%) and suspended in dry 

methanol.  An atmosphere (1 atm) of H2 was introduced via balloon and stirred at room 

temperature overnight.  The reaction was filtered through a plug of celite and 

concentrated to an oil.  This crude oil was then dissolved in DCM and the amine (1 

equiv.) was added.  The reaction was concentrated and the product was recrystallized 

by slow evaporation from methanol. 
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 Table 1.  Crystal data and structure refinement for Rovis99_0m. 

Identification code  rovis99_0m 

Empirical formula  C17H25NO4 

Formula weight  307.38 

Temperature  120 K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 6.1775(5) Å a= 90°. 

 b = 13.7872(10) Å b= 90°. 

 c = 19.8051(14) Å g = 90°. 

Volume 1686.8(2) Å3 

Z 4 

Density (calculated) 1.210 Mg/m3 

Absorption coefficient 0.086 mm-1 

F(000) 664 

Crystal size 0.20 x 0.11 x 0.06 mm3 

Theta range for data collection 1.80 to 24.41°. 

Index ranges -7<=h<=7, -15<=k<=16, -23<=l<=23 

Reflections collected 24929 

Independent reflections 2773 [R(int) = 0.1599] 

Completeness to theta = 24.41° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9950 and 0.9835 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2773 / 0 / 204 

Goodness-of-fit on F2 1.005 

Final R indices [I>2sigma(I)] R1 = 0.0559, wR2 = 0.1031 

R indices (all data) R1 = 0.1341, wR2 = 0.1311 

Absolute structure parameter -1(2) 

Largest diff. peak and hole 0.191 and -0.253 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for Rovis99_0m.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 1189(7) 5403(3) 2272(2) 36(1) 

C(2) 2746(7) 5442(3) 1665(2) 32(1) 

C(3) 1591(7) 4816(3) 1137(2) 30(1) 

C(4) 442(7) 4023(3) 1557(2) 25(1) 

C(5) -428(7) 4592(3) 2162(2) 30(1) 

C(6) 3355(10) 6445(3) 1442(2) 56(2) 

C(7) -1185(7) 3485(3) 1119(2) 23(1) 

C(8) -945(8) 4013(4) 2802(2) 44(1) 

C(9) 849(9) 3380(3) 3045(2) 53(2) 

C(10) 6989(8) 4591(3) 9518(2) 33(1) 

C(11) 6401(8) 5494(3) 9768(2) 38(1) 

C(12) 7823(9) 6258(3) 9735(2) 43(1) 

C(13) 9829(9) 6134(4) 9452(2) 46(1) 

C(14) 10428(8) 5231(3) 9207(2) 36(1) 

C(15) 9024(7) 4455(3) 9239(2) 25(1) 

C(16) 9717(6) 3510(3) 8924(2) 23(1) 

C(17) 8800(7) 3376(3) 8215(2) 30(1) 

N(1) 9017(5) 2659(2) 9347(1) 22(1) 

O(1) 1297(5) 5923(2) 2760(2) 47(1) 

O(2) 4568(5) 4940(2) 1949(2) 45(1) 

O(3) -396(4) 2840(2) 731(1) 24(1) 

O(4) -3154(5) 3710(2) 1143(1) 27(1) 

________________________________________________________________________________
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Table 3.   Bond lengths [Å] and angles [°] for Rovis99_0m. 

_____________________________________________________ 

C(1)-O(1)  1.206(5) 

C(1)-C(5)  1.514(6) 

C(1)-C(2)  1.540(6) 

C(2)-O(2)  1.437(5) 

C(2)-C(6)  1.499(6) 

C(2)-C(3)  1.532(6) 

C(3)-C(4)  1.545(5) 

C(4)-C(7)  1.521(6) 

C(4)-C(5)  1.530(5) 

C(5)-C(8)  1.532(6) 

C(7)-O(4)  1.256(5) 

C(7)-O(3)  1.272(5) 

C(8)-C(9)  1.490(6) 

C(10)-C(15)  1.386(6) 

C(10)-C(11)  1.388(6) 

C(11)-C(12)  1.373(6) 

C(12)-C(13)  1.371(7) 

C(13)-C(14)  1.387(6) 

C(14)-C(15)  1.379(5) 

C(15)-C(16)  1.506(5) 

C(16)-N(1)  1.505(4) 

C(16)-C(17)  1.526(5) 

 

O(1)-C(1)-C(5) 126.2(4) 

O(1)-C(1)-C(2) 124.8(4) 

C(5)-C(1)-C(2) 109.0(4) 

O(2)-C(2)-C(6) 111.3(4) 

O(2)-C(2)-C(3) 111.1(3) 

C(6)-C(2)-C(3) 115.9(4) 

O(2)-C(2)-C(1) 99.6(3) 

C(6)-C(2)-C(1) 114.8(4) 

C(3)-C(2)-C(1) 102.8(4) 

C(2)-C(3)-C(4) 104.2(3) 

C(7)-C(4)-C(5) 117.7(4) 
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C(7)-C(4)-C(3) 110.0(3) 

C(5)-C(4)-C(3) 102.7(3) 

C(1)-C(5)-C(4) 105.0(4) 

C(1)-C(5)-C(8) 113.8(4) 

C(4)-C(5)-C(8) 117.0(4) 

O(4)-C(7)-O(3) 124.5(4) 

O(4)-C(7)-C(4) 119.9(4) 

O(3)-C(7)-C(4) 115.6(4) 

C(9)-C(8)-C(5) 114.7(4) 

C(15)-C(10)-C(11) 120.1(5) 

C(12)-C(11)-C(10) 120.3(5) 

C(13)-C(12)-C(11) 120.2(4) 

C(12)-C(13)-C(14) 119.7(5) 

C(15)-C(14)-C(13) 120.9(4) 

C(14)-C(15)-C(10) 118.9(4) 

C(14)-C(15)-C(16) 118.3(4) 

C(10)-C(15)-C(16) 122.7(4) 

N(1)-C(16)-C(15) 111.3(3) 

N(1)-C(16)-C(17) 108.1(3) 

C(15)-C(16)-C(17) 112.3(3) 

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  
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Table 4.   Anisotropic displacement parameters (Å2x 103)for Rovis99_0m.  The anisotropic 

displacement factor exponent takes the form: -2p2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

C(1) 28(3)  40(3) 40(3)  -14(3) -1(2)  12(3) 

C(2) 30(3)  26(3) 39(3)  -10(2) -5(2)  2(2) 

C(3) 31(3)  33(3) 28(2)  -2(2) 1(2)  5(2) 

C(4) 22(3)  29(3) 24(2)  -6(2) 2(2)  3(2) 

C(5) 22(3)  36(3) 33(3)  -15(2) 1(2)  -1(2) 

C(6) 79(4)  40(3) 50(3)  -7(3) 8(3)  -15(3) 

C(7) 28(3)  21(3) 19(2)  3(2) -2(2)  -7(2) 

C(8) 43(3)  64(4) 25(3)  -10(2) -3(2)  1(3) 

C(9) 65(4)  57(4) 37(3)  0(3) 1(3)  -10(3) 

C(10) 39(3)  26(3) 33(3)  4(2) -1(2)  3(3) 

C(11) 42(3)  35(3) 38(3)  1(2) 11(3)  4(3) 

C(12) 66(4)  20(3) 43(3)  -3(2) -4(3)  12(3) 

C(13) 52(4)  29(3) 58(3)  -1(3) 2(3)  -10(3) 

C(14) 40(3)  29(3) 39(3)  -4(2) 4(2)  -4(3) 

C(15) 26(3)  22(3) 27(2)  2(2) 0(2)  2(2) 

C(16) 19(2)  22(2) 29(2)  3(2) 4(2)  -4(2) 

C(17) 35(3)  36(3) 20(2)  5(2) 4(2)  -1(2) 

N(1) 23(2)  22(2) 21(2)  -4(2) 3(2)  4(2) 

O(1) 34(2)  57(2) 49(2)  -32(2) 2(2)  -2(2) 

O(2) 27(2)  54(2) 54(2)  -29(2) -7(2)  8(2) 

O(3) 26(2)  24(2) 23(2)  -8(1) -2(1)  6(2) 

O(4) 19(2)  27(2) 34(2)  -10(1) 1(1)  0(2) 

______________________________________________________________________________
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Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) 

for Rovis99_0m. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(3A) 2622 4530 826 36 

H(3B) 551 5196 884 36 

H(4) 1530 3560 1718 30 

H(5) -1783 4897 2017 36 

H(6A) 4503 6407 1117 84 

H(6B) 3831 6814 1826 84 

H(6C) 2121 6755 1242 84 

H(8A) -1322 4464 3159 53 

H(8B) -2204 3611 2716 53 

H(9A) 2190 3732 3026 80 

H(9B) 945 2815 2763 80 

H(9C) 570 3187 3502 80 

H(10) 6017 4077 9539 39 

H(11) 5038 5582 9958 46 

H(12) 7424 6861 9905 51 

H(13) 10785 6654 9424 56 

H(14) 11796 5148 9019 43 

H(16) 11301 3505 8895 28 

H(17A) 7248 3403 8233 46 

H(17B) 9245 2759 8040 46 

H(17C) 9329 3883 7927 46 

H(1A) 7626 2533 9269 33 

H(1B) 9201 2798 9782 33 

H(1C) 9809 2142 9239 33 

H(2) 5129 4598 1659 67 
________________________________________________________________________________ 
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APPENDIX 3 

EXPERIMENTAL AND SPECTRAL DATA FOR CHAPTER 3 

 
 
 
Materials and Methods 
 
All reactions were carried out under an atmosphere of argon with magnetic stirring.  

Column chromatography was performed on SiliCycle®SilicaFlash®  P60, 40-63µm 60A. Thin layer 

chromatography was performed on SiliCycle® 250µm 60A plates.  Visualization was accomplished with 

UV light or KMnO4 stain followed by heating.   

 

1H NMR spectra were obtained on Varian 300 or  400 MHz spectrometers at ambient temperature.  Data 

is reported as follows:  chemical shift in parts per million (δ, ppm) from CDCl3 (7.26 ppm)  multiplicity (s = 

singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), coupling constants(Hz).   

 

13C NMR  was recorded on  Varian  300 or  400 MHz spectrometers (at 75 or 100 MHz) at  ambient 

temperature.  Chemical shifts are reported in ppm from CDCl3 (77.2 ppm)  

 

Enantioselectivity was determined by chiral HPLC (Agilent 1100) using Chiralpak IC column (Daicel).  

Samples were eluted with 98:2 Hexanes/iPrOH at 0.5mL/min.  Mass spectrometry was accomplished with 

an Agilent 6130 Quadropole MS with an Agilent 1200 LC system.  Infrared Spectrometry was gathered 

with a Thermo Scientific Nicolet iS50 FT-IR. 

 

Cinnamaldehyde 3 was purchased from Sigma-Aldrich and purified by vacuum distillation and 

subsequently stored in the refrigerator.  Other enals used were obtained from commercial sources 

(Sigma-Aldrich, Alfa-Aesar).  Aminal 27 was synthesized according to literature methods.1  Related 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804-6805. 
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aminals were constructed analogously with the appropriate amine or solvent.  HPLC grade methanol is 

employed without any further degassing.   

	  
	  
	  
	  
	  

	  
Representative procedure for the aminomethylation of enals: 

 

To a dry, 1 dram vial is added 99 mg of aminal 27 (0.44 mmol, 1.2 equiv.), 14 mg of NHC 29 (0.04 mmol, 

0.1 equiv.), and 30 mg of NaOAc (0.37 mmol, 1 equiv.).  Methanol (2 mL) is added, followed by 

cinnamaldehyde (50 mg, 0.37 mmol, 1 equiv.) and a magnetic stir bar.  The vial is sealed by screw cap 

and stirred at room temperature for 8h.  Upon reaction completion (judged by TLC) trimethoxybenzene (6 

mg, 0.037 mmol, 0.1 equiv) is then added to the reaction and stirred for 30 min.  The reaction mixture is 

filtered through a plug of silica gel, washing with DCM, then EtOAc.  The organic phase is concentrated in 

vacuo.  NMR is used to judge reaction completion (84% yield).  The crude reaction mixture can be purifed 

by column chromatography, eluting with 20-50% EtOAc/Hexane through silica gel.  Isolated 91mg of a 

yellow oil (65% isolated yield). 

	  

	  

Methyl 4-(dibenzylamino)-3-phenylbutanoate (28a) 
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84% (NMR) rf = 0.6 (20% EtOAc/Hexane) 

1H-NMR (300 MHz; CDCl3): δ 7.38 (s, 3H), 7.24 (t, J = 6.0 Hz, 11H), 7.04 (d, J = 6.8 Hz, 2H), 3.68 (d, J = 

9.1 Hz, 2H), 3.62 (s, 1H), 3.54 (s, 3H), 3.48 (d, J = 13.7 Hz, 2H), 3.40 (s, 1H), 2.87 (dd, J = 15.7, 5.8 Hz, 

1H), 2.56 (d, J = 7.7 Hz, 2H), 2.37 (dd, J = 15.7, 8.9 Hz, 1H).  13C-NMR (101 MHz; CDCl3): δ 173.1, 142.7, 

139.3, 128.9, 128.31, 128.15, 127.7, 126.9, 126.6, 59.4, 58.6, 51.4, 40.3, 38.8.  MS: calcd for C25H27NO2 

Expect: 373.49 Found: 374.2 (M+H).  IR (neat): 3060, 3026, 2947, 2786, 2360, 1733, 1674, 1602, 1494, 

1451, 1365, 1255, 1167, 1122, 974, 745 cm-1 

 

  

Methyl 4-(dibenzylamino)-3-(4-nitrophenyl)butanoate (28b) 

78% (NMR) rf = 0.4 (20% EtOAc/Hexane) 

1H-NMR (400 MHz; CDCl3): δ  8.08 (d, J = 8.6 Hz, 2H), 7.30-7.25 (m, 13H), 7.16-7.12 (m, 4H), 3.84 (s, 

1H), 3.62 (t, J = 6.7 Hz, 3H), 3.56 (s, 2H), 3.50 (d, J = 13.5 Hz, 2H), 2.80 (dd, J = 16.1, 5.8 Hz, 1H), 2.60 

(dt, J = 12.1, 6.3 Hz, 2H), 2.38 (dd, J = 16.0, 9.0 Hz, 1H).  13C-NMR (101 MHz; CDCl3): δ 172.2, 150.6, 

146.7, 139.7, 138.8, 128.95, 128.85, 128.6, 128.22, 128.11, 127.1, 126.7, 123.5, 72.3, 58.82, 58.72, 56.1, 

51.7, 40.3, 38.4.  MS: calcd for C25H26N2O4 Expect: 418.48 Found 419.2 (M+H).  IR (neat): 3061, 3026, 

2947, 2796, 2360, 1734, 1599, 1518, 1493, 1451, 1345, 1253, 1169, 1122, 1072, 973, 855, 745, 697 cm-1 

 

Ethyl 3-(4-chlorophenyl)-4-(dibenzylamino)butanoate (36c2) 

88% (NMR) rf = 0.6 (20% EtOAc/Hexane) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Ethyl ester was prepared for improved purification	  
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1H-NMR (400 MHz; CDCl3): δ  7.27 (dd, J = 15.4, 7.9 Hz, 12H), 7.09 (d, J = 8.3 Hz, 2H), 4.02 (tt, J = 7.1, 

3.5 Hz, 2H), 3.57-3.51 (m, 2H), 3.47-3.36 (m, 2H), 2.87 (dd, J = 15.7, 5.9 Hz, 1H), 2.49-2.44 (m, 3H), 2.25 

(s, 3H), 1.15 (t, J = 7.1 Hz, 3H).  13C-NMR (101 MHz; CDCl3): δ 173.2, 157.2, 155.7, 138.6, 136.7, 129.7, 

128.8, 128.4, 128.2, 127.5, 125.7, 120.6, 120.1, 118.0, 110.8, 60.3, 59.1, 55.3, 51.8.   MS: calcd for 

C20H24ClNO2  Expect: 345.86  Found: 346.2 (M+H).  IR (neat) 3026, 2979, 2842, 2790, 1735, 1683, 1492, 

14533, 1371, 1252, 1164, 1091, 1014, 823, 742 cm-1. 

 

 

 

Methyl 4-(benzyl(methyl)amino)-3-(2-hydroxyphenyl)butanoate (28d) 

66% (NMR) rf = 0.5 (20% EtOAc/Hexane) 

1H-NMR (400 MHz; CDCl3): δ  7.30-7.25 (m, 0H), 7.08 (t, J = 7.6 Hz, 2H), 6.91 (d, J = 8.0 Hz, 1H), 6.82 

(d, J = 7.5 Hz, 1H), 6.76 (t, J = 7.4 Hz, 1H), 3.97 (d, J = 13.3 Hz, 2H), 3.77-3.69 (m, 2H), 3.66 (s, 3H), 

3.63 (s, 1H), 3.41 (d, J = 13.3 Hz, 2H), 2.77-2.65 (m, 4H).  13C-NMR (101 MHz; CDCl3): δ 173.2, 155.7, 

139.7, 136.7, 130.4, 129.7, 129.0, 128.4, 128.1, 127.9, 127.5, 125.6, 120.1, 118.1, 60.4, 59.1, 51.8, 36.8, 

34.2.  MS: calcd for C19H23NO3 Expect: 389.49 Found: 390.2 (M+H).  IR (neat): 3060, 3026, 2947, 2799, 

2360, 1770, 1734, 1602, 1493, 1452, 1364, 1252, 1164, 1120, 1027, 736 cm-1 

 

 

Methyl 4-(benzyl(methyl)amino)-3-phenylbutanoate (36) 

78% (NMR) rf = 0.5 (20% EtOAc/Hexane) 
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1H-NMR (400 MHz; CDCl3): δ 7.29-7.16 (m, 10H), 3.58 (s, 3H), 3.52 (d, J = 21.3 Hz, 2H), 3.46 (s, 2H), 

2.94 (dd, J = 15.6, 6.1 Hz, 1H), 2.58 (d, J = 9.6 Hz, 1H), 2.52 (dd, J = 15.5, 8.6 Hz, 2H), 2.24 (s, 3H).  13C-

NMR (101 MHz; CDCl3): δ 173.1, 142.8, 138.99, 138.97, 129.0, 128.4, 128.1, 127.5, 126.9, 126.6, 63.3, 

62.8, 51.4, 42.3, 40.3, 39.0.  MS: calcd C19H23NO2 Expect: 297.39 Found: 298.2 (M+H).  IR (neat): 3027, 

2948, 2841, 2788, 1702, 1602, 1494, 1452, 1435, 1356, 1255, 1195, 1163, 1022, 739, 697 cm-1 

 

 

Methyl 4-(dibenzylamino)-3-(4-methoxyphenyl)butanoate (28f) 

70% (NMR) rf = 0.6 (20% EtOAc/Hexane) 

1H-NMR (400 MHz; CDCl3): δ  7.48 (d, J = 8.2 Hz, 1H), 7.30-7.23 (m, 9H), 6.97 (d, J = 8.6 Hz, 2H), 6.80 

(d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 3.67 (s, 1H), 3.63 (d, J = 5.9 Hz, 3H), 3.55 (s, 3H), 3.50 (s, 2H), 2.87 (dd, 

J = 15.6, 5.8 Hz, 1H), 2.54 (dd, J = 7.7, 3.3 Hz, 2H), 2.33 (dd, J = 15.6, 9.1 Hz, 1H).  13C-NMR (101 MHz; 

CDCl3): δ 173.1, 158.2, 139.7, 139.3, 134.8, 128.96, 128.89, 128.6, 128.1, 126.8, 113.7, 59.5, 58.6, 56.1, 

55.2, 51.4, 39.4, 39.0.  MS: calcd for C26H29NO3 Expect: 403.51 Found: 404.2 (M+H).  IR (neat): 3060, 

3026, 2948, 2833, 2796, 2359, 1734, 1603, 1494, 1452, 1247, 1167, 1028, 828, 745, 698 cm-1 

 

Methyl 4-(dibenzylamino)-3-(2-methoxyphenyl)butanoate (28g) 

84% (NMR) rf = 0.5 (20%EtOAc/Hexanes) 

1H-NMR (300 MHz; CDCl3): δ  7.29-7.18 (m, 11H), 7.06 (d, J = 1.4 Hz, 1H), 6.88-6.82 (m, 2H), 3.91-3.83 

(m, 1H), 3.82-3.79 (m, 1H), 3.77 (s, 3H), 3.57 (s, 3H), 3.53-3.47 (m, 1H), 2.88 (dd, J = 15.5, 6.7 Hz, 1H), 

2.61 (dd, J = 15.4, 7.8 Hz, 2H).  13C-NMR (101 MHz; CDCl3): δ 173.2, 157.2, 155.7, 136.7, 129.7, 128.8, 
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128.4, 128.2, 127.8, 127.5, 125.7, 120.6, 120.1, 118.0, 110.8, 60.3, 59.20, 59.06, 55.3, 51.8, 51.4, 37.6, 

36.9, 34.2.  MS:  calcd for C20H25NO3  Expect: 327.42  Found: 328.2 (M+H).  IR (neat): 3061, 3027, 2947, 

2836, 2794, 1724, 1697, 1599, 1492, 1452, 1243, 1163, 1026, 749, 698 cm-1. 

 

Methyl 4-(allyl(benzyl)amino)-3-phenylbutanoate (36h) 

74% (NMR) rf = 0.6 (20% EtOAc/Hexane) 

1H-NMR (300 MHz; CDCl3): δ7.39-7.19 (m, 9H), 7.13-7.10 (m, 1H), 5.86-5.76 (m, 1H), 5.17-5.11 (m, 2H), 

3.74-3.69 (m, 1H), 3.56 (s, 3H), 3.43 (d, J = 13.7 Hz, 2H), 3.18 (dd, J = 14.1, 5.7 Hz, 1H), 3.00-2.92 (m, 

1H), 2.95-2.87 (m, 1H), 2.58-2.53 (m, 2H), 2.45 (dd, J = 15.6, 8.6 Hz, 1H).  13C-NMR (101 MHz; CDCl3): δ 

195.3, 173.2, 144.8, 142.9, 139.3, 135.7, 128.91, 128.87, 128.3, 128.10, 128.05, 127.6, 126.8, 126.5, 

117.5, 56.9, 51.4, 40.3, 38.8.  MS: calcd for C21H25NO2 Expect: 323.43 Found: 324.2 (M+H).  IR (neat): 

3062, 3027, 2948, 2801, 2359, 1744, 1494, 1452, 1255, 1168, 919, 741, 698 cm-1 

 

 

 

 

 

 

General Procedure for the Aza-Stetter Coupling of Enals and Iminiums 
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To a 1.5 dram vial was added enal (50 mg, 0.378 mmol, 1.0 equiv) and aminal followed by sodium 

acetate (0.378 mmol, 1.0 equiv), NHC 65 (0.076 mmol, 0.2 equiv), and TFE (0.2 M, 2 mL).  A magnetic 

stir bar was added and the reaction mixture was allowed to stir for 24-48 h. TLC was taken to confirm 

completion.  The mixture was then filtered through a silica gel plug and washed with dichloromethane, 

then EtOAc.  The filtrate was collected and concentrated.  The crude mixture was then purified by column 

chromatography (100% DCM ! 50% EtOAc/Hexane) to provide the product.   

 

Representative Spectral Data 

 

 

(E)-2-((benzyl(methyl)amino)methyl)-3-phenylacrylaldehyde (56)  

Prepared according to the general procedure: 94% yield; yellow oil; Rf=0.35 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.65 (d, J = 3.84, 1H), 7.89 (m, J = 3.88, 1.64, 2H), 7.67 (m, J = 3.86, 1.96, 

1H), 7.49-7.41 (m, 5H), 7.31-7.24 (m, 6H), 3.54 (s, 2H), 3.42 (s, 2H), 2.16 (d, J = 4.99, 

3H); 13C-NMR (101 MHz; CDCl3): δ 195.2, 194.1, 155.7, 154.4, 139.1, 138.9, 134.6, 131.3, 130.9, 130.35, 

130.27, 129.14, 129.09, 128.96, 128.65, 128.47, 128.2, 127.0, 62.2, 50.2, 41.8.  LRMS (ESI+) calcd for 

C18H19NO, 265.35. Found 266.1 (M+H). 

 

 

(E)-2-((benzyl(methyl)amino)methyl)-3-(4-chlorophenyl)acrylaldehyde (56a) 

99% yield; yellow oil; Rf=0.48 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.613 (d, J = 7.54, 1 H), 7.835 (d, J = 8.27, 2H), 7.610 (d, J = 8.46, 1H), 

O
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7.45-7.22 (m, 9H), 3.507 (s, 2H), 3.362 (s, 2H), 2.144 (d, J = 7.79, 3H); 13C-NMR (101 MHz; CDCl3): δ 

194.9, 152.9, 139.1, 138.8, 133.0, 132.6, 129.1, 128.9, 128.2, 127.1, 62.2, 50.8, 50.0, 41.8.  LRMS 

(ESI+) calcd for C18H18ClNO, 299.11. Found 300.2 (M+H).  

 

 

(E)-4-(3-(benzyl(methyl)amino)-2-formylprop-1-en-1-yl)benzonitrile (56b) 

53% yield; yellow oil; Rf=0.33 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.67 (m, 1H), 7.97 (d, J = 8.31, 2H), 7.66 (s, 1H), 7.671 (d, J =8.38, 2H), 

7.29 (m, 6H), 3.521 (s, 2H), 3.362 (s, 2H), 2.163 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 194.5, 151.0, 

141.3, 138.65, 138.52, 132.5, 132.2, 131.5, 130.5, 129.2, 128.3, 127.3, 62.4, 49.8, 42.0.  LRMS (ESI+) 

calcd for C19H18N2O, 290.36. Found 291.2 (M+H). 

 

 

(E)-2-((benzyl(methyl)amino)methyl)-3-(4-nitrophenyl)acrylaldehyde (56c) 

72% yield; yellow oil; Rf=0.33 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.69 (d, J = 7.30, 1H), 8.34-8.20 (m, 3H), 8.07-8.02 (m, 2H), 7.85-7.82 (m, 

1H), 7.49-7.42 (m, 1H), 7.39-7.24 (m, 6H), 3.533 (s, 2H), 3.371 (s, 2H), 2.175 (s, 3H); 13C-NMR (101 

MHz; CDCl3): δ 194.4, 150.4, 141.7, 140.5, 138.4, 131.8, 130.8, 129.2, 128.3, 127.3, 124.0, 123.6, 62.4, 

50.8, 49.8, 42.0.  LRMS (ESI+) calcd for C18H18N2O3, 310.35. Found 311.2 (M+H). 

 

O

H

CNN
Bn

Me

O

H

NO2N
Bn

Me



	   139	  

 

(E)-2-((benzyl(methyl)amino)methyl)-3-(4-(trifluoromethyl)phenyl)acrylaldehyde (56d) 

63% yield; yellow oil; Rf=0.48 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.67 (d, J = 6.50, 1H), 8.00 (d, J = 8.16, 1H), 7.70 (m, 3H), 7.45 (s, 1H), 

7.274 (m, 4H), 3.53 (s, 2H), 3.38 (s, 2H), 2.17 (m, 3H); 13C-NMR (101 MHz; CDCl3): δ 194.7, 193.5, 

153.1, 151.8, 140.7, 138.7, 131.3, 130.3, 129.1, 128.3, 127.2, 125.85, 125.81, 125.48, 125.44, 63.0, 62.2, 

50.0, 41.9.  LRMS (ESI+) calcd for C19H18F3NO, 333.35. Found 334.1 (M+H). 

 

 

(E)-2-((benzyl(methyl)amino)methyl)-3-(4-methoxyphenyl)acrylaldehyde (56e) 

40% yield; yellow oil; Rf=0.38 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.58 (m, 1H), 7.89-7.86 (m, 2H), 7.36-7.23 (m, 8H), 6.95-6.92 (m, 3H), 3.53 

(m, 2H), 3.40 (d, J = 4.44, 2H), 2.16 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 195.3, 154.8, 139.2, 136.6, 

133.6, 129.2, 128.2, 127.0, 114.1, 62.1, 55.4, 50.8, 50.2, 41.8, 29.7  LRMS (ESI+) calcd for C19H21NO2, 

295.38. Found 296.3 (M+H). 

 

 

(E)-2-((benzyl(methyl)amino)methyl)-3-(4-bromophenyl)acrylaldehyde (56g) 

61% yield; yellow oil; Rf=0.46 (8:2 hex/EtOAc);  
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1H-NMR (300 MHz, CDCl3): δ 9.63 (d, J = 5.97, 1H), 7.78 (d, J = 8.49, 2H), 7.55 (m, 3H), 7.29 (s, 5H), 

3.517 (s, 2H), 3.35 (m, 2H), 2.145 (s, 3H);  13C-NMR (101 MHz; CDCl3): δ 194.9, 152.9, 139.3, 132.8, 

131.9, 129.1, 128.2, 127.1, 125.0, 62.2, 50.0, 41.8 LRMS (ESI+) calcd for C18H18BrNO, 344.25. Found 

346.1 (M+H). 

 

 

(E)-2-((benzyl(methyl)amino)methyl)-3-(2-bromophenyl)acrylaldehyde (56h) 

88% yield; yellow oil; Rf=0.39 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.72 (s, 1H), 8.25-8.22 (m, 1H), 7.75-7.68 (m, 1H), 7.65 (m, J = 8.00, 1H), 

7.38-7.22 (m, 8H), 3.48 (s, 2H), 3.32 (s, 2H), 2.10 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 194.7, 152.4, 

140.0, 138.8, 136.6, 134.0, 133.0, 130.1, 129.7, 129.1, 128.2, 127.0, 122.9, 62.0, 50.3, 41.3.  LRMS 

(ESI+) calcd for C18H18BrNO, 344.25. Found 346.1 (M+H). 

 

 

(E)-2-((benzyl(methyl)amino)methyl)-3-(3-bromophenyl)acrylaldehyde (56i) 

43% yield; yellow oil; Rf=0.26 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.62 (s, 1H), 7.77 (t, J = 9.11, 2H), 7.62-7.54 (m, 2H), 7.38-7.25 (m, 8H), 

3.54 (s, 2H), 3.39 (d, J = 3.58, 2H), 2.13 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 194.7, 152.4, 140.0, 

138.8, 136.6, 134.0, 133.0, 130.1, 129.7, 129.1, 128.2, 127.0, 122.9, 62.0, 50.3, 41.3.  LRMS (ESI+) 

calcd for C18H18BrNO, 344.35. Found 346.1(M+H). 
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(E)-ethyl 4-(benzyl(methyl)amino)-3-formylbut-2-enoate (56j) 

53% yield; yellow oil; Rf=0.05 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.00 (s, 1H), 7.38 (m, 4H), 7.23 (m, J = 8.39, 6.96, 3H), 6.95 (s, 1H), 4.504 

(m, 2H), 4.113 (q, J = 7.13, 3H), 3.463 (s, 2H), 3.091 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 207.0, 129.1, 

128.2, 126.9, 50.8, 30.9, 29.7  LRMS (ESI+) calcd for C15H19NO3, 261.32. Found 281.1 (M+H). 

 

 

(E)-2-((dibenzylamino)methyl)-3-phenylacrylaldehyde (56l) 

96% yield; yellow oil; Rf=0.58 (8:2 hex/EtOAc);  

1H-NMR(300 MHz, CDCl3): δ 9.56 (s, 1H), 7.73 (m, 2H), 7.56-7.20 (m, 15H), 5.29 (m, 

3H), 3.52 (m, J = 2.46, 6H); 13C-NMR (101 MHz; CDCl3): δ 195.4, 153.7, 139.1, 138.5, 131.4, 130.2, 

129.4, 128.5, 128.2, 127.1, 59.0, 47.7.  LRMS (ESI+) calcd for C24H23NO, 341.45. Found 342.3 (M+H). 

 

 

(E)-2-((allyl(benzyl)amino)methyl)-3-phenylacrylaldehyde (56m) 

72% yield; yellow oil; Rf=0.56 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.59 (s, 1H), 7.91-7.84 (m, 2H), 7.68 (m, 1H), 7.57-7.35 (m, 5H), 7.35-7.21 

(m, 2H), 5.921 (m, 1H), 3.50 (m, 4H), 3.06 (d, J = 6.37, 2H); 13C-NMR (101 MHz; CDCl3): δ 195.3, 153.8, 
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138.8, 135.5, 131.3, 130.36, 130.21, 129.2, 129.0, 128.5, 128.1, 126.9, 118.0, 58.4, 57.1, 47.4.  LRMS 

(ESI+) calcd for C20H21NO, 291.39. Found 292.2 (M+H). 

 

 

(E)-2-(((4-methoxybenzyl)(methyl)amino)methyl)-3-phenylacrylaldehyde (56n) 

50% yield; yellow oil; Rf=0.41 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.63 (s, 1H), 7.89 (s, 2H), 7.43 (s, 4H), 7.24 (t, J = 7.16, 2H), 6.84 (d, J = 

8.45, 2H), 3.79 (s, 3H), 3.44 (d, 4H), 2.14 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 195.3, 158.7, 154.3, 

138.9, 134.6, 131.3, 131.1, 130.28, 130.26, 128.6, 61.6, 55.2, 50.0, 41.7  LRMS (ESI+) calcd for 

C19H21NO2, 295.38. Found 296.2 (M+H). 

 

 

(E)-2-(morpholinomethyl)-3-phenylacrylaldehyde (56o) 

75% yield; light yellow oil; Rf=0.15 (8:2 hex/EtOAc);  

1H-NMR (300 MHz, CDCl3): δ 9.64 (s, 1H), 7.86 (m, J = 5.83, 2H), 7.48-7.44 (m, 4H), 3.69 (t, 

J = 4.65, 4H), 3.32 (s, 2H) 2.49 (t, J = 4.65, 4H); 13C-NMR (101 MHz; CDCl3): δ 194.9, 154.7, 138.1, 

134.6, 131.1, 130.3, 128.7, 67.0, 53.2, 50.8.  LRMS (ESI+) calcd for C14H17NO2, 231.29. 

Found 232.2 (M+H). 
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APPENDIX 4 

EXPERIMENTAL AND SPECTRAL DATA FOR CHAPTER 4 

 
 
Materials and Methods: 

 

Instrumentation:  

Thin Layer chromatography was performed with SiliCycle 250 μm 60A plates.  Visualization by UV light 

(254 nm) or treatment with I2 or KMnO4 was effective.  Flash column chromatography was conducted with 

aluminum oxide (Sigma-Aldrich, activated, basic, Brockmann I). 

NMR studies were conducted on a Varian 400 MHz spectrometer or Varian 300 MHz spectrometer at 

ambient temperature.  1H-NMR is recorded as follows: Chemical shifts (δ, ppm), multiplicity, coupling 

constant, and integration.  13C-NMR is recorded as chemical shifts (δ, ppm).  Mass Spectrometry was 

achieved with an Agilent Technologies 6130 Quadropole LC/MS.  Infrared Spectrometry was achieved 

with a Thermo Scientific Nicolet iS50 FT-IR. 

 

Materials: 

Boronic acids were purchased from Sigma-Aldrich or AKSci.  Trityl salts were purchased from Sigma-

Aldrich or Oakwood Chemicals.  Palladium catalyst was purchased from Sigma-Aldrich.  NHC catalysts 

were prepared according to literature procedures.  Solvents were obtained from VWR and purified through 

aluminum oxide column.  HPLC grade water was used as well.  No solvent was degassed.  CDCl3 and 

Acetone-D6 was obtained from Cambridge Isotope Laboratories, with Acetone-D6 containing 0.05% 

tetramethylsilane (TMS). 
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General Procedure for Reduction of Triazolium salt to Triazoline 

 

In a 50 mL round-bottomed flask with a magnetic stir bar, the triazolium salt (1.83 mmol, 1 equiv.) is 

dissolved in DCM (10 mL) and cooled to 0 °C by ice-water bath.  After 10 minutes, sodium borohydride 

(69 mg, 1.83 mmol, 1 equiv) is carefully added.  This is followed by 1 ml of Ethanol, where upon the 

reaction bubbles vigorously.  The reaction is continued to stir at 0 °C for 3-4 hours.  The reaction is diluted 

with DCM (20 mL) and washed with water (2 X 15 mL).  The aqueous fractions are combined and 

extracted with DCM (20 mL).  The DCM fractions are dried over MgSO4, filtered, and concentrated.  

Crude product is typically pure enough to continue, but can easily be purified by flash column 

chromatography (0 to 50% EtOAc/Hexanes through basic Al2O3). 

 

	  

2-phenyl-3,5,6,7-tetrahydro-2H-pyrrolo[2,1-c] [1,2,4]triazole (28a) 

 

282 mg of light brown solid (82% yield from 500 mg SM). rf = 0.5 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; acetone-D6): δ 7.22-7.17 (m, 2H), 6.89-6.85 (m, 2H), 6.75 (d, J = 7.4 Hz, 1H), 4.62 (s, 

2H), 3.07 (t, J = 6.4 Hz, 2H), 2.45-2.35 (m, 4H).  13C-NMR (101 MHz; acetone-D6): δ 162.1, 148.3, 128.7, 

118.3, 112.8, 71.1, 46.9, 25.1, 19.7.  MS calcd for C11H13N3 : 187.24, found: 188.10 (M+H). 

 

 

 

	  

N
N N Ar

BF4
NaBH4

DCM/EtOH
0 °C

N
N N Ar

R

N
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2-(2,4,6-trichlorophenyl)-3,5,6,7-tetrahydro-2H-pyrrolo[2,1-c][1,2,4]triazole (28e) 

	  

151 mg of light brown oil (98% yield from 200 mg SM).  rf = 0.55 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; CDCl3): δ 7.32 (s, 2H), 4.70 (s, 2H), 3.10 (t, J = 6.5 Hz, 2H), 2.51 (dd, J = 6.7, 1.3 Hz, 

2H), 2.44-2.39 (m, 2H).  13C-NMR (101 MHz; CDCl3): δ 162.9, 139.6, 137.6, 135.8, 132.4, 129.5, 129.22, 

129.19, 72.6, 70.0, 46.7, 45.9, 25.7, 25.4, 22.4, 20.3 MS: calcd for C11H10Cl3N3 Expect 290.58 Found 

292.0 (M+2H). 

	  

 

2-(perfluorophenyl)-3,5,6,7-tetrahydro-2H-pyrrolo[2,1-c][1,2,4]triazole (28g) 

 

74 mg (99% yield from 200mg SM). rf = 0.6 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; CDCl3): δ 4.74 (s, 2H), 3.09 (t, J = 6.5 Hz, 2H), 2.54 (m, 2H), 2.43 (m, 2H). 13C-NMR 

(101 MHz; acetone): δ 164.2, 139.31, 139.27, 137.5, 135.1, 73.3, 46.8, 25.3, 19.0  MS: calcd for 

C11H8F5N3 Expect 277.15 Found 278.1.   

	  

 

(R)-5-benzyl-2-(perfluorophenyl)-3,5,6,7-tetrahydro-2H-pyrrolo[2,1-c][1,2,4]triazole (30a) 
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136 mg of light brown solid (84% yield from 200mg of SM). rf = 0.65 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; acetone-d6): δ 10.50 (d, J = 0.3 Hz, 1H), 4.82 (t, J = 7.4 Hz, 2H), 3.46 (t, J = 7.7 Hz, 

2H), 3.04 (t, J = 7.5 Hz, 2H).13C-NMR (101 MHz; acetone): δ163.51, 163.50, 138.4, 129.21, 129.12, 

128.56, 128.39, 126.5, 72.9, 61.8, 41.2, 32.0, 19.8. MS. calcd for C18H14F5N3 Expect: 367.32 Found: 

368.1 (M+H).  IR: (neat) 3028, 2939, 2848, 1649, 1500, 1455, 1366,1294, 1193, 1041, 992, 825 cm-1.  

[α]D
23 = +20.00 (c = 5, acetone) 

	  

	  

(5aS,10bR)-2-(perfluorophenyl)-1,2,4,5a,6,10b-hexahydroindeno[2,1-b][1,2,4]triazolo[4,3-

d][1,4]oxazine (31a) 

	  

139 mg of white solid (85% yield from 200mg of SM).  rf = 0.6 (50% EtOAc/Hexane)  

1H-NMR (400 MHz; acetone-d6): δ  7.44 (d, J = 7.1 Hz, 1H), 7.33-7.25 (m, 3H), 5.56 (d, J = 1.4 Hz, 1H), 

5.00 (s, 1H), 4.72 (q, J = 5.0 Hz, 1H), 4.58 (d, J = 15.6 Hz, 1H), 4.49 (d, J = 5.4 Hz, 1H), 4.44 (d, J = 15.6 

Hz, 1H), 3.23 (dd, J = 7.3, 5.2 Hz, 2H).13C-NMR (101 MHz; acetone): δ 149.0, 140.8, 140.4, 128.3, 126.9, 

125.2, 124.7, 76.9, 73.52, 73.48, 73.43, 62.2, 59.2, 35.2. MS: calcd for C18H12F5N3O Expect 381.30 

Found 382.10 (M+H). IR: (neat) 2913, 1627, 1502, 1459, 1429, 1337, 1311, 1297, 1280, 1147, 1098, 

1064, 1053, 973 cm-1. [α]D
23 = +103.48 (c = 2.3, acetone) 
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General Procedure for Oxidation by Trityl Salts. 

 

A dry, 5 mL round-bottomed flask is equipped with a magnetic stir bar.  The triazoline (1 equiv.) is added 

to this flask, dissolved in DCM (0.2 M), and an Ar atmosphere is introduced.  The desired Trityl salt (1 

equiv.) is added in one portion.  The reaction is stirred at room temperature for overnight, and completion 

is judged by TLC.  Typically, addition of Et2O causes precipitation of the desired triazolium salt, which is 

recovered by filtration.   

	  

	  

2-phenyl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium hexafluorophosphate(V) (29b) 

 

128 mg of white solid (73% yield from 100 mg SM) rf: 0.1 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-D6): δ 10.36 (s, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.70-7.67 (m, 3H), 4.68 (t, J = 

7.4 Hz, 2H), 3.37 (t, J = 7.7 Hz, 2H), 2.98 (t, J = 7.5 Hz, 2H). 13C NMR (101 MHz; acetone): δ 163.8, 

137.8, 130.7, 121.1, 47.6, 26.8, 21.4. MS calcd for PF6: (-)144.96 Found: (-)145.1. IR: (neat) 3153, 2359, 

2341, 1595, 831 cm-1 

	  

	  

2-phenyl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium hexachlorostibate(V) (29c) 
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179 mg of pale, purple solid (65% yield from 100 mg SM). rf = 0.12 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; CD3OD): δ 10.39 (s, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.65-7.62 (m, 3H), 4.50 (t, J = 7.4 

Hz, 2H), 3.25 (d, J = 7.7 Hz, 2H), 2.87 (t, J = 7.5 Hz, 2H). 13C NMR (101 MHz; CD3OD): δ 163.4, 137.6, 

135.9, 130.4, 129.9, 120.6, 26.4, 21.1. MS calcd for SbCl6: (-)334.48 Found: (-)334.8  IR: (neat) 2360, 

2341, 1590, 1388, 762 cm-1 

	  

	  

2-phenyl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium perchlorate (29d) 

 

70mg of brown solid (46% yield from 100 mg SM). rf = 0.1 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-d6): δ 10.38 (s, 1H), 7.94-7.91 (m, 2H), 7.69-7.66 (m, 3H), 4.68 (t, J = 7.4 Hz, 

2H), 3.37 (t, J = 7.7 Hz, 2H), 2.98 (t, J = 7.4 Hz, 2H).  13C NMR (101 MHz; acetone-d6): δ 164.2, 163.7, 

138.0, 130.6, 130.2, 121.1, 47.6, 26.8, 21.5.  MS calcd for C11H12N3
+ Expect 186.23 Found 186.1 (M+).  IR: 

(neat) 2360, 2341, 1593, 1524, 1091, 764 cm-1 

	  

 

2-(2,4,6-trichlorophenyl)-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium hexafluorophosphate(V) 

(29e) 

 

120 mg of pale beige solid (53% yield from 151 mg SM). rf = 0.09 (50% EtOAc/ Hexane). 

N
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1H-NMR (400 MHz; acetone-d6): δ 10.38 (s, 1H), 7.94 (s, 2H), 4.83 (t, J = 7.4 Hz, 2H), 3.45 (t, J = 7.8 Hz, 

2H), 3.03 (t, J = 7.5 Hz, 2H). 13C NMR (101 MHz; acetone): δ164.7, 143.1, 138.8, 134.2, 129.4, 48.6, 

26.7, 21.7. MS calcd for C11H19Cl3N3
+ Expect: 289.57 Found 290.0 (M+) calcd for PF6

- Expect:-144.96 

Found: -145.0. IR (neat): 3144, 1598, 1573, 1523, 1416, 1154, 954 cm-1.  

	  

	  

2-(4-methoxyphenyl)-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium hexafluorophosphate(V) 

(29f)1 

 

105 mg of white solid (71% yield from 89 mg SM). rf= 0.1 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; acetone-d6): δ 10.34 (s, 1H), 7.84 (d, J = 9.1 Hz, 2H), 7.21 (d, J = 9.1 Hz, 2H), 4.68 (t, 

J = 7.4 Hz, 2H), 3.92 (s, 2H), 3.37 (t, J = 7.7 Hz, 2H), 2.99 (t, J = 7.4 Hz, 2H). 13C-NMR (101 MHz; 

acetone): δ 163.5, 161.3, 137.3, 129.26, 129.09, 128.2, 122.9, 115.1, 55.3, 47.5, 26.7, 21.4 MS: calcd for 

C12H14N3O: (+) 216.26, Found (+)216.26; calcd for PF6: (-) 144.6, Found (-) 145.0. IR: (neat) 3651, 3152, 

2975, 2348, 1590, 1530, 1465, 1393, 1306, 1258, 1176, 1044, 977, 950 cm-1.  

	  

 

2-(perfluorophenyl)-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium hexafluorophosphate(V) (29g) 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  28f is unstable, and is oxidized immediately after reduction.	  
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61 mg of beige solid (53% yield from 74 mg SM). rf = 0.1 (50% EtOAc/Hexane)  

1H-NMR (300 MHz; acetone-d6): δ 10.50 (d, J = 0.3 Hz, 1H), 4.82 (t, J = 7.4 Hz, 2H), 3.46 (t, J = 7.7 Hz, 

2H), 3.04 (t, J = 7.5 Hz, 2H). 13C-NMR (101 MHz; acetone): δ 165.0, 144.5, 143.61, 143.60, 143.55, 

142.8, 138.1, 48.7, 26.8, 21.7. MS: calcd for C11H7F5N3
+ Expect: 276.18 Found 276.0 (M+) calcd for PF6

- 

Expect: -144.96 Found: -145.0. IR: (neat) 3156, 1710, 1604, 1525, 1295, 1075, 997, 869, 831 cm-1. 

 

(R)-5-benzyl-2-(perfluorophenyl)-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium 

hexafluorophosphate(V) (30) 

 

149 mg of light brown solid (79% yield from 136mg of SM). rf = 0.1 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; acetone-d6): δ 10.02 (s, 1H), 7.41-7.39 (m, 5H), 5.51-5.46 (m, 1H), 3.58 (dd, J = 13.8, 

7.3 Hz, 1H), 3.44 (m, 3H), 3.19-3.12 (m, 1H), 2.92-2.85 (m, 1H). 13C-NMR: (101 MHz; acetone): δ 164.4, 

142.82, 142.80, 135.5, 129.3, 129.10, 128.98, 127.6, 63.4, 39.2, 32.8, 21.4 . MS: calcd for C18H14F5N3
+ 

Expect: 366.31 Found: 366.10 (M+) calcd for PF6
- Expect: -144.96 Found: -145.0. IR: (neat) 3139, 1600, 

1544, 1513, 1490, 1457, 1377, 1217,1072, 1004, 838 cm-1.  [α]D
23 = -7.10 (c = 3.1, acetone) 

	  

 

(5aS,10bR)-2-(perfluorophenyl)-4,5a,6,10b-tetrahydroindeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-

2-ium hexafluorophosphate(V) (31) 
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111 mg of white solid (59% yield from 139 mg of SM). rf = 0.1 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; acetone-d6):  δ 11.33 (s, 1H), 7.63 (d, J = 7.5 Hz, 1H), 7.45 (dd, J = 6.7, 0.5 Hz, 2H), 

7.37-7.35 (m, 1H), 6.38 (d, J = 3.9 Hz, 1H), 5.44 (d, J = 16.5 Hz, 1H), 5.27 (d, J = 16.5 Hz, 1H), 5.21 (d, J 

= 4.7 Hz, 1H), 3.56 (dd, J = 17.3, 5.3 Hz, 1H), 3.31 (d, J = 17.1 Hz, 1H). 13C-NMR(101 MHz; acetone): δ 

151.8, 146.19, 146.18, 140.9, 135.1, 129.7, 127.2, 125.6, 125.0, 124.2, 77.3, 62.6, 59.9, 37.0. MS: calcd 

for C18H11F5N3O+ Expect 380.29 Found 380.30 (M+) calcd for PF6- Expect: -144.96 Found -145.0. IR: 

(neat) 2913, 1627, 1502, 1459, 1429, 1337, 1311, 1297, 1280, 1147, 1098, 1064, 1053, 973 cm-1.   [α]D
23 

= -141.11 (c = 3.6, acetone) 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Synthesis of 37. 
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O
1) Me3O•BF4
     DCM
2) C6F5NHNH2

3) (EtO)3CH, PhCl
     120 °C
4) NaBH4
    DCM/EtOH, 0 °C

36 37
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Bromolactam 36 (2.09 g, 7.81 mmol, 1 equiv.), prepared according to Bode,2 is 

dissolved in CH2Cl2 (40 mL) in a dry flask 100mL round-bottom flask.  Trimethyloxonium 

tetrafluoroborate (1.15g, 7.81 mmol, 1 equiv.) is added, the flask is flushed with Ar, and 

the reaction is stirred at room temperature overnight.  After aliquot NMR indicates 

complete consumption of starting material, pentafluorophenylhydrazine (1.55 g, 7.81 

mmol, 1 equiv.) is added and the reaction is stirred overnight.  The reaction is monitored 

by aliquot NMR, and after completion CH2Cl2 is removed by rotary evaporator.  The 

crude hydrazide is then taken up in chlorobenzene (30 mL) and triethylorthoformate (5 

mL) and the reaction is stirred at 120 °C for 2 days.  After the reaction is determined to 

be complete by NMR, solvent and triethylorthoformate is removed in vacuo.  The crude 

product is then dissolved in a 10:1 DCM/EtOH solution (30 mL) and cooled to 0 °C by 

ice-water bath.  Sodium borohydride is added (295 mg, 7.81 mmol, 1 equiv.) and the 

reaction is stirred at 0°C for 5 hours.  Water is added carefully, and after gas evolution 

has ceased, the reaction is extracted with DCM (2 X 30 mL).  The organic layer is dried 

over MgSO4, filtered, and concentrated.  The crude product is purified by flash column 

chromatography, eluting with 0 to 50% EtOAc/Hexane through basic alumina.  Isolated 

2.02g of a light brown solid (56% yield).3 

	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Hsieh, S.-Y.; Binanzer, M.; Kreituss, I.; Bode, J. W. Chem. Commun. 2012, 48, 8892-8894. 
3	  Based upon: Vora, H. U.; Lathrop, S. P.; Reynolds, N. T.; Kerr, M. S.; Read de Alaniz, J.; Rovis, T. Org. Synth. 
2010, 87, 350.	  
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(5aS,10bR)-9-bromo-2-(perfluorophenyl)-1,2,4,5a,6,10b-hexahydroindeno[2,1-b][1,2,4]triazolo[4,3-

d][1,4]oxazine (37) 

 

2.02 g (56% yield) of light brown solid.  rf = 0.5 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; aceton-d6): δ 7.63 (dd, J = 0.8, 0.4 Hz, 1H), 7.46 (dd, J = 8.1, 1.9 Hz, 1H), 7.29 (d, J 

= 8.1 Hz, 1H), 5.65 (t, J = 1.0 Hz, 1H), 5.00 (t, J = 1.0 Hz, 1H), 4.72 (d, J = 4.9 Hz, 1H), 4.59 (d, J = 15.7 

Hz, 1H), 4.55 (d, J = 5.2 Hz, 1H), 4.46 (d, J = 15.7 Hz, 1H), 3.20 (d, J = 4.7 Hz, 2H).  13C-NMR (101 MHz; 

acetone): δ 148.9, 143.7, 139.9, 131.2, 127.8, 127.1, 120.0, 77.1, 73.6, 62.2, 59.6, 35.1. MS: calcd for 

C18H11BrF5N3O Expect: 460.20 Found 462.0 (M+2H). IR (neat): 3273, 2916, 1698, 1653, 1521, 1471, 

1402, 1324, 1247,1215, 1075, 1026, 993 cm-1. [α]D
23 = -81.8(c = 1, acetone) 

	  

General Procedure for Suzuki-Miyaura reaction with Triazolines. 

 

In a glove box, a dry 2-dram glass vial is loaded with PdCl2(PPh3)2 (7 mg, 0.01 mmol, 0.05 equiv.).  The 

vial is sealed and removed from the glove box.  To this vial is added triazoline (100 mg, 0.22 mmol, 1 

equiv.), arylboronic acid (0.32 mmol, 1.5 equiv.) and potassium phosphate tribasic (93 mg, 0.44 mmol, 2 

equiv.).  Dry THF (1.5 mL) is added followed by water (0.5 mL), as well as a magnetic stir bar.  The vial is 

sealed, secured with Teflon tape, and heated by oil bath at 60 °C for 6-12 h.  Reaction is deemed 

complete by TLC. The reaction is cooled to rt and 1 mL of brine and 1 mL of EtOAc is added to the 
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reaction.  The aqueous fraction is removed, and the organic layer is dried over MgSO4.  The crude 

reaction product is filtered and concentrated.  The crude product is purified by flash column 

chromatography, eluting with 0 to 50% EtOAc/Hexanes through basic alumina.   

	  

 

(5aS,10bR)-2-(perfluorophenyl)-9-phenyl-1,2,4,5a,6,10b-hexahydroindeno[2,1-b][1,2,4]triazolo[4,3-

d][1,4]oxazine (38a) 

 

60 mg of dark brown solid (60% yield). rf = 0.5 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; acetone-d6): δ 7.70-7.60 (m, 4H), 7.47-7.35 (m, 4H), 5.68-5.67 (m, 1H), 5.04 (t, J = 

1.1 Hz, 1H), 4.78 (dd, J = 5.6, 1.1 Hz, 1H), 4.64-4.55 (m, 2H), 4.47 (d, J = 15.6 Hz, 1H), 3.30-3.28 (m, 

2H).  13C-NMR (101 MHz; acetone-d6): δ149.0, 141.6, 140.9, 140.3, 139.6, 129.82, 129.73, 128.49, 

128.44, 128.38, 127.8, 127.25, 127.18, 127.16, 126.8, 125.6, 123.8, 123.2, 77.1, 73.6, 62.3, 59.2, 34.8.  

MS calcd for C24H16F5N3O: 457.4, found 458.1 (M+H).  IR: (neat) 2914, 1626, 1504, 1479, 1429, 1340, 

1307, 1055, 1039, 977 cm-1. [α]D
23 = -39.17 (c = 2.4, acetone) 

	  

 

(5aS,10bR)-9-(naphthalen-1-yl)-2-(perfluorophenyl)-1,2,4,5a,6,10b-hexahydroindeno[2,1-b][1,2,4] 
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triazolo[4,3-d][1,4]oxazine (38b) 

 

72 mg of light brown solid (64% yield). rf = 0.7 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-D6): δ 7.99-7.92 (m, 2H), 7.85 (d, J = 8.4 Hz, 1H), 7.58-7.42 (m, 7H), 5.60-

5.60 (m, 1H), 5.00 (t, J = 1.1 Hz, 1H), 4.85-4.82 (m, 1H), 4.65 (d, J = 15.5 Hz, 2H),  

4.49 (d, J = 15.6 Hz, 1H), 3.36 (s, 2H).  13C NMR (101 MHz; acetone-D6): δ 149.1, 140.0, 139.7, 134.0, 

131.6, 130.1, 128.3, 127.6, 126.9, 126.16, 126.06, 125.8, 125.55, 125.39, 125.2, 77.1, 62.3, 59.3, 35.2.  

MS calcd for C28H18F5N3O: 507.45, Found: 508.20 (M+H) IR: (neat) 2913, 1700, 1503, 1428, 1338, 1312, 

1247, 1105, 1039, 993, 800 cm-1.  [α]D
23 = -91.02 (c = 3.6, acetone) 

	  

	  

 

(5aS,10bR)-9-(3,4-dimethoxyphenyl)-2-(perfluorophenyl)-1,2,4,5a,6,10b-hexahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4] oxazine (38c) 

 

74 mg of light brown solid (66% yield). rf = 0.5 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-D6): δ 7.66 (t, J = 0.8 Hz, 1H), 7.55 (dd, J = 7.9, 1.7 Hz, 1H),  

7.37 (d, J = 7.9 Hz, 1H), 7.22 (d, J = 2.2 Hz, 1H), 7.18 (d, J = 2.2 Hz, 1H), 7.16 (d, J = 2.2 Hz, ),  

7.01 (d, J = 8.3 Hz, 1H), 5.66 (m, 1H), 5.03 (t, J = 1.1 Hz, 1H), 4.77 (td, J = 5.8, 4.0 Hz, 1H),  

4.61 (d, J = 15.5 Hz, 1H), 4.54 (d, J = 5.3 Hz, 1H), 4.46 (d, J = 15.6 Hz, 1H), 3.87 (s, 4H), 3.84 (s, 4H), 

3.26 (dd, J = 11.9, 5.2 Hz, 2H).  13C-NMR (101 MHz; acetone-D6): δ 180.4, 177.5, 149.2, 141.5, 140.3, 

138.9, 133.8, 127.0, 125.5, 122.9, 119.2, 112.3, 111.1, 77.1, 73.5, 62.3, 59.2, 55.3, 34.8. MS calcd for 
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C26H20F5N3O3 Expect: 517.45 Found 518.10 (M+H) IR: (neat) 2999, 2837, 1700, 1521, 1488, 1250, 1174, 

1141, 1025, 993 cm-1.   [α]D
23 = -124.70 (c = 1.7g/mL, acetone) 

	  

 

(5aS,10bR)-9-(4-(tert-butyl)phenyl)-2-(perfluorophenyl)-1,2,4,5a,6,10b-hexahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazine (38d) 

 

64 mg of brown solid (57% yield). rf = 0.5 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-d6): δ  7.67 (d, J = 0.8 Hz, 1H), 7.58-7.55 (m, 4H), 7.49 (td, J = 5.5, 2.0 Hz, 

3H), 7.40 (s, 1H), 5.67 (d, J = 1.3 Hz, 1H), 5.04 (d, J = 1.1 Hz, 1H), 4.77 (s, 2H), 4.60 (d, J = 15.5 Hz, 1H), 

4.54 (d, J = 5.3 Hz, 1H), 4.47-4.43 (m, 1H), 3.36 (d, J = 3.3 Hz, 1H), 3.26 (dd, J = 11.0, 5.2 Hz, 2H), 1.35 

(s, 9H).  13C-NMR (101 MHz; acetone): δ 150.0, 149.1, 141.6, 140.2, 139.3, 138.0, 127.1, 126.61, 126.43, 

125.62, 125.58, 123.1, 77.1, 73.6, 62.3, 59.2, 34.9, 30.7. MS: calcd for C28H24F5N3O Expect: 513.40 

Found 514.20 (M+H).  IR: (neat) 2963, 2905, 1698, 1517, 1364, 1269, 1112, 1076, 993 cm -1  [α]D
23 = -

99.50 (c =4, acetone) 
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(5aS,10bR)-2-(perfluorophenyl)-9-(o-tolyl)-1,2,4,5a,6,10b-hexahydroindeno[2,1-b][1,2,4]triazolo[4,3-

d][1,4]oxazine (38e) 

 

35 mg of red solid (67% yield).4 rf = 0.5 (50% EtOAc/Hexanes) 

1H-NMR (300 MHz; acetone-d6):  δ 7.39-7.38 (m, 2H), 7.27-7.25 (m, 5H), 5.61 (d, J = 2.2 Hz, 1H), 5.00 (t, 

J = 1.1 Hz, 1H), 4.78 (q, J = 5.0 Hz, 1H), 4.62 (d, J = 15.6 Hz, 1H), 4.56 (d, J = 5.3 Hz, 1H), 4.46 (d, J = 

15.6 Hz, 1H), 3.29 (t, J = 4.6 Hz, 2H), 2.24 (s, 3H). 13C-NMR (101 MHz; acetone): δ 149.1, 141.7, 140.97, 

140.89, 139.0, 135.0, 130.2, 129.6, 129.3, 127.2, 125.8, 125.3, 125.0, 77.0, 73.5, 62.2, 59.3, 35.0, 19.7   

MS: calcd for C25H18F5N3O Expect: 471.42 Found 472.10. IR: (neat) 2918, 1701, 1627, 1503, 1428, 1339, 

1312, 1246, 1106, 1037, 974, 761.  [α]D
23 = -41.02 (c = 11.8, acetone) 

	  

	  

(5aS,10bR)-9-(3,5-bis(trifluoromethyl)phenyl)-2-(perfluorophenyl)-1,2,4,5a,6,10b-

hexahydroindeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazine (38f) 

 

41 mg of off-white solid (63% yield).3  rf = 0.45 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-D6): δ 8.28 (s, 2H), 8.02-7.96 (m, 2H), 7.77 (dd, J = 7.9, 1.8 Hz, 1H), 7.52 (d, 

J = 7.8 Hz, 1H), 5.69 (dd, J = 2.3, 1.3 Hz, 1H), 5.00 (dt, J = 2.2, 1.1 Hz, 1H), 4.80 (td, J = 5.6, 4.2 Hz, 1H), 

4.65-4.46 (m, 4H), 3.33 (dd, J = 7.3, 5.0 Hz, 2H).  13C NMR (101 MHz; acetone-D6): δ 149.0, 143.5, 

142.2, 141.6, 137.1, 131.8, 127.9, 127.56, 127.53, 126.1, 123.9, 120.67, 120.63, 120.61, 77.1, 73.7, 62.4, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Reaction performed with 50mg of triazoline starting material. 
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59.3, 35.0 MS: calcd for C26H14F11N3O Expect: 593.39 Found: 594.10 (M+H).  IR: (neat) 2971, 2348, 

1625, 1523, 1505, 1379, 1280, 1183, 1126, 1039 cm-1.  [α]D
23 = -66.06 (c = 2.3, acetone) 

	  

 

(5aS,10bR)-9-(2,4-difluorophenyl)-2-(perfluorophenyl)-1,2,4,5a,6,10b-hexahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazine (38g) 

 

26 mg of light orange solid (48% yield).3 rf = 0.5 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; acetone-d6): δ 7.60 (s, 2H), 7.45 (d, J = 3.6 Hz, 2H), 7.16-7.10 (m, 2H), 5.62 (d, J = 

2.0 Hz, 1H), 5.02 (t, J = 1.0 Hz, 1H), 4.79 (q, J = 5.0 Hz, 1H), 4.65-4.57 (m, 2H), 4.47 (d, J = 15.6 Hz, 1H), 

3.31-3.28 (m, 2H). 13C-NMR (101 MHz; acetone-d6): δ149.7, 149.2, 141.5, 140.3, 138.9, 133.8, 127.0, 

125.5, 122.9, 119.2, 112.28, 112.25, 111.1, 110.8, 77.1, 73.6, 62.3, 59.2, 55.30, 55.28, 55.26, 34.8  MS 

calcd for C24H14F7N3O Expect: 493.38 Found 494.10 (M+H) IR (neat) 2937, 2837, 1700, 1504, 1465, 

1335, 1249, 1174, 1141, 1026, 992 cm-1. [α]D
23 = -82 (c = 2.0, acetone) 
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Elaborated Triazolines were oxidized according to the general method described earlier. 

	  

 

(5aS,10bR)-2-(perfluorophenyl)-9-phenyl-4,5a,6,10b-tetrahydroindeno[2,1-b][1,2,4]triazolo[4,3-

d][1,4]oxazin-2-ium tetrafluoroborate (39a) 

 

46 mg of off-white solid (65% yield). rf = 0.1 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-d6):  δ 11.32 (s, 1H), 7.88 (s, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 7.4 

Hz, 2H), 7.54 (d, J = 7.9 Hz, 1H), 7.43 (d, J = 7.9 Hz, 2H), 7.36 (d, J = 7.3 Hz, 1H), 6.42 (d, J = 4.2 Hz, 

1H), 5.43 (d, J = 16.4 Hz, 1H), 5.31-5.24 (m, 2H), 3.60 (dd, J = 17.2, 5.1 Hz, 1H), 3.35 (d, J = 17.2 Hz, 

1H).  13C-NMR (101 MHz; acetone): δ 151.7, 144.1, 140.5, 140.0, 136.0, 129.3, 128.9, 128.4, 127.5, 

126.9, 126.0, 122.9, 77.6, 62.6, 60.0, 36.7 MS calcd for C24H15F5N3O+ Expect: 456.39 Found: 456.1(M+).  

IR: (neat) 3061, 1699, 1595, 1550, 1529, 1518, 1481, 1250, 1075, 1004 cm-1  [α]D
23 = -73 (c = 2.0, 

acetone) 
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(5aS,10bR)-9-(naphthalen-1-yl)-2-(perfluorophenyl)-4,5a,6,10b-tetrahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium tetrafluoroborate (39b) 

 

44 mg of off-white solid (37% yield). rf =0.1 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-d6): δ  11.27 (s, 1H), 8.00-7.94 (m, 2H), 7.82-7.80 (m, 1H), 7.74 (s, 1H), 7.63 

(d, J = 7.7 Hz, 1H), 7.54 (td, J = 7.9, 1.4 Hz, 3H), 7.47-7.39 (m, 3H), 6.49 (d, J = 4.1 Hz, 1H), 5.46 (d, J = 

16.4 Hz, 1H), 5.33-5.29 (m, 2H), 3.68 (m, 1H), 3.44-3.41 (m, 1H). 13C-NMR (101 MHz; acetone): δ 151.8, 

140.06, 139.94, 139.3, 135.6, 134.0, 131.43, 131.37, 129.3, 128.53, 128.35, 127.9, 127.0, 126.3, 125.9, 

125.66, 125.60, 125.41, 122.4, 77.6, 62.7, 60.1, 36.9.   MS calcd for C28H17F5N3O+ Expect: 506.45; 

Found: 506.1 (M+). IR (neat) 3058, 1698, 1594, 1550, 1529, 1482, 1394, 1250, 1075,1003, 861, 800, 780 

cm-1.   [α]D
23 = -67.86 (c = 2.8, acetone) 

	  

 

(5aS,10bR)-9-(3,4-dimethoxyphenyl)-2-(perfluorophenyl)-4,5a,6,10b-tetrahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium tetrafluoroborate (39c) 

 

91 mg of light brown solid (99% yield). rf = 0.1 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; aceton-d6):  δ 7.83 (s, 1H), 7.71-7.68 (m, 1H), 7.51-7.48 (m, 1H), 7.31-7.16 (m, 5H), 

7.01 (d, J = 8.3 Hz, 1H), 6.40-6.39 (m, 1H), 5.43 (d, J = 16.4 Hz, 1H), 5.31-5.23 (m, 2H), 3.58 (dd, J = 

17.1, 4.5 Hz, 1H), 3.33 (d, J = 17.2 Hz, 1H). 13C-NMR(101 MHz; acetone): δ 151.6, 149.8, 149.4, 140.5, 

139.2, 135.8, 133.0, 129.3, 128.22, 128.05, 126.2, 125.8, 122.4, 119.2, 112.2, 110.9, 77.6, 62.6, 59.9, 
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55.3, 36.7 MS: calcd for C26H19F5N3O3
+ Expect 516.41 Found: 516.10 (M+) IR (neat) 3060, 2944, 1669, 

1595, 1518, 1489, 1320, 1250, 1174, 1142, 1075, 1023, 864 cm-1. [α]D
23 = -84.70 (c = 1.7, acetone) 

	  

 

(5aS,10bR)-9-(3,4-dimethoxyphenyl)-2-(perfluorophenyl)-4,5a,6,10b-tetrahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium hexafluorophosphate (39d) 

 

46 mg of light brown solid (58% yield). rf = 0.1 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; acetone-d6): δ  11.63 (bs, 1H), 7.84 (s, 1H), 7.71-7.68 (m, 1H), 7.52-7.49 (m, 1H), 

7.21-7.14 (m, 2H), 7.02 (d, J = 8.3 Hz, 1H), 6.42-6.41 (m, 1H), 5.44 (d, J = 16.4 Hz, 1H), 5.32-5.24 (m, 

2H), 3.86 (s, 3H), 3.84 (s, 3H), 3.58 (dd, J = 16.7, 4.6 Hz, 1H), 3.33 (dd, J = 16.9, 0.6 Hz, 1H). 13C-NMR 

(101 MHz; acetone): δ 166.8, 144.5, 140.5, 139.2, 135.7, 134.6, 133.0, 130.2, 128.9, 128.18, 128.07, 

125.9, 122.5, 119.2, 118.3, 112.2, 111.1, 77.6, 62.6, 59.9, 55.34, 55.30, 36.7  MS: calcd for 

C26H19F5N3O3
+ Expect 516.41 Found: 516.10 (M+) calcd for PF6

- Expect: -144.96 Found -145.00 (M-).    
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(5aS,10bR)-2-(perfluorophenyl)-9-(o-tolyl)-4,5a,6,10b-tetrahydroindeno[2,1-b][1,2,4]triazolo[4,3-

d][1,4]oxazin-2-ium tetrafluoroborate (39e) 

 

62 mg of light rusty-brown solid (99% yield). rf = 0.1 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; aceton-d6): δ 7.58-7.52 (m, 2H), 7.41-7.38 (m, 1H), 7.28-7.26 (m, 3H), 7.16 (dd, J = 

2.5, 0.6 Hz, 1H), 6.45-6.43 (m, 1H), 5.45 (d, J = 16.4 Hz, 1H), 5.32-5.25 (m, 2H), 3.62 (dd, J = 17.0, 5.0 

Hz, 1H), 3.37 (d, J = 17.2 Hz, 1H), 2.20 (s, 3H). 13C-NMR (101 MHz; acetone): δ 151.7, 141.3, 139.4, 

135.4, 135.1, 130.54, 130.35, 129.6, 129.3, 128.2, 127.5, 125.9, 125.4, 124.8, 77.6, 62.6, 60.0, 36.8, 19.6 

MS calcd for C25H17F5N3O+ Expect: 470.41 Found 470.1 IR: (neat) 3059, 1698, 1594, 1550, 1528, 1517, 

1479, 1249, 1074,1002, 858 cm-1.  [α]D
23 = -75.79 (c = 1.9, acetone) 

   

 

(5aS,10bR)-9-(4-(tert-butyl)phenyl)-2-(perfluorophenyl)-4,5a,6,10b-tetrahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium tetrafluoroborate (39f) 

 

58 mg of light brown solid (80% yield). rf = 0.15 (50% EtOAc/Hexane) 

1H-NMR (300 MHz; aceton-d6): δ 7.86 (s, 1H), 7.70 (dd, J = 7.8, 0.9 Hz, 1H), 7.58-7.47 (m, 4H), 7.28-

7.14 (m, 1H), 6.42 (s, 1H), 5.44 (d, J = 16.4 Hz, 1H), 5.32-5.25 (m, 2H), 3.59 (dd, J = 17.3, 5.2 Hz, 1H), 

3.37-3.31 (m, 2H), 1.33 (s, 9H). 13C-NMR (101 MHz; acetone): δ 151.7, 140.5, 139.6, 137.4, 135.9, 134.2, 

133.9, 133.7, 132.0, 131.6, 130.5, 129.3, 128.24, 128.21, 126.9, 126.6, 125.9, 125.7, 122.8, 77.6, 62.6, 
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59.9, 36.7, 30.7  MS: calcd for C28H23F5N3O Expect: 512.49 Found: 512.2 IR: (neat) 2963, 1595, 1550, 

1529, 1483, 1075, 1004, 804 cm-1.  [α]D
23 = -66.67 (c = 1.2, acetone) 

	  

 

(5aS,10bR)-9-(3,5-bis(trifluoromethyl)phenyl)-2-(perfluorophenyl)-4,5a,6,10b-tetrahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium tetrafluoroborate (39g) 

 

60 mg of light brown solid (80% yield).5 rf = 0.1 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-D6): δ  11.29 (br s, 1H), 8.24 (s, 2H), 8.07 (s, 1H), 8.04 (d, J = 0.7 Hz, 1H), 

7.92-7.90 (m, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.31-7.29 (m, 1H), 7.24-7.14 (m, 1H), 6.46 (d, J = 4.2 Hz, 1H), 

5.43 (d, J = 16.4 Hz, 1H), 5.32-5.28 (m, 2H), 3.69-3.63 (m, 1H), 3.39 (d, J = 17.4 Hz, 1H).  13C-NMR (101 

MHz; acetone-D6): δ 151.5, 142.9, 141.9, 137.2, 136.5, 132.0, 131.7, 129.26, 129.06, 128.2, 128.0, 

127.52, 127.50, 127.47, 126.4, 126.2, 123.6, 122.2, 121.01, 120.97, 77.6, 62.5, 60.0, 36.9.  MS calcd for 

C26H13F11N3O+ : 592.38, found: 592.1 (M+). IR: (neat) 3098, 1700, 1596, 1529, 1518, 1378, 1320, 1180, 

1134, 1076, 1004 cm-1.  [α]D
23 = -138.52 (c = 2.7, acetone) 

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  Alternative purification was used:  Solvent is removed by rotary evaporator.  The crude product is 
dissolved in minimal amount of Et2O and the triazolium salt is precipitated by addition of hexanes.  
Filtration through filter paper yields the desired compound. 	  
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(5aS,10bR)-9-(2,4-difluorophenyl)-2-(perfluorophenyl)-4,5a,6,10b-tetrahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium tetrafluoroborate (39h) 

 

53 mg of light purple solid (65% yield). rf = 0.1 (50% EtOAc/Hexane) 

1H-NMR (400 MHz; acetone-D6): δ  11.23 (br s, 1H), 7.77 (t, J = 0.4 Hz, 1H), 7.61-7.55 (m, 3H), 7.15-7.10 

(m, 2H), 6.42 (d, J = 4.2 Hz, 1H), 5.43 (d, J = 16.4 Hz, 1H), 5.29 (dd, J = 16.3, 0.3 Hz, 1H), 5.26 (d, J = 

4.3 Hz, 1H), 3.64-3.59 (m, 1H), 3.38-3.34 (m, 1H).  13C-NMR (101 MHz; acetone-D6): δ 163.7, 151.7, 

146.3, 140.6, 135.9, 134.2, 132.23, 132.19, 132.14, 132.09, 130.47, 130.43, 129.3, 128.2, 126.2, 125.7, 

124.78, 124.76, 111.97, 111.93, 111.76, 111.72, 104.1, 103.8, 77.5, 62.5, 60.0, 36.8.  MS calcd for 

C24H13F7N3O+ : 492.37, found: 492.1 (M+). IR: (neat) 3648, 3095, 2361, 2341, 1596, 1529, 1516, 1484, 

1268, 1076, 1004, 856 cm-1  [α]D
23 = -78.71 (c = 1.7, acetone) 

	  

	  

	  

Synthesis of 41 via 40 
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To a dry, 2 dram glass vial is added lactam 36 (166mg, 0.62 mmol, 1 equiv.), boronic acid (180 mg, 0.93 

mmol, 1.5 equiv.), Pd(PPh3)2Cl2 (21 mg, 0.03mmol, 0.05 equiv.), and potassium phosphate (263 mg, 1.24 

mmol, 2 equiv.).  An argon atmosphere is introduced, and 3 ml of tetrahydrofuran/water solution (3:1 v/v) 

is added.  The vial is sealed, the cap is wrapped with Teflon tape, and heated at 60 °C for 5 hours.  The 

reaction is cooled to room temperature and diluted with ethyl acetate (2 mL).  The reaction mixture is 

washed with brine (2 x 1 mL) and the organic phase is dried over MgSO4.  The drying agent is filtered off, 

washed with ethyl acetate, and concentrated by rotary evaporator.  The crude product is purified by 

column chromatography, eluting with 50% ethyl acetate/hexane through silica gel.  Isolated 146 mg (70%) 

of a light brown solid. 

 

In a dray, 10 mL round bottom flask, 146 mg of 40 (0.43 mmol, 1 equiv) is dissolved in 3 mL of DCM.  

Trimethyloxonium tetrafluoroborate (63 mg, 0.43 mmol, 1 equiv) is added and the reaction is stirred at 

room temperature for 6 h.  Upon visual disappearance of solids in the reaction mixture, 

pentafluorophenylhydrazine (85 mg, 0.43 mmol, 1 equiv.) is added and the reaction is stirred overnight at 

room temperature.  Product formation is determined by aliquot NMR.  Solvent is removed in vacuo and 1 

ml of triethylorthoformate and 2 ml of chlorobenzene is added.  A reflux condenser is attached and the 

reaction is stirred at 130 °C for 2 days.  The solvent is removed by rotary evaporator and the crude 

product is purified by column chromatography, eluting with 10%MeOH/DCM through silica gel.  Isolated 

114 mg of a red solid (43% yield). 
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(5aS,10bR)-9-(3-(ethoxycarbonyl)phenyl)-2-(perfluorophenyl)-4,5a,6,10b-tetrahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium tetrafluoroborate (41) 

	  

114	  mg	  of	  red	  solid	  (43%	  yield).	  	  	  rf	  =	  0.2	  (50%	  EtOAc/Hexane)	  

1H-NMR (400 MHz; acetone-d6): δ 11.33 (s, 1H), 8.22 (t, J = 1.7 Hz, 1H), 8.01-7.99 (m, 2H), 7.94-7.91 (m, 2H), 7.76 

(d, J = 7.9 Hz, 1H), 7.59 (t, J = 7.6 Hz, 2H), 6.44 (d, J = 4.0 Hz, 1H), 5.73 (s, 1H), 5.41 (s, 1H), 5.30 (d, J = 16.6 Hz, 

2H), 4.38 (t, J = 7.1 Hz, 2H), 3.65-3.59 (m, 1H), 3.36 (d, J = 17.3 Hz, 1H), 1.37 (t, J = 7.0 Hz, 3H).  13C NMR (101 

MHz; acetone): δ 165.7, 151.6, 146.4, 140.65, 140.59, 139.4, 136.2, 131.6, 131.3, 129.3, 128.6, 128.3, 127.54, 

127.49, 126.2, 123.1, 77.6, 62.6, 60.7, 60.0, 36.8, 13.67, 13.64.  MS calcd for  C27H19F5N3O3
+ Expect: 528.45 Found: 

528.20 (M+). 
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APPENDIX 5 

X-RAY CRYSTALLOGRAPHY DATA FOR CHAPTER 4 

 
 
 
Crystallographic Data for Figure 4.2 

 

X-Ray grade crystals were formed by dissolving the NHC catalyst in minimal Ethyl Acetate and layer with 

heptane in a 1.5 dram vial.  Vial was capped and punctured several times with a syringe needle.  The 

biphasic solution was allowed to evaporate slowly over the course of 3 days until suitable crystals were 

formed. 
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  Table 1.  Crystal data and structure refinement for Rovis175. 

Identification code  Rovis175 

Empirical formula  C18 H11 B F9 N3 O 

Formula weight  467.11 

Temperature  296(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P 21 21 21 

Unit cell dimensions a = 7.6458(11) Å a= 90°. 

 b = 10.4929(15) Å b= 90°. 

 c = 22.929(3) Å g = 90°. 

Volume 1839.5(5) Å3 

Z 4 

Density (calculated) 1.687 Mg/m3 

Absorption coefficient 0.169 mm-1 

F(000) 936 

Crystal size 0.384 x 0.276 x 0.260 mm3 
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Theta range for data collection 2.134 to 32.010°. 

Index ranges -9<=h<=10, -13<=k<=14, -34<=l<=23 

Reflections collected 27221 

Independent reflections 5336 [R(int) = 0.0380] 

Completeness to theta = 25.242° 99.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5336 / 0 / 289 

Goodness-of-fit on F2 1.032 

Final R indices [I>2sigma(I)] R1 = 0.0384, wR2 = 0.0855 

R indices (all data) R1 = 0.0454, wR2 = 0.0897 

Absolute structure parameter 0.0(2) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.520 and -0.462 e.Å-3 
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 Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for Rovis175.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
B(1) 201(3) 4630(2) 8487(1) 19(1) 

C(1) 2876(3) 688(2) 9399(1) 24(1) 

C(2) 2375(3) -280(2) 9031(1) 21(1) 

C(3) 2565(3) -128(2) 8439(1) 18(1) 

C(4) 3237(3) 1000(2) 8218(1) 16(1) 

C(5) 3752(3) 1958(2) 8593(1) 19(1) 

C(6) 3578(3) 1803(2) 9184(1) 24(1) 

C(7) 2122(3) 6637(2) 5996(1) 26(1) 

C(8) 1868(3) 6235(2) 6565(1) 24(1) 

C(9) 1886(3) 4944(2) 6704(1) 18(1) 

C(10) 2181(2) 4073(2) 6262(1) 15(1) 

C(11) 2506(3) 4470(2) 5695(1) 18(1) 

C(12) 2464(3) 5757(2) 5558(1) 24(1) 

C(13) 2103(2) 2634(2) 6269(1) 14(1) 

C(14) 3115(3) 2239(2) 5718(1) 16(1) 

C(15) 2819(3) 3349(2) 5299(1) 20(1) 

C(16) 4391(3) 1293(2) 6769(1) 16(1) 

C(17) 5375(3) 1138(2) 6213(1) 23(1) 

C(18) 2257(3) 1958(2) 7311(1) 16(1) 

F(1) 1109(3) 4493(2) 9000(1) 62(1) 

F(2) 599(3) 3622(2) 8132(1) 53(1) 

F(3) 719(2) 5758(1) 8212(1) 28(1) 

F(4) -1581(2) 4653(1) 8600(1) 37(1) 

F(5) 2081(2) -1064(1) 8082(1) 26(1) 

F(6) 1699(2) -1354(1) 9249(1) 29(1) 

F(7) 2714(2) 541(2) 9971(1) 36(1) 

F(8) 4144(2) 2709(1) 9544(1) 33(1) 

F(9) 4439(2) 3026(1) 8382(1) 25(1) 

N(1) 2899(2) 2026(2) 6779(1) 13(1) 

N(2) 3336(2) 1224(2) 7611(1) 16(1) 

N(3) 4715(2) 790(2) 7277(1) 19(1) 
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O(1) 4954(2) 2186(2) 5843(1) 19(1) 

________________________________________________________________________________ 
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 Table 3.   Bond lengths [Å] and angles [°] for  Rovis175. 

_____________________________________________________  

B(1)-F(2)  1.370(3) 

B(1)-F(1)  1.375(3) 

B(1)-F(4)  1.387(3) 

B(1)-F(3)  1.398(3) 

C(1)-F(7)  1.327(2) 

C(1)-C(2)  1.376(3) 

C(1)-C(6)  1.378(3) 

C(2)-F(6)  1.336(3) 

C(2)-C(3)  1.373(3) 

C(3)-F(5)  1.331(3) 

C(3)-C(4)  1.386(3) 

C(4)-C(5)  1.380(3) 

C(4)-N(2)  1.415(2) 

C(5)-F(9)  1.329(3) 

C(5)-C(6)  1.372(3) 

C(6)-F(8)  1.330(3) 

C(7)-C(8)  1.384(3) 

C(7)-C(12)  1.390(3) 

C(8)-C(9)  1.393(3) 

C(9)-C(10)  1.383(3) 

C(10)-C(11)  1.388(3) 

C(10)-C(13)  1.511(3) 

C(11)-C(12)  1.387(3) 

C(11)-C(15)  1.504(3) 

C(13)-N(1)  1.463(2) 

C(13)-C(14)  1.538(3) 

C(14)-O(1)  1.436(2) 

C(14)-C(15)  1.526(3) 

C(16)-N(3)  1.302(3) 

C(16)-N(1)  1.376(3) 

C(16)-C(17)  1.489(3) 

C(17)-O(1)  1.426(2) 

C(18)-N(1)  1.318(2) 

C(18)-N(2)  1.321(3) 
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N(2)-N(3)  1.381(2) 

 

F(2)-B(1)-F(1) 108.4(2) 

F(2)-B(1)-F(4) 110.1(2) 

F(1)-B(1)-F(4) 109.74(19) 

F(2)-B(1)-F(3) 108.84(18) 

F(1)-B(1)-F(3) 109.4(2) 

F(4)-B(1)-F(3) 110.36(19) 

F(7)-C(1)-C(2) 119.7(2) 

F(7)-C(1)-C(6) 119.2(2) 

C(2)-C(1)-C(6) 121.11(19) 

F(6)-C(2)-C(3) 120.6(2) 

F(6)-C(2)-C(1) 120.05(19) 

C(3)-C(2)-C(1) 119.4(2) 

F(5)-C(3)-C(2) 119.5(2) 

F(5)-C(3)-C(4) 120.55(18) 

C(2)-C(3)-C(4) 120.0(2) 

C(5)-C(4)-C(3) 120.05(18) 

C(5)-C(4)-N(2) 118.44(18) 

C(3)-C(4)-N(2) 121.44(18) 

F(9)-C(5)-C(6) 119.8(2) 

F(9)-C(5)-C(4) 120.11(18) 

C(6)-C(5)-C(4) 120.1(2) 

F(8)-C(6)-C(5) 119.8(2) 

F(8)-C(6)-C(1) 120.78(19) 

C(5)-C(6)-C(1) 119.4(2) 

C(8)-C(7)-C(12) 120.4(2) 

C(7)-C(8)-C(9) 120.7(2) 

C(10)-C(9)-C(8) 118.46(19) 

C(9)-C(10)-C(11) 121.16(19) 

C(9)-C(10)-C(13) 130.22(18) 

C(11)-C(10)-C(13) 108.49(17) 

C(12)-C(11)-C(10) 120.0(2) 

C(12)-C(11)-C(15) 128.96(19) 

C(10)-C(11)-C(15) 110.99(18) 

C(11)-C(12)-C(7) 119.2(2) 
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N(1)-C(13)-C(10) 115.31(16) 

N(1)-C(13)-C(14) 109.21(15) 

C(10)-C(13)-C(14) 103.91(16) 

O(1)-C(14)-C(15) 107.45(16) 

O(1)-C(14)-C(13) 109.85(15) 

C(15)-C(14)-C(13) 103.68(16) 

C(11)-C(15)-C(14) 103.97(16) 

N(3)-C(16)-N(1) 111.70(17) 

N(3)-C(16)-C(17) 128.69(18) 

N(1)-C(16)-C(17) 119.59(17) 

O(1)-C(17)-C(16) 108.15(17) 

N(1)-C(18)-N(2) 106.33(17) 

C(18)-N(1)-C(16) 107.06(16) 

C(18)-N(1)-C(13) 127.48(17) 

C(16)-N(1)-C(13) 125.12(16) 

C(18)-N(2)-N(3) 112.36(16) 

C(18)-N(2)-C(4) 125.17(17) 

N(3)-N(2)-C(4) 122.15(16) 

C(16)-N(3)-N(2) 102.54(16) 

C(17)-O(1)-C(14) 111.66(16) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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 Table 4.   Anisotropic displacement parameters  (Å2x 103) for Rovis175.  The anisotropic 

displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

B(1) 18(1)  16(1) 24(1)  -2(1) 4(1)  1(1) 

C(1) 22(1)  35(1) 15(1)  6(1) 3(1)  8(1) 

C(2) 16(1)  25(1) 23(1)  12(1) 1(1)  2(1) 

C(3) 16(1)  20(1) 19(1)  3(1) -2(1)  2(1) 

C(4) 16(1)  19(1) 14(1)  4(1) 1(1)  4(1) 

C(5) 20(1)  18(1) 18(1)  2(1) 3(1)  4(1) 

C(6) 28(1)  27(1) 16(1)  -3(1) 1(1)  7(1) 

C(7) 24(1)  16(1) 38(1)  6(1) -1(1)  2(1) 

C(8) 22(1)  18(1) 32(1)  -5(1) -1(1)  3(1) 

C(9) 16(1)  18(1) 20(1)  -1(1) 0(1)  2(1) 

C(10) 12(1)  15(1) 18(1)  2(1) -3(1)  1(1) 

C(11) 15(1)  18(1) 19(1)  2(1) -3(1)  0(1) 

C(12) 25(1)  21(1) 26(1)  9(1) -2(1)  1(1) 

C(13) 14(1)  15(1) 13(1)  2(1) -2(1)  0(1) 

C(14) 19(1)  17(1) 14(1)  -1(1) -2(1)  0(1) 

C(15) 23(1)  22(1) 13(1)  1(1) -4(1)  0(1) 

C(16) 16(1)  17(1) 16(1)  1(1) 1(1)  4(1) 

C(17) 24(1)  28(1) 16(1)  5(1) 5(1)  10(1) 

C(18) 17(1)  14(1) 17(1)  2(1) 1(1)  2(1) 

F(1) 54(1)  96(2) 36(1)  26(1) -16(1)  -38(1) 

F(2) 63(1)  25(1) 70(1)  -20(1) 39(1)  -9(1) 

F(3) 21(1)  18(1) 44(1)  7(1) 7(1)  0(1) 

F(4) 19(1)  22(1) 68(1)  13(1) 13(1)  3(1) 

F(5) 29(1)  22(1) 28(1)  1(1) -4(1)  -3(1) 

F(6) 23(1)  32(1) 32(1)  19(1) 0(1)  -2(1) 

F(7) 46(1)  48(1) 15(1)  9(1) 5(1)  4(1) 

F(8) 45(1)  34(1) 19(1)  -10(1) 1(1)  6(1) 

F(9) 35(1)  16(1) 24(1)  1(1) 5(1)  -2(1) 

N(1) 13(1)  14(1) 13(1)  1(1) 0(1)  1(1) 

N(2) 17(1)  16(1) 15(1)  2(1) 3(1)  4(1) 

N(3) 18(1)  22(1) 17(1)  2(1) 3(1)  6(1) 
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O(1) 18(1)  24(1) 16(1)  4(1) 3(1)  5(1) 

______________________________________________________________________________  
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APPENDIX 6 

TRENDS IN REACTION SELECTIVITY BETWEEN HOMOENOLATE VS AZA-MORITA-BAYLISS-

HILMAN REACTIVITY 

 

 

 

 

	  

Triazolium Salt
NaOAc

Solvent

O

H
+

Ph

N
Me

Bn
MeO

O

MeO Ph

N
Me

Bn
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O

PhH

N
Bn

Me

A-‐C6F5	  
A-‐(CF3)2	  
A-‐Ph	  
A-‐PMP	  

0	  
0.1	  
0.2	  
0.3	  
0.4	  
0.5	  
0.6	  
0.7	  
0.8	  

Homoenolate	  Yield	  

A-‐C6F5	  

A-‐Cl3	  

A-‐(CF3)2	  

A-‐Br3	  

A-‐Ph	  

A-‐Mes	  

A-‐PMP	  

A-‐(MeO)2	  
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A-‐C6F5	  
A-‐(CF3)2	  
A-‐Ph	  
A-‐PMP	  

0	  
0.1	  
0.2	  
0.3	  
0.4	  
0.5	  
0.6	  
0.7	  
0.8	  
0.9	  

Aza-MBH	  Yield	  

A-‐C6F5	  

A-‐Cl3	  

A-‐(CF3)2	  

A-‐Br3	  

A-‐Ph	  

A-‐Mes	  

A-‐PMP	  

A-‐(MeO)2	  
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