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Abstract—This paper introduces a new system for real-time
detection and classification of arbitrarily scattered surface-laid
mines from multispectral imagery data of a minefield. The sys-
tem consists of six channels which use various neural-network
structures for feature extraction, detection, and classification of
targets in six different optical bands ranging from near UV to
near IR. A single-layer autoassociative network trained using
the recursive least square (RLS) learning rule was employed
in each channel to perform feature extraction. Based upon the
extracted features, two different neural-network architectures
were used and their performance was compared against the
standard maximum likelihood (ML) classification scheme. The
outputs of the detector/classifier network in all the channels
were fused together in a final decision-making system. Two
different final decision making schemes using the majority voting
and weighted combination based on consensual theory were
considered. Simulations were performed on real data for six
bands and on several images in order to account for the variations
in size, shape, and contrast of the targets and also the signal-
to-clutter ratio. The overall results showed the promise of the
proposed system for detection and classification of mines and
minelike tagets.

Index Terms—Landmine detection, neural networks, pattern
recognition, principal component analysis.

I. INTRODUCTION

T HE development of a mine detection system capable of
detecting and classifying various types of mines under

different environmental conditions presents many technical
problems. Historically, a number of automatic target detection
and recognition schemes have been applied to this problem.
However, in practice, they have been only partially successful
and have been shown [3], [4] to produce high false-alarm
rates. Some contributing factors which inhibit the detection
and classification are the diverse sizes and compositions of
targets, variation of soil properties with location and moisture
conditions, nonrepeatability of the target signature, competing
clutter objects having similar responses as the actual targets,
and partially obscured targets. In addition, the conventional
target classification schemes lose their accuracy when the
feature space is of high dimension and the classes cannot
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easily be separated. The later scenario typically occurs when
multiple targets are present in the scene and their distribution
functions or feature sets are overlapping with those of the
nontarget anomalies. These, coupled with a number of other
shortcomings such as sensor sensitivity to environmental con-
ditions, temperature variations, and computational and speed
limitations of the current digital processing hardware moti-
vated this work to develop more reliable, robust, and accurate
schemes for automatic target detection and classification from
multispectral optical imagery.

Neural networks have been shown to offer potentially pow-
erful, robust, and adaptive means of detecting and classifying
targets under changing (or even new) signature and environ-
mental conditions [4]. One of the most desirable properties of
these networks is their ability to learn from examples and to
generalize from the training set to similar data not contained
in the training examples.

In the past few years several neural-network-based methods
for the detection and classification of mines and minelike
targets have been proposed. In [5]–[7], Azimi-Sadjadiet al.
developed neural-network-based approaches for the detection
and classification of buried landmines from microwave data.
Several data representation schemes such as the principal
component method [5], moment invariant [6] and bispectrum
[7] were used to reduce the dimensionality of the data and
extract the salient features of the targets and nontargets.
The test results indicated the effectiveness of the neural-
network-based detector/classifier systems. Telferet al. [8], [9]
used wavelet preprocessing followed by neural-network detec-
tion/classification and obtained good results on multispectral
imagery. Daud [10] used feedforward neural networks for
mine discrimination using multispectral imagery. A trainable
classifier using probabilistic neural-network (PNN) approach
was used in [11] for land mine detection using multispectral
imagery. The approach by Holmeset al. [12] is based on
exploiting the spatial and spectral signatures of the mines. The
key features of this approach is the ability to adapt to unknown
or changing background statistics and to operate with unknown
spectral signatures. An approach based on center-surround
filter was discussed by Schmalzet al. [13].

This paper investigates the development and use of various
neural-network structures for real-time target feature extraction
and detection/classification. The overall structure of our system
consists of several feature extractor and detector/classifier
subsystems in parallel which provide individual decisions
corresponding to the events in each optical band. The outputs
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Fig. 1. Multichannel target detection/classification system.

of each detector/classifier network are then processed and
fused together in a final decision making system. The final
decision is made based upon the strength of the responses from
different detectors/classifiers. This system and its constituent
subsystems are introduced in the next section.

II. A M ULTICHANNEL TARGET

DETECTION/CLASSIFICATION SYSTEM

The overall block diagram of our target detec-
tion/classification system is shown in Fig. 1. It
consists of several preprocessing, feature extraction,
detection/classification, and final decision making subsystems.
As can be seen, six processing channels for six different
optical bands are used and each channel consists of the same
type of subsystems. Since images obtained from a scene at
six different optical bands contain different intensity levels
and the contrast of targets and nontargets is significantly
different, fusing the information of each band is necessary
for this problem. This is accomplished by combining the
outputs of these channels in the final fusion subsystem. In
what follows, the operations of the sensor, each subsystem
and the relevant processes are discussed.

A. Multispectral Imaging Sensor

The data for this study was obtained from a multispectral
video camera namely Xybion Model IMC-201 [14], [15].
The IMC-201 is intensified and gated for automatic exposure
control. The intensifier, which allows for short exposure time
does, however, limit the spatial resolution. The camera utilizes
a spinning filter wheel located between camera lens and the
imaging plane. The filter wheels are interchangeable and each
contains six filters. The filter wheel rotation places a different

filter in front of the camera imaging plane every 1/30th of a
second which is also the frame rate of the camera. In this mode
of operation, every video frame is a separate spectral band.
The spectral range of the camera is from near UV (400 nm) to
near IR (900 nm). The objective was to cover uniformly the
entire 400–900 nm band during the field tests, hence leading
to six spectral bands with an overlap of approximately 25 nm.
Studies from these tests led to a bandwidth selection most
suitable for mine detection in different environments. Real-
time down-linking of the data to a base station was also an
important factor in selecting as few bands as possible without
sacrificing the performance of the system.

The camera functions are micro-processor controlled. The
output from the camera is the standard RS-170 interlaced
video, which is recorded on a Hi-8 video recorder. For standoff
mine detection ground (SMDG) test [1], [2] the camera and
targets are stationary and therefore the images from six spectral
bands are coregistered. These images are digitized and then
used for subsequent processing. The advantages of this camera
are that it 1) is lightweight and compact; 2) consumes little
power; 3) operates easily from a standoff distance; 4) collects
target signatures distinct from the background; 5) possesses
moderately high resolution; and 6) lends itself for applications
in automatic target recognition (ATR). These advantages have
resulted in substantial enhancement in the capability of the
system for detection and localization of targets in background
clutter.

B. Preprocessing Subsystem

The original images obtained from different scenes are
found to have low contrasts. In addition to inconsistency
in the intensity levels and the considerable variations in the
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brightness and contrast within the images of different bands,
targets may be obscured by the background clutter. At higher
bands (4–6) the distributions of target and background do
not overlap, while in lower bands (1–3) the distributions
are significantly overlapping. This makes the detection and
classification very difficult at these particular bands. On the
other hand, the information in the lower bands can not be
ignored, e.g., band 1 is found to be very effective in presence
of shadows.

To overcome the variations of image intensity levels at
different optical bands and improve the conspicuity of the
targets in these images, an effective contrast enhancement
procedure must be applied prior to feature extraction. Contrast
mapping schemes [16] can be used to redistribute the gray
levels so that the intensity of the targets would fall into a
certain range and the background would be suppressed as
much as possible.

C. Feature Extraction Subsystem Using
Principal Component Method

Selection of an appropriate set of target features is one of
the most important tasks for any target classification system.
The primary goal of feature extraction is to obtain features
which maximize the similarity of objects in the same class
while at the same time maximizing the dissimilarity of objects
in different classes. It also results in dimensionality reduction
of data, computational efficiency and reduction of memory
requirements of the classifier. This is particularly important
when neural networks are used to perform the classification
tasks as the dimensionality reduction of the input not only
removes the redundancy of the data but also enables the use
of a smaller size network structure which can be trained easier
and has improved generalization capability.

The salient features of the data can be extracted through a
mapping, such asFourier transform,discrete cosinetransform,
Karhunen–Lòeve (KL) transform, or principal component (PC)
method [16], from a higher dimensional input space to a
lower dimensional representation space. The efficiency of a
chosen mapping approach is judged based on the degree of
data compaction subject to the constraint that the original data
can be reconstructed with minimal distortion. Based on this
criterion, the PC method is optimal since it packs most of
the signal energy into the first few coefficients, and at the
same time achieves complete decorrelation of the data [16].
This latter property is ideally suited for detection/classification
purposes as these decorrelated features or components can
be used to train the system effectively. Consequently, in our
system we used PC method as the feature extraction method.

The conventional approach for PC extraction involves the
computation of the input data covariance matrix and then the
application of a diagonalization procedure to extract the eigen-
values and the corresponding eigenvectors [16]. This process
can be computationally very inefficient especially when the
dimension of the covariance matrix is large. In addition, all
the eigenvalues and their corresponding eigenvectors have
to be evaluated even though only the eigenvectors which
correspond to the most significant eigenvalues are used in

the data transformation process. These deficiencies make the
conventional scheme inefficient for real-life applications.

In [17], a new PC extraction method based upon the
recursive least squares (RLS) learning algorithm [18] was
developed. The main advantage of this approach is that the
step size for updating is not fixed and depends on the statistical
characteristics of the input data. Thus, it does not have the
accuracy versus convergence speed tradeoff problems [19],
[20] and also provides a recursive way to determine the
variance associated with each PC which is a deterministic
factor in deciding the number of components needed for an
accurate representation. This autoassociative network was used
in this paper to implement the feature extraction subsystem.
The trained network extracts the PC’s of target and nontarget
blocks of the image data in each channel. The training data
set was chosen primarily from partial image data contained in
some selected target blocks. Targets generally have variable
sizes, shapes, and contrast. Thus, a block of target image can
not present all the possibilities of target scenarios in different
scenes and at different locations. In addition, for dim targets
the contrast between targets and their surrounding background
is pretty low, hence using this information will produce low
detection rate and high false alarm rate. Subwindowing was
used for both training and testing where the larger window
localizes the target and its surrounding background, while a
smaller subwindow is swept across the whole larger window
by moving it one row or one column at a time. The operation
of the subwindowing is shown in Fig. 2. This subwindowing
approach provides a very effective tools in identifying blocks
which contain very dim or partially obscured targets and at
the same time eliminating the false positives at a great rate.

D. Detector/Classifier Subsystem

Detection and classification tasks are performed using a
multilayer backpropagation neural network (BPNN) [21]. As
shown in Fig. 1, blocks of images in each channel were
first applied to the corresponding PC extraction subsystem,
the output of which is then fed to the detector/classifier
network. The output of the network corresponding to each
subwindow of a block is then stored in an accumulator and a
decision is made after the presentation of all the subwindows
of that block. Based upon the total number of “ones” in
the accumulator, which corresponds to the total number of
subwindows recognized as targets, a score will be determined
for each block. A block is considered to be a target at a
particular band, if its score is greater than a predetermined
threshold.

E. Final Decision Making or Fusion Subsystem

After the images in each band are processed seperately by
the associated neural-network detector/classifier, a final fusion
making subsystem combines the results of each individual
network. Two different schemes are considered. The first one
is based upon the “majority voting” approach where the ac-
cumulated outputs in each particular channel corresponding to
each subwindow are added up and compared with a threshold
which is also determined empirically. If the sum is greater
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Fig. 2. Subwindowing operation.

than this threshold then the block is finally classified as a
target. Although this approach is rather simple, it does not
consider the relative importance of the individual data in each
band. Improved results can be obtained by using methods
based upon consensus theory which has been widely studied
in the pattern recognition and neural-network fields [22]–[24].
The basic idea behind this theory is to combine the outputs
of different neural networks with different weights that can
reflect the relative importance of the classification result of that
particular network. Several different implementation schemes
have been studied and perhaps the most widely used one is
the linear opinion pool [23].

Suppose for the th training sample, the output of neural
network for each band is , then the output of
the final decision making system for this sample will be

(1)

where is the weight vector and
is a vector containing all the six outputs from

different bands for the th training sample. If
, the final decision system will degenerate to the

simple “majority voting” approach. One drawback of the linear
opinion pool is that it is not Bayesian [23]. It was found [23],
for some cases, that one neural network may dominate the
final decision. Another kind of opinion combination scheme
is the logarithmic opinion pool [23] for which the final output
is given by

(2)

where generally we assume that . The logarithm
opinion pool is Bayesian, but is more complicated than its
linear counterpart. In this paper, the linear opinion pool was
adopted for which the optimum weights is decided based on
the least square (LS) criterion, i.e.,

(3)

where is the output data matrix,
is the desired output vector and is

the number of training samples. Note that for theth training
sample, for target, while for nontarget
windows. The LS solution for this minimization problem
yields [23] as

(4)

III. I MPLEMENTATION AND SIMULATION RESULTS

In this section, we will present the simulation results
of the proposed mine target feature extraction and detec-
tion/classification methods on real data obtained from the
Coastal Systems Station in Panama City, FL. This data
consists of multispectral images collected from two different
minefields at six different optical bands ranging from near
UV (band 1) to near IR (band 6) regions. Almost half of
the data was used for the purpose of training of the neural-
network detection/classifier and the same number of cases
or more were used to test the performance of the trained
networks. The locations of targets verified by the ground
truth maps were determined for proper training and testing of
the neural networks. The training samples were chosen in a
fashion so that a wide variety of targets and nontargets with
different sizes, shapes, contrasts, textures, etc. were included.
For testing, we have not only investigated how well the
system can detect and classify these areas, but also processed
the entire image block by block in order to determine how
well the system was at finding the mines. In this case the
entire image as opposed to localized areas was the input to
the system. Fig. 3 shows the original images of a minefield
for the six spectral bands.

First in order to improve the conspicuity of the targets
in each band, a contrast mapping scheme was used as a
preprocessor in each channel. To see the effects of this prepro-
cessing, consider the original image in Fig. 3 corresponding
to band 3. This image is contrast enhanced to give the
image in Fig. 4. Comparing the two images clearly indicates
that the contrast between the targets and background was
significantly improved in the preprocessed image. As can
be observed, especially in the encircled regions, one can
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Multispectral images of a minefield for bands 1–6.

not tell the difference between the target and background
from the original image, while in the processed image the
targets appeared with better contrast in comparison with the
surrounding background. These improvements facilitate the
target feature extraction in the subsequent subsystem.

In this application, the size of the image blocks was fixed to
25 30. Several experiments with three different subwindow
sizes namely 20 20, 15 15, and 10 10 pixels were
conducted to investigate the effects of changing the subwindow
size on the performance. The content of the subwindows for
certain chosen target blocks were then used for training the
PC extraction network. Clearly, the number and size of the
input training data vector are variable depending on the size
of subwindows. For example, for the subwindows size of 20
20 pixels, the data vector was arranged into a one-dimensional

input vector of size 400 using row-ordering scheme. For each
band, five target blocks were selected from each data set and
eight different sets were used for training the feature extraction
subsystem. Thus, the total number of target blocks used for
training was 240. The mean of the training data vector was
then subtracted from each individual data vector prior to PC
extraction.

The number of neurons in the autoassociative network
corresponds to the number of PC’s that need to be extracted.
This number can be determined based on the percentage of
the energy of the image contained in the firstcomponents
which is measured by

Energy% (5)



MIAO et al.: DETECTION OF MINES AND MINELIKE TARGETS 459

TABLE I
COVARIANCE MATRIX OF THE FIRST SIX COMPONENTS FOR THERLS ALGORITHM

r 1 2 3 4 5 6
1 50493.0 11.73 1.73 -0.23 -1.55 -0.35
2 11.73 2706.7 -4.05 -3.88 -0.22 1.92
3 1.73 -4.05 1194.5 2.89 -0.41 1.11
4 -0.23 -3.88 2.89 578.9 13.79 -1.08
5 -1.55 0.22 -0.41 13.79 517.9 0.63
6 -0.35 1.92 1.11 -1.08 0.63 108.7

where represents the variance of theth component or
the th eigenvalue of the input covariance matrix and
is the variance of the image block. In our application, the
first ten components were found to possess approximately
95% of the image energy. The other componenets were too
small to have any effect on the performance. Thus, a single-
layer autoassociative network with ten neurons was used. The
weights of the network were randomly initialized between 0.5
and 1.0 and the initial value of in the RLS algorithm was
chosen to be 0.5. Upon completion of the training process,
the weight vectors of the neurons converged to the relevant
eigenvectors of the data covariance matrix and the outputs
generate the associated components. For each component,
convergence was achieved after only one epoch over the
training data and the MSE dropped to almost zero. The
distribution of the eigenvalues of the input covariance matrix
obtained using the RLS algorithm, indicates that they decay
very quickly for the lower order components. This can be
demonstrated by studying the covariance matrix of the first
six components, as shown in Table I. Additionally, from the
values of the off-diagonal elements of this covariance matrix,
it can be observed that the algorithm provided a good level
of data decorrelation.

The same PC extraction network was used in each channel
for the six optical bands. The network architecture, initial
parameters, window size, and the training data sets were the
same for all these channels. After the training was completed,
the trained networks were then used to transform all the image
blocks and extract their PC’s. The extracted components were
applied to the subsequent detection/classification subsystems.
Several different BPNN structures were studied to perform
detection/classification tasks. The optimal network structure
was experimentally determined to be a three-layer BPNN
with 25 neurons in the first hidden layer, ten neurons in the
second hidden layer, and one output neuron. The neurons had
sigmoidal type nonlinearity activation functions. The number
of inputs was 11 which included ten PC’s corresponding to
a subwindow and the variance of the block. These 11 inputs
were normalized between zero and one. All the connection
weights were randomly initialized between 0.5 and 1.0. The
initial learning step was 0.02 which decreased 90% in every
five epochs and the momentum was 0.9. The desired output
was set to one for targets and zero for nontargets.

The training data set for the BPNN detector/classifier was
chosen from two sets of eight different scenes; eight targets,
and eight nontargets blocks were selected from each scene.
These targets and nontargets had different sizes, shapes, con-
trasts, etc. The number of training data samples was dependent

Fig. 4. Image of band 3 after contrast enhancement.

on the size of the subwindows. The training was completed
after 3000 epochs and the final average mean square error
(AMSE) was around 0.2. Once the training process was
completed, the network was used to detect and classify all
the testing image blocks.

The performance of the network was tested based on all
the blocks of the two sets of eight images which included
both the training data and the other parts of the images which
the network had not seen before. A block was considered
to be a possible target at a particular band if its score in
the accumulator was greater than a threshold which was
determined empirically to be around 47% of the total number
of subwindows.

In order to determine the performance of the BPNN detec-
tion/classification subsystem for different cases, the detection
and false alarm rates were calculated. In addition, the receiver
operating characteristic (ROC) curve of the results was also
generated. The ROC curve [25] is the plot of the conditional
probability of the detection versus the conditional probability
of false-alarm responses. The results in [25] stated that the
area under the ROC curve gives the probability of the correct
detection.

Two series of images were used in this testing phase. The
first series consisted of data, in which the size of the targets
was small, e.g., typically of 7 7 pixels, and the contrast
between the targets and background was low. However, back-
ground areas did not exhibit any rapid gray levels changes.
In contrast to the first series, the target size was larger in the
second series e.g., 1212 pixels, whereas the changes in gray
levels were sudden between the targets and their surrounding
background. Fig. 5(a) and 5(b) show the ROC curves for these
data sets for different thresholds ranging from 5% to 90%. The
results indicated that the targets in bands 5 and 6 had very
good detectability for the first series, while bands 1 and 6 were
the best for the second series. The detection and false alarm
rates were found to be much higher for the second series than
for the first series. In the second series, background clutter
in some areas had the same intensity variations as with the
targets, hence causing higher false alarm rates in some bands.
This was indicated in the results of the area under ROC curve
which showed that the results of the first series were better than
those of the second series for some individual optical bands.
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(a)

(b)

Fig. 5. ROC curves for six optical bands and two sets of data.

In order to improve the performance of the detector, the
results of the individual bands were fused together in a final
decision making system. Two different final decision making
systems were tested on this problem. The first approach com-
bines the contents of the accumulators in each particular band
corresponding to each subwindow. If the sum of these was
greater than a threshold which was also determined empirically
to be around 55% of the total number of subwindows of six
optical bands, then the block was finally classified as target.
Fig. 6 shows the ROC curves of the combined detection results
from the six bands and for both data series. The area under
ROC curve was measured to be 0.9722 for the second series
and 0.9469 for the first series which showed considerable
improvements over the individual results. The false alarm rate
was 2% for the second series and 3% for the first series for
threshold level of 47% and 45%, respectively. These results
showed substantial decrease in the false alarm rate, especially
for the second series, when the channel outputs are fused.
One of the second series images, was tested to investigate the
performance of the fusion system for each individual target
and nontarget. Although in certain bands some targets were
detected as nontargets, and some nontargets were detected as
targets, the output of the final decision making system correctly
classified them. This is due to the fact that even though
these targets and nontargets were not correctly classified in
some individual bands, they were correctly picked up in the
other bands. Thus, the combined results of all the six optical

Fig. 6. The ROC curve of combining six optical bands.

(a)

(b)

Fig. 7. Some typical misclassified target and nontarget blocks.

bands takes care of the misclassificatios in certain individual
bands. The same results could be obtained for other images.
As a result, the final decision making subsystem plays a
very important role in detecting dim and/or partially obscured
targets. Fig. 7 shows some typical target and nontarget blocks
that were misclassfied. Closer investigation revealed that the
target misdetections mostly occurred for data set 1, in which
the targets were smaller in dimension, and for spectral bands
1–3. The latter can easily be explained taking into account
the fact that this particular data set was collected during the
morning (8:58–10:32 am) on a sunny day in April 1991.
Consequently, depending on the location and exposure to
sunlight some of the targets may not show up in spectral bands
1–3 hence leading to misdetections.

Besides the majority voting, the linear opinion pool de-
scribed in Section II-E was also tested as the final decision
subsystem. The optimal weight vector was calculated based
upon the training samples of all the six bands using (4).
Interestingly enough, it was found that the weight associated
with band 6, i.e., near IR, was the largest among all the
bands due to the importance of this band in sunny conditions.
Fig. 8 gives the ROC curves for both the optimal weighted
combination or linear pool and the simple voting scheme on
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Fig. 8. ROC curves for the two different decision systems.

the combined data sets 1 and 2. As can be observed from these
ROC curves, linear opinion pool approach outperforms the
voting scheme in terms of both detection and false alarm rates.
This is mainly due to the fact that unlike the voting scheme
which uses the uniform weights for all the six bands, this
approach adaptively places more emphasis on those significant
spectral bands depending on the conditions during the data
collection.

Since the target sizes are variable even in the same image,
the suitable choice of the subwindow size can greatly improve
the detection and false alarm rates. Choosing the right subwin-
dow size turned out to be one of the most important factors in
our target detection system. Three different subwindow sizes
i.e., 20 20, 15 15, and 10 10 pixels were tried and
the ROC curves were plotted in Fig. 9. The results revealed
that for the first series images, the detection and false alarm
rates were not very sensitive to the choice of subwindow size
while these rates significantly changed for the second series.
The best performance for the second series was achieved for
20 20 subwindow size since the targets were larger in size
in this series. As the subwindow size decreased, the detection
performance deteriorated. Generally speaking, if the size of
the targets is larger than subwindow size, poor results are
obtained as the subwindows will not contain the surrounding
background. As a result, the extracted features would look
like those of the plain background after the mean extraction
process. This result can also be verified by evaluating the
area under the ROC curve which shows that for the smallest
subwindow size the area was smaller than that of the larger
subwindow size. Thus, the 20 20 was found to be the best
choice of subwindow size for this application.

Finally, the performance of the 11-25-10-1 BPNN was
compared with those of a two-layer BPNN with architecture
11-15-1 as well as the standard ML classification scheme. The
training of the two-layer network was completed after 3000
epochs. All the network parameters were chosen to be the
same as those of the three layer. In order to overcome the
issue of local minima, four networks with different randomly
chosen initial weights were examined. The best neural network
was chosen for which the ROC curve after the final decision
making process is given in Fig. 10. Under the assumption that
the input features have multidimensional Gaussian distribution,
the ML classifer can be easily implemented. In the training

(a)

(b)

Fig. 9. ROC curves for different subwindow sizes.

Fig. 10. ROC curves for the three classifiers.

phase, the mean and covariance of the target and nontarget
were calculated for each spectral band from the training data
set. In the testing phase, the likelihood function for each test
sample is calculated and compared with a threshold. The ROC
curves of the two BPNN structures and that of the ML scheme
are shown in Fig. 10. As can be observed, the result of ML is
inferior to that of the three-layer BPNN. One reason for this
poor performance of ML scheme is attributed to the fact that
the normal distribution assumption for the features is not an
accurate assumption for this problem. Using more complicated
Gaussian mixture models may indeed yield better performance.
Additionally, the two-layer BPNN did not produce comparable
results either.
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IV. CONCLUSION

This paper presents a neural-network-based scheme for
performing surface-laid mine target detection/classification.
The proposed strategy involved the use of various neural-
networks schemes for performing feature extraction and de-
tection/classification tasks. An RLS-based learning rule for
target feature extraction was used which provided a fast and
accurate means of PC extraction. It was shown that the use
of a neural network in each channel provided a useful tool
for target detection/classification without requiring any prior
statistical information. Two different final decision making
systems were also considered to combine the detection and
classification results of the neural networks in all the six
spectral bands. Simulation results on six different optical bands
were provided which indicated the effectiveness of the pro-
posed schemes. The combined results of all the channels using
the optimal weighted combination method showed excellent
overall performance.
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