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Abstract

Femtosecond pulse Ti:sapphire lasers can operate in different ways for the same values of the control parameters.
This phenomenon of multistability is explained in a simple way by a theoretical approach using iterative or Poincaré
maps. We present experimental confirmation of the predictions of the approach regarding the slope (of pulse duration
vs. group velocity dispersion) and regions of stability of two different regimes of mode locking, i.e. transform-limited

and chirped output pulses. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Kerr lens mode-locking (KLM) Ti:sapphire
laser has been a cornerstone of ultrafast science
since its first demonstration by Spence et al. [1].
Because of the nonlinear effects required for KLM
operation, it is not surprising that lasers of this
kind exhibit a variety of interesting dynamics, such
as: beam breakup [2], self O-switching [3], period
doubling and tripling [4,5] and even chaos [6-8]. In
this paper, we report the observation and theo-
retical description of bistable behavior between
two different regimes of mode locking. The bista-
bility occurs for a range of values of the cavity
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group velocity dispersion (GVD), in which both
regimes are stable. For other values of GVD, only
one regime of mode locking is stable. The phe-
nomena are satisfactorily described by an ap-
proach using a five-variables iterative or Poincaré
map. In Section 2, we briefly review the map’s
approach. In Section 3, we describe the experi-
mental setup and compare observations and pre-
dictions.

2. Mode-locking multistability

Even though KLM Ti:sapphire lasers are ex-
traordinarily stable sources of fs pulses, it is often
observed that the mode-locking operation disap-
pears, and the output becomes continuous (CW).
In this case, mode locking is usually restored by
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Fig. 1. Spectra of two different mode-locked regimes of oper-
ation which exist at the same parameters values and alignment
condition: (a) transform-limited pulses (here named Py, see the
text); (b) chirped pulses (P,). Horizontal axis: wavelength in
nm, vertical axis: normalized intensity.

some mechanical perturbation. In other cases, the
mode locking does not disappear but the normal
bell shaped spectrum (Fig. 1a) switches to one with
straight edges (Fig. 1b). Simultaneously, the auto-
correlation indicates that the pulse is broadened,
what is usually an undesirable effect. In laboratory
jargon, the laser is said to have “too much glass™.
The shorter pulse regime is recovered by slightly
removing one of the intracavity pair prisms (i.e.,
increasing the net negative GVD). We name the
former regime of mode-locking P;, and P, the
latter. If the pulsewidth-spectrum relationship is
calculated, one finds that in P; the pulses are

transform-limited, and chirped in P,. It is usually
believed that the regime P, is caused by the pas-
sage of the cavity from the negative to the positive
GVD regime, which is known to produce longer,
chirped pulses [9]. This passage would be caused
by mechanical or thermal instabilities modifying
the beam path inside the cavity. However, this
informal explanation is not fully satisfactory. If
one estimates the amount of beam displacement
necessary for the passage from the negative to the
positive GVD regime, one finds that such a dis-
placement should be reflected in a significant de-
viation of the output beam, which is not observed.
The laser spots of P; and P, slightly differ in area
and shape, but not in direction. The laser often
returns to the P, regime without repositioning the
prisms. In fact, it may do so spontaneously, before
any change is made in the cavity.

A simple explanation of the origin of the re-
gimes P; and P, is found by applying a five-vari-
ables Poincaré map description of this laser. The
details of this description have been already pub-
lished [6,10,11], so we review only what is needed
here. The pulse variables T(= 1/7%, where t is the
pulse duration) and Q(= chirp) in the n 4+ 1 round
trip are related to their values in the n round trip,
through the discrete equations:

TV!

T = 2 2 (1)
(K +10,)" + (IT,/m)

0,., — KH10)U +10)) + IL(T,/7)" 2
n+l —

: (K +10,)" + (T, /)’

where K, I, J, L are the elements of the temporal
round trip gaussian matrix (they satisfy the rela-
tion KL —JI = 1) which, at first order in the
nonlinear index of refraction have the expressions

[6]:

K=1+25f 3)
1=26 (4)
J=20pf +B+p (5)
L=1+25p (6)

where ¢ is the negative value of the net GVD per
round trip, and f (f) is the nonlinear factor, or
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self-phase modulation, induced when the pulse
crosses the rod going towards the output mirror
(the rear mirror).

The possible modes of operation of the laser are
given by the fixed points of the map, that is, the
values of the variables that are equal one round
trip after the other. Now, the observed multista-
bility appears in a natural way. One of the solu-
tions of Egs. (1) and (2) is 7, = T,,,; = 0, which
corresponds to CW operation (t — co). We name
this regime Py. Assume now that, based on the
observations, we look for a transform-limited
pulsed solution (previously named P;). In this case,
0, = 0,:1 =0, which implies K =L or f=p.
This means that for P; the nonlinear factors are
nearly equal in both directions. If we ask that
0 # 0 instead, 2I0 = L — K and then O = 8 — B.
This means that the nonlinear factors are different
for the two directions of propagation. The ob-
served P, regime corresponds to the case in which
the nonlinear factor is large when the pulse prop-
agates towards the rear mirror and negligible in
the opposite direction, and hence the pulse has
positive chirp. These two cases have been discussed
in physical terms in Ref. [6]. Noteworthy, our
approach also predicts a third mode-locking re-
gime (we name it P3) for which g > f’ and it has in
consequence negative chirp at the output. The
reason why this mode of operation has never been
observed becomes clear when considering the sta-
bility regions of each solution (see Section 3).

The nonlinear factor f is written as a function
of the pulse variables U (energy), o (spot radius)
and 7 as:

= CpU/(o") (7)

where Cj is a factor (proportional to the nonlinear
index of refraction) whose precise expression is not
trivial [10,11]. In practical terms, the numerical
value of Cg is unknown. Our approach is not
aimed to a precise quantitative description. In a
complex nonlinear system, highly sensitive to
fluctuations and noise, a detailed quantitative de-
scription is almost hopeless. Instead, our approach
is designed to reveal the structurally stable [12]
properties of the system, as the type and relative
position of the stable-unstable boundaries. In
spite of these ab initio limitations, our approach

does provide one quantitative and structurally
stable prediction that can be easily tested. From
Eq. (7), the pulse duration for P; and P, are:

T= 75/(2T52C/gF) (fOf Pl) (8)

T= 75/(7[2C/;F) (fOf Pz) (9)

where F = U/a?. Note that t varies linearly with
the net GVD, in agreement with numerical simu-
lations and the observation. When the other three
equations of the map (the ones for the energy, the
beam size and radius of curvature) are taken into
account, one finds that F is a constant equal to the
saturation energy flux multiplied by the small sig-
nal gain and the single passage feedback factor
(caused by linear or passive losses) [6]. In the
complete description, an extra term is added to
Egs. (8) and (9) to take into account the finite
bandwidth of the amplifier [10]. Beside details,
what is important here is that, provided the beam
size and average power of P, and P, are roughly
the same (as they are), the slope of the t vs. GVD
line is twice for P, than for P;. This is a prediction
that does not depend on the precise numerical
value taken by C, and that can be easily verified
experimentally.

3. Experimental setup and observations

A sketch of the Ti:sapphire laser we have used is
shown in Fig. 2. It is constructed in the X con-
figuration with a flat high reflector rear mirror
(M,), and a flat 12% output coupler. The focusing
mirrors M», and M3, have a 10 cm radius of cur-
vature. The Ti:sapphire crystal is 4 mm long. A
pair of fused silica prisms separated 60 cm from
each other are placed inside the cavity for GVD
compensation. The total length of the cavity is
172.5 cm, resulting in a pulse repetition frequency
of 86.89 MHz and a typical average power of 400
mW. The pump laser is a frequency doubled, diode
pumped Nd:Y VO, delivering 5 W of CW power at
532 nm and focused on the rod with a f = 10 cm
lens. This solid state laser provides increased
steadiness and repeatability, in comparison to our
previous studies performed with an Ar" laser
pump. The laser spectrum is measured with a
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Fig. 2. Scheme of the laser cavity. M;: output coupler, M,, M;: focusing mirrors, My: rear mirror, R: Ti:sapphire rod, P/, P”: prisms for
GVD compensation, X: distance M;-Mj. Prism P’ is mounted in a translation stage with a ruled micrometer screw, to measure the
change of GVD when the prism is displaced parallel to its symmetry axis.

diode array with a resolution of 2 nm. To measure
the pulse duration, we have used an interferomet-
ric second harmonic autocorrelation technique.
Because of the rapid scan scheme included in
one of the autocorrelator arms it is possible to
immediately detect any change of the time char-
acteristics of the pulse by simply measuring the
autocorrelation trace on the oscilloscope.

We adjust the laser to a position where P; is the
stable regime. By carefully measuring the separa-
tion between the prisms, and the beam path inside
the prisms, we obtain a typical value of net GVD
per round trip of about —120 fs?. At this position,
mechanical noise (for example, tapping the mir-
rors’ mounts) induces transitions to P, and back.
Then, we move one of the prisms “in”, to add glass
to the path and, in consequence, to reduce the
absolute value of the GVD. According to the
tabulated values of GVD for fused silica, ad-
vancing the prism 0.5 mm introduces 20.32 fs* of
positive GVD (twice this value per round trip). By

measuring the prism’s position and the corre-
sponding pulse duration, we measure the 7 vs. §
slope. At nearly —100 fs® the laser switches from
P, (measured pulse duration: 38 fs FWHM) to P,
(66 fs). At this position, the noise does not produce
transitions back to P;. We measure the slope for P,
in the same way as before. The measured slope for
P, is 0.61 fs~!, almost exactly twice the measured
value for Py, 0.32 fs™!, in agreement with the pre-
dictions of the maps approach. Noteworthy, the
slopes are nearly one order of magnitude larger
than calculated in numerical simulations [13,14],
which indicates that, in practice, the nonlinear ef-
fects (which are proportional to Cp) are much
smaller than expected (see Egs. (8) and (9)). Fur-
ther reduction of the absolute value of the GVD,
makes (at about —80 fs?) the mode locking to
become unstable. Eventually, the laser collapses
into the CW regime (Py).

One of the main advantages of the maps ap-
proach is that the stability of the solutions against
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Fig. 3. Stability regions for the three mode-locking regimes.
Solid line: Py, dashed line: P,, dotted line: P;. Horizontal axis:
Negative net GVD inside the cavity in fs®, Vertical axis x in cm.

infinitesimal perturbations can be easily computed,
by solving the eigenvalues equation of the linea-
rized map evaluated at the fixed point. Where the
moduli, in the parameters space, of one or more
eigenvalues is equal to 1, the corresponding fixed
point becomes unstable. In Fig. 3, we plot the
calculated regions of stability of the three pre-
dicted mode-locking solutions as a function of two
parameters: the position of the output mirror (x)
and the net GVD. We choose these control pa-
rameters because they are easily accessible experi-
mentally. With the help of this figure, the observed
laser behavior is easily understood. For a large
value of negative GVD, both P; and P, are stable
and the noise induces transitions from one to the
other. If glass is added to the cavity, the operation
point moves leftwards, crossing the stability
boundary of P;. According to the figure, the
transition occurs, for x = 58 cm, at —150 fs* for a
pulse duration (of P;) of 49 fs instead of the ob-
served —112 fs* and t = 37 fs. The values of Cy
and F used to plot the figure are chosen to loosely
fit the observed t vs. & slope (we use 0.65 fs~' for
P,). The agreement can be improved by fine tuning
of these values and x but, as we already stated, the
approach is not aimed to provide a numerically
accurate description. What is important, in short,
is that for “too much” glass added into the cavity
only P, is stable. By adding even more glass, also
P, becomes unstable and the laser collapses to the
only remaining stable regime, P, (CW). Note that

the presented description holds, no matter the
precise value taken by the parameter x. It is worth
recalling here that the existence of a chirped so-
lution with a larger stability region than that of the
transform-limited solution was reported long ago
[15,16].

From the inspection of Fig. 3, two questions
arise: why is the P; regime (negatively chirped
pulse) never observed? How is it possible that, in
spite of the unavoidable coexistence of P,, the P,
regime is stable enough to be used in the practice?
The answer to these questions lies in the numerical
magnitude of the eigenvalues. Small, in moduli,
eigenvalues mean that a small perturbation to the
fixed point vanishes in few iterations (= round
trips). Conversely, eigenvalues close to 1 mean that
any perturbation makes the representative point of
the system to wander, in phase space, a large
number of iterations in the neighborhood of the
fixed point. In consequence, the moduli of the ei-
genvalues are a measure of the actual ability of the
fixed point to retain the system. They can be vi-
sualized as the “‘steepness” of the walls of the
minimum of “potential” (actually, the Lyapunov
surface) surrounding the stable fixed point. Even
in its stable region, the eigenvalues moduli of P;
are very close to 1 and always larger than those of
P, and P,. As the stability region of P; is fully
included in the stability regions of the “‘steeper”
fixed points P; or P,, the system is weakly at-
tracted to P;. In any case, it is not plausible that
the system remains attached to P; for a time long
enough to be observed (what means several bil-
lions of iterations). The same argument explains
why the laser prefers P, to P, in the region of large
negative GVD. The eigenvalues moduli of P, are
larger than those of P, by a factor 2 except, of
course, in the region where P; becomes unstable.
This ‘“advantage” of P; is due to its shorter
pulsewidth, what induces a stronger nonlinearity.
A stronger nonlinearity shifts the eigenvalues far-
ther from the linear regime (Py) which is known to
have indifferent stability [17] i.e., all its eigenvalues
are exactly equal to 1, this holds in the absence of
limiting apertures or bandwidth, which is an as-
sumption of our approach. As it is shown above,
this ““advantage” of P; has the drawback of a
smaller stability region.



338 M.G. Kovalsky et al. | Optics Communications 192 (2001) 333-338

Finally, it is worth mentioning that the stable—
unstable transition for increasing GVD, of both P,
and P,, are caused by the same eigenvalue crossing
—1. The related eigenvector is practically collinear
with the variable “spot area’. This means that, by
adding glass to the cavity, we should observe a
period-doubling bifurcation in the spot size, with
negligible fluctuations of the other pulse variables.
This is the bifurcation previously named “2A”
which was, indeed, observed in a previous work [6].

4. Summary

We have shown that the observed bistability
between two mode-locking regimes in KLM
Ti:sapphire lasers is not caused by a change in the
sign of the net GVD, but that it is an intrinsic
property of the system in the negative GVD re-
gion. The reason the system operates in one or the
other regime is evident from the shape and size of
their stability regions obtained from a five-vari-
ables Poincaré map approach, and from the rela-
tive moduli of their eigenvalues. We have also
experimentally verified the prediction that the t vs.
0 slope is twice as large for the chirped regime as
for the transform-limited one. In previous obser-
vations, we had also verified that the mode-locking
regime loses stability (when increasing GVD)
through a period-doubling bifurcation that affects
mainly the spot size variable. In conclusion, the
Ti:sapphire KLM laser displays a variety of in-
teresting nonlinear dynamics, which essential fea-
tures can be understood in simple terms with the
approach using a Poincaré map.
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