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ABSTRACT 

 

ADDRESSING THE THREAT OF FROST DAMAGE ON PEACH FLORAL BUDS 

THROUGH LARGE-SCALE COLD HARDINESS PHENOTYPING, DYNAMIC WEATHER 

MODELING AND NON-TARGETED METABOLOMIC AND PROTEOMIC ANALYSIS 

 

Cold damage to reproductive tissues is the greatest threat to the profitability of peach 

(Prunus persica) growers worldwide. Cold hardiness is the extent to which peach floral buds 

super-freeze without suffering lethal damage. Although no changes are visible externally to floral 

buds for much of the dormant season, cold hardiness fluctuates as they acclimate, deacclimate and 

respond to abiotic stressors such as temperature or drought. A greater understanding of the 

mechanisms involved in these fluctuations involves accurate and frequent measurement of the 

extent to which cold hardiness is changing, and the ambient weather factors influencing the 

changes, at different stages of the dormant season. Warmer or more erratic temperature changes 

during the dormant season threatens peach floral buds to more frequently receive frost damage if 

cold hardiness becomes misaligned with the timing of lethally cold weather events. 

Statistical analysis of the trends and forces impacting the cold hardiness of floral buds can 

help identify significant patterns. These patterns can be used to better understand the physiological 

mechanisms affecting cold hardiness changes, and they can be used to help predict the impact of 

weather conditions on cold hardiness. In addition to their use in a practical sense by growers to aid 

in frost management decisions, accurate cold hardiness prediction models can be used to estimate 

what effects foreseeable climate effects can have on the outlook of future peach production.  
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Metabolic changes are known to occur in dormant plants, although the effects of the 

metabolome in peaches on cold hardiness are unknown. Changes associated with cold hardiness 

likely follow several trends. One such trend is the fluctuations of metabolic abundances across the 

season, which are more associated with the endodormancy, and ecodormancy phases and the 

prebloom phase. These trends likely take place every dormant season as buds undergo a steady 

process of acclimating and deacclimating. Another trend is the response floral buds exhibit in 

response to acute cold events, in order to rapidly increase cold hardiness. The study of this response 

necessitates the monitoring of cold hardiness as well as the metabolic shift to the weather event. 

The response can be further elucidated by comparing cold hardiness and metabolic changes 

between genotypes that have different cold hardiness phenotypes. By exploring changes a cold 

hardy genotype undergoes, geneticists may be able to target certain metabolic expressions that 

may increase the frost tolerance of future cultivars. 

Since frost damage can be so destructive to peach production, it is necessary to understand 

the risks to the peach industry moving forward surrounding climate change, and it is also necessary 

to understand the extent to which frost tolerance can be improved in future cultivars. This study 

uses a multifaceted approach to cold hardiness which involves improved and large-scale cold 

hardiness phenotyping using differential thermal analysis, dynamic weather prediction models and 

associated metabolic regulation understanding.  
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CHAPTER ONE 

OPTIMIZED DIFFERENTIAL THERMAL ANALYSIS SHEDS LIGHT ON THE 

EFFECT OF TEMPERATURE ON PEACH FLORAL BUD COLD HARDINESS AND 

TRANSITION FROM ENDO- TO ECODORMANCY 

1.1. Introduction 

Cold damage to reproductive tissues is the greatest limiting factor to peach (Prunus 

persica) production in the world. Peach floral buds exhibit supercooling with a dynamic cold 

tolerance level which changes throughout the dormant season in accordance with time, 

environmental and weather conditions, and genotype. Xylem discontinuity is one strategy which 

allows peach floral buds to supercool (Ashworth, 1984; Liu et al., 2019), preventing ice crystals 

from forming in the floral primordia. The dormant season, post leaf senescence through bloom, 

has two phases which are characterized by unique physiological behaviors associated with the 

accumulation of thermal time. The first phase, endodormancy, is the period where plants gradually 

acclimate and gain cold hardiness (Hc) as a response to external temperatures, until they reach a 

maximum and growth is controlled from within the floral bud until a genetically predetermined 

chilling exposure requirement is met (Lang et al., 1987). The second phase, ecodormancy, is the 

period of growth after the chilling requirement has been met, where external temperatures 

determine the gradual loss of Hc and the acceleration of deacclimation until bloom (Lang et al., 

1987). “Chilling” generally refers to the accumulation of thermal time within different thresholds 

which are relatively cool, yet greater than 0 oC, although recent literature has determined certain 

species achieve greater yields only when sufficient sub-freezing chilling is accumulated (Preedy 

et al., 2020). Depending on the phase of dormancy, the response of the plant organs to different 

temperature stimuli varies dramatically.  
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Orchard frost protection tools are necessary to consistent tree fruit production in many 

areas; however, the associated benefit from the temporary temperature rise in the orchard is 

relatively small, often averaging only 1.5 oC with wind machines at common spacings (Beyá-

Marshall et al., 2019). To effectively use frost protection tools, there must be an accurate and an 

up-to-date understanding of the critical temperatures which would be lethal for floral tissues 

(Minas and Sterle, 2020). Additionally, development of predictive cold hardiness models requires 

the accumulation of a large data set across numerous years in which changes in lethal temperatures 

(LTs) are compared with unique local growing conditions for informed real-time frost protection 

decision making (Sterle et al., unpublished). Therefore, in order to have a complete understanding 

of Hc and the parameters affecting it for successful frost protection or cold damage mitigation, it 

is necessary to have practical and efficient methods of determining the level of Hc which is in turn 

affected by dormancy stage. 

Oxidative browning (OB) observation following natural or artificial freezing is a standard 

method of assessing cold damage or monitoring Hc in plant tissues and more specifically in floral 

buds (Proebsting and Mills, 1978; Szalay et al., 2010). This method requires the freezing of floral 

buds inside of a programmable freezing chamber, and the removal of the buds at various 

temperature intervals. After remaining at 21 oC for 24 hours, buds are dissected to determine the 

probability of lethality. Green tissue is judged to be viable while brown tissue indicates non 

viability due to presence of oxidated phenolic compounds released from cell membranes damaged 

by the formation of ice crystals during the freezing event (Figure 1.1). A positive aspect of OB is 

that it is capable of determining lethal temperatures of floral buds at any phenological stage. 

Furthermore, this method simulates a pattern which is often seen in ambient conditions, and 

ensures all tissue reaches the same minimum temperature. Unfortunately, in order for OB to be 
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effective samples need to be removed at distinct temperatures. The range of temperature intervals 

must be greater than the lethal temperature range in order to extrapolate the critical temperatures 

from the analysis. This can have negative ramifications such as not being able to calculate certain 

quantiles from the data or limiting the precision of the data. In addition, judging the colors of floral 

primordia tissue is subjective and time-consuming and limits the capacity for the assessment of 

larger sample volumes. 

Differential thermal analysis (DTA) can be used to obtain frequent, large-scale data sets 

that represent the lethal freezing points of peach floral buds. Early DTA cold hardiness techniques 

involved the placement of thermocouples in a single bud, greatly limiting the number of lethal 

events which were observed (Quamme, 1986). Modern DTA methodology uses thermal electric 

modules (TEM) to detect temperature gradient changes from the latent heat of fusion released 

when supercooled water from floral primordia (e.g., ovaries) freeze (Mills et al., 2006; Minas and 

Sterle, 2020; Quamme, 1991). The TEMs are arrayed on plates which are subjected to 

progressively colder temperatures within a programable freezing chamber. As extracellular water 

freezes heat is released in a non-lethal exotherm referred to as the high temperature exotherm 

(HTE). The temperature at which the lethal freezing event occurs is termed the low temperature 

exotherm (LTE) and represents the temperature at which a particular floral bud lost its ability to 

grow into a healthy fruit (Burke et al., 1976; Mills et al., 2006). In peach, a freezing event at this 

temperature level in the orchard will result in oxidation, desiccation, and finally the abortion of 

the floral bud which further adds to the challenge of estimating the actual winter damage to inform 

management decisions as well. Improvements to the DTA methodology that lead to increased 

signal to noise ratio can provide more accurate lethal temperature estimation across larger data 

sets. DTA-estimated LTs can be associated with weather data for Hc prediction models 
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development or with biochemical and/or molecular data to better characterize cold stress related 

physiological responses during dormancy in perennial fruit tree crops. 

This work focuses on continuing the development of DTA into a reliable and efficient tool 

for determining precise lethal temperatures of peach floral buds. DTA has the potential to provide 

large-scale data which can support decision making for frost protection during the dormant season. 

These data can also be used to better understand the environmental temperature effects on 

physiological changes related to Hc within peach floral tissues during the transitions across the 

different phases of dormancy. In addition, the use of such a powerful tool for comparative studies 

can help define optimum horticultural management strategies and/or genotype selection for future 

plantings to mitigate the negative consequences of cold damage in tree fruit production systems. 

1.2. Materials and Methods 

Dormant peach [Prunus persica (L.) Batsch] flower buds from 9-year-old ‘Redhaven’ 

scions grafted on ‘Lovell’ rootstock were tested for cold hardiness (Hc) using artificial freezing in 

combination with differential thermal analysis (DTA) or oxidative browning (OB). Buds were 

collected weekly (beginning in mid-October of 2016) from one-year-old shoots of moderate vigor 

that had no obvious signs of damage and were located at the mid-canopy position of 15 randomly 

selected trees. The sampling location was the Colorado State University’s Experimental Orchard 

at Western Colorado Research Center, Orchard Mesa, Colorado (39.042230, -108.469492). For 

regular DTA assessment samples were collected from the orchard and buds were then separated 

and randomly assigned to 13 sets of 10 buds each (in total 130 buds per time point). Three complete 

sets (30 buds) were kept as a control and were not frozen for visual evaluation of oxidative 

browning to check orchard variability and estimate existing field cold damage. The remaining 10 

complete sets (100 buds) were then used for DTA utilizing an optimized system in the Minas Lab 
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that was build based on a previously developed system to sense Hc of large volumes of grape bud 

samples (Mills et al., 2006). Sampling method was followed proportionately, but with 

appropriately varied sample sizes for the three optimization experiments maintaining 10 buds per 

TEM in any case. 

The OB method is a standard method for observing cold damage of fruit tree floral buds 

exposed to naturally occurring or artificial freezing temperatures (Stushnoff and Junttila, 1986). 

Samples of 30-cm long one-year-old fruiting shoots were placed in a programmable freezing 

chamber in several replicated bundles. The starting temperature in the freezing chamber was set to 

the ambient outside temperature and was then dropped 4 oC over 30 minutes (step-drop), and then 

held at the lower temperature for 30 minutes. The process was repeated, and samples were removed 

at predetermined temperature thresholds. A bundle of four to eight fruiting shoots containing 

between 20 and 40 floral buds was removed at each of three to four different temperature intervals 

after holding at the targeted temperature for 30 minutes. Following removal, the shoots were then 

brought to 21 oC and high relative humidity (~90%) for 24 hours, to allow for oxidative browning 

to become evident. The buds were longitudinally sectioned with a razor blade through the ovary. 

Green tissue was judged to be viable while brown tissue indicates nonviability due to presence of 

oxidized phenolic compounds released from damaged cell membranes following ice crystals 

formation in response to the freezing event (Figure 1.1). The fraction of bud mortality was tallied 

for each temperature regime, and a linear regression line with a quadratic term was fitted for 

temperature against the percent lethality observed within the bundle at that temperature. The 

resultant regression was then used to calculate lethal temperature (LT) quantiles (LT10, LT50, and 

LT90). In addition to OB the three evaluations performed for validation of DTA accuracy, OB was 

performed three other dates October 26, 2016, March 8 and March 13, 2017 when DTA was not 
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able to detect LTEs of the supercooled peach floral primordia. Targeted removal temperatures 

were -10 oC, -15 oC and -20 oC on October 26, -7 oC, -12 oC, -15 oC, and -18 oC on March 8 and -

3 oC, -5 oC, -7 oC and -9 oC on March 13. 

The original DTA system used for this study was adapted from Mills et al., 2006, and 

modifications were made as a result of various optimization experimental trials. The DTA 

assembly was composed of three 29 cm  27 cm aluminum plates which were fastened together 

using bolts, with the plates spaced by rubber hosing, so that each plate was 2.5 cm apart so that 

heat would dissipate following exotherms (Figure 1.2A). Attached to each aluminum plate were 

eleven evenly spaced 4.5 cm  5.5 cm  1.5 cm lidded aluminum bins, each containing a single 

thermoelectric module (HP-127-1.4-1.5-72 high performance module, TE Technology, Inc., 

Traverse City, MI). The TEM detected temperature gradients by producing a small electric charge 

due to the heat of fusion released from exotherms (Figure 1.2B). The DTA assembly could 

accommodate at least 300 peach floral buds in total, across 30 sample TEMs and 3 reference 

TEMs. 

Sample buds were excised from one year old fruiting shoots using a grafting knife, in pairs 

of two floral buds. Each bud pair was immediately wrapped in aluminum foil to prevent 

desiccation. Five foil-wrapped pairs of buds were placed within ten lidded bins on each plate, and 

enclosed with foam insulation pads (Figure 1.2), which ensured buds remained in close contact 

with the TEM. One centrally located TEM per plate did not get filled with buds, to act as a 

reference TEM cell. The voltage data from the reference TEM was subtracted from the data 

generated from each sample TEM on the same plate, this removed some amount of noise caused 

by minute thermal gradients in the system. Within each reference cell two copper/constantin 

thermocouples were placed to monitor the temperature within the reference cell when neighboring 
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cells experienced exotherms. In total, 100 ‘Redhaven’ floral buds were loaded into the DTA 

assembly per regular “run”.    

The DTA assembly was then loaded into a programmable freezer (Tenney Jr. Test 

Chamber, Model TUJR 1.22 cu.ft., Thermal Product Solutions, New Columbia, PA). To perform 

the DTA “run”, the freezer was programmed for a cooling rate of 4 oC  h-1. At the start of the 

program the temperature was held at 4 oC for 1 h and then dropped to -36 oC in 10 h at 4 oC  h-1 

(rate-drop), then returned to 4 oC in 10 h (Mills et al., 2006). A digital multimeter (Keithley Integra 

Series 2700 multimeter, Keithley Instruments, Cleveland, OH) measured each TEM voltage signal 

every 8 seconds. The signals were sent to a PC and then output directly to an Excel spreadsheet. 

Exotherms were identified by plotting the TEM signals (mV) against the temperature (oC) (Figure 

1.2B). This voltage rapidly increases when the thermal energy of a high temperature exotherm 

(HTE) or low temperature exotherm (LTE) is released. Only LTEs are representative of lethal 

events as it corresponds to supercooled water freezing within the primordial tissue of the bud, 

which results in membrane leakage and oxidative damage. HTE occur consistently at temperatures 

between -5 oC to -10 oC and as a result of intercellular water freezing (Kovaleski, 2021). Despite 

the much larger thermal energy release caused by HTE, this peak does not correspond to a lethal 

freezing event. TEM voltage signals were plotted against the reference TEM cell temperature and 

the LTs which were necessary to kill floral primordia were observed, based on the temperature at 

the time of the LTE appearance per flower bud. Parametric survival analysis was performed in 

JMP Pro 15 (SAS Institute Inc., Cary, NC,), to estimate LT quantiles (LT10, LT50, and LT90) for 

the LTE data generated by DTA. For each sampling date Weibull, Lognormal, Exponential, 

Frechet, and Loglogistic distributions were tested to determine which distribution was the best fit 
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for the data (Figure 1.2c). The specific quantiles were estimated as “time quantiles,” substituting 

absolute values for temperature for time in this context. 

To test the validity of the DTA methodology using rate drop (Figure 1.2d), lethal 

temperature estimates coming from LTE analysis were validated against estimates created by using 

OB and step drop (Figure 1.2e) with artificial freezing three times throughout the dormant season 

(December 1, 2016, February 8, 2017 and February 15, 2017; Figure 1.2f). For OB, temperature 

was dropped incrementally using the step-drop method (see Section 2.2), while when using DTA 

a 4 oC  h-1 rate drop was employed (see Section 2.3). Buds exposed to freezing temperatures were 

warmed for 24 h and longitudinally sectioned as described in section 2.2. Linear regression 

analysis including a quadratic term was used to create a temperature versus percent oxidative 

damage curve for OB. The LT10, LT50, and LT90 lethal temperature quantiles were then compared 

between DTA and OB to validate the use of DTA using the rate-drop method (Figure 1.2b). 

An experiment was performed with the DTA system in an attempt to increase the signal of 

LTE over the noise perceived by fluctuating temperature gradients created by the TEMs. LTE 

signal heights were compared in cells which were insulated with two different insulating materials: 

9 mm thick closed foam insulation pads (control), and 9 mm thick mylar insulation pads (MIP) 

(Figure 1.3a). MIP pads were constructed of three layers of 3 mm thick metalized mylar bubble 

insulation. Three hundred floral buds were loaded into 30 separate cells with a total of 150 buds 

in 15 cells with foam pads (control treatment), and 150 buds in 15 cells with MIP (experimental 

treatment). Peak height was measured for each LTE (n=134 total LTE for foam, and n=137 total 

LTE for MIP) from the base of the peak to the apex of each peak in mV. Differences were 

compared using one-way ANOVA in JMP Pro 15. Graphs were created using Prism v9.0 for Mac 

OS X (Graph Pad Inc., San Diego, CA, USA). 
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Significant temperature swings within strong air currents in the chamber of the programmable 

freezer can cause noise to appear in the data output produced by the DTA. This noise can be 

detrimental to the accurate identification of LTE peaks. A simple comparison of the noise 

generated in the mV output was conducted using two consecutive runs, one in which the DTA 

assembly was placed inside of a temperature resistant nylon bag slipped over the entire DTA 

assembly (Figure 1.3b). Three hundred buds were loaded into 30 cells across all three plates of 

the DTA assembly, on November 15, 2016 (control unbagged) and November 21, 2016 (bagged). 

In order to fairly quantify noise in the system, absolute fluctuations in voltage from the mean were 

calculated in each cell, for 80 minutes at temperatures less than -25 oC. Only temperatures lower 

than -25 oC were used because this range provided a span of signal which was consistent with the 

rest of the range of temperatures and yet only included noise, not having additional signals from 

HTE or LTE (actual temperature range of LTE temperatures was -12.6 oC to -24.7 oC). Absolute 

fluctuations were quantified by taking the absolute value of the difference of each individual 

adjusted voltage signal (measured every 8 seconds within each TEM cell for a total of 600 voltage 

measurements per TEM cell) and the mean voltage signal from the cell. Absolute fluctuations in 

voltage signal were compared using the corresponding plates as covariates and compared between 

the two runs using ANOVA to determine difference in the amount of noise detected. 

The ability of DTA to perceive lethal freezing events diminished incrementally during 

ecodormancy in early February, as LTEs were no longer detected by the system. DTA 

measurements were deemed unreliable if greater than 40% of live buds failed to yield recognizable 

LTE in the graphical output of the data (Figure 1.4). To regain the perception of LTE an additional 

optimization step was included into the DTA protocol. Starting February 8, 2017, the temperature 

of the freezing chamber with the DTA trays loaded was held at a non-lethal temperature for the 
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phase of dormancy (-2 oC) for a period of 12 hours (Liu et al., 2019) before dropping steadily as 

before at a rate of 4 oC  h-1 until the terminal temperature (-36 oC) for LTE detection. The exposure 

of the buds to the non-lethal freezing conditions caused condensation of the supercooled water in 

the floral primordia to a level that would allow subsequent LTE detection. This method increased 

the number of perceptible LTEs for the following 4 weeks at which point the number LTEs was 

again too low for reliable prediction of lethal temperatures even with this optimized LTE recovery 

protocol. Starting March 8, 2017 OB was used to estimate lethal temperatures until full bloom as 

described in section 2.2. 

Predicted DTA floral bud damage was validated also against four naturally occurring lethal 

freezing events in the field (Table 1.1), on dates when temperatures were lower than LT10 as 

predicted by DTA. These frost events took place on January 6, 2017 (Tmin=-19.2 oC), February 26, 

2017 (Tmin=-9.7 oC), March 1, 2017 (Tmin=-8.2 oC), and March 7, 2017 (Tmin=-5.9 oC). Samples of 

30 floral buds were brought to the Minas Lab on the same day immediately after the freeze and 

held at 21oC for 24 hours and then longitudinally sectioned to observe the percentage of buds with 

OB in the floral ovaries. The sum of the cumulative damage from the in-situ frost events was 

compared with the estimated cumulative damage from the most recent DTA data from dates 

preceding the frost events. 

Chill hours (0-7.2 oC) accumulation was calculated for comparison with trends in LTEs 

detection using a chill calculating tool developed by Erez and Fishman (Erez et al., 1989). Dynamic 

chill portions, Utah chilling units, and chilling hours (<7.2 oC) were also calculated using the same 

tool. Because of the lack of a universally accepted chilling estimation model, this work focused 

primarily on the chill hours (0-7.2 oC)(Fadón et al., 2020). Chill hours were selected as the primary 
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chill estimation model because of a greater prevalence of cultivar specific chilling information 

available related with this model. 

1.3. Results and Discussion 

Freezing temperatures can kill plant tissues when ice crystals form in the symplast, but not 

when ice forms in the extracellular spaces (apoplast) (Wisniewski et al., 2014). The standard 

method to determine cold damage after natural or artificial freezing to floral tissues consists in 

detecting the presence of tissue browning caused by oxidized phenolic compounds that are released 

from the damaged cellular membranes by ice crystal formation following a 24 h incubation 

(Figure 1.1). The advantage of the OB method is that it can be performed at any phenological 

stage. However, it is labor intensive and not friendly for large data volumes acquisition towards 

prediction models development. In addition, artificial freezing with OB is limited by the number 

of targeted temperature regimes that the plant tissue is exposed that is not necessarily an accurate 

representation of the distribution of the lethal temperatures of the sample population (Proebsting 

and Mills, 1978; Szalay et al., 2010). The OB method also requires some prior knowledge of cold 

hardiness in order to capture the minimum and maximum temperatures which are lethal to buds, 

while ensuring this range is narrow enough to accurately identify the median lethal temperatures. 

In contrast to the OB method, the type of data DTA yields is an individual lethal temperature for 

each individual floral bud, which is higher in resolution, and more descriptive of the distribution 

of lethal temperatures within a sample population. The DTA system used in the present study 

(Figure 1.2a) proved able to precisely identify HTEs and LTEs in peach floral buds from sample 

populations of up to 300 floral buds in a single run. Prior to DTA methodology optimization (see 

section 3.2), there was reliable identification of HTE and LTE in ‘Redhaven’ peach buds from 

November 2, 2016 through January 30, 2017. However, the OB method still remains a critical tool 
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in evaluating cold hardiness because it is not limited to as narrow of an effective-use time frame 

as is DTA and can be used prior or after that frame (Figure 1.1). In addition, OB is the most 

reliable method to perform validation tests for the accuracy of DTA-based cold hardiness 

estimations throughout the season (Figure 1.2f). 

Peach floral bud cold hardiness in the form of lethal temperature quantiles (LT10, LT50, and 

LT90) were estimated from the LTE data generated by DTA following parametric survival analysis. 

Weibull, Lognormal, Exponential, Frechet, and Loglogistic distributions were tested to determine 

which distribution was the best fit for the LTE data per sampling date. Consistently, Weibull 

distributions provided the best fit for the data based on having the lowest Akaike information 

criterion (AICc) and were selected for LTs estimation using the created continuous probability or 

survival distribution plots (Figure 1.2c). On the other hand, a quadratic linear regression line was 

used to fit for LT against the percent lethality observed as oxidative damage within the bundle at 

that temperature regime in OB. The resultant regression was used to calculate the LT quantiles 

(LT10, LT50, and LT90) for OB. The LT10, LT50, and LT90 quantiles were then compared to validate 

the use of DTA using the rate-drop method against the standard OB following the stepwise drop 

method.  

At three timepoints throughout the season, artificial freezing coupled with the DTA and 

OB methods were compared for cold hardiness assessment on ‘Redhaven’ peach floral bud 

samples taken at the same day. The OB method was tested using the step-drop cooling pattern 

which has been historically used in western Colorado and elsewhere (Figure 1.2b). In contrast, a 

rate-drop method was used in the DTA methodology, so it was necessary to compare the accuracy 

of the two systems against one another. Across the three dates the two methods alternated which 

predicted the lowest LT50, and the average difference between the two methods was only 0.4 oC 
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and was not statistically significant. Similar results were found at five different test times during 

the 2016/17 and 2017/18 dormant season with six different wine grape cultivars (Sterle and 

Caspari, unpublished). The slight difference for LT50 is accounted for by natural variability in the 

sample populations and was considered to be negligible.  

The workflow of OB has less initial setup time but requires active management to retrieve 

samples from the freezing chamber at appropriate temperature intervals. Whereas DTA workflow 

requires more setup time, but the process is progressing automatically once begun, and therefore 

gives additional flexibility to the user in terms of start time. With either method the results can be 

analyzed the following day, and the overall time each method takes is roughly similar for the 

analysis of 300 buds. The raw data are distinct as DTA provides exact temperatures when LTEs 

occur, whereas OB provides the number of dead buds versus alive buds at relatively few regularly 

spaced temperature intervals. The individual lethal temperatures observed using DTA allow for a 

more realistic distribution curve to be made for each individual date. Better describing the LT 

quantiles can aid in the development of more precise hardiness prediction models (Sterle and 

Minas, unpublished). 

Differentiation of LTE peaks in processed output is a critical part of the usage of DTA. 

Increased signal and decreased noise increase the efficacy of LTE differentiation. The increase in 

LTE peak height using different insulating materials within each TEM cell was tested. The 

hypothesis was that within a TEM cell, the mylar insulation pads (MIP) would reflect thermal 

energy released by LTE directly back to the TEM plate. With closed foam pads acting as a control 

treatment and MIP an experimental treatment, LTE peak height was compared across the two 

treatments in a combined DTA run. Use of MIP resulted in a significant (P<0.0001) 94% increase 

in a signal height from a mean of 0.117 to 0.227 mV (Figure 1.3a). This insulation method 
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increased the number of LTE peaks that can be detected and may increase the efficacy of DTA for 

other crops, which have exotherms which are more difficult to detect because of lower floral 

primordia intracellular water content.  

The original DTA apparatus was setup so that air would freely move through the plates, 

however it was noticed that this led to increased amounts of noise detected in cells which were 

located nearest to the freezing chamber fan. This noise originated from differences between the 

temperature gradients working on the TEM in the reference cell in comparison to the different 

sample cells on the plate. The cells located nearest to the reference cell were consistently less 

noisy. An intermitted experiment was conducted to evaluate potential further improvements of the 

DTA system performance by reducing the amount of noise present within the data related with the 

freezer fan. To reduce the extremes in temperature gradients across the DTA plates, a temperature 

resistant nylon baking bag was slipped over the entire DTA apparatus. This data was compared 

across two adjacent DTA runs, by calculating the absolute mean deviations from signal mean mV 

output (Figure 1.3b). The result was an overall reduction in noise of 29.2% across all cells, with 

the cells on the noisiest plate reducing by an average of 55.5% (p=0.022). This represents a 

tremendous increase in the clarity of the data generated by DTA.  

In summary, optimizations like the use of the nylon bag to cover the entire stack of TEM 

plates and the use of MIP to cover the individual TEM cells reduced the noise of the system and 

doubled the LTE signal, greatly improving the detection limits and accuracy of the DTA estimates 

saving significant amount of time in the data processing portion of the procedure. Increased signal 

to noise ratio also may make the data easier to process algorithmically without risking errant data. 

In early February the percentage of detectable LTEs of the total amount of sampled floral 

buds was 38% or decreased by 55% between January 30, 2016 and February 7, 2017 as buds began 
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to deacclimate. The loss of detectable LTEs was first noted in ‘Redhaven’ upon the accumulation 

of 900 chilling hours (0-7.2 oC). Immediately once this decrease was observed a modified DTA 

protocol was developed and tested for the recovery of LTEs during this late stage of dormancy 

which is called ecodormancy. The LTE recovery protocol involved pre-exposure of the floral buds 

to -2 oC for a period of 12 h before running the standard rate of 4 oC  h-1 temperature drop, as 

proposed previously (Liu et al., 2019). The addition of the pre-conditioning step resulted in an 

increase in the proportion of LTE detected from 38% to 79% of the total sampled floral buds 

(Figure 1.4). This approach allowed for an extended period of time in which DTA could estimate 

hardiness with a high enough quantity of peaks to yield reliable LT estimates. On March 6, 2017, 

35% of the expected number of LTE were still detected, which is similar to the number of LTEs 

detected without the LTE recovery protocol when for the first time a significant decrease in 

detectable LTEs was observed (27 days prior; Figure 1.5). The mid-deacclimation period of 

ecodormancy is an important period to have estimates of LTs of peach floral buds because of the 

gradual decrease in cold hardiness as they approach visual bud swell and bloom time, which results 

in a greater risk of cold injury. 

The use of DTA showed a dramatic shift in peach cold hardiness as the weekly detected 

LTEs of floral buds acclimated and deacclimated in the period between leaf senescence and bloom 

(Figure 1.5). Floral bud intracellular supercooled water freeze and subsequent LTE detection from 

the DTA system using the standard and the LTE recovery protocol was possible from November 

2, 2016 until March 6, 2017 (Figure 1.5). Before and after this period OB was used for cold 

hardiness assessment. To generate a visual representation of the seasonal progression of 

‘Redhaven’ peach floral bud cold hardiness the OB- and DTA-based LT quantiles estimations 

(LT10, LT50, and LT90) across the dormant season were plotted against the ambient minimum (min), 
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mean, and maximum (max) daily temperatures (T) (Figure 1.6). Floral buds generally became 

hardier (acclimated) in early autumn from October 18, 2016 (LT50=-14.2 oC) when OB was first 

used to assess cold hardiness until the coldest time of year when the hardiest lethal temperatures 

were measured based on DTA on January 9, 2017 (LT50=-23.9 oC; Figure 1.5 and 1.6). Hardiness 

was then gradually lost as daily temperatures rose until the final DTA measurement performed on 

March 6, 2017 (LT50=-8.9 oC) or the final OB assessment was performed on March 8, 2017 (LT50=-

8.6 oC). During the early acclimation stage post-leaf senescence, LT50 dropped from -16.0 oC to -

19.1 oC three days after the first significant frost event (less than -6.5 oC on November 18, 2016). 

This was the first dramatic change in peach floral bud cold hardiness measured, and it suggests 

that the low minimum temperature was associated with the change. Another significant increase 

in hardiness was seen between January 3, 2017 and January 9, 2017 after a significant freezing 

event (January 7, 2017) in which the low temperatures reached -19.2oC and the maximum 

temperatures did not rise above 0 oC for a period of three days. As a result of this event the LT50 

dropped from -21.8 to -23.9 oC. This increase in hardiness was associated with a prolonged period 

at sub-zero temperatures, when previously the LT50 had appeared to have stabilized around -21.5 

oC. From February until early March, peak height (mV) in DTA output dramatically increased 

(Figure 1.5). The observed height increase is likely because of the influx of extracellular water 

into the growing and developing peach floral primordia, leading to a larger release of thermal 

energy as the heat of fusion during the artificial freezing events that are captured by the DTA.  

A key component to the successful use of DTA and any other cold hardiness assessment 

methodology is the generation of floral bud LT prediction data which comports with field status. 

The ultimate validation of the developed methodology is when there is a natural freezing event in 

which the ambient temperatures are lower than the estimated critical temperatures, allowing the 
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recording of the actual cold damage in situ. Field cold damage following three separate natural 

freezing events (-9.7 oC on February 26, 2017; -8.2 oC on March 1, 2017; and -5.9 oC on March 7, 

2017) was compared with the expected damage as predicted by DTA prior the frost (Table 1.1; 

Figure 1.6) to validate the accuracy of the estimates. The sum-total of the observed damage across 

all events was 58% dead floral buds, whereas the expected damage from the DTA was estimated 

at 55% dead floral buds. In addition, the DTA setting presented in this study did not predict any 

significant damage for ‘Redhaven’ peach floral buds as a result of the extreme freeze on January 

7, 2017 (Figure 1.6) and this was also confirmed by independent in situ OB observations on 

samples collected on January 9 (data not shown). Results from the field validation demonstrate a 

high level of accuracy using the DTA method, and they impart a high level of confidence in the 

use of DTA as a tool for large-scale cold hardiness assessment of peach floral buds. It is worth 

highlighting the importance of field validation for the use of the LTE recovery protocol as well 

(Figure 1.3). During the mid-deacclimation period of ecodormancy it is important to have 

estimates of LTs of peach floral buds because of the gradual decrease in cold hardiness as they 

approach visual bud swell and bloom time, which results in a greater risk of cold injury. This was 

evidenced by the three lethal frost events that occurred in late February and early March (bud 

swell), i.e. during a period when the DTA was performed following the LTE recovery protocol. It 

highlights the significant impact of this approach to generate critical LT data that could support 

grower informed frost protection decision making. It also indicates that the LTE recovery protocol 

did not affect the outcome of the LTEs by changing the lethal freezing temperatures of the buds 

(Figure 1.6). Further, it demonstrates that although there was only ~40% of the expected LTE 

peaks observed in late February early March, the estimated cold hardiness levels were still an 

accurate indicator of the actual LTs in field. 
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On January 24, 2017, 868 chill hours (0-7.2 oC) had accumulated (Figure 1.7), 

approximately equal to the chilling requirement needed by ‘Redhaven’ to enter ecodormancy 

(Weinberger, 1950; Fadón et al., 2020). According to other chilling models, 56.4 dynamic chill 

portions, 1517 Utah model chill units, and 1658 chill hours (<7.2 oC) had accumulated at that time 

(Figure 1.7). Satisfaction of chilling coincided with a dramatic 55% loss in the number of LTEs 

captured by DTA (Figure 1.4 and 1.7). The loss in LTEs occurred once two conditions were met: 

the accumulation of 868 chilling units, and the first accumulation of growing degrees day (Tbase=7 

oC) post chill satisfaction, on February 7, 2017 (this time point is indicated with an asterisk and an 

arrow in Figure 1.7). It is possible therefore, that the development of xylem vessel elements which 

leads to the loss of LTEs (Ashworth, 1984; Liu et al., 2019) may be closely related to chilling 

satisfaction. Allowing for this, DTA may sense the transition from endodormancy to ecodormancy, 

through the initial loss of LTEs. The hypothesis that the loss of detectable LTEs occurs at the 

transition from endo- to ecodormancy is supported by data showing that a low-chill cultivar ‘Sierra 

Rich’ had lost more LTEs on February 7, 2017 (86% loss), whereas the high-chill cultivar 

‘Cresthaven’ had lost fewer LTEs (35%) (Minas and Sterle, 2020).  

The possibility that DTA may be able to sense the transition to ecodormancy would expand 

the usefulness of DTA as a tool to evaluate and compare cultivars if this link can be validated by 

future work. Gaining a greater understanding of the precise timing of the transition to ecodormancy 

can also have an impact on the study of metabolic, proteomic, and transcriptomic shifts which may 

be happening as a result of chilling satisfaction. This possibility also allows for greater evaluation 

of chill satisfaction models when comparing cultivars from multiple locations under disparate 

environmental conditions. 
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1.4. Conclusions 

This work highlights the reliable generation of large-scale cold hardiness data for peach 

floral buds using an optimized DTA methodology. Additionally, this work demonstrates several 

experimentally-tested and field-validated techniques and protocols which greatly enhance the 

quality of the DTA data that extend the useful period for using it in peach floral buds during 

dormancy and especially during spring deacclimation. Seasonal trends as well as daily changes in 

cold hardiness can easily be measured by DTA with a high level of confidence. Chill satisfaction 

was followed by a significant decrease in detectable LTEs using DTA, once the first growing 

degree day (Tbase=7.2 oC) was experienced. This indicates that in addition to the capacity for 

precise large-scale cold hardiness data acquisition DTA may also have the ability to detect a 

significant developmental event in peach floral buds, the transition from endodormancy to 

ecodormancy. 
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1.6. Tables 

Table 1.1. Differential thermal analysis (DTA) validated against in-situ freezing events 

through comparison of seasonal cumulative damage. Control samples taken at the time of every 

DTA run were longitudinally sectioned to observe the extent of oxidative damage in each sample. 

From January 6, 2017 through March 7, 2017 observed cumulative in-situ field damage was used 

to validate the DTA predicted field damage over the same period. Field validation confirmed that 

DTA was accurately representing the lethal temperature thresholds of peach floral buds under 

ambient conditions. 

Date of killing 

frost event 
Minimum T (oC) 

Observed field 

damage (%) 

DTA 

predicted 

damage (%) 

January 6, 2017 -19.17 3 0 

February 26, 2017 -9.72 21 27 

March 1, 2017 
 

-8.17 24 16 

March 7, 2017 -5.88 10 12 

Total  58 55 
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Table 1.2 Validation of deferential thermal analysis (DTA) compared to oxidative browning 

method (OB) for accuracy in peach floral bud lethal temperature prediction. Oxidative 

browning method (OB) was used to validate differential thermal analysis (DTA) in parallel runs 

on three dates, December 1, 2016, February 8, 2017, and February 15, 2017. Lethal temperature 

quantiles LT10, LT50, and LT90 were calculated for each method and compared. For each date the 

mean difference for the three quantiles was less than 1 oC, indicating a high level of precision 

between the two methods.  

Lethal temperature 

quantile 

Oxidative browning 

method estimation 

DTA method 

estimation 
Difference 

12/01/2016 

LT10 -19.23 -18.77 0.46 

LT50 -21.47 -20.96 0.51 

LT90 -23.70 -22.49 1.21 

02/08/2017 

LT10 -16.46 -18.37 -1.91 

LT50 -20.55 -20.76 -0.21 

LT90 -23.64 -22.44 1.20 

02/15/2017 

LT10 -16.31 -16.38 -0.07 

LT50 -19.78 -18.87 0.91 

LT90 -21.13 -20.64 0.49 
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Figures 1.7. 

 

Figure 1.1 Evaluation of cold damage of dormant and pre-bloom peach floral buds using 

the oxidative browning method (OB) at two different phenology stages. Samples were 

taken following artificial or naturally occurring freeze during the dormant and green calyx 

phenology stages. Buds were longitudinally sectioned with a razor blade through the ovary 

after being incubated at 21 oC and high relative humidity (90-95%) for 24 hours. Floral buds 
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are considered viable if all portions of the pistil remain green and considered dead if browning 

is present to any portion of the pistil tissue. 

 

Figure 1.2 Graphical representation of differential thermal analysis (DTA) data acquisition 

system workflow for detection and data analysis of low temperature exotherms (LTEs) 

indicating the minimum survivable temperatures of up to 300 peach floral buds per run. 

Peach floral bud pairs were removed from shoots before being covered in aluminum foil and 

enclosed in tin cells atop thermal electric modules (TEM). As the chamber cooled, an electric 

signal was monitored by a digital multimeter and data was logged onto a PC (A). TEM signal (mV) 

data populate figures which display the amount of electricity being generated as a result of 

supercooled water freezing events within the peach floral tissue. High temperature exotherms 

(HTE) are nonlethal freezing events, and LTE represent lethal events to floral tissues (B). Lethal 

temperatures were then compiled, and lethal temperature quantiles were calculated after fitting a 

sample population of lethal temperatures to a Weibull distribution (C). Two different methods of 
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temperature drop were evaluated, stepwise drop (D) and rate drop (E), for consistency among the 

LT measurements (F).  
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Figure 1.3 Experimental improvements to differential thermal analysis (DTA) signal 

amplitude and to the reduction of noise amplitude. A signal amplification study was conducted 

in which two different insulating materials were compared to determine whether the low 

temperature exotherm (LTE) signal generated from a thermoelectric module (TEM) could be 

improved. The standard 9 mm closed foam insulating pads (control) were compared to 9 mm of 

mylar insulation pads (MIP), to evaluate whether the increased thermal reflectivity of the MIP 

would increase the strength of the signal by reflecting radiating LTE heat of fusion back towards 

the TEM. Mean peak heights were compared using one-way ANOVA (P=0.05) (A). A signal noise 

reduction experiment was conducted to test the effect of covering the DTA assembly with a nylon 

bag on lowering the signal noise. Absolute fluctuations from the mean noise level were compared 

between adjacent DTA runs, with and without the nylon bag treatment. Mean absolute fluctuations 

per treatment followed by a different letter are statistically significant when analyzed using 

ANOVA (P=0.05) (B). 
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Figure 1.4 Experimental optimization of low temperature exotherm (LTE) signal 

recovery for ecodormant peach floral buds. An experiment to test an LTE signal recovery 

protocol was conducted to increase the span of the dormant season in which DTA could be 

reliably used to detect peach floral bud LTEs. Starting February 7, 2017, a dramatic decrease 

in the number of detectable LTE peaks was noticed. On February 8, 2017, the freezing 

chamber was programmed to first run for 12 hours at -2 oC prior to the regular DTA 4 oC  h-

1 rate drop in order to increase the detectable number of LTE peaks. The total number of 

detected LTE peaks rose from 38% of expected peaks to 79% of expected peaks. 
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Figure 1.5 Large scale differential thermal analysis (DTA) from November 2, 2016 through 

March 6, 2017 shows clear trends of acclimation and deacclimation throughout the dormant 

period. The graphical representation of peach floral bud acclimation, maximum hardiness and 

deacclimation is exhibited through weekly LTE recordings from a single TEM cell per run that are 

vertically arrayed to illustrate the seasonal progression, while using the same scale for each 

different date in the array. Peak cold hardiness was observed January 9, 2016, which coincided 

with the coldest week of the year. As buds began to deacclimate and swell, low temperature 

exotherms (LTE) dramatically grew, as increased water content in floral primordia resulted in a 

larger exothermic energy release for each LTE. The y-axis refers to the millivoltage difference 

from a single TEM cell on March 6, 2017, while all other curves share the same scale. 
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Figure 1.6 Seasonal patterns of temperature and cold hardiness, expressed as lethal 

temperature quantiles for 10, 50 and 90% flower bud loss (LT10, LT50 and LT90) of 

‘Redhaven’ flower buds. Daily temperature data and observed lethal temperatures from the 

CSU’s experimental orchard at WCRC-OM, Grand Junction, CO, were combined to show how 

despite general seasonal symmetry, extreme events result in low temperatures crossing lethal 

temperature thresholds in peach floral buds. As low temperatures generally dropped overall from 

November 2016 to early January 2017, cold hardiness followed the same trend. Rising 

temperatures from late January until March 2017 corresponded to a loss of cold hardiness as buds 

deacclimated towards the spring bloom period. In November 18, 2016 the first significant frost 

event reached -6.5 oC and the observed cold hardiness in the following observations increased 

dramatically. Another significant frost event took place on January 7 2017, and this was also 

correlated with an increase in cold hardiness in the next observation. Three lethal cold events were 

seen on February 26, 2017 (-9.7 oC), March 1, 2017 (-8.2 oC), and March 7, 2017 (-5.9 oC) which 

were below the observed lethal temperature threshold for 10% mortality. These events were used 

to validate observed DTA data with observed cumulative field damage (see Table 1) to show no 

significant difference between observed cumulative field damage (58% mortality) and expected 

cumulative damage from DTA data (55% mortality).  
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Figure 1.7 Chilling accumulation in combination with observed cold hardiness data, daily 

temperatures throughout the 2016-2017 dormant season. The relationship between cold 

hardiness and chill accumulation was observed. 868 chill hours (0-7.2 oC), 56.4 dynamic chill 

portions, 1517 Utah model chill units, and 1658 chill hours (<7.2 oC) were accumulated on January 

24, 2017. DTA incrementally began losing the ability to detect LTE, once the first growing degree 

days (Tbase= 7 oC) were accumulated beyond this thermal-time point (indicated with asterisk). The 

loss of LTE may therefore be an indication that chilling satisfaction has been reached and buds are 

transitioning from an endodormant to an ecodormant state.  
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CHAPTER TWO 

FACT SHEET: SPRING PEACH FLORAL BUD COLD HARDINESS: REEXAMINING 

CLASSIC PRE-BLOOM PHENOLOGY CRITICAL THRESHOLDS 

2.1. Introduction 

Cold damage on floral tissues represents the greatest threat to profitable yields for peach 

growers. Differential thermal analysis (DTA) can be used to accurately measure precise lethal 

temperatures of hundreds of peach floral buds during a relatively short process (Mills et al., 2006; 

Minas et al., 2020; Minas, 2023). While DTA reliably provides accurate data from post-leaf 

senescence through bud swell, DTA loses the capacity to detect lethal temperatures during 

deacclimation. As peach floral buds deacclimate following chilling satisfaction in the lead up to 

bloom time, cold hardiness is rapidly lost as the buds begin to rapidly change. Moisture content 

begins to rise as xylem connectivity is restored to the reproductive organs. It is also known that a 

multitude of metabolic changes are happening within the floral tissues, as dormancy is released 

and gradually exposing vulnerable female reproductive organs to freezing temperatures. Accurate 

knowledge of cold hardiness during these critical phenological stages will help growers more 

effectively protect their crops. 

Pre-bloom floral buds being extremely vulnerable to damage is a well-established reality 

for peach growers worldwide. However, when previous studies have documented freezing 

thresholds across different phenological stages it was done with antiquated technology, and with 

a cultivar (‘Elberta’) which is no longer widely planted by Colorado and other peach growers 

around the world. This study tests cold hardiness of ‘Cresthaven’ and ‘Suncrest’ peach, two widely 

grown mid-season peach cultivars, across many stages of bud phenology. 
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Flower petal phenotype is often considered to be an indication of a lack of hardiness 

because of past experience with cultivars with large, showy petals, such as ‘Suncrest,’ leading 

many to believe they are less hardy than cultivars with small and non-showy petals such as 

‘Cresthaven’ (Figure 2.1). This characteristic has not been sufficiently compared to identify 

whether the difference in hardiness is real or perceived. Another characteristic commonly 

associated with hardiness is the place of origin in which a cultivar was bred. Cultivars coming 

from California are often considered more tender, whereas those originating in Michigan are 

considered more-hardy. Whether the difference in mid-winter hardiness is universally true, or 

more-likely to be true is an open question. Warmer region breeders often prioritize selection of 

cultivars with low chilling requirements in order to ensure a full and uniform bloom. ‘Suncrest’ 

requires around 550 chill hours (between 0 oC–7.2 oC), and ‘Cresthaven’ requires around 850 chill 

hours. Cultivars bred in cold locations are more likely to be selected by breeders if they develop a 

consistent track record of surviving cold events, so there is a selection mechanism which could be 

expected to lead to more cold hardy lineages of peach. 

Affecting orchard temperatures through frost protection measures is energy intensive and 

has limited efficacy (Beyá-Marshall et al., 2019). While floral buds deacclimate, they quickly lose 

cold hardiness. Since grower profitability depends on the survival of floral buds, it is necessary to 

know the precise temperature at which floral buds are vulnerable to frost damage. Therefore, it is 

necessary to revisit classic studies of heritage cultivars to ensure each phenology stage of currently 

used cultivars are as cold hardy during deacclimation. 

2.2. Materials and Methods 

From March 18 to April 18, 2022, 25 samples of fruiting shoots (proleptic) were taken every 2-4 

days from mature ‘Suncrest’ (9 yr. old) and ‘Cresthaven’ (10 yr. old) trees. Samples were taken 
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from a uniform height of ~1.5 m above ground level. The distal ends of shoots were removed, only 

leaving the primary fruit bearing part of each shoot, the basal 30 cm section. For each day, a 

phenology stage was ascribed to each cultivar. The phenology stage was the most advanced stage 

which described at least 40% of the buds in the sample for each cultivar. Fifteen floral buds per 

date were weighed, freeze dried, and re-weighed to determine the moisture content at each stage. 

Sample shoots were frozen within a programmable freezing chamber (Tenney Jr Test Chamber, 

Model TUJR 1.22 cu.ft., Thermal Product Solutions, New Columbia, PA, USA), being lowered to 

4 sets of predetermined temperatures per date. Temperature within the chamber dropped at a rate 

of 40C per hour. Each predetermined target temperature was set to hold for 30 minutes, and one 

set of 5 shoots per cultivar were removed before dropping to the next targeted temperature. All 

shoots were left at room temperature and high relative humidity conditions for 24 hours, and then 

longitudinally sectioned with a razor blade. Survival was determined by the presence or absence 

of significant oxidative browning to pistil of each flower bud per target temperature. Percentage 

of dead buds were tallied for each individual temperature. Linear regression was used to determine 

the relationship between percent mortality and temperature. Slope and intercept were calculated 

through linear regression, and then used to calculate LT10, LT50, and LT90.  

2.3. Results and Discussion 

Several surprising results came about through this study with regards to cold hardiness of 

buds of different cultivars and phenology stage (Figure 2.2). Critically, there was a great 

difference in the projected cold hardiness of ‘Elberta’ from classic literature, at bud stages 2-4 

(“green calyx”- “pink tip”). The average LT50 of ‘Suncrest’ and ‘Cresthaven’ compared to the LT50 

of ‘Elberta,’ across phenology stages, was 2.9 oC less hardy at Stage 2- “green calyx,” 3.9 oC less 

hardy at Stage 3- “red calyx,” and 1.7 oC less hardy at Stage 4- “pink tip.” There was very little 
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difference between the two cultivars at equal bud stages, despite their apparent phenotypic 

differences. ‘Suncrest’ was less hardy overall however, since it reached Stage 3- “red calyx,” a 

tender stage two days earlier. Ultimately ‘Suncrest’ reached full bloom one day earlier (April 7, 

2022) than ‘Cresthaven’ (April 8, 2022). There were almost perfect linear relationships between 

LT50, and bud moisture content (R2= 0.97 for ‘Suncrest’, and R2= 0.98 for Cresthaven; Figure 2.3) 

and did not differ by cultivar. The relationship between phenology stage and moisture content was 

a nearly perfect logarithmic curve (R2=0.98; Figure 2.3) and did not differ between cultivars.  

These results reveal the value of testing classical assumptions, such as bud hardiness, 

developed in other locations with outdated cultivars, using locally specific research. The results 

also provide a new perspective on the perceived differences between attributes such as location of 

breeding program origin (CA vs. MI), flower petal size (large and showy vs. small and non-showy) 

and chilling requirement (550-850 chill hours, 0-7.2 oC). While there was a difference between the 

two cultivars, the only real difference was a slight acceleration in bud phenology development in 

the ‘Suncrest.’ It is important to understand that this relationship will not necessarily hold true for 

every cultivar.  

2.4. Conclusion 

These results highlight that the differences between cultivars is more complicated than 

binary comparisons across several traits, and that low chill, large showy petals of CA bred peach 

cultivars are not implicitly far less cold hardy than their MI alternatives. The results suggest that 

cold hardiness differences between two phenologically different cultivars are more related to the 

bud stage of each cultivar (Figure 2.4 and 2.5). Also noteworthy is the relationship that moisture 

content has with both cold hardiness and phenology stage.  
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2.6. Figures 

 
 

Figure 2.1. External and internal morphology of peach floral buds. (a) Samples of 1 ft long 

fruiting shoot sections during bloom, demonstrating stark differences in flower morphology. Three 

‘Suncrest’ shoots are on the left and three ‘Cresthaven’ shoots are on the right. (b) Longitudinally 
sectioned buds of ‘Suncrest’ during stage 3-“Red Calyx”. Showing live pistil within the right bud, 

and an oxidized pistil the left bud which would prevent pollination of these flowers. The viability 

of anthers and petals indicated by a lack of oxidative browning, indicates these tissues were more 

frost tolerant during this stage. 

 

 
Figure 2.2. Relationship of cold hardiness with phenology stage of two different cultivars (a) 

Redeveloped lethal temperature thresholds for peach floral buds as determined by rigourous 

oxidative browning testing across seven phenological stages. (b) Lethal temperatures (LT50) for 

‘Suncrest’ and ‘Cresthaven’ peach floral buds along with a logarithmic regression curve 
highligting the relationship between developmental stage and LT50. 

 

 

 

 

(a) (b)
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Figure 2.3. Relationships among cold hardiness, moisture content and developmental stage. 

(a) Linear regression showing that 97-98% of the variability in LT50 is explained by the moisture 

content of the floral bud, with no meaningful difference between the two cultivars. (b) Logarithmic 

non-linear regression showing that 98% of the variability in moisture content is explained by the 

developmental growth stage. 

 

 

 

 

 
 

Figure 2.4. Visual phenology stage identification chart with critical temperature thresholds 

(ºF). Bud phenology stages of two morphologically different cultivars, displaying the difference 

in appearance of two common types of peach flowers. Lethal temperatures were measured every 

2-4 days from March, 18-April 18, 2022. 
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Figure 2.5. Visual phenology stage identification chart with critical temperature thresholds 

(ºC). Bud phenology stages of two morphologically different cultivars, displaying the difference 

in appearance of two common types of peach flowers. Lethal temperatures were measured every 

2-4 days from March, 18-April 18, 2022. 
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CHAPTER THREE 

MODELING DORMANT PEACH FLORAL BUD COLD HARDINESS USING LARGE-

SCALE THERMAL AND DYNAMIC WEATHER DATA 

3.1. Introduction 

Crop loss due to cold damage of floral tissues is a primary factor in determining the 

economic viability of the peach [Prunus persica (L.) Batsch] industry in many growing regions 

throughout North America and the world. Cold hardiness (Hc) is the extent to which a floral bud 

is able to supercool, in order to withstand sub-freezing temperatures. Novel climate conditions 

threaten to misalign the prevailing trends of Hc expression and cold weather events. This 

misalignment may result in more growing locations less reliably productive.  

Predicting Hc is valuable for site selection, orchard management and frost protection 

decisions, especially when considering the future effects of climate change.  However, predicting 

Hc is difficult since the floral buds acclimate or deacclimate differently depending on the growing 

climate or weather conditions, and the stage of dormancy. Endodormancy begins in autumn after 

leaf abscission and is the phase of dormancy during which growth inhibition of structures within 

the floral or vegetative bud is physiological rather than environmental. During endodormancy, 

growth is inhibited even if it is exposed to favorable for growth environmental stimuli (Lang et al., 

1987). Environmental stimuli related to dormancy include: photoperiod length, light quality, and 

ambient temperature (Heide, 2008). After sufficient chilling units have been accumulated during 

endodormancy the dormant buds transition to ecodormancy which is governed by the entire plant’s 

response to environmental conditions unfavorable for growth (Lang et al., 1987). Heat 

accumulation, hydration, availability of nutrients, and time are some factors associated with 

ecodormancy. It is broadly accepted that chilling and heat accumulation have a well-established 



 

41 

negative correlation; with more chilling, less heat is required for budbreak (Kovaleski et al., 2022). 

As ecodormancy progresses the buds will visibly swell and eventually bloom. These processes are 

genetically programmed and involve physiological changes that include carbohydrate 

composition, reactive oxygen species and antioxidant levels, phospholipid composition and hydric 

status which are not clearly understood yet (Erez et al., 1997; Li et al., 2009; Maurel, 2004; Viti et 

al., 2012; Yamane et al., 2011; Yu et al., 2020). Cold hardiness will generally increase during fall 

with cooling temperatures, until the endodormancy barrier (CST), a genotypically controlled 

chilling satisfaction threshold, is reached leading to ecodormancy (Ferguson et al., 2011). During 

ecodormancy, buds will begin to gradually lose Hc as thermal time above a threshold (Tbase), 

measured in growing degree days (GDD), accumulates, until bloom when the Hc is at its least cold-

hardy (Proebsting and Mills, 1978). Temperature impacts on bud dormancy and development are 

well documented, therefore the effects of a warming climate on these processes must be understood 

to forecast the sustainability of peach production worldwide. 

Current Hc can be estimated by dissecting floral buds which have been previously exposed 

to freezing temperatures to look for oxidative browning (OB) caused by phenolic compounds 

oxidation. These compounds are released from damaged cell membranes by the formation of ice 

crystals during the freezing event and their presence on the floral primordia is associated with the 

loss of reproductive viability (Proebsting and Mills, 1978; Szalay et al., 2010). Differential thermal 

analysis (DTA) is a technique which can be used to detect exotherms caused by freezing floral 

primordia in dormant peach floral buds (Quamme, 1986; 1991). An updated DTA methodology 

uses thermal electric modules (TEM) to detect temperature gradient changes from the latent heat 

of fusion released when supercooled water from floral primordia (e.g., ovaries) freezes (Mills et 

al., 2006; Minas and Sterle, 2020). High temperature exotherms indicate the non-lethal freezing of 
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extracellular water, while low temperature exotherms indicate the lethal freezing of the floral 

primordia. These methods are necessary for Hc determination, as bud external appearance does not 

change during the dormant period, until the weeks immediately preceding bloom, when the buds 

can be visually assessed for Hc given their phenological stage (Szalay et al., 2018). Large numbers 

of lethal temperatures (LT) can be observed relatively quickly using DTA, that help obtain precise 

estimations of seasonal changes in Hc, (Ferguson et al., 2011; Mills et al., 2006). Lethal exotherms 

in peach can be detected during the endodormancy period which begins in autumn and continues 

until early stages of ecodormancy and before bud swell. Prior to endodormancy and post bud swell 

OB can be used to determine peach Hc thresholds (Minas and Sterle, 2020). Large data sets using 

both methods can provide important reference values to be used in conjunction with 

meteorological data to build accurate Hc predictive regression models which can inform frost 

control management leading to increased profitability. 

Cold hardiness prediction models have been developed for various crops such as: winter 

wheat, grape, cherry, and other deciduous tree species (Anisko et al., 1994; Ferguson et al., 2014; 

Salazar-Gutiérrez and Chaves-Cordoba, 2020). Anisko et al. (1994) used a stepwise model-

building procedure to arrive at regression models that predict hardiness given different measures 

of thermal time, photoperiod, and aggregated temperatures from clusters of time in the recent 

meteorological history. Dynamic models have also been developed which build upon previously 

predicted hardiness values by calculating how much the buds may have acclimated or de-

acclimated relative to a previously estimated Hc based on the recent conditions (Ferguson et al., 

2014; Salazar-Gutiérrez and Chaves-Cordoba, 2020). These methods all have validity and may 

elucidate some differences among cultivars, including acclimation and de-acclimation rates at 

different stages, and CST. As such, each model should be judged by how well it fulfills the desired 
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outcomes, whether this be identifying phenotypic differences among genotypes or accurate 

prediction for practical orchard management purposes.  

To be economically viable, an orchardist needs to consider the frequency and severity of 

the frost risk that occurs in a prospective orchard location. Estimating the frequency and severity 

of frost risk is complicated when considering the effect climate change will have in that same 

location. Crop load management is considered during dormant pruning, and Hc prediction is useful 

for informed pruning and optimum crop load decisions. In addition to site selection, and crop load 

management, knowing the precise Hc of floral buds from fall to spring is critical to frost protection 

decision-making during freezing events, typically using wind machines and overhead sprinkler 

irrigation. Efficacy of wind machines depends on the amount of difference of inversion 

temperature, and proximity to wind machines. It has been demonstrated that stationary wind 

machines can increase the average temperature of a 4-ha area by 1.5 oC, and portable wind 

machines increased temperatures to this extent for less than 1 ha (Beyά-Marshall et al., 2019). Lu 

et al. (2018) demonstrated a 2.8 oC increase in temperatures using overhead sprinkler irrigation, 

however, irrigation water is often not available for use by growers in winter months in colder 

regions. Economic crop loss can increase dramatically with small decreases in temperature. Given 

the small temperature increase the wind machine can provide, being able to accurately predict Hc 

is critical to optimize their usage. Since Hc is prone to change throughout the season, and responds 

differently to changes in the environment depending on the stage of dormancy as well as proximity 

to bloom time, it is necessary to develop low-error Hc estimation methods for sufficient frost 

protection decision-making. 

The accuracy of previously created dynamic models for other deciduous tree fruit species 

may be insufficient to instruct management decisions for peach. Some models have resulted in 
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error terms that are often greater than the T increase which could be expected using a wind machine 

at spacings of 1 machine per 4 ha (Ferguson et al., 2011; Ferguson et al., 2014; Beyά-Marshall et 

al., 2019; Salazar-Gutiérrez and Chaves-Cordoba, 2020). The large error terms reduce the practical 

use of the predictive model since the error is large compared to the benefit provided by standard 

frost management activity. For multiple regression models which predict accurately on different 

data sets, parsimonious variable selection is necessary. Overparameterization on the other hand 

can lead to extremely highly fit data but will not predict accurately outside of the model training 

dataset. Thus, for model accuracy an optimized number of variables per model should be included, 

and validated against independent datasets, while using variables that are not overly colinear.  

Multiple regression models could easily be linked to automated data collection systems, 

once trained and validated with a dataset within a growing region. In this study, regression models 

were created to estimate peach Hc during the different stages of dormancy (endodormancy and 

ecodormancy), at different thresholds of crop survival (LT10, LT50, and LT90) using between 4,690 

and 6,880 observations per cultivar across four years as a robust dataset for model training and 

validation. The primary goal was to develop Hc prediction models with minimized root mean 

squared error of prediction (RMSEP), to the extent that Hc models could reliably be used for 

practical orchard management purposes (RMSEP<1.5 oC), while making parsimonious models 

and avoiding overparameterization. 

3.2. Materials and Methods  

3.2.1. Plant material and data collection location 

Four peach cultivars ‘Redhaven’ (RH), ‘Cresthaven’ (CH), ‘Sierra Rich’ (SR), and ‘Suncrest’ (SC) 

that were grown under standard commercial practices in the experimental orchard of Colorado 

State University (CSU) at Western Colorado Research Center at Orchard Mesa (WCRC-OM) in 
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Grand Junction, CO were used for peach Hc assessment over a period of four dormant seasons 

from 2016/2017 to 2019/2020, except for SC which was assessed only for three dormant seasons 

(2017/2018-2019/2020). Cold hardiness samples were taken from 8-11-year-old trees per cultivar 

that were grafted on Lovell rootstock, except ‘Suncrest’ that was 3-6 years old and grafted on 

‘Viking’ rootstock. Experimental trees were managed and irrigated according to local commercial 

production practices and trained in an open-center training system (open-vase for CH and RH and 

perpendicular-V for SR and SC) and were planted at a spacing of 4  4.5 m (for CH and RH) or 

1.5  4.5 m (for SR and SC) and a planting density of 510 (for CH and RH) or 1195 (for SR and 

SC) trees per ha. 

3.2.2 Peach lethal temperature estimation 

Peach floral bud Hc was measured over twenty sampling dates in each of four dormant 

seasons from 2016 to 2020 across peach cultivars except of SC that was assessed only for three 

dormant seasons (2017-2020). The data collection period for each year was from October (post 

leaf senescence) through March. For each sampling date, 70-80 floral buds were collected from 

one year old proleptic shoots of moderate vigor that were growing at uniform height of 1.2-1.8 m 

across 15 experimental trees per cultivar. Overall, the number of floral buds assessed for RH, CH, 

SR, and SC were: 6,090, 6,880, 6,800, and 4,690 respectively. Differential thermal analysis (DTA) 

was used until low temperature exotherms (LTEs) ceased to be seen, which corresponded to bud 

swell, typically in mid-February (Minas and Sterle, 2020). In the time between bud-swell and full 

bloom, dissection and oxidative browning was used to identify lethal temperatures (Proebsting and 

Mills, 1978).  

Peach floral bud Hc was evaluated using DTA following the methods developed in Minas 

Lab and described previously (Mills et al., 2006; Minas and Sterle, 2020; Tanner et al., 2021). 
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Pairs of floral buds were detached from the one-year-old fruiting shoots and wrapped in aluminum 

foil, then placed within cells containing thermoelectric modules (TEMs). Temperature was 

dropped at a rate of 4 oC to -36 oC, in a programmable freezing chamber (Tenney Jr Test Chamber, 

Model TUJR 1.22 cu.ft., Thermal Product Solutions, New Columbia, PA, USA). Lethal floral bud 

temperatures were detected by thermocouples and exothermic reactions related to freezing events 

were detected by TEMs as a voltage response using a multimeter data acquisition system (Keithley 

2700, Tektronix, Beaverton, OR). Using the accompanying software (Tektronix, Keithley 

ExceLinxTM for Instruments, Beaverton, OR) the data were input to a spreadsheet for analysis in 

Microsoft Excel. Parametric survival analysis was performed using JMP Pro 15.0 (SAS Institute, 

Inc., Cary, NC). For each sampling date, cumulative low temperature exotherm to lethal 

temperature (LT) data were fit to a model using a logistic function to best fit the nonlinear data 

(Minas and Sterle, 2020). Using the Weibull regression model, LTs where 10%, 50%, and 90% 

(LT10, LT50, and LT90) of buds that were considered dead were estimated for each sampling date 

throughout the four dormant season-span.  

Between bud-swell (February 10th-20th depending on the year) and bloom, floral bud 

hardiness was measured using the oxidative browning method. Five replicated sets of six 15 cm 

sections of peach fruiting wood for each cultivar were bundled separately. One replicated bundle 

were saved as an untreated control to establish preexisting oxidative damage present at the time of 

sampling. The remaining four replicates were placed within the Tenney Jr. freezing chamber, 

programmed to drop from 4 oC at a rate of 4 oC per hour. Bundles were removed from the freezing 

chamber at four different target temperatures at 2.5 oC intervals. Cold temperature treated bundles 

were kept at high relative humidity at 21 oC for 24 hours to allow for oxidative browning to take 

effect in the case of freeze damaged tissue. After 24 hours buds were manually sectioned with a 
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razor blade and pistil tissues were examined for lethal damage, as indicated by brown tissue. The 

percentage of total buds that were fatally damaged was tallied for each cultivar across each 

temperature treatment. Linear regression was used to find a line of best fit, and the equation of this 

line was used to calculate lethal temperature quantiles (LT10, LT50, LT90). 

3.2.3 Weather data collection and calculation 

Hourly temperature and weather data were collected by CoAgMET, a CSU’s statewide 

network of weather stations, and specifically by the weather station located at WCRC-OM 

(https://coagmet.colostate.edu). Weather station temperature and humidity sensor model HMP45C 

(Vaisala, Helsinki, Finland) height was set at 1.5 meters. Average temperatures were considered 

the average of the maximum and minimum daily temperature values (Figure 3.1). Accumulated 

chilling hours were counted on an hourly basis, by summing the number of hours between 0-7 oC 

each day after October 1st of each dormant season (Bonhomme et al., 2010; Luedeling et al., 2013; 

Okie and Blackburn, 2011; Weinberger, 1950). Chill portions were calculated using the dynamic 

chill portions calculating tool (Erez et al., 1989). Growing degree days (GDD) were calculated on 

a daily basis, by summing the number of degrees above the threshold temperature (Τbase) the 

average temperature was for each day (Grossman and DeJong, 1995). Three different Tbase were 

used: 0 oC, 5 oC and 7 oC, with literature citing Tbase from 4-10 oC (Linsley-Noakes and Allan, 

1994; Whiting et al., 2015), expanding the covered range to include Tbase  0 oC. Addition of Tbase 0 

oC was deemed necessary after a survey of the literature revealed the representation of mostly 

warmer growing climates. The hypothesis was that phenologic development may take place at 

cooler temperatures, but may not be well captured in studies where less time was spent at these 

lower temperatures, contrary to this study. Aggregated temperature variables Tmean,1-4, Tmax,1-4, and 

Tmin,1-4 were calculated daily, representing the average of the previous four days’ mean, maximum 
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and minimum temperatures, respectively. In addition, mean, maximum and minimum 

temperatures the day of sampling as well as 1, 2, 3, 4-, 5-, 6-, and 7-days prior were also used as 

potential model building variables. 

3.2.4 Selecting predictor variables 

To select strong predictor variables for LT prediction model training, Pearson correlation 

matrices were created using the weather variables previously mentioned. These weather variables 

(Figure 3.2 and 3.3) and the LT quantiles of the four peach cultivars from three to four consecutive 

dormant seasons (Figure 3.1) were analyzed using correlation matrices. Many of the regressor 

variables had Pearson correlation coefficients which indicated strong positive (r>0.8) or negative 

correlations (r<-0.8) with Hc and with other regressor variables. Inclusion of highly correlated 

variables in the models without justification, was minimized to reduce the risk of 

overparameterization. This was done by checking correlation of variables within the same models 

for high correlation in the correlation matrices.  

As expected, various temperature measurements had significant correlation to LT, 

including each individual maximum, minimum and mean temperatures from the seven days prior 

to a Hc measurement. The correlation was reduced beyond four days. In order to capture recent 

temperature fluctuations without compromising model parsimony, the average of the previous four 

days’ mean, maximum and minimum temperatures were identified as terms to be considered for 

inclusion in model creation. These temperature parameters (Tmean,1-4, Tmax,1-4, and Tmin,1-4) represent 

the recent temperatures to which the buds were exhibiting a short-term response (recent climate 

history). Additionally, the day of the year (days post October 1st), photoperiod length, chill 

portions, chilling hours, and accumulated growing degree day counts with base thresholds of 7 oC, 

5 oC, and 0 oC were considered, given their individual correlations with Hc. These variables capture 
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aspects of seasonal progression in terms of time and experienced thermal time, which locate the 

Hc of the floral buds within a plausible range of values for different points in the season. Cultivar 

was used as a categorical variable in model selection to compare differences in intercept (baseline 

Hc) or slope (change in Hc in relation to a unit change in the predictor) among the cultivars.  

3.2.5 Cold hardiness (Hc) model development and validation 

Endodormancy and ecodormancy Hc prediction models were developed using an 

exploratory model building approach. Stepwise model selection was used to find combinations of 

variables which formed accurate models across different portions of the dormant season. Model 

validation was done independently following two methods: 1) by segregating each date (between 

2016 and 2020) in which a cultivar was sampled into a training set and a validation set at a ratio 

of 2:1 and 2) by using six sampling dates coming from a distinct dormant season (2021) from the 

ones used to create the models. Effort was made to include as few terms into each model as possible 

for a resulting parsimonious model. Interaction terms were added only if highly significant 

(P<0.005) and if deemed physiologically justifiable. LT50 was used as the primary dependent 

variable in both endodormancy and ecodormancy models to select significant predictor variables. 

Subsequently, the selected variables were then used to train models for LT10 and LT90 as well, 

which were validated in the same fashion as LT50. 

Endodormancy and ecodormancy model variables were selected separately using an 

estimated date where sufficient chilling was accumulated to meet the chilling satisfaction threshold 

(CST) and enter ecodormancy. January 15th was used as a preliminary stand-in date at which point 

the data previous to this date were used for preliminary endodormancy Hc model selection, and the 

data after this date were used for preliminary ecodormancy Hc model selection. Endodormancy 

and corresponding ecodormancy models were made using training observations on either side of 
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a number of test CST in commonly suggested ranges of chill accumulation requirements from 600-

900 chilling hours or 45-60 dynamic chilling portions (Table 3.1; Fadon et al., 2020). The models 

made for each test CST were validated using the randomly selected validation data set. Validation 

data were then compared to determine the strongest pairings of endodormancy and ecodormancy 

models by comparing coefficients of determination (R2), root mean square errors of prediction 

(RMSEP), and Akaike information criteria (AIC) (Table 3.1).  

3.3. Results and Discussion 

3.3.1 Genotypic variation in peach floral bud Hc is highest during acclimation and deacclimation 

Seasonal mean temperatures reached a low point in early January during the dormant 

seasons between 2016-2020, with observed peach floral bud cold hardiness (Hc) in terms of LT50 

following the same seasonal trend (Figure 3.1). Generally, the variation among cultivars on a 

given date was highest in autumn and spring when the acclimation and deacclimation processes 

were in effect, while variation was lowest from mid-November until through January. 

Unsurprisingly, this time frame also correlates with both the shortest photoperiod (December 21st) 

and the coldest time of year. Low mid-winter temperatures contributed to stability in the LT50 

values that further underscore the slower physiological activity of the floral tissues during the 

endodormancy phase that protects them from unfavorable environmental conditions. Average 

maximum Hc (LT50) for the different cultivars was: -23.5 oC for RH, -24.5 oC for CH, -22.2 oC for 

SR, and -24.0 oC for SC. Consistently, SR was least hardy for most dates each season, while CH 

and RH had the lowest LT50 on average. ‘Suncrest’ while being of average Ηc most dates, exhibited 

a responsiveness to cold temperatures which allowed it to gain hardiness following relatively 

extreme cold events that lasted more than two days. ‘Suncrest’ therefore had the hardiest maximum 

annual LTs as response to extreme freezing events. The lowest LT50 at -25.9 oC for SC recorded 
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on January 2, 2019 as a response to being the fifth day of a 10-day long cold event with continuous 

sub-freezing temperatures (when 711 chilling hours, and 52.7 chilling portions had been 

accumulated). These differences in traits among cultivars contributed to the decision to include 

cultivar as an indicator variable within the floral bud Hc models. The propensity of the buds to gain 

hardiness after multiple days of constantly sub-freezing temperatures, provided insight which led 

to the testing of aggregated temperatures from multiple recent days for correlations with Hc to be 

used as predictor variables in model creation. 

3.3.2. Selection of predictor variables of recent climate history and seasonal progression for floral 

bud Hc models calibration 

Consideration of the Pearson correlation matrices revealed many potential continuous 

variables for selection in the endodormancy (Figure 3.2) and ecodormancy (Figure 3.3) models. 

There was high correlation between LTs and the individual average daily temperature values for 

the four days before DTA analysis, with correlation coefficients (r) usually greater than 0.75 

between the various temperature variables and measured LT50 (r=0.68-0.84 during endodormacy). 

The temperature values were then combined into separate averages of mean, minimum (min), and 

maximum (max) temperatures for that previous four-day period span and these were used as 

continuous variables in the models. Correlations between LT10 and predictor variables tended to 

be weaker than with LT50 and LT90. For example, during endodormancy correlation coefficients 

between Tmean,1-4 and LT10, LT50 and LT90 were 0.77, 0.84 and 0.84, respectively. Aggregating the 

temperature data into four-day aggregates moderated volatility in model prediction to more 

accurately portray the gradual changes in Hc observed and reflect the impact of recent climate 

history in model performance. The predictor with the largest correlation with LT50 in 

endodormancy was Tmin,1-4 (r=0.84), while the predictor with the largest correlation with LT50 in 
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ecodormancy was GDD0 (r=0.89). Photoperiod (PP) length in hours was the seasonal progression 

variable selected for the endodormancy Hc models. While PP had a relatively low correlation with 

LT50 (r=0.63) if used as an individual predictor, its inclusion contextualized the effect Tmin,1-4 could 

have at different parts of the dormant season. Days post October 1st (DPO) was one of the seasonal 

progression variables selected for the ecodormancy Hc models (r=0.72), and had a similar 

contextualizing role with Tmax,1-4 (r=0.73) for the Hc prediction post CST. 

This approach in the analysis revealed that in western Colorado, perhaps because of the 

relatively cold winters, GDD0 was more highly related to ecodormancy Hc than 4 oC and 7 oC. This 

is a novel finding to tree fruit phenology as it is often modelled using warmer base temperature 

(Tbase) for GDD calculation between 4 oC to 10 oC (Linsley-Noakes and Allan, 1994; Grossman 

and DeJong, 1995; Valentini et al., 2002; Zavalloni et al., 2006; Mounzer et al., 2008; Whiting et 

al., 2015; Chaves et al., 2017; Blanco et al., 2020). This is likely because more time is spent in the 

temperature range between 0-5 oC than in most fruit growing regions, allowing the model to 

capture deacclimation that is occurring at lower temperatures, challenging the assumption that an 

insignificant amount of deacclimation occurs in this lower temperature range. Across all four years 

there was an average difference of 51 days between the first accumulation of GDD0 and GDD7, 

meaning there were on average 51 days of potential deacclimation effect being lost by using 

different temperature thresholds in GDD accumulation under ambient conditions. This result 

indicates that this colder location allows for greater insight into cold temperature chilling and heat 

accumulation and also highlights the need for research that is specific to a particular region and 

climate. 

3.3.3. CST is critical for accurate endo- and ecodormancy Hc models creation  
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Physiologically, the CST is generally understood to be a point in dormancy which is 

reached after crossing a certain chill-time threshold (chilling satisfaction), where endodormancy 

ends and ecodormancy begins and the floral bud will begin relying upon heat-time accumulation 

before flowering (Lang et al., 1987). Given that different stimuli are driving deacclimation during 

ecodormancy, it is necessary for optimum Hc prediction at these distinct phases of dormancy, to 

establish a point at which the CST is reached. Differences were seen between the predictive 

accuracy of certain variables on either side of the CST. An example is the high correlation of the 

Tmean,1-4 to observed LT50 during endodormancy (r=0.84) while in ecodormancy this drops 

(r=0.67). This illustrates the importance of different stimuli depending on the stage of dormancy, 

and the need to create separate Hc models for endodormancy and ecodormancy phases.  

Different chilling accumulation models are used in various growing regions to most 

accurately capture the true CST of various plant tissues. For our purposes we used both the 

dynamic chill portions model (Erez et al., 1989) and the more traditional chilling hours models 

either “<7.2 oC” or the “0-7.2 oC” variations (Weinberger, 1950). Our approach was to use an 

assumed place-holder CST of January 15th in order to obtain our best modelling variables, before 

using the two sets of modelling variables (one each for endodormancy and ecodormancy) to 

compare the prediction efficacy on either side of given CST (Table 3.1). Because of the different 

chilling models and thresholds different combinations of model training data were used for each 

side of each threshold. It is clear from Table 3.1 that the model validation data for both the dynamic 

chill portions model, and the chilling hours model resulted in highly accurate predictive models 

based on our data. The chilling hours model had consistently lower error terms in our validation 

process and was therefore selected as the chilling model of choice. In general, endodormancy 
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models had lower coefficient of determination (R2) values but also lower RMSEP values than did 

ecodormancy models.  

There was insufficient statistical evidence to definitively select a CST from R2 or RMSEP 

alone, because differences in model prediction varied so little across these options (Table 3.1). 

700 chilling hours was used because it was estimated to be the midpoint among the four cultivars. 

Published information on experimentally derived CST for various peach cultivars is limited. 

‘Redhaven’ with 850-870 chilling units (0-7.2 oC) (Fadon et al., 2020), ‘Cresthaven’ with 950 

chilling hours (<7 oC), ‘Suncrest’ is cited as having a CST of 650 chilling hours (<7 oC), and 

consistent CST for ‘Sierra Rich’ was unavailable (Okie, 1998). Much of the published data uses 

the “<7 oC” model which includes time spent at sub-freezing temperatures. However, in a cold 

growing climate such as Colorado it is necessary to remove sub-freezing temperatures to more 

accurately represent the effect of chilling. Therefore, the CST of 950 and 650 for ‘Cresthaven’ and 

‘Suncrest’ are considerably lower when using the “0-7.2 oC” model. Taking the available 

information on the CST of various cultivars into account, we estimated that the range of the four 

cultivars was approximately 550-850 chilling hours (0-7.2 oC) with a mean of 700. 

Across the four years the CST of 700 chilling units (0-7 oC) was reached on Jan. 14, Dec. 

22, Dec. 26, and Dec. 6 for 2017, 2018, 2019 and 2020 respectively. It has been established that 

the lower the chilling accumulation the higher the heat requirements and vice versa for flowering 

date determination in perennial woody plants (Kovaleski, 2022). Our data show the higher chill 

cultivars (CH and RH) and lower chill cultivars (SR and SC) bloom simultaneously in the high 

chilling conditions of the Intermountain region. This bloom synchrony in Western Colorado 

growing conditions among high and low chill cultivars is also contrary to the perception that high 

chill cultivars bloom significantly later. However, this observation confirms previous reports 
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stating that chilling requirements are a highly heritable component of flowering date determination 

and have much stronger effects than heat requirements in Prunus species where a high genotype 

 environment interaction is the case (Castède et al., 2014).  

3.3.4. Predictive model parameter selection 

Model selection revealed a trend in types of variables which proved effective in Hc 

prediction on either side of the CST (Table 3.2). Both the endodormancy and ecodormancy models 

included several common elements: cultivar as a categorical term, recent meteorological history 

variables (Tmin,1-4, and Tmax,1-4, respectively), a variable representing seasonal progression 

(photoperiod, and DPO, GDD0, respectively), and an interaction for the relationship between 

temperature or experienced thermal time and time (Tmin,1-4  PP and GDD0  DPO, respectively). 

This pattern in variable selection could be effective because seasonal progression variables (PP, 

DPO, GDD0) define a range of potential Hc values which are likely to occur at different parts of 

the dormant season, while recent history of temperature values (Tmin,1-4 and Tmax,1-4) and cultivar 

differences adjust based off recent conditions to predict Hc at each stage of the dormant season. 

Thus, the seasonal progression variables buffer the impact of temperature on Hc. The use of this 

combination of variables may provide a similar balance to dynamic models which add or subtract 

predicted to a running Hc tally (Ferguson et al., 2011) through a multiple regressive approach. The 

endodormancy Hc model includes PP, Tmin,1-4 and the interaction between PP and Tmin,1-4  as 

continuous variables. It cannot be concluded from this study that PP is driving Hc acclimation in 

fall as it may simply be correlated to other factors such as chill accumulation or time. Minimum 

temperature is more likely to be directly related to Hc in endodormancy because it accounts for 

much of the daily fluctuations in Hc which cannot be accounted for by PP alone.  
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The ecodormancy Hc model includes DPO, GDD0, Tmax,1-4, and an interaction term between 

DPO  GDD0. This aligns with previous work indicating that heat and time are both highly 

correlated to the phenological advancement of floral buds in deciduous trees (Chaves et al., 2017; 

Mounzer et al., 2008; Whiting et al., 2015). However, these results also indicate that there may be 

a synergistic effect between the intensity of the temperature (Tmax,1-4), and how quickly GDD0 are 

accumulated (DPO  GDD0). GDD0 alone incorporates both time and temperature, but the model 

was greatly improved by including these two terms. Essentially this means that decreases in Hc are 

not simply governed by a linear relationship with time spent at a temperature range. This indicates 

that dramatic increases in the temperature, and the quickness at which GDD0 are accumulated 

multiply the effect of thermal time. This observation may underscore that time and temperature 

both have a more polynomial effect on Hc since across the four predictor variables some form of 

either time information and temperature information are captured within all continuous variables 

included in each of the models described herein.  

3.3.5. Hc model validation with independent data sets reveals high predictive accuracy 

Across all four cultivars, the independent validation using 1/3 of the data that were not used 

for training the Hc models across the four dormant seasons showed an average RMSEP of 0.82 oC 

for endodormancy, and 1.08 oC for ecodormancy. Such model validation performance across all 

four cultivars for both ecodormancy and endodormancy indicates that our initial focus for Hc 

prediction with low error (RMSEP<1.5 oC) can be achieved with large-scale data sets and simple 

construction with efficient dynamic parameter combination (Figure 3.4). This is the most accurate 

floral bud Hc predictive suite of models known from the literature. Low error predictions were 

observed from late-October to mid-March, using this suite of models (Figure 3.5). The suite of 

models was constructed parsimoniously, meaning the models were not overparameterized, which 
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can lead to results which are overly biased to the training dataset. Parsimonious model construction 

should allow for the maximum amount of flexibility in prediction given the data which went into 

the model. Accurate prediction across multivarious locations and conditions is expected to 

decrease with increasing deviations from the training data. Further data could be added to the 

training and validation datasets and possibly increase the predictability across different growing 

regions. Such models are expected to provide useful information for peach orchard management 

purposes and for the development of frost control decision-support systems to be linked with local 

weather stations and provide real time Hc predictions. 

As seen in previous works, the periods immediately preceding bud break, and as floral buds 

first enter endodormancy in late summer, become more difficult to predict Hc using modelling 

approaches (Figure 3.5). This is in part because supercooling of floral primordia allows DTA 

LTEs detection later in fall as well as due to the fact that DTA loses the ability to detect LTEs 

during bud-swell later in spring (Minas and Sterle, 2020). The period before bloom is easily 

predicted using oxidative browning or visual phenology-based assessments as demonstrated in 

Szalay et al. (2018), therefore during this period it is not practical to predict using models. On 

average, in the location of the present study from 2018-2020, visible bud-swell began around 

March 21st at which point Hc is estimable using OB coupled with artificial freezing or visually 

using critical phenology temperature charts. Using the created thermal and dynamic weather 

predictive models and previous phenology-based Hc estimates, we can now accurately estimate Hc 

through the duration of the dormant period. This is an invaluable resource when managing orchard 

frost protection, pruning practices, planning labor needs, and evaluating and/or projecting 

suitability of land for future peach production in regions with cold dormant seasons in a changing 

environment. 
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For endodormancy and ecodormancy, Hc model prediction was most accurate for LT50 and 

LT90 (Figure 3.4). Since models were trained using LT50 data, this indicates that LT90 is more 

closely related to LT50 than is LT10 for peach Hc. Given the majority of floral buds are thinned for 

optimized fruit quality for commercial markets, we consider survival of roughly 10% of floral buds 

(the percent of survival at LT90) to represent the economic threshold below which represents a 

significant crop loss. As a result, the high accuracy of LT50 and LT90 is more relevant to growers 

for crop protection than an LT10. 

A comparison of the seasonal observed and predicted Hc values shows a high level of 

accuracy, and responsivity of the models to cold events (Figure 3.5). Observed Hc dropped 

significantly in October and November of 2019 following a severe early frost. The model 

accurately predicted the dramatic change in Hc as a response to the fall freezing events in 2019. In 

early January of 2019, the model again predicted a large shift in cold hardiness for a 10-day period 

(Dec., 29 2018- Jan., 7, 2019) where temperatures did not raise above 0 oC. It was hypothesized 

that the different models may predict Hc even more accurately during this period because there are 

far more observations in mid-winter in comparison to early Autumn. This was true for all cultivars 

with the exception of ‘Suncrest’ which shows a unique ability to become hardier after prolonged 

sub-freezing temperatures. The Hc increase in January 2019 shows that although CH and RH are 

considered higher chill cultivars, while SR and SC are considered lower chill cultivars, LT50 for 

each cultivar decreased despite accumulating greater than 700 chilling hours. The reliable 

prediction of this Hc change indicates that these predictive models using large-scale dynamic 

weather and thermal data are able to accurately predict drops in Hc whether in endodormancy or 

ecodormancy. Relatively few data have been collected in October and March as DTA does not 

detect LTEs during these times of acclimation and deacclimation. Future work will focus on 
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acquiring more data from October and March in order to increase predictability during these 

months of transition in the different phases of dormancy and growth. 

In addition to the Hc models validation approach described above a distinct independent 

validation was performed during the dormant season of 2021/2022. This extra step in Hc models’ 

validation provides valuable insights on the prediction performance of the created endodormancy 

and ecodormancy models using LT and weather data from a season that was not previously 

included in the training of the models. In summary Hc prediction for LT50 across the six time points 

that were selected during the 2021/2022 dormant season highlights the validity of the model 

creation approach followed in the present study (Figure 3.6). Peach floral bud LT50 in 2021/2022 

dormant season was predicted with high accuracy as indicated by the high coefficient of 

determination (R2=0.81-0.93) and the low error (RMSEP=0.54-0.98 oC) across the four cultivars 

modeled. Hc models exhibited equally robust performance for RH, CH and SR with SC 

performance being more volatile. It is worth highlighting that SC models were created with three 

dormant seasons of data (2017-2020) whereas the other three cultivars were build using data 

coming from four dormant seasons (2016-2020). Also, SR validation of Hc prediction accuracy 

during the 2021/2022 dormant season was performed on five time points instead of six that was 

the case for the rest of the cultivars due to the loss of significant amount LTEs during the DTA 

assessment in late February of 2022. As mentioned above Hc model prediction was most accurate 

for LT50 and LT90 and more volatile for LT10 (Figure 3.6).  

The prediction performance of Hc models across the four cultivars during an independent 

dormant season highlights the responsiveness of the created models to extreme weather changes 

and rapid decreases in temperature across the different phases of dormancy. This performance 

indicates that these predictive models using large-scale dynamic weather and thermal data are 
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robust enough to accurately predict the effect of rapid whether changes on Hc during 

endodormancy or ecodormancy. Future large-scale LT data collection from this and other locations 

is expected to enhance the sensitivity of the present models by including more erratic dormant 

seasons with unusually warm or cold periods. However, the performance of the models to the 

specific weather conditions of a different dormant season, indicates that these models may contain 

requisite adaptability to also forecast Hc responses to climate change.  

3.4. Conclusion 

Making accurate predictions of Hc is key to appropriate decision making for cold damage 

mitigation as well as understanding fruit tree adaptation to future climates. Yet, accurate 

predictions of Hc remain a major challenge mainly due to poor understanding of dormancy and 

lack of large-scale data acquisition approaches. Our primary goal was as to use our large dataset 

comprising the measurement of lethal temperatures from over 24,000 floral buds, each linked with 

specific weather data across four years, to create models able to accurately predict Hc (RMSEP<1.5 

oC) during both endodormancy and ecodormancy in four separate cultivars.  

This work demonstrates that through combined large-scale data, physiological 

observations, and exploratory statistical analysis, it is possible to create simple multiple linear 

regression models to predict Hc. This work builds upon previous valuable cold hardiness modelling 

to develop region specific models with sufficient accuracy to aid in orchard management decision 

making. All data used in the models can be easily linked to automatic data collection systems, to 

predict the various outcomes using multiple linear regression models. Historical data can also be 

used to evaluate prospective growing sites by comparing past climate data with predicted Hc or 

future hypothetical seasons following different climate change scenarios.  
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The level of accuracy shown by the independent validation demonstrates the high 

predictive power of the models (endodormancy, ecodormancy). To our knowledge the models 

presented herein are the most accurate cold hardiness (Hc) prediction models ever reported for tree 

fruit. We propose that this suite of models can be used in conjunction to estimate Hc, to a high 

level of accuracy from the time floral buds are nominally entering dormancy (October 1st in our 

case), until bud swell, at which point Hc is easily estimated given visual phenological evaluation. 

This work identifies aggregate values of minimum and maximum temperatures four days prior to 

a Hc measurement as being strongly correlated to Hc throughout the dormant season. Variables 

capturing the effect of seasonal progression such as DPO and photoperiod were also highly 

correlated to Hc throughout the season. Our approach also revealed that an assumption of equal 

CST across these four cultivars resulted in highly accurate Hc predictions in the study location, 

which was unexpected because of the wide range of previously estimated chill requirements among 

these cultivars. 

This suite of models can be loaded to online weather databases which are populated by 

automated weather sensors. These tools will provide growers with an accurate estimate of the 

hardiness on an ongoing basis, aiding in frost protection decision activities in a changing 

environment. In addition, accurate weather-based prediction of Hc can help characterize future 

implications in peach production related to increased risk for cold damage as a result of peach tree 

exposure to future projected changes of climate and increased frequencies of weather extremes. 
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3.6. Tables 

 

Table 3.1 Selection of chilling satisfaction threshold (CST). Statistical comparisons of model 

performances of various LT50 prediction models trained and validated using data before and after 

various levels of chill accumulation. For each chilling satisfaction threshold value tested, both an 

endodormancy model and an ecodormancy model corresponding to the same amount of chill 

accumulation was built. The various model pairings were evaluated by comparing the coefficients 

of determination (R2), root mean square errors of prediction (RMSEP), and the Akaike information 

criterion (AIC). Based on an evaluation of all three CST 700 chilling hours (CH) was selected as 

the best performing CST for the collection of cultivars of the present study. 

     Endodormancy LT50 Model  Ecodormancy LT50 Model 

Chill 

Model 

Tested 

CST 

 
R2 RMSEP 

Valid. 

(n) 
AIC 

 
R2 RMSEP 

Valid. 

(n) 
AIC 

Dynamic 

Chill 

Portions 

(CP) 

45  0.87 0.84 38 274.1  0.91 1.06 73 392.4 

50  0.88 0.83 53 300.9  0.89 1.06 58 371.9 

55  0.88 0.85 58 335.0  0.91 1.09 53 339.6 

60  0.88 0.85 60 374.5  0.91 1.11 51 310.4 

Chilling 

Hours 0-

7 oC 

(CH) 

600  0.85 0.94 31 221.3  0.90 1.10 80 433.0 

700  0.86 0.85 41 239.2  0.91 1.07 70 419.4 

800  0.87 0.85 49 293.6  0.92 1.07 62 377.0 

900  0.87 0.83 55 354.9  0.92 1.10 56 326.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2. Cold hardiness (Hc) models description. Model parameters and intercepts for the 

selected LT50 models of endodormancy and ecodormancy, built from cold hardiness data from four 

peach cultivars: ‘Redhaven’, ‘Cresthaven’, ‘Sierra Rich’ and ‘Suncrest’, for a period of four 
dormant seasons 2016-2020.  Endodormancy and ecodormancy delineated by the chilling 

satisfaction threshold (CST) the point at which 700 chilling hours was accumulated. PP, 

photoperiod; Tmin,1-4, minimum temperature for the last 4 days; DPO, days post October 1st; GGD0, 
growing degree days using 0 oC as the base temperature; Tmax,1-4, max T for the last 4 days. 
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Endodormancy LT50 model 

Cultivar Intercept PP Tmin, 1-4 
(PP-9.95  

(Tmin,1-4+2.45) 
 

‘Redhaven’ -27.85 

0.81 0.25 0.23  
‘Cresthaven’ -27.98 

‘Sierra Rich’ -26.48 

‘Suncrest’ -27.88 

Ecodormancy LT50 model 

Cultivar Intercept DPO GDD0 Tmax, 1-4 
(DPO-131.88)  

(GDD0-75.76) 

‘Redhaven’ -30.13 

0.055 0.023 0.17 0.00058 
‘Cresthaven’ -30.97 

‘Sierra Rich’ -29.05 

‘Suncrest’ -30.30 

 

 

 

 

 

 

 

 

 

 

3.7. Figures 
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Figure 3.1. Temperature and LT50 data used for cold hardiness (Hc) modeling. Daily mean 

air temperature and observed cold hardiness (expressed as LT50), as determined by differential 

thermal analysis (DTA), of four peach cultivars (‘Redhaven’, ‘Cresthaven’, ‘Sierra Rich’ and 
‘Suncrest’) grown at CSU’s experimental orchard at WCRC-OM, Grand Junction, CO, for a period 

of four dormant seasons (2016-2020). 
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Figure 3.2.  Correlations among various variables which were investigated as potential cold 

hardiness (Hc) predictive variables of four peach cultivars for the endodormancy period 

(<700 chilling hours). Cultivars studied for four dormant seasons (2016-2020) include: 

‘Redhaven’, ‘Cresthaven’, ‘Sierra Rich’ and ‘Suncrest’. Data collected from the CSU’s 
experimental orchard at WCRC-OM, Grand Junction, CO, include temperature values for various 

periods of time prior to Hc measurement, photoperiod length, chill accumulation (expressed as chill 

portions, chilling hours, chilling portions squared, and chilling hours squared) and the number of 

days past October 1st.   
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Figure 3.3. Correlations among various variables which were investigated as potential cold 

hardiness (Hc) predictive variables of four peach cultivars for the ecodormancy period (>700 

chilling hours). Cultivars studied for four dormant seasons (2016-2020) include: ‘Redhaven’, 
‘Cresthaven’, ‘Sierra Rich’ and ‘Suncrest’. Data collected from the CSU’s experimental orchard 

at WCRC-OM, Grand Junction, CO, include temperature values for various periods of time prior 

to HC measurement, photoperiod length, growing degree day accumulation with base threshold 

temperatures of 7 oC, 5 oC, and 0 oC, and the number of days past October 1st. 
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Figure 3.4. Validation of peach floral bud cold hardiness (Hc) prediction models’ 
performance. Comparison between endodormancy (black dots and lines) and ecodormancy (red 

squares and lines) model predictions and measurements of bud Hc (as determined by DTA and 

expressed as LT50) for ‘Redhaven’, ‘Cresthaven’, ‘Sierra Rich’ and ‘Suncrest’, for the dormant 

seasons (October 1st - March 31st) of from 2016-2020. Slope, coefficient of determination (R2), 

bias, significance, and root mean square error of prediction (RMSEP (oC)), were calculated using 

validation data sets which were independent of model training data sets (grey dots/squares and 

lines). Data shown in black represent endodormancy Hc validation data, red is ecodormancy Hc 

validation data and grey is both endodormancy (dots and solid lines) and ecodormancy (squares 

and breaking lines) Hc training data. 
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Figure 3.5. Daily LT50 prediction and actual data using the created endodormancy and 

ecodormancy cold hardiness (Hc) models along with weather patterns across four dormant 

seasons and four peach cultivars. Maximum, minimum and mean air temperatures for October 

1st - March 31st of 2016-2020, along with the predicted curve and observed Hc data (as determined 

by DTA and expressed as LT50) for four peach cultivars: ‘Redhaven’, ‘Cresthaven’, ‘Sierra Rich’ 
and ‘Suncrest’. The use of each Hc model (endormancy or ecodormancy) for each phase of 

dormancy is indicated on the bottom of each figure cell as a black bar for endodormancy (Endo) 

or no bar for ecodormancy (Eco). The change from the endodormancy to ecodormancy Hc model 

every dormant season was determined by the time that the CST is reached at 700 chilling hours 

(0-7 oC). 
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Figure 3.6. Validation of peach floral bud cold hardiness (Hc) prediction models with 

observations from an entirely independent dormant season. Floral bud Hc observed LT data 

that were acquired from differential thermal analysis (DTA) across four peach cultivars 

(‘Redhaven’, ‘Cresthaven’, ‘Sierra Rich’ and ‘Suncrest’) at six time points during the dormant 
season of 2021-2022 were used to determine the predictive accuracy of the created Hc models. 

Coefficient of determination (R2) higher than 0.8 and root mean square error of prediction (RMSEP 

(oC)) of less than 1.0 oC satisfied the research goals of producing predictive accuracy sufficient to 

inform management decisions for peach producers managing frost events by conventional means. 

The ability to accurately predict wide-ranging lethal temperature quantiles using independent data 

sets increase the confidence that this suite of models may be used to predict Hc accurately even as 

climate conditions change in the future. 
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CHAPTER FOUR 

INVESTIGATING PEACH FLORAL BUD ECO-PHYSIOLOGY AND METABOLISM 

DURING DORMANCY USING LARGE SCALE COLD HARDINESS PHENOTYPING AND 

NON-TARGETED METABOLOMIC AND PROTEOMIC ANALYSIS 

4.1. Introduction 

 Cold damage to reproductive tissues is a primary factor in determining the economic 

viability of the peach [Prunus persica (L.) Batsch] industry in many growing regions throughout 

North America and the world. Climate change threatens to desynchronize periods of cold hardiness 

(Hc) in plants, with unusually warm periods and damaging cold events at different times during 

dormancy and following bud break. Cold hardiness, the threshold at which plant tissues will be 

irrevocably damaged by subfreezing temperatures, can be accurately measured using differential 

thermal analysis (DTA) or the oxidative browning technique (Mills et al., 2006; Proebsting, E. L. 

and Mills, 1978; Minas and Sterle, 2020). Plants as sessile organisms use various physiological 

means of confronting abiotic stressors such as subfreezing temperatures. Optimizing cultivar 

selection for Hc can further increase the likelihood of yielding a profitable crop. Global metabolic 

and proteomic kinetics associated with Hc differences between genotypes remains unknown 

(Szalay et al., 2010).  

It is necessary to gain insight as to how the metabolome and proteome shift over the course 

of a growing season, and how acute frost events interact with the varying stages of dormancy 

between both cold hardy and non-hardy cultivars. Traditional breeding includes selection for traits 

desired for growing under conditions, rather than for specific genes. Cultivar selection for breeding 

programs in mild environments like California do not necessitate that the genotype exhibits 

superior Hc during acclimation and mid-winter, instead a low chilling requirement is a desirable 
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trait for warm climate production (Li and Wang, 2020). Cultivars will be favored in a cold climate 

such as Michigan, if they exhibit consistent Hc. Thus while low chill requirement and Hc are not 

mutually exclusive, they are two separate traits which are targeted by breeding programs for 

adaptation to different growing environments.  

Damage to plant cells due to cold is caused by the formation of intracellular ice crystals 

that destroy cell membranes. In peach, the most critical form of damage is formation of ice crystals 

within the cells of floral primordia, causing the death of the reproductive organ. Extracellular ice 

formation in peach is usually not lethal, however it can lead to desiccation due to a developing 

osmotic gradient within and outside (Gusta et al., 2004; Ruelland et al., 2009) the floral primordial 

cells eventually resulting in cellular death. Acclimation to freeze events occurs during 

endodormancy post leaf senescence (Lang et al., 1987), and it is at this time when the floral buds 

gains the ability to supercool significantly below 0 oC. Xylem discontinuity is one strategy that 

allows peach floral buds to supercool, preventing ice crystal formation within the cells of floral 

primordia (Ashworth and Abeles, 1984; Liu et al., 2019). Endodormancy will last until a 

genotypically unique chilling threshold is reached, which allows the bud to shift to ecodormancy. 

Deacclimation occurs during ecodormancy, as the floral tissue begins to phenologically develop 

until bloom, unless slowed by cool environmental temperatures (Lang et al., 1987). Xylem 

continuity is reestablished during deacclimation, resulting in a rapid loss of cold hardiness (Hc) 

(Ashworth, 1982), with the ability to supercool solely dependent upon the physiology of the buds. 

Throughout this dynamic process differential accumulation of metabolites and/or proteins could 

affect lethal freezing threshold temperatures of flower buds contributing to the physiological 

responses to internal and external stimuli occurring during dormancy.  
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Abiotic stressors such as cold temperatures lead to the creation of reactive oxidative species (ROS). 

These ROS are phytotoxic byproducts that play a key role in signal transduction (Choudhury et 

al., 2017; Hernandez et al., 2021; Vimont et al., 2019). The associated compounds within the 

ascorbate-glutathione cycle (Cooke et al., 2012; Di Ferdinando et al., 2012; Islam et al., 2021; Lu 

et al., 2018; Waśkiewicz et al., 2014), flavanone 3-hydroxylase (Choudhury et al., 2017; Pelletier 

and Winkel-Shirley, 1996; Schulz et al., 2016; Shen et al., 2006), peroxidases (Scandalios, 2005) 

and prenol lipid derivatives such as terpenoids (Vickers et al., 2009) alleviate oxidative stress by 

scavenging ROS. The ROS signal then leads to the expression of genes that lead to the synthesis 

of metabolites in response to the cold stress (Zhao et al., 2005). The tetrapyrrole Uroporphyrinogen 

lll is a precursor to protoporphyrin IX that is known to be part of the signaling system in non-

dormant Arabidopsis that can impart cold-tolerance through the promotion of cyanide-resistant 

respiration (Zhang et al., 2016) 

Primary metabolites (PM), secondary metabolites (SM) and proteins (PT) carry out many 

functions related to dormancy and cold stress within the floral buds. Carbohydrates such as 

sucrose, glucose, sorbitol and raffinose are known to be related to the Hc and development in non-

reproductive tissues in peach and related plants (Maurel et al., 2004a, 2004b; Yu et al., 2017; Yun 

et al., 2014). Associated proteins such as hexokinases are important for sensing plant development 

(Granot et al., 2013). Proline, a water soluble amino acid, has been associated with Hc or cold stress 

during dormancy in numerous plants including peach (Shin et al., 2016; Siddique et al., 2018; Yun 

et al., 2014), and the regulation of proline-associated pentose phosphate pathway that leads to 

antioxidant phenolic compounds biosynthesis in creeping grasses (Sarkar et al., 2009). In addition, 

many amino acids such as glutamic acid and isoleucine have been linked with rapid proliferation 
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during ontogenetic development within floral buds of sweet cherry (Prunus avium L.) (Götz et al., 

2017). 

Despite the ever-growing knowledge of the responses made to abiotic stress by the 

metabolome and proteome of many plants related to dormancy, much is still unknown. 

Importantly, it is not well understood which are the principal Hc related metabolic pathways that 

are associated within distinct peach genotypes, that express hardy or non-hardy phenotypes. 

Previous works have examined changes in specific classes of compounds or focused on just 

specific phases of dormancy. Few studies have combined detailed Hc phenotypic analysis with 

either metabolomic or proteomic data in dormant floral buds of any species. The overall goal of 

this study was to perform a comprehensive evaluation of the expression of primary and secondary 

metabolites, as well as proteins across three distinct dormancy phases, responses to freezing 

events, between a hardy and non-hardy cultivar, in conjunction with robust Hc phenotyping 

measurements. Our results provide key insights that further our understanding of the physiological 

responses of dormant peach floral buds that affect Hc. 

4.2. Materials and Methods 

4.2.1 Plant material and experimental approach 

Dormant peach [Prunus persica (L.) Batsch] flower buds from 9-year-old ’Cresthaven’ or 

‘Sierra Rich’ scions grafted on ‘Lovell’ rootstock were tested for cold hardiness (Hc) using 

artificial freezing in combination with differential thermal analysis (DTA) (Minas and Sterle, 

2020). ‘Sierra Rich’ is a non-hardy peach cultivar that was bred in Modesto, California, while 

‘Cresthaven’ is a hardy cultivar that was bred in South Haven, Michigan (Okie, 1998; Zaiger et 

al., 2002). Floral buds were collected during the dormant season weekly from one-year-old shoots 

of moderate vigor that had no obvious signs of damage and were located at the mid-canopy position 
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of 15 randomly selected trees per cultivar. The sampling location was the Colorado State 

University’s Experimental Orchard at Western Colorado Research Center, Orchard Mesa, 

Colorado (39.042230, -108.469492).  

Samples were collected at 25 time points between Oct. 21, 2016 and Mar. 13, 2017. Shoots 

were sampled from the orchard and buds were then separated and randomly assigned to 16 sets of 

10 buds each (in total 160 buds per time point). Ten sets of buds (100 buds) were used for detailed 

Hc phenotyping using DTA. Three complete sets of buds (30 buds) were kept as a control (not 

frozen) and were used for visual evaluation of oxidative browning to check orchard variability and 

estimate preexisting field cold damage. The remaining three sets of 10 buds each were defined as 

the three biological replicates. The biological replicates were flash frozen in liquid N2 and stored 

in a -80 oC freezer and then lyophilized in preparation for metabolic and proteomic analysis. Of 

the original twenty-five sampling dates, five dates (Nov. 8, 2016, Nov. 21, 2016, Jan. 3, 2017, Jan. 

9, 2017, and Mar. 3, 2017) were selected for metabolomic and proteomic analysis. These five dates 

were characterized by their stage of dormancy (acclimation, max hardiness, and deacclimation). 

Additionally, Nov. 8, 2016 and Jan. 3, 2017 were sampled before a significant freezing events (-

6.8 oC and -11.7 oC, respectively), while Nov. 21, 2016 and Jan. 9, 2017 were sampled after the 

freezing event. These time points enabled the evaluation of the metabolic reaction to the freezing 

event across the two cultivars. 

4.2.2 Measurement of peach floral bud cold hardiness using differential thermal analysis 

Peach floral bud Hc was evaluated using DTA, and weather data was collected following 

the methods described previously in Chapter 1 and 3. (Minas and Sterle, 2020; Tanner et al., 2021). 

Five pairs of floral buds were detached from the one-year-old fruiting shoots and wrapped in 

aluminum foil, then placed within a cell containing a thermoelectric module (TEMs). Ten cells 
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with TEMs were loaded with buds and one was left empty to serve as the reference. Temperature 

was dropped at a rate of 4 oC per hour to -36 oC, in a programmable freezing chamber (Tenney Jr 

Test Chamber, Model TUJR 1.22 cu.ft., Thermal Product Solutions, New Columbia, PA, USA). 

Lethal floral bud temperatures were detected by thermocouples and exothermic reactions related 

to freezing events were detected by TEMs as a voltage response using a multimeter data acquisition 

system (Keithley 2700, Tektronix, Beaverton, OR). Using the accompanying software (Tektronix, 

Keithley ExceLinxTM for Instruments, Beaverton, OR) the data were input to a spreadsheet for 

analysis in Microsoft Excel. Parametric survival analysis was performed using JMP Pro 15.0 (SAS 

Institute, Inc., Cary, NC). For each sampling date, cumulative low temperature exotherm to lethal 

temperature (LT) data were fit to a model using a logistic function to best fit the nonlinear data. 

Using the Weibull regression model, LTs where 10%, 50%, and 90% (LT10, LT50, and LT90) of 

buds that were considered dead were estimated for each sampling date throughout the four dormant 

season-span.  

4.2.3. Sample preparation for metabolomic and proteomic analysis. 

All samples were removed from -80 oC lyophilized in original Eppendorf tubes for 

approximately 30 hours. Dried samples were crushed using “The Stomper” (Next Advance) and 

subsequently homogenized using the “Bullet Blender” (Next Advance.) After physical disruption, 

100 mg of each sample was weighed into a glass autosampler vial. Subsequent biphasic extraction 

was performed in the glass autosampler vial with a total extraction solvent volume of 1.6 mL. 

Specifically, 1.2 mL of 40% methanol (75%) 60% methyl-tert-butyl-ether (MTBE) was added to 

each sample followed by vortexing for 60 minutes at 800 rpm. To induce biphasic separation, 400 

µL of LCMS-grade water was added to each vial followed by an additional 15 minutes of vortexing 

at 800 rpm. The samples were then centrifuged at 2,000  g for 15 minutes at 4 oC. Subsequently, 
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600 µL of polar layer was transferred to a new vial for analysis by GC-MS and stacked injection-

LC-MS(Broeckling and Prenni, 2018). 600 µL of non-polar layer was transferred to a new vial for 

analysis by stacked injection-LC-MS. The remaining protein pellet was kept in -80 oC until 

proteomic analysis.    

4.2.4 Non-targeted primary metabolic analysis using GC-MS 

Fifteen µL of the aqueous phase was dried under N2, re-suspended in 50 µL of pyridine 

containing 25 mg mL-1 of methoxyamine hydrochloride, incubated at 60 oC for 1 hour, sonicated 

for 10 min, and incubated for an additional 1 hour at 60 oC. Next, 50 µL of N-methyl-N-

trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (MSTFA + 1% TMCS, Thermo 

Scientific) was added and samples were incubated at 60 oC for 45 min, briefly centrifuged, cooled 

to room temperature, and 100 µL of the supernatant was transferred to a 150 µL glass insert in a 

GC-MS autosampler vial. Metabolites were detected using a Trace 1310 GC coupled to a Thermo 

ISQ mass spectrometer (Thermo Scientific). Samples were injected in a 1:10 split ratio. Separation 

occurred using a 30 m TG-5MS column (Thermo Scientific, 0.25 mm i.d., 0.25 µm film thickness) 

with a 1.2 mL  min-1 helium gas flow rate, and the program consisted of 80 oC for 30 sec, a ramp 

of 15 oC per min to 330 oC, and an 8 min hold. Masses between 50-650 m/z were scanned at 5 

scans  sec-1 after electron impact ionization. 

 4.2.5 Non-targeted secondary metabolic analysis using LC-MS 

For LC-MS analysis, a stacked injection approach was used to maximize metabolite 

coverage (Schauer et al., 2013).  The organic layer of the extraction was dried under nitrogen, 

resuspended in 600 µL of 3 parts toluene 2 parts methanol. 100 µL of this solution was transferred 

to inserts and 20 µL taken for generating a pooled QC sample. For the aqueous layer 600 µL of 

methanol was added to current 600 µL of extract and the solution mixed and centrifuged to ensure 
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polysaccharide and protein depletion. 100 µL of this solution was transferred to inserts and 20 µL 

taken for generating the pooled QC sample. Two microliter injections were performed in stacked 

format for each of the organic and aqueous phases.   

Samples were analyzed in randomized order, and separation was acheived using a Waters 

Acquity UPLC CSH Phenyl Hexyl column (1.7 µM, 1.0  100 mm), using a gradient from solvent 

A (water, 0.1% formic acid) to solvent B (Acetonitrile, 0.1% formic acid). Injections were made 

in 100% A, held at 100% A for 1 min, ramped to 98% B over 12 minutes, held at 98% B for 3 

minutes, and then returned to starting conditions over 0.05 minutes and allowed to re-equilibrate 

for 3.95 minutes, with a 200 µL  min-1 constant flow rate. The column and samples were held at 

65 oC and 6 oC, respectively. The column eluent was infused into a Waters Xevo G2 Q-TOF-MS 

with an electrospray source in positive mode, scanning 50-2000 m/z at 0.2 seconds per scan, 

alternating between MS (6 V collision energy) and MSE mode (15-30 V ramp). Calibration was 

performed using sodium iodide with 1 ppm mass accuracy. The capillary voltage was held at 2200 

V, source temp at 150 oC, and nitrogen desolvation Τ at 350 oC with a flow rate of 800 L  h-1. 

4.2.5. Non-targeted proteomic analysis LC-MS 

A MixQC sample was made by combining 0.4 μg peptide from each sample. This MixQC 

was injected approximately every 6th sample. A total of 0.8μg of peptides were purified and 

concentrated using an on-line enrichment column (Waters Symmetry Trap C18 100Å, 5 μm, 180 

μm ID  20 mm column). Subsequent chromatographic separation was performed on a reverse 

phase nanospray column (Waters, Peptide BEH C18; 1.7 μm, 75 μm ID  150 mm column, 45 oC) 

using a 90 minute gradient: 5-30% buffer B over 85 minutes followed by 30-45% B over 5 minutes 

(0.1% formic acid in ACN) at a flow rate of 350 nL min-1. Peptides were eluted directly into the 

mass spectrometer (Orbitrap Velos, Thermo Scientific) equipped with a Nanospray Flex ion source 
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(Thermo Scientific) and spectra were collected over a m/z range of 400–2000, positive mode 

ionization. Ions with charge state +2 or +3 were accepted for MS/MS using a dynamic exclusion 

limit of 2 MS/MS spectra of a given m/z value for 30 s (exclusion duration of 90 s). The instrument 

was operated in FT mode for MS detection (resolution of 60,000) and ion trap mode for MS/MS 

detection with a normalized collision energy set to 35%. Compound lists of the resulting spectra 

were generated using Xcalibur 3.0 software (Thermo Scientific) with a S/N threshold of 1.5 and 1 

scan/group. 

4.2.6. Data processing for GC-MS and LC-MS 

For each sample, raw data files were converted to .cdf format, and matrix of molecular 

features as defined by retention time and mass (m/z) was generated using XCMS (Smith et al., 

2006) package in R software for feature detection and alignment. Outlier injections were detected 

based on total signal and PC1 of principal component analysis. Features were grouped using 

RAMClustR (Broeckling et al., 2014).   

Metabolites from GC-MS were matched in RAMSearch (Broeckling et al., 2016) by using 

retention time, retention index and matching spectral data with Golm Metabolome Database 

(Hummel et al., 2013; Hummel et al., 2007) and NISTv14 (http://www.nist.gov) (Broeckling et 

al., 2016).  

For metabolites from LC-MS, molecular weight was inferred from in-source spectra 

(Broeckling, 2016) using interpretMSSpectrum (Jaeger, 2016). MSFinder (Tsugawa, 2016) was 

used for spectral matching, formula inference and tentative structure assignment. Compounds 

categorized into chemical ontologies using the ClassyFire API (Djoumbou Feunang et al., 2016). 

4.2.7. Data processing for proteomic analysis 
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Tandem mass spectra were extracted, charge state deconvoluted and deisotoped by 

ProteoWizard MsConvert (version 3.0). Spectra from all samples were searched using Mascot 

(Matrix Science, London, UK; version 2.6.0) against the Uniprot_Prunus_persica_rev_070918 

database (unknown version, 77466 entries) assuming the digestion enzyme trypsin. Mascot was 

searched with a fragment ion mass tolerance of 0.80 Da and a parent ion tolerance of 20 PPM. 

Carboxymethyl of cysteine was specified in Mascot as a fixed modification. Oxidation of 

methionine was specified in Mascot as a variable modification. 

Search results from all samples were imported and combined using the probabilistic protein 

identification algorithms (Nesvizhskii et al., 2003) implemented in the Scaffold software (version 

Scaffold_4.8.7, Proteome Software Inc., Portland, OR). Peptide thresholds were set (90%) such 

that a peptide FDR of 0.05% was achieved based on hits to the reverse database (Käll et al., 2008). 

Protein identifications were accepted if they could be established at greater than 95.0% probability 

and contained at least 2 identified proteins. Protein probabilities were assigned by the Protein 

Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained similar proteins and could not 

be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of 

parsimony. Proteins sharing significant peptide evidence were grouped into clusters. 

4.2.8. Statistical data analysis of seasonal kinetic fluctuations of metabolites and proteomics 

Determination of differences was tested across the selected five time points, Nov. 8, 2016, 

Nov. 21, 2016, Jan. 3, 2017, Jan. 9 2017, and Mar. 3, 2017. A repeated measures ANOVA was 

performed using Metaboanalyst 5.0 (www.metaboanalyst.ca), on PM, SM, and PT, with genotype 

as a covariate. For this analysis, a false discovery rate adjustment was used to correct for multiple 

testing. Principal component analysis was performed in JMP Pro 15 with all loadings scaled to 1. 

Final visualizations were developed in GraphPad Prism 9.0 (Graph Pad Inc., San Diego, CA, 
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USA). Variable clustering analysis was performed in JMP Pro 15 (SAS Institute Inc., Cary, NC) 

on all significant PT (Statistical details for clusters variables platform, 2023). Variable clustering 

assigned each PT with others which were most highly correlated over the dormant season. A 

significance level of 0.05 was used for all tests of significance. 

4.2.9. Statistical analysis of changes occurring after major frost events during acclimation and 

maximum hardiness.  

Differences between pre-frost PM and post-frost PM expression were examined using two 

sample T-test (p<0.05, with log2 fold change >0.5). PT and SM differences were examined pre- 

and post-frost using two samples T-test (p<0.05, with log2 fold change >1.5). Visualizations for 

volcano and bar plots were developed in GraphPad Prism 9.0. 

4.2.10. Z-score transformation and combined principal component analysis of primary 

metabolites, secondary metabolites and proteins. 

For combined analysis, the relative abundance (X) of each metabolic or proteomic feature 

was normalized to a z-score. The following equation was used independently on data from the 

different detection platforms (GC-MS, LC-MS for secondary metabolites, and LC-MS 

proteomics), before being combined into a single data set: z= (X-mean)/(standard deviation). The 

combined z-score data were analyzed using PCA, and variable cluster analysis in JMP Pro 15. 

4.3. Results 

4.3.1 Detailed physiological characterization of peach floral bud cold hardiness response to 

seasonal temperature changes across two distinct genotypes during dormancy. 

Measurements of floral bud Hc started on October 21, 2016 during bud acclimation, prior 

to leaf senescence and continued through March 9, 2017 (Figure 4.1). Bud Hc started relatively 

non-hardy with LT50 for ‘Cresthaven’ and ‘Sierra Rich’ being -14.1 oC and -13.7 oC respectively. 
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The first significant frost of the season occurred on November 18th, with a low of -6.8 oC. The 

marginal increase in Hc of LT50 (MICH50) in ‘Cresthaven’ was 3.2 oC post-frost compared to pre-

frost, a shift that represented a relative genotypic increase in Hc 4.6 times greater than that of 

‘Sierra Rich’ (Table 4.1). Following a -11.7 oC frost event (Jan. 6, 2017, 615 chilling hours 0-7.2 

oC), maximum Hc was reached for the entire dormant season. The MICH50 was 1.9 oC in 

‘Cresthaven’ which was 1.9 times greater MICH50 than ‘Sierra Rich’. However, the MICH10 was 

7.3 times greater in ‘Cresthaven’. Throughout the dormant season a consistent wider range of lethal 

temperatures in ‘Sierra Rich’ compared to ‘Cresthaven’. The measured range from LT10-LT90 was 

1.6 times higher in Sierra Rich across the dormancy for this study, with much greater consistency 

across the bud population shown with ‘Cresthaven’ buds. Overall, the two genotypes exhibited 

distinct Hc behavior throughout the dormant season. 

4.3.2. Seasonal kinetics of peach floral bud primary metabolites detected by GC-MS  

Principal component analysis of the three replicated samples for each cultivar at each 

sampling date demonstrates that dormancy stage was a major contributor to PC1 (35.5%) (Figure 

4.2a). Influence of dormancy stage is indicated by the separation between the points of different 

color and the consistent direction to the progressive separation across the different time points. 

Given the consistency of the separation for samples of the same dormancy stage, it is evident that 

PC2 (14.4%) is largely capturing the degree that genotype has contributed to primary metabolic 

differences throughout the dormant season.  

Nine known metabolites that were identified using repeated measures ANOVA 

significantly (p= <0.0001-0.0150) vary across time points (Figure 4.2b). The heat map in Figure 

4.2b confirms conclusions drawn about PC1 of Figure 4.2a, the large degree to that these nine 

metabolites were differentially accumulated over time. Of the 9 significantly changed annotated 
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metabolites, 6 were amino acids (AA) or AA derivatives. All AA and 4-hydroxyphenyl acetate 

were at relatively low abundance until deacclimation after which abundance was greatly increased. 

Allantoin, an imidazole, was at high relative abundance through the dormant season, with peak on 

January 9 in both cultivars following a major freezing event and after 619 chilling hours had been 

already accumulated. Raffinose abundance appeared closely associated with Hc, increasing in 

abundance until a maximum Hc was achieved on January 9. Among all annotated metabolites 

detected by GC-MS, proline alone differed significantly between genotypes (p=0.001). Figure 

4.2c illustrates the differences in the metabolites across time, and the striking similarities seen in 

the expression of each metabolite for each genotype. 

4.3.3. Seasonal kinetics of peach floral bud secondary metabolites detected by LC-MS 

PCA indicated that genotype was a major contributor to the differences in abundance 

among secondary metabolites (Figure 4.3a). Clear separation along PC1 (20.7%) is apparent 

between samples from the same dormancy stage but differing in genotype. It is also apparent that 

‘Cresthaven’ had less variation in secondary metabolite abundance across PC1 and PC2 because 

there is less separation between points within the same treatments, as compared to ‘Sierra Rich’. 

Influence of dormancy stage is a major contributor to the variation among samples detected by 

PC2 (16.0%). Vertical separation among time treatments indicates the influence of time on 

metabolite abundance, although time does not appear to account for differences in the secondary 

metabolome to the same extent as in the primary metabolome.  

Differences (p=<0.0001-0.0439) were found among 64 annotated secondary metabolites 

across all times during the dormant season using repeated measures ANOVA (Figure 4.3b). 

Among the 64 significant secondary metabolites 18 differed (p=<0.0001-0.049) between 

genotypes, as compared to only 1 primary metabolite. This supports the evidence provided by 
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PCA, that genotype contributes to changes in secondary metabolome more than the primary 

metabolome.  

Lipids and lipid-like molecules accounted for the greatest proportion of significantly 

changed secondary metabolites (22) of the various represented super-families of molecules, 

followed by phenylpropanoids and polyketides (11), organic oxygen compounds (5), 

organoheterocyclic compounds (8) and organic nitrogen compounds (4). The lipid superfamily is 

further broken into prenol lipids (7), fatty acyls (6), glycerophospholipids (5), steroids (2) and 

sphingolipids (2). Greater variability throughout the dormant season was seen in the secondary 

metabolome compared to the primary metabolome across both cultivars, however, most 

metabolites were still more abundant in deacclimation (Figure 4.3b). Prenol lipids and flavonoids 

were the two metabolic classes with the greatest number of significant differences between 

genotypes. Additionally, among the significant prenol lipids (anhydroretinol, retinyl beta-

glucuronide, and 2-Octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol), all were significantly 

higher in abundace in ‘Cresthaven’, while among the significant flavonoids, all were significantly 

higher in abundance in ‘Sierra Rich’. Oligosaccharides was the last sub family with multiple 

compounds that differed between cultivar, with suffriticoside E and rubrofusarin both being higher 

in abundance in ‘Cresthaven’. Non-targeted LC-MS analysis of secondary metabolites provided 

evidence of differences between the genotypes which corresponded to distinct Hc responses.  

4.3.4. Seasonal kinetics in peach floral bud proteins detected by LC-MS 

Peach floral bud protein PCA showed a clear separation between the deacclimation phase 

from the other sampling times coming from dormancy (Figure 4.4a). However, the separation 

among other points and treatments was inconsistent. Twenty-four significant annotated proteins 

were identified by repeated measures ANOVA to have significantly varied over time (p=0.0001-
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0.0453). The only protein found to be significantly different in abundance between the two 

cultivars was a peroxidase (6G289400) (p=0.021). 

Four protein clusters were found, each cluster containing the proteins that had the greatest 

correlations to others within each respective cluster, using variable clustering analysis. The most 

interesting pattern was observed for protein cluster 4.2, which represented proteins that increase 

or decrease in abundance during January, the time of maximum Hc (Figure 4.4b and 4.4c). This 

included precipitous drops in abundance of 6-phosphogluconate dehydrogenase, flavanone 3-

hydroxylase, tubulin alpha chain, peroxidase, but a sizable increase in glutathione peroxidase. 

Although not statistically significant, proteins in cluster 4.2 demonstrated a trend of higher 

abundance in ‘Sierra Rich’ as compared to ‘Cresthaven’ during January. Furthermore, the 

relatively higher abundance of flavanone 4-hydroxylase in ‘Sierra Rich” supports the findings 

noted previously in section 3.3, that all significantly different flavonoids between genotypes were 

higher in ‘Sierra Rich’. Compared with heatmaps in Figures 4.2b and 4.3b, for the primary and 

secondary metabolites, the proteomic heatmap 4.4b showed a relatively even distribution of the 

peak of seasonal expression among all proteins. However, the addition of variable clustering 

provided  insight as to the associations among proteins. 

4.3.5 Primary metabolic changes occurring after major frost events during acclimation and 

maximum hardiness  

Volcano plot analysis identified differences (p=0.0001-0.0497) in the primary metabolome 

in both genotypes and at two dormancy phases following significant frost events at each phase 

(Figure 4.5a). ‘Sierra Rich’, the least cold hardy cultivar, had more significant differences than 

did ‘Cresthaven’, the hardiest, and in each phase of dormancy there were common metabolic shifts 

between the genotypes (Figure 4.5b). After the acclimation frost event in November a total of 6 
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significant changes were observed for ‘Cresthaven’ metabolite abundance, 11 significant changes 

were observed for ‘Sierra Rich,’ and only one significant primary metabolite was overlapping 

among cultivars. After the maximum hardiness frost event, 9 primary metabolites significantly 

changed in ‘Cresthaven’, 17 in ‘Sierra Rich’, and 4 that were overlapping between genotypes.  

Carbohydrate structural categories which changed post-freeze varied by genotype (Figure 

5c). The summation of the significantly changed primary metabolites in ‘Cresthaven’ in response 

to freeze and across both dormancy phases had a sugar alcohol: soluble sugar: sugar acid ratio of 

2:5:1, while Sierra Rich’ had a ratio of 4:1:2 (Figure 4.5d). When considering the primary 

carbohydrates of the two genotypes, this result highlights a difference in the carbohydrate balance 

that may provide insight into the differences in Hc responses following freezing events across these 

phases of dormancy. Metabolite abundance before and after each frost event were examined to 

identify similarities and significant differences between the genotypes using two sample t-test. The 

total amino acid content of all significantly changed amino acids and derivatives (Figure 4.2) 

including glutamic acid, proline, glycine, valine, isoleucine, and pyroglutamic acid, was calculated 

for each date. Amino acid content of ‘Cresthaven’ was 280%-400% the levels of ‘Sierra Rich’ for 

each of the sampling dates during dormancy and significantly different each date (Figure 4.5e; t-

test, p=0.0017-0.0434). These important findings support the need for analysis before and after 

frost events in addition to seasonal trends for discerning metabolic activity in peach dormant floral 

buds. 

4.3.6. Secondary metabolic changes occurring after major frost events during acclimation and 

maximum hardiness detected by LC-MS 

Volcano plot analysis of secondary metabolites detected using LC-MS clearly indicated 

stark differences among the distinct phenotypic responses to frost, and stark differences related to 
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the dormancy timing of the frost events (Figure 4.6a and b). After the acclimation frost event 

there was a total of 62 annotated secondary metabolites that significantly (p=0.0005-0.0454; fold 

change >1.5) changed in ‘Sierra Rich’, whereas only 12 in ‘Cresthaven’(p=0.0085-0.0448). There 

were 10 significantly changed annotated secondary metabolites that were common to both 

genotypes. Before the frost during the acclimation phase (November) ‘Sierra Rich’ and 

‘Cresthaven’ had similar Hc with LT50 of -15.5 oC and -15.9 oC respectively. But following the 

frost, these Hc values changed to -16.2 oC and -19.1 oC, revealing a much more significant gain of 

Hc. The 3.2 oC MICH50 in ‘Cresthaven’ Hc was 4.6 times greater than the relative shift seen in 

‘Sierra Rich’ that had only 0.7 oC change in Hc. Given the discrepancy in the diversity of the 

metabolic response in light of the Hc change, the response of ‘Sierra Rich’ appears more chaotic, 

and perhaps inefficient. While this was the first major frost event of the dormant season neither 

genotype received fatal damage to floral tissues with the frost only reaching -6.8 oC. 

The -18.6 oC frost event during maximum hardiness (January) resulted in a nearly two-fold 

increase difference in ‘Cresthaven’ MICH50 over ‘Sierra Rich’. The number of significant 

secondary metabolic differences following the frost event was much less dramatic than for the 

November 2016 event, with 8 and 7 significant changes in ‘Sierra Rich’ and ‘Cresthaven’, 

respectively. The change in the type of behavior seen from ‘Sierra Rich’ when comparing the 

metabolic responses after each frost may be related to the prior accumulation of chilling hours 

(619) meaning that the chill requirement had already likely been satisfied. Whereas ‘Cresthaven’ 

was still yet to satisfy the roughly 800 chilling hours requirement and was still surely in 

endodormancy (Figure 4.1c). This difference in cultivar behavior following a major freezing event 

at this phase of dormancy (maximum hardiness) is further highlighted by the lack of any 



 

92 

overlapping primary metabolites that changed significantly across both cultivars in response to 

freeze. 

Significant trends were seen when considering the secondary metabolites that had 

significant increases. Prenol lipids were linked with ‘Cresthaven’ in the previously mentioned 

repeated measures ANOVA approach. Thus, across all pre- and post- frost dates that occurred 

during dormancy (Nov. 9, Nov. 21, Jan. 3, and Jan. 9) the sum of the abundances from each of the 

7 previously identified significant prenol lipids were compared. For each date prenol lipid content 

was significantly (p=0.0002-0.0487) more highly expressed, 1.6 to 2.7-fold greater than the 

expression of ‘Sierra Rich’. This significant and consistent trend aligns with increases in Hc and 

amino acid trends across the same dates (Figures 4.2c, 4.3bc, 4.5e and 4.6e).  

Across multiple classes of secondary metabolites, post maximum hardiness frosts resulted 

in significant gains in ‘Cresthaven’, whereas the corresponding expression of the same metabolites 

in ‘Sierra Rich’ declined, although non-significantly. This difference in behavior was the case 

among the fatty acids: oleamide and squamocin, and the tetrapyrroles: precorrin 3-B and 

Uroporphrinogen lll (Figure 4.3b and 4.6c). This confounding behavior of ‘Sierra Rich’ provides 

more evidence that this type of change in metabolic abundance may be occurring as a result of 

having satisfied the chilling requirements before January 3, 2017.  

4.3.7. Proteomic changes occurring after major frost events during acclimation and maximum 

hardiness detected by LC-MS  

Volcano plot analysis of proteins determined that there was a smaller number of annotated 

proteins changing significantly in response to frost events compared to secondary metabolites 

(Figure 4.7a). As indicated in the Venn diagram in Figure 4.7b, ‘Cresthaven’ expressed fewer 

changes than ‘Sierra Rich’. There was not a single significant difference in protein abundance 
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shared between the two genotypes within the same phase of dormancy. Carboxypeptidase was the 

only protein to show a significant response after both frost events within a single genotype, which 

was ‘Sierra Rich’. All other instances of protein significance after frosts were unique to one 

genotype at a single time. Peptidyl-prolyl isomerase was strongly expressed in ‘Cresthaven’, 

immediately following the acclimation frost event. The expression of elongation factor 1-alpha 

post-frost is similar to the trend seen in elongation factor tu (Figure 4.4c) suggesting a trend in 

translational activity following cold stress in ecodormant buds. Although only significant in ‘Sierra 

Rich’ post maximum hardiness frost, the 5-(hydroxymethyl) glutathione dehydroxylase was 

consistently higher post frost events compared to pre frost events, in both genotypes, supporting 

the role of the glutathione-ascorbate cycle in ROS scavenging.  

4.3.8. Multiple domain approach reveals most influential relationships in metabolic and proteomic 

trends with integration of primary and secondary metabolism with proteome of dormant peach 

floral buds 

The interconnectivity of the largest detectable scope of metabolic and proteomic activity 

was interrogated by PCA and variable clustering of z-scored data (Figure 4.8a and b). Clear 

separation is observed as vertical spacing between the two genotypes was apparent and was clearly 

a major contributing factor to PC2 (15.0%). Dormancy phase was a major contributing factor to 

PC1 (17.6%) with apparent horizontal separation even if individual dates tended to have some 

overlap. Separation within genotype was more pronounced in ‘Sierra Rich’, even though the 

variability was also more apparent. Expanded variation is an indicator of an inconsistent response 

to dormancy phase and frost events. Coupled with a minimal gain in Hc, the response of ‘Sierra 

Rich’ can be considered a disordered response of multiple cycles within bud organelles to being 
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overly cold stressed. ‘Cresthaven’, in contrast, proceeded through the dormant season in a 

consistent linear trend, with minimal variation within groups of replicates. 

Variable clustering was useful when used in combination with PCA, specifically in 

identifying meaningful groupings within over 4,000 individual data points from the combined 

metabolic and proteomic analyses (Figure 4.8b). PCA elucidated the cluster analysis by revealing 

trends in how genotype and dormancy stage influence the abundance of various metabolites and 

proteins within the clusters. Dormancy stage followed diagonal linear progression ending in 

quadrant 2 of the PCA. Averaging across genotype results in a strong linear diagonal trend 

originating in quadrant 4 with the acclimation replicates. Dormancy stage was a major contributor 

to the metabolites and proteins within cluster 8.1. Positively correlated metabolites and proteins 

within cluster 8.1 were grouped in an area of strongest influence on dormancy stage top left of 

quadrant 2, while negatively correlated features grouped in the exact opposite position in quadrant 

4. This combined approach helped to identify a cluster of annotated, closely correlated metabolites 

contributing to ‘Cresthaven’, given the position of the clusters around ‘Cresthaven’ replicates 

withing the PCA plot. Clusters 8.2 and 8.8 contain a mix of prenol lipids, glycerophospholipids, 

and oligosaccharides, supporting evidence found in earlier analyses. The approach highlighted key 

associations unique to the genotypically cold hardy cultivar.. Cluster 8.5 was clearly associated 

with ‘Sierra Rich,’ and was primarily made up of proteins as opposed to the previously mentioned 

clusters 8.2 and 8.8 that were dominated by metabolites. Several stress related compounds were 

found to be related to ‘Sierra Rich’ including the isoflavanoid, isorobustin, as well as proteins 

within cluster 8.5: peroxidase (6G289400), 6-phosphogluconate dehydrogenase, and glutathione 

peroxidase. These results provide unprecedented insight into the metabolic and proteomic changes  

that are associated with changes in peach floral bud Hc. 
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4.4. Discussion  

The greatest threat to peach production worldwide is cold damage to tender reproductive 

tissues. Although peach uses an “avoidance” strategy and remain dormant throughout the coldest 

times of the year, it remains physiologically active during this period (Burke et al., 1976; 

Wisniewski et al., 2014). Underlying metabolic and proteomic composition of floral buds plays a 

key role in determining the Hc of the floral buds. This study provides the first detailed physiological 

characterization of Hc in conjunction with untargeted primary and secondary metabolomics, and 

proteomics. The first goal of this study is to identify how primary and secondary metabolites, and 

proteins change with cold hardiness at different stages of a dormant season. The second goal is 

how metabolites and proteins change after acute frost events. The third goal is how these global 

changes are associated among metabolites and proteins. The fourth goal is to identify differences 

in metabolites and proteins between a hardy genotype and a non-hardy genotype to identify 

compounds which play a large role in determining the Hc trait. 

4.4.1 Seasonal shifts in peach floral bud Hc, metabolome and proteome 

Peach floral buds entered endodormancy during leaf senescence in mid- to late October, 

2016. While floral buds of each cultivar already possessed the ability to supercool significantly 

below freezing (LT10 < -12 oC, across both cultivars), further acclimation did not take place until 

after the first freezing event (-6.8 oC; November 18,, 2016). Following this event the Hc of 

‘Cresthaven’ increased dramatically, while a very subtle shift in Hc was detected in ‘Sierra Rich’ 

(Figure 4.1; Table 4.1). Throughout the rest of the dormant season a distinct phenotypic Hc 

difference was evident between the two cultivars. ‘Cresthaven’ acclimated with a consistently 

hardier trend culminating in maximum hardiness on January 9, 2017. ‘Sierra Rich’ reached 

maximum hardiness on the same date, however, Hc was already lost temporarily on December 12, 
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2016 following warming daily temperatures, despite already experiencing 20 nights of subfreezing 

temperatures since mid-November 2016. The Hc range (difference between LT90 and LT10) was 

60% wider for ‘Sierra Rich’. ‘Cresthaven’ remained unambiguously more cold hardy, with a 

narrowing range and lower lethal temperatures, throughout the dormant season until March 9th, 

2017 when phenologic growth and development was quickly advancing towards bloom on March 

23, 2017.  

PCA of primary metabolites showed there were distinctions between genotypes, and clear 

trends between dormant stages (Figure 4.2a). Repeated measures ANOVA, accounting for 

multiple testing issues using false discover rate (FDR), was used as a conservative measure of the 

changes in peach floral bud primary, and secondary metabolites, and proteins across five time 

points encompassing acclimation, maximum hardiness, and deacclimation. Of the 54 annotated 

primary metabolites nine were significantly different across the time points (p=<0.0001-0.0150). 

These nine metabolites were dominated by AA and were in highest abundance during 

deacclimation, and conversely lower abundance during acclimation and maximum hardiness 

(Figure 4.2b and c). Deacclimation is associated with higher AA content as buds are entering 

ontogenetic development, in preparation for bloom. Proline has long been associated with 

responses to cold stress and cold tolerance protecting plants as an osmolyte, a signaling molecule, 

as an antioxidant, and as a step of the metabolism of several pathways such as the pentose 

phosphate, the phenylpropanoid, and the tricarboxylic acid pathways  (Hayat et al., 2012; Kaur 

and Asthir, 2015; Sarkar et al., 2009; Shin et al., 2016; Yun et al., 2014). Proline was the only 

compound expressed differently between the genotypes, with the greatest abundance difference 

occurring during acclimation and deacclimation.   
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Allantoin is considered to be an efficient nitrogen transport compound, annotated to be 

associated with Hc  in other plant species, by initiating abscisic acid (ABA) synthesis (Kaur et al., 

2016; Watanabe et al., 2014; Yu et al., 2017). Abundance of allantoin peaked for both genotypes 

on Jan., 9 2017 along with maximum hardiness, confirming allantoin’s association with peach 

floral bud Hc. Studies have associated raffinose family oligosaccharides with Hc and dormancy in 

peach as well as other plants (Nishizawa-Yokoi et al., 2008). The relationship of raffinose with Hc 

was also confirmed in this study as raffinose abundance was consistently higher during both 

maximum hardiness dates (January 3 and 9, 2017), in both genotypes. Contrary to expectations, 

raffinose was the only significantly changing carbohydrate across all time points by ANOVA. 

Other studies have found carbohydrates such as glucose, fructose and sorbitol to vary significantly 

in many peach tissues as bud break is approaching (Maurel et al., 2004b; Michailidis et al., 2018). 

The secondary metabolome had overall more significant compounds, and more differences 

between genotypes, which was expected since secondary metabolites are associated with responses 

to abiotic stress. PCA analysis of secondary metabolites indicated clear distinctions in expression 

between genotypes, and a clear linear trend over time, with ‘Sierra Rich’ having more variability 

between reps. The clear linear trend was seen in the heatmap as well, with most of the secondary 

metabolites observed at highest abundance in deacclimation (Figure 4.3b). Among the 64 

annotated significantly changed secondary metabolites, several other oligosaccharides were 

detected such as suffriticoside E and rubrofusarin. The abundance of both oligosaccharides was 

much greater in ‘Cresthaven’, with highest abundance of suffriticoside E occurring during 

acclimation, and highest abundance of rubrofusarin occurring during maximum hardiness. Seven 

flavonoid compounds were found to be significantly different in abundance across the five 

dormancy stages and the two cultivars, with 3 genotypic differences, all in favor of ‘Sierra Rich’. 
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These three flavonoids included: kaempferol 3-rhamnosyl-(1->2)(6''-acetylgalactoside)-7-

rhamnoside, kaempferol 3-galactoside-7-rhamnoside, quercetin 3-(4''-acetylrhamnoside)-7-

rhamnoside. Flavonoids including kaempferol derivatives, quercetin derivatives and proteins 

related to flavonoid biosynthesis are known to be related to abiotic stress as well as having an 

involvement in bud dormancy of Prunus spp. (Ashraf et al., 2018; Bai et al., 2013; Baldermann et 

al., 2018; Di Ferdinando et al., 2012). However, we did not observe a corresponding increase in 

cold hardiness for ‘Sierra Rich’ with higher flavonoid abundance. It is possible that the higher 

abundance of flavonoids was served as a signal ROS scavenging in the more cold-stressed 

genotype.  

Overall, the superclass of lipids, and lipid-like molecules accounted for over 1/3 of the 

significantly changed secondary metabolites. Prenol lipids is a class of compounds comprised of 

terpenes and terpenoids which are also known to be related to stress responses in plants. Of the 7 

prenol lipids found to change significantly throughout the season, 3 compounds were observed to 

be significantly higher in abundance in ‘Cresthaven’ as compared to ‘Sierra Rich’. These included 

the sesquiterpenoids, anhydroretinol and 2-octa.-3-meth.-6-meth-1,4-benzoquinol and the terpene-

glycoside, retinyl beta-glucuronide. The most interesting trends from this interpretation of 

secondary metabolites analysis throughout the season were the oligosaccharides and terpenes 

relationship with Hc, and the relationship of flavonoids to abiotic stress. These trends indicate that 

hardy peach genotypes may express terpenoids and oligosaccharides to help tolerate cold stress.  

Principal component analysis of the proteomic data revealed separation between 

deacclimation and the other dormancy phases, however, maximum hardiness and acclimation 

overlapped (Figure 4.4a). Genotypic separation was only clear at deacclimation. Repeated 

measures ANOVA identified 24 significant proteins varying in expression over time, with 
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peroxidase (8G289400) representing the only significant change between genotypes. Variable 

clustering was performed to aggregate correlated protein abundance across the samples. 

Elongation factor tu (EF-Tu) was classified in protein cluster 4.1, and showed peak expression in 

early acclimation. EF-Tu is involved in translation elongation, which produces proteins. The trend 

of decreasing abundance in EF-Tu indicates less proteins are needed as dormancy progress, 

however, in ‘Sierra Rich’ a there is a second “abundance peak” of this protein after the maximum 

hardiness frost event. The high expression of EF-Tu on Jan. 9, 2016 may indicate that since ‘Sierra 

Rich’ had met its chill requirements and entered ecodormancy prior to the frost there was a stress 

response necessitating the production of more proteins as a result (Figure 4.3b and c). Protein 

cluster 4.2 included proteins which were up or down regulated during the time of maximum 

hardiness. This includes tubulin alpha chain (TAC), which is involved in mitosis, a process which 

intuitively would be less common during cold temperatures and suspended growth in 

endodormancy. The slow rise in TAC in ‘Sierra Rich’ from January 3 to March 3, 2017 may be a 

result of the onset of ecodormancy following chilling satisfaction. Flavanone-3-hydroxylase (F3H) 

is critical to the biosynthesis of flavanones, and high expression in ‘Sierra Rich’ compared to 

‘Cresthaven’ may be because flavonoids tended to be more prevalent in ‘Sierra Rich’. Glutathione 

peroxidase is most highly expressed at the coldest part of the winter, during maximum hardiness, 

in both genotypes. The glutathione-ascorbate pathway is the principal ROS scavenging pathway, 

thus the observed expression was expected because of the high levels of ROS produced by cold 

stress. Protein cluster 4.3 expression tends to follow a relatively linear upward or downward trend 

across the dormant season. Starch synthase is highly expressed during acclimation, and is not 

expressed beyond acclimation. High expression in acclimation is expected because sugars are 
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being synthesized into starch reserves for storage to be used throughout the dormant season and 

during spring.  

4.4.2 Modulations in peach floral bud Hc, metabolome and proteome following acute freezing 

events at different phases of dormancy. 

Following two separate frost events during dormancy the Hc of ‘Cresthaven’ increased 

more dramatically than that of ‘Sierra Rich’. This is likely because ‘Sierra Rich’ was not selected 

for its ability to tolerate cold, whereas cold tolerance was a requisite trait for ‘Cresthaven’, having 

been bred in a location with consistently cold dormant seasons. Chilling requirements for peach 

are not well established in literature, however 650-700 chilling hours (<7.2 oC) is the reported 

chilling requirement for ‘Sierra Rich’ from breeders and nursery sources. Chilling accumulation 

surpassed this threshold on December 13, 2016 (Figure 4.1c). ‘Cresthaven’ likely has a chilling 

requirement of around 850 chilling hours (0-7.2 oC), which was surpassed in January 23, 2017. 

These data would suggest that during the maximum hardiness phase, ‘Sierra Rich’ was in 

ecodormancy phase, while ‘Cresthaven’ was still in endodormancy, have not yet fulfilled the 

chilling requirement. This observation is necessary to consider when comparing post-frost floral 

bud metabolite and protein responses to cold stress during maximum hardiness between the two 

cultivars.  

Post-frost kinetics of primary metabolites revealed that ‘Sierra Rich’ had more significantly 

modulated metabolome than ‘Cresthaven’, although accompanied by a comparatively minor gain 

in Hc (Table 4.1; Figure 4.5). Changes in primary metabolites were more common in ‘Sierra 

Rich,’ however, many of these changes were negative shifts. The sugar alcohols myo-inositol and 

glycerol both significantly declined in abundance following the acclimation frost event. These 

sugar alcohols contribute to the cells’ ability to supercool as osmolytes, however literature also 
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suggests they have a role in scavenging ROS (Ahmad and Wani, 2014; Nishizawa-Yokoi et al., 

2008). This suggests that having failed to alleviate sufficient stress as osmolytes in ‘Sierra Rich’ 

floral bud tissues (e.g., floral primordia) might have allowed for additional increase of ROS levels 

following the freezing event. The increased stress and consequently the increased ROS levels 

might have oxidized more dramatically these sugar alcohols in the non-hardy cultivar, decreasing 

their abundance following the event. Oxidation of primary metabolites is one way to account for 

the reduced abundance of primary metabolites in floral buds after a stress event that would result 

in ROS generation. Raffinose and RFOs are known to be related to cold hardiness and cold stress, 

preventing cellular damage through several different mechanisms, and there was a significant gain 

in ‘Cresthaven’ following the acclimation frost. The increase in raffinose abundances likely played 

a large role in increasing cold tolerance, and acclimating ‘Cresthaven’ more quickly than ‘Sierra 

Rich’. However, across the entirety of the season, repeated measures ANOVA did not detect a 

genotypic difference, and raffinose abundance was remarkably similar between genotypes outside 

of the acclimation frost response. The similarity between the two genotypes with regards to 

raffinose suggests that the soluble sugar is a critical primary cryoprotectant for both genotypes, 

and not a major season-wide difference between the two. 

Proline and other AAs, have been associated with cold hardiness in past studies (Hayat et 

al., 2012). A comparison of the total AA abundance across all significantly changed AAs (glutamic 

acid, proline, glycine, valine, isoleucine and pyroglutamic acid; Figure 4.2b and c) among the 

analyzed floral bud samples revealed a consistently significant and vast difference in AA 

abundance between genotypes (Figure 4.5e). A difference of a factor from 2.8-4.0 times was found 

for the four dormancy dates during acclimation and maximum hardiness between the two cultivars 

with ‘Creshaven’ exhibiting higher total abundance of AA levels. This is strong evidence that 
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genotypes linked to hyper-accumulation of AAs within floral tissues could be more cold-tolerant. 

Proteins, crucial for enzymatic facilitation of all metabolic pathways in plants, consist of long 

chains of amino acids. Glutathione, one of the main antioxidant compounds found in plants is the 

combination of three AA, glycine, glutamate and cysteine (Barba-Espín et al., 2022; Choudhury 

et al., 2017; Cooke et al., 2012; Di Ferdinando et al., 2012; Gill et al., 2013; Hasanuzzaman et al., 

2017; Ruelland et al., 2009). In addition, tetrapyrroles, specialized stress related signaling 

molecules are also largely made up of AA (Zhang et al., 2015). Significant tetrapyrroles from this 

study include precorrin 3-B and Uroporphrinogen III, both of which were highly expressed during 

max hardiness in ‘Cresthaven’ post-frost (Figure 4.6c). 

A high number of changes were expressed in the secondary metabolome of ‘Sierra Rich’ 

floral buds (Figure 4.6d). While this included multiple organic acids, organic oxygen compounds, 

organoheterocyclic compounds and phenylpropanoids and polyketides, the greatest difference was 

in the change in lipid and lipid-like compounds following freezing events. However, it was 

observed that the total abundance of all 7 prenol lipids found to be significantly changed across 

the samples by repeated measures ANOVA. the same statistical analysis approach revealed a much 

higher abundance of prenol lipids in ‘Cresthaven’, with 60-170% higher accumulation across all 

acclimation and maximum hardiness dates (Figure 4.6e). Prenol lipids include terpenes, 

terpenoids, and xanthophylls, some of which have been found to increase cold tolerance or be 

express highly as a result of abiotic stress in past studies (Ruelland et al., 2009; Zhang et al., 2017; 

Zhao et al., 2020; Zhou et al., 2020). The association of prenol lipid accumulation with increases 

of Hc in a cold hardy peach cultivar is a significant finding for breeders selecting for certain 

metabolic traits in breeding cold hardy cultivars. Specific subfamilies of compounds within the 

superclass of prenol lipids which were linked with Hc in ‘Cresthaven’ in the present data set are 
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sesquiterpenoids (anhydroretinol), monoterpenoids (pimilprost), terpeneglycosides (retinyl beta-

glucuronide) and xanthophylls (1,1',2,2',7,8'-Hexahydro-1'-hydroxy-1-methoxy-psi, psi-caroten-

4-one) (Figure 4.3c and 4.6c). One previous study has reported suppression of the gene 

responsible for expressing a specific sesquiterpene (nerolidol) resulted in reduced the cold 

tolerance of tea (Camellia sinensis) and the ability to reduce ROS levels (Zhao et al., 2020). The 

same study verified the findings of the molecular analysis by applying sesquiterpene in tea plants 

that became more tolerant to cold temperatures following treatment. While that study was 

performed on a non-dormant plant unlike the current study, the findings support the high 

prevalence of similar compounds in the more cold hardy peach genotype could be related to 

increased cold tolerance. 

Several oligosaccharides, suffriticoside E and Rubrofusarin 6-[glucosyl-(1->3)-glucosyl-

(1->6)-glucoside] (RGGG) were strongly linked to ‘Cresthaven’ throughout dormancy, as well as 

after acclimation or maximum hardiness frost, while having almost corresponding abundance in 

the less hardy ‘Sierra Rich’. The high levels of abundance of these oligosaccharides supports 

previous findings in literature with regards to oligosaccharides and cold tolerance. Similar trends 

were seen in the tetrapyrroles precorrin-3B and uroporphyrinogen III that were detected in the 

same samples. These tetrapyrroles are large glutamate based molecules similar to heme or 

chlorophyll a molecules (Bali et al., 2014). Uroporphyrinogen III is a precursor to Mg-

protoporphyrin IX, a compound that has been linked to cold tolerance and other abiotic stressors, 

as well as retrograde signaling leading to upregulation of antioxidant enzymes and compounds 

during cold stress (Zhang et al., 2016, 2015). 

Although comparatively few primary metabolites were found through volcano plot 

analysis, several significant findings may provide insight into cold stress response of peach floral 
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buds. Peptidyl-prolyl isomerase (PPase) was increased in abundance following acclimation frost. 

PPase has a role in catalyzing a rate-limiting folding process involved in proline linkage in 

proteins, and has been related to cold stress and hormone signaling in plants (Singh et al., 2020; 

Yoon et al., 2016). This may indicate the up regulation of PPase led to the more efficient use of 

proline, more efficient use of proline related proteins, and the immediate Hc response of 

‘Cresthaven’ flower buds to the cold stress. ‘Sierra Rich’ exhibited significant gains in 

carboxypeptidase and elongation factor 1-alpha (EF1a), both of which have links to translation. 

Carboxypeptidase aids in the modification of proteins after translation, which could indicate it is 

allowing damaged proteins to repair following ROS damage, or aiding in modification of proteins 

to better withstand ROS stress. EF1a is necessary for translation similarly to EF-tu, and is 

overexpressed at the same time as EF-tu in ‘Sierra Rich’. An increase in translation activity after 

a stressful freezing event may be a symptomatic response of ecodormant floral buds, since this is 

not seen in ‘Cresthaven,’ which were still endodormant, or following the acclimation freezing 

event during endodormancy in ‘Sierra Rich’. The consistent up-regulation of 5-(hydroxymethyl) 

glutathione dehydroxylase following freeze events, although only significant once, suggests the 

activity of the glutathione-ascorbate cycle is active in the dormant buds of both genotypes for ROS 

scavenging during abiotic stress. 

4.4.3 Combined macro-analysis of peach floral bud metabolome and proteome contextualizes 

changes across systems during dormancy transitions of a hardy and non-hardy cultivar 

Combining variable clustering analysis of all annotated primary, and secondary 

metabolites and proteins with PCA provided an opportunity to collocate associated variables with 

their associations along genotypes during dormancy transitions. Combining principal component 

loadings with cluster analysis of 8.1 it is clear that time is a significant driver of all the proteomic 
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and metabolic features within that cluster. Clustering suggests positively correlated primary, and 

secondary metabolites and proteins within cluster 8.1, such as proline, are associated with 

deacclimation, while negatively correlated ones, such as glucose-6-phosphate isomerase, are 

associated with acclimation given their placement on the PCA biplot (Figure 4.8a and b). Cluster 

8.2 are in the furthest edge of quadrant 3, indicating their influence over the placement of 

‘Cresthaven’ within the biplot, and lack of association with ‘Sierra Rich’. Examples of metabolites 

associated with ‘Cresthaven’ include: anhydroretinol, retinyl-beta glucuronide, and bistramide C 

(Figure 4.8a and b). While positively correlated features within cluster 8.5, such as flavanone-3-

hydroxylase are highly associated with ‘Sierra Rich’, and relatively unassociated with 

‘Cresthaven’ (Figure 4.8a and b). This combined analysis provides extra insight into genotype, 

time and stress associations with different primary and secondary metabolites and proteins which 

are yet to be found significant across other tests, and confirms findings of other tests. It also 

provides a way to relativize the effects of different types of metabolic features across different 

detection platforms. 

4.5. Conclusions 

This study is the first of its kind to combine a detailed analysis of cold hardiness, and the 

global metabolic and proteomic framework of dormant peach floral buds in order to identify 

critical molecules related to Hc and dormancy transitions. Marginal increases in Hc between two 

peach genotypes in response to two significant frost events, drove differential cold tolerance 

responses, and distinct metabolic and proteomic changes. Numerous candidate molecules and 

classifications of molecules have been put forth as being associated with the increasing cold 

tolerance of ‘Cresthaven’ peach floral buds. Proline and other AA, the backbones of proteins, 

glutathione and tetrapyrroles are highly accumulated in the hardy genotype relative to the non-
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hardy genotype. Significant prenol lipids including anhydroretinol and retinyl beta-glucuronide in 

subclasses such as: terpenes, terpenoids and xanthophylls were highly accumulated throughout the 

dormant season in association with greater Hc. Oligosaccharides such as RGGG, and suffriticoside 

E as well as raffinose were highly associated with greater Hc. In addition to these associations, this 

work presents clusters of many other proteomic and metabolic features found to be highly 

correlated with known contributors to Hc, abiotic stress, and dormancy in peach floral buds.  
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4.7. Tables 

Table 4.1. Cold hardiness (Hc) of peach floral buds on five dates from November 8, 2016 to 

March 3, 2017. Acclimation pre- and post- frost measurements were on either side of the first 

significant frost event (-6.8 oC) of the dormant season on November 18, 2016. Maximum hardiness 

pre- and post-frost measurements were taken at either side of the most significant frost event of 

the year (-18.6 oC) on January 6, 2017, after 601 chill units were accumulated. The deacclimation 

cold hardiness measurement was taken March 3, 2017. Marginal increase in cold hardiness 

(MICH) represents the increase in Hc between two measurements, while the relative genotypic 

increase in cold hardiness shows how great the change in hardiness of ‘Cresthaven’ (CH) was 
relative to ‘Sierra Rich’ (SR). 
  

Chill 

Accumulation 

(0-7.2 
o
C) 

Cresthaven Sierra Rich 

Dates Dormancy LT10
 LT50

 LT90
 LT10

 LT50
 LT90

 

11/8/2016 Acclimation Pre-frost 73 -13.8 -15.9 -18.1 -12.3 -15.5 -18.0 

11/21/2016 Acclimation Post-frost 189 -17.3 -19.1 -20.9 -13.6 -16.2 -18.8 

Marginal Increase in Cold Hardiness (MICH)   - -3.5 -3.2 -2.8 -1.3 -0.7 -0.8 

Relative Genotypic Increase in Cold Hardiness 

(MICH CH/MICH SR) x100% 
- 269% 457% 350% - - - 

1/3/2017 Max Hardiness Pre-Frost 586 -20.4 -21.9 -22.9 -18.9 -21.2 -22.8 

1/9/2017 Max Hardiness Post-Frost 619 -22.6 -23.8 -25.0 -19.2 -22.2 -25.2 

Marginal Increase in Cold Hardiness (MICH) 
- 

-2.2 -1.9 -2.1 -0.3 -1.0 -2.4 

Relative Genotypic Increase in Cold Hardiness 

(MICH CH/MICH SR) x100% 
- 733% 190% 88% - - - 

3/3/2017 Deacclimation - -12.3 -16.1 -19.6 -7.2 -9.4 -16.6 
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4.8. Figures  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Seasonal patterns of temperature, cold hardiness, and chilling accumulation of 

‘Cresthaven’ and ‘Sierra Rich’ flower buds. (a-b) Daily maximum, minimum and mean 

temperature data (from October 1, 2016, through April 1, 2017) and cold hardiness data for 

‘Cresthaven’ (a) and ‘Sierra Rich’ (b) peach floral bud during the dormant season. Cold hardiness 

as measured by differential thermal analysis (DTA), and expressed as lethal temperature quantiles 

for 10, 50 and 90% flower bud loss (LT10, LT50 and LT90). (c) Chilling accumulation from October 

1, 2016, through April 1, 2017, as calculated using four distinct chilling accumulation models: 

dynamic chill portions model, chill hours 0-7.2 oC, chill hours <7.2 oC, and the Utah chilling 

model. Daily temperature data and observed lethal temperatures were collected at the CSU’s 
experimental orchard at WCRC-OM, Grand Junction, CO. 
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Figure 4.2. Dormant season kinetics of primary metabolites in flower buds of ‘Cresthaven’ 
and ‘Sierra Rich’ peach cultivars. Molecular feature abundance measured by non-targeted gas-

chromatography mass spectrometry (GC-MS). (a) Principal component analysis (PCA) bi-plot of 

relative abundance of primary metabolites, with comparisons between two cultivars among five 

time points throughout the dormant season. (b) Heat map showing relative abundance, scaled 

within each cultivar, of primary metabolites determined to significantly change across five time 

points during the dormant season as determined by repeated measures ANOVA (p<0.05). 

Metabolic abundances differ between cultivars if denoted with “**”. Different categorical 
annotations are indicated by abbreviations: AA-amino acids and derivatives, IM-Imidazole, PH-

Phenol, PS-Polysaccharide. (c) Relative abundances of significant primary metabolites, as 

determine by repeated measures ANOVA to change across five time points. Proline was the only 

primary metabolite to significantly differ between peach genotypes. Error bars represent one 

standard deviation. 
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Figure 4.3. Dormant season kinetics of secondary metabolites in flower buds of ‘Cresthaven’ 
and ‘Sierra Rich’ peach cultivars. Molecular feature abundance measured by non-targeted 

liquid-chromatography mass spectrometry (LC-MS). (a) Principal component analysis (PCA) bi-

plot of relative abundance of secondary metabolites, with comparisons between two cultivars 
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among five time points throughout the dormant season. (b) Heat map showing relative abundance, 

scaled within each cultivar, of secondary metabolites determined to significantly change across 

five time points during the dormant season as determined by repeated measures ANOVA (p<0.05). 

Metabolic abundances differ between cultivars if denoted with “**”. Different categorical 
annotations are indicated by abbreviations: ALK-alkaloids, AA-amino acids, ACN-anthracyclines, 

BNZ-Benzotriazole, ARL-Arylthioethers, AAA-alpha amino acids, CNN-cinnamic acids, EPX-

epoxides, FAT-fatty acids, FLV-flavonoids, FNC-flavin nucleotides, GLP-Glycerophospholipids, 

OLI-oligosaccharides, IND-indolyl carboxylic acids, TGL- Terpene glycosides, ISQ-

Isochromanequinones, LLN- lignolactones, PAM-phenylacetamides, NPN-napthopyranones, 

ONC- organonitrogen compounds, OOC-organooxygen compounds, PLP-prenol lipids, SLP-

sphingolipids, STD- steroid, TAN-tannin, TPD-terpenoid,AGL-aminoglycosides, TPL-

tetrapyrroles. (c) Individual bar plots of secondary metabolites determined by repeated measures 

ANOVA to be expressed both differentially across time during dormancy, and between cultivars 

if denoted with “**”. Error bars represent one standard deviation. 
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Figure 4.4. Dormant season kinetics of proteins in flower buds of ‘Cresthaven’ and ‘Sierra 
Rich’ peach cultivars. Molecular feature abundance measured by non-targeted liquid-

chromatography mass spectrometry (LC-MS). (a) Principal component analysis (PCA) bi-plot of 

relative abundance of proteins, with comparisons between two cultivars among five time points 

throughout the dormant season. (b) Heat map showing relative abundance, scaled within each 

cultivar, of proteins determined to significantly change across five time points during the dormant 

season as determined by repeated measures ANOVA (p<0.05). Protein abundances differ between 

cultivars if denoted with “**”. (c) Individual bar plots for proteins determined to be accumulated 

significantly different over time by repeated measures ANOVA (p<0.05), were aggregated using 

variable clustering analysis, which combined each protein into a cluster of proteins with which it 

was most highly correlated. The three proteins from each protein cluster with the highest 

coefficients of determination (r2) were ranked from top to bottom within each cluster, and none of 

the displayed proteins varied significantly by genotype. Error bars represent one standard 

deviation. 
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Figure 4.5. Multifaceted comparison of differential primary metabolite abundance for two 

peach cultivars, ‘Cresthaven’ and ‘Sierra Rich,’ following two major frost events. One frost 

event occurred in November 18, 2016 (-6.8 oC) during the acclimation phase of endodormancy, 

and one which happened during maximum hardiness at January 6, 2017 (-18.6 oC). (a) Volcano 

plots displaying significant (p<0.05, with log2 fold change >0.5) increases and decreases in 

abundance of primary metabolites before and after two frost events for each of two genotypes. (b) 
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Venn diagrams showing the numbers of primary metabolites which are differentially and 

significantly (p<0.05, with log2 fold change >0.5) modulated by frost events at different dormancy 

stages. (c) Bar plots showing abundance of individual metabolites at the different time points pre- 

and post-frost. Comparisons of pre- and post- frost events determined significant by T-test 

(p<0.05) are indicated by different letters. Error bars represent one standard deviation. (d) 

Histogram displaying the number of significant (p<0.05, with log2 fold change >0.5) metabolic 

changes in abundance, by class for each frost event and each genotype. (e)  Bar plot of T-

tests(p<0.05) showing differences in total accumulation of all GC-MS detected amino acids 

between genotype for each sampling date from November 2016 and January 2017. Error bars 

represent one standard deviation. 
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Figure 4.6. Multifaceted comparison of differential secondary metabolite abundance for two 

peach cultivars, ‘Cresthaven’ and ‘Sierra Rich,’ following two major frost events. One frost 

event which happened in November 18, 2016 (-6.8 oC) during the acclimation phase of 

endodormancy, and one which happened during maximum hardiness at January 6, 2017 (-18.6 oC). 

(a) Volcano plot displaying significant (p<0.05, with log2 fold change >1.5) increases and 

decreases in abundance of secondary metabolites before and after two frost events for each of two 

genotypes. (b) Venn diagrams showing the numbers of secondary metabolites which are 

differentially and significantly (p<0.05, with log2 fold change >1.5) modulated by frost events at 

different dormancy stages. (c) Bar plots showing abundance of individual metabolites at the 

different time points pre- and post-frost. Comparisons of pre- and post- frost events determined 

significant by T-test (p<0.05, with a log2 fold change >1.5) are indicated by different letters. Error 

bars represent one standard deviation. (d) Histogram displaying the number of significant (p<0.05, 

with log2 fold change >1.5) metabolic changes in abundance, by class for each frost event and 

each genotype. (e)  Bar plot of T-tests(p<0.05) showing differences in total accumulation of all 

LC-MS detected prenol lipids between genotype for each sampling date from November 2016 and 

January 2017. Error bars represent one standard deviation. 

 

 

 

 

 

 



 

128 

 

Figure 4.7. Multifaceted comparison of differential protein abundance for two peach 

genotypes, ‘Cresthaven’ and ‘Sierra Rich,’ following two major frost events. One which 

happened in November 18, 2016 (-6.8 oC) during the acclimation phase of endodormancy, and one 

which happened during maximum hardiness on January 6, 2017 (-18.6 oC). (a) Volcano plot 

displaying significant (p<0.05, with log2 fold change >1.5) increases and decreases in abundance 

of proteins before and after two frost events for each of two genotypes. (b) Venn diagrams showing 

the numbers of proteins which are differentially and significantly (p<0.05, with log2 fold change 

>1.5) modulated by frost events at different dormancy stages. (c) Bar plots showing differential 

abundance of individual proteins at the different time points pre- and post-frost. Comparisons of 

pre- and post- frost events determined significant by T-test (p<0.05) are indicated by different 

letters. Error bars represent one standard deviation. 
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Figure 4.8. Combined analysis of GC-MS and LC-MS detected metabolites and proteins of 

dormant peach floral buds, across five time points and two cultivars (‘Cresthaven’ and 
‘Sierra Rich’). All metabolites and proteins were normalized as z-scores and analyzed across all 

as a single population. (a) Principal component analysis Bi-plot (PCA) of all detectable metabolites 

and proteins for observation of which have greatest influence with the shift in abundance across 

time and genotype. Specific metabolites and proteins are annotated on the PCA Bi-plot. (b) 

Variable clustering analysis used in conjunction with PCA bi-plot to identify how different 

metabolites and proteins correlate with one another, and which are associated with different 

dormancy stages and genotypes. 

 


