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ABSTRACT

SAME DATA, SAME FEATURES: MODERN IMAGENET-TRAINED CONVOLUTIONAL

NEURAL NETWORKS LEARN THE SAME THING

Deep convolutional neural networks (CNNs) are the dominant technology in computer vision

today. Much of the recent computer vision literature can be thought of as a competition to find the

best architecture for vision within the deep convolutional framework. Despite all the effort invested

in developing sophisticated convolutional architectures, however, it’s not clear how different from

each other the best CNNs really are. This thesis measures the similarity between ten well-known

CNNs, in terms of the properties they extract from images. I find that the properties extracted

by each of the ten networks are very similar to each other, in the sense that any of their features

can be well approximated by an affine transformation of the features of any of the other nine. In

particular, there is evidence that each network extracts mostly the same information as each other

network, though some do it more robustly.

The similarity between each of these CNNs is surprising. Convolutional neural networks learn

complex non-linear features of images, and the architectural differences between systems suggest

that these non-linear functions should take different forms. Nonetheless, these ten CNNs which

were trained on the same data set seem to have learned to extract similar properties from images.

In essence, each CNN’s training algorithm hill-climbs in a very different parameter space, yet

converges on a similar solution. This suggests that for CNNs, the selection of the training set and

strategy may be more important than the selection of the convolutional architecture.
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Chapter 1

Introduction

What follows is a brief overview of the historical and modern context of deep convolutional

neural networks. For readers familiar with these models as they are specifically applied to computer

vision, feel free to skip to Section 1.2.

1.1 Context

Since the infamous 2012 AlexNet paper, deep convolutional neural networks (CNNs) have

dominated computer vision research [7]. This surge in popularity is also observed economically,

with MarketsandMarkets Research predicting the global artificial intelligence market to be valued

at $190 billion by 2025 from $16 billion in 2017 [8]. While the recent growth in deep learning is

especially strong, the underpinnings of these modern algorithms go back decades.

The first computational model for a neural network was presented in 1943, unsurprisingly

inspired by biological neurons [9]. This "logical calculus" provided a framework for representing

complex patterns with many interconnected "all-or-none" neurons. Over the next two decades,

research into artificial neural networks grew, with a fully functional many-layered (i.e. deep)

neural network demonstrated in 1967, though these are still a far-cry from modern nets [10].

The underlying structure of a standard feed-forward (i.e. non-cyclical) neural network is rel-

atively straightforward. See Figure 1.1 for an illustration. Essentially, an input vector x (e.g. an

image, sound frequencies, some text) is fed into a series of neurons, each multiplying that input

by their own vector of learned weights, wi. Each neuron’s sum of those products and a single bias

term b are passed into a non-linear activation function f() to then produce that neuron’s activation,

or

hi(x) = f

(

∑

j

(xjwi,j) + bi

)

1
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Figure 1.1: Illustration of a fully-connected feed-forward deep artificial neural network.

Many of these neurons are assembled to build a hidden layer. The output of a neuron is often

called a feature, representing the features extracted from the input to be utilized by the model. If

multiple hidden layers exist, the network is deep. Once feature vectors reach the output layer

they are used to extract some useful or abstract information about the inputs. So, depending on

the size of the input, the number of neurons per layer, and the number of layers in the model, this

computation may require only a few hundred multiplications and additions.

This sort of neural network is not what the previously mentioned AlexNet uses, however.

AlexNet is a convolutional neural network (CNN), as opposed to a fully-connected one. Con-

volution means that weights are scanned over an input image instead of being densely connected

to every pixel. This means many fewer connections from inputs to weights, so fewer weights. This

also means CNNs treat pixels which are spatially local differently than those which are far apart,

similar to receptive fields in the brain’s visual cortex [11]. Inspired by those receptive fields, the

first CNN (dubbed the Neocognitron) was demonstrated in 1980 [12].

For the purposes of understanding this thesis, let’s dig a little deeper. Again, each layer of a

CNN consists of a collection of learned filters (i.e. weights) which are convolved over the input to

2



Figure 1.2: Illustration of a typical CNN, including subsampling or pooling operations. Each stack of filters

makes up a convolutional layer, with many layers comprising the entire net1.

produce spatially-sensitive activation maps as input to the next layer. See Figure 1.2 for an illus-

tration. As before, these filters and activation maps exploit spatial locality between features. This

allows low-level features extracted by earlier layers to be integrated into more complex or abstract

visual information by later layers. The result is a hierarchy of visual features—generally growing

more complex or abstract with depth. Most importantly, these inter-layer features represent what

visual information is relevant to that model’s particular task; they represent what the model has

learned.

Once these visual features reach the end of the network, they can be used to predict something

related to the input. In the case of classification, this means flattening visual features into feature

vectors, and classifying those features. Nowadays this is done using a simple linear model, though

AlexNet used two fully-connected layers. The resulting logits have a numeric entry for every label,

and are commonly converted into bounded class probabilities using the softmax function.

Even with the advances provided by the CNN architecture, these models can still be computa-

tionally complex (especially for the 1980s). The next important advancement, then, came in the

form of backpropagation, a method first applied to neural networks in 1986 [13]. In essence,

backpropagation provided an efficient calculation of how every weight in the model contributes

to the model’s performance on a given input (i.e. the combination of each weight’s gradient). In

1By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374
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1989, the first backpropagation-trained CNN was trained to recognize hand-drawn digits, provid-

ing a foundation for modern computer vision [14].

Over the following decades, the availability of cheaper storage and more powerful computa-

tional resources finally set the stage for AlexNet. While it wasn’t the first GPU implementation of

a CNN, nor the first application of a CNN to an image recognition contest, AlexNet marked a mas-

sive leap in classification accuracy over previous techniques, thanks in large part to its depth [7].

The 60 million parameter, 7-layer model took 5 to 6 days to train using 2 consumer NVidia GPUs,

and the widespread ILSVRC20122 dataset’s 1.3 million hand-labeled images (i.e. ImageNet 2012).

And yet, today AlexNet is far from the best-performing deep convolutional neural network archi-

tecture.

Since 2012, deep convolutional neural networks (CNNs) have dominated computer vision re-

search. CNNs are the top performers in object recognition competitions [15] and have been applied

to many other visual tasks including object detection and localization [16, 17], segmentation [18],

pose estimation [19], gesture recognition [20], and visual saliency [21]. As a cognitive architecture,

however, CNNs leave something to be desired, because they aren’t so much a single architecture

as they are a framework that can be used to instantiate many architectures. These architectures

can vary in the number of filters per layer, the size and shape of filters, the connectivity between

layers, the use of pooling and regularization layers, and beyond. Over the past 8 years, much of

the computer vision literature can be thought of as a competition among labs to find the best archi-

tecture for vision within the deep convolutional framework. A snapshot of this effort as it relates

to the popular ILSVRC2012 challenge is seen in Figure 1.3. Indeed, CNNs have been demon-

strated which have 1001 layers [22], can be run on a smartphone [23], or have their architectures

learned via reinforcement learning [4]. Despite all the effort invested in developing convolutional

architectures, however, it’s not clear how different from each other the best ones really are.

4
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Figure 1.3: State-of-the-art accuracy on the ILSVRC2012 challenge since its inception in 2012. The green

dots show the state-of-the-art methods, with other efforts shown in gray (note that not all methods are

labelled)3.

1.2 How different are these CNNs?

Take Inception and ResNet, for example. Inception [2] is a CNN-based architecture that divides

processing by scale, merges the results, and repeats. Inception was originally developed by Google

in 2014, and refined over the next 2 years [2,24–26]. ResNet [1], on the other hand, has a simpler,

single-scale processing unit with many more layers and a data pass-through between levels (an

idea expanded on in DenseNet [27]). ResNet was developed at Microsoft in 2016 and also subse-

quently refined [1, 22]. In essence, Inception goes wide, while ResNet goes deep. Despite these

disjoint pedigrees and conceptual differences in architecture, however, they perform similarly on

the ILSVRC2012 image recognition challenge [15]. ResNet-v2 152 labels 78.9% of ILSVRC2012

test images correctly [22], while Inception-v4 labels 80.2% correctly [26]. Since these networks

2See Section 2.1 for more information on ImageNet and ILSVRC2012.

3By Atlas ML, CC BY-SA 4.0, https://paperswithcode.com/sota/image-classification-on-imagenet
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were published in 2016, many have improved upon these numbers, with the state-of-the-art for

ILSVRC2012 as of writing belonging to an EfficientNet architecture [28] trained using the Noisy

Student method [29] achieving 88.4% accuracy. Still, how do we know that the (voluminous) effort

invested into CNN architectures is actually impacting which features these models learn?

1.3 Affine Feature Equivalence

To better understand the differences introduced by different architectures, this thesis addresses

the question of how similar different CNN architectures are to each other, not in terms of the

number of ILSVRC2012 test images they correctly label, but in terms of the properties they extract

from images. Ten popular models are used, all of which use a convolutional architecture to extract

features from images, followed by a fully-connected classifier to assign labels to images based

on the extracted features. The architectures used by each system to extract features are different,

as are the numbers of features extracted (from 1,024 with Inception-v1 to 4,320 with PNASNet).

These nets may be compared using various techniques (see Chapter 3 for a discussion of these).

For example, visualization techniques have revealed that Inception and ResNet use qualitatively

different visual information to discriminate amongst classes [30, 31].

Nonetheless, I find that the properties extracted by every CNN studied are very similar if not

equivalent, in the sense that an affine mapping can be used to predict the features of one CNN

from the features of another. The argument that affine mappings can reveal equivalence is dis-

cussed in Chapter 4. Indeed, these mappings are accurate enough that mapped features can even be

used to label images without retraining the underlying classifier. This suggests that each of these

10 CNNs, despite their structural differences, exploit essentially the same properties of images. At

the same time, a deeper analysis of these mappings suggests that while they may extract the same

properties, some appear to do it more robustly than others, and may extract a few more properties.

On one hand, the finding that each of these 10 networks’ features are linked by only affine trans-

formations is surprising. CNNs are so powerful precisely because they are able to extract complex,

non-linear features from low-level image data and synthesize them into high-level, even abstract

6



representations. The differences in architecture between these CNNs suggests that the non-linear

features learned are quite different, since each CNN must learn using a different configuration of

weights in order to succeed at its classification task. Essentially, each CNN must hill-climb in a

totally different solution space. However, the results indicate the opposite. Since each one of these

CNNs is related to every other by only a linear transformation, they must be extracting the same

information.

On the other hand, a second experiment strongly suggests that this relationship has more to do

with the layer after each feature space studied—the classification layer. In each of the 10 CNNs

studied, this layer is also linear, meaning there is a linear relationship from each net’s feature

vectors to their logits4. Using only these classifiers, mappings can be constructed which perfectly

translate features from one net’s feature space to another’s. While this doesn’t reduce the degree

of linear equivalence between CNNs (in fact it becomes perfect), this does strongly suggests that

such equivalence is instead the direct result of each model learning to minimize the same loss. In

essence, each net is trained to produce features which best complete the classification task, and

each feature space is only a linear transformation from this shared task. Still, feature equivalence

by prior layers has not been disproven. Indeed, the work by Lenc et al. demonstrates that prior

layers do indeed contain some degree of overlapping information (as discussed in Section 3.3).

Regardless of the mechanism, this work may identify a sort of law of diminishing returns on

the effort invested in designing better CNN architectures (at least for the sake of task performance).

That is, if architecture differences always produce similar features, then effort should instead be

invested on training data and procedure, such as data augmentation. Indeed, the latest two increases

in task performance on ILSVRC2012 have been achieved using novel training techniques and data

augmentation on established networks rather than adjustments to CNN architecture [29, 32].

4Recall that logits are the final features used for classification, often converted to bounded class probabilities using

softmax.
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Chapter 2

Background

This section gives the background information on ImageNet and each of the 10 CNNs studied

which is necessary to fully understand this paper. Nothing in this section is novel, but it is included

for completeness. Readers who are already familiar with this popular dataset and CNNs may

choose to skip to Chapter 3.

2.1 ImageNet

The ImageNet project is a large, open database of images and videos for facilitating computer

vision research [33]. The database consists of roughly 14 million images belonging to about 22,000

categories organized in a hierarchical fashion using WordNet [33]. About 1 million of these images

include bounding boxes as well.

Since 2010, the project has provided a subset of the dataset for the annual ImageNet Large

Scale Visual Recognition Challenge. The challenge now consists of object classification, detec-

tion, localization, and more [15]. Since AlexNet’s splash in 2012, that year’s challenge dataset

(ILSVRC2012) has drawn continuous attention as a benchmark (see Figure 1.3) [15]. That partic-

ular dataset consists of 1000 classes, including animals, plants, foods, and various instruments. No-

tably, 120 of these classes are dog breeds. See Figure 2.1 for a few examples. While ILSVRC2012

remains a popular benchmark for new CNN architectures and training methods, it has also become

a common starting point for the field of transfer learning (i.e. pretraining), thanks in part to the

breadth of its features [34, 35].

2.2 ResNet

In 2015, He, et al. introduced ResNet and the residual block (Fig. 2.2), consisting of two convo-

lutional layers and a non-parameterized shortcut connection which passes the previous block’s out-

put to the next block [1]. This provided a leap in state-of-the-art performance on the ILSVRC2012

8



(a) Cardoon (b) Cheeseburger

(c) Appenzeller

(d) Entlebucher

Figure 2.1: Examples of images in ILSVRC2012, including 2 of the 120 dog breeds.

Figure 2.2: ResNet-v1 shortcut connections (taken from [1])
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challenge using a 152-layer ResNet, and established the property that having more layers tends

to produce higher recognition accuracy [22]. Continued improvements can be demonstrated with

even 1, 000 layers—a previously unattainable feat [1]. Following this result, they modify the resid-

ual block so that ReLU activation is not applied to the shortcut connection, providing further

improvement with ResNet-v2 in 2016 [22]. This simple structural feature has made its way into

many other deep CNNs, providing broad success (e.g. DenseNet [27], Inception-ResNet-v2 [26]).

ResNet-v2 152 labels 78.9% of samples correctly using a single model and 320x320 single-crop

on the ILSVRC2012 challenge’s 50k validation samples, remaining a high-performer today. In

this thesis both versions of the 152-layer ResNet are studied: ResNet-v1-152 and ResNet-v2-152.

2.3 Inception

Figure 2.3: Inception-v1 module (taken from [2])

Szegedy et al. took a different approach, beginning with a core architecture for addressing scale

variation, known as the Inception module (Fig. 2.3) [2]. These modules use a combination of con-

volutional layers at different scales and max pooling computed on the same input and concatenated

together. Many of these modules are stacked together to create GoogLeNet (later Inception-v1).

While the modular architecture was never abandoned, numerous refinements were made to these

modules as the authors optimized for classification performance, training time, and computational

10



footprint [24–26]. Though many architectural features contribute to Inception’s success, notable

strategies include the use of 1 × 1 convolutions (a form of learned pooling for dimensionality re-

duction), factoring n×n convolutional layers into stacked n×1 and 1×n layers (a computational

footprint reduction), and batch normalization (a technique for reducing covariance shift). The

most recent Inception variant (Inception-v4) is still a high-performer on the ILSVRC2012 chal-

lenge dataset, correctly labelling 80.2% of ILSVRC2012 validation samples using a single model

and 299x299 single-crop [26]. In this thesis all 5 versions of Inception are used: Inception-v1

through Inception-v4, and the hybrid Inception-ResNet-v2.

2.4 MobileNet

Figure 2.4: Illustration of convolutional layer used in MobileNet-v2 including depthwise separable convo-

lutions, a shortcut connection, and linear bottleneck (hatched layers have no non-linearities), taken from [3].

In 2017, Howard et al. focused on a different challenge facing CNNs: efficiency [23]. They

present the low-resource MobileNet-v1 architecture which takes advantage of multiple optimiza-

tions. The key architectural feature for this work is called a depthwise-separable convolution.

Instead of a standard convolution which simultaneously filters and combines inputs at different

depths (e.g. channel, for the first layer), a depthwise-separable convolution splits this operation

into two steps, drastically reducing computational costs. This is achieved through "shallow" single-

channel filters being convolved over each input channel, then combined with 1 × 1 convolutions

(also called pointwise convolutions) as illustrated by the second and third blocks in Figure 2.4.
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These models are further tuned for specific scenarios by use of two hyperparameters: a width

multiplier for reducing both model size and cost, and a resolution multiplier for further reducing

computational cost. Among many other experimental successes, a variant of MobileNet-v1 with a

depth multiplier of 1.0 and a resolution of 224x224 beat Inception-v1 in performance, model size,

and computational cost (MobileNet-v1-1.0-224).

This architecture was enhanced by Sandler et al. for even greater performance and efficiency

as MobileNet-v2 [3]. The key changes made in MobileNet-v2 were the introduction of "linear

bottleneck" layers and the addition of residual connections popularized by ResNet [1]. These

additional features are shown in Figure 2.4. With these and other enhancements, a MobileNet-

v2 variant outperforms the best MobileNet-v1 while using fewer parameters and computational

power, achieving 74.7% accuracy on ILSVRC2012 [3]. In this thesis only this top-performing

MobileNet-v2-1.4-224 variant is used.

In 2019, further optimizations were presented as MobileNet-v3, though these models are nei-

ther covered nor studied here [36].

2.5 (Progressive) Neural Architecture Search

Instead of hand-picking architectural features, Zoph et al. sought to use reinforcement learning

to search for a better CNN [37]. Using a recurrent neural network (RNN), reusable "cell" struc-

tures are proposed before being placed into a predefined architecture for evaluation, consisting of

fitting and evaluating the model on a smaller dataset (in this case CIFAR-10). After searching

for 2,000 GPU-hours, cell structures are placed into a larger model, which resulted in a NASNet

variant achieving state-of-the-art performance on ILSVRC2012 (82.7%) while using many fewer

parameters than previous methods [37].

Also in 2018, Liu et al. took the same cell-learning approach from NASNet but achieved much

higher efficiency during search [4]. This was thanks to two major optimizations: cell configura-

tions were searched in order of increasing complexity, and the search was guided by a separate

"surrogate" function trained alongside the search. With these enhancements, PNASNet achieved

12



(a)

(b)

Figure 2.5: PNASNet cell (left) and complete ImageNet architecture (right), taken from [4]

state-of-the-art accuracy on ILSVRC2012 (82.9%) all while reducing the computation necessary

for the search by at least 5x. See Figure 2.5 for the resulting cell and architecture found by [4].

Besides achieving state-of-the-art task performance, both papers also present a low-resource,

"mobile" variant. The mobile variants are not studied in this thesis. Instead, both state-of-the-art

models are used: NASNet-Large and PNASNet-Large (also called NASNet-A and PNASNet-5,

respectively).
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Chapter 3

Related Work

To deal with a 14-dimensional space, visualize a 3-D space and say ’fourteen’ to yourself very

loudly. Everyone does it. –Geoffrey Hinton

Alongside the strong interest in more powerful, lower resource CNNs, is a growing interest in

comparing and understanding them. What follows is an overview of common methods of compar-

ing and understanding CNNs, and how they relate to the work presented in this thesis.

3.1 Black box evaluation

The most common method for comparing deep learning systems is black box evaluation. A task

is found for which there is a common dataset, and networks are evaluated to see which produces

the lower error rate. Care must be taken in this mode of comparison to make sure that the finding

is repeatable by others and not overfit to the particular dataset. In particular, one cannot simply

take the entire dataset and train until error is minimized on the whole, since the model may have

memorized the features in that dataset rather than the more desirable generic features common to a

particular class. This "overfitting" issue is commonly mitigated by splitting the dataset into test and

train partitions. The model is trained on the train set, using the test set for an unbiased evaluation

5. Selection of the training and test sets are also important, then, since either partition may not be

representative of the other. For datasets which are not pre-partitioned, there are multiple methods

of achieving an unbiased indication of performance, such as k-fold cross-validation.

As mentioned before though, ImageNet—or ILSVRC2012 in particular—is the most com-

mon dataset for comparing image classification systems [15]. Recall Figure 1.3 and its source for

notable submissions and state-of-the-art advances since the 2012 challenge. In the case of Ima-

5Sometimes a third validation set is used as well to guide training processes, such as selection of hyperparameters.

The test set, however, remains unseen during any training/tuning processes.
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geNet, the dataset is pre-partitioned into 1.3 million training images, and 50k testing6 images [15].

Accordingly, image classification models are typically trained on the 1.3 million images in the

training set to minimize incorrect predictions (i.e. classification error). Then, they are evaluated

by predicting labels for each of the 50k test set images to produce a rate of correct prediction

(i.e. classification accuracy). While significant gains in accuracy alone are often enough cause to

publish, many model designers may choose to dive deeper.

For example, another common metric for comparison is top-n accuracy, or the rate at which the

correct label occurred within the best n predictions for the model. In the case of ILSVRC2012, top-

5 accuracy/error is typically reported [15]. Others may provide a confusion matrix, or a breakdown

of class predictions by class label, identifying classes which the model commonly confuses.

Black box evaluations are appropriate when the goal is to pick a system to minimize error rates,

but they provide little information about the relative strengths and weaknesses of systems. When

two systems perform similarly, as with many of the CNNs studied here, black box evaluations

fail to disclose whether the two systems are doing essentially the same thing, or instead are very

different and just happen to label roughly the same number of images correctly. Even when per-

formance is changed, the underlying reason is not clear. Still, they can be useful for summarizing

these highly complex models.

3.2 Visualization

While black box methods are useful for comparing otherwise mysterious, immensely complex

models by abstracting away their millions of parameters, finer-grained analyses are possible. Visu-

alization techniques enable researchers to understand what visual structures are relevant and how

they are extracted. What follows is a brief overview of these techniques split into two major cate-

gories: those which ultimately use image examples to examine the model’s learned features, and

those which generate images which represent those learned features.

6Called the validation set by the ImageNet project. To be clear, the 50k validation samples are used for evaluation

and model comparison, not training (so more similar to the test set described prior).
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3.2.1 Correlation and Attribution

Figure 3.1: Images stimulating an individual neuron most strongly. Taken from [5].

One straightforward method for understanding what visual information a particular neuron

responds to is to simply find which samples maximize its activation. These examples are often

visually related to each other, giving some insight into the visual information relevant to a particular

neuron. See Figure 3.1 and its source, [5], for examples and more analysis. However, this method

does not reveal what caused the activation, only which inputs are correlated with it. Accordingly,

others have produced saliency maps which show which particular parts of an image contribute most

to a neuron’s activation (or class prediction) by systematically occluding sections of the image as

in [38]. This technique has been extended by instead correlating image regions with semantic

concepts [30, 39–41] or channels (i.e. filters) [41, 42]. These methods allow for much greater

intuition behind a CNN’s class decision, providing for greater model interpretability.

Interestingly, Bau et al. used a method called Network Dissection (i.e. saliency maps sensitive

to semantic concepts) to compare two of the CNNs studied in this thesis [30]. When comparing

Inception-v1 and ResNet-v2-152, they found the former discriminates fewer semantic concepts

than the latter.7.

7Let me note here that Bau et al.’s result only adds to the surprise that all 10 CNNs studied in this thesis end up

extracting the same features.
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3.2.2 Optimization

Figure 3.2: Illustration of an optimization-based technique. After many iterations, an activation-maximizing

image is generated which reveals visual features learned by a particular channel (i.e. filter). Taken from [6].

Recall that backpropagation relies on a model whose weights are differentiable with respect to

the error for a given input (i.e. how each weight contributes to the error function). For another

popular class of techniques, this error gradient provides a foundation for visual analysis of CNNs

via optimization. In essence, random noise is fed into a model which produces an error-sensitive

gradient. By tweaking the input noise iteratively, the activation of a particular neuron (or class

prediction) can be controlled in some way. Eventually, the input image settles on an often vivid,

even abstract depiction of visual information relevant to that neuron [6].

This method was first proposed by Erhan et al. [43], and subsequently refined by Simonyan et

al. [44]. Many have extended this method to produce higher-quality visualizations by using regu-

larization [45,46], or enforcing prior constraints (i.e. statistical similarity to realistic images) [47],

among other techniques. This iterative optimization-based visualization technique is illustrated in

Figure 3.28, which is taken from [6]. Still, while this analysis can reveal learned visual features, it

does not clearly indicate whether two networks are using the same visual features for their task.

8This and many more excellent visualizations are available at https://distill.pub/2017/feature-visualization/

appendix/googlenet/4a.html#4a-11, the appendix of [6].

17



3.3 Affine Feature Mappings

To the best of my knowledge, affine equivalence via CNN feature spaces mappings as presented

in this thesis (and in my previous paper, [48]) is a new finding. However, the work by Lenc et al.

contains many similarities [49]. In that work, as in this thesis, affine transformations are learned

between CNNs trained on ILSVRC2012. In their case, the networks are AlexNet [7], VGG-16 [44]

and ResNet-v1-50 [1]. They train mappings between the convolutional layers of these networks

to determine feature compatibility. Because these mappings are dealing with spatially-sensitive

convolutional layer output, they sometimes require interpolation. The transformations presented in

this thesis, however, map between the output of the final convolutional layer of one network to the

fully-connected classification layer of the other. Still, a varying degree of feature compatibility is

found, and these features are not obviously related. More significantly, Lenc et al. used supervision

in the form of image labels to train the mappings, effectively creating newly-trained networks. In

this thesis, affine transformations are trained to predict one feature set from the other, without

supervision and independent of any semantic image labels. Nonetheless, Lenc et al. indeed

found linear similarity between the different CNNs.

In the field of face recognition, another relevant work is by Dong et al. [50]. By encoding

faces into a hand-designed 50-dimensional parameter space (25 encoding face geometry, and 25

encoding face "appearance"), they are able to create affine maps to deep CNN feature vectors.

While they also demonstrate surprising linear relationships to the output of presumably nonlinear

CNN features, they do not study the linearity between CNN feature representations. Still, such

linearity as I present may be suggested by their result, since if a linear relationship exists between

their custom parameter space and different deep CNN feature spaces, then some linear relationship

exists between CNN feature spaces (since the composition of linear transformations is a linear

transformation). They also conclude that demonstrating this finding for general object-related

tasks would be doubtful and very difficult, since their process involves hand-picked features.
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Figure 3.3: Transfer learning (left) contrasted with affine equivalence testing (right)

3.4 Transfer Learning

Transfer learning begins with a network trained on a large dataset covering a broad domain, and

a new dataset which requires model adaptation. This approach is particularly useful for domains

where data is scarce, as it has been observed that deep CNNs pretrained on ImageNet can identify

features which are useful for narrower domains [35,51]. These patterns can either be extracted as-

is and correlated with new labels, as in fixed feature extraction, or fine-tuned to a narrower domain

along with a new classifier, as in warm-starting. In contrast, my experimental architecture is a

mapping across networks, not across domains and thus not transfer learning. To be clear, I only

modify weights in the mapping, reusing the existing body and classifier, in contrast to building

a new classifier from scratch and optionally fine-tuning the feature extractor. I also do not train

using any ground truth classification labels, instead using a comparison of two feature vectors as

loss. See Fig. 3.3 for a comparison of common transfer learning paradigms with my experimental

approach.

Still, some use transfer learning to compare and contrast different CNN architectures. Indeed,

initialization-based comparisons are appropriate for comparing CNNs with the same architecture
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that were trained for different tasks. The idea is that if the tasks (and therefore the network param-

eters) are similar, one network should train more quickly and accurately when initialized using the

trained weights from the other, similar task. In essence, CNNs are compared by the benefits of a

warm start, as in [35], where CNNs which performed better on ImageNet tend to perform better

when transferred to other datasets. While each CNN can be evaluated using this metric, doing

so does not clearly reveal whether the underlying features used by those CNNs are necessarily

similar.
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Chapter 4

CNN Affine Equivalence9

How can we determine whether two CNNs are encoding the same information? As described

in Chapter 3, task performance scores are often compared, though they do not reveal similarities

in terms of the features extracted from images. Similarly, visualization techniques can reveal

quite a lot, though finding equivalence is not trivial. Indeed, in the case of ResNet and Inception

architectures, visualization techniques of early layers have revealed qualitatively different features

[30, 31]. Therefore, a complete comparison of all features is not what is attempted here.

But the key question, and focus of this thesis, is to compare CNNs by the features they actually

use to make decisions. For this, the feature vector is used, i.e. the pooled output of the final convo-

lutional layer. In the task of image classification, these feature vectors are passed into one or more

fully-connected layers known as the classifier to produce image class predictions. Unfortunately,

feature vectors are not trivially interpretable nor comparable across different CNNs, with some

represented in over 4000 dimensions. Further, even when feature spaces have the same number of

dimensions, they are not compatible between networks (see Section 5.6). Accordingly, my aim is

to compare CNNs using a complete representation of their learned features.

4.1 Proposing Affine Equivalence

Given CNNs A and B, then, how can a pair of feature vectors xA and xB generated from

the same image be compared? How can it be determined whether they are encoding the same

information? Consider the idea of overlapping information in those feature vectors—i.e. informa-

tion is stored in both representations, even if the way that information is stored is not equivalent

between the two. If the feature vectors did not contain overlapping information, then finding a

mapping between the two would require additional information. Thus, if a mapping can be created

9Not to be confused with proper affine equivalence in the context of boolean functions.
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which accurately predicts xB given a general xA without additional information, they must encode

overlapping information.

That said, the complexity of that mapping may enhance or degrade this conclusion. If the

mapping is highly nonlinear, for example, one could say that the feature spaces are correlated, but

don’t share a representation. After all, each feature vector is a highly nonlinear transformation of

the input image. However if the mapping is linear, then these feature spaces are very similar, since

a linear mapping is homomorphic—i.e. it preserves the structure between points. In this work

then, affine mappings (i.e. linear with a constant bias) between feature spaces are fit and studied.

To summarize, I argue that two sets of vectors which are related by only an affine mapping are,

for the purpose of comparing CNN feature representations, equivalent. Further, I propose that if an

affine transformation can be constructed which can accurately predict xB given a general xA, then

the degree of that accuracy is an indicator of the similarity between the encoded features used by

both CNNs. To be precise, an affine mapping is


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




= MA→B
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
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(4.1)

where MA→B is the mapping matrix and x̃B is the prediction generated from xA.

4.2 Demonstrating Affine Equivalence

So far the calculation of this mapping accuracy has been left undefined. It could be calculated

as simply as a distance between x̃B and xB , though that may be misleading. At least in the case of

image classification, CNNs are not necessarily trained to produce feature vectors which are related

by distance. Recall that for this task, an image is passed into a feature extractor F , producing a

feature vector x which is passed to a classifier C consisting of one or more fully-connected layers

and softmax. The output of that classifier, C(x) = y, is compared to the ground truth image label ŷ

(the actual source of training loss). The number of correct labels evaluated over a large validation

set is then used to produce classification accuracy, a. See the first two rows of Figure 4.1 for
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𝐹𝐴 I 𝐶𝐴Features 𝑥𝐴 Features 𝑥𝐴 Softmax
Labels

Image𝑥

IFeatures 𝑥𝐵 Features 𝑥𝐵 Softmax
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𝐶𝐵
𝐶𝐵
𝐶𝐴

Figure 4.1: Illustration of how a pair of standard CNNs can be used to create two alternative CNNs where

the features from one are affine mapped to the classifier of another. The notation used in this figure, in

particular F () and C() to capture the mapping from input to the feature space and then feature space to

final classification softmax is further described below. The first two rows show CNNs A and B without

alteration; the mapping from F () to C() is the identity mapping I . The next two illustrate the swapping of

classifiers and the introduction of affine mappings MA→B and MB→A.

this standard configuration, which should be familiar to most readers, minus the identity mappings

represented by blue rectangle labeled "I".

So, mapping accuracy is calculated in a similar fashion. For a given predicted feature vector

x̃B, an image label prediction is produced by passing the predicted feature vector through the target

CNN’s classifier, or CB(x̃B). This predicted label ỹB is then compared to the ground truth image

label ŷ to produce the classification accuracy of mapped feature vectors, or ãB. See the lower two

rows of Figure 4.1 for this configuration. This can then be compared to the classification accu-

racy of the vanilla, unmapped feature vectors as aA or aB (the top two rows of Figure 4.1). This

mapping evaluation process is concretely described in Section 5.3. Then, I argue if the classifica-

tion performance of one CNN’s classifier using another CNN’s features is near the classification

performance of either vanilla, unmapped CNN, then those two CNNs are extracting effectively

equivalent visual information from the input images.
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Chapter 5

Affine Equivalence of 10 CNNs

Using the method described in Chapter 4, mappings were fit between 90 unique pairs of 10

CNN architectures (100 pairs are possible, though 10 of those would produce identity mappings).

5.1 Sourcing and Validating Pre-trained CNNs

Each of these models were trained by Google on the 1.3 million training samples in ILSVRC2012,

and obtained from TensorFlow Hub10 with the exception of Inception-v4, which was obtained from

the TensorFlow-Slim GitHub repository11. While there are many notable others, these architectures

were selected for their generally 1) distinct pedigrees and 2) ease of availability through Tensor-

Flow Hub. See Table 5.1 for their respective top-1 single-crop classification accuracies on the

50k ILSVRC2012 validation samples both reported by Google and observed by me. Note: a crop

size of 331x331 is used (except in the case of MobileNet-v2 which is only available pretrained

with a maximum crop size of 224x224) to minimize the difference in features encoded into each

network’s feature vectors. This means most networks actually perform better than reported by

Google, and none perform worse (again except, marginally, MobileNet-v2).

5.2 Solving for Affine Maps

With pretrained models validated, affine maps can be trained. Let XT be the set of 1.3 million

ILSVRC2012 training samples, and yt be their respective image class labels. Similarly, let XV and

yv be the 50k ILSVRC2012 validation12 samples and labels. Given "source" CNN A composed of

feature extractor FA and classifier CA, compute the set of training feature vectors TA by feeding

training images XT into CNN A’s feature extractor FA. Given "target" CNN B similarly compute

10https://tfhub.dev/

11https://github.com/tensorflow/models/tree/master/research/slim

12Again, this is typically used as the test set, despite being named the validation set by the ImageNet project.
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Table 5.1: Classification accuracies of the 10 CNNs studied on the ILSVRC2012 validation set, both re-

ported by Google and independently observed locally by me (with respective crop sizes). Also included

for reference are the number of dimensions used in each CNN’s feature space, and the total number of

parameters present in the model.

CNN Reported Reported Crop Local Local Crop # dims # params

Inception-v1 69.8% 224x224 71.1% 331x331 1024 5M

Inception-v2 73.9% 224x224 73.9% 331x331 1024 11M

MobileNet-v2-1.4-224 74.9% 224x224 74.6% 224x224 1792 7M

ResNet-v1-152 76.8% 224x224 78.8% 331x331 2048 60M

ResNet-v2-152 77.8% 224x224 78.7% 331x331 2048 60M

Inception-v3 78.0% 299x299 78.9% 331x331 2048 24M

Inception-v4 80.1% 299x299 80.4% 331x331 1536 43M

Inception-ResNet-v2 80.4% 299x299 81.2% 331x331 1536 56M

NASNet-Large 82.7% 331x331 82.7% 331x331 4032 89M

PNASNet-Large 82.9% 331x331 82.9% 331x331 4320 86M

TB by feeding XT into FA. Then, compute an (augmented) affine mapping matrix MA→B by

ordinary (linear) least squares regression, minimizing the sum of distances between targets TB and

mapping predictions. Or, given tA,i ∈ TA, tB,i ∈ TB, the feature vectors corresponding to training

sample i for network A and B, respectively, find the MA→B such that
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(5.1)

is minimized. This completes the training of an affine mapping between CNN A’s feature space

to CNN B’s. This process is completed for each permutation of those 10 pre-trained CNNs to

produce 90 pairs or 90 mappings (again omitting 10 identity mappings). Observe that the ground

truth image labels, yT are never used in the mapping training process. Also note that the number

of dimensions in each CNN’s feature space is not necessarily equal.

5.3 Evaluating Affine Maps

With mappings trained, I can now evaluate them and the greater affine equivalence between

these 10 CNNs. To evaluate the mapping from source CNN A to target CNN B, validation images
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XV are fed into both feature extractors to produce feature vector sets VA and VB. Then, each of VA

can be mapped into CNN B’s feature space by simply multiplying it by the trained mapping MA→B

to produce ṼB, or CNN A’s features mapped into CNN B’s feature space. As discussed in Chapter

4, mapped feature vectors (and thus mappings) are evaluated using the same method as a typical

image classification CNN’s feature vectors. That is, they are passed through the final classification

layer of that CNN, or in this case CB. The resulting logits are passed through softmax, from

which the maximum value is used as prediction. These predictions are compared to ground truth

image labels yV to produce a mapped classification accuracy ãA→B. Each of the 90 mappings are

evaluated this way.

5.4 Mapping Performance

See the performance of each mapping (and unmapped CNN) in Table 5.2. Row headings indi-

cate the model whose feature extractor is used as the feature vector source, while column headings

indicate the model whose classifier is used as destination. Each cell contains the classification

accuracy achieved by the independently trained mapping between feature extractor and classifier.

So, values along the diagonal are identity mappings, and indicate the accuracy of the unmodi-

fied source CNN (i.e. the same values from Figure 5.1). The small number indicates the percent

change in accuracy from the unmodified source CNN (i.e. the value in that row which belongs

to the diagonal). Cells are shaded according to this percent change, so that the darker the shade,

the greater performance penalty introduced by the mapping. All accuracies are reported using

the ILSVRC2012 validation set, which was unseen by all CNNs and mappings during all training

procedures.

While the reduction in classification accuracy introduced by each mapping is never zero, the

greatest is only an 11.6% reduction. Comparing across feature extractors (row-wise), mappings

from the Inception-v1 and MobileNet-v2-1.4-224 feature vectors incur a consistently larger penalty

(though no greater than 11.6%). This may be because these two models are the smallest, consisting

5 million and 7 million parameters, respectively. Still, every mapping incurs relatively little penalty
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Table 5.2: Classification accuracies and penalties of 100 inter-CNN affine maps (i.e. 10 CNNs mapped to

each of 10 CNNs). Each cell represents a single, independent affine mapping between the feature extractor

from the row CNN and the classifier from the column CNN. The number in large font in each cell indicates

the classification accuracy of this hybrid CNN on the 50k ILSVRC2012 validation set. Note: this means

the diagonal shows the performance of an identity mapping, equivalent to the performance of unmapped

CNNs in Table 5.1. The number in small font indicates the percent change from the unmapped row/source

CNN (i.e. the value in that row which belongs to the diagonal). The darker the shade of the cell, the

greater the performance penalty introduced by the mapping, relative to the feature extractor’s own classifier.

For example, the cell in the Inception-v4 row and ResNet-v2-152 column represents a mapping between

Inception-v4’s features and ResNet-v2-152’s classifier, which produces 79.57% accuracy on the validation

set, a -1.01% change from Inception-v4 alone.
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when used to transform between different feature spaces. These mappings are effective enough to

retain the vast majority of features’ expressiveness, even when used for classification.

Comparing across classifiers (column-wise), mapped feature vectors which are classified by

Inception-v1’s and Inception-v2’s classifiers incur the largest and most consistent penalties. Again

there may be many explanations, though these two models uniquely use the smallest feature space

at 1024 dimensions. More interestingly, when comparing column-wise (feeding different fea-

tures into the same classifier), accuracies are sometimes increased when compared to the classifier

CNN’s own features. That is, even though the mappings were trained to reproduce the classifier

CNN’s less expressive features, features of greater discriminative power still get through. As an

example, see ResNet-v2-152’s column and unmapped accuracy of 78.70%. This unmapped accu-

racy is taking ResNet-v2’s features and passing them into ResNet-v2’s classifier. When instead fed

a linear transformation of PNASNet’s features, ResNet-v2’s classifier produces 82.46% accuracy.

This is an increase in the ResNet-v2 classifier’s accuracy of 3.76%! Of course, when analyzing

the effects of mappings on the source CNN’s performance (i.e. the fashion that cells were shaded

in Table 5.2), no feature vectors actually become more discriminative when mapped. Still, the

important conclusion is that much of the information required by ResNet-v2’s classifier is present

in PNASNet’s features, though more information is likely captured in PNASNet’s features.

The central question of this thesis is whether the features learned by each CNN studied are

equivalent. In every case, the percent change in classification accuracy introduced by using an-

other CNN’s features is no worse than -11.6% (and in most cases, much better). Indeed, the

median percent change over all mappings is only -1.90%. This strongly suggests that the features

learned by one CNN are also learned by every other, though some have learned these features more

robustly. Indeed, some CNNs seem to have learned to express features nearly identically, such as

NASNet and PNASNet which are penalized by only 0.01% when using the former’s features in the

latter’s classifier.
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Table 5.3: Classification accuracies and penalties of 100 inter-CNN affine maps (i.e. 10 CNNs mapped to

each of 10 CNNs). The table format is identical to Table 5.2. The only difference between the two is in the

creation of the mappings, as outlined in Section 5.5. Note that this table presents mappings which produce

no performance penalty compared to unmapped features.
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5.5 Logit Compatibility

As mentioned in the introduction, another experiment was conducted. This experiment was

based on an idea proposed recently by one of my committee members, Dr. Charles Anderson. To

start, mappings are created which encode features into logits using their typical classifier (CA).

Recall that in every CNN studied here, a classifier is simply a 2D matrix of weights—a linear

transformation. These logits are then decoded using the pseudoinverse of another CNN’s classifier

(C−1
B ) to produce mapped features. More precisely, a mapping MA→B between CNN A and CNN

B can be constructed simply as

MA→B = CAC
−1
B .

Those mapped features can be classified by CB to produce an accuracy as described previously.

Simply put, this mapping technique tests how much relevant information might be lost by

converting features to and from logits13. See Table 5.3 for the results of this alternative mapping

technique presented in the same format as Table 5.2. In every case, these mappings are able to

perfectly convert features from one feature space to another. Since each classifier was found to be

full-rank, converting to and from the logit representation is lossless. In turn, this enables lossless

feature space mappings as described above, essentially converting the source features to logits,

then to the target feature space. Intuitively, converting between features via logits is bound to work

well when those features are trained for classification as logits, and those mapped features are only

evaluated as logits (i.e. evaluated via classification accuracy).

This result strongly suggests that these feature spaces are equivalent because of their equivalent

tasks—their equivalent loss functions during training. Each network is trained to extract visual fea-

tures which are relevant to a particular class (the feature space), but those features are all eventually

converted into class probabilities (softmaxed logits). Because each network is trained to produce

the same logits for the same inputs, and feature spaces are a lossless encoding of logits, it’s much

less surprising that these feature spaces are equivalent.

13Recall that logits are the final output of a classification model, represented as a sequence of "scores" for each

class. Logits are usually converted into bounded class probabilities via softmax.
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5.6 Just Checking

For the sake of completeness, I have conducted another experiment. Instead of mapping be-

tween feature spaces using an affine transformation, feature vectors were simply passed directly

from one CNN’s feature extractor to another CNN’s classifier. When the number of dimensions

didn’t match (see Table 5.1), vectors were naively truncated or padded with zeros. The best

accuracy achieved in this fashion is 0.27%, which is only slightly better than random guessing

(1/1000 = 0.1%).

This makes clear that these feature vectors are not directly compatible, since no hybrid con-

figuration achieves performance much better than random. Even among very similar architecture

pairs like ResNet-v1 and ResNet-v2, or Inception-v1 and Inception-v2 where dimensionality is

unchanged, feature vectors are not directly interchangeable. Indeed, each CNN consists of mil-

lions of stochastically initialized and trained parameters, so each independent training will almost

certainly produce a unique feature space.

Still, despite naive incompatibility, the discovery of a structure-preserving unsupervised affine

mapping has revealed that feature vectors obtained from different CNNs are very much related to

each other. In the extreme case where the mapping is computed directly via shared logit space

(Section 5.5), the mapping is precise. In the case where the mapping is derived from comparisons

between features for known common images, the affine equivalence is not perfect, but it is an

excellent approximation in practice (Section 5.4). One reason this finding is so important is that it

reveals the extent to which feature spaces from very different CNNs trained on the same data end

up representing essentially the same information relative to object classes.
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Chapter 6

Conclusion

Convolutional neural networks have catalyzed the field of computer vision, providing the basis

for models which have made massive gains in performance over previous methods [15]. The

application of these massive models to large datasets continues to facilitate growth in the abilities

of AI, propelling a burgeoning multi-billion dollar industry [8]. While the size and complexity of

CNN-based models enables their power, they can also obscure their crucial underlying features.

Equivalence between CNN features was sought in order to see whether CNNs capture differ-

ent but roughly equally discriminative information, or the same information but using a different

architecture and encoding to do it. This thesis has demonstrated two relatively simple methods for

CNN comparison which reveal a fundamental property of modern ImageNet-trained CNN-based

models: linear equivalence. Linear mappings can be constructed between 10 CNNs of varying

architecture, pedigree, and performance with zero penalty in classification accuracy. These find-

ings suggest that these networks are, in fact, extracting qualitatively the same features. A latter

experiment also demonstrates this equivalence, but with an emphasis on the linear equivalence of

each feature space to a common logit space. Even so, linear equivalence between CNN outputs is,

to the best of my knowledge, new.

I speculate that this has implications for other CNNs as well. As they grow more complex,

there may be a law of diminishing returns if all nets end up extracting similar features, though that

may be what happens because that is what the training process and dataset supports. As mentioned

in Section 1.2, the highest-performing CNNs on ImageNet are indeed the result of advances in

training processes and data preprocessing using previously-published architectures [29, 32].

6.1 Future Directions

If these findings are indeed general for ImageNet-trained CNNs, it also suggests there is some

common subset of features intrinsic to ImageNet data. More experiments and analysis could be
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conducted to determine if linear equivalence remains when CNNs are not trained with a common

loss function. Regardless of the source of linear equivalence, further analysis may reveal a reduced-

dimension "canonical space", which effectively expresses the bulk of these ImageNet features.

Others have indeed found a reduced "intrinsic space" of fewer than 20 dimensions for CNNs trained

on face identification datasets and an ImageNet subset [52]. A systematic analysis of these affine

maps may be useful for characterizing ImageNet-trained CNN feature spaces.

In the same vein, variations in the training data could have an effect on linear equivalence.

Each network studied here was trained on the same dataset. It’s not clear then whether the finding

is consistent in other image classification domains, or even other problem domains. Addition-

ally, the CNNs used in this work were all trained using similar or equivalent processes. Again,

recent advances in ImageNet classification performance have been achieved without changes to

prior architectures, instead relying on extra data and novel training techniques [29, 32]. A future

investigation could take this into account, seeking the tipping point at which variations in training

input and strategy prevent similarity between feature spaces as observed here.

As Lenc et al. have demonstrated by creating linear mappings between convolutional layers,

there is much more work to be done to characterize and explain these intrinsic linear relationships.
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