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ABSTRACT—This paper presents a comparative study of five different coarse-grained parallel 
genetic algorithms (PGAs) using the traveling salesman problem as the case application. All of these 
PGAs are based on the same baseline serial genetic algorithm, implemented on the same parallel 
machine (IBM SP2), tested on the same problem instances, and started from the same set of initial 
populations. Based on these experiments, a PGA that combines a new subtour technique with a 
known migration approach is identified to be the best for the traveling salesman problem among the 
five PGAs being compared.  
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1.  INTRODUCTION 
Serial genetic algorithms (SGAs) are a promising search heuristic for finding near-optimal solutions in 

large search spaces (e.g., [1]). To reduce the large amount of computation time associated with SGAs, 
parallel GAs (PGAs) have been proposed. PGAs have also been used to solve larger problems and to find 
better solutions.  

There exists a large body of literature that discusses the parallelization of genetic algorithms for many 
different applications, e.g., [2-16]. Previous comparative studies have contrasted the performance of PGAs 
with and without migration, demonstrating that migration, in general, results in superior performance, e.g., 
[11, 13]. One of the features that distinguishes this paper from previous work is that it compares four 
conceptually different coarse-grain parallelization techniques, including two new approaches along with 
the standard independent and migration PGAs. In addition, it compares a PGA that is a hybrid of a new and 
a standard approach. All of these comparisons are done using a common framework.  

The traveling salesman problem (TSP), described in Section 2, is used as the basis of this case study. 
To make fair comparisons, all of these PGAs are tested on the same set of TSP instances (listed in Section 
2), implemented on the same parallel machine (the IBM SP2 described in Section 3), based on the same 
baseline SGA (presented in Section 4), and started from the same set of initial populations.  
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The PGAs studied are two existing approaches (the independent PGA and the migration PGA), two 
new approaches (the partitioned PGA and the segmentation PGA), and a hybrid approach (the 
segmentation-migration PGA). The independent PGA executes an independent SGA on each processor. 
The migration PGA extends the independent PGA by performing periodic migration of chromosomes 
among processors. The partitioned PGA partitions the problem space and has each processor search a 
disjoint partition. In the segmentation PGA, processors iteratively operate on TSP subtours (chromosome 
segments) and then recombine subtours into larger subtours until full tours (full chromosomes) are formed, 
at which point the independent approach is followed. The segmentation-migration PGA combines the 
segmentation and migration approaches. These PGA approaches are described in more detail in Section 5.  

Extensive experiments were conducted to quantify each PGA’s ability to find quality solutions and to 
test how quickly the PGAs can find solutions of similar quality. Experimental results showed that the four 
non-partitioned PGAs studied found high quality solutions (within 1% of the best known solutions). Inter-
processor communications that migrate the locally best chromosomes among the processors shortened the 
total execution time. Using migration together with chromosome segmentation and recombination (the 
segmentation-migration approach) further reduced this time. These experiments are presented and analyzed 
in Section 6.  

2.  THE TRAVELLING SALESMAN PROBLEM 
The traveling salesman problem (TSP) is a well-known NP-hard combinatorial optimization problem 

[17]. It can be stated as follows. There are C cities, which are numbered from 0 to C − 1. The distance from 
city i to city j is known to be dij, where 0 ≤ i, j < C and dij = 0 if i = j. A tour is a path that starts from a city, 
visits each city exactly once, and goes back to the starting city. Mathematically, a tour can be expressed by 
a vector t of C elements. Each of the elements in t represents a city, i.e., 0 ≤ t(i) < C and t(i) ≠ t(j) if i ≠ j. 
The tour starts from t(0), visits cities in the order they appear in t, and then goes back to t(0) after visiting 
t(C −1). The goal of the TSP is to find a tour t with the minimum tour length, i.e., to minimize 
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Because the tours are closed (circular), the same tour can be represented by multiple t-vectors that are 
rotations of one another. Thus, the vectors t1 and t2 represent the same tour if t1(i) = t2((i + j) modulo C) for 
any fixed integer j, for all i, 0 ≤ i < C. If the distance between any two cities is independent of the travel 
direction, i.e., dij = dji for all i and j, the TSP is a symmetric TSP. Otherwise, the TSP is asymmetric. For 
symmetric TSPs, the tour t1 must be the same length as t2 if t1 is just a reversal of t2, i.e., t1(i) = t2(C −1−i), 
for all i, 0 ≤ i < C. Furthermore, these rotation and symmetric properties can be combined to form 
equivalent tours.  

A subset of the symmetric TSP is called the Euclidean TSP, where each city is represented by a set of 
coordinates. The distance between any two cities is simply the Euclidean distance. This research uses the 
same five instances of the 100-city Euclidean TSP to evaluate the performance of all the PGAs. In 
particular, the five 100-city Euclidean TSP instances with shortest known tour lengths from [18] are used 
as test cases. They are Krolak A (KA), Krolak C (KC), Krolak D (KD), Reinelt (or RE in tables), and the 
lattice (or LT in tables) TSPs. Among them only the lattice TSP is not randomly generated. In the lattice 
TSP, the cities are configured as a 10 x 10 lattice with unit distance between any pair of adjacent cities on 
the vertical and horizontal directions. The shortest possible tour for the lattice TSP has a length of 100.  

3. THE IBM SP2 PARALLEL PROCESSING SYSTEM  
An IBM RISC System/6000 POWERparallel 2 System (SP2) at the Purdue University Computing 

Center is used as the hardware platform to evaluate the PGAs being studied [19, 20]. The SP2 parallel 
processing system is a distributed-memory MIMD machine. The Purdue IBM SP2 consists of 18 
processing elements (PEs) (i.e., processor-memory pairs) and an interconnection network. Among the PEs, 
16 of them are ‘‘thin nodes,’’ with a 67-MHz CPU, 256 MBytes of main memory, two MBytes of second-
level cache, and two GBytes of local disk space. All SGA experiments were conducted using one thin 
node; all PGA experiments were conducted using 16 thin nodes. To describe the PGAs in a general way, N 
is used as the number of PEs. The interconnection network of the IBM SP2 supports message passing 
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among these PEs. The IBM SP2 provides the C Set++ compiler and the MPI message passing libraries [21, 
22]. In this research, algorithms are coded using C and MPI routines.  

4. SELECTING A SERIAL BASELINE GENETIC ALGORITHM FOR THE TSP  
The purpose of this research is to comparatively study PGAs, rather than improving SGAs for a given 

application problem such as the TSP. Hence, the first step of this research is to choose an existing SGA 
from the literature to be the baseline SGA. For fair comparisons, all the PGAs studied are developed based 
on this same baseline SGA.  

A variety of SGAs for the TSP have been proposed in the GA research literature (e.g., [4, 23-35]). 
From a search of this literature, it was determined that the SGA in [30] was among the best SGAs for the 
TSP (referred to as Jog’s SGA in this work). A slightly modified version of Jog’s SGA is used as the 
baseline SGA, which is outlined in Figure 1. The chromosome used in these SGAs, to represent a tour of 
the C cities, is the vector t defined in Section 2. At each iteration of the baseline SGA, three steps are 
executed in the following order: the modified Heuristic crossover step, the 2-opt step, and the modified Or-
opt step. These modified steps incorporate local improvement techniques, classifying this approach as a 
“memetic” algorithm [36, 37]. These additions to the classic GA can improve both the speed at which the 
algorithm finds solutions and the quality of those solutions.  

 
Figure 1. Outline of the baseline SGA algorithm. 

The Heuristic crossover step [30] randomly picks 50% of the chromosomes from the population. The 
picked chromosomes are then randomly paired and two offspring chromosomes are generated from each 
pair. The Heuristic crossover randomly picks a city as the starting point for each offspring tour. Then the 
Heuristic crossover operation extends the current partially constructed offspring tour by trying to add the 
shorter parental edge leading from the current last city on this partial offspring tour. Let the current last city 
on this partial offspring tour be c. Three different situations are considered in the following order when 
deciding which city to add to the current partial offspring tour:  

(1)  when the next city of c on both parent tours is not on the current partial offspring tour: the next 
city of c with the shorter distance from c is selected and added to the partial offspring tour;  

(2)  when the next city of c on exactly one parent tour is already on the current partial offspring tour: 
then the next city of c on the other parent tour is selected and added to the partial offspring tour; 
or  

(3)  when the next city of c on both parent tours is already on the current partial offspring tour: a 
random city is selected from those that are not yet on the partial offspring tour, and added to the 
partial offspring tour.  

After this crossover operation, the two offspring tours replace the two parent tours. 
The following changes to the Heuristic crossover step in Jog’s SGA are made to add elitism to the 

baseline SGA. (It is important to have elitism in a GA [38], i.e., the currently best chromosome is always 
preserved and passed to the next generation.) Each pair of parent chromosomes generate only one offspring 
chromosome instead of two and this offspring replaces the parent tour with the longer length. By doing 
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this, it guarantees that the currently best chromosome will be kept and passed to the next generation by this 
modified Heuristic crossover.  

The 2−opt step [30] randomly selects one half of the remaining chromosomes of the population (25% 
of the total chromosomes). On each selected tour, ten 2-opt attempts are made to try to shorten the tour 
length, each time randomly picking two pairs of adjacent cities on the tour. The 2-opt operator takes these 
two pairs of adjacent cities (a, b) and (c, d) from a tour. If dab + dcd > dac + dbd , then the paths between cities 
a, b and cities c, d on the tour are removed and replaced by the new paths between cities a, c and cities b, 
d. The new tour is guaranteed to become shorter than the original tour. Figure 2 illustrates this 2-opt 
operation. The dotted lines between cities b to c, and cities d to a indicate that there may be other cities on 
the subtours between these cities. Note that the direction of traversing the subtour from b to c is reversed 
by the 2-opt operation (recall from Section 2 that symmetric TSPs are being considered here).  

 
Figure 2. An example of 2-opt local improvements. 

The Or−opt step [30] applies the Or-opt local improvement operator to the rest of the chromosomes of 
the population (25% of the total chromosomes). In each chromosome selected by this step, first all three-
city subtours are chosen one by one. There are a total of C three-city subtours, the i-th (0 ≤ i < C) of which 
contains cities t(i), t((i +1) modulo C), and t ((i +2) modulo C). If the subtour considered can be relocated 
between two other adjacent cities to form a shorter length tour, the appropriate tour changes are made.  

Figure 3 illustrates an example of three-city Or-opt improvement. In this example, a three-city subtour 
(d, e, f) is being considered for relocation between a pair of adjacent cities a and b. If dab + dcd + dfg > daf + 
ddb + dcg, the three-city-subtour (d, e, f) will be inserted (in reverse order) between cities a and b, and cities 
c and g will be connected, resulting in a shorter length tour. 

 
Figure 3. An example of three-city Or-opt local improvements. 

In [30], for each s-city subtour (where s is first three, then two, and then one), one pair of adjacent 
cities (not on the subtour) is randomly chosen for consideration of the s-city subtour relocation. In the 
baseline SGA, for each s-city subtour (s being 3 first, then 2, and then 1) of a chosen tour, rather than only 
attempts to relocate this subtour between one pair of cities that are randomly chosen, the modified Or-opt 
step considers all possible pairs of cities for the relocation exhaustively. The modified Or-opt step 
calculates the resulting tour length for each possible relocation. The s-city subtour is put between a pair of 
cities (which could be its current position) that results in the shortest tour length.  

In [30], the currently shortest tour is preserved in the 2-opt and Or-opt local improvements because 
these improvements never make the lengths of any tours longer. However, it is possible for the currently 
shortest tour to be replaced by a longer offspring tour in a Heuristic crossover operation (an example is 
given in [39]). A value-based roulette-wheel selection step is used in Jog’s SGA to make sure that a shorter 
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length tour has a better chance to be passed to the next generation. This selection step is not used in the 
baseline SGA algorithm because an implicit selection occurs at each modified Heuristic crossover 
operation, i.e., the shorter length parent tour is kept and the longer parent tour is replaced by the offspring 
tour.  

Each run of Jog’s SGA stops when the population converges, i.e., all chromosomes in the current 
population have the same fitness value (the same tour length). The baseline SGA runs stopped when the 
best solution was not improved for 150 iterations.  

To test the baseline SGA, a total of 50 runs were conducted on each TSP instance, each starting with a 
different 128-tour initial population that was randomly generated. When the chromosomes were randomly 
generated, it was guaranteed that there were no identical tours in the initial population. In the initial 
populations, each tour started from the same city (city 0) to make it convenient to check whether any two 
tours were identical. As the evolution progressed, each chromosome could start from a different city and 
this starting city could be changed as a result of the genetic operations.  

All the baseline SGA runs were executed on a single thin PE of the IBM SP2. Define the percentage 
quality difference, D, of one run of a given GA (SGA or PGA) compared to the best known solution of that 
TSP to be  

 %100
known tourshortest  oflength 

known tourshortest  oflength GAby  foundour shortest t oflength 
×

−
=D  (2) 

A smaller D indicates a better solution. If D = 0, the run found a tour with the shortest known length. 
Table I shows the performance of the baseline SGA in terms of solution quality (mean (µ) and maximum 
of D) and algorithm execution time (mean (µ) and median). It can be seen from the table that all tours the 
baseline SGA found were all less than 1% longer than the best known solutions. For the KA TSP and the 
KC TSP, all the runs found tours with the shortest known lengths. The solutions found for the KD TSP and 
the Reinelt TSP were also very close to the best known solutions, with maximum Ds of 0.05% and 0.18%, 
respectively. On the lattice TSP, the baseline SGA was able to find tours that were either the shortest or the 
second shortest.  

Table I.  The performance of the baseline SGA using 128 chromosomes. 

D (%) execution time (sec) 
TSP µ max µ median 
KA 0.00 0.00 399 394 
KC 0.00 0.00 419 419 
KD 0.04 0.05 459 452 
RE 0.09 0.18 490 466 
LT 0.31 0.83 393 359 

 
In [30], the KA TSP and lattice TSP instances were also used. Jog’s SGA used 100 chromosomes, 

slightly smaller than the population size of 128 used in Table I. The ten-run average Ds for the KA TSP 
and the lattice TSP in [30] were 1.37% and 0.40%, respectively, and the worst Ds were 3.62% and 0.83%, 
respectively. Thus, the baseline SGA achieved better performance on these TSP instances. However, it 
typically took longer to execute than Jog’s SGA because of the exhaustive nature of the modified Or-opt. 
For the PGA study, it was decided to use the baseline SGA as a basis because it could achieve results 
within 1% of the best known solutions for the TSPs considered.  

5.  A COMPARATIVE STUDY OF PGAS  

5.1  Overview  
In this research, a total of five different PGAs were developed based on the same baseline SGA. They 

are (1) the PGA using independent SGAs, (2) the PGA with chromosome migrations, (3) the PGA with 
search space partitioning, (4) the PGA with tour segmentation and recombination, and (5) the PGA that 
combines (2) and (4).  
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5.2  PGA using independent SGAs  
The simplest way of parallelizing a GA is to execute multiple copies of the same SGA, one on each 

PE. Each of the 16 PEs starts with a different initial subpopulation (128/16 chromosomes), and evolves and 
stops independently. The complete PGA halts when all PEs stop. There are no inter-PE communications 
among any of these independent genetic evolutions at any time during the PGA execution.  

This approach was named partitioned PGA in [13]. However, in order to not confuse it with the 
proposed PGA that partitions the search space, in this research this algorithm will be referred to as the 
independent PGA approach (because it consists of multiple independent executions of the baseline SGA). 
The advantage of the independent PGA approach is that each PE starts with an independent subpopulation. 
Such subpopulation diversity reduces the chance that all PEs prematurely converge to the same poor 
quality solution. This approach is equivalent to simply taking the best solution after multiple executions of 
the SGA on different initial populations. 

5.3  PGA with chromosome migrations  
The second PGA tested, the migration PGA approach, augments the independent approach with 

periodic chromosome migrations among the PEs. In this comparative study, the migration approach uses 
the chromosome migration scheme developed in [11]. Figure 4 shows the algorithm for the migration 
approach.  

 
Figure 4. Outline of the migration approach. 

In the independent approach, it is possible for different PEs to prematurely converge to different 
suboptimal solutions, some of which may be of poor quality. Chromosome migration is a way of 
coordinating multiple evolutions (one on each PE) to prevent premature convergence at any local optima of 
poor quality by spreading globally high quality solutions among all PEs. Furthermore, the migration 
approach can speed up the slowly evolving subpopulations by introducing chromosomes that are better 
than the locally best ones.  

In the migration approach, a balance between subpopulation homogeneity (caused by chromosome 
migrations) and subpopulation diversity (caused by independent evolutions) must be maintained. If 
migrations occur too frequently or too many chromosomes are migrated, each PE might end up with the 
same subpopulation. If migrations occur too infrequently, or too few chromosomes are migrated, the 
migration approach degenerates to the independent approach. To maintain this balance, the parameters for 
chromosome migration, such as migration topology, migration size, migration frequency, migrant 
composition, and replacement policy, must be carefully chosen.  

There are a number of existing chromosome migration schemes in the literature. The migration 
approach in this research used the scheme proposed in [11], which had been tested using a 105-city TSP. In 
[11], chromosome migrations occur every five iterations. For subpopulation sizes of 50 and 100 
chromosomes, the copies of the locally best and second best chromosomes are exchanged at each migration 
step. Because in this research each PE contains only eight chromosomes (far fewer than 50 and 100), 
exchanging copies of only the locally best chromosomes (one from each PE) was considered sufficient. 
Experimental results showed that this approach did perform well. Each PE P sends its migrant to PE P + 1 
modulo N at the first migration step, then to PE P + 2 modulo N at the second migration step, and so on 
[11]. Mathematically, at the i-th migration step, PE P (0 ≤ P < N) sends a copy of its best chromosome to 
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PE (P + 1 + (i modulo (N−1))) modulo N. The expression ‘‘i modulo (N−1)’’ is used to avoid having a PE 
P send a chromosome to itself. Once a PE receives the migrating chromosome, it checks to see if there is a 
local chromosome that is identical to the one received. If there is an identical chromosome, the received 
chromosome is discarded. Otherwise, the received chromosome replaces the worst local chromosome. 

5.4  PGA with partitioned search space 
A third way of parallelizing GAs is to partition the search space into disjoint subspaces and to force 

PEs to search in different subspaces. In this research, this is called the partitioned PGA approach, the 
outline of which is given in Figure 5. The only difference between the partitioned and the independent 
approaches is that in the partitioned approach each PE searches in a different subspace while in the 
independent approach all PEs search in the entire search space. The partitioned approach was considered to 
test whether search space partitioning can reduce PGA execution time while maintaining solution quality.  

 
Figure 5. Outline of the partitioned approach. 

In this approach, the search space is partitioned by constraining the set of cities that can precede and 
succeed a given city (city 0 in this research) on the tours for each PE. Each PE is assigned a disjoint set of 
these cities. Specifically, the search subspace for each PE P (0 ≤ P < N) is defined by a partition matrix πP 
of C−1 × C−1 elements, where the rows and columns are numbered from 1 to C−1. Each element πP(m,n) 
(1 ≤ m, n < C) can be either 1 or 0. πP(m, n) = 1 means that PE P can have tours that visit city m before city 
0 and visit city n after city 0. πP(m,n) = 0 prohibits any tours on PE P to have the subtour (m,0, n).  

The properties of πP include  
(1) πP(m, m) = 0 for any m,  
(2) πP is symmetric, i.e., πP(m, n) =πP(n, m) for any n and m, and  

(3) ∑
−

=

1

0

N

P

πP(m,n) = 1 for any m and n such that m ≠ n. 

These three properties specify the general constraints applied to any tour on any PE. Property (1) does 
not allow the same city to be both before and after city 0 on any tours. Property (2) ensures that the reversal 
of a tour appears in the same subspace. This is required because symmetric TSPs are used in this research. 
Property (3) guarantees that the subspaces are disjoint and the collection of these subspaces form the 
original full search space.  

The initial population generation step is described in Subsection 6.1. To maintain the partitioned 
search space, some restrictions are imposed on the genetic operators. In each crossover operation, consider 
the parent tour that has the shorter length three-city subtour with city 0 in the middle. Let m be the first city 
and n be the third city of this subtour. During the construction of the offspring tour, when city m is chosen 
and added to the partial offspring tour, cities 0 and n are also added to this partial offspring tour after city 
m. If city n is chosen before city m and added to the partial offspring tour, cities 0 and m are also added to 
the offspring tour after city n. City 0 is not allowed be added to the partial offspring tour by any other 
means. Restrictions are also imposed on each 2-opt and Or-opt operation, where a tour improvement is 
disallowed if the resulting modified tour does not belong to a PE’s search subspace.  
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5.5  PGA with tour segmentation and recombination  
A novel PGA proposed in this research specifically for the TSP involves tour segmentation and 

recombination. This is called the segmentation PGA approach. This PGA starts by segmenting tours into 
subtours. Then after subtour improvements, the subtours are recombined into longer subtours. This subtour 
improvement and recombination is performed repeatedly until full tours are formed. The execution time of 
an iteration on subtours is shorter than that on full tours. Iterations on full tours stop when the same 
stopping criterion used in the other PGAs is met. The purpose of designing the segmentation approach is to 
test whether by introducing tour segmentation and recombination high quality solutions can be found more 
quickly than with the other PGAs being compared. Figure 6 shows the outline of the segmentation 
approach.  

 
Figure 6. Outline of the segmentation approach. 

At the initial population generation step, a total of S tours are generated. Each tour is then evenly 
segmented into N disjoint subtours, where N is the number of PEs used. PE P is assigned the P-th subtour 
of each chromosome. Thus, as a result of this tour segmentation, each PE possesses S subtours, each of 
which is the P-th segment of a full tour.  

To correctly calculate the subtour lengths, each PE also knows the first city of the next segment of 
each full tour. The length of each subtour is thus the travel distance from the first city of the subtour being 
considered to the first city of the next subtour of the same full tour. The sum of these lengths over all 
component subtours of a full tour is the full-tour length. The first city of each subtour is not allowed to be 
changed by genetic operators in order to facilitate the calculation of full-tour lengths. Figure 7 shows an 
example of the initial local subtour segmentation. (Recall that each PE also knows the first city of the next 
subtour for each tour.)  

Some restrictions must be applied to the Heuristic crossover and local improvement genetic operators 
to guarantee that the resulting tours are valid. To describe the restriction on Heuristic crossover, the current 
last city on the partial offspring subtour being constructed will be denoted clast , and the parent subtours 
with the longer and the shorter total tour lengths will be denoted tlong and tshort, respectively. In the 
segmentation approach, the offspring subtour from Heuristic crossover starts from the first city of tlong . 
This is because the offspring subtour will replace the subtour of tlong and thus must start with the same city. 
If tlong contains clast , the city following clast on tlong will be called cnextl. Similarly, if tshort contains clast , the 
city following clast on tshort will be called cnexts. The city cnextl is used to extend the current partial offspring 
tour if both of the following conditions are true:  
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Figure 7. An example of initial local subtour distribution of the segmentation approach (each PE also 
knows the first city of the next subtour for each tour). In this example, the number of PEs is four, the 
population size is eight, and the number of cities is 32. 

(1) cnextl is not on the current partial offspring tour  
(2) cnexts is on the current partial offspring tour, or cnexts is not on tlong ,or dclastcnextl

 ≤ dclastcnexts
  

The city cnexts will be used to extend the current partial offspring tour if both of the following conditions are 
true:  

(1) cnextl cannot be used  
(2) cnexts is not on the current partial offspring tour and cnexts is on tlong .  
If neither cnextl nor cnexts can be used, then a city on tlong, excluding those that are on the current partial 

offspring subtour, is selected randomly. In the 2-opt and Or-opt local subtour improvements, whenever a 
subtour change would result in relocating the first city of the subtour, the change is not performed.  

For each chromosome, at the evaluation step, each PE first locally computes the subtour length from 
this subtour’s first city to the first city of the next subtour. Then all the PEs that share a chromosome 
perform a recursive doubling operation (e.g., [40]). In this operation, each of these PEs provides the lengths 
of its subtours and gets full lengths of all tours as the outcome of this reduction operation. These full tour 
lengths are used in the crossover step for deciding which parent tour to be replaced by the offspring tour 
and in the recombination step described below.  

There are n + 1 phases in the segmentation approach. When the PEs sharing tours finish the current 
phase, they are all involved in a recombination process, as discussed below. First, some notation that will 
be used for specifying the recombination step is defined. Without loss of generality, it can be assumed that 
the number of PEs, N, is a power of two. Let n = log2 N. Each PE’s physical number P is denoted as  
pn −1 pn −2 ... p1 p0. It can also be assumed that the total number of chromosomes (tours), S, is a power of two. 
Let s = log2 S.  

At a given phase e, 0 ≤ e ≤ n, 2n −e
 
PEs form a group of PEs that share a set of tours. For phase e, there 

are 2e groups, numbered from 0 to 2e
 
− 1. Each PE P belongs to group pe −1 ... p1 p0 when e > 0 and belongs 

to group 0 when e = 0. At the first phase, when e = 0, all PEs start as a single group sharing all tours, and in 
the last phase, where e = n, each PE is in its own group and shares no tours with other PEs.  

The following describes one way of doing the subtour recombination. Each PE contains S/2e
 
subtours, 

where each subtour involves C/2n −e
 
cities. Recombination occurs at the end of each phase e, except for the 

last phase when e = n. At the beginning of a recombination, the subtours contained by a group of PEs are 
numbered in ascending order of the corresponding full-tour lengths, which are known to all PEs in the 



226 Intelligent Automation and Soft Computing 

same group. Therefore, all subtours that belong to the same tour have the same order number across the 
PEs in a group.  

Recombination is performed by having each PE exchange subtours with the PE whose physical 
number differs only in the e-th bit position. In particular, within each group, each PE pn −1 pn −2 ... pe +10 pe −1 
... p0 sends each corresponding PE pn −1 pn −2 ... pe +11 pe −1 ... p0 its odd-numbered subtours, and each PE pn −1 
pn −2 ... pe +11 pe −1 ... p0 sends each corresponding PE pn −1 pn −2 ... pe +10 pe −1 ... p0 its even-numbered 
subtours. Each PE then concatenates each received subtour to the appropriate end of the locally held 
subtour with the same tour number. As a result of this chromosome exchange and recombination, each PE 
now has one half of the subtours it had before, but each subtour is twice as long. Figures 8 and 9 illustrate 
two recombinations following the initial subtour distribution given in Figure 7.  

 
Figure 8. The first recombination in the segmentation approach after Figure 7. 

 
Figure 9. The second recombination after Figure 7. 

The subtour numbering by full-tour lengths done within each group of PEs facilitates an 
approximately equal distribution of quality among the subtours retained after the pairwise inter-PE 
transfers discussed above. In particular, because PE pn −1 pn −2 ... pe +10 pe −1 ... p0 gets even-numbered 
subtours and pn −1 pn −2 ... pe +11 pe −1 ... p0 gets odd-numbered subtours, the new subtour subpopulations of 
these two PEs are both of mixed quality.  
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After a recombination, each PE starts a new phase of the evolution (i.e., e is incremented). At each of 
the first n phases, each PE executes the Heuristic crossover, 2-opt, and Or-opt steps on its subtours. The 
genetic operations in these steps are modified for the segmentation approach as discussed earlier in this 
subsection. Only one evolution iteration is performed for each of these first n phases. At the last phase, 
when e = n, each PE has S/N chromosomes, each of which is a full tour of C cities. At this phase, the 
segmentation approach becomes the independent approach with (S/N) full tours assigned to each PE.  

The following analysis shows that each iteration on subtours takes less execution time than that on full 
tours. It is observed that exhaustive Or-opt improvements take the majority of the computation time of each 
iteration. The execution time spent on exhaustive Or-opt operations on subtours at phase e (assuming each 
operation takes one unit of time) is  
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This time doubles each time e is incremented. At the last phase, where e = n, this time is  
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It can be seen from the above equation that T(n) = N × T(0), i.e., the time taken in the last phase is N 
times as expensive as that taken in the first phase. The total local improvement time on tour segments for 
the first n phases (one iteration per phase) is  
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The above equation reveals that for the segmentation approach, when N is large, the sum of the time 
for all of the first n iterations is approximately equal to that of one iteration of the last phase. Also, each of 
the n phases after the first phase is built upon two previously improved component subtours. These two 
characteristics make it possible for the segmentation approach to find the same or better quality solutions 
more quickly than those PGAs that always operate on full tours (e.g., the independent approach). However, 
it is possible that performing the genetic operations in one iteration on full tours may result in generating 
better new populations. Thus, the experiments in Section 6 are needed to evaluate the trade-offs. 

5.6  PGA with tour segmentation, recombination, and migration  
The last PGA considered in this research is the segmentation-migration approach, which augments the 

segmentation approach with periodic chromosome migrations. The motivation for designing this algorithm 
is to combine the characteristics of both the migration and the segmentation approaches, both of which 
performed well in the initial experimentation. 

The initial subpopulation generation and the first n phases of the segmentation-migration approach are 
exactly the same as in the segmentation approach. However, from the beginning of the last phase, once PEs 
get subpopulations of full tours, they start periodic chromosome migrations in the same way as those in the 
migration approach. Specifically, they exchange the best full tours once every five iterations after all PEs 
are operating on full tours.  

6. PGA IMPLEMENTATION DETAILS AND EXPERIMENTAL RESULTS  

6.1  PGA initial subpopulation generations  
The five PGAs described in this paper (the independent, the migration, the partitioned, the 

segmentation, and the segmentation-migration approaches) were implemented and tested on the 16 thin 
PEs of the IBM SP2 parallel machine. The same set of five TSP instances (KA, KC, KD, Reinelt, and 
lattice TSPs) were used to quantify the performance of these PGAs. To make fair comparisons, the same 
set of 50 different initial populations of 128 full tours used for testing the baseline SGA were also used for 
each PGA on each TSP instance. In the independent, the migration, and the partitioned approaches, each 
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initial population was divided into 16 subpopulations, each of which resided on a different PE. As a result, 
each PE contained eight full tours (which was sufficient to find high quality solutions comparable to those 
found by the 128-chromosome baseline SGA on a single PE). In each run of the segmentation and the 
segmentation-migration approaches, each full tour in the initial population was segmented into 16 disjoint 
subtours. PE P (0 ≤ P < 16) had 128 subtours as its initial subpopulation, where each of its subtours was 
the P-th subtour of a full tour.  

The partitioned approach required that each subpopulation come from a disjoint search subspace. In 
the implementation of the partitioned approach, the search space partitioning and the initial subpopulation 
generation were performed as follows. Each PE constructs its own partition matrix πP. Consider the portion 
of πP comprised of the E elements that were above the main diagonal. Assuming the elements in this 
portion were ordered in row major format, PE P set to 1 elements P(E/16) to (P + 1)(E/16) − 1 in πP. Then, 
to make πP a symmetric matrix, set πP(n,m) to 1 wherever πP(m,n) is 1. All other elements in πP were set to 
0.  

After each PE P determines its partition matrix, the initial random population of 128 chromosomes is 
distributed among the PEs based on the partition matrices. Unless all PEs have exactly eight chromosomes, 
the PEs exchange portions of the search space (by swapping partition matrix entries with another PE) to 
evenly distribute the initial chromosomes among all PEs. At the end of this process, the search space is still 
evenly divided among all of the PEs and each PE contains exactly eight chromosomes from the initial 
population. While this procedure may not always work in general, it did for all initial populations in this 
research. 

6.2  Experiments to explore limits on solution quality  
The relative performance (i.e., solution quality and execution time) of any two PGAs, both starting 

from one randomly generated initial population, could be different from that of these two PGAs both 
starting from another randomly generated population. Therefore, to attempt to determine the relative 
performance, the average values for the solution quality and the execution times over 50 runs for each PGA 
on each TSP instance were used in the experimental results tables. Two sets of experiments were designed 
to quantify the performance of these five PGAs. The purpose of the first set of experiments was to measure 
the quality of the best solution each PGA could find. The purpose of the second set (described in the next 
subsection) was to determine how quickly each PGA could find comparable solutions of high quality.  

The first set of experiments used a stopping criterion of no improvement in the best solution found 
after 150 iterations. Each run stopped when all PEs achieved this stopping criterion. On each TSP instance, 
each PGA was run 50 times, each time starting from a different initial population. Table II shows the mean 
D, the max D, the mean of the execution times, and the standard deviation (σ) of the execution times for 
each PGA on each TSP instance for this experiment set. In this table and Table VI, confidence intervals 
[41] of all mean values were calculated. Let X represent either D or the execution time. The mean value of 
X is expressed in the form of x ± ∆x, where x is the 50-run mean and ∆x was calculated according to Eq. 
(8.5) in [41] based on the variance of X, the number of runs (50), and a given confidence. In this research, a 
90% confidence was used, which means that if another set of runs were conducted (the number of which 
must be statistically significant (e.g., 50)), there is a 0.9 probability that the sample mean of this second set 
of runs is in the interval between x − ∆x and x + ∆x.  

From Table II, it can been seen that on all TSP instances the best solutions found by all PGAs, other 
than the partitioned approach, were within 1% of the best known solutions, the same range of the solution 
quality found by the baseline SGA. On each TSP instance, the migration approaches took significantly 
shorter mean time to finish than the non-migration approaches. The segmentation-migration approach, the 
hybrid of the segmentation and the migration approaches, had the shortest mean execution time. It was also 
observed that the partitioned approach had the worst performance in both the solution quality and the mean 
execution time for this set of experiments.  

Comparing the SGA and PGA execution times is meaningful because: (1) both the baseline SGA 
experiments (see Subsection 4) and this set of PGA experiments used the same stopping criterion and (2) 
the baseline SGA and the PGAs other than the partitioned approach all found comparable quality solutions 
(all within 1% longer than the best known solutions). The best algorithm identified by this set of PGA 
experiments, the segmentation-migration approach, was chosen to be compared with the baseline SGA. 
Define speedup to be the mean execution time of the baseline SGA divided by that of the segmentation-
migration PGA approach on a given TSP instance. The average speedup over the five TSP instances was 
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13.83, which indicates that the parallelization techniques used by the segmentation-migration PGA 
approach (i.e., chromosome migration, and tour segmentation and recombination) is quite effective in 
decreasing the execution time while maintaining the solution quality.  

The following discussion explains why chromosome migration is effective at reducing the total 
execution time. In the first set of experiments, the execution time was determined by when the last PE 
finished. In the migration approach once the globally best solution was found by one PE, after at most five 
migration steps all PEs had a copy of this chromosome. Because migrations occur once every five 
iterations, all PEs in the migration approach stop within 5 ×

 
5 = 25 iterations of each other. Each PE in the 

PGAs without chromosome migrations, however, stopped independently. Although some PEs in these 
PGAs found the globally best solution sooner than other PEs and stopped earlier, some other PEs required 
a greater number of iterations to improve their local solutions and stopped later. This was why the last PE 
in the migration approaches always had a shorter mean time to finish in the first set of experiments, 
compared to the mean time when the last PE in other PGAs finished.  

 
Table II.  Performance comparisons of the five PGAs for the first set of experiments, where each PE 

stopped when the locally best was not improved for 150 iterations. 

D (%) for the five PGAs 
independent migration partitioned segmentation segment.-migration 

TSP µ max µ max µ max µ max µ max 
KA 0.00±0.00 0.00 0.00±0.00 0.00 0.12±0.04 0.46 0.00±0.00 0.00 0.00±0.00 0.00 
KC 0.00±0.00 0.00 0.00±0.00 0.00 0.77±0.12 1.67 0.01±0.00 0.09 0.00±0.00 0.00 
KD 0.03±0.01 0.07 0.01±0.01 0.07 0.64±0.08 1.21 0.02±0.01 0.07 0.03±0.02 0.45 
RE 0.01±0.01 0.43 0.00±0.00 0.08 0.69±0.09 1.67 0.01±0.00 0.09 0.01±0.01 0.43 
LT 0.38±0.04 0.83 0.04±0.01 0.83 1.13±0.11 1.66 0.16±0.02 0.83 0.16±0.01 0.83 

execution time (sec) for the five PGAs 
independent migration partitioned segmentation segment.-migration 

TSP µ σ µ σ µ σ µ σ µ σ 
KA 42.04±1.45 6.12 28.24±0.41 1.76 53.93±1.73 7.28 43.35±1.43 6.03 26.89±0.42 1.79 
KC 45.92±1.37 5.78 32.42±0.98 4.13 54.81±2.07 8.75 42.50±1.09 4.60 29.37±0.77 3.23 
KD 48.70±2.03 8.56 35.80±1.00 4.23 60.38±2.15 9.07 48.76±1.50 6.33 30.97±0.90 3.82 
RE 54.08±1.68 7.07 38.33±1.52 6.42 59.28±2.18 9.19 53.11±1.67 7.02 37.92±2.33 9.82 
LT 39.59±1.16 4.90 31.65±1.45 6.14 44.76±1.17 4.95 39.93±1.56 6.60 30.04±1.14 4.82 

 
For example, from the same initial population on the KA TSP, both the migration and the 

segmentation approaches found the best known solution. However, these two runs found the best solution 
at different iterations and stopped at different iterations. Table III shows when the first PE found the best 
known solution and when the last PE stopped for these two approaches. (Recall that the stopping criterion 
was 150 iterations with no improvement of solution quality.) Table IV provides more detailed information 
about the stopping behavior of the migration approach. Each row in Table IV specifies the number of PEs 
that found the best known solution independently and the number of PEs that received the best solution 
from another PE at the iteration shown in the first column. The total number of PEs that obtained the best 
solution is also shown.  

From Table III, it can be seen that despite the fact that one of the PEs in the segmentation approach 
found the globally best solution faster than any PE in the migration approach (18th iteration versus the 
22nd iteration), it took longer for the segmentation approach to stop (264th iteration versus the 190th 
iteration). This is due to the fact that the segmentation approach requires each PE to independently 
determine the globally optimal solution whereas the migration approach communicates the best solution to 
PEs that may be searching in undesirable portions of the search space. For the example in Table IV, eleven 
of the sixteen PEs received the globally best solution from another PE.  

Table II also shows that compared with other PGAs, the partitioned approach had the worst 
performance in terms of both solution quality and mean execution time on every TSP instance. The 
following example runs demonstrate the differences between the partitioned and the independent 
approaches.  
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Table III.  The iteration and finish time when the first PE found the best known solution and when the 
last PE stopped in the runs of the migration and the segmentation migration approaches. 

iteration time (sec)  migration segmentation migration segmentation 
when first PE found best 22 18 4.17 3.56 

when last PE stopped 190 264 26.10 34.17 
 
All runs on the KA TSP in this research revealed that there was only one tour that had the best known 

tour length. Consider two typical runs from the first set of experiments, one using the independent 
approach and the other using the partitioned approach. They both started from the same initial population 
on the KA TSP. It was found that the best known solution was in PE 11’s search subspace (the optimal 
subspace) for the partitioned approach.  

 

Table IV.  A typical run of the migration approach. 

#PEs found global best 
independently 

#PEs received global best 
from another PE 

total #PEs found globally 
best 

iteration this iteration so far this iteration so far this iteration so far 
22 1 1 0 0 1 1 
25 1 2 1 1 2 3 
26 1 3 0 1 1 4 
30 1 4 4 5 5 9 
34 1 5 0 5 1 10 
35 0 5 4 9 4 14 
40 0 5 2 11 2 16 

 
In the partitioned approach, when the best known solution was within one PE’s subspace (which was 

the case for this example), there was only a single PE (PE 11 in the example considered) that was searching 
in the optimal subspace. All other PEs were searching in subspaces that did not contain the best known 
solution. In this specific example, the best known solution was not found. The best solution found (by PE 
11) had a value of D = 0.46, which was the worst for all PGA runs conducted on the KA TSP in the first 
set of experiments.  

When the independent run stopped, it was found that all chromosomes in fourteen of the 16 
subpopulations were located in a region of the search space that corresponded to a single PE’s partition 
(that of PE 11 in the example above). That is, eventually, there were fourteen PEs that were searching in 
the optimal subspace. Of these fourteen PEs, seven of them found the best known solution. (The worst of 
these fourteen final solutions had a value of D = 1.37, larger than that of the best solution found in the 
partitioned run (0.46)). Thus, approaches that do not force disjoint subpopulations among PEs allow 
multiple PEs to search in subpopulations that have more potential for producing a good solution. 
Furthermore, the partitioned approach requires more work per iteration due to the validity checks to 
enforce disjoint subpopulations.  

For this set of experiments, the segmentation-migration approach found solutions all within 1% of the 
best known solutions with the smallest mean execution time on each TSP instance. To compare the mean 
execution times of different PGA approaches when they achieve virtually identical quality solutions, a 
second set of experiments was conducted and is described next.  

6.3  Experiments to explore relative execution times  
The second set of experiments were designed to find out how quickly different PGAs could find 

solutions of the same high quality. Because the partitioned approach performed poorly compared with 
other PGAs in the first set of experiments, it was not evaluated using this set of experiments. The same set 
of 50 initial populations was used for each PGA on each TSP instance. To make fair comparisons of the 
mean execution times, the longest final solution found by a PGA (other than the partitioned approach) for 
each TSP instance in the first set of experiments was chosen as the basis for the stopping criterion. Each 
run in the second set of experiments stopped when any PE found a tour that was no worse than this chosen 
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solution. Table V shows the stopping criteria for this set of experiments, which were taken from Table II. 
The solutions used as the stopping criteria were considered of high quality because each of them was 
within 1% longer than the best known solution.  

Table VI lists the mean of the execution times, the 90% confidence interval for the mean, and the 
standard deviation of the execution times for each PGA on each TSP instance for the second set of 
experiments. From this table it can be seen that the migration approaches achieved the shortest mean 
execution time for each of the TSP instances. Specifically, the migration approach was the best for two of 
the five TSP instances (KA TSP and LT TSP) and the the migration-segmentation approach was the best 
for the other three TSP instances. For each TSP instance, the independent approach always had a longer 
mean execution time than the migration approach, and the segmentation approach always had a longer 
mean execution time than the segmentation-migration approach.  

This set used a stopping criterion that may not be practical in some situations because solutions chosen 
as the stopping criteria may not be available. However, this set of experiments provided insights into each 
PGA’s inherent ability to quickly find high quality solutions.  

Table V.  Quality of the solutions taken as the stopping criteria for the second set of experiments. 

TSP  
KA KC KD RE LT 

D (%) 0.00 0.09 0.45 0.43 0.83 
 

Table VI.  Execution time performance of non-partitioned PGAs for the second set of experiments, 
where each PE stopped when then locally best solution was at least as good as the given solution. 

execution time (sec) for four PGAs 
independent migration segmentation segmentation-migration 

TSP µ σ µ σ µ σ µ σ 
KA 6.74±0.70 2.95 4.82±0.37 1.55 6.52±0.61 2.58 5.06±0.41 1.74 
KC 8.74±1.51 6.36 6.63±0.92 3.90 7.83±1.13 4.77 5.75±0.72 3.03 
KD 5.97±0.65 2.76 5.25±0.45 1.90 5.43±0.62 2.60 4.46±0.42 1.76 
RE 8.68±1.74 7.35 6.83±0.86 3.61 7.29±1.02 4.30 6.03±0.85 3.57 
LT 4.41±0.71 2.99 4.04±0.58 2.43 5.62±1.17 4.94 4.32±0.60 2.52 

 
Different from the first set of experiments, the second set of experiments had larger standard 

deviations of the execution times relative to the mean values. This is because each run in the first set of 
experiments stopped when the last PE did not have its best solution improved for 150 iterations. In general, 
these 150 iterations had a non-negligible impact on the total execution times of the runs of each PGA on 
each TSP instance (e.g., see Table III). This resulted in a relatively more homogeneous set of execution 
times than if these extra iterations were not included in the execution times. The second set of experiments, 
without this time for the 150 iterations, had relatively larger standard deviations. 

7. CONCLUSIONS  
Four conceptually different PGA approaches and one hybrid of two of these approaches were 

compared using the TSP as an example application problem. For fair comparisons, all PGAs were 
developed based on the same baseline SGA, implemented on the same 16 thin PEs of an IBM SP2 parallel 
machine, and tested using the same set of initial populations on the same set of TSP instances. Two 
techniques were identified as the most effective ones for improving the PGA performance: (1) inter-PE 
information exchange during the evolution progress (e.g., migration of the locally best chromosomes) and 
(2) tour segmentation and recombination. The segmentation-migration PGA approach, which combined the 
above two techniques, took the shortest execution time in the first set of experiments (where a practical 
stopping criterion was used). It was shown in the second set of experiments that the migration and the 
segmentation-migration approaches were able to find solutions of similar high quality faster than the other 
approaches.  
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There are a great number of other possible variations of these five PGA approaches that can be created 
by varying PGA design parameters that include but are not restricted to the following: migration 
parameters (e.g., migration partner, interval, and size; migrant selection; and replacement policy), selection 
mechanism, whether elitism is enforced, crossover and mutation operators, probabilities for performing 
genetic operators, stopping criteria, population size, application problem, size of the application problem, 
number of PEs, and type of parallel machine. In this work, based on a combination of information available 
in the literature and experiments conducted, values for these design parameters were chosen and, to the 
extent relevant, held constant across the PGA approaches tested. Certainly, future research can build on the 
results presented here by considering variations on these PGA approaches, by comparing conceptually new 
PGAs to these approaches, and by examining other application problems.  
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