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ABSTRACT 
 
 
 

EVALUATING STATISTICAL METHODS TO PREDICT INDOOR BLACK CARBON IN 

AN URBAN BIRTH COHORT 

 
 

Though individuals in the United States spend a majority of their time indoors, 

epidemiologic studies often use ambient air pollution data for exposure assessment. We used 

several modeling approaches to predict indoor black carbon (BC) from outdoor BC and housing 

characteristics to support future efforts to estimate personal air pollution exposure given time 

spent indoors. Households from the Healthy Start cohort in Denver, CO were recruited to host 

two paired indoor/outdoor low-cost air samplers for one-week sampling periods during spring 

2018, summer 2018, and winter 2019. Participants also completed questionnaires about housing 

characteristics like building type, flooring, and use of heating and cooling systems. Sampled 

filters were analyzed for BC using transmissometry. Ridge, Lasso and multiple regression 

techniques were used to build the best predictive model of indoor BC given the available set of 

covariates. Leave-one-out cross-validation was used to assess the predictive accuracy of each 

model. A total of 27 households participated in the study, and BC data were available for 39 

filters. We had limited comparable data on seasonality as winter data were excluded from the 

analysis due to high variability and low confidence in outdoor measurements. Shortened 

runtimes and other performance issues suggest insufficient weatherproofing of our monitors for 

low temperatures. Of the three modeling approaches, Ridge LSE showed the best predictive 

performance (MPSE 0.50). The final inference model included the following covariates: outdoor 

PM2.5, outdoor BC, hard floors, and pets in the home (adj. R2=0.27). These factors accounted for 
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approximately 27% of the variability in indoor BC concentrations measured in Denver, CO 

homes. In the absence of personal monitoring, household characteristics and time-activity 

patterns may be used to calibrate ambient air pollution concentrations to the indoor environment 

for improved estimation of personal exposure.  
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CHAPTER ONE: LITERATURE REVIEW 
 
 
 

This chapter provides an in-depth overview of the literature associated with this project. 

The largest sections will cover air pollution and human health, specifically pregnancy outcomes. 

There are also sections devoted to discussing the differences in indoor and outdoor pollution, as 

well as a detailed background on measurement and health effects of black carbon (BC).  

Historical air pollution events 

 Air pollution is not just a 21st century problem; air quality issues have occurred 

throughout history in areas where people burn biomass to heat their homes or work in craft or 

industry requiring the use of such fuels. The Romans had a phrase for air pollution, gravorioris 

caeli, or heavy heaven.1 Although it was often considered unpleasant, air pollution was also seen 

as a sign of wealth and progress in cities. This seeming conflict between health concerns and 

economic progress continues today. Several particularly deadly air pollution events led to the 

creation of acts and policies that would lead to improved air quality in many cities across the 

world.  

Donora Smog 1948 

 This event in Donora, Pennsylvania, is considered the worst air pollution disaster in 

United States history. 22 The cities of Donora and the nearby village of Webster were covered in 

a yellow fog from October 26 through October 31 of 1948. The event led to 20 deaths and 

multiple hospitalizations due to respiratory or cardiac conditions. Following the event, 

investigators from local, state and national agencies such as the United States Public Health 

Service (USPHS) looked into the cause of the fog and resulting mortalities. Thus began the first 

large scale epidemiological study of an environmental health disaster in the U.S.  The initial 
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conclusion by the USPHS was that the smog was caused by three primary factors.3 First was 

pollution emitted by American Steel and Wire Plant and the Donora Zinc works. The Zinc 

Works emitted hydrogen fluoride, carbon monoxide, nitrogen dioxide, several sulfur compounds 

as well as heavy metals within a mix of fine particulate matter.3  Also identified as important 

factors was an unusual weather system resulting in a temperature inversion, which worked to 

trap the fog in the valley. Donora’s unique geography, surrounded by hills and cliffs, further 

contributed to the entrapment of the fog.  Steel and zinc industries had a powerful presence in 

town and accounted for a large proportion of local jobs. At the conclusion of the investigation, 

American Steel & Wire settled without accepting blame for incident.2 However, this event would 

have effects on public health and air pollution epidemiology for many years to come.  

Great Smog of London 1952 

 Fog was a common occurrence in London, but not the toxic, smoke-laden fog that 

shrouded the British capitol for five days in December 1952. Although smoke and fog (“smog”) 

events were becoming more frequent with the spread of the Industrial Revolution, none had 

reached the severity that was seen in 1952. In some parts of the city, people were unable to see 

their feet while walking.4 Once again, weather phenomena in combination with pollution emitted 

from factories and coal burning home furnaces combined to form the deadly smog. As was the 

case with the Donora Smog, a temperature inversion had reduced air flow and trapped pollutants 

close the ground. The cold winter temperatures meant that people were burning large quantities 

of coal in their homes. It is estimated that 4,000 people died as a result of the fog, but some 

historians think it was closer to 12,000.5 Although it took some time, the British government 

eventually passed the Clean Air Act in 1956, as a direct response to the 1952 smog event. 4 
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New York City Smog 1966 

 Over Thanksgiving weekend in 1966, a stagnant air mass settled over the New York City 

area.6  The resulting heavy, toxic smog lasted for three days and is estimated to have resulted  

immediately in 60 deaths, roughly 10.5 times the expected amount under ordinary circumstances 

for that time period.7 Most of the deceased were those with chronic cardiorespiratory diseases or 

of advanced age. Autopsies showed inflammatory signatures of chemical irritants in the 

respiratory tract.   

Air Pollution Legislation 

 The Clean Air Act (CAA) of 1963 was the first federal legislation in the US to describe 

air pollution control policy; the 1955 Air Pollution Control Act provided funds only for federal 

air pollution research. 8 The 1963 CAA Established a federal program within the U.S. Public 

Health Service and funded research in the areas of monitoring and control. In 1967, the Air 

Quality Act (ACA) expanded federal government authority on air pollution control and allowed 

the enforcement and monitoring of activities that resulted in interstate air pollution transport.  

 The federal government took an even larger role in air pollution control and research 

beginning with the CAA of 1970. In the same year, legislation was adopted that formed the U.S. 

Environmental Protection Agency (EPA). It’s main function at the time was to implement federal 

and state regulations set forth by the 1970 CAA. The legislation set limits for emissions from 

both stationary (industrial) and mobile sources.  

 Amendments to the CAA in 1977 and 1990 further strengthened federal programs for air 

quality control, monitoring and research. The 1990 amendments, including regulatory programs 

for acid rain as well as an expanded program for controlling toxic air pollutants, are the basis for 

current federal legal authority regarding air pollution.   
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Current Federal Standards and Criteria Pollutants 

 The 1990 Clean Air Act requires the EPA to set National Ambient Air Quality Standards 

(NAAQS) for six principal pollutants (“criteria” air pollutants) that can harm public health and 

the environment. Primary standards aim to provide direct public health protection, including the 

health of sensitive groups such as children, elderly and people with asthma. Secondary standards 

protect the public welfare, inclusive of protection against damage to buildings, crops, animals 

and vegetation as well as decreased visibility.9 Pollutants are measured in parts per million (ppm) 

by volume (ppm), parts per billion (ppb) by volume, and micrograms per cubic meter of air 

(µg/m3). The current primary pollutants include Carbon Monoxide (CO), Lead (Pb), Nitrogen 

Dioxide (NO2), Ozone (O3), particulate matter (PM2.5, PM10) and Sulfur Dioxide (SO2). All but 

CO have standards as secondary pollutants as well. Below is a brief description of each pollutant 

as well as discuss its criteria level. Information on standards is derived from the US EPA 

NAAQS Table.  

 

Carbon Monoxide (CO): a colorless, odorless, gas CO is released from combustion. 

Ambient sources of CO include cars, trucks and any other fossil fuel burning equipment 

of machinery. CO can also come from indoor sources such as unvented kerosene or gas 

space heaters, leaking chimneys or furnaces, gas stoves and generators. The standard for 

CO is maximum 36 ppm for a 1-hour period and 9 ppm for 8 hours.  

 

Lead (Pb): There are various ways lead enters the air, including ore and metals 

processing, waste incinerators, utilities, and lead-acid battery manufacturing. According 

to the EPA, highest air concentrations are found near lead smelters. Regulation requiring 
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the removal of lead from vehicle fuel reduced the amount of lead in the air from 98 

percent between 1980 and 2014. The maximum acceptable limit for lead in the air is 0.15 

µg/m3 over a rolling 3-month average.  

 

Nitrogen Dioxide (NO2): one of the several nitrogen oxides (NOx), NO2 typically arises 

via the oxidation of nitric oxide by oxygen in the air and is formed in most combustion 

processes. The most common anthropogenic sources are internal combustion engines and 

burning of fossil fuels. Maximum levels are 100 ppb hourly and 53 ppb annually.  

 

Ozone (O3): Also known as trioxygen, ozone is a pale blue gas and a powerful oxidant. It 

occurs at both ground level and in the earth’s upper atmosphere. “Good” ozone occurs 

naturally in the stratosphere and shields the planet from the sun’s harmful ultraviolet 

(UV) rays. “Bad” or tropospheric ozone is found at ground level and is a harmful air 

pollutant, often the main constituent of smog. Ground level ozone is created by chemical 

reactions between sunlight and air containing volatile organic compounds (VOCs) and 

NOx. Urban areas with high density of motor vehicle use, which emit NOx and (VOCs), 

are often affected by the highest ozone levels. Ozone can also be transported by wind into 

rural areas. The maximum acceptable ozone concentration is 0.070 ppm over an 8-hour 

period. Nonattainment occurs when the annual fourth-highest daily maximum 8-hour 

concentration averaged over 3 years exceeds this value.  

 

PM2.5: Particulate pollution is a mixture of solid particles and liquid droplets found in the 

air.  
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This category of particulate matter (PM or particle pollution), includes the fine, inhalable 

particles with diameters generally 2.5 micrometers (µm) or less and can only be seen 

individually under a microscope. PM2.5 is typically a product of combustion, including 

vehicle exhaust, industry and biomass and is often the biggest concern for 

epidemiologists as these particles can be inhaled deeply into the lung. The composition of 

PM2.5 is thought mainly to be sulfate, nitrate, ammonium, elemental carbon, organic 

carbon, silicon and sodium ions. 10 The maximum limit for PM2.5 as a primary pollutant is 

12.0 µg/m3 averaged over a 1-year period.  

 

• BC (black carbon): also known as soot, BC particles are a constituent of PM2.5 

formed from incomplete combustion of biomass and fossil fuels. Although BC 

concentrations are not currently regulated by the EPA, BC exposure has been 

associated with cancer, respiratory and cardiovascular disease and is the second 

largest contributor to global temperature increases behind CO2. 

 

PM10: Although still microscopic, PM10 particles are slightly larger with a diameter 

generally 10 µm or smaller. In addition to the combustion particles commonly found in 

PM2.5, PM10 particles include dust from construction sites, landfills and agriculture, 

wildfires and waste burning, industrial sources, wind-blown dust from open lands, pollen 

and fragments of bacteria.11The primary and secondary standard for PM10 is 150 µg/m3 – 

this value is not to be exceeded more than once per year on average over 3 years.  
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Sulfur Dioxide (SO2): National air quality standards are designed to protect against 

exposure to all sulfur oxides (SOx), among which SO2 is the most concerning. The main 

source of SOx pollutants is the combustion of fossil fuels by power plants or industrial 

facilities. The maximum limit for the primary standard of SO2 is 75 ppb over one hour.  
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Evidence of Adverse Effects of Air Pollution on Birth Outcomes 
 
 

This section explores recent (past 15 years) epidemiological literature looking at the association 

of air pollution with adverse health effects in humans, and specifically, birth outcomes.    

Reviews and Meta-Analysis 

 

In 2005, Sram et al. published a review of ambient air pollution and pregnancy 

outcomes.12 A majority of studies reviewed in the paper were population based, with exposure to 

air pollution measured by fixed-site areawide or citywide monitors.  Pollutants measured include 

total suspended particles (TSP), sulfur dioxide (SO2), carbon monoxide (CO), PM2.5, PM10, 

nitrogen dioxide (NO2), ozone (O3) and oxides of nitrogen (NOx).  Some of the specific 

outcomes reviewed include child mortality (including pre- and post-natal outcomes), birthweight, 

premature births and intrauterine growth restriction (IUGR). Overall, the authors find the 

evidence shows an association between air pollution exposure and adverse birth outcomes. 

However, there is different strength of association between outcomes. The evidence linking 

particulate air pollution with decreased birth weight and respiratory deaths in the postneonatal 

period was sufficient to infer causality. The association between air pollution and preterm birth 

and IUGR was weaker, but still enough to justify further study.  

 For example, in a time-series study conducted by Loomis et al. in Mexico City (1993-

1995) that investigated the association between PM10 and infant mortality, the authors found a 

6.9% excess in infant mortality (95% CI, 2.5 – 11.3%) for each 10µg/m3 increase in PM10.13 A 

study that took place in Sao Paulo, Brazil examined the association between intrauterine 

mortality (stillbirth) and PM10 found no effect with increasing exposure of PM10.14 A group of 

studies that investigated low birth weight (LBW; < 2,500 g) show more similar odds ratios, but 

mostly small effects sizes. Specifically, Wang et al. found an AOR of 1.21 (95% CI, 1.06 – 1.16) 
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when looking at total suspended particles (TSP) as the exposure,15 while Ha et al. found a 

smaller AOR of 1.04 (95% CI 1.00 – 1.08) with increasing exposure to TSP in the first trimester. 

16 The variance in these effect sizes highlights the challenge of proper exposure assessment in 

environmental epidemiology.  

 A 2013 multi-center meta-analysis looking at data from the International Collaboration 

on Air Pollution and Pregnancy Outcomes (ICAPPO) was published in 2013 by Dadvand et al. 17 

The aim of this analysis was to evaluate the association of birth weight outcomes with maternal 

air pollution exposure. The authors combined effect estimates from each of the ICAPPO centers 

and investigated inter-center heterogeneity. A common analysis protocol was used at all of the 

ICAPPO centers, thus eliminating any effect differences resulting from divergent analysis 

approaches. The analysis focused primarily on the association between PM10 exposure during the 

duration of the pregnancy and term LBW outcome (birth weight < 2500 g at 37-42 completed 

weeks of gestation). Included in the analysis were 14 ICAPPO centers including 6 in North 

America, 5 in Europe and 1 each in South America, Asia and Oceania; more than 3 million births 

were analyzed in total. Random-effects models of combined ORs showed a positive association 

between term LBW and a 10µg/m3 increase in average maternal exposure to PM10 during entire 

pregnancy prior to adjustment (OR = 1.04; 95% CI: 1.01, 1.06), the OR decreased slightly to 

1.03 after adjusted for SES (95% CI: 1.01, 1.05). Data on PM2.5 was analyzed from seven centers 

and results indicated positive association with an OR of 1.10 after being adjusted for maternal 

SES (95% CI: 1.03, 1.18). Therefore, potential confounders for univariate results were not 

evaluated.  

A comprehensive review on ambient air pollution (AAP) and pregnancy outcome studies 

was conducted by Klepac et al. at the National Institute of Public Health in Slovenia in 2019.18  
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For the first phase of the study, the authors extracted components of interest from each study 

including defined pregnancy outcomes, AAP exposure assessment methods, study design, 

sample size and statistical analysis methods. For the second phase, effect estimates of the most 

commonly studied ambient air pollutants on pregnancy outcomes were evaluated. Furthermore, 

the authors conducted a meta-analysis on pre-term birth (PTB) outcome, and used the Newcastle-

Ottawa Scale (NOS) to assess study quality. The NOS is a tool used to assess the quality of 

nonrandomized studies such as case-control and cohort, and can be incorporated into the 

interpretation of meta-analytic results. The developers of the scale use a ‘star system’ in which a 

study is judged on three areas: selection of study groups, the comparability of groups, and the 

ascertainment of either the exposure or the outcome of interest for case-control or cohort studies 

respectively.19 A total of 96 articles, a majority published in 2010 or later, met the quality 

inclusion criteria and were included in the meta-analysis. Of these studies, a large portion (n = 

45) were conducted using a retrospective cohort design and assessed the association between 

routine ambient air monitoring and birth records data. The most commonly studied pollutants 

were PM10, PM2.5, NO2, CO and O3, while the most commonly investigated pregnancy outcomes 

were PTB, LBW, birth weight (BW) as a continuous variable (in grams), congenital anomalies 

and small for gestational age/intrauterine growth restriction (SGA/IUGR, BW < 10th percentile 

for gestational age).  

PTB (defined as < 37 weeks gestation) was the most widely studied outcome found in 

this review with a total of 28 studies included in the review and assessed for quality. Meta-

analysis was used to calculate pooled effects estimates across the most common pollutants. The 

pooled effects estimates (OR) for exposure per 10µg/m3 increase in particulate matter over the 

entire pregnancy was significantly associated with risk of PTB: 1.09 (95% CI, 1.03 – 1.16) for 
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PM10 and 1.24 (1.08-1.41) for PM2.5. Ozone (O3) also showed association with PTB and the 

pooled effects estimates per 10 ppb increase were 1.03 (1.01-1.05) for 1st trimester, 1.12 (1.05-

1.19) for second trimester and 1.03 (1.01-1.04) for the entire pregnancy. Evidence of an 

association between CO and PTB was also present as the pooled effect estimates per 1 ppb 

increase in CO concentration were 1.36 (1.15-1.62). Only one study in the review used personal 

air quality monitoring; this leaves open the possibility of exposure misclassification if changes of 

maternal residence address and time-activity patterns during pregnancy are not considered.  Most 

studies also lacked information on indoor air pollution exposure and a recent study indicates that 

between 30-75% of indoor PM2.5 may originate from the outdoor environment.20 

Traffic Related Air Pollution 

 

There is a growing body of evidence that suggests PM from combustion sources may be 

more harmful compared to PM from other sources.21,22 Black carbon (BC) particles are formed 

from incomplete combustion of biomass and fossil fuels are often used to estimate exposure to 

traffic related air pollution (TRAP). Once inhaled, small BC particles can enter the circulation 

system and illicit inflammatory responses throughout the body.23  Furthermore, there is evidence 

linking ambient air pollution exposure in utero to adverse health outcomes in infants in children. 

A 2008 study by Brauer et al. used spatiotemporal exposure metrics to assess the impacts 

of air pollution exposure on pregnancy outcomes, specifically, low full-term birth weight (LBW) 

and preterm birth small for gestational age (SGA) birth weight. 24 Their findings showed that 

residence within 50 m of a highway was associated with a 11% (94% CI, 1.01 - 1.23) increase in 

LBW and a 26% increase in SGA (95% CI, 1.07 – 1.49). In addition, associations were observed 

with PM2.5 and births < 37 weeks gestation; exposure to all pollutants except O3 was associated 

with SGA. The study area of Vancouver, British Columbia is generally considered to have 
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relatively low ambient air pollution levels; nonetheless, intraurban findings did not include the 

null value. The null value, in an epidemiological context, is the value that corresponds to no 

effect or shows no association between exposure and health outcome. The authors note potential 

exposure misclassification due to the fact that subject mobility was not captured. 

A prospective birth cohort study of healthy newborns conducted in Switzerland from 

1999 – 2007 found that minute ventilation (tidal volume multiplied with respiratory rate, inverse 

measure of lung development and function) was higher in infants with higher pre-natal PM10 

exposure (24.9 mL * min-1 per µg m-3 PM10). Increased respiratory rate can be a sign of 

respiratory distress syndrome (RDS) if breaths reach more than 100 a minute. 25 Increased 

respiratory rate can be due to the lower work of breathing required with small rapid breaths. In 

addition, authors report that exhaled nitric oxide (eNO) was increased in infants with higher 

prental NO2 exposure. Pollution measurements were captured at the monitoring station of 

Payerne (part of the Swiss National Air Pollution Monitoring Network), and regional data were 

used to calculate mean exposure of subjects to each pollutant during their pregnancy period. In 

addition, a stronger association was also found with minute ventilation and mothers that lived 

close to major roads.  Although there were many strengths of this study, including standardized 

lung function measurement, exposure misclassification is still possible given that neither 

individual or indoor air pollution measurements were taken.  

 In 2012, Sapkota et al. published a meta-analysis of 20 peer-reviewed articles with 

quantitative estimates of exposure to particulate matter and adverse birth outcomes.26 Random-

effects meta-analysis results suggested a 9% increase in risk of LBW associated with a 10µg/m3 

increase in PM2.5 (combined OR, 1.09; 95% CI, 0.90 – 1.32), although it is worth noting the CI 

does include the null value, or number corresponding to no effect. Increase in risk of pre-term 
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birth (PTB) increased 15% for each 10µg/m3 increase in PM2.5 (combined OR, 1.15; CI, 1.14 – 

1.16). The authors note that there is significant heterogeneity between study results; in particular 

with PM10. This could be a contributing factor to the results of the analysis showing a smaller 

magnitude of risk associated with PM10 (2% per 10µg/m3). Nearly all studies included in the 

meta-analysis obtained outcome data from public records such as birth certificates.  

Wildfires 

 

As climate change impacts accelerate, exposure to wildfire smoke will increase in the 

many parts of the world.27 Holstius et al. investigated birth weight outcomes following 

pregnancy during the 2003 Southern California wildfires28 and found a reduced average 

birthweight among infants exposed in utero. In this study, outcome data was collected from birth 

records in the South Coast Air Basin (SoCAB) during 2001-2005. Smoke exposure, which is 

typically measured using PM2.5 concentrations, was primarily determined by reports of smoke 

from the California Department of Forestry and Fire Protection and inspection of Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite imagery. From this data, the window 

of potential wildfire smoke exposure was set as October 21 – November 10, 2003. Birth weights 

were compared between pregnancies that took place entirely before or after the wildfire event. 

Mean birthweight of babies born during the wildfire was 3.3 g lower (95% CI: -7.2, 0.6) when 

exposure occurred during first trimester, 9.7 g lower (95% CI: -14.5, -4.8) during second 

trimester and 7.0 g lower (95% CI: -11.8, -2.2) during third trimester. Potential exposure 

misclassification could be possible due to lack of information on spatial variability and a 

relatively small number of exposed mothers could have been affected more significantly than the 

estimates would demonstrate.  
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Asthma 

 

 A growing body of evidence suggests in utero exposure to air pollution can also increase 

the likelihood of development of childhood asthma. The objective of a study conducted in 2015 

by Hsu et al. was to identify sensitive windows for effects of prenatal exposure to PM2.5 on 

children’s asthma development in an urban pregnancy cohort.29 The final analysis was conducted 

on data from 736 full-term (≥ 37 weeks) children and their mothers. Mother child dyads were 

selected from a pool of patients receiving care at Brigham and Women’s Hospital, Boston 

Medical Center and the affiliated community. A novel spatiotemporal MODIS aerosol optical 

depth (AOD) was used to estimate mothers’ exposure to PM2.5 over the course of the pregnancy. 

This model was layered with traditional land use regression (LUR) predictors to provide 

residence specific estimates of daily PM2.5 exposure. Asthma diagnosis was maternal-reported 

and clinician diagnosed and was ascertained from birth to 6 years. There were 110 asthma cases 

among the final group of 736 children; a significant sensitive exposure window was observed 

between 12 and 26 weeks for boys but not girls when stratified by sex. In addition, a 

multivariable logistic regression model including interaction between PM2.5 and sex showed a 

significant interaction (p = 0.01). The novel use of LUR/AOD to model daily PM2.5 was one of 

the first studies to objectively estimate exposure windows during pregnancy.  

Telomere Length 

 

A new and interesting direction in air pollution research evaluates the telomere as a 

biomarker of biological aging.  Oxidative stress and chronic inflammation are thought to be 

potential mechanisms for the adverse pregnancy outcomes associated with maternal exposure to 

air pollution.30 One mechanism through which oxidation damages the human body on a cellular 

level is through oxidation of DNA, which may cause damage to the telomeres. The telomere 
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region in human DNA protects the end of the chromosomes from degradation and from sticking 

to other chromosomes (end-to-end fusion). Every time a cell carries out DNA replication, the 

chromosomes are shortened (by about 20 base pairs), but due to the telomere protected end, that 

is the only part of the chromosome that is lost. At a certain point, telomeres become too short and 

the chromosome reaches the “critical length”; it can no longer be replicated and the cell dies by 

apoptosis or programmed cell death. A 2020 pregnancy cohort study conducted in Copenhagen, 

Denmark as part of the Maternal Stress and Placental Function project,31 aimed to assess the 

association between prenatal exposure to air pollution and telomere length (TL) in the maternal 

blood cells (leukocytes), placenta and umbilical cord blood cells. The participants were pregnant 

women who gave birth at the Copenhagen University Hospital, Department of Obstetrics; a total 

of 296 mother-child dyads participated in the study. Residential air pollution exposure was 

modeled at street resolution using the DEHM-UBM-AirGIS system (Danish Eulerian 

Hemispheric Model, Urban Background Model, traffic and street geometry model) and 

occupational address exposure modeled at 1 km2 grid resolution using DEHM-UBM models 

only. Pollution exposure measurement started 8 weeks before the estimated start of pregnancy 

and was modeled in 7-day periods for a total of one year. Along with pollutant measurements, 

ambient temperatures were also modeled and were used to adjust in the distributed lag models. 

Indoor air pollution data was collected via questionnaire, along with other information on 

potential confounders including education (via an occupational questionnaire), pregnancy 

complications and maternal strain (or difficulty) of birth.   

Associations were reported using percent interquartile range (IQR) increase in pollutant 

and mean relative telomere length across gestational weeks, and results were mixed. There were 

significant and positive associations between TL in umbilical cord cells and prenatal exposure to 
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BC (percent change (95% CI) = 22% (2, 46)), organic carbon (OC) 43% (12, 84), NO2  20% (3, 

39), NOx 19% (3, 37), CO 70% (24, 132) and O3 60% (24, 107) during the second trimester. TL 

in umbilical cord blood was significantly and inversely associated with prenatal exposure to 

PM2.5 -23% (-35, -9), BC -19% (-29,6), OC -22% (-35, -7), SO2 -33% (-47, -16), NH4
+ -56% (-

70,-34), CO -29% (-48, -5) and NO2 -20% (-31, -6) in the third trimester. The barrier of the third 

trimester placenta is relatively thin compared to other trimesters and can allow more compounds 

such as PM, pro-inflammatory cytokines and pro-oxidant species to cross.  The authors speculate 

that the positive association in the second trimester may be an indicator of the maternal 

inflammatory response to air pollution exposure and the inverse association seen in the third 

trimester a combined effect of inflammation and oxidative stress response caused by direct 

transfer of air pollution particles through the placenta. This study is novel in its inclusion of air 

pollution exposure levels at occupation locations as well as using such a large selection of air 

pollution markers. There are currently a limited amount of studies that have measured the effect 

of period-segregated prenatal air pollution exposure on TL in umbilical cord cells from 

pregnancies. 32–35  
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Mechanisms 

 

 

 

As discussed earlier, recent evidence suggests PM2.5 from combustion sources may be 

more harmful than particulate matter from other sources.36 Although collecting BC exposure data 

cannot help us differentiate between indoor and outdoor pollution sources, it can be used as 

indicator of exposure to combustion particles.  BC is thought to cause damage in the human body 

through a series of pathways involving inflammation via direct and systemic toxicity.23 Systemic 

toxicity occurs when BC particles trigger an inflammatory response in the lungs causing 

epithelial cells to secrete inflammatory mediators (chemokines and cytokines). This initial insult 

results in a continuing inflammatory cascade that can spread to other systems in the body. A 

recent study showed evidence that BC particles can cross the placental barrier, and have the 

potential to cause damage to the developing fetus. 37 Additional studies show associations 

between BC and cancer, respiratory diseases, and cardiovascular disfunction.23 There are 

hypothesized mechanisms for the link between air pollution exposure and low birth weight, 

including intrauterine growth restriction (IUGR). This occurs when the baby does not develop as 

expected in utero due to problems with the placenta, mother’s health or birth defects. The 

placenta is a crucial organ for fetal development and alterations on a molecular level, induced by 

constituents of air pollution, may be important as early origins of adverse health outcomes. 

Oxidative stress may be one of the key factors involved in air pollution-induced modifications of 

the placenta. Reactive oxygen species (ROS) generated by air pollution can directly induce lipid, 

protein, and DNA damage.38 The data present compelling evidence that the association between 

exposure to air pollution and detrimental birth outcomes may act through mechanistic pathways 
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such as systemic inflammation on the maternal side as well as direct translocation to the placenta 

on the fetal side.  

 The literature documents multiple adverse childhood and pregnancy outcomes associated 

with exposure to air pollution. However, there is heterogeneity in the findings. The heterogeneity 

is attributable, in part, to the difference in exposure assessment methods, time scales of 

measurement, or confounding variables. To complicate matters, there is a lack of information on 

IAQ compared to AAP, even though people in developed countries spend a majority of their time 

indoors.  Emerging research is working to understand how different sub-species of PM, such as 

BC, act as etiological agents in adverse health outcomes.39–42 
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Indoor Air Quality 
 
 
 

Multiple studies have shown poor correlation between ambient PM2.5 measurements and 

personal exposure data illustrating why ambient PM measures are often not suitable proxies for 

personal exposure.43–45 Much of this can be attributed to the fact that personal exposure 

measurements encompass not only ambient PM, but also contributions from indoor and vehicle 

sources as well as exposure experienced during personal activity. These exposures vary from 

person to person and throughout time.  Often, data regarding indoor air quality (IAQ) is missing 

in studies investigating associations between air quality and health outcomes. According the US 

EPA, indoor air quality (IAQ) refers to the air quality within and around buildings and structures, 

especially as it relates to the health and comfort of building occupants.46 IAQ problems often 

originate from indoor pollution sources that release gases or particles into the air. High 

temperature and humidity as well as inadequate ventilation can increase concentration of some 

pollutants.  Common sources of indoor air pollutants include fuel-burning combustion 

appliances, tobacco products building materials and furnishings, household cleaning and 

personal care products, central heating and cooling systems, excess moisture (mold and bacteria) 

and outdoor sources such as radon, pesticides and particulate matter. As with ambient air 

pollution, vulnerable populations including children, elderly, low-income and minority 

communities are often impacted more strongly by poor IAQ.   

 

Indoor Sources of Particulate Matter 

 

Indoor PM is composed of particles of outdoor origin as well as from indoor sources 

including cooking (especially from unvented gas stoves) and other combustion activities 
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including candle burning, fuel heaters, cigarette smoke and fireplaces. As discussed earlier, 

ventilation has often been used as a solution to exchange indoor pollutants with fresh outside air. 

However, there are situations including high ambient PM and wildfire events in which it may be 

undesirable to bring polluted or smoky air into a building.  

PM2.5 is made up of a number of different chemical constituents, with the mixture being 

source dependent.  One of these constituents, BC, originates from the indoor sources mentioned 

above as well as outdoor sources such as TRAP and industrial combustion activities.  The 

contribution of wildfire smoke to BC concentrations is also important to consider in wildfire 

prone areas. Due to the fact that PM is often measured by mass, it is difficult to distinguish 

between indoor and outdoor sources. Methods to distinguish between indoor and outdoor PM 

source include chemical tracers and positive matrix factorization modeling developed by the US 

EPA. The positive matrix factorization model takes speciated PM data and uses a mathematical 

approach to quantify the contribution of sources to samples based on the chemical “fingerprint” 

of the sources. 47 Although the American Society of Heating, Refrigerating and Air-Conditioning 

Engineers (ASHRAE) does set standards for air exchange indoors (minimum 0.35 air changes 

per hour but not less than 15 cubic feet of air per minute per person),48 the EPA does not 

specifically monitor or regulate IAQ. This has led to dearth of information on IAQ compared to 

what is understood about ambient air pollution.  

 

Infiltration of Ambient PM 

 

Outdoor air generally enters and leaves a building through natural or mechanical ventilation or 

infiltration.  Infiltration occurs when air moves between the indoor and outdoor environment by 

flowing through cracks, joint and openings in the building. Natural ventilation occurs when wind 
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and thermal buoyancy (denser cold air lifts warmer air up and out) move air through open 

windows and doors and between rooms.  

The process of mechanical ventilation uses fans to pull air into and/or exhaust air out of a 

building.  Buildings that are designed to minimize the infiltration of outdoor air can suffer from 

poor indoor air quality if they are lacking specialized mechanical ventilation systems that 

circulate and filter air. Ventilation and IAQ has become a particularly important topic since early 

2020 and the beginning of the SARS-CoV2 pandemic. The spread of COVID-19 (Coronavirus 

disease 2019) occurs via airborne particles and droplets and being in indoor spaces with poor 

ventilation can increase risk of infection.49   

The main objective of the Relationship of Indoor, Outdoor and Personal Air (RIOPA) study 

was to investigate the contribution of ambient outdoor sources to indoor and personal exposure 

concentrations.50  Approximately 100 nonsmoking homes from three distinct geographical 

locations (Houston, TX; Los Angeles County, CA; and Elizabeth NJ) were sampled across four 

seasons from summer 1999 to spring 2001. The sampled homes included a mix of ages, styles 

ventilation methods. Measurements were collected for home volume, air exchange rate, time-

activity information, temperature, relative humidity, VOC, aldehydes, PM mass and several PM 

species concentrations. Of the total of 212 houses sampled for PM2.5, 162 were sampled twice. 

Personal PM2.5 mass concentrations were measured on Teflon filters over a 48-hour period and 

duplicate samples were collected with collocated monitors inside or outside 35 study homes. 

Average air exchange rates over the 48-hour period were determined by measuring the house 

volume and the concentration of the inert nontoxic tracer perfluorinated methylcyclohexane. 

 Median indoor, outdoor and personal PM2.5 mass concentrations were found to be 14.4, 

15.5 and 31.4 µg/m3, respectively. Personal concentrations were found to be more variable and 
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significantly greater than both indoor and outdoor concentrations. Combined indoor, outdoor and 

personal PM2.5 mass concentrations were poorly to moderately correlated (R2 = 1-19% for NJ 

and TX; R2 = 21-44% for CA) while correlations between indoor and outdoor concentrations 

were stronger for homes where the ratio of indoor to outdoor concentrations was less than 1 (R2 

= 43-80%; I/O < 1 in 54-71% of homes by state). The higher correlations occur presumably due 

to less potent indoor sources and/or high exchange rates in these homes. Using a mass balance 

model approach,51 the estimate for the mean contribution of ambient outdoor sources to indoor 

PM2.5 concentrations was 8.7 µg/m3 or 60% for all study homes. The ambient contribution to 

personal PM2.5 exposure for subjects in the RIOPA study was estimated to be on average 26%. 

Results from the RIOPA study highlight the importance of collecting information on personal 

time-activity patterns and indoor PM exposure sources, in addition to data from fixed site 

ambient monitors.   

A study conducted in a non-smoking household in northern Virginia over a period of 2 

years (1998-2000) found that the main outdoor sources of BC in the house were from the general 

regional background (annual average 83-84% weekly) and sources of indoor BC originated from 

cooking and candle burning (annual average 16 and 31%, respectively).52 Morning rush hour 

traffic was found to contribute 8-9% of the total BC and a seasonal evening peak in fall and 

winter, believed to be from wood burning fireplaces and stoves, contributed approximately 8% 

of the annual average BC.  
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CHAPTER TWO: MANUSCRIPT 
 
 
 

Introduction 

 

Although monitoring and regulation of air quality has improved in the last several 

decades, exposure to air pollution, from both ambient and indoor sources, is still a major public 

health problem worldwide.1 Globally, exposure to ambient and indoor air pollution is estimated 

to be responsible for 7 million deaths each year. Almost all of the world’s population (99%) lives 

in places where ambient air pollution exposure exceeds guideline limits established by the World 

Health Organization (WHO).53 Exposure to ambient air pollution is considered to be a leading 

environmental risk factor worldwide. Although the United States showed a marked improvement 

in ambient air quality between 2000 to 2020 54, the WHO estimated 1.7 million Disability 

Adjusted Life Years (DALY’s) resulted from exposure to ambient air pollution in the US during 

that time;55 the Institute for Health Metrics and Evaluation (IHME) estimated that 60,229 deaths 

in the US in 2019 could be attributed to ambient and indoor air pollution exposure.  Specifically, 

among US children under the age of 5, air pollution exposure resulted in 4,100 DALY’s in 

2016.56 Additional risk also exists for those in areas of lower socioeconomic status, as 

environmental hazards such as air pollution are often disproportionately distributed across 

populations. 57 Improved methods for indoor and ambient air pollution exposure assessment are 

critical to understand inequitable health burden and protect vulnerable populations.  

Fine particulate matter (PM2.5) and its chemical constituents are commonly measured to 

estimate exposure to ambient air pollution. The constituents of PM2.5, which are source 

dependent, determine its chemical composition and influence its impact on health. For example, 

recent research has shown that PM2.5 from combustion sources may be more harmful than 
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particulate matter from other sources.58 One constituent of PM2.5, black carbon (BC), is formed 

from the incomplete combustion of hydrocarbons and can be used as an indicator of exposure to 

traffic related air pollution (TRAP). Previous studies demonstrate associations between BC and 

cancer, respiratory diseases, and cardiovascular dysfunction.22 BC is also known to have a more 

heterogeneous spatial distribution than PM2.5, and therefore may be a more informative 

measurement at the intraurban scale.59 Intraurban heterogeneity in BC concentrations related to 

TRAP can be useful for understanding differences in exposure across sociodemographic groups.  

Air pollution exposure assessment for epidemiological research, particularly for mobile 

sources, can take various forms. Land Use Regression (LUR) is a popular technique for 

estimating medium and long-term TRAP exposure.60 However, personal monitoring has been 

shown to be a better estimate of TRAP exposure 61 because air pollution exposure is measured in 

each microenvironment such as school, work, and transportation.  Likewise, regional ambient air 

pollution data is often extrapolated to estimate individual exposure, but multiple studies have 

shown poor correlation between ambient PM2.5 measurements and personal exposure data.43,44 

However, the indoor environment plays a significant role in personal exposure to air pollution 

that is not accounted for using these approaches.  On average, Americans spend approximately 

90% of their time indoors.62 Particularly vulnerable populations such as the very young, elderly 

and those with cardiovascular and respiratory diseases may spend even more time inside. 

Unfortunately, representative samples sizes are difficult to achieve for indoor air quality 

monitoring in residential settings, which requires compliance from multiple households as well 

as reliable instruments to measure indoor air pollution. In lieu of personal or indoor monitoring, 

statistical methods to predict indoor air quality may be useful for estimating individual air 

pollution exposure more accurately than using ambient air quality data alone.   
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Indoor air quality is influenced by the infiltration of outdoor PM2.5, including BC, as well 

as sources of indoor air pollution, such as cooking on unvented stoves, burning candles, and 

burning solid fuels for heating. Infiltration and exfiltration occur when air moves between indoor 

and outdoor environments through unintentional leaks in a building envelope, open doors and 

windows and mechanical ventilation. To better understand total air pollution exposure, we 

utilized indoor and outdoor air quality data along with household characteristic survey data from 

an urban birth cohort study in Colorado63 to evaluate three predictive modeling techniques to 

predict indoor BC concentrations using outdoor BC concentrations and household 

characteristics. Our study objective is to inform epidemiologic studies on environmental 

influences on early childhood health by investigating how indoor and outdoor BC are related and 

what additional factors are important in predicting indoor BC concentrations by using ambient 

BC concentrations.  

Methods 

 

Study Population 

Healthy Start (5UH3OD023248; PI: Dabalea) is a longitudinal pre-birth cohort study of 

ethnically diverse mother-infant dyads recruited at obstetrics clinics at the University of 

Colorado Hospital, which serves a nine-county region of Metropolitan Denver. Full descriptions 

of the study and recruitment strategy can be found in Harrod et al. 2014.64 Recruitment of 

pregnant women who had not yet reached 24 weeks of gestation, took place between 2009 and 

2014, with the last birth occurring in September 2014. Participants attended follow-up visits 

through pregnancy, delivery and into early childhood of the offspring. Eligibility criteria 

included age > 16 years old, singleton pregnancy and no history of chronic disease such as 

diabetes, cancer, asthma, treated with steroids, or medication-dependent psychiatric illness. 
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Those that experienced extremely preterm births (<25 weeks gestation) were also excluded. 

Participants reported their place of residence, age, race/ethnicity, education completed and the 

number of previous pregnancies at time of enrollment. A total of 1410 mother-child dyads were 

enrolled from whom data on pre-natal and perinatal outcomes were collected. Additional funding 

has allowed follow-up of the children and mothers over time to investigate the development of 

obesity and diabetes, in addition to other health endpoints including neurocognitive and 

respiratory outcomes. The Healthy Start study protocol was approved by the Colorado Multiple 

Institutional Review Board. 

Study Area and Sampling Locations 

At the time of the study, the majority of Healthy Start participants lived primarily in 

Denver, Arapahoe and Adams Counties. As such, the ambient air pollution monitoring 

campaigns were designed to estimate ambient air quality in these counties, primarily within the 

State Highway 470 loop around the metropolitan area. Monitoring sites were selected using a  

stratified sampling approach as described by Matte et al.58 to determine optimal monitor number 

and placement to represent regional TRAP sources and sinks. Briefly, the study region was 

overlaid with a 300m x 300m grid to stratify the area based on common sources of ambient 

PM2.5 (e.g., building density, road density, and traffic density) and to identify areas without 

coverage by central site monitors operated by the Colorado Department of Public Health and the 

Environment.59 Residential monitoring locations were selected to optimize coverage of the study 

area and oversampled to reflect areas likely to be high sources of PM, while also considering the 

geographic location of the participants’ residences. We conducted spring (Campaign 1), summer 

(Campaign 2) and winter (Campaign 4) campaigns (May 8 to July 3, 2018; July 10 to August 27, 

2018; January 22 to March 12, 2019) to capture seasonal variability. (Due to budgetary 
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restrictions, households did not participate in Fall campaign (Campaign 3) data collection.) We 

deployed 52 Ultra Sonic Personal Air Samplers (UPAS; Access Sensor Technologies, Fort 

Collins, CO) across the study area that included Healthy Start participants’ residences in addition 

to public sites. Paired residential samples were measured during weeks 1 or 2 of each campaign.  

Participant Home Visits 

A total of 27 households of Healthy Start II participants were selected to host two UPAS 

for indoor and outdoor measurements. Field team members visited each home at a pre-scheduled 

date and time to install air quality samplers inside and outside of the participants’ homes. The 

filter-based UPAS allowed us to capture PM2.5 and constituents, including BC, metals and 

reactive oxidative species (ROS).  Each outdoor UPAS was outfitted with a custom protective 

case and an external battery to extend run time to meet a 5-day target sampling period.  Indoor 

monitors were set up indoors in a shared space such as a living room or family room to more 

accurately represent the entire household’s exposure.  If the selected room had an outer wall, the 

outdoor monitor would be collocated on the outside of the house. The field team avoided placing 

UPAS in rooms that had little foot traffic, were near inflow/outflow vents or air conditioning 

units, or were to near other PM2.5 sources such as near cooking sources in the kitchen, or 

bedrooms. Outdoor UPAS were installed at adult breathing zone height or slightly above if risk 

of theft or tampering was perceived to be a concern. Lamps, fence posts, porch beams, and 

gutters were some of the items on which UPAS were attached via zip tie. Indoor samplers 

remained in the participants’ homes for 5 days, while outdoor samplers stayed for the duration of 

the outdoor sampling campaign. The field staff also collected urine samples, which were banked 

for future biomarker analysis. Participants were compensated $25 for hosting a monitor and an 
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additional $25 for providing a urine sample; participants could receive a maximum of $150 in 

compensation provided for full participation in all three campaigns (spring, summer and winter).   

Survey methods 

During study visits, the adult Healthy Start participant in the house responded to an 

English language questionnaire relating to household characteristics and occupation. The survey, 

adapted from the EPA’s BASE study65 was designed to gather information about household 

characteristics that may influence indoor air quality, such as housing type, flooring, heating and 

cooling methods. Participants were also asked about their occupation and smoking status. Survey 

data were collected and managed using REDCap66,67 electronic data capture tools hosted by the 

Colorado Clinical and Translational Sciences Institute.  

Exposure Assessment 

Quantification of PM and BC 

The UPAS employs a size-selective cyclone inlet to filter out particulate matter of > 2.5 

µm in diameter. For this analysis we used 5-day sampling period measurements from 

participants’ homes that hosted paired indoor and outdoor UPAS monitoring to collect BC and 

PM2.5 measurements collected during the spring, summer and/or winter campaigns. We collected 

particulate samples on polytetrafluoroethylene filters (MTL Corporation, Minneapolis, MN). 

UPAS flow rate was set to 1L/min and units were run at an 80% duty cycle. Filters were pre-and 

post-weighed using an Automated Air Analysis Facility (AIRLIFT).68 

BC analysis methods for this project have been previously described in Martenies et al. 

2020. 59 Briefly, filters used to collect PM2.5 samples were analyzed for BC using SootScan 

Model OT21 transmissometer (Magee Scientific, Berkeley, CA); we used a previously 

established protocol described by Ahmed et al.69 to calculate the mass of BC on each filter. 
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Particle light absorption is calculated by measuring the amount of light attenuated when passed 

through a sampled filter; BC absorbs light strongly at the 880 nm wavelength. Attenuation at 880 

nm was converted to BC density (µg cm-2) by dividing the attenuation by the mass absorbance 

cross section σ880 (m2 g−1). The final mass of BC on the filter was obtained by multiplying the 

BC density by the filter sampling area (α = 7.065 cm2). We used a value of 4.2 for the mass-

absorbance cross section based on analysis by Presler-Jur et al.70  

We deployed field blanks during each sampling campaign in order to assess potential 

contamination of filters.  Measurements of BC from Campaign 1 and 2 showed a negative bias 

(mean BC measurements were -4.0 ug and -2.6 ug, respectively, with coefficients of variation 

(CV) < 25%);  therefore, BC measurements from these campaigns were blank corrected.59 The 

limit of detection (LOD) value for BC was 1.41 µg based on the lower limit for the SootScan  

(0.2 µg/cm2 ) and the standard area of our filters (7.065 cm2). Filters below LOD, as well as 

filters with evidence of contamination (i.e., difference in pre- and post-sampling filter PM2.5 mass 

exceeded 1000 µg) were removed from the analysis.  

Variability of BC measurements was evaluated at each site by campaign. As described in 

Martenies et al. 59, we expected to see higher variability in winter outdoor BC measurements due 

to the effect of cold on the sampling equipment (i.e., battery life sometimes decreased in the 

presence of lower ambient temperatures). The coefficient of variation was used as our criterion 

to evaluate variability in UPAS measurements collected at each site by campaign. Any 

observation that had values that exceeded the coefficient of variation for BC (0.30) during the 

sampling campaign was dropped.  
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Statistical Analysis 

 The overall aims of this analysis were to assess the seasonality of BC levels indoors and 

outdoors and build the best predictive model given the available set of covariates. Within the 

context of the models, we also hoped to better understand which factors were predictive of 

indoor BC levels.   

One of our main goals was to gain a better understanding of factors that are associated 

with BC levels inside homes, as people spend a majority their time indoors. We were also 

interested in evaluating seasonal differences in BC concentrations, which are expected to change 

seasonally both indoor and outdoor due to fireplace/woodstove use, opening of windows, 

wildfires and seasonal weather pattern variations.  To test for significance differences in BC 

concentrations across seasons, we used the Kruskal-Wallis rank sum test. We used Wilcoxon 

rank sum tests to evaluate the relationship between indoor and outdoor BC concentrations across 

the entire study period. Wilcoxon signed rank tests were also applied to evaluate the relationship 

between mean indoor and outdoor BC concentrations for the same season. Significance was 

determined using an alpha of 0.05.   

To understand the relationship between indoor and outdoor BC concentrations and build 

the best predictive models, we employed three modeling techniques and evaluated their 

performance. Two of these modeling approaches were machine learning techniques: Lasso (least 

absolute shrinkage and selection operator) and Ridge regression, to reduce model complexity and 

prevent over-fitting.71  Lasso and Ridge modeling techniques (also known as L1 and L2 

regularization, respectively) are similar as they aim to reduce over-fitting by using a penalty 

parameter that increases bias, thus introducing a reduction in variance. In machine learning 

techniques bias is defined as the inability of the modeling method to capture the true relationship 
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between the variables, while variance represents the difference in fits between data sets.71 The 

ideal algorithm will have low bias and low variability and produce consistent predictions across 

different data sets.  

Although the two modeling techniques are useful in helping to find balance between bias 

and variance, simplicity and complexity, there are important differences between the two. Both 

Ridge and Lasso regression use a penalty parameter lambda (l) to penalize regression 

coefficients, however they differ in their penalty function. In linear regression, the cost function 

is the average error of n-samples in the data, represented by the root mean squared error (RMSE) 

or mean squared error (MSE). The cost function for Ridge regression is the sum of squared 

residuals plus the penalty term: 

  (Equation 1) 

The severity of the penalty is determined by l, which is selected with cross validation of 

multiple values to determine which one results in the lowest variance. If l = 0, then the equation 

is the same as the ordinary least squares (OLS) linear regression model; if l > 0, then it will add 

a constraint to the coefficient. As the constraint increases, the value of the coefficient will tend 

toward zero, shrinking coefficients of correlated predictors towards each other. Ridge regression 

never reduces a coefficient to zero, only to near zero; therefore, it will decrease the complexity of 

the model but will not reduce the number of variables. For this reason, Ridge therefore does 

better when most variables in the model are “useful” or provide information on the relationship 

prediction variables and outcome.72 Ridge regression is also a good tool for improving 

predictions when working with small samples sizes as it makes predictions less sensitive to 

training data due to increasing bias on the initial fit.  
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The cost function for Lasso regression is the sum of squared residuals plus the penalty 

term, which is the sum of the absolute value of the estimated regression coefficients.  

    (Equation 2)  

As with ridge regression, the severity of the penalty for Lasso is determined by l. However, 

when is l > 0, as the constraint increases the coefficient value will decrease until it reaches zero. 

The Lasso penalty is known to pick one of a group of coefficients of correlated predictors and 

discard the others. Thus, Lasso will reduce variables in the model, making it a viable option 

variable selection. This approach may be helpful when working with a dataset with a lot of noise 

variables or when there are too many predictor variables to have prior knowledge of which might 

be associated with the outcome.  

 For both Ridge and Lasso models, we used two functions from the R package `glmnet`, 

`lambda.min`( ) and `lambda.lse`( ), to choose the l parameter.73 The `lambda.min`( ) function 

calculates l of the minimum mean cross-validated error, while `lamda.lse`( ) uses the largest 

value of l such that the error is within 1 standard deviation of the cross-validated errors for 

`lambda.min`( ). With these two approaches for selecting l, two models each were fit for both 

Ridge and Lasso. 

The third predictive modeling approach we used was to fit a “clinical” model with 

multiple linear regression, based on factors associated with indoor BC concentrations that have 

been previously described in the literature including infiltration of outdoor particulate matter, 

wood burning, seasonal change, and residential building characteristics.74 Factors examined in 

the modeling process are listed in Table 1 and include indoor air quality (PM2.5, BC) and housing 
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characteristics (number of rooms, home ownership, presence of hard flooring, gas appliances, 

window AC use, presence of pets in home, and supplemental heat use).  

Cross-validation is often used to evaluate different modeling techniques and compare 

their predictive performance. A data set is split into a subset used to “train” the algorithm and a 

subset used to “test” the modeling parameters developed in the training phase. Using only one 

training set can be problematic as the MSE obtained from the testing phase can vary greatly 

depending on which observations were used in the testing and training sets.  K-fold cross-

validation is a method of cross-validation which splits the observed data into k folds or groups.75 

Then, one group is selected as the testing data and the remaining k-1 groups are used for training 

each model. Predictive performance of the trained model is then evaluated on the testing data. 

This process is repeated using each fold for testing data and the predictive performance scores 

are averaged into a comprehensive validation score.  

For our analysis, we implemented leave-one-out cross-validation (LOOCV), which can 

be more computationally expensive but is a good fit for small datasets as it allows for the 

smallest amount of data removed from the training set in each iteration (n-1).  In this method of 

cross-validation, the dataset is split into a training set and a testing set using all but one 

observation as part of the training set. The training data is used to build the model and predict the 

response value of the “left out” observation. The most common method for evaluating the 

performance of a model on the dataset is calculating the mean squared prediction error (MSPE) 

to measure how well the predictions match the observed data. The closer model predictions are 

to observations, the lower the MSPE. The MSPE is calculated with each testing set, giving n 

values of MSPE. The LOOCV estimate for the test MSPE is the average of all n MSPE values. 



 34 

The final model was chosen based on the lowest MSPE. A final multiple linear regression model 

was then fit for inference.  

Prior to modeling, indoor BC concentrations were log transformed. All data cleaning and 

statistical analyses were conducted in R v.3.6.2 (R Core Team, 2019), primarily using the 

`tidyverse`76 and `glmnet`77 packages. 

Results 

 

Measurements and Housing Characteristics 

A total of 27 homes were sampled over the three campaigns. Additional households were 

recruited to replace two that were lost to follow-up during the spring or summer campaigns, for a 

total of 25 homes for each sampling period.  

We collected a total of 73 indoor/outdoor pairs (spring = 25,  summer = 24, winter = 24) 

of residential filters. Nine filter pairs were removed from analysis due to outdoor PM2.5 

concentrations below LOD (n = 8) or potential contamination (PM mass > 1000ug, n =1).  

Additional pairs (n = 10) were removed that had indoor PM2.5 concentrations below LOD or a 

BC coefficient of variation > 0.30 (n = 8, all from winter campaign). Due to the high variability 

and low confidence in the winter samples all winter data (n = 24) were excluded from analysis. 

Following data cleaning, 39 measurements from 27 homes remained for the final 

analysis. Of these, 21 (54%) were collected in spring and 18 (46%) in summer. Table 1 presents 

summary statistics of the homes used in the study. Survey data from the 27 homes indicate that 

69.2% of participants were home owners, 43.6% had gas appliances and 51.3% had pets in the 

home. All but one home had carpet, (97.4%) so this variable was removed from the analysis. In 

addition to carpet, 53.8 % of homes had more than two types of hard flooring. Table 2 presents 

sample measurement data stratified by season.  The median indoor BC concentration was 1.00 
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µg/m3 (0.76-1.42) during the spring and 0.87 µg/m3 (0.67-1.12) during the summer, with an 

overall median of 0.98 µg/m3. Homes monitored during the spring had a ratio of median indoor 

to median outdoor BC concentrations equal to 0.99, while homes monitored during summer had 

a ratio of median indoor to median outdoor BC concentrations equal to 0.76. 

Using a Wilcoxon rank-sum test, neither median indoor (p = 0.31) or outdoor (p = 0.86) 

BC concentrations showed a significant difference by season (Table 2). We also found no 

significant difference between paired indoor and outdoor BC concentrations by season using a 

Wilcoxon signed-rank test (spring = 0.56, summer = 0.18; Table 3).  

Model Performance 

In terms of predictive performance, the clinical model had an MPSE of 0.054 and 

estimates for the four covariates selected a priori are as follows: outdoor PM2.5 (β=0.027), 

outdoor BC (β=0.052), dirty supplemental heat (wood stove, fireplace or kerosene heater) (β=-

0.038) and spring (β=0.027).  The Lasso model obtained an MPSE of 0.064 and selected three 

predictors: outdoor PM2.5 (β=0.013), presence of pets in home (β=0.064), and presence of greater 

than two types of hard flooring (β=0.033). The Ridge LSE model obtained the best predictive 

performance with a MPSE of 0.50 (Table 6). Since Ridge does not eliminate covariates and 

cannot be used specifically for feature selection, we chose the four predictors with the largest 

coefficients to go in our final model: outdoor PM2.5 concentration (β=0.014), outdoor BC 

concentration (β=0.041), presence of pets in home (β=0.094) and presence of greater than two 

types of hard flooring (β=0.092).  A linear regression model with these four covariates was fit for 

inference (Table 4). The R2 for the final model was 0.27. Households that had more than two 

types of hard flooring had a 0.09 (95% CI: -0.48, 0.23) unit increase in log-transformed indoor 

BC concentrations compared to homes that had one or fewer types of hard flooring. Households 
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with pets in the home had a 0.12 (95% CI: -0.02, 0.25) unit increase in log-transformed indoor 

BC compared to homes with no pets. Figure 2 shows correlation plots regressing model 

predicted BC concentrations on observed BC values. R represents the coefficient of correlation, 

or the degree of the relationship between the x and y variables, and can vary between -1 and 1. 

The p-value shown is from the overall analysis of variance report. The report is the overall test to 

determine the significance of the entire model. The Ridge LSE model plot has the highest R at 

0.36 and the lowest p-value of 0.026.  

Discussion  

 

 Human exposure to BC is likely to be associated with air quality of indoor environments, 

due to the fact that people spend most of their time inside. Most studies assign individual 

exposure using data from regional ambient monitors as it is not often feasible to measure 

residential indoor BC in a large-scale study. However, if outdoor air pollution is associated with 

indoor air pollution, we can estimate total air pollution exposure based on models as knowledge 

about household infiltration and indoor sources of air pollution. Focusing on black carbon holds 

great utility for this exercise, as BC is considered to be a leading etiological agent for many 

adverse health endpoints associated with air pollution. Black carbon also demonstrates strong 

spatial gradients within an urban setting to help differentiate places of high and low exposure. 

Further, traffic is considered to be the dominant source of BC in the study area; understanding 

indoor sources of BC as well as housing characteristics can help estimate total exposure.  

The results of our predictive modeling strategies demonstrate outdoor air pollution 

measurements along with housing characteristic data can explain approximately 27% of the 

variability in indoor BC concentration. Baxter et.al used a linear modeling strategy to predict 

indoor elemental carbon (EC) and found an R2 = 0.32.78 They used publicly available central site 
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monitor and GIS data, property assessment records and questionnaire responses from lower 

socioeconomic status (SES) households. This study was conducted with a subset of participants 

of a prospective birth cohort in Boston, MA. Sampling was conducted in two seasonal periods – 

heating (December – March) and non-heating (May-October). Although indoor sources were 

identified for PM2.5 (cooking time) and NO2 (stove usage), no indoor source was identified for 

EC. The truck traffic indicator proved to be an important factor in the modeling approach but 

was strongly modified by the variable “windowsopen” which was collected from the survey 

question asking if participants did or did not open their windows. In a similar study by Isiugo 

et.al, researchers developed a predictive model for BC that explained 78% of the variability in 

indoor BC concentrations. The presence or absence of electrostatic/HEPA HVAC filters was one 

of the most important factors influencing indoor BC concentration – homes with filters had an 

indoor/outdoor BC ratio of 0.81 while homes without had a ratio of 0.62. Both of these studies 

point to the importance of correctly capturing the heterogeneity in outdoor BC concentrations as 

BC tends to be dominated by outdoor sources.  

 While our three different modeling strategies didn’t perform exactly the same, they were 

quite similar with MPSE’s ranging from 0.050 with Ridge LSE to 0.064 with Lasso. Ridge is a 

useful modeling tool when working with multiple covariates that offer some explanation 

regarding the variability of the outcome while Lasso is better at eliminating noise variables. In 

this study, many of the covariates can at least partially explain the variability of the outcome of 

indoor BC concentrations. Ridge is better at handling multi-collinearity, or correlation between 

predictor variables. When predictor variables in the same regression model are correlated, they 

cannot independently predict the value of the dependent variable. Lasso will usually remove 

some of the collinear variables in the model while Ridge will keep all collinear variables while 
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shrinking some of their coefficients.  Although Ridge does not eliminate predictor variables and 

reduce model complexity, it may be the better statistical tool for predicting indoor BC 

concentrations due to the information on covariates that is retained.  

Applications of a Predictive Model 

 A predictive model for indoor BC would be a helpful tool to support public health risk 

assessment objectives and to reduce exposure misclassification in studies that assign individual 

BC exposure levels. Cumulative exposure is a combination of indoor concentration, outdoor 

concentration and time-activity patterns related to those environments. Collecting indoor BC 

measurements is a time and cost burden that could potentially be avoided by collecting 

household survey data and information on time-activity patterns. However, results from this 

study, as well of those from Baxter et al. and Isiugo et. al., demonstrate that building 

characteristic data and other information such as distance to a highway, may not explain a 

sufficient amount of variability in indoor BC measurements. In addition, estimating only 

residential exposure does not capture exposure from other microenvironments including school, 

work and commuting. With the increasing availability of reliable, low-cost monitors, personal 

monitoring may be a more robust and feasible method to estimate individual exposure to BC. 

Additional questions regarding indoor BC sources could be addressed by placing a sampler 

inside the home during the personal monitoring period. Improvements in monitor technology, 

such as GPS functionality and real-time PM sensors will help us better understand exposure by 

microenvironment.   

Limitations 

We had limited comparable data on seasonality as winter data were excluded from the 

analysis. Shortened runtimes and other performance issues suggest that the poor data quality of 
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winter BC measurements may be explained in part by impaired function and reliability and 

insufficient weatherproofing of our monitors in cold weather. Thus, the only two seasons we had 

for comparison were summer and spring, which overall did not show a significant difference in 

indoor or outdoor BC concentrations.  Other studies have shown outdoor BC to be negatively 

correlated with temperature and wind speed with higher average concentrations found during the 

winter. 59,79  Temperature inversions that trap pollution and wood burning to heat homes are 

thought to be related to the winter increases.  

Information on housing characteristics was limited and did not include variables that 

were shown to be informative in an indoor BC predictive modeling study by Isiugo et.al such as 

kitchen stove ventilation status, candle use during the study period and type of HVAC filter used 

in the home. For future studies, we would also like to include more specific information on type 

of ventilation used (open windows, fans, HVAC, etc.) as well as percent of flooring area covered 

in either carpet or hard floors such as tile or concrete. Although rate of infiltration and 

exfiltration through the building envelope are important variables when considering predictors of 

indoor air quality, gathering that information directly would not be feasible for large-scale 

studies since it would require individual assessment at each participant residence. However, 

estimates of infiltration can be discerned from existing models including factors such as building 

age, size and climate zone.80 Distance of a homes from nearby roads with high vehicular, 

particularly diesel traffic, may also modify indoor BC concentrations and will be incorporated 

into future modeling strategies.    

While there is sufficient evidence in the literature to suggest that personal BC exposure 

estimates are often poorly represented by ambient air quality data, there are limited published 

works evaluating modeling strategies to predict indoor BC concentrations. We conducted this 
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study with the intent to investigate the relationship between indoor and outdoor black carbon 

concentrations, evaluate seasonal differences in BC concentrations and explore housing 

characteristics that may play a role in indoor BC concentrations. What we found is the ratio of 

indoor to outdoor BC concentrations was just below one in both spring and summer, with indoor 

slightly lower than outdoor concentrations. While we did not find a significant difference in 

concentrations between seasons, we acknowledge that having only viable data from spring and 

summer seasons (both considered “non-heating” seasons) limited us in detecting differences that 

would be seen between colder and warmer months. Using three predictive modeling approaches, 

including Ridge and Lasso regression, we developed a final model from our data to predict 

indoor BC concentrations using housing characteristics and outdoor BC and PM2.5 

concentrations.  The R2 for the final model was 0.27 and the four covariates were outdoor PM2.5, 

outdoor BC, presences of more than two types of hard flooring and presence of pets in the home. 

We hypothesize that the presence of more than two types of hard flooring may be indicative of 

less carpeted surfaces, and perhaps carpeted surfaces capture more PM that is filtered out when 

vacuumed. Asking more specific questions about vacuuming habits and percentage of flooring 

that is carpeted would be helpful information for future projects. Pets the home as a factor 

predicting indoor BC concentrations may be related to ventilation – pet owners may be more 

likely to leave windows or doors open so their pets can easily go between the house and the yard, 

or they may be opening doors more frequently to let their pets outside. We could further improve 

our survey by asking more specific questions regarding how often door is opened for pets per 

day and if windows or door are left open.  

We could further develop our modeling by using differing variable selection methods that 

allow for more than 2-level categorical covariates, investigate interaction terms or potential non-
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linear relations. A specific tool for variable selection, Bayesian modeling, uses conditional 

probability, or the probability of an event A given event B, and can be calculated using the Bayes 

rule. The Bayes rule is used to compute and update probabilities after obtaining new data. 

Bayesian analysis can be useful for small samples, as it provides inferences that are conditional 

on the data and are exact, with no reliance on asymptomatic approximation.81  

Regarding what we chose as our “final” model – this was designed specifically so we 

could make inference regarding factors associated with indoor BC. The Ridge LSE had the 

strongest predictive performance and we would suggest using that model if the main objective is 

to predict indoor BC with similar factors as we used in our study.  
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CHAPTER 3: CONCLUSION 
 
 
 

Study Findings 

 

There is limited literature available evaluating statistical modeling to predict indoor BC 

concentrations. We conducted this study with the intent to investigate the relationship between 

indoor and outdoor BC concentrations, evaluate seasonal differences in BC concentrations and 

explore housing characteristics that may play a role in indoor BC concentrations. What we found 

is the ratio of indoor to outdoor BC concentrations was just below one in both spring and 

summer, with indoor slightly lower than outdoor concentrations. While we did not find a 

significant difference in concentrations between seasons, we acknowledge that having only 

viable data from spring and summer seasons (both considered “non-heating” seasons) limited us 

in detecting differences that would be seen between colder and warmer months. Using three 

predictive modeling approaches, including Ridge and Lasso regression, we developed a final 

model from our data to predict indoor BC concentrations using housing characteristics and 

outdoor BC and PM2.5 concentrations.  The R2 for the final model was 0.27 and the four 

covariates were outdoor PM2.5, outdoor BC, presences of more than two types of hard flooring 

and presence of pets in the home.  

Future Research 

 

Accurately estimating personal exposure to air pollution is not a simple measurement. However, 

as noted in our research, simply using ambient estimates to capture a person’s daily exposure 

does not account for pollutants they may be exposed to during a commute, at home or at work. 

Exposure misclassification errors are introduced when the spatiotemporal mobility and indoor 

exposure of study subjects are ignored. I would like to further develop our predictive model, 
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using more detailed information such as distance to nearest highway, infiltration rates, HVAC 

usage and filter type, as well as cooking activities, and ventilation status (windows open or 

closed, stove ventilation). A further area or interest is evaluating the differences in IAQ between 

different socioeconomic groups and the resulting health impacts. People of color and those 

struggling with poverty are often disproportionately affected by poor ambient and indoor air 

quality. Their housing options are more likely to be closer to highways, agriculture or industrial 

areas and their indoor spaces often lack proper ventilation. For example, in farming communities 

in Fresno, CA, many of the agriculture workers and their families live within 200 meters of a 

field or orchard. Farming activities such as aerial pesticide application and harvesting of crops 

can lead to drifting chemicals and clouds of dust. In addition to already poor air quality in this 

area, residents are subjected to drifting mix of pesticides and dust and a majority to do not have 

HVAC systems that would filter out such contaminants. When temperatures climb in the spring 

and summer residents are left with the option of keeping their windows closed and enduring the 

sweltering heat, or opening up windows and doors through which the mixture of dust and 

chemicals blow in with the breeze. Research that further examines the factors that contribute to 

personal air pollution exposure provides tools to public health professionals regarding steps that 

can taken to protect vulnerable populations.  

Post Thesis Reflections 

 

I have always had a varied interest in environmental and human health issues and I found the 

Environmental Health program with focus in epidemiology to be a good fit with my wide- 

ranging interests. The way I see it, environmental and human health are one. As humans damage 

or destroy our environment, we often harm ourselves by creating unhealthy living conditions. 

Advances in scientific research have certainly helped the world community understand this 
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relationship more clearly over the last 50 years. Although some progress has been made, the 

human community still struggles to live harmoniously with the natural world. It is now clear that 

climate change is no longer a future scientific prediction; it is here now. In addition to working to 

mitigate further temperature increases, we need to learn to adapt to the extreme heat waves, fires 

floods and droughts that are occurring. All of these events can lead to a drastic decrease in 

ambient and indoor air quality, especially in poorer and underserved communities. As I continue 

my work as a research associate and lab manager in Dr. Magzamen’s group, I want to further my 

knowledge and expertise translating research findings into useful measures to protect and 

improve community and environmental health. I also want to improve the ability of the public to 

access and understand relevant research findings as well as empower people to participate in 

citizen science research. I hope to accomplish this by working in the field to collect data while 

simultaneously speaking with communities to educate them on the environmental health hazards 

they face, and what they can do about it. I also plan to volunteer with local Fort Collins groups 

such as the Quarter Project that promotes females in STEM (science, technology, engineering, 

and math) and offers resources and experience to primarily minority and low-income girls. I will 

continue to develop my skillset in study design, data analysis, field methods writing and 

communication in an effort to have a positive impact as an environmental epidemiologist and 

community member.   
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TABLES & FIGURES 
 

 
Table 1. Characteristics of households from which 

particulate matter was measured.  

 Overall 

(N = 39) 

Number of Rooms 
 

Mean (SD) 9.82 (3.36) 

House 
 

no 8 (20.5%) 

yes 31 (79.5%) 

Own home 
 

no 12 (30.8%) 

yes 27 (69.2%) 
Carpet 

 

no 1 (2.6%) 

yes 38 (97.4%) 
Hard flooring (2 or more types)  

 

no 18 (46.2%) 

yes 21 (53.8%) 
Gas appliances 

 

no 22 (56.4%) 

yes 17 (43.6%) 

Window AC 
 

no 35 (89.7%) 

yes 4 (10.3%) 

Smoker in home 
 

no 34 (87.2%) 

yes 5 (12.8%) 

Pets in home 
 

no 19 (48.7%) 
yes 20 (51.3%) 

Dirty supplemental heat (wood 

stove, wood fireplace, kerosene 

gas) 

 

no 35 (89.7%) 

yes 4 (10.3%) 
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Table 2. Median BC and PM2.5 measurements (µg/m3) by season 

 Spring 

(N=21) 

Summer 

(N=18) 

Overall 

(N=39) 

Indoor BC    

Median [Min, Max] 1.00 [0.25, 2.25] 0.871 [0.45, 4.65] 0.978 [0.25, 4.65] 

Outdoor BC    

Median [Min, Max] 1.01 [0.36, 2.12] 1.15 [0.052, 2.57] 1.10 [0.052, 2.57] 

Indoor PM2.5    

Median [Min, Max] 13.8 [6.13, 32.4] 11.9 [2.83, 75.1] 12.3 [2.83, 75.1] 

Outdoor PM2.5    

Median [Min, Max] 9.15 [7.19, 17.1] 10.3 [3.48, 18.6] 9.62 [3.48, 18.6] 

Indoor/outdoor BC ratio 0.990 0.757 0.843 

 
 

 

Table 3. Model Summary – comparison of coefficients from lasso, ridge and clinical models. 

For ridge and lasso, minimum of mean cross-validated errors is used to calculate l, while 

LSE models use the largest value of l such that the error is within 1 standard error of 
the cross-validated minimum.  
 

Covariates/Predictors 

      

 Lasso Lasso LSE Ridge Ridge LSE Clinical 

Outdoor PM 0.013 2.15 x 10-17 0.016 0.014 0.027 

Indoor PM   0.004 0.003  

Outdoor BC   0.045 0.041 0.052 

Rooms   -0.003 -0.002  

House   0.084 0.066  

Own home   -0.054 -0.046  

Hard flooring (>2 

types) 

0.033  0.127 0.092  

Gas appliance   -0.058 -0.022  

Window AC unit   0.078 0.052  

Smokes   -0.044 -0.013  

Pets in home 0.064  0.119 0.094  

Dirty supplemental 

heat 

  -0.038 -0.039 -0.038 

Summer   -0.006 -0.009  

Spring    0.006 0.009 0.027 

MPSE 0.064 0.053 0.056 0.050 0.054 
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Figure 1. UPAS with weather resistant enclosure mounted to participant home. 
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Figure 2. One-to-one correlation plots of Clinical, LASSO, LASSO LSE, Ridge 

Regression and Ridge Regression LSE predictions of log indoor BC concentrations for all 

measurements sites, spring and summer campaigns. 
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Table 4. Summary of linear regression model fit for inference 

 Estimate Std. 

Error 

p-value 95% Confidence 

Interval 

Intercept -0.403 0.113 0.001 (-0.634, -0.174) 

Outdoor PM2.5 0.023 0.013 0.093 (-0.004, 0.051) 

Outdoor BC 0.036 0.070 0.613 (-0.107, 0.178) 

Hard flooring (> than two 
types)  

0.090 0.068 0.192 (-0.475, 0.228) 

Pets in home 0.117 0.067 0.091 (-0.020, 0.253) 
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