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ABSTRACT OF THESIS 

Abstract	  of	  Thesis	  
QUANTIFYING THE LIMITS OF CONVECTIVE PARAMETERIZATIONS:  

A STATISTICAL CHARACTERIZATION OF SIMULATED CUMULUS 

CONVECTION 

 
This study reviews and characterizes such departures from convective quasi-

equilibrium, that is, fluctuations about the equilibrium state that are found to be present in 

convective simulations of a cloud-resolving model (CRM) that lead to effects of non-

equilibrium and non-deterministic behavior.  Information about such behavior is hy-

pothesized to be important to the development of stochastic convective parameterizations 

that are employed to introduce temporal variability into general circulation models 

(GCMs) in an informed manner to improve the statistics of various fields.  Following a 

process similar to the methods used by Xu et al. (1992) the response of the statistical 

characteristics of a variety of convection-related parameters to an imposed periodic large-

scale forcing is determined in terms of a variety of convective variables.  More specifi-

cally, a number of CRM simulations are employed to address various issues, among 

which are how the response varies with changes in the length of the forcing period, how 

the response varies with computational domains of varying sizes, and how different 

points in the response to a cyclical forcing compare to the response to a comparable time-

averaged constant forcing.  Additionally, this thesis includes the results of the CRM’s 

participation in the TWP-ICE intercomparison study that was used to validate the model.   
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As a control, the model is subjected to a series of constant forcing simulations for 

a variety of large-scale forcing magnitudes, which provides a cloud-resolving model rep-

resentation of statistical equilibrium.  It is shown that the coefficient of variation is not 

independent of forcing magnitude as may be expected, particularly for forcing magni-

tudes that are very small or very large. Seemingly minor variations are expected to bias 

aspects of GCM simulations in ways that can alter the representation of statistical (peri-

odic) features.  

With the application of a periodic forcing at varying period lengths and considera-

tion of the simulation results on a series of subdomain sizes, it is shown that there is a 

considerable range of responses to a given large-scale forcing that are dependent upon the 

rate of change in the forcing and in the size of the averaging domain.  Specifically, the 

analyses show that the more slowly a forcing varies, the more it is well approximated by 

an equilibrium assumption. The point at which the transition between being an acceptable 

approximation of equilibrium or not occurs is approximately located where the timescale 

of the variation of the large-scale forcing is greater than 30 hours. Convective activity is 

also found to be dependent upon whether the large-scale forcing was increasing or de-

creasing and also the rate at which it was doing so.  

Further, nondeterministic variability for a given situation is much greater at 

smaller domain sizes; this is the problem of insufficient sample size, which is one that 

grows in importance as grid spacing in GCMs approaches the lower tens of kilometers.  

This relationship is best described by a logarithmic function of the domain area.  Based 

on the statistics for the weather regime presented in this thesis, the best recommendation 

is that the line between determinism and non-determinism should be drawn such that the 
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considered area (grid box area) is no smaller than about half the domain size used in this 

thesis.  This is equivalent to about 33,000 km2 or grid spacing slightly larger than 180 

km. 

Cumulatively, the results of the performed experiment highlight both the com-

plexity underlying the development of, and the need for, stochastic convective parameter-

ization.  Classical assumptions about quasi-equilibrium are never exact and break down 

altogether when the time scale for changes in the resolved-scale weather is near or less 

than the convective adjustment time.  This is a problem that is made more severe in 

newer high-resolution models (e.g. Arribas 2004; Bechtold et al. 2008) just because 

shorter time scales are inherent in convective systems with smaller spatial scales. The ba-

sics of a statistical approach for the development of a stochastic parameterization are out-

lined. 

 

 
Todd R. Jones 

Department of Atmospheric Science 
Colorado State University 

Fort Collins, CO 80523 
Spring 2010 
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Chapter	  1	  -‐	  Introduction	  

1.1	   Overview	  
 
 Generically, the aim of a parameterization is to mathematically describe the statis-

tics of physical phenomena that occur quickly or on small spatial scales in terms of 

physical phenomena that occur more slowly or on large spatial scales. The goal of cumu-

lus parameterization is to determine changes in the simulated large-scale environment, 

such as the transports of momentum, energy, and moisture, due to the collective influence 

of multiple cumulus clouds, which are examples of fast atmospheric phenomena that oc-

cur on the small-scale.  Parameterization allows modelers to gain computational effi-

ciency by being able to run atmospheric models at larger than cloud-resolving scale reso-

lution as well as an increased level of comprehension of the physical processes repre-

sented by a given parameterization.  One of the main problems with this approach, as 

with all simplifications and approximations, is that some process is always left unac-

counted for in the system, and in the wake of the application of an approximation, what 

remains to be determined is the relative importance of that which has been neglected. 

 As noted by Lin and Neelin (2002), most general circulation and numerical 

weather prediction models use convective parameterizations that aim only to simulate the 

mean effects of convection, as represented by a set of expected values based on a local 

equilibrium hypothesis.  This typically involves a deterministic parameterization that in-

cludes an assumed balance between large-scale (resolved) forcings, such as upper- level 

radiative cooling and low-level moistening of the boundary layer, which act to destabilize 
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the troposphere, and the small-scale (unresolved, convective-cloud) effects, such as up-

per-level warming and boundary layer drying by cumulus convection, which act to de-

stroy the instability.  Put another way, there is an assumed equilibrium between convec-

tion, radiation, and large-scale dynamics, whereby increases in convective available po-

tential energy (CAPE) brought about by radiative cooling, evaporation at the surface, and 

large-scale dynamical motions would be balanced by CAPE-reducing warming and dry-

ing associated with cumulus convection. 

 The equilibrium assumption can only be exactly true, however, in the limit of av-

eraging over an infinite number of convective clouds, and its validity relies, in part, on 

the existence of a scale separation between the large-scale environment and the clouds 

themselves.  Historically, such a separation of scales has been hoped for in the mesoscale 

(on the order of five to several hundred kilometers) with energetic peaks on smaller and 

larger scales (e.g. van der Hoven 1957).  However, more recent work, which considered 

more high-resolution, long-term observations from the Rain in Shallow Cumulus (RICO) 

field campaign (Roy 2009), has shown what has generally been accepted but not critically 

assessed.  That is, the spectral gap is at the very least not a universal property for the vast 

majority of atmospheric fields. 1 

 Additionally, there is a contribution to the variability of convection that arises in-

herently from small-scale motions and which deviates from the expected response of the 

atmosphere to given large-scale temperature, momentum, and moisture fields. Knowl-

edge of these motions has prompted recognition of the fact that while such a balance is 

certain in a time-averaged sense, it is actually only statistical (Randall et al. 1994). Fur-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 In one investigative subset by Roy (2009), vertical velocity was shown to have a rela-
tive spectral power gap in the mesoscale. 
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ther, nonlinear interactions between these small-scale fluctuations have been shown (e.g., 

Randall et al. 1994) to produce spontaneous large-scale temporal variability that occurs 

on both short and long timescales. Hence, the assumed equilibrium as presented above is 

more correctly referred to as statistical convective equilibrium. 

 Since the number of large convective clouds within a typical (100 km)2 global 

circulation model (GCM) grid cell does not does not usually exceed a count on the order 

of ten to 100, numbers that one might refer to as “not significantly approaching infinity” 

(even when looking an ensemble of convective clouds over a period of time on the order 

of tens to hundreds of minutes), it is expected that, for a given grid cell, there should be 

some variability through time that departs from the ensemble mean.  Small-scale varia-

tions of this type not only allow for solutions that deviate from the expected (QE) re-

sponse to the large-scale forcing, but they also have to the ability to alter the variability of 

the large-scale motions themselves, especially in the presence of mesoscale organization 

(Xu et al. 1992).  Furthermore, the desire to create stochastic convective parameteriza-

tions (SCPs) has developed from the realization that QE-based convective parameteriza-

tions employed in GCMs fail to reproduce the full spectrum of convective variability that 

is found in CRM ensembles and observational data.  It has been suggested (Neelin  et al. 

2008) that correct representation of convective variability is critical for deducing statisti-

cally-based weather features, such as the Madden-Julian Oscillation (MJO), from GCMs.  

Additionally, implementation of an SCP in a climate model that, without it, would yield 

weak MJO-like intraseasonal variability, could enhance that variability to improve com-

parison to observations.  Such an improvement would be advantageous for both weather 

prediction and climate studies.  
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Implementation of SCPs as a method to introduce, significantly, the effects of 

subgrid-scale (SGS) convective variability into a GCM can be as simple as introducing a 

random multiplier to variables in a given parameterization (in a temporal sense) to in-

crease overall ensemble spread and improve probabilistic precipitation forecasts.  How-

ever, such an approach is not a true physical parameterization, directly linked to resolved 

processes. A more complex, yet physically based, method requires an understanding of 

the nature of the deviation from QE to be able to direct convective variability in a more 

informed manner.  Specifically, this means that data must be obtained relating the devia-

tion to both its non-deterministic and non-equilibrium components. 

 

1.2	   Thesis	  Outline	  
 

This study reviews and characterizes such departures from convective quasi-

equilibrium, that is, fluctuations about the equilibrium state that are found to be present in 

convective simulations of a cloud-resolving model (CRM).  It is the aim of this research 

to determine the response of the statistical characteristics of a variety of convection-

related parameters to an imposed periodic large-scale forcing.  This will be done in a 

manner similar to the methods used by Xu et al. (1992, hereafter, X92) who used a two-

dimensional CRM.  More specifically, a number of CRM simulations are employed to 

address various issues, among which are whether the response in a three-dimensional 

simulation is similar to that from the two-dimensional study, how the response varies 

with changes in the length of the forcing period, how the response varies with computa-

tional domains of varying sizes, and how different points in the response to a cyclical 

forcing compare to the response to a comparable time-averaged constant forcing.   
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 Chapter 2 provides an expanded background view of both early and more current 

contributions to the science relevant to this thesis.  It consists of a brief review and analy-

sis of a well-known example of a QE-based cumulus parameterization developed by Ara-

kawa and Schubert (1974, hereafter AS74), a discussion of the aforementioned QE fluc-

tuations in a qualitative and quantitative sense, and examples of how analyses of the fluc-

tuations have encouraged development of stochastic parameterizations that aim to add the 

effects of the fluctuations to large-scale models.  Chapter 3 is a description of the cloud 

resolving model used to characterize convective statistics and includes introductory dis-

cussion of the design of the numerical simulations.  Chapter 4 is devoted to one instance 

of model validation.  In this case, it deals with the performance of the CRM in an inter-

comparison study that was done, in part, as a joint element of this thesis.  In Chapter 5, I 

present the CRM results that highlight variations within the QE departures that are de-

pendent upon simulation domain size, the period of the large-scale forcing, and whether 

the large-scale forcing is increasing or decreasing.  Finally, in Chapter 6, a discussion and 

conclusions are presented. 
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Chapter	  2	  -‐	  Background	  
2.1	  	   The	  Arakawa-‐Schubert	  cumulus	  parameterization	  

 
 AS74 presents a “closed theory of the mutual interaction of a cumulus cloud en-

semble with the large scale environment.”  In this parameterization, cumulus clouds are 

shown to modify the large-scale environment by compensating subsidence between the 

clouds and by the detrainment of liquid droplet-containing cloud air.  Instead of calculat-

ing the general cloud effect on the large-scale environment based on a single set of “rep-

resentative” convective characteristics that might be used to define a certain type of 

cloud, the parameterization involves a discretization into subensembles or “cloud types.”  

The definition of a cloud type may be based on any one of a number of cloud parameters, 

such as entrainment rate, vertical extent, etc.  All subensembles are assumed to originate 

near the planetary boundary layer (PBL) top and to share a common large-scale environ-

ment defined by a selection of non-convective processes.  Each non-negative fractional 

entrainment rate that defines a cloud type is allowed to coexist with any number of other 

active cloud types.  Determination of the cloud subensemble thermodynamic properties in 

AS74, such as the in-cloud moist static energy and water vapor mixing ratio, is accom-

plished by three main concepts.  These are normalization of the subensemble mass flux at 

cloud base, assumption of nonbuoyancy of cloud air at cloud top, which is assumed to be 

the only location of detrainment, and specification of moist static energy and the water 

vapor mixing ratio at cloud base. Once the distribution of the cloud base mass flux over 
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all subensembles is determined, the cumulus convection parameterization is closed (Lord 

and Arakawa 1980; Randall et al. 1997a).   

 To close the parameterization, a balance between the stabilizing and destabilizing 

processes of the system is assumed in terms of the cumulus subensemble kinetic energy 

budget, such that  

  (2.1) 

where K(λ)dλ is the cloud-scale kinetic energy for a subensemble, D(λ) is the cloud-scale 

kinetic energy dissipation per unit MB(λ)dλ (the cloud base mass flux), and A(λ) is the 

subensemble generation of kinetic energy due to the buoyancy force, or the “cloud-work 

function,” which is defined as the vertical integral of the buoyancy of the cloud air with 

respect to the large-scale environment.  Additionally, the quantity D(λ)MB(λ) is equal to 

the kinetic energy divided by the timescale for kinetic energy dissipation, which is on the 

order of that of a cloud lifetime as noted below.  It can be shown that when the timescale 

over which (2.1) is applied (timescale of a large-scale process, ~105 s) is much greater 

than the time for a cloud type λ to decay (a cloud lifetime, ~102-103 s), 

  (2.2) 

which is a statement of the kinetic energy QE for each cumulus ensemble or that kinetic 

energy generation tends to balance dissipation.  Therefore, when a cloud lifetime is much 

shorter than the lifetime of a large-scale disturbance, the kinetic energy QE is a good ap-

proximation.  By extension, if a large scale forcing changes too rapidly, there can be no 

equilibrium, statistical or otherwise.   

 Mathematically, the cloud work function is given in AS74 as 

d
dt
K(!)d! = [A(!) " D(!)]MB (!)

A(!) " D(!) for MB (!) > 0
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   (2.3) 

where zD is the height of the detrainment level; zB is the cloud base at the PBL; η is the 

normalized cloud mass flux, satisfying Mc = ηMB; MB is the cloud-base mass flux; sv is 

the virtual static energy; and the subscript c denotes the in-cloud sounding.  Note that for 

a given λ, A(λ) depends only on the large-scale thermodynamic vertical structure, and for 

λ = 0, that is, when there is no entrainment, A(λ) is equivalent to the CAPE.  From this, 

the closure assumption can be understood in a different way.  By taking the time deriva-

tive of (2.3) and using the conservation equations for thermodynamic energy and mois-

ture, one obtains 

  . (2.4) 

Following Randall et al. (1997b), (2.4) is written in simplified form such that J represents 

the kernel of the resulting integral, and JMB represents the integral over all cloud types, 

thus representing all terms involving convective processes, and is usually negative as the 

process of convection tends to reduce the vertical integral of buoyancy.  The F term rep-

resents the large-scale (non-convective) forcing as defined by AS74, and it tends to be 

positive, increasing buoyancy and the tendency for convection.   

  By setting (2.4) approximately equal to zero (certainly the cloud work function 

will vary from day to day and possibly significantly hour to hour), and assuming that 

some forcing is being applied, we can see the assertion of QE once again, such that any 

convective instability created by the forcing term is consumed by the effects of cumulus 

convection almost instantaneously.  Randall et al. (1997b) note that while in a steady-

A(!) =
g

cpT (z)
"(z,!)[svc (z,!) # sv (z)]dz

zB

zD (! )

$

dA(!)

dt
= JM

B
(!) + F(!)



 9	  

state situation, such an equilibrium is trivially satisfied, the assertion of the relation is that 

the equilibrium holds approximately even when the forcing varies in time in a sufficiently 

slow manner.  This argument is easily maintained given the above discussion of the sepa-

ration of timescales for large-scale processes and convection, but the question that re-

mains is one of how well separated these timescales must be and how rapidly the forcing 

may be permitted to fluctuate for this relationship to hold.   

 Lord and Arakawa (1980) hypothesized that the dissipation per unit cloud base 

mass flux D(λ) is an intrinsic property that is quasi-constant for each cumulus subensem-

ble, to a first approximation, because dissipation in clouds should depend primarily on 

momentum entrainment through cloud boundaries and downward drag due to precipita-

tion falling within the cumulus updrafts rather than properties of the large-scale state.  In 

relation to (2.2), the values of the cloud-work function should also be quasi-constant 

whenever a particular type of cloud exists.  Since the cloud-work function is easily calcu-

lated, Lord and Arakawa (1980) examined its value as determined by large-scale mois-

ture and temperature data for 17 possible cloud types (based on vertical extent) for each 

of seven observational datasets.  They found that for a wide range of large-scale stability 

and relative humidity distributions, there was a remarkable similarity in the cloud-work 

function statistics for each cloud type.  This was determined to be due to the fact that 

there is a strong coupling between stability and relative humidity values, which essen-

tially align (come to an equilibrium) resulting in approximately the same cloud-work 

function for various combinations of the variables.  To be more exact, they noted “when 

cumulus convection exists, a relatively dry atmosphere has a larger lapse rate than a more 

moist atmosphere (Figure 2.1, Figures 6 & 7 from Lord and Arakawa, 1980).  The study
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Figure	   2.1.	   Vertical	   profiles	   of	   temperature	   and	   relative	   humidity	   for	   various	   typhoon	  
observations	   from	   Lord	   and	  Arakawa	   (1980)	   pointing	  out	   that	  when	   cumulus	   con-‐
vection	  exists,	  a	  relatively	  dry	  atmosphere	  has	  a	  larger	  lapse	  rate	  than	  a	  more	  moist	  
atmosphere.	  

 

of Lord and Arakawa (1980) lends support to the utility of the AS74 cumulus parameter-

ization.  

	  

2.2	   Qualitative	  and	  quantitative	  characteristics	  of	  QE	  fluctuations	  
 
 More than a decade after the Lord and Arakawa study, the AS74 parameterization 

was evaluated further by performing semiprognostic tests against data from a two-

dimensional cumulus ensemble model (CEM), and the results pointed out some limita-

tions of the scheme (Xu and Arakawa 1992).  Xu and Arakawa (1992) note that the AS74 
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parameterization is both deterministic and diagnostic, introducing no prognostic equa-

tions for the cumulus clouds themselves, and therefore, the parameterized cumulus clouds 

have no history of their own.  Clearly, this is to be expected for the case of statistical 

equilibrium with large-scale processes without any free fluctuations, but nondeterministic 

and nondiagnostic effects are likely to be more important in the presence of mesoscale 

organization.  To assess the significance of these effects the semiprognostic test or single-

time step prediction of cumulus activity was implemented to simulate the effect of 

mesoscale developmental organization.  The tests were performed for a sinusoidal large-

scale forcing with a period of 27 hours, and validation data was created from multiple re-

alizations of the repeating periodic forcing from the CEM averaged with respect to the 

phase of the large-scale forcing and in space (to represent a large grid cell).   

 While it was found that the AS74 parameterization is essentially valid and cumu-

lus activity is rather strongly modulated by the large-scale processes, the AS74 param-

eterization failed to capture some of the nonmodulated, high-frequency fluctuations and 

the systematic phase delays in modulation that occur in the presence of wind shear that 

typically leads to more organized convection.  It was additionally noted that nondeter-

ministic errors are greater for smaller averaging distances in the CEM, as would be ex-

pected, and that there is a remaining deviation from the expected cloud-work function QE 

found in the “true” CEM data that is more significant for deep and middle clouds than for 

shallow clouds when mesoscale effects are neglected.  Xu and Arakawa (1992) conclude 

that errors due to the nondiagnostic aspect of AS74 are more significant for coarse-

resolution models that do not resolve mesoscale features.  This means that the physical 

memory (lagged response) effect of the mesoscale is unlikely to be present in GCMs that 
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assume QE.  Further, errors due to the nondeterministic aspect of AS74 increase with 

finer resolution.  An additional test in which convective downdrafts were added to the 

semiprognostic version of AS74 also improved the results.   

 In further analysis involving the two-dimensional CEM of Xu and Arakawa 

(1992), X92 attempted to determine the extent to which cumulus convection can be pa-

rameterized deterministically and diagnostically and whether the imposed separation of 

scales that is required by AS74 and other convective parameterizations is significantly af-

fected by mesoscale cloud organization, thereby limiting the parameterizability of cumu-

lus clouds.  Using the CEM with 2-km horizontal grid spacing over a 512-km domain, 

simulations with a periodic time-varying large-scale forcing were run to examine the sys-

tematic and nonsystematic fluctuations of cumulus activity for various cases of mesoscale 

organization (shear) and surface types.  It was shown that the magnitude of the fluctua-

tions seems to depend on the magnitude of the large-scale forcing and the basic wind 

shear, as well as the domain size.  Most importantly, as shown in their Figures 3 & 4  

(Figure 2.2) the response to the cyclic forcing is not identical at a given phase of the 

large-scale forcing, indicating that the modulation is not completely deterministic.   

 They also find that the modulation exhibits some phase delays when the basic 

wind shear is strong as a consequence of mesoscale organization and that the modulation 

of the mesoscale processes by the large-scale forcings is weaker than that of the convec-

tive-scale processes, pointing to a need for a nondiagnostic parameterization (Figure 2.3, 

their Figure 9).  The same figures also show variability in the response as proportional in 

magnitude to the mean response, and that such scatter in fields representative of convec-

tion, such as vertical motion or surface precipitation, can have a standard deviation on the 
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Figure	  2.2.	  Time	  series	  of	  hourly	  surface	  precipitation	  for	  weak	  shear	  (F01,	  F15),	  strong	  

shear	  (F12,	  F05),	  moderate	  shear	  (F13,	  V13),	  no	  shear	  (Q03),	  and	  a	  shear	  case	  for	  a	  
512-‐km	  and	  1024-‐km	  domains	  from	  X92.	  
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Figure	   2.3.	   The	   ensemble	   mean	   and	   standard	   deviation	   of	   (a)	   the	   total	   and	   (b)	   the	  
mesoscale	  horizontal	  kinetic	  energies	  from	  X92	  demonstrating	  the	  phase	  delay	  in	  re-‐
sponse	  to	  large-‐scale	  forcing	  that	  is	  due	  to	  mesoscale	  organization.	  

 

order of the mean values, a finding that was also discovered by Katzfey and Ryan (2000).  

As will be discussed later, I have obtained very similar results, with some slight differ-

ences from a three-dimensional CRM study, and these results will be discussed in Section 

5.

 Xu (1994) notes that to ensure that a closure assumption is quasi-universally 

valid, it should be sensitive neither to convective cloud regimes nor to the horizontal 

resolution of the large-scale models.  However, two-dimensional CEM analysis testing 

various supplementary closure constraints in modified versions of AS74 found weak to

moderate dependencies on horizontal resolution.  In particular, constraints placed directly 

on the intensity of a cumulus ensemble, such as a coupling of vertical cloud mass flux 

and large-scale vertical mass flux, were found to vary in strength with varying averaging 

distances.   
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 Again using the two-dimensional CEM, Xu and Randall (1998) determined the 

length of the adjustment timescale that is associated with the aforementioned phase de-

lays due to mesoscale convection under different large-scale advective processes.  They 

found that the lag ranged from 1-5 hours in various simulations without dependence on 

large-scale advective forcing.  This time has been interpreted as the adjustment timescale 

from “disequilibrium” to QE states in the presence of large-scale forcing.  While there 

was no large-scale forcing dependence, the adjustment timescale decreased with decreas-

ing averaging distances, suggesting that the cloud-work function-based QE becomes 

more accurate as horizontal averaging distance decreases.  At least, this would be true for 

small averaging distances in which the mean vertical velocity was large.  However, small 

lags for smaller subdomain sizes may also be related to the fact that large-scale and con-

vective scale processed become less separable for smaller subdomains.  They also deter-

mined that the largest source of deviation from QE (toward instability) is the accumula-

tion of generalized CAPE (GCAPE) due to the imposition of large-scale advective cool-

ing rather than from large-scale advective moistening of the boundary layer.   

 Today there are questions of the continued feasibility of the AS74 approach as the 

trend is toward the use of grids with finer and finer resolution.  One of the basic assump-

tions of AS74 was that the parameterization focused on the consideration of a large hori-

zontal area that could contain large numbers of cumulus clouds, while at the same time 

was small enough to represent a fraction of the conditions that constitute the large scale.  

With the move toward smaller grid columns, the ability to generate sound statistics de-

scribing the field for a given situation will decline, though the ability to resolve whatever 

is defined as large-scale (synoptic features in the case of grid spacings on the order of 
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those in typical GCMs, mesoscale features in the case of grid spacings on the order of 

tens of kilometers) will be retained or even enhanced without regard to whether they are 

correct.   

 A further major assumption of AS74 is that the time scale for changes of the 

large-scale forcing is much longer than the time that it takes for the convection to adjust 

to the forcing (convective adjustment time); this is the assumption that leads to the idea 

of cloud/large-scale balance in QE. The typical adjustment time for deep cumulus clouds 

is on the order of a few hours, and that for smaller clouds is somewhat less.  It can be ar-

gued that the diurnal cycle does not qualify for the required separation of time scales, and 

even the applicability to synoptic weather events can be questioned.  To make matters 

worse, as resolution continues to increase, the time scales associated with changes in 

grid-averaged weather can become relatively short.  This is true for mesoscale features, 

such as a squall line that can occupy the bulk of a grid cell and pass through it very 

quickly.   

 The effect of less reliable statistics, brought on by the small sample sizes inherent 

to fine resolution, is the appearance of non-deterministic or stochastic fluctuations in the 

convection that are only partially predictable.  Such stochastic convection will later lead 

to uncertainty in the larger scales.  Further, finite convective adjustment time scales can 

cause the convective response to a forcing to significantly lag changes in the forcing if 

the forcing is changing rapidly enough.  This was shown in the case of X92’s 27-hour 

(nearly diurnal) forcing period, and here it is shown to become a more severe problem 

with decreasing grid spacing.  Despite these known issues of inadequate sample size and 

separation of time scales that clearly show how QE-derived cumulus convection will not 
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be able to produce the detailed interactions between large-scale atmospheric motions and 

convection, equilibrium thinking has pervaded the development of cumulus parameteriza-

tions for over four decades.  The meteorological community, with hopes of creating in-

novative models with grid spacings in the mesoscale range, is now realizing that these is-

sues can no longer be ignored. 

 

2.3	   Stochastic	  parameterizations	  
 
 The realization that QE-based convective parameterizations fail to reproduce the 

full spectrum of convective variability found in CRM ensembles and observations has 

prompted the development of new approaches to cumulus parameterization.  Further, the 

lack of high-frequency, small-scale variability in the GCM-generated precipitation fields 

and convective heating rates may be damaging to the ability of GCMs to simulate the 

large-scale, low-frequency aspects of climate variability (Ricciardulli and Garcia 2000; 

Horinouchi et al. 2003).  In a review article on the convective parameterization problem, 

Arakawa (2004) discusses the more recent trend away from deterministic and diagnostic 

closures and even ensemble averaging methods toward prognostic and nondeterministic 

closures of varying types, including stochastic parameterizations, relaxation methods, 

triggered adjustments to equilibrium, and the more advanced superparameterization (SP), 

which seems particularly promising.2  While the paper nobly stresses the need for the 

very interesting “unified cloud parameterization,” that is, one which encompasses both 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Interestingly, the effect of superparameterization is similar, from the perspective of sto-
chastic input into a large-scale model.  The embedded CRM provides the effect of the 
small-scale variability.  The equivalency of the two methods is unclear, but if the effect is 
comparable, the less computationally costly method is likely to be preferred.  
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cumuliform and stratiform clouds, it is, like superparameterization, well beyond the scope 

of this thesis.  This thesis will instead devote a portion of space to the discussion of the 

development of stochastic parameterizations as a preferred method to ameliorate convec-

tive variability issues in GCMs.  Stochastic parameterizations attempt to supply a simula-

tion with the temporal convective variability that would otherwise be lost due to assump-

tions, such as scale separation, which are not justified and issues, such as sampling error, 

which can lead to inappropriate representations of variability. 

 To frame the problem in a different way, we can examine the issue of non-

predicted variability in terms of many of the other issues that cause discrepancies be-

tween the modeled atmosphere and the real atmosphere, rather than focusing directly on 

deviations from QE.  Formally, the thermodynamic and dynamic equations for weather 

and climate are written as deterministic equations, which upon inspection appear to imply 

that weather forecasts can be determined for any future date based solely on a set of ini-

tial conditions.  Of course, the discovery of the chaotic nature of weather (Lorenz 1963) 

put to rest any such notions.  Fortunately, as Palmer and Williams (2008) observe, some 

initial flow states (e.g. those that appear smooth or stable) do allow for useful degrees of 

predictability, even if the system is chaotic by nature.  The degree to which a forecast has 

uncertainty, then, can be determined by methods, such as ensemble forecasting, which es-

sentially look at the spread among forecast variables (larger meaning a less predictable 

state) from multiple realizations of a model run, each with slightly differing values in the 

initial conditions of the flow field.    

 The world might be a happier place if this sensitive dependence on initial condi-

tions was the only source of forecast uncertainty; by gauging the uncertainty in measure-
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ments that initialize the model, we could have a good feeling for the amount of uncer-

tainty in the subsequent forecasts.  It might be even happier if the impact of the unre-

solved scales could be made arbitrarily small by simply increasing the resolution, which 

Lorenz (1963) shows cannot be done.3  Other sources of uncertainty arise from the nu-

merical models themselves, as the deterministic equations of motion are discretized in 

some way, such as onto a gridded, spectral, or other representation.  Information on mo-

tions below the grid scale is lost, adding to uncertainty.4  The effect of those motions is 

replaced by parameterizations that take the place of directly calculating the effects of 

clouds, gravity waves, flow over topography, turbulence, microphysics, or radiation, 

which add further degrees of uncertainty because they rely on bulk methods, which, like 

AS74, tend to break down as grid spacing decreases due to poor statistical sampling.  

Williams (2005) notes, “Despite the unquestioned partial success of this technique [pa-

rameterizing], it cannot be rigorously justified or derived from first principles.”  Sard-

eshmukh et al. (2001) further show that conventional parameterizations lead to system-

atic drift of climate models compared to reality, a problem that is endemic in climate 

modeling and shows itself, for example, in the inability of some models to reproduce an-

ticyclonic blocking patterns (Palmer and Williams 2008). 

 One approach to account for the uncertainty and variability found in CRMs and 

observations is to use stochastic (random, nondeterministic) parameterizations.  The aim 

of a stochastic scheme is to introduce variability in time into the numerical representation 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 In fact, it has been shown by Nicolis (2004) that the mean square error derived from the 
neglect of the SGS features grows initially at the same rate independent of the model 
resolution. 
4 As a side note, the same ideas can be applied to the modeling of the oceans, where the 
most important SGS features are eddies on the order of 1-100 km.   
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of the system (Ball and Plant 2008), and the idea was suggested over four decades ago as 

adding random noise to climate models in an attempt to mimic the properties and impacts 

of the processes occurring on the SGS (Hasselmann 1976).  Often, the application of a 

stochastic parameterization is described in terms of a double potential well (Williams 

2005, Palmer and Williams 2008, Wilks 2008).  Figure 2.4 shows a depiction of such a 

possible potential well as used in Williams (2005).  In this case, for a system at equilib-

rium with wavenumber 2 with the absence of noise or with very low amplitude noise, it 

would be very unlikely for the system to ever shift into the wavenumber 1 equilibrium.  

By extension, the addition of random perturbations of significant magnitude will increase 

the likelihood that the system will shift into a new regime, thereby extending the whole 

range of variability of the system.  This is known as a noise-induced transition, a concept 

that has been applied to the explanation of transitions between glacials and interglacials, 

El Niño and La Niña states, different El Niño regimes, and multiple oceanic thermohaline 

circulation regimes. 

Figure	  2.4.	  Particle	  moving	  in	  a	  bi-‐modal	  potential	  well	  with	  two	  stable	  equilibria,	  corre-‐
sponding	  to	  baroclinic	  waves	  of	  wavenumbers	  1	  and	  2	  (Williams	  2005).	  

 

 

The transition may be explained by an analogy with a particle moving in the
potential well shown in figure 7. Without noise, the system has a tendency to
remain in the wavenumber 2 state. When noise is added, the random
perturbations increase the likelihood of the particle overcoming the potential
barrier and moving to the wavenumber 1 state. This is called a noise-induced
transition, and the concept has been used to explain transitions between glacial
and interglacial conditions in an energy balance climate model (Nicolis 1993), El
Niño and La Niña in a delayed-oscillator model (Stone et al. 1998), multiple
decadal-scale El Niño regimes in an intermediate complexity climate model
(Flügel & Chang 1999), multiple wind-driven ocean circulation regimes in a
double-gyre model (Sura et al. 2001) and multiple ocean THC regimes (§3c).

(b ) El Niño events

El Niño, which was first noticed (and given its name) by South American
fishermen, refers to the appearance of unusually warm surface water every 3–7
years in the eastern equatorial Pacific Ocean. It is now known that El Niño and
its cold-episode relative, La Niña, cause the strongest year-to-year climate signal
on the planet, with impacts on temperatures, rainfall and storms around the
globe. Effects attributed to recent El Niño events include fresh-water shortages in
India, drought conditions and forest fires in Australia, increased rainfall and
flooding in Peru and Ecuador and a greater incidence of hurricanes in Hawaii and
Tahiti.

Not least because of the economic impacts—global damage estimates can
reach £20 billion (Saunders 1999)—it is crucial to be able to predict El Niño
events as far in advance as possible. Evidence that the addition of random noise
can affect predictability has been presented by Flügel & Chang (1996). They
used a coupled ocean–atmosphere model of intermediate complexity to study
error growth in an ensemble of runs, i.e. a large number of simulations, which are
identical apart from the use of slightly different initial conditions. The purpose of
this approach is to represent uncertainties that arise because the initial state can

wavenumber 1 wavenumber 2 

Figure 7. Particle moving in a bi-modal potential well with two stable equilibria, corresponding to
mid-latitude baroclinic waves of wavenumbers 1 and 2.

P. D. Williams2940
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Figure	  2.5.	  Particle	  moving	  in	  a	  potential	  well	  with	  a	  single	  mode	  shown	  with	  two	  per-‐
turbation	  amplitudes	  and	  differing	  locations	  of	  equilibrium.	  	  	  

 

 Similarly, a shift in equilibrium can be caused by changing the amplitude of ran-

dom perturbations in a system described by a single potential well. If the characteristics 

of the well are not symmetric (e.g. Figure 2.5), greater perturbations will change the av-

erage location of the equilibrium toward the side of the well that has the less steep slope.  

When perturbations are increased for physical processes that can be described by

the depicted shape, biases become more clearly visible.  This relationship may allow for 

tuning of well-described biases.  In this situation, the “transition” is not likely to be as 

abrupt and dramatic as the case for the bi-modal well; rather the transition, or shift, will 

be more gradual and proportional to the amplitude of the perturbations (Palmer et al 

2005).  Pamer et al. (2005) note: 

 “This picture already has relevance to the real atmosphere. As shown, for ex-

ample, in Corti et al. (1999), atmospheric low-frequency variability of the 

northern winter flow appears to have clear (non-Gaussian) regime behavior, and 

in recent decades, the dominant regime corresponds to anomalously westerly 

flow across midlatitudes. By contrast, blocking-type flow patterns correspond to 

subdominant regimes. As discussed by Molteni & Tibaldi (1990), models with 

insufficient transient activity would tend to overpopulate the dominant regimes 

and underpopulate the secondary regimes. In a recent study Jung (2005) sug-
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gests that this picture describes the systematic error of the most recent versions 

of the ECMWF model.” 

 The process of implementation can be as simple as introducing a random multi-

plier to variables in a given parameterization to increase overall ensemble spread and im-

prove probabilistic precipitation forecasts as was done in one of the earliest attempts by 

Buizza et al. (1999).  The Buizza scheme has led to considerable improvement in weather 

forecasts.  Similarly, one could implement a parameterization as described by Wilks 

(2008) as  

 , (2.5)  

where R represents the resolved processes, and U represents the unresolved processes.  In 

a conventional deterministic parameterization, U is determined as a mean response to 

some forcing, and equation (2.5) contains no randomness.  Hasselmann (1976), for rea-

sons discussed in Wilks (2008), determined that the effects of the unresolved scales on 

the resolved scales could be represented by Gaussian white noise, such that (2.5) could be 

modified as  

 . (2.6) 

Here, σ is the square root of the Gaussian variance characterizing the uncertainty of the 

parameterized effects, and z(t) is Gaussian white noise of unit variance.  When a param-

eterization of this form is integrated numerically, the effect is that random noise centered 

on U(X) is added to the system.  This type of parameterization, predictably, allows for the 

exhibition of more variability than its deterministic counterpart.  However, such an ap-

proach is not a true physical parameterization, directly linked to a physical resolved proc-

dX

dt
= R(X) +U(X)

dX

dt
= R(X) +U(X) + ! z(t)
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ess.   

 Subsequently, Lin and Neelin (2002) have proposed that knowledge of the statis-

tical distribution of variability demonstrated in CRMs and observations can be used to re-

late the distribution of parameterization constraints to subgrid variability.  They presented 

two approaches; in one, stochastic processes are introduced to the convective parameter-

ization itself with included physical considerations but without prior knowledge of the 

distribution of convective properties, and in another, the statistics of the convective prop-

erties are estimated empirically and used to directly control high order moments of the 

convective heating statistics.  Both approaches are applied to a GCM in Lin and Neelin 

(2002). In the end, it is determined that stochastically parameterizing the unresolved 

physics (approach 1) has merit in light of modifications to intraseasonal variability, as 

opposed to the climatology, and that parameterizing the statistics of convective heating 

(approach 2) is not as fruitful.  The heating strongly interacts with the large-scale in un-

expected ways in approach 2, such that the resulting output is fundamentally different 

from the input statistics. 

 Song et al. (2007) and Bright and Mullen (2002) have applied approach 1 from 

Lin and Neelin (2002) to mesoscale models, as well, introducing stochastic variability 

through a convective trigger function, a method in which the convective parameterization 

is enacted only conditionally.  The approach used by Song et al. (2007) was to give the 

trigger function in the Kain-Fritsch convective parameterization scheme (Kain and 

Fritsch 1993) within the Penn State-NCAR Mesoscale Model (MM5) stochastic ability 

by allowing random selection of parameters from a range of values determined by a train-

ing set of diverse observed radar reflectivities using a Bayesian learning technique.  The 
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approach, as applied to cases from the International H2O Project (IHOP), showed a strong 

potential to improve forecasts of convective precipitation in mesoscale models.  They 

noted that the randomness tended to break the spatial and temporal continuity (related to 

a vertical velocity conditional trigger) that was inherent in the original formulation of the 

convective parameterization scheme.  While the tests showed promise, successful appli-

cation to multiple types of convection (e.g., tropical) would be more conclusive.  Further, 

Williams (2005) notes that the use of a trigger function in deterministic convective cloud 

parameterizations may have the effect of naturally introducing fluctuations about the 

long-term mean. However, they are unlikely to reproduce probability distributions like 

those calculated by Shutts and Palmer (2004) who used an ‘ultra-high-resolution’ CRM 

(1 km by 40 km) to obtain statistics on fields such as the temperature tendency. 

 A number of other studies have also reported the successful addition of statistical 

spread to large-scale numerical models following implementation of stochastic processes.  

Teixeira and Reynolds (2008) devised a modification to the Navy Operational Global 

Atmospheric Prediction System (NOGAPS), an ensemble prediction system, in which pa-

rameterizations are used in a stochastic manner based on probability distribution func-

tions (PDFs) obtained from the parameterizations of an ensemble of models with varying 

initial conditions.  Instead of viewing a parameterization as a deterministic indicator of a 

mean value, they consider parameterization results as a probable value of some variable.  

PDFs of these values are then used to constrain random determination of the future states 

of a variable.  Results of this method showed an increase in ensemble spread in multiple 

variables. 

 In an attempt to determine the extent to which deterministic convective param-
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eterizations fail to capture statistical fluctuations in deep-convective forcing and to pro-

vide PDFs that may be used in stochastic parameterization schemes, Shutts and Palmer 

(2007) used a coarse-graining technique on CRM fields and found much broader PDFs at 

the cloud-scale, as one would expect.  They also found that standard deviations of tem-

perature tendency fluctuations were linearly dependent on the mean temperature ten-

dency, which lends support to the stochastic methods of Buizza et al. (1999), mentioned 

above, that is used operationally at the European Centre for Medium-Range Weather 

Forecasts (ECMWF).  This lies in contrast to the square-root dependency determined by 

Craig and Cohen (2006).  On a related note, further studies by Cohen and Craig (2006) 

found that the distribution of mass flux of individual clouds is exponential for various 

imposed radiative cooling rates and vertical wind shear profiles and that larger CRM do-

mains have mass flux statistics nearer theoretical predictions, indicating that the mass 

flux variance is affected by the size of the domain.   

 Plant and Craig (2008) have developed a stochastic parameterization scheme 

based on a modification of the Kain-Fritsch parameterization scheme mentioned above.  

The parameterization involves convective plumes being drawn at random from a PDF 

that defines the chance of finding a plume of a certain cloud-base mass flux that is deter-

mined by a CAPE closure method.  In this study, it is found that the new scheme pro-

duces the desired distributions of convective variability without altering the mean state.  

They point out that one might hope to find relatively little variability in the convective re-

sponse after averaging over CRM areas on the order of numerical weather prediction 

(NWP) or climate models, however their results show considerable spread for an area of 

(16 km)2.  This raises concerns for the continued use of QE convective parameterizations 
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at ever-finer horizontal grid resolutions, such as those on the order of 20-50 km that have 

already used in some global weather prediction models (Arribas 2004; Bechtold et al. 

2008).  

 Recently, Shutts et al. (2008) have introduced an interesting new approach to the 

field of stochastic parameterizations.  The idea, which is reminiscent of superparameteri-

zation or multi-scale modeling, is a dual-grid approach that has its basis in techniques 

adopted from the field of computer graphics and flow visualization.  Any atmospheric 

scientist who has ever played with a high-quality video game or flight simulator might be 

impressed at how well represented clouds appear on the screen.  How are they able to 

simulate cloud motions and interactions with cloud motions in real time (~40 frames per 

second) and have it look so realistic?  The basis of the models used in games is the same 

as ours, that being the same thermodynamic and dynamic equations, however their goal is 

simply the visual representation of the cloud and algorithmic stability rather than accurate 

representation of their microphysics.  This allows game developers to make drastic sim-

plifications to their models and makes the simulation computationally cheap.   

 In their tests, both a fine and a coarse grid are used.  The fine grid is used to do a 

computationally cheap simulation of SGS processes, and then the results are coarse-

grained and applied to the coarse grid.  Conversely, the effects of the processes that are 

represented on the coarse grid also have the ability to influence the fine grid.  The cheap 

computation done on the fine grid in this case is a two-dimensional cellular automaton 

(CA) (this is referred to as an emulator), though in theory, it could be just as complicated 

as an embedded CRM.  The use of CAs, which have no basis in physics, to add variabil-

ity to a system was originally suggested by Palmer (1997).  To be put into use in the con-
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text of ensemble prediction, each forecast member would see a different evolving pattern 

of stochastic forcing from the underlying CA.  Results of their testing showed the use of 

CA in a dual grid to be quite feasible for operational use. The authors believe that it 

would produce improvements in operational models as has been the case for the majority 

of stochastic methods, especially those that rely upon CA to provide stochastic kinetic 

energy backscatter. This refers to the idea that kinetic energy moving upscale from the 

unresolved flow is available to the resolved flow as a kinetic energy source.  The intro-

duction of kinetic energy backscatter gives models the ability to reduce large-scale sys-

tematic error (e.g., Berner et al. 2008). 

 A number of others have also seen success in stochastic modeling, such as in 

modeling ENSO events (Zavala-Garay et al. 2003), in the study of the atmospheric quasi-

biennial oscillation (Piani et al. 2004), in enhancing ocean sea-surface temperature pre-

dictability (Scott 2003), and in modeling the impacts of ocean eddies (Berloff 2005).  

There is also a wide variety (as reported by Ball and Plant 2008) of plausible stochastic 

methods that have been proposed and that are being actively investigated.  Those men-

tioned include perturbing the inputs to a parameterization (e.g. Tompkins & Berner 

2008), perturbing the parameters used within it (e.g. Byun & Hong 2007), perturbing its 

outputs (e.g. Teixeira & Reynolds 2008) and even constructing new parameterizations 

designed explicitly to be stochastic from the outset (e.g. Plant & Craig 2008). The grow-

ing acceptance that the use of stochastic elements in GCMs may be desirable for both 

theoretical and practical reasons led Ball and Plant (2008) to assert that the question may 

soon change from “why a stochastic method to which stochastic method.” [Emphasis in 

original.]  Their paper goes on to note that there are many unknowns yet to be worked 
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through, such as what might happen if two different stochastic parameterizations are used 

simultaneously in different parts of a model.  They cite the dangers of double counting 

the variability, but one also may worry about the simple hazards of appending additional, 

possibly unphysical, features capable of error-increasing multiplicative noise. 

 The aim of the Ball and Plant (2008) study is to test five stochastic parameteriza-

tions, including that developed by Plant and Craig (2008) as discussed above, within a 

single column model (SCM).  The test seems to limit the applicability of their results to 

any operational use of the schemes because inherent deterministic parameterization errors 

that affect model dynamics may not be apparent in the SCM, and previous discussion of 

the use of stochastic parameterizations (e.g., Palmer 2001) has suggested that an ideal 

stochastic method would be non-local.  Additionally, the variability feedback with the 

large-scale dynamics is likely to be a critical part of the entire concept.  Among the inter-

esting results, we find that the spread of the models has a clear dependence on the large-

scale forcing, which is a relevant finding for this paper.  Additionally, Ball and Plant 

(2008) show that stochastic physics schemes designed to represent model uncertainty or 

QE departures can actually change the mean state of the model (like shifting equilibria in 

the bi-modal potential well as explained previously in discussion of Figure 2.4).  Finally, 

they show that the stochastic scheme that was most promising was a simple scheme in 

which the parameters of the deterministic parameterization are selected randomly from 

within a given range of acceptable bounds. Determining correct values for such bounds 

based on a statistical inquiry into data from CRMs or observations may be critical to the 

success of stochastic parameterizations, regardless of the particular stochastic scheme 

employed, and ascertaining what the bounds might be is a key goal of this study.  



	  

Chapter	  3	  -‐	  Numerical	  Simulations	  
3.1	  	   Introduction	  

 
 The studies by Plant and Craig (2008) and Cohen and Craig (2006), mentioned 

above, included the derivation of exponential PDFs of cloud-base mass fluxes from a 

three-dimensional CRM with 2-km horizontal resolution that was run to statistical equi-

librium.  Additionally, the previously mentioned studies by X92 used two-dimensional 

CRM runs with periodic large-scale forcings to quantify the variability of the convection.  

Motivated by these and other studies, comparison runs have been performed using the 

three-dimensional anelastic model based on the vorticity equation or vector vorticity 

model (VVM, a.k.a CSUVVM) developed by Jung and Arakawa (2008).  This study con-

stitutes one of only a handful of experiments so far performed with this model.  Its first 

evaluation as part of a CRM intercomparison study is currently underway.  A description 

of the model and the numerical simulations performed follows.  

 

3.2	  	   Model	  
 
 While most three-dimensional cloud models base the formulation of convective 

dynamics on the momentum equations, the model employed in this study bases convec-

tive dynamics on the vorticity equation.  Thus, the prognostic variables of the model dy-

namics include the horizontal components of vorticity at all heights and the vertical com-

ponent of vorticity and the horizontally uniform part of the horizontal velocity at one se-

lected height.  The motivation for the use of the vorticity core has its roots in physical 
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atmospheric processes, including strongly rotational quasi-geostrophic motion, which 

dominate flow at the large scales, and induction of convection by way of the generation 

of horizontal vorticity by buoyancy, which is ubiquitous at the small scales (Randall and 

Konor 2008).  By basing the model on three-dimensional vorticity, meteorologically im-

portant processes can be represented much more directly and explicitly.  That is, there is 

a guarantee of the conservation of potential vorticity, which is not ensured in conven-

tional models.  Further, the solution for the pressure perturbation in an anelastic model 

based on the momentum equations, which is calculated using a diagnostic elliptic equa-

tion that is often complicated to solve, has been replaced with the solution for vertical ve-

locity, given the predicted horizontal components of vorticity using an elliptic equation 

(Jung and Arakawa, 2008). 

 The simulations were performed on a doubly periodic grid of (256 km)2 with 2-

km horizontal grid spacing.  In the vertical, a stretched grid (Krueger 1988) is employed 

to enhance vertical resolution near the surface.  The depth of the domain is approximately 

19 km with 35 layers having a grid interval of approximately 100 m near the surface 

stretching to 1 km near the top of the model.  This grid set-up is nearly identical to that 

used by X92 whose two-dimensional model spanned 512 km and used two fewer vertical 

layers.  The model is stepped forward in 10-second intervals, and time differencing is 

second-order Adams-Bashforth except, of course, for the first time step where the first-

order backward scheme is used for buoyancy and turbulence variables and the first-order 

forward scheme is used for the physics variables.   

 Similarly to the model used by Xu et al, (1992), the VVM includes three-phase 

microphysics (Krueger et al. 1995; Lin et al. 1983; Lord et al. 1984), a surface flux pa-
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rameterization using the flux-profile relationships given by Deardorff (1972), a first order 

turbulence closure (Shutts and Gray 1994), and a radiative transfer parameterization (Fu 

et al. 1995) option that has not been used due to its computational expense.  In its place is 

the model’s default Newtonian cooling operating at full strength with a relaxation times-

cale of one day above 15 km, linearly decreasing to zero at and below 10 km elevation. 

The VVM also includes a Rayleigh-type friction in the top five layers to absorb upward-

propagating gravity waves. 

 In all simulations, the surface is ocean with a prescribed sea surface temperature 

of 299.88 K and surface roughness of 0.2 mm.  The Coriolis parameter for 15°N is used  

 
Table	  3.1.	  List	  of	  all	  saved	  model	  variables	  for	  each	  model	  run.	  	  The	  time	  length	  of	  the	  

various	  model	  runs	  ranges	  from	  1.25	  to	  75	  simulated	  days.	   	  All	   instantaneous	  vari-‐
ables	  are	  3D,	  while	  the	  time-‐averaged	  variables	  are	  2D.	  	  	  

	  
INSTANTANEOUS	   MODEL	  DATA	   POST-‐PROCESSED	  DATA	  

10	  min	   Potential	  Temperature	   Temperature	  
	   z-‐Vorticity	   Relative	  Humidity	  
	   x-‐Vorticity	   Cloud	  Field	  
	   y-‐Vorticity	   Dry	  Static	  Energy	  
	   z-‐Wind	  Velocity	   Moist	  Static	  Energy	  
	   x-‐Wind	  Velocity	   Saturated	  Moist	  Static	  Energy	  
	   y-‐Wind	  Velocity	   Buoyancy	  
	   Water	  Vapor	  Mixing	  Ratio	   	  
	   Cloud	  Water	  Mixing	  Ratio	   	  
	   Rain	  Water	  Mixing	  Ratio	   	  
	   Cloud	  Ice	  Mixing	  Ratio	   	  
	   Snow	  Mixing	  Ratio	   	  
	   Graupel	  Mixing	  Ratio	   	  
TIME-‐AVERAGED	   MODEL	  DATA	   POST-‐PROCESSED	  DATA	  
10	  min	  avg	   u’w’sfc	   	  

	   v’w’	  sfc	   	  
	   θ’w’	  sfc	   	  
	   qv’w’	  sfc	   	  
	   Surface	  Precipitation	  Rate	   	  
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in all simulations. The x-component of the geostrophic wind is held constant at its origi-

nal profile throughout each simulation, while the y-component is initially zero and free to 

vary.  Each simulation is initialized with thermodynamic conditions that are horizontally 

uniform, and then clouds are initiated by the introduction of small (+/- 0.25 K), random 

perturbations to the potential temperature in the lowest 100 m of the model for 30 min-

utes of integration time.  This portion of the simulation was not included in any of the 

analyses; in all cases, only times after the first 300 hours of integration were considered. 

A list of model output saved for future use is given in Table 3.1. 

	  

3.3	  	   Experimental	  Design	  
 
 One of the main goals of the study is to determine the effect on the convective re-

sponse due to forcings on varying time scales. Therefore, the first step was to select the 

time scales upon which the large-scale forcings would vary.  It was also a requirement to 

structure the experiment following X92.  The model is designed to simulate a field of 

cumulus clouds under a given set large-scale conditions as if the domain represents a sin-

gle column of a GCM.  As such, information about the large-scale rates of destabilization 

and moistening are imposed on the model domain in a horizontally uniform manner.  In 

this case, large-scale advective cooling and moistening rates, -Q1 and –Q2 as defined by 

Yanai et al. (1972), are prescribed in this way.  

 In order to vary the forcing in time, we again followed the methods of X92 and 

applied a periodic scaling factor to the forcing which took the form, 
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  , (3.1) 

where T is the period of the time variation and t is the current time. The intent was to 

view the effects from time-varying forcings that had periods that were both significantly 

less than and greater than the length of a day, although simulations with periodic forcings 

on the order of a day were also conducted to obtain the full spectrum of effects. 13 peri-

odic forcing simulations were run to a length of 15 cycles, beyond the initial 300 hours of 

simulation that were needed to bring the model system into QE, with periods ranging 

from 2-120 hours.  Specifically, simulations were run with 2, 4, 6, 8, 10, 12, 14, 16, 20, 

24, 30, 60, and 120-hour period forcings.  After this point, a simulation will be identified 

by the length of the period of the forcing preceded by an ‘F.’  For example, the six-hour 

period run is F06.  This will hold true in all subsequent text and figures, except for the 

case of the 120-hour period simulation for which the text will refer to it as F120, but fig-

ures will simply be denoted as ‘120’.  Each of the 15 cycles simulated in each run can be 

viewed as 15 individual realizations of the same event with differing initial conditions.  

As such, the cycles can be composited to generalize the convective response for each pe-

riod length.   

 All of the model runs begin with the same initial conditions, which were created 

from observational profiles obtained during GATE (Global Atmospheric Research Pro-

gram’s (GARP) Atlantic Tropical Experiment) Phase-III (Sui and Yanai 1986).  These 

initial conditions included moderate vertical wind shear (Figure 3.1a) and a modified ( 

greatly increased in magnitude) profile of the GATE-III values for advective cooling and 

moistening (Figure 3.1b).  The vertically integrated magnitudes of these maximum 

f (t) =
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a. b. 	  
Figure	  3.1.	  The	  sheared,	  prescribed	  u-‐wind	  profile	  with	  which	  each	  simulation	  is	  initial-‐

ized	  (a	  and	  the	  maximum	  value	  profiles	  of	  the	  prescribed	  large-‐scale	  advective	  cool-‐
ing	  and	  moistening	  (b).	  

	  
 

forcings are 1668.77 W m-2 and 60.8 mm day-1, respectively.  These latter two profiles 

provide the maximum bounds for the time-varying forcings.  

 Since the effect of the domain size on the convective response is also a major 

concern of this study, most of the analyses performed on the data have been structured to 

show this effect.  To obtain statistics and other response properties as functions of do-

main size, the simulation results are subdivided into smaller portions prior to analysis.  

For example, to look at the effects on a domain one quarter the size of the full domain, 

the data is grouped into four equally sized squares, the analysis is performed, and then 

those results are averaged to give the statistics of the convective response on the smaller 

domain.  Subdomains included in this study have the dimensions of (256, 128, 64, 32, 

and 16 km)2.  These will be referred to as the whole, quarter, eighth, 16th, 64th, and 256th 

domains in all text and figures, respectively.  Additionally, the full domain is also subdi-

vided in half, with dimensions 256 by 128 km.  In this special, non-square-subdomain 

case, the two halves are grouped in both E-W and N-S orientation separately before the 
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four distinct halves are then analyzed.  This will, unsurprisingly, be referred to as the half 

domain in all text and figures.   

 In order to determine how the convective response to a cyclical forcing compares 

to the convective response to a constant forcing, an additional 10 6.25-day simulations 

were run with a constant forcing in increments of 10% of the maximum large-scale forc-

ing from the periodic simulations.  They are initialized in the same fashion as the variable 

forcing simulations, including a 300-hour spin-up period.  These simulations will be ref-

erenced in the text and in figures by ‘CF’ followed by a single digit representing the in-

terval of the maximum forcing.  For example, CF8 refers to a constant forcing that is 

equal to 80% of the maximum large-scale forcing values.  The exception to this is the 

simulation run at 100% of the maximum; it is referred to as CFX, with ‘X’ being the Ro-

man numeral ten for some degree of stylistic consistency.  The importance of this subset 

of simulations is the investigation of the nature of QE departures from a system that 

should be very close to QE since it is not being forced away from QE in any direct man-

ner.  The results from these constantly forced simulations should assist in the validation 

of assumptions that are currently in place in large-scale numerical models, specifically 

that variability around the mean convective response scales with the magnitude of the 

mean convective response. 



	  

Chapter	  4	  –	  Model	  Validation	  
4.1	   TWP-‐ICE	  CRM	  Intercomparison	  Study	  

4.1.1 Background 
 
 In order to provide a solid basis for using the VVM, it was decided that the model 

should undergo some form of formal testing, as prior to this thesis, no such evaluation 

had been performed.  A cursory search for a suitable evaluation mechanism happened 

upon a well-structured CRM intercomparison.  In the most general sense, the ultimate re-

sults of an intercomparison provide comparisons of the performance of multiple models 

against observational data for a given atmospheric situation in order to define model defi-

ciencies and strengths in both a relative and quasi-absolute sense.  The intercomparison 

that was selected is based on the Tropical Warm Pool-International Cloud Experiment 

(TWP-ICE) that took place near Darwin, Australia from January 20 through February 13, 

2006.  TWP-ICE was a reasonably detailed observing experiment, which sought to de-

scribe the evolution of tropical convection, specifically large-scale heat, moisture, and 

momentum budgets at 3-hourly time resolution, while making detailed observations of 

cloud properties and the impact of clouds on the environment at the same time (May et 

al. 2008).  In fact, some features of the observations are not explicitly calculated in the 

VVM model.  A much more detailed description of TWP-ICE and the subsequent CRM 

intercomparison has been documented by Fridlind et al. (2010).   
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Figure 4.1 shows the observational domain and the locations of several observing 

platforms. The experimental domain was located on a highly-instrumented site operated 

by the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Pro-

gram.  Additionally, a polarimetric weather radar operated by the Australian Bureau of 

Meteorology (BOM) was located near the center of the domain, surrounded by a 3-hourly 

radiosonde sounding array and surface energy budget sites (flux sites in Figure 4.1).  Fur-

ther, TWP-ICE was coordinated with the Aerosol and Chemical Transport in tropIcal 

conVEction (ACTIVE) Program, which gathered in situ measurements of environmental 

aerosol properties (Vaughan et al., 2008).  The data that was gathered through both TWP- 

 

 

Figure	   4.1.	   The	   TWP-‐ICE	   experimental	   domain	   and	   observing	   platforms.	   (Source:	  
http://acrf-‐campaign.arm.gov/twpice/)	  
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ICE and ACTIVE are archived and accessible online; see Fridlind et al. (2010) for more 

information. 

 One of the main issues that TWP-ICE aimed to address was to provide the obser-

vations required to better understand and model tropical convection generally and cirrus 

outflow in particular in order to further develop GCM climate forecasting skill.  Fridlind 

et al. (2010) cite Randall et al. (2007), a contribution to the IPCC AR4, as demonstrating 

the need for improvements in the representation of clouds.  An appropriate test bed for 

the representation of clouds, via testing of parameterizations, is a CRM, because cloud 

properties vary on short time and space scales.  Additionally, the intercomparison shall 

allow progress toward understanding the influence of tropical deep convection on water 

vapor concentrations and convective transport through the tropical tropopause through 

the use of high-resolution cloud modeling.   

Prior to the TWP-ICE intercomparison, the GEWEX Cloud Systems Study 

(GCSS) program has coordinated such CRM studies internationally, often based on major 

field experiments.  Using the path paved by those studies, the specifications for a GCSS 

CRM intercomparison case study based on the analysis of data gathered during the TWP-

ICE and ACTIVE programs has been developed.  The CRM intercomparison has been, as 

the observational experiment was, performed as a joint exercise of the Atmospheric Ra-

diation Measurement (ARM) Cloud Modeling Working Group (CMWG) and the GCSS 

Precipitating Cloud Systems (PCS) working group, as well as the Stratospheric Processes 

And their Role in Climate (SPARC) program.  While ARM and GCSS have previously 

coordinated, this has been the first joint ARM/GCSS/SPARC intercomparison. 
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The TWP-ICE CRM intercomparison has outlined three specific objectives.  The 

first objective is to evaluate model performance and methodology.  To accomplish this 

task, the intercomparison sets out to answer four questions: 

• Where do simulations and data disagree most widely? 

• Are data sources sufficient to evaluate model performance? 

• What additional data gathering efforts should be pursued? 

• Is the methodology used sufficient to answer these questions? 

It is this set of questions, and particularly the first, that is most relevant to this the-

sis.  It is in this way that we shall determine, to some extent, the validity of the VVM.  To 

answer these questions, greater than 50 observation and modeling datasets from a wide 

variety of sources representing greater than 20 variables have been collected in prepara-

tion for the validation of 8 CRMs from various institutions.  Please refer to Fridlind et al. 

(2010) for the specific variables and data sources.  The availability of the specified ob-

served variables set guidelines for the required output of the CRMs.  Many of the diag-

nostics were not included in previous studies.   

The CRMs included in the TWP-ICE intercomparison are the VVM, operated by 

myself with the assistance of Thomas Cram and Celal Konor; the Distributed High-

Resolution Aerosol-Radiation-Microphysics Application (DHARMA) model, operated 

by Ann Fridlind and Andrew Ackerman at NASA Goddard Institute for Space Studies 

(GISS); the two-dimensional version of the semi-Lagrangian Eularian model (EULAG), 

operated by Hugh Morrison and Wojtek Grabowski at the National Center for Atmos-

pheric Research (NCAR); the Iowa State University (ISU) two-dimensional Cloud-

Resolving Model, operated by Sunwook Park and Xiaoqing Wu at ISU; the non-



 40	  

hydrostatic mesoscale atmospheric model of the French research community (Méso-NH), 

operated by Jean-Pierre Chaboreau at the University of Toulouse, France; the Nonhydro-

static Anelastic Model under Segmentally-Constant Approximation (NAM-SCA) oper-

ated by Jun-Ichi Yano at the Centre National de Recherches Météorologiques (CNRM) at 

Météo-France; the System for Atmospheric Modeling (SAM), operated by Jiwen Fan at 

the Pacific Northwest National Laboratory (PNNL); and the UK Meteorological Office 

Large Eddy Model (UKMO-LEM), operated by Adrian Hill, Jon Petch, and Paul Field at 

the UK Meteorological Office.   

The second and third objectives of the intercomparison are more technical in na-

ture.  The first is to quantify predicted convective transport to and from the tropopause, 

with particular attention paid to the temporal and spatial characteristics of the vertical 

mass transport (specifically of water vapor but also with regard to tracers), the role of ice 

sublimation as a water vapor source, and the role of dehydration as a water vapor sink 

during overshooting convection.  To assist in meeting this objective, four tropospheric 

tracers are to be tracked, and budget profiles of water vapor and hydrometeors are re-

quested.  The final objective is to study the evolution of anvil cirrus clouds through the 

entirety of their life cycle.  There has been a hypothesized influence of tropical anvil 

cloud cover and precipitation efficiency on the expected response of tropical deep con-

vection to sea surface temperatures that have increased due to greenhouse warming.  As 

such, monsoon events that occurred during the observational period are used as a focus to 

determine relationships between convective activity and anvil ice water path and precipi-

tation efficiency.   

4.1.2 Experiment Design 
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 The time period of focus for the intercomparison is from 0Z on January 18, 2006 

through 0Z on February 3, 2006, a total of 16 days.  This corresponds to ordinal days 18- 

34 of 2006.  During these 16 days, both active and suppressed monsoon conditions were 

observed as shown in Figure 4.2.  Fridlind et al. (2010) describe the time period in the 

following way: 

• active monsoon conditions (19.5–25.5), comprising the first 6 days following a 
minimal 36 hours for model spin-up 
 

• suppressed monsoon conditions (28–34), comprising the last 6 days of the simu-
lated time period (avoiding the few days following 25 January when large quanti-
ties of aging anvil cirrus were advected into the domain from a mesoscale convec-
tive system located approximately 24 hours upwind) 

 
• three 24-hour periods bounding the primary build-up and decay of consecutive 

monsoon events of varying strength (19.5–20.5, 22.125–23.125, and 23.5–24.5), 
which we refer to hereafter as events A, B, and C 

	  
• the 24-hour period of outflow cirrus evolution after event C (24.5-25.5) 

 

 

Figure	  4.2.	   	  Cumulative	   rainfall	  at	   three	   locations	   in	   the	  Northern	  Territory	  during	   the	  
2005-‐2006	  monsoon	  season.	   	  Figure	  courtesy	  of	  Lori	  Chappel,	  Australian	  Bureau	  of	  
Meteorology.	  	  (Reproduced	  from	  Fridlind	  et	  al.	  2010).	  

 

10 

 

3.2. Model Set-Up 

3.2.1. Baseline and sensitivity test 

Although the TWP-ICE experimental domain contains both land and ocean 

regions, the low-lying land areas become saturated during the monsoon season, behaving 

in a manner that has been characterized as maritime in nature.  To further facilitate CRM 

representation of relatively slowly developing and advecting monsoon features such as 

cold pools over the TWP-ICE region in a framework that remains as simple as possible,  

we adopt an idealized marine case study baseline set-up here: 

• model domain footprint representative of the TWP-ICE domain size of 

approximately 31,000 km2 (e.g., about 176 km east-west by 176 km north-south, 

or a 2-dimensional model domain representing a similar area) 

• model domain height of at least 24 km 

• fully-periodic horizontal boundary conditions 

• uniform initial conditions at 0Z 18 January derived from mean observed profiles23 

• random initial perturbations of –0.25 to 0.25 K in grid cells located below 500 m 

• run time of 16 days, ending at 0Z 3 February 

                                            

23 http://www.giss.nasa.gov/~fridlind/twp-ice/info/txt/sound/twp_sounding.html (mean atmospheric state 

profiles in geometric coordinates) or http://science.arm.gov/wg/cpm/scm/scmic6/forcing_data.html (mean 

atmospheric state profiles in pressure coordinates) 

 

Figure 3.  Cumulative rainfall at three locations in the Northern Territory during the 2005-

2006 monsoon season.  Figure courtesy of Lori Chappel, Australian BOM. 
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The model framework was specified for the simulations.  All models were asked to 

meet the following guidelines (Fridlind et al. 2010): 

• model domain footprint representative of the TWP-ICE domain size of approxi-
mately 31,000 km2 (e.g., about 176 km east-west by 176 km north-south, or a 2-
dimensional model domain representing a similar area) 
 

• model domain height of at least 24 km  
 

• fully-periodic horizontal boundary conditions 
 

• uniform initial conditions at 0Z 18 January derived from mean observed profiles 
 

• random initial perturbations of –0.25 to 0.25 K in grid cells located below 500 m 
 

• run time of 16 days, ending at 0Z 3 February 
 

• sea surface temperature fixed at 29°C and interactive surface fluxes 
 

• surface albedo fixed at 0.07 in all shortwave bands 
 

• ozone profile fixed based on sonde and OMI measurements 
 

• interactive diurnal radiation with domain centered on the Darwin ARM site 
(12.425°S, 130.891°E) 

 
• horizontally uniform nudging of horizontal winds above 500 m to the mean ob-

served profiles with a 2-hour time scale 
 

• application of large-scale forcings derived from observations, adopted at full 
strength below 15 km, linearly decreasing to zero strength at 16 km 

 
• horizontally uniform nudging of mean water vapor and mean potential temperature 

to mean observed profiles with a 6-hour time scale, adopted at full strength above 
16 km, linearly decreasing to zero strength at 15 km 

 
• sponge layer nudging of horizontal winds and potential temperature toward their 

horizontal means using a nudging coefficient that increases with a sin2 vertical de-
pendence from zero at 20 km to (100 s)-1 at 24 km and above 

	  
 Additional requirements regarding the consistency of the large-scale forcings 
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were also specified but will not be reproduced here.  The tracers, mentioned previously, 

were added to the VVM and initialized with a mixing ratio of 1.0 within four source lay-

ers (surface boundary layer, 0-250 m; lower troposphere, 2-4 km; mid-troposphere, 4-6 

km; and upper troposphere,14-17 km). They were reset to 1.0 at the end of each time 

step.  The tracers were subjected to advection, mixing, and large-scale vertical motion, 

and each tracer experienced a uniform decay proportional to the local tracer mixing ratio 

with a 6-hour e-folding time.  Further, the intercomparison set guidelines for various 

aerosol concentrations to be used in the simulation.  However, the VVM is currently un-

able to handle aerosol information. 

 Excepting the following items and those specified by the intercomparison, the 

VVM details for the TWP-ICE simulation were identical to those described in Section 

3.2.  Most importantly, the large-scale forcing of the model was derived from a 3-hourly 

dataset in the form of the large-scale vertical motion (applied to condensate and tracers), 

Q1, and Q2, which were linearly interpolated in time to be applied at each time step.  The 

time step used was 5 seconds, and the domain was square with horizontal dimensions of 

176 km and doubly periodic boundary conditions.  The vertical grid was stretched with a 

top at approximately 25 km.  The grid spacing was 1 km.  The simulation was run with 

the GCM version of the rapid radiative transfer model (RRTMG. See 

http://rtweb.aer.com/ for more information.) radiation package, implemented once every 

five minutes of simulated time.  Listed in Appendix 1 are the approximately 170 vari-

ables that were predicted or diagnosed from the VVM TWP-ICE simulation.  Additional 

variables were requested but were not able to be produced due to model limitations.  

These included optical thickness measures, hydrometeor diameters, projected areas, and 
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number concentrations, simulated radar reflectivity, and Doppler velocities. 

 

4.2	  	   Intercomparison	  Results	  
 
 As not all of the results from the TWP-ICE CRM intercomparison are currently 

available, a selection of the results will be shown here.  Many of the following figures 

were created automatically by a program written and operated by Renata McCoy of the 

Lawrence Livermore National Laboratory.   

 First, there is the time series of the surface precipitation rate (Figure 4.3), because 

problems in getting this field correct are likely to be indicative of much larger issues.  In 

this case, the CSUVVM has performed quite well in comparison to both the reference 

data as well as the other models.  That is, it does not greatly deviate from either.  There 

are a couple of notable deviations from the reference data.  These are seen in the cases of 

the EULAG and the NAMSCA models, which appear to overestimate the precipitation, 

especially near maxima.  Additionally, many of the models overestimate the precipitation 

slightly, but by a factor of two, when the precipitation rate is very small.  This positive 

bias at low precipitation rates has a cumulative effect of an overall positive bias from ra-

dar observations.  Radar observations for the intercomparison period have a mean of 0.56 

mm hr-1.  All models have a greater mean.  Two of the models, DHARMA and 

MESONH, achieved almost the exact observed value.  The most strongly deviating 

model was the VVM, with a mean of 0.78 mm hr-1, which is a nearly 40% overestimate.  

This is approximately solely due to overestimates of precipitation rates during the sup-

pressed monsoon conditions present during the second half of the simulation period.5 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 The numerical data reported here has been obtained from Fridlind et al, (2009). 
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Figure	   4.3.	   	   Surface	   precipitation	   rate	   for	   the	   noted	   models.	   	   The	   acronyms	   are	   de-‐
scribed	  in	  Section	  4.1.1.	  	  The	  reference	  data	  is	  based	  on	  radar	  observations.	  

 Moving up vertically through the data, we can compare domain mean precipita-

tion rates at 2.5 km elevation, as well.  This is shown in Figure 4.4.  For this variable, 

fewer models have submitted results.  Once again, the CSUVVM has done quite well in 

identifying the temporal location of precipitation events, though the agreement with the 

reference data is not as good as in the previous case. While its performance appears to be 

comparable to the DHARMA model, the CSUVVM really only does a better job of pre-

diction of this variable than the MESONH models.  The issue of overestimates for light 

precipitation events remains, as the simulation period mean for the VVM is nearly double 

the value derived from radar.  The mean for the MESONH is higher still, while the 

DHARMA and EULAG models simulate the mean precipitation rate at the 2.5-km level 

with in two hundredths of a millimeter per hour of the observational value.  When this 

variable is resampled at 2.5-km resolution, the deviations grow stronger for each model 

(not shown). 
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Figure	  4.4.	  	  As	  in	  Figure	  4.3,	  but	  for	  the	  precipitation	  rate	  at	  the	  2.5-‐km	  level.	  
 Included in the interesting scalar variables are some cloud fields.  The first we 

will look at is the cloud fraction (Figure 4.5).  This field is particularly interesting be-

cause there is very little agreement between the models.  A few of the models, such as 

SAM and DHARMA show periods where the cloud fraction becomes quite small in 

comparison to the other models.  Such results seem quite realistic when compared to 

those from the CSUVVM, which stay very near one for the majority of the simulation.  

The intercomparison definition of a cloud, though, is a total cloud water and ice mixing 

ratio minimum threshold of 10-6, which is very near most of the maximum values re-

ported in the CSUVVM.  Cloud fraction variation can be seen with a slight modification 

to the threshold.  However, there is some cause for concern given that there is variation in 

each of the other reporting models at the original threshold. 



	  
Figure	  4.5.	  	  As	  in	  Figure	  4.3,	  but	  for	  the	  cloud	  fraction.	  
	  
	  
 There are also a number on interesting differences in the cloud top and base 

fields.  The cloud top heights are shown in Figure 4.6.  Here, the CSUVVM falls near the 

middle of the pack, lying away from extremes of both magnitude and variability.  Of 

course, with cloud fraction values that are very near one for the vast majority of the simu-

lation, large swings in the cloud top heights are not to be expected.  The main outlier for 

this variable is the EULAG, which consistently has cloud top heights greater than those 

of the other models.  More realistic models include SAM, DHARMA, and MESONH. 

 The cloud base height data is shown in Figure 4.7.  Here, the CSUVVM tends to 

hug the fringe of the model range, with bases toward the lower end of that range.  The 

concern, once, more is the lack of variability in this variable in comparison to the other 

models.  A lack of readily available observational data for validation makes this analysis 
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difficult, but such smoothness does not appear physical.  Granted, the model is not the 

worst of the bunch, taking their average to be the standard.  

 

Figure	  4.6.	  	  As	  in	  Figure	  4.3,	  but	  for	  the	  cloud	  top	  heights. 

 

Figure	  4.7.	  	  As	  in	  Figure	  4.3,	  but	  for	  the	  cloud	  base	  heights.	  
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Further simulations and observations of cloudiness are shown in Figure 4.8, 

which shown the profile time series of cloud fraction.  Initially, the model (of those pre-

sented) that most closely estimates observations is EULAG, thought the depth, intensity, 

and temporal extent of the cloud amount at its highest are each overestimated.  Addition-

ally, as was seen in Figure 4.6 and with a conversion between pressure and height (not 

shown), the maximum cloud height is too high in EULAG.  However, the overall struc-

ture is well approximated.  The VVM has similar structure, but small-scale variations 

 

a. b. 	  

c. d. 	  

Figure	  4.8.	   	  Profile	  time	  series	  of	  cloud	  fraction	  for	   (a)	  CSUVVM,	  (b)	  DHARMA,	  and	  (c)	  EULAG	  
and	  (d)	  the	  observed	  cloud	  frequency	  at	  the	  Darwin	  ARM	  site	  (Xie	  et	  al.	  2009).	  	  The	  ab-‐
scissa	  in	  panel	  (d)	  denotes	  time	  ranging	  from	  00Z	  on	  22	  January	  through	  00Z	  on	  12	  Feb-‐
ruary	  2006.	   	   The	   initial	  date	   in	   the	  observational	  data	   corresponds	   to	  96	  hours	   in	   the	  
model	  data.	  	  The	  ends	  time	  in	  the	  model	  data	  corresponds	  to	  approximately	  03	  Febru-‐
ary	  in	  the	  observational	  data.	  

45

1

2

Figure 2. (a) Observed cloud frequency at Darwin from the ARM surface remote sensing 3

instruments (MMCR, MPL, and Laser Ceilometer) and (b) the domain averaged surface precipitation 4

rates from the BOM C-POL radar. The four regimes are marked on Figure 2b.5

6

7
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seem to be lacking.  This may be attributed to the point-type measurements of the obser-

vations.  The gap in the midlevel clouds following the first event is absent, though this 

may be a byproduct of the measurements, as well, as low-level clouds and this midlevel 

gap is absent from all model simulations. 

Other microphysical properties of note are the mean liquid and ice water paths.  

Neither of these variables, not their variations, are shown here because available plots ei-

ther lack observational data or show erroneous data.  Readers are referred to Fridlind et 

al. (2010) that will have correct figures when published.  At all sampling resolutions and 

variations (maximum values, only considering points where precipitation is beyond a cer-

tain threshold, etc. See appendix.), the models show similar evolution and a general con-

sistency, but the simulation mean values are often orders of magnitude greater than ob-

servational data.  Further, there is some cause for concern in this thesis, in that the VVM 

is often one of the most deviate from the observations and, occasionally, some of the 

other models.  There appears to be some correlation to the microphysical parameteriza-

tions used, but this needs to be examined more closely. 

 To aid in the objective to quantify convective transport, four tracer variables were 

requested.  To date, the results of these tracer transports have only been made available 

for the CSUVVM, EULAG, MESONH, NAMSCA, and UKMO-LEM models.  Shown in 

Figure 4.9 are the results from the first three models.  The tracers in the NAMSCA model 

seem to have been implemented incorrectly and simply diffuse.  The results of the 

UKMO-LEM have been omitted in order to save space and because their results are 

qualitatively similar to CSUVVM and EULAG results.  For this variable, no comparable 

observation is available, so consensus will be the useful metric.  The clear outlier of the 
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group is the MESONH, which exhibits much stronger convective effects throughout the 

simulation and especially for the lower three tracers.  This is consistent with the very high 

precipitation rate values that were reported during strong events in the MESONH.  The 

vertical tracer transport in the CSUVVM is slightly greater than that in EULAG.  The 

 

a. b. c. 	  

d. e. f.	   	  

g. h. i.	  

j. k. l.	   	  

Figure	   4.9.	   	   Profile	   time	   series	   of	   tracers	   for	   (left)	   CSUVVM	   (center)	   EULAG,	   and	   (right)	  
MESONH.	  	  The	  panels	  show	  tracers	  at	  the	  (a,	  b,	  c)	  boundary	  layer,	  (d,	  e,	  f)	  lower	  tropo-‐
sphere,	  (g,	  h,	  i)	  middle	  troposphere,	  and	  (j,	  k,	  l)	  upper	  troposphere	  levels.	  
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EULAG results are most similar to the results that are seen in the UKMO-LEM (not 

shown).  Overall, the lower and middle troposphere tracers show the greatest amount of 

transport in each model.  This is to be expected as these lie within the region of strongest 

vertical velocity.  Transport at the upper troposphere layer seems to vary the strongest 

from model to model.  The CSUVVM shows very little motion, while the MESONH and 

the UKMO-LEM show activity coincident with the strongest convective events.  There is 

some correlation to convective events in the case of the EULAG model simulation, but in 

its latter half, there arises a sort of oscillatory behavior that is not seen in the other models 

and appears to be related to the diurnal cycle.  Given these results, there is good agree-

ment relative to vertical transport that bodes well for the use of the VVM in this thesis. 

With the results that have been presented, some generalizing conclusions can be 

drawn.  There is a positive bias in a few models, including the VVM, in the precipitation 

data due mainly to an inability to correctly simulate light precipitation.  This property is 

slightly reduced at the surface compared to the 2.5-km level for most models.  Cloudiness 

parameters, including cloud top and base heights, are highly variable among the model 

simulations, indicating significant uncertainty.  The related liquid and ice water paths also 

show considerable variability from model to model.  The mean liquid water path seems to 

be totally unconstrained by measurements, and model and observed domain mean and 

maximum values of ice water path have very little in common.  In both cases, the models 

report values much higher than observations. 

This all seems to lend some concern to the use of the VVM for this statistical 

study.  It was often one of the furthest outliers of the group of models for certain micro-

physical variables.  Its performance in the case of the tracer variable was somewhat 
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promising, indicating some element of dynamical strength, or at least agreement with 

other models. Perhaps one of the more detrimental features of this model is that in com-

parison to the others, it shows noticeably less temporal variability in many of the vari-

ables presented, especially compared to observations.  This lack of variability, or 

smoothness, is particularly apparent in the cases of the cloud variables.  There is also 

some evidence for this in the tracer data.  This feature is particularly troubling because 

the aim of the thesis is to characterize simulated convective variability and to do so with 

an assumption about how well the model represents reality.  It seems that in this case, the 

temporal variability seen in the observations is not well represented by the VVM.  How-

ever, the following analysis will not specifically be on temporal variability but rather the 

nondiagnostic and nondeterministic variability that arises when very similar large-scale 

forcings are applied.  This variability does, though, ultimately feed into temporal variabil-

ity through chaotic interactions.  The connection is rather complex and not easily de-

scribed.  At any rate, this observation suggests that the results of the following analysis 

should be compared to the results of the same tests upon other models, specifically those 

exhibiting more temporal variability.  One particular model of interest is SAM, which as 

seen in Figure 4.6 does, indeed, show significantly more temporal variability.  

 



	  

Chapter	  5	  -‐	  Simulation	  Results	  
5.1	  	   Constant	  Forcing	  Simulations	  

 
 In order to provide a set of ‘control’ simulations for later comparison to the vari-

able forcing simulations, 10 constant forcing simulations were performed as described in 

Section 3.3.  We will briefly look at the results of those simulations focusing on the con-

vective response to the applied large-scale forcing.  One obvious and broad indicator of 

the intensity of convection is the resultant precipitation.  The time evolution of the do-

main-averaged surface precipitation rate is shown for each of the constant forcing simula-

tions (Figure 5.1.1).  Here, and throughout the paper, the surface precipitation rate has 

been calculated as the rainwater fall rate in the lowest layer of the model.  

 One feature that is immediately visible in Figure 5.1.1 is the gradual increase in 

the magnitude of the precipitation rate, represented by the black lines, as the forcing is 

increased.  This feature is especially apparent when viewing the red lines, representing 

the time mean.  In fact, the increase in the mean precipitation is almost exactly linear with 

respect to the normalized forcing (Figure 5.2a).  Quantitatively, there is an increase of 

approximately a quarter of a millimeter per hour for each ten percent increase in large-

scale forcing.  Based on the prescribed forcing profiles (Figure 3.1), this corresponds to 

approximately -2.5 K day-1 of peak advective cooling and 3.5 K day-1 equivalent of peak 

advective moistening. 

 The other very important feature of Figure 5.1.1 is that though the simulation is 
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Figure	  5.2.1.	  a.)	  the	  time-‐mean	  surface	  precipitation	  rate;	  b.)	  the	  time-‐relative	  standard	  

deviation	  of	  the	  surface	  precipitation	  rate;	  and	  c.)	  the	  mean-‐scaled	  standard	  devia-‐
tion	  of	   the	   surface	  precipitation	   rate	   for	   constant	   forcing	   simulations	  CF1	   through	  
CFX.	  

	  
	  
forced with constant large-scale values, the response as seen in the domain average pre-

cipitation rate is clearly not constant.  Rather is it demonstrating characteristics of the sta-

tistical equilibrium mentioned in Section 1.1, where the variance about the mean is small 

with respect to the mean.  A measure of this variance as pertaining to the time series in 

Figure 5.1.1, is the standard deviation of the precipitation rate, denoted by the blue lines.  
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It is shown in Figure 5.2b that the standard deviation has a near linear increase with in-

creasing forcing, similar to that of the increase of the mean but with differences at the ex-

tremes of the forcing values that were applied.  Specifically, the trend is mostly linearly 

increasing between twenty and ninety percent of the maximum forcing (CF2–CF9).   

 Dividing the time-respective standard deviation by the time mean of the precipita-

tion rates for each constant forcing simulation, we obtain the results shown in Figure 

5.2c.  For the majority of the normalized forcing values, this normalized standard devia-

tion value is nearly constant.  This is a result that many modelers would expect to dis-

cover: the standard deviation (variability) scales with the mean.  In fact, this is an as-

sumption on which some convective parameterizations rely in order to represent the vari-

ability correctly (e.g. ECMWF models).  However, the results here indicate that there is 

the possibility of a non-constant scaling of the variability about the mean response.   

 The clearest exceptions to this ‘rule’ are seen where the forcing values are either 

very small or very large.  When the large-scale forcing is 10 percent of the maximum 

(CF1, weak forcing), the standard deviation about the mean is greater than twice the 

mean-relative magnitude that was simulated in the other constant forcing runs.  At the 

other end of the spectrum, when the forcing is at its maximum (CFX), the mean-scaled 

standard deviation is approximately 80 percent of that of the constant forcing runs CF2-

CF9.  Further, over these simulations where the scaling appears to be most constant, there 

is actually a slight decrease in the mean-scaled variability as the large scale forcing is in-

creased.  Depending on where the line is drawn, there is an 8-23 percent decline in the 

mean-scaled variability over the range that appears nearly constant. 

 In addition to the precipitation rate, the same analysis has been performed for the  
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Figure	  5.2.2.	  	  As	  in	  Figure	  5.2.1,	  but	  for	  cloud	  fraction.	  
	  
 
comparable variables of cloud fraction and non-precipitating condensate, a variable 

whose definition shall be expanded upon in Section 5.2.  Figures 5.1.2, 5.1.3, 5.2.2, and 

5.2.3 have been supplied to demonstrate the statistical behavior of these other convection-

related variables.  There are a few interesting features in these figures.  First, we see that 

cloud fraction tends to asymptotically decrease with increasing forcing strength.  That re-

sult seems counterintuitive in that one might expect the forcing to directly increase the  
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Figure	  5.2.3.	  	  As	  in	  Figure	  5.2.1,	  but	  for	  non-‐precipitating	  condensate. 
 

amount of cloud in a given domain.  This cognitive issue is relieved slightly by the result 

from the non-precipitating condensate, which increases to some extent with increases in 

the large-scale forcing.  This means that the clouds become more dense. 

 At this point, it is only speculation, but there may be a significant impact from us-

ing an assumed constant mean-scaled variability in a convective parameterization.  As-

suming that these results are truly representative, convective parameterizations assuming 
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constant scaling would report far too little variability in situations where the large-scale 

forcing is small and possibly somewhat too much variability (and progressively more so) 

as stronger forcings are encountered.  With the nonlinearity inherent in atmospheric proc-

esses, such sustained misrepresentations could easily have vast impact on many aspects 

of a given simulation.  In order to validate the findings of these constant forcing model 

runs, it would be advantageous to perform longer simulations at finer forcing intervals 

within the VVM and other cloud-resolving models to obtain both greater confidence in 

the statistics and a more detailed representation of how the mean-scaled variability re-

sponds to various magnitudes of large-scale forcings.  From that information, one could 

be able to create or modify a convective parameterization (especially a stochastic version) 

that would be constrained to meet the requirements of the statistics.  It would be interest-

ing to see how much this factor alone would improve or degrade GCMs or NWP models. 

 

5.2	  	   Periodic	  Forcing	  Simulations	  
 
 In this section, the focus is on the results of the periodic forcing simulations that 

were run, in essence, as a sensitivity study to characterize the model response to a set of 

varying large-scale forcings.  The section begins with an overview of the nature of what 

the simulations produced via images of the simulation precipitation and cloud fields.  Fol-

lowing that, composite results of various convectively important fields will be discussed 

with particular attention being paid to convective variability and some interesting features 

of the mean convection. 
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5.2.1 Snapshot Views 
 
 To begin, we will look at some selected model output snapshots from the various 

periodic forcing simulations.  Figure 5.3a depicts the simulated surface precipitation rate 

(left panel) and the cloud top temperatures (center panel) 7.2 hours past the ~300 hour 

model spin-up period of the F02 (2-hour period) simulation.  The three panels on the right 

of the same figure show the time series values of the mean surface precipitation rate 

(top), the domain cloud fraction (middle), and the corresponding 2-hour normalized 

large-scale forcing (bottom).  The top of a cloud is defined as the height where the sum of 

the cloud liquid and ice water is greater than 0.1 kg m-2 when integrating downward from 

the model top.  The vertical red lines on the rightmost three panels denote the point in the 

simulation that is rendered in the left and center panels of the figure.  For reference, the 

uppermost portion of the domain in these figures shall be referred to as the north of the 

domain. 

 At this point in the F02 simulation where the forcing is oscillating relatively rap-

idly, the large-scale forcing has just begun to decline from its maximum, the cloud frac-

tion (~35%) is approaching a local maximum, and the mean surface precipitation is at a 

local minimum (~1 mm hr-1).  The apparent counterintuitive nature of this alignment of 

variables shall be discussed later in this paper.  At this point, we will focus on the nature 

of the convective fields.  Here, we see that for the domain as a whole, the convection 

(most clearly represented by cold cloud tops and greater intensity surface precipitation) 

appears mainly scattered and unorganized.  In the northern portion of the domain, there 

appears to be a quasi-linear feature.  Set in motion, a series of these figures would show 

what appears to be a strong convective cell moving to the southwest at approximately 6 



 64	  

m s-1leaving a trail of (anvil) clouds and precipitation in its wake.  In fact, this is shown in 

Figure 5.4.  Following along from panel (a) to panel (f) (west to east), we can see the 

most intense clouds at low and middle levels between 150 and 200 km north.  Trailing 

this region (Figure 5.4e-f), the cloud is high and thin east of x = 100 km and appears to 

spread out horizontally somewhat.  Going further north and east this same feature contin-

ues (not shown).  From just this snapshot, we can clearly see that the model has the abil-

ity to produce realistic convective cells. 

 A snapshot from the F06 simulation is shown in Figure 5.3b.  At this point in the 

simulation, the mean surface precipitation, cloud fraction, and large-scale forcing values 

are each near a local maximum.  Comparing the time series from Figure 5.3b to those of 

Figure 5.3a, we notice that the amplitudes of the convective variables have increased 

greatly.  The main reason for this is that the longer period allows for longer sustained pe-

riods of large and small large-scale forcing application.  The precipitation and cloud frac-

tion appear to better correlate with the large-scale forcing, as well.  In the left and center 

panels for the F06 simulation snapshot, an interesting feature stands out.  A bowed struc-

ture is visible in the northwest portion of the domain.  Watching the field progress at 10-

minute intervals (not shown), the bow echo-like feature develops from an intensifying 

squall line moving to the southwest.  The development is more clearly visible in the cloud 

field than in the precipitation field.  Shortly after this point, this mesoscale structure de-

cays over the next two hours, and the overall structure of the convection is scattered as in 

the F02 simulation, though the intensity of the convection is greater. 
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a. b.

c. d.

e. f. 	  

Figure	  5.4.	  Vertical	  cross	  section	  of	  the	  sum	  of	  cloud	  water	  and	  ice	  mass	  per	  unit	  hori-‐
zontal	  area	  showing	  the	  zy-‐plane	  at	  various	  values	  of	  x,	  moving	  west	  to	  east	  from	  (a)	  
to	  (f)	  This	  figure	  corresponds	  to	  Figure	  5.3a..	  	  

	  

 Snapshots of the F10 and F12 simulations are shown in Figure 5.5.  As with the 

last increase in period, the amplitudes and maximum values of the mean surface precipi-

tation and cloud fraction have increased for the reasons mentioned above.  However, one 

new feature in the time series of these variables is that they are not as smoothly periodic.  

In fact, these convective variables tend to linger past what one might expect to
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be their peak.  This phenomenon was termed by X92 as modulation by mesoscale activ-

ity.  In essence, this refers to the fact that once convection achieves mesoscale organiza-

tion, it gains the ability to sustain itself beyond the forcing from the large-scale. 

 F10 and F12 both show degrees of mesoscale organization.  In Figure 5.5a show-

ing an image from F10, there are 2 or three distinct areas of organization.  There is a con-

vective cluster in the northwest as well as in the southwest; however, these may actually 

be the same feature due to the periodic boundary conditions.  Additionally, there is a 

strong linear feature spanning ~80 km over its widest dimension that, when set in motion, 

appears to be squall-like.  This is more evident in the precipitation field than in the cloud 

field.  Similarly, in Figure 5.5b showing an image from F12, there are two distinct linear 

features in the southeast of the domain measuring up to 100 km in length.  As time pro-

gresses, the two features converge and intensify.  It is somewhat interesting that a few of 

the examples shown involve linear mesoscale features.  This is likely because a mesos-

cale structure is, to the first order, a function of the vertical wind shear profile.  Since 

each simulation is given an identical profile, it would be likely to see similar mesoscale 

organization in each simulation. 

 A number of other interesting features are present in the simulations, as well.  For 

instance, during F14 and F24 (Figure 5.6), large, organized mesoscale clusters/lines have 

produced precipitation via outflow, that is, a band of precipitation ahead of the main 

storm cluster often caused by downdrafts spreading away from the main storm.  In both 

cases, this minor feature lasts less than an hour but is a testament to the model’s abilities.   
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 Further, there is even larger-scale organization in a few instances.  This is shown 

in Figure 5.7.  In the case of F16 (Figure 5.7a) at a point where the mean surface precipi-

tation, cloud fraction, and large-scale forcing are each near their local maximum, there is 

a band of organized convection that spans the entire width of the domain.  In motion, this 

band moves as a cohesive unit from north to south, though there is not much in the way 

of visually striking organization in any other sense.  It is likely that the presence of this 

feature is the reason for the slightly broadened precipitation peak that immediately fol-

lows this point in the simulation.  Additionally, in the F120 simulation snapshot (Figure 

5.7b), we see another large band of organized precipitation/convection in the northeast 

section of the domain.  The feature is over 150 km from east to west, and it is accompa-

nied by a preceding outflow boundary as shown in F14 and F24 (Figure 5.6).   

 The reason for showing Figure 5.8 is twofold.  First, it is inherently different from 

each of the other examples in that it is a snapshot (from F120) coincident with a large-

scale forcing local minimum.  The surface precipitation field in this figure is representa-

tive of all other periodic forcing simulations when a local minimum is encountered in the 

large-scale forcing.6  That is, it is very empty.  Second, there is an interesting feature in 

the cloud top field near the south-central portion of the domain.  There appear to be two 

areas of rotation, denoted by the comma-shaped cloud formations.  This complex feature 

is unique to the longest period forcings.  There is little that one can analyze regarding this 

feature, as it is very short-lived (~30-40 minutes) due to the decline of the large-scale 

forcing and the subsequent shutdown of convection.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 This in not the case, however, when the convection is 180° out of phase with the peri-
odic large-scale forcing, such as in F02 and to a lesser extent in F04 and F06. 
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 Again, it is important to note that there is a continued increase in the amplitude 

and maximum magnitude of the mean surface precipitation and cloud fraction and the 

forcing period is lengthened.  It is also important to keep in mind while comparing these 

snapshots that there is a significant change in the resolution on the time axes.  Some pre-

cipitation variations in the F120 simulation are on the order of the amplitude of the F02 

simulation, and the time resolution on the image makes that difficult to see.  Lastly, it is 

interesting to note that as the forcing period length increased, the plateau following the 

maxima in mean surface precipitation rates tended to vanish, while those in the cloud 

fraction time series became more prominent.  The reason for this will be discussed later. 

 

5.2.2 Sounding Features 
 
 In this section, the focus shall be on features that can be seen in domain-averaged 

soundings and related vertical structure features.  Most of the items for discussion are not 

directly going to be useful for the stochastic aspect of convective parameterizations; they 

are mainly just observations relating to the idealized nature of the periodic forcing simu-

lations. 

 Figure 5.9 shows (from left to right) the domain averaged temperature, moisture, 

moist static energy and saturated moist static energy profiles at points 25% (top) and 75% 

(bottom) of the way through the forcing cycle for F02.  The colors indicate the order of 

the realizations, with blue being first and red being last.  Also, the black line indicates the 

composite average.  The temperature profile in both cases is approximately moist adia-

batic, and the water vapor mixing ratio seems to be approximately equal in both cases. In 

the most slowly varying simulations (F60, Figure 5.22), there is a slight trend toward 
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warming and moistening at the surface with corresponding increases in the moist static 

energy and saturated moist static energy. 

  The moist static energy (MSE, h) is defined as usual: 

	   	   MSE = cpT + gz + Lvr , (5.1) 

with the saturated moist static energy (SMSE, h*) being calculated in the same way ex-

cept that r is replaced by the saturation water vapor mixing ratio. It is typical to have this 

MSE profile in the tropics with increases upward in the upper levels and decreases up-

ward in the lower levels.  The tendency to increase at upper levels is mainly due to MSE 

becoming equivalent to the dry static energy (DSE) as moisture falls off with altitude.  

The tendency to decrease at lower levels in the tropics is due to the strong moisture gra-

dient near the surface.  In the presence of this strong gradient, the general upward in-

crease in DSE is overwhelmed so that the MSE decreases upward.  

 On the SMSE plots, the solid purple line is the composite MSE sounding for ref-

erence.  Note that the two curves are approximately equal in the cold upper atmosphere.  

From its position at the surface, we can estimate the average height of convective towers, 

which is denoted by the black dashed line.  On average, there are some quite tall clouds 

over the domain.  This holds for both the shown F02 and F60 cases. 

 Some of the most interesting features are seen in the difference plots between the 

increasing portion of the forcing and the decreasing portion of the forcing (Figures 5.11-

5.13, for F02, F10, and F60, respectively).  In the case of the F02 simulation, we see that 

the surface is initially slightly cooler than when the forcing is decreasing, and the differ-

ences from iteration to iteration are highly variable compared to differences in the more 

slowly varying, equilibrated runs.  Being cooler seems counterintuitive, but we must  
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remember that the F02 response is out of phase with the forcing.  In the F10 and F60 

simulations, the surface starts off warm, dry, and with less moist static energy, before 

convection acts to cool, moisten, and stabilize the surface atmosphere.  Also of note is the 

fact that the SMSE tends to only change near the surface, where it is most directly af-

fected by the swings in surface temperature and the water vapor mixing ratio.  These 

soundings are more representative of the situation of the other simulations compared to 

F02. 

 Further analysis shows trends in the convective available potential energy 

(CAPE).  Figure 5.14 shows the CAPE time series for each of the simulations.  The color 

trend indicates the simulation, with blue meaning faster varying forcing and red meaning 

more slowly varying forcing.  The quickly varying forcings have a much smaller range 

for CAPE as there is little time for development one way or the other.  The opposite is  

 
Figure	  5.14.	  	  Pseudoadiabatic	  CAPE	  time	  series	  for	  all	  simulations.	  	  See	  text	  for	  descrip-‐

tion.	  
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true for the more slowly varying forcings.  Interestingly, for simulations in the middle 

range (e.g. F12 and F14), there is very little evidence of the forcing cycle in the CAPE 

time series.   

 Similarly to the previous sounding analysis, Figure 5.15 shows the average value 

for CAPE coincident with the point at which the forcing is most rapidly increasing and 

decreasing, depending on the simulation.  To generalize, the CAPE is greater when the 

forcing is decreasing than when it is increasing.  This is likely due to the influx of surface 

moisture at that point in the simulation.   

 Another feature involving the CAPE was noticed upon inspection of the time se-

ries of some simulations with long forcing periods.  There seemed to be a significant 

mode of variability apart from the main forcing period.  Spectral analysis confirmed these

 

	  
Figure	  5.15.	   	   Pseudoadiabatic	  CAPE	  when	   the	   large-‐scale	   forcing	   is	   increasing	  and	  de-‐

creasing.	  
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suspicions, and the results are shown in Figure 5.16.  The F60 simulation has an addi-

tional spectral peak at about 30 hours, and the F120 simulation has an additional, very 

strong spectral peak at about 60 hours.  The reason for the existence of these peaks re-

mains elusive. 

 Lastly, correlations were performed comparing the CAPE and its tendencies to the 

surface precipitation rate.  Two examples of this are shown in Figures 5.17 and 5.18 for 

the F08 and F30 simulations.  In the F08 simulation, we are beginning to see the dimin-

ishing evidence of the forcing period at the mid-range as noted above.  In this case,

	  

	  
Figure	  5.16.	   	   Power	   spectra	   for	  pseudoadiabatic	  CAPE	   for	   the	  noted	  simulations.	   	   The	  

red	  curve	  is	  indicative	  of	  theoretical	  red	  noise,	  and	  the	  dashed	  blue	  curve	  shows	  the	  
95%	  significance	  level.	  
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Figure	  5.17.	  	  Time	  series	  of	  surface	  precipitation	  rate	  ,(top)	  pseudoadiabatic	  CAPE	  (mid-‐

dle),	   their	   lag	   correlations	   (bottom	   left),	   and	   a	   scatterplot	   and	   correlation	   of	   the	  
normalized	  CAPE	  tendency	  and	  precipitation	  (bottom	  right)	  for	  the	  F08	  simulation.	  

	  
	  
the maximum correlation lag is found at -1.5 hours, meaning that the CAPE peaks 1.5 

hours before of the precipitation maximum.  It is also interesting that in this case, the do-

main-averaged precipitation is negatively correlated with the CAPE tendency.  Perhaps 
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Figure	  5.18.	  	  As	  in	  Figure	  5.17	  but	  for	  the	  F30	  simulation.	  	  	  
	  
	  
this is indicative of expending CAPE to create convection.  However, a very different 

picture emerges from the F30 analysis.  In this case, the maximum in precipitation rate 

precedes the maximum in CAPE by three and one third hours.  Additionally, the correla-

tion between the CAPE tendency and the surface precipitation rate is almost non existent.  

The correlation coefficient is 0.20.  When the CAPE did change significantly in either di-
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rection, there was about equal chance of getting light or heavy precipitation. The same is 	  

true for very small variations in CAPE.  For the F30 simulation, one can see precisely 

where this data is coming from.  Both the CAPE and precipitation transitions are rapid 

and their more extended maxima and minima tend to coincide with the other’s transition.  

So, when the precipitation is falling off, for instance, the CAPE is temporarily settled into 	  

a maximum. 

 The final two figures summarize this correlation analysis.  When each of the peri-

odic forcing simulations are analyzed, their results show a striking pattern.  The correla-

tions between domain-averaged precipitation and pseudoadiabatic CAPE tendency, when 

plotted against the forcing period (on an uneven scale) appear to form a sine wave (Fig-

ure 5.19).  When the forcing period is short, there is a negative correlation, and when it is 

longer the correlations becomes slightly positive, though very near zero.  A very similar 

structure emerges when plotting the maximum correlation lags (Figure 5.20).  For shorter 

periods, the CAPE leads the precipitation, and for longer periods, the reverse is true.  	  

	  

	  
Figure	  5.19.	  	  Correlation	  coefficients	  versus	  forcing	  period	  for	  domain	  averaged	  precipi-‐

tation	  and	  pseudo	  adiabatic	  CAPE	  tendency.	  
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Figure	  5.20.	  	  The	  maximum	  correlation	  lag	  between	  domain	  averaged	  precipitation	  and	  

pseudo	  adiabatic	  CAPE	  tendency	  plotted	  versus	  the	  forcing	  period.	  	  
 

These seem to be very peculiar and non-intuitive results.  It was expected that the rela-

tionship between CAPE and precipitation be more consistent and robust.	  
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 To begin, the specific methodology for this task was to separate the 15 cycles in 

each of the thirteen simulations for each considered variable (usually a domain mean) and 

to average the results across the fifteen realizations.  From this, a valuable and easily ob-

tainable parameter, the standard deviation across the cycles (realizations), has been de-

termined.  This can be interpreted as a measure of the nondeterministic behavior of simu-

lated systems, given that each realization is initialized with similar conditions, as is done 

in ensemble modeling.  It should be made clear that this is not the standard deviation of a 

given spatial atmospheric variable field at a point in time.  Such a measure would be a 

more direct measure of subgrid-scale variability, which is interesting but not exactly 

helpful under the auspices of creating a stochastic parameterization.  Operationally, 

GCMs only give a single (mean/bulk) value for a grid point.  For a stochastic parameter-

ization based on the results of this paper, that value could imaginably fall in, and be ran-

domly selected from, the likely distribution of means bounded with respect to standard 

deviation of the means of each realization for a specific large-scale forcing, thereby ap-

proximating the stochastic effect of nondeterminism. 

 Immediately, when I think of convection, I think of the ensuing flood of precipita-

tion.  Thus, the first convective-response variable we shall explore is the surface precipi-

tation rate, which in the case of the tropics is most frequently all rain.   

 Returning briefly to the top-right panel of Figure 5.6b, we see the time series of 

the domain averaged surface precipitation rate for F24.  Two features of interest are that 

the precipitation appears to lag the forcing slightly and that there is considerable scatter 

deviating from what one might expect from strict equilibrium in response to the large-

scale forcing in the bottom-right panel of the same figure.  Clearly, the system is not in 
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strict equilibrium; however, it may well be within the expected range variability about 

equilibrium (variations expected from statistical equilibrium) based on viewing this result 

alone.  Interestingly, the variability in the time series from this set of simulations appears 

to be much less than that obtained from the two-dimensional simulations of X92.  I sus-

pect that this is at least partially due to their far smaller domain area whose mean, deter-

mined by a far smaller sample size, would be much more sensitive to extreme convective 

events.  In fact, they have an example of this in their Figure 5 (panels (b) and (c), refer-

ring to simulations Q02 and Q04), which in comparing identically initialized simulations 

on two differing domains (512-km and 1024 km) shows that the nonsystematic fluctua-

tions (standard deviations) of the mean surface precipitation rates become less pro-

nounced in the case of the larger domain.  This is most clear near the peak of the forcing. 

Complementary results from this 3D study will be addressed later on. 

 These results allude to the fact that 2D models are likely to be deficient when 

compared to 3D models in terms of variable statistics beyond order one.  Often, some 

seek to justify 2D simulations because they are computationally affordable on the re-

quired domain size, whereas 3D simulations are not.  Certainly this was much more ac-

ceptable reasoning two (or even one, e.g. Khairoutdinov and Randall  

(1997)) decades ago, but given the relative ease and simplicity of contemporary comput-

ing, it’s not much of an excuse anymore.7  There will always be fundamental differences 

when considering the two options. For instance, when convection is random or clustered, 

the thermodynamic soundings produced by 2D vs. 3D tend to diverge significantly.  Spe-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 Of course, the goal of the study will take precedence. Some statistical characteristics 
will be in agreement, especially when 3D convection is two-dimensionally organized as, 
for example, in squall lines. 
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cifically, Petch et al. (2008) show that results in 2D simulations differ significantly from 

3D simulations in the low level humidity structure and associated fields due differences 

in entrainment processes, which lead to substantial differences in both cloud amount and 

moisture transport by the clouds. 

 Zeng et al. (2007) suggested that the sensitivity of buoyancy damping to dimen-

sionality can give rise to fluctuations in precipitation in 2D that are not present in 3D 

simulations.  This may even be part of the reason that the variability in precipitation in 

X92 was greater than will be seen in this thesis.  The greater standard deviation shown by 

X92 will likely have some contribution from the smaller sample size involved (their 9 to 

my 15).  Note, though, that we are not talking about the standard deviation of a field, but 

the standard deviation of the mean of a field.  The idea that the standard deviation exhib-

its this behavior is a common misconception. The standard deviation does not decline as 

the sample size increases, however, the standard error (standard deviation divided by the 

square root of the sample size) does. One way to think about it is that the standard devia-

tion is a measure of the variability of a single item, while the standard error is a measure 

of the variability of the average of all the items in the sample.  What does happen is that 

the standard deviation becomes more stable and robust as the sample size increases. 

 Compositing the realizations for each simulation, we have obtained a series of 

plots (Figure 5.21) that describe the statistics of the surface precipitation rate as ascer-

tained from the entirety of the domain.  Here, only the results for F02, F08, F16, F30, 

F60, and F120 will be shown for most considered variables in the composite analysis.  

This selection of simulations should provide a sufficient representation of the differences 

that appear as the length of the forcing period is increased.  Results for the remaining 
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a. b. 	  

c. d. 	  

e. f. 	  

Figure	  5.21.	   	  Whole	  domain	  average	  statistical	  composite	  of	  surface	  precipitation	  rate	  
for	  the	  noted	  simulations.	  	  The	  black	  curve	  is	  the	  composite	  mean.	  	  The	  blue	  hash-‐
filled	  region	  bounded	  by	  the	  dot-‐dash	  line	  denotes	  the	  ±1	  range	  of	  standard	  devia-‐
tion	  across	  15	  realizations.	  	  The	  red	  curve	  represents	  the	  timing	  and	  relative	  magni-‐
tude	  (0-‐100%)	  of	  the	  large-‐scale	  forcing	  and	  is	  only	  for	  reference;	  no	  specific	  values	  
are	  implied. 
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simulations have also been created, but in the interest of space, they have been omitted.   

 Compared to the raw time series, the data in the composite plots are much more 

smooth, as the variability around the mean has been averaged out to some degree.  This is 

less applicable to the composites of the long period (F60, F120) simulations that continue 

to show a lack of smoothness in the means.  This is due to the higher magnitude variabil-

ity that was shown in some of the later snapshot figures in Section 5.2.1 that occurs due 

to more time being available at high forcing to repeatedly organize mesoscale convection 

causing sharp swings in the mean.  It is expected that this variability in the 

mean curve would vanish as in the shorter period simulations (F02-F08) with the inclu-

sion of a greater number of realizations.  However, the computational and temporal cost 

(not to mention the storage costs) to reach that number of realizations for a cycle of 120 

hours seems excessive to clean up a feature that has already been significantly smoothed.  

Clearly, the variability about the mean has been significantly reduced through averaging, 

as shown by the very thin blue region (standard deviation) bounding the mean curve.  

Note also, that the standard deviation does not change significantly with changes in the 

forcing period length for this whole domain case. 

 The second very important feature of this set of composites is both visually ap-

parent and spelled out in the text of each panel of Figure 5.21.  This is the aforemen-

tioned phase lag between the precipitation and the forcing.  It mainly occurs for a combi-

nation of two reasons.  One is the systematic phase delay shown by X92 (their Figure 9) 

to be caused by the presence of mesoscale organization. This feature is evidenced by the 

somewhat kinked nature of the mean precipitation curve, in which the rapid onset of pre-

cipitation and more gradual decline is characteristic of the life cycle of mesoscale con-
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vective systems (X92, Abdullaev et al. 2009).  The other reason is that the forcing period 

and the convective adjustment time for cumulus clouds (~1.5 hours) are near the same 

order of magnitude.  Chiefly, this means that the forcing is changing too rapidly for the 

convection’s latency.  Disregarding F028 for which this second influence is dominant 

(especially since there is no time to generate strong convection, let alone organized con-

vection), we see that in each of the remaining cases, the forcing leads the precipitation by 

~80 minutes, very near the suggest convective adjustment time stated above.  As the 

length of the periodic forcing is increased, the relative lag decreases, while the absolute 

lag remains approximately constant.  This measure was determined by finding the maxi-

mum lag correlation between the composite mean precipitation and the normalized peri-

odic forcing.  More than anything else, this is simply a measure of the separation of the 

two maxima, while the mesoscale modulation effects are specific to the somewhat kinked 

nature of the increasing leg of the precipitation field as has been determined by X92. 

 An additional feature that will continue to be visible in the coming figures is the 

plateau or minima immediately following the primary maxima in the F16 simulation.  

This decline, while reminiscent of some composites from X92, seems to be purely a fea-

ture of this particular simulation (Figure 5.21c).  Looking back to the upper right panel of 

Figure 5.7a, one can clearly see that this small minimum in the mean is caused by that 

feature being present in a handful of cycles of the series.  Its recurring appearances point 

to some secondarily fundamental process involving the temporary rapid breakdown of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 The convention used in the figure text that “The forcing leads the precipitation by...50% 
of the forcing period” is based on the trend that the forcing always leads the response in 
subsequent simulations.  It is entirely valid, statistically, to interpret this figure as show-
ing the peak response leading the peak forcing.  In a physical sense, however, such a rela-
tionship seems unlikely. 
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convection following its peak.  The fact that it is not present in all cycles, however, leads 

to the conclusion that it is either an element of non-determinism or possibly the result of a 

feature with a timescale that interacts prominently the dominant timescale of F16. 

 Figure 5.22 shows the same analysis but for cloud fraction.  Apparently, not all 

suspected convection-representing variables are created equal.  The cloud fraction is not 

modulated in the same fashion as the precipitation.  Here, for F02, the result is similar 

with the cloud fraction being 90 degrees out of phase with the large-scale forcing.  Con-

trastingly, the two are almost exactly in phase for the F08 simulation, and the cloud frac-

tion actually leads the forcing in all longer period simulations.  The reason for this seems 

to be partly due to remnants of non-precipitating (most often cirrus or stratus-type clouds) 

clouds being left over from the previous convective realization.  Referring back to Figure 

5.8 where the F120 forcing is at its minimum, there is nearly zero precipitation, but a sig-

nificant amount of cloud cover remains in the domain.  The following peak in cloud 

cover corresponds to the increasing forcing of the following cycle, and the following 

rapid cloud cover decline and plateau corresponds to an abrupt organization of convec-

tion that has the effect of clustering clouds into more densely packed regions of higher 

clouds exhibiting more intense convection and precipitation.  In this way, areal cloud 

cover does not immediately correspond to more intense convection.  This is painfully ob-

vious when you consider the differences in the horizontal extent of stratus versus cumu-

lus regimes. 

 Nonetheless, this raises an interesting question.  Why would the cloud fraction 

lead the forcing by greater relative and absolute amounts with increasing period lengths 
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a. b. 	  

c. d. 	  

e. f. 	  
Figure	  5.22.	   	   As	   in	   Figure	  5.21	  but	   for	   cloud	   fraction.	   	   See	   text	   for	  missing	   values	  de-‐

noted	  above	  by	  asterisks.	  
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for each and every cycle?9  (The absolute measure for the F120 case, by the way, is 24 

hours.)  Looking at the data in Figure 5.22, the relative lag appears to be approaching a 

limit as the forcing period becomes longer, which leads one to suspect that the relation-

ship is some function of the rate at which the forcing is changing.  As the rate slows, the 

relative lag becomes more consistent relative to the forcing but still earlier in an absolute 

sense. Comparing panels (c-f) in Figures 5.21 and 5.22, the rapid increase in the precipi-

tation rate always seems to correspond to the sudden decrease in the areal cloud cover in-

dicating, as discussed, the transition to greater mesoscale organization.  The lags for the 

cloud fraction were calculated in the same fashion as for the precipitation; however, the 

correlation to align the maxima in the curves has a different meaning in this case.  Here 

the lag time seems to indicate what we could perhaps call a “mesoscale adjustment time” 

as the peaks in cloud fraction immediately precede mesoscale organization.   

 The conclusion to be gleaned from this is that the more rapid the rate of increase 

of the large-scale forcing, the more quickly the convection organizes in an absolute sense.  

This seems to be true with a few caveats.  The rate that is important is the actual accelera-

tion of the [K day-1] value rather than the normalized rate of change.  This should be veri-

fied in the future with a simple scaling of the maximum permitted large-scale forcing.  It 

may be possible to define the process of convection organization by the steepness of the 

initial ascent of the precipitation rate and the corresponding initial descent of the cloud 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 One might even question whether this is the correct interpretation.  One could take the 
view that the cloud fraction maximum preceding the forcing maximum is actually a heav-
ily lagged response to the previous forcing cycle.  However, one look at the right, center 
panel of Figure 5.8, which begins at the first iteration of the simulation, rather than 300 
hours into the simulation as in corresponding figures, shows that this cannot be the case. 
The early maximum feature is present in the first realization, and its position relative to 
the forcing does not vary significantly. 
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fraction.  If the slopes of these parameters are below some threshold, mesoscale organiza-

tion is not likely to occur, or at least it will not occur consistently.  For panels (a & b) in 

Figures 5.21 and 5.22, this is likely to be the case.  Rapid forcing changes did not allow 

convection to organize, and there is therefore no steepness in the precipitation or cloud 

fraction curves. To generalize, for mesoscale organization to occur, the forcing must 

change rapidly, but not too rapidly (as in these two cases).  Since this idea has been 

formed out of one isolated set of simulations, it would likely be worth the effort to repro-

duce the general form of these results under different conditions (vertical wind shear, 

etc.) and on a large enough domain to satisfactorily isolate the mesoscale features nu-

merically before trying to assign a quantitative value to the hypothesis. 

 Another variable that behaves similarly to cloud fraction is non-precipitating con-

densate (NPC, Figure 5.23), which is defined here as the vertically integrated sum of 

cloud water and cloud ice.  The standard deviations about the mean remain fairly constant 

for all period lengths, though they tend to be slightly larger when the mean variable is at 

its maximum, as was the case for precipitation (though hardly noticeable) and cloud frac-

tion. This follows from the standard deviations scaling with the mean in the equilibrium 

simulations in Section 5.1.  There is even the repeated tendency, as shown in panels (a) of 

Figures 5.22 and 5.23 (See also panels b & c of Figure 5.2), for the standard deviation to 

scale greater than the mean when the forcing or response is very low.  Though the decline 

of cloud fraction correlates better with the rapid increase in precipitation that, together, 

indicate mesoscale development, there is a similar correlation with the peak and initial 

decline of the non-precipitating condensate variable.  This occurs later relative to the 

forcing, but that seems logical, as cloud fraction (cloud horizontal extent) would tend to 
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a. b. 	  

c. d. 	  

e. f. 	  
Figure	  5.23.	  	  As	  in	  Figure	  5.21	  but	  for	  non-‐precipitating	  condensate.	  
	  
	  
peak before the non-precipitating condensate value (cloud vertical extent) on the general 

basis of considering a single domain value. 

 A further variable that has similar features as those seen in the case of NPC is the  
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a. b. 	  

c. d. 	  

e. f. 	  
Figure	  5.24.	  	  As	  in	  Figure	  5.21	  but	  for	  precipitable	  water.	  
 

column precipitable water, defined as the total mass of water vapor over a column.  

While there are some qualitative similarities, there are also some interesting differences.  

This is shown in Figure 5.24. The first thing that one may notice is that the precipitable 
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water is a much less variable quantity.  The second point of interest is its magnitude, 

which is very large in comparison to the global average, which is about a quarter of what 

is seen here.  Bear in mind, though that the forcings used in this simulation are extremely 

strong and are the main reason for this high value.  Similarly to NPC, the composite mean 

curve for precipitable water takes the shape such that an early maximum is seen followed 

by a sort of extended, plateaued maximum.   In this case, however, the initial maximum is 

not as pronounced or separated from the plateau.  Because of this, the lag correlation 

analysis does not conclude that the precipitable water curve is leading the forcing at any 

time.  Instead, the forcing is reported to be leading the precipitable water in each case, 

much like it has been reported for the flux variables.  Physically, this appears to represent 

a build-up of precipitable water to a critical level prior to precipitation events that deplete 

that store.  Though conceptually, one would think of precipitable water as a storage vari-

able, the analysis here seems to place the variable in limbo based on its characteristics in 

comparison to more concrete examples of flux and storage variables.  That is, it has char-

acteristics of both. 

 Another variable of interest is the cloud mass flux.  Figure 5.25 shows the results 

of the composite analysis across the full domain for the cloud mass flux variable ap-

proximately located at the 2.5-km level.  In this case, the cloud mass flux is a horizontal 

domain average of the sum of cloud liquid and ice water within a layer multiplied by the 

vertical velocity at that layer.  Negative values are possible, and positive values refer to 

movement of cloud liquid and ice water upward.  The results here are very similar to 

those for surface precipitation (Figure 5.21).  In each example shown, the standard devia-

tion about the mean for each realization is small, indicating the presence of a relatively  
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a. b. 	  

c. d. 	  

e. f. 	  
Figure	  5.25.	  	  As	  in	  Figure	  5.21	  but	  for	  cloud	  mass	  flux	  through	  the	  ~2.5-‐km	  level.	  
 

high level of determinism.  Further, the response to the forcing as measured by the cloud 

mass flux moves from being 90° out of phase at very short forcing periods (Figure 5.25a)  

to being only  ~1% out of phase by the point the forcing period has been increased to 120 
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hours (Figure 5.25f).   

 As a departure from what was seen in the surface precipitation composites, the 

absolute lag is slightly more variable between simulations.  Specifically, it is about 20 

minutes shorter for the F08 and F16 cases and 30 minutes shorter in the F02 case.  This 

may simply be an artifact of the variable, such that cloud formation precedes rain produc-

tion or that the average upward cloud mass flux is significantly weakened by the coinci-

dent maximum of falling precipitation, thereby effectively making the maximum

occur earlier.  It is also possible that this feature is absent from composites with longer 

period forcings because there is likely to be greater and extended overall cloud presence 

as evidenced by Figure 5.22 (d-f).  Some of these additional clouds, sustained by long pe-

riods at high large-scale forcing, may not be precipitating and therefore not observing the 

effects of the falling precipitation. 

 Similar results are seen when separating the cloud mass flux variable into exclu-

sive upward and downward components.  To focus in on the more convective elements, 

only velocity magnitudes greater that 0.1 m s-1 have been considered in this case.  The 

composites for the updrafts are shown in Figure 5.26, and the downdraft case is shown in 

Figure 5.27.  Compared to the general mass flux composites, there is greater amplitude in 

both cases, especially the updraft case.  The absolute lags are greater in both cases, as 

well, being greatest in the downdraft case, which is sequentially later.  Relative lags de-

crease with increasing forcing period length in a similar fashion, as well.  Interestingly, 

the maximum mean updraft mass flux very clearly increases in magnitude going from 

F02 to F60, though the rate of increase is unsteady.  This indicates with more certainty 

that longer forcing periods are indicative of greater convective activity.  The increase in  
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a. b. 	  

c. d. 	  

e. f. 	  
Figure	  5.26.	  	  As	  in	  Figure	  5.21	  but	  for	  upward	  cloud	  mass	  flux	  through	  the	  ~2.5-‐km	  level.	  
	  
	  
intensity is not visible in the downdraft case.  It may be possible that the speed threshold 

was no great enough to remove the influence of the general domain subsidence.  Addi-

tionally it is noted that the shape of the downdraft mean curve, which is reminiscent of 	  
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a. b. 	  

c. d. 	  

e. f. 	  
Figure	  5.27.	  	  As	  in	  Figure	  5.21	  but	  for	  downdraft	  cloud	  mass	  flux	  magnitude	  through	  the	  

~2.5-‐km	  level. 
 

the storage variables, is more elongated and includes a plateau level.   

 One variable that is strongly related to the amount of convection that is occurring 
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is the integrated buoyancy flux.  Here, integrated buoyancy flux, B, has been defined as  

	   	  
B = ρcpw 'Tv '

zs

zT

∫ dz
. (5.2) 

Tv is the virtual temperature in this case, and the integral is bounded from the surface to 

the top of the model.  The composite analysis results are shown in Figure 5.28.  Many of 

the features seen in other variables in the composite analyses are present in this case, as 

well.  Variability, as measured by the standard deviation across realizations, is shown to 

scale in a qualitative sense with the mean.  We also see a consistency in the absolute lag 

between the buoyancy flux and the forcing, though it is more tenuous than in other vari-

ables and lacks a coherent trend.  The relative lag, on the other hand, shows a more con-

sistent trend of decreasing with increasing forcing period length.  Of all of the variables 

shown thus far, the buoyancy flux is the most in sync with the large-scale forcing, espe-

cially for longer periods.  The two tend to rise and fall in proportion to one another at all 

points along the oscillation, without much evidence for plateau-like features.   

 By comparing vertical profile fields of variables, such as cloud fraction, water 

mass, and vertical velocity, we are able to obtain a more detailed view of what is occur-

ring in the model.  Such an analysis should aid in shedding some light upon the plateau 

issue that has been discussed above.  First, we can see the change in the vertical distribu-

tion of cloud fraction (Figure 5.29).  This data should be compared to Figure 5.22, which 

shows the vertical composite of these profiles.  The results show that the most apprecia-

ble drop in cloud fraction is found near the 5-km level, with a thin amount of cloud just 

overtop of that level.  This thin layer (~6.5 km) appears to be representative of anvil out-

flow, though it is not.  This is actually a secondary maximum related to the freezing level.  
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a. b. 	  

c. d. 	  

e. f. 	  
Figure	  5.28.	  	  As	  in	  Figure	  5.21	  but	  for	  integrated	  buoyancy	  flux. 
 

Anvil clouds are present at the 10-13 km level.   

 A few of the same features are more clearly visible on contours of cloud mass 

(Figure 5.30).   The lower maximum in cloud amount is clearly visible near the freezing 
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level, and the upper anvil top is also prominent.  However, there does not appear to be  

 

a. b. 	  

c. d. 	  

e. f. 	  
Figure	  5.29.	  	  Composite	  cloud	  fraction	  profiles	  for	  the	  noted	  simulations.	  	  The	  white	  line	  

denotes	   the	   placement	   of	   the	   normalized	   large-‐scale	   forcing.	   	   White	   indicates	   a	  
greater	  cloud	  fraction,	  with	  blue	  indicating	  less.	  	  Maximum	  cloud	  fraction	  values	  at	  a	  
given	  height	  do	  not	  exceed	  40%. 
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a. b. 	  

c. d. 	  

e. f. 	  
Figure	   5.30.	   	   As	   in	   Figure	   5.29	   but	   for	   non-‐precipitating	   condensate.	   	   Here,	   the	   color	  

scale	   is	   linear,	   with	   reds	   indicating	   large	   amounts	   and	   violets	   indicating	   small	  
amounts.	  

 

any distinct minimum at 5-km in the NPC profile time series.  Further there does not ap-

pear to be any visible lag in the column total.  As such it is unclear as to what causes the 
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previously mentioned early cloud field maximum and mid-period decline.  Comparison 

of 5.29 and 5.30, though, leads me to believe that we are seeing evidence for the accumu-

lated effect of multiple cloud regimes within the domain.  If there is reduced cloud frac-

tion, but not cloud mass, at a given domain-averaged level, then it would be reasonable to 

conclude that the domain has moved into a regime of isolated convective towers from a 

more dominant stratiform situation.  Analysis of cloud top heights (not shown) shows that 

there is a secondary maximum in the heights of clouds that occurs near the freezing level 

occurring in the early part of the periodic forcing.  After that point, most clouds are very 

shallow.  Additionally, analysis of the vertical velocity profile time series shows sequen-

tial areas of rising and sinking motion near the freezing level and in the 10-15 km height 

range, indicative of cloud tops at both levels. 

 In the course of research, it was suggested that another method of gauging the 

prominence of convective elements could be derived from statistical analysis of the sur-

face precipitation field.  This particular analysis involves the skewness.  The skewness (a 

variation on the third statistical moment) is a measure of the extent to which the probabil-

ity distribution function of a field is asymmetrical.  Numerically, a positive skewness in-

dicates that the distribution is skewed to the positive direction, that is, the longer tail of 

the distribution is toward positive infinity.  The reverse is true for a negative skewness. It 

was suggested that the skewness of the surface precipitation might act as a proxy for what 

we shall call “convectiveness.” 

 The hypothesis was that under periods of intense convection in the domain, there 

would be a positive skew to the distribution of surface precipitation, since the greatest 

precipitation values would be greatly increased.  Thus, positive skewness of the field 
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would indicate strong convectiveness, and the skewness could then be analyzed in com-

posite in a similar fashion to the other convection-related variables.   

 These calculations were performed, and the results are shown in Figure 5.31.  

Given the hypothetical interpretation given above and the results for the previously dis-

cussed variables, the results may be somewhat surprising.  In each of the previous cases, 

the F02 mean was always anticorrelated, with respect to phase lag, to some extent with 

the forcing signal.  In this case, the mean skewness does not lag the forcing at all.  Re-

garding results from longer period forcings, the skewness and the forcing tend to become 

increasingly out of phase. One additional feature to notice in Figure 5.31 is that the lag 

times are different from those for the other variables.  In the relative sense, they are ap-

proximately equal to 50% minus the percentage lag in the previous variables, and the in-

dication of lag or lead should be swapped.  This is to say that the skewness signal is out 

of phase with the means of the previous variables. 

 Technically, we know for certain that the maxima in the response and the forcing 

should be relatively coincident, assuming that the period of the forcing is sufficiently 

long.  Therefore, the original hypothesis about the skewness is incorrect, and an alternate 

interpretation is required.  But as Thomas Edison once noted, “Just because something 

doesn't do what you planned it to do doesn't mean it's useless.” Comparing Figure 5.21 

with Figure 5.31, we see that greater skewness values are associated with lower rates of 

mean surface precipitation and vice versa.  So let’s take a moment to consider the pro-

gression of the skewness during one cycle.  Skewness, being a measure of asymmetricity, 

is highly sensitive to outliers.  More specifically, the skewness is almost always greater in 

the case of a longer, narrower tail (think a single, unusually large outlier) than in the case 
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a. b. 	  

c. d. 	  

e. f. 	  
Figure	   5.31.	  Whole	   domain	   composite	   of	   surface	   precipitation	   rate	   skewness	   for	   (a.)	  

F02,	  (b.)	  F08,	  (c.)	  F20,	  (d.)	  F30,	  (e.)	  F60,	  and	  (f.)	  F120.	  	  The	  black	  curve	  is	  the	  compos-‐
ite	  mean	   of	   the	   field	   skewness.	   The	   red	   curve	   represents	   the	   timing	   and	   relative	  
magnitude	  (0-‐100%)	  of	  the	  large-‐scale	  forcing	  and	  is	  only	  for	  reference;	  no	  specific	  
values	  are	  implied.	  
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of a longer, thicker tail (think two equal outliers).  In the case of precipitation, being a 

positive definite variable that has its base at zero, outliers are generally restricted to being 

positive numbers that are greater than the mean.10  As precipitation increases over the 

domain and the mean is increased, the distribution center is shifted toward the positive, 

making the positive skewness less intense.  This is true even with accompanying outliers, 

which are still going to have some upper bound based on precipitable water. In contrast, 

when mean precipitation is low, the distribution will be centered near zero allowing the 

skewness to spike for any significant precipitation.  To conclude, this all means that the 

original hypothesis was the opposite of what actually happens; intense convection can be 

represented by low skewness values.   

 Additionally, tropical rainfall may appear to be essentially convective in nature, 

but experiments over tropical maritime locations have shown that almost all convection 

occurs in association with stratiform rain (Houze 1997). The younger parts of the cumu-

lonimbus clouds are entirely convective. When convection decays, though, clouds be-

come stratiform and co-exist with the embedded convective columns. Stratiform rainfall 

generally occurs more frequently in the tropics (think spatially), yet convective rainfall 

accounts for most (~70%) of the cumulative rainfall, because its intensity is so much 

higher. 

 In order to create a simple representation of this new interpretation of the skew-

ness, Figure 5.32 was created, showing the composite results analyzed for the negative of 

the skewness (inverted shape of the curve is important) shown in Figure 5.31.  The actual 

values in this plot are not exactly important, but the shapes of the curves are important.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 This is why the skewness of the precipitation field is rarely negative. 
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a. b. 	  

c. d. 	  

e. f.	   	  
Figure	  5.32.	  As	   in	  Figure	  5.21	  but	  for	  the	  negative	  of	  the	  skewness	  of	  the	  surface	  pre-‐

cipitation	  rate	  over	  the	  full	  domain.	   
 
Here we see features that are similar to those of the other variables.  The curve for F02 is 

out of phase with the forcing just as it was for surface precipitation, and the curve moves 

toward being in phase with the forcing as the forcing length is increased.  What may be 
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surprising is that at longer forcing periods, the forcing begins to lag the maximum of the 

negative skewness.  This is in contrast to the results from the surface precipitation (on 

which these statistics are based), but it is compatible with the results for cloud area and 

non-precipitating condensate.  However, what we do have is quite good agreement with 

the expected form of the response as discussed above.  Equating the negative of the 

skewness of precipitation with a measure of convectiveness, the convectiveness builds 

suddenly and rapidly and then encounters a gradual decline, in general agreement with 

the applied forcing.  Additionally for this measure, we see that the standard deviation 

does not scale proportionately with the mean; it does the opposite.  This temporal distri-

bution of variability is accounted for by the sensitivity of the skewness to low mean sur-

face precipitation rates.   

 An additional measure that can be used as an indicator of convective activity is 

the vertical eddy kinetic energy (EKE).  This is an effective indicator because it is mainly 

a measure of updraft and downdraft intensity.  In order to obtain this value, the procedure 

outlined in X92 was followed and will be recounted here.  First, it is assumed that a given 

quantity, A, may be separated into large-scale and eddy-scale components, such that

	   	    (5.3) 

where [A] is the large-scale component and A’ is the eddy-scale component.  Here, [A] 

has been defined as 

	   	  

A[ ] ≡
1
τ

dt
LxLy

Adxdy
0

Ly∫0

Lx∫t−τ /2

t+τ /2
∫

 (5.4) 

In (5.4), Lx, Ly, and τ are the horizontal extents and the time interval for defining the 

large-scale component, respectively.  The horizontal extent used in the averaging is 256 

A A A! " # ,
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km, and the time interval was selected based on the period of the forcing and ranged from 

forty minutes to just over 4 hours.  It should be noted that, when performing this opera-

tion to obtain the EKE, the large-scale component was most often several orders of mag-

nitude less than the total. 

 Using the eddy-scale component, A’, to obtain the eddy-scale velocities, u’, v’, 

and w’, the vertical and horizontal EKEs can be computed as: 

	   	  
KZ ≡ ʹ′w 2

0

∞

∫ ρ0dz,
 (5.5) 

and	  

	   	  
KH ≡ ʹ′u 2 + ʹ′v 2⎡⎣ ⎤⎦

0

∞

∫ ρ0dz.
 (5.6) 

Here, ρ0 is the model reference state density. 

 Figure 5.33 shows sample results (F14 and F20) from the composite analysis of 

KZ.  The kinked nature of the early response and slow decline in magnitude also evident 

in some instances this variable, though these features become less evident with increasing

 

a. b. 	  	  
Figure	  5.33.	  As	  in	  Figure	  5.21	  but	  for	  the	  domain	  mean	  vertical	  eddy	  kinetic	  energy. 
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period length.  Additionally, the relative lag from the forcing tends to decrease as we 

have seen in other variables, but the absolute lag declines with increasing period length.  

The decline may be characterized as falling somewhere in between the precipitation vari-

ables and the cloud variables.  It is most similar to the cloud mass flux.  This indicates a 

reduction in the level of mesoscale influence at longer forcing periods as modulation by 

the large-scale forcing becomes more effective.  For no simulation does the forcing lag 

the mean response; however, at the greatest forcing lengths considered (60 and 120 

hours) the separation is only 10 minutes.  It is unlikely that the maximum in the vertical 

EKE would ever precede the maximum in the forcing, since this variable has little latency 

on the large-scale. 

 Additionally, the eddy kinetic energy data were analyzed to obtain the component 

that is due only to mesoscale features.  Here, as in X92, the mesoscale is numerically de-

fined as features with dimensions larger than approximately 32 to 64 km.  To generate the 

physical pattern that would be representative of the mesoscale, a low-pass filter (Ormsby 

1961) is used following the specifics given in X92 and from Kuan-Man Xu (personal 

communication).  The filter is applied in physical space as a two-dimensional array of 

weights derived from the following formula: 

	   	  
W (τ ) =

cos 2π fCτ( ) − cos 2π fTτ( )
2π 2 fT − fC( )τ 2  (5.7) 

This filter is designed to allow full retention of features greater than the cutoff frequency, 

fC, and excludes features smaller than the roll-off termination frequency, fT, with a grad-

ual transition between the two.  The two frequencies correspond to wavelengths of 64 km 

and 32 km, respectively.  More details of this filter’s characteristics are shown in Figure 

5.34.  The top row of panels shows (from left to right) the one dimensional weighting 
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Figure	   5.34.	   Characteristics	   of	   the	   weighting	   and	   impulse	   response	   functions	   of	   the	  
Ormsby	  (1961)	  filter	  as	  used	  in	  one	  (top)	  and	  two	  (middle,	  bottom)	  dimensions.	  	  See	  
text	  for	  additional	  description. 

 
function as calculated from (5.7), the response function of the one-dimensional filter, and 

the overall power that will be retained when using the filter.  It is important to note the 

negative side lobes on the weighting function that cause significant distortions in both 

physical space and spectral space.  This distortion shows up clearly in the in the top, cen-
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tral panel of Figure 5.34. The impulse response function power, power that will be re-

tained after application of the filter, shows that power is evenly retained at wavelengths 

greater than 64 km and that power has been eliminated at wavelengths shorter than 32 

km. 

 To produce the two-dimensional filter (left panels, middle and bottom rows), the 

one-dimensional filter weights were set to be radially equidistant from the maximum, 

covering a space of 128 ×  128 points.  The sum of the two-dimensional weights equals 

one.  The colored contours in the middle row of Figure 5.34 are meant only to denote 

relative differences in values.  Red colors indicate a maximum, and violet/black indicates 

the minimum. The color scale for the two-dimensional weight contours is linear, while 

that for the response function and power contours are exponential.  Specific values may 

be inferred from corresponding panels in the bottom row of Figure 5.34.  The response 

function in two dimensions is much more complex than that from one dimension, but 

similar distortions are visible in this case, as well.  More importantly, it is confirmed that 

this two-dimensional filter will retain the most power at wavelengths greater than 64 km 

and remove all variability at wavelengths shorter than 32 km (the white space on the col-

ored power contour plot is equivalent to zero power).   

 For clarity, the filter is applied by convolution of the weights, W, with the raw 

data, R, such that 

	   	  

Ft ,u = Rt+i−k 2,u+ j−k 2Wi, j
j=0

k−1

∑
i=0

k−1

∑
 (5.8) 

where F is a single point in the filtered field.  In this case, the weight array has dimen-

sions k by k, where k is less than t and u.  The filter is applied at each point with edge 
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wrapping of the filter, which is possible because of the cyclic boundary conditions of the 

model. 

 Figure 5.35 shows raw (left) and filtered (right) vertical (top) and horizontal 

(middle) eddy kinetic energy fields, and raw and filtered power for a select vertical EKE 

field (bottom) from one point in the F12 simulation as an example.  The top four panels 

incorporate the same color scale, with the violet end of the spectrum indicating low en-

ergy and the red end indicating high energy.  As expected the vertical EKE is generally 

much lower (near zero) than the horizontal EKE, save for a few isolated regions that are 

associated with convection.  As previously noted, the use of the filter creates spurious 

values in the resultant field, though the mean is retained.  The white regions in the filtered 

fields represent areas with negative values of EKE.  This is a more common phenomenon 

when the raw values are near zero (compare horizontal versus vertical).  Regardless, 

these plots show the physical shape of the filtered field, and the removal of spatial varia-

tions at dimensions less than approximately 64 km are visually apparent in the fil-

tered(smoothed) field. 

 The lower two panels of Figure 5.35 show the power in the top two fields as a 

function of wavelength   Here the shared color scale is exponential with white indicating 

approximately zero power.  We see that the low wavelength power has generally been 

eliminated incorporating the transition between the roll off termination and cutoff wave-

lengths.  The increase in power near the 50-60 km wavelengths seems to indicate some 

aliasing has taken place.  This will not be important to future calculations.  Similar results 

were obtained using a two-dimensional cosine-weighting (Hanning) filter cutting off at 

64 km, with the exception that the cosine filter is sign preserving for positive definite 
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Figure	  5.35.	  Raw	  (left)	  and	  filtered	  (right)	  vertical	  (top)	  and	  horizontal	  (middle)	  eddy	  ki-‐
netic	   energy	   fields,	   and	   raw	   and	   filtered	   power	   for	   a	   select	   F12	   vertical	   EKE	   field	  
(bottom).	  	  See	  text	  for	  description	  of	  contours. 
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variables, and also when selecting various filter bounds for both types of filters (not 

shown). 

 In order to estimate the contribution from only the mesoscale, as defined, spectral 

analysis was performed on each of the EKE fields at all points in time for each simula-

tion.  The percentage of power contained in wavenumbers 1-8 (wavelengths greater than 

32 km) was used to estimate the fraction of the domain mean EKE that is contributed by 

the mesoscale.  On average, the mesoscale component of the vertical EKE was about 

14% of the total and that of the horizontal was about 40%.  This differs significantly from 

the results of X92 in that the percentage is much greater in the vertical and considerably 

less in the horizontal.  Exact numbers on this are difficult to ascertain because the only 

representations of this statistic are graphical and qualitative (See their Figures 6 and 8.), 

and the methods that X92 used to obtain the estimate are unclear.  On average, for cases 

presented here, the vertical EKE was usually less than one percent of the average hori-

zontal EKE.  However, the two were more comparable in areas of active convection.  

 Examples, corresponding to Figure 5.33, are shown in Figure 5.36 showing the 

filtered domain mean vertical EKE for the F14 and F20 simulations.  Comparing with the

 a. b. 	  	  
Figure	  5.36.	  As	  in	  Figure	  5.21	  but	  for	  the	  filtered	  domain	  mean	  vertical	  eddy	  kinetic	  en-‐

ergy. 
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unfiltered version in Figure 5.33, we can see both proposed characteristic features of 

mesoscale influence.  Namely, we see the significant lag in the data maxima and the de-

layed, slow ramp-up of convection followed by a slower, more shallow decline.  Of 

course, we also note the reduced scale on the ordinate axis.  These results are pleasing in 

that they are very similar to those found by X92 (Figure 2.3); however, having not run a 

set of simulations in the absence of shear or with differently arranged or powered shear 

there is nothing that we can say for certain about the way in which convective statistics 

may vary under different types of mesoscale organization.  In fact, without the X92 re-

sults for comparison, it would be difficult to make the case for the influence of the 

mesoscale on the modulation of the convection.  Additionally, no more about this meas-

ure will be mentioned, because much of the remainder of the work involves other atmos-

pheric features and smaller domains for which the mesoscale is not discernable. 

 

5.2.4 Composite Analysis – Partial Domains 
 
 A focus of this study is to determine how convection-related variable statistics 

vary with changing domain size.  Rather than running more simulations with different 

domain sizes, a subsampling technique has been employed to estimate the effect.  The 

full domain size of (256 km)2 has been broken down into fractions of one half (rectangu-

lar), one quarter, one sixteenth, one 64th, and one 256th.  This effectively allows for statis-

tics corresponding to a total of six GCM horizontal grid resolutions of 256, ~181, 128, 

64, 32, and 16 km spacing, respectively.  Clearly, the goal is to capture the changes in 

statistics that will be accompanying the ongoing shift of GCM grid spacing from O(100 
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km) to O(10 km).  Specifically, we wish to determine at which resolution the assumptions 

of QE tend to break down and to characterizes how this occurs.   

 With this set-up, one can still make composites similar to those found in Section 

5.2.3.  The calculations are slightly more complicated in this case.  First, the subdivisions 

are determined.  They are chosen to be regular, square (except for the case of the half 

domain), and evenly distributed in a grid.  Next, the mean of the quantity is calculated for 

each individual subdomain at each time.  The result of this is a set of time series, the 

number of which depends on the size of the subdomain.  In the case of the 256th subdo-

main size (16 km)2, there are 256 time series.  These are then subdivided into 15 cycles, 

as was done in the full domain composite analysis, and the standard deviation between 

the cycles is calculated for each subdivision.  It is also at this point that the lag correla-

tions between the periodic forcing and subdomain mean are calculated.  Finally, the data 

is averaged across each of the subdivisions.  This ultimately means that that the mean that 

will be shown in each of the plots will remain the same as in the previous section but that 

the standard deviations will have changed.  It is important to remember that we are look-

ing for variations between realizations rather than spatial variations.  

 Let’s look at the surface precipitation rate for the F30 simulation first (Figure 

5.37).  The most robust result of this comparison is that as the averaging domain is made 

smaller, the variability in the response as measured by the standard deviation between re-

alizations increases greatly.  The surface precipitation rate standard deviation grows from 

roughly one-tenth of a millimeter per hour in the full domain case to nearly 5 millimeters 

per hour in the 256th domain case (50 times) near the peak response for the F30 simula-

tion.  As the area under consideration is reduced, the likelihood of encountering a wider 
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a. b. 	  

c. d. 	  

e. f.	   	  
Figure	  5.37.	  As	  in	  Figure	  5.21	  but	  for	  noted	  subdomains	  of	  the	  F30	  simulation.	   
 

range of values is increased.  Note, once again, that this is not an indication of what may

be considered subgrid variability.  The spatial standard deviation of a given quantity av-
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eraged over a number separate domains would certainly decrease as the area of the do-

main id decreased.  It should also be noted that the negative values that appear in the 

standard deviation curves are simply statistical and do not imply negative precipitation. 

 Another interesting feature of Figure 5.37 is the series of lag times.  Recall that 

these lags are calculated from subdomain means rather than the final averaged means.  

Specifically, the lag correlations are calculated for each subdomain, the lag correspond-

ing to the maximum correlation is retained for each subdomain, and finally those lag val-

ues are averaged to obtain the values shown in Figure 5.37.  This method is not numeri-

cally equivalent to averaging the correlations for subdomains and then selecting the lag 

corresponding to the maximum correlation.  The result is that the response lag time has 

lengthened with the decreasing averaging area.  Such increases are due to subdomain ar-

eas that experience an increase in convective activity that has been advected from another 

subdomain and that generally occurs well after the forcing maximum.  This is the effect 

of mesoscale organization that can perpetuate/sustain convective activity independent of 

the large-scale forcing.  The lags in each subdomain do not average to the lag of the full 

domain because the effect of mesoscale activity is to increase the life time of a given 

storm from the point of inception caused by a sufficient increase in mesoscale activity.  

There is not an analogous process to cause convective activity to occur earlier for smaller 

subdomains.  Note also that in the accompanying figures, the mean curve will not show 

this lag. 

 Next, this qualitative observation must be given a quantitative characterization.  

Just fitting a line to the data, it turns out that the relationship between subdomain area and 

lag time can best be represented by a power relationship of the form, 
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	   	   L(a) = 244.85a−0.107  (5.9) 

where L(a) is the lag in minutes and a is the subdomain area in square meters.  This indi-

cates that for averaging areas less than those tested, lags would likely increase.  Addition-

ally, for reasonably larger averaging areas, the lags may decrease slightly.  However, it is 

likely that that this fit, which is based solely on six points, is not accurate at the extremes.  

 The question that remains is that of where to draw the line that denotes the limit 

of QE with respect to the grid size.  In other words, what is an acceptable amount of vari-

ability about the mean?  Being as strict as possible, and without using subjective meas-

ures, we can arrive at a fairly definitive solution to that question.  Going back to Section 

5.1 and Figures 5.1.1 and 5.2, we saw that when the model was allowed to run out to a 

consistent statistical equilibrium, the ratio of standard deviation to the mean was nearly 

constant at 0.1.  We shall assume that this is a good approximation of reality. Given that, 

any place where this ratio is greater than 0.1, we shall consider QE a poor approximation 

for use in a model with a corresponding grid spacing.  By that measure and a quick look 

at Figure 5.37, QE is a poor approximation for all grid spacings equal to or smaller than 

half of the full domain size used; this is equivalent to approximately 181 km.  Even loos-

ening the constraint by doubling the acceptable ratio, the same is true.  We will return to 

this measure later. 

 To broaden the picture of the results obtained by doing the composite analysis on 

each of the subdomains, Figures 5.38 and 5.39 show the results from the F08 and F120 

simulations, respectively.  In both cases, the standard deviation increases greatly with de-

creasing averaging area, and the data do not meet the requirements set for QE above for 

subdomains equal to or smaller than half of the full domain size.  Those similarities to the  
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a. b. 	  

c. d. 	  

e. f.	   	  
Figure	  5.38.	  As	  in	  Figure	  5.21	  but	  for	  noted	  subdomains	  of	  the	  F08	  simulation.	  
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a. b. 	  

c. d. 	  

e. f.	   	  
Figure	  5.39.	  As	  in	  Figure	  5.21	  but	  for	  noted	  subdomains	  of	  the	  F120	  simulation.	  
	  
 
previous example aside, there is an interesting occurrence in the case of the forcing lags.  

In the case of the F120 simulation, the relationship between the lag and the subdomain 
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area can once again be approximated by a power relationship.  The constants are different 

in this case, but the goodness of fit, in terms of an r2 value, was a slight improvement 

over that for the F30 simulation (not shown).  In contrast, the lags for different averaging  

areas stay fairly constant in the F08 case, staying between 75 and 80 minutes.  Further 

testing of the relationship between lag and subdomain area shows that for longer periodic 

forcings, the relationship can very well be determined by a power law, but at shorter forc-

ings, the relationship is much more linear.  The reasons for this remain unclear. 

 Figures 5.40-5.42 compare the F30 composite analysis results at the six domain 

areal extents for cloud fraction (Figure 5.40), non-precipitating condensate (Figure 5.41), 

and cloud mass flux through the ~2.5-km level (Figure 5.42).  The data in these figures 

are very similar to those that are presented in Figure 5.37 for the surface precipitation 

rate.  Most specifically, the standard deviation about the mean tends to increase by at 

least an order of magnitude when reducing the averaging area from the full domain to the 

256th domain.  This same growth in the variability between realizations is also seen in the 

other simulations (not shown).  The pervasive nature of this feature throughout multiple 

simulated convection-related variables is indicative of its robust importance.  

 Interestingly, it is at this point that we begin to see differences amongst the vari-

ables that once again fall on either side of the line dividing the precipitation variables 

from the cloud variables.  Aside from the previously noted tendency for the maxima in 

the cloud variable means to significantly precede the forcing maximum, which remains 

consistent here, the way in which the lag time periods vary with averaging area is also 

different between the two variable classes.  In the case of the cloud mass flux, the forcing 

leads the flux by generally increasing amounts as the averaging area decreases.  The way 
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a. b. 	  

c. d. 	  

e. f.	   	  
Figure	  5.40.	  As	  in	  Figure	  5.21	  but	  for	  cloud	  fraction	  within	  the	  noted	  subdomains	  of	  the	  

F30	  simulation.	  
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a. b. 	  

c. d. 	  

e. f.	   	  
Figure	   5.41.	   As	   in	   Figure	   5.21	   but	   for	   non-‐precipitating	   condensate	   within	   the	   noted	  

subdomains	  of	  the	  F30	  simulation.	  
	  
 
in which it does so nearly follows a power law curve; however, the goodness of fit is 

somewhat less than that from the surface precipitation lag relationship for F30 given in  

F30 - Full Domain

0 5 10 15 20 25 30
Time [hr]

0.0

0.2

0.4

0.6

0.8

1.0

N
on

-P
re

ci
pi

ta
tin

g 
C

on
de

ns
at

e 
[k

g 
m

-2
]

Forcing lags NPC by: 
130.0 minutes (7.22 % of the forcing period)

F30 - Half Domain

0 5 10 15 20 25 30
Time [hr]

0.0

0.2

0.4

0.6

0.8

1.0

N
on

-P
re

ci
pi

ta
tin

g 
C

on
de

ns
at

e 
[k

g 
m

-2
]

Forcing lags NPC by: 
132.5 minutes (7.36 % of the forcing period)

F30 - Quarter Domain

0 5 10 15 20 25 30
Time [hr]

0.0

0.2

0.4

0.6

0.8

1.0

N
on

-P
re

ci
pi

ta
tin

g 
C

on
de

ns
at

e 
[k

g 
m

-2
]

Forcing lags NPC by: 
130.0 minutes (7.22 % of the forcing period)

F30 - 16th Domain

0 5 10 15 20 25 30
Time [hr]

0.0

0.2

0.4

0.6

0.8

1.0

N
on

-P
re

ci
pi

ta
tin

g 
C

on
de

ns
at

e 
[k

g 
m

-2
]

Forcing lags NPC by: 
130.6 minutes (7.26 % of the forcing period)

F30 - 64th Domain

0 5 10 15 20 25 30
Time [hr]

0.0

0.2

0.4

0.6

0.8

1.0

N
on

-P
re

ci
pi

ta
tin

g 
C

on
de

ns
at

e 
[k

g 
m

-2
]

Forcing lags NPC by: 
130.5 minutes (7.25 % of the forcing period)

F30 - 256th Domain

0 5 10 15 20 25 30
Time [hr]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
on

-P
re

ci
pi

ta
tin

g 
C

on
de

ns
at

e 
[k

g 
m

-2
]

Forcing lags NPC by: 
180.7 minutes (10.04 % of the forcing period)



 130	  

a. b. 	  

c. d. 	  

e. f.	   	  
Figure	  5.42.	  As	  in	  Figure	  5.21	  but	  for	  the	  cloud	  mass	  flux	  through	  the	  2.5-‐km	  level	  within	  

the	  noted	  subdomains	  of	  the	  F30	  simulation.	  
 

equation (5.8).  Similarly to the lag relationship for surface precipitation in F08 and other 

short forcing period simulations, the lag relationship for the cloud mass flux stays ap-
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proximately (or at least relatively) constant in the same simulations.   

 In contrast to this, the lag relationships for non-precipitating condensate and cloud 

fraction remain nearly constant with varying subdomain size and for the full range of 

simulations in most cases.  One critical caveat to accompany this statement is that there 

are a few wild departures from this behavior that do not have easily classifiable structure.  

One example of this can be seen clearly in Figure 5.41f, where the lag for the 256th sub-

domain size for the NPC mean makes a sizeable jump, deviating from the behavior of the 

larger subdomains.    Similar behavior was noted (e.g. in F12 and F14) but is not shown.  

It appears that the most likely explanation for this seemingly erratic behavior is due 

mainly to the great variability that is present between such small scales.  To be more spe-

cific, the phenomenon is probably the result of a few strong outliers.   

 In each of the cases shown, there appears to be a strong tendency for the variabil-

ity about the mean to greatly increase with decreasing horizontal averaging extent.  Using 

the metric set forth above, none of the variables examined met the criteria to support the 

use of QE assumptions for grid spacing corresponding to of one half of the full simula-

tion domain area.  Additionally, the transition to larger amounts of variability is not the 

same for each variable in terms of the growth of the standard deviation to mean ratio (co-

efficient of variation, CV). Because of this, if one were to use another QE-support metric 

based on this data that, for example, was derived from a rapid shift in the variability, the 

conclusion would be variable-, and to some extent, forcing periodicity-dependant.  But 

even with such a crude definition of QE acceptability, one would be compelled to draw 

the line between the full and half or half and quarter domain sizes.  This definition would 

have the effect of excluding GCM or NWP grid spacing smaller than 128 km from the 
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use of QE assumptions, a point that is somewhat less restrictive than the measure based 

on the equilibrium simulations.  

 

5.2.5 Extended Composite Analysis 
 
 This section contains an extension of the information contained in Sections 5.2.3 

and 5.2.4.  Presented here is much of the same data but in an amalgamated form that al-

lows for better generalization of the data and their statistics, for example, in terms of as-

signing trends.  We shall begin by getting a better look at the behavior of the full domain 

realization-averaged standard deviation of the surface precipitation rate across the spec-

trum of assigned large-scale forcing periodicities (Figure 5.43).    

 The ordinate axis represents the normalized large-scale forcing for a given cycle 

with the corresponding point in time increasing upward.  The line through the contour 

plot represents the location in time of the maximum mean value for a given forcing pe-

riod.  This is similar to, but not the same as, the measure of the lag between the large-

scale forcing and the mean response variable.  Figure 5.43’s nearly monochrome appear-

ance seems to tell us very little at first glance, but it presents a full overview of the vari-

ability for each full domain simulation in addition to information about the lagged re-

sponse to the large-scale forcing.  We can see that the standard deviation about the mean 

of the realizations depends very little upon the forcing period. Similarly, Figure 5.44 

shows very little dependence of the CV upon the forcing period.  Based on the criteria for 

using QE assumptions, it is clear from Figure 5.44 that the full domain size (256 km in 

the horizontal) is an acceptable grid spacing at the majority of forcings.  It would appear 

that the use of QE assumptions may be called into question in cases where the large-scale 
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forcing varies slowly, especially when that forcing is relatively small in magnitude.  Bear 

in mind that there are only two simulations serving as the basis for the right half of these 

two figures and that subsequently any contours are interpolated and approximate. 

 Figures 5.45 and 5.46 show the same statistical variables as calculated on a quar-

ter of the full domain.  Here, the pattern that occurs in most aspects of the convective 

variables begins to emerge more clearly. The standard deviation (as shown in Figure 

5.45) peaks along with the surface precipitation rate mean (thick black line), which is ex-

pected as discussed in Section 5.1 (variability scaling with the mean).  Note, though, that 

this feature does not appear to hold for the smallest forcing periods as the orientation of 

the mean curve is turned almost 90 degrees due to the forcing being out of phase with the 

precipitation response.  Further, the CV in Figure 5.46 shows that the scaling is not con-

 
Figure	   5.43.	   The	   surface	   precipitation	   rate	   standard	   deviation	   for	   the	   whole	   domain	  

case	  for	  all	  periodic	  forcing	  simulations.	   	  Thick	   line	   is	  the	   location	  of	  the	  maximum	  
mean	  relative	  to	  the	  normalized	  forcing.	  The	  minimum	  value	  on	  the	  abscissa	  is	  2	  hr.	  
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Figure	  5.44.	  As	  in	  Figure	  5.43	  but	  for	  the	  coefficient	  of	  variation.	  
	  
	  

 
Figure	  5.45.	  As	  in	  Figure	  5.43	  but	  for	  the	  quarter	  domain.	  
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Surface Precipitation Standard Deviation, Quarter Domain
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Figure	  5.46.	  As	  in	  Figure	  5.44	  but	  for	  the	  quarter	  domain.	  
	  
	  
stant, being especially variable with regard to the magnitude of the normalized forcing.

For the range of data on the quarter domain, the CV varies with approximately a factor of 

two difference between the minimum and maximum values, and we see once more that at 

this domain size, QE assumptions are becoming more questionable at all forcing periods.   

 Moving down the spectrum, while leaving out a few figures for brevity, we can 

look at the same data averaged for the smallest subdomain (256th, 16 km × 16 km).  This 

data is shown in Figures 5.47 and 5.48.  The magnitudes of the standard deviations have 

grown considerably in comparison to larger subdomains (as was shown in the previous 

section), though the values are very similar when the normalized forcing is less than 0.25.  

The general pattern in the case of the CV values is also repeated for this subdomain with 

the values forming a minimum about the line for the maximum mean indicating an inex-

act scaling with the mean.  The magnitude of the CV is much greater than for the larger 

subdomains approaching the region where the standard deviation is three times the pan- 
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Figure	  5.47.	  As	  in	  Figure	  5.43	  but	  for	  the	  256th	  domain.	  
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Figure	  5.48.	  As	  in	  Figure	  5.44	  but	  for	  the	  256th	  domain.	  
 
 
realization mean.  Such a domain is nowhere near the realm of QE applicability.  If one 

planned to parameterize convection at this resolution, the variability features that are 

shown here are those that need to be approximated by a stochastic parameterization.  

There is a great deal of variability that would be lacking from a model using a conven-

tional parameterization that surely would have adverse effects in such a simulation. 

 A very similar pattern is found for the cloud mass flux, the cloud fraction, and the 

non-precipitating condensate.  Figure 5.49 is an example of this similarity in the case of  
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Figure	  5.49.	  As	  in	  Figure	  5.44	  but	  for	  the	  cloud	  mass	  flux	  and	  the	  16th	  domain.	  
	  
	  
the cloud mass flux CV at one-sixteenth domain size.  Once again, we see that there is an 

especially large CV cluster corresponding to the response minimum and slowly varying 

forcing simulations.  Figures showing these features for remaining subdomain sizes and 

variables have been omitted for the sake of preventing redundancy.  In their stead, a se-

ries of summary figures are provided.	  

 Figure 5.50 shows the dependence of the maximum (for a given composite) stan-

dard deviation on period length for each of the four variables at each subdomain.  A fea-

Cloud Mass Flux Mean-Relative Standard Deviation, 16th Domain

20 40 60 80 100 120
Forcing Period [hour]

 

 

0

0.5

1.0

0.5

0

N
or

m
al

iz
ed

 F
or

ci
ng

0.62

0.62
0.62
0.62

0.62 0.62
0.62

0.62 0.62
0.62

0.62

0.
92

0.92

0.92
0.920.920.92

0.920.92

0.92
0.92

0.92

0.92

0.92

0.920.92

0.92
0.92

0.920.92
0.92

0.92
0.920.92

0.92
0.92

0.92

1.23

1.23

1.23
1.23

1.54

1.54

1.541.54

1.851.85
1.85

1.85
2.152.152.15  0.00

 0.31

 0.62

 0.92

 1.23

 1.54

 1.85

 2.15

 2.46

 2.77

 3.08

 3.38

 3.69

 4.00

/m
ea

n



 139	  

a. 	  

b. 	  
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c. 	  

d. 	  
Figure	   5.50.	   	  Maximum	   standard	   deviation	   versus	   forcing	   period	   length	   at	   all	   subdo-‐

mains	  for	  (a.)	  surface	  precipitation	  rate,	  (b.)	  cloud	  fraction,	  (c.)	  cloud	  mass	  flux,	  and	  
(d.)	   non-‐precipitating	   condensate.	   	   The	   black	   line	   accompanying	   each	   curve	   is	   the	  
linear	  regression,	  and	  the	  dashed	  line	  denotes	  the	  linear	  regression	  for	  the	  average	  
of	  each	  of	  the	  colored	  curves.	  	  	  

	  
	  
ture that is present in each case is that the maximum standard deviation increases with 
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decreasing subdomain size, as expected and as noted previously.  We also see that there 

is a slight tendency for the maximum standard deviation to increase with increasing pe-

riod length.  The only exception to this trend is NPC for the 256th subdomain, which 

shows a trend line that slightly decreases with period.  Each of the average trends are 

positive.  The shapes of the curves tend to vary between variables but to a lesser extent 

within variables, and the curves tend to be more linear for larger subdomains.  Most de-

viations from linearity occur at the shortest periods, and when this occurs, such as for 

small subdomains in the surface precipitation case, the curve is vaguely logarithmic

except for a maximum near the 20-hour forcing period.  The case for a linear relationship 

is weakened somewhat in light of the corresponding correlation coefficients listed in the 

figures.  Correlations are greatest for cloud fraction and cloud mass flux and weakest for 

NPC.  No correlation exceeds 0.77 and most are below 0.45.  It is likely that a better rela-

tionship could be teased from a larger dataset.   

 Additionally, Figure 5.51 shows the application of the same technique to the 

coefficient of variation.  As we have seen, the CV increases with decreasing subdomain 

size.  Now we see that it also increases slightly with increasing period length.  Similarly 

to the case of the standard deviation, the trends appear to be nearly linear with deviations 

from such linearity mainly when the large-scale forcing is changing rapidly.  Also once 

again, the correlations defining the quality of the fit are generally poor and may improve 

with supplementary data.  Overall, there is just a slight (possibly linear) tendency for the 

variability to increase with period. 

 While it has been shown that there is very little dependence on the forcing period 

length (adjusted for the shift in the timing of the response), the extended analysis has also 
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been applied so that the dependence on subdomain size can be better quantified.  Figures 

5.52 and 5.53 show the results of this analysis of surface precipitation rate for the F08 

simulation.  When comparing these values to subdomain size, we see that in the case of

	  

a. 	  

b. 	  
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c. 	  

d. 	  
Figure	  5.51.	  	  As	  in	  Figure	  5.50	  but	  for	  the	  coefficient	  of	  variation	  at	  the	  maximum	  stan-‐

dard	  deviation.	  Here,	  the	  dashed	  red	  line	  denoted	  the	  mean	  of	  the	  colored	  curves.	  
	  
	  
Figure 5.52, which shows the surface precipitation rate standard deviation, that there ap-

pears to be a strongly nonlinear trend of increasing variability with decreasing area. In 

Figure 5.53, we see that the CV also appears to increase nonlinearly with decreasing do-
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Figure	  5.52.	  	  As	  in	  Figure	  5.43	  but	  for	  F08	  for	  all	  subdomains.	  The	  rightmost	  point	  on	  the	  

abscissa	  corresponds	  to	  a	  256th	  domain.	  
	  	   

 
Figure	  5.53.	  	  As	  in	  Figure	  5.52	  but	  the	  coefficient	  of	  variation.	  
	  

 
main area.  Further, as we move to larger forcing periods, such as F120, shown in Fig-

ures5.54 and 5.55, similar nonlinear trends are present, though the position of the data’s
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Figure	  5.54.	  	  As	  in	  Figure	  5.52	  but	  for	  F120.	  
	  

 

 

Figure	  5.55.	  	  As	  in	  Figure	  5.53	  but	  for	  F120.	  
 

maxima have shifted relative to the normalized forcing due to the change in lag.  These 
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figures also highlight the increase in the variability of the standard deviation and CV as 

period length increases.  Whether this is simply an artifact of significantly longer time for 

which there can be extremes in a given realizations is likely but unclear. 

 Similar structures are found when considering cloud mass flux, cloud fraction, 

and non-precipitating condensate.  As in the case for the period dependency analysis, 

those figures have been omitted, and summary plots have been used in their place.  Fig-

ure 5.56 shows normalized domain area versus the maximum standard deviation.  Each 

black curve is one periodic forcing simulation, and the green line is their average.  There 

is no coherent pattern as to the position of the black curves relative to their forcing period 

length.  Therefore, no distinction is made.   

 In terms of a functional relationship, the average curve is best approximated by 

and exponential decay function, such that 

	   	   σ = c − b ln(A)  (5.10) 

where b and c are constants that vary depending on the variable in question, σ is the stan-

dard deviation, and A is the subdomain area.11  The constant, b, controls the shape of the 

curve, while c most strongly controls the area at which the standard deviation becomes 

zero (greater c corresponds to a larger area). Conversely, this relationship can be rewrit-

ten such that the area is an exponential decay function of the standard deviation: 

	   	   e
c−σ
b = A . (5.11) 

The data corresponding to the parameters of the best fit for the green (mean) curves in 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 One may expect, from prior statistical experience, that there would be a 1/√N depend-
ence rather than the relationship shown.  It should be noted that a curve of this form did 
not provide nearly as good of a correlation.  In this case r-squared was usually greater 
than 0.99, whereas in the case of a curve corresponding to the 1/√N relationship, r-
squared was on the order of 0.7, representing a significantly weaker correlation. 
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Figure 5.56 is found in Table 5.1.  The high correlation coefficients indicate a very good 

fit to the characterization of this relationship.  However, use of the standard deviations in 

this form does little reveal systematic variations among the different variables.   

 In order to adjust the values being considered so that they are comparable 

amongst different variables (dimensionless), the maximum standard deviations (Figure 

5.56) have been transformed in to their corresponding coefficients of variation (Figure 

5.57).  Analyzing these values in the same way as the maximum standard deviations, we 

see that once more the data have a logarithmic/exponential form (see equations 5.10 and 

5.11).  This should not surprise, since the only change has been division by a constant 

(the mean, in this case).  Note that because of this, the correlation coefficient values (Ta-

ble 5.2) are exactly the same as in the previous case.  The important changes have oc-

curred in the constants, most notably, b, which controls the shape.   

 The apparent pairing of values of b tend to confirm earlier suspicions that there is 

a clear difference in variable types, that being the “storage” variables, NPC and cloud 

fraction, and the “flux” variables, surface precipitation rate and the cloud mass flux (re-

ferred to before as the cloud and precipitation variables, respectively).  These terms are 

best explained by looking at the convective process as beginning with the vertical flux of 

mass to form clouds, as measured by NPC and cloud fraction, where the water mass is 

stored until it is fluxed out of the system as precipitation.  At any rate, the pairing is such 

that the average curve is steeper for the flux variables.  Additionally, the curve for the 

flux variables tends to lie above that for the storage variables.  This means that the flux 

variables are more variable, and the storage variables are less variable.  This is wonder-

fully intuitive, since as they are defined here, the storage variables can be both added to 
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and subtracted from, while the individual flux variables only act one way.  All four vari-

ables are directly related to convection but in different ways.  To carry the analogy along 

ad nauseam, convection is a casino in Las Vegas, mass flux is the entrance, precipitation 

is the exit, and the cloud fraction and NPC are the gamblers. 

a. 	  

b. 	  
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c. 	  

d. 	  
Figure	  5.56.	   	  Maximum	  standard	  deviation	  versus	  normalized	  domain	  area	  for	  all	  peri-‐

odic	   forcing	   simulations	   for	   (a.)	   surface	   precipitation	   rate,	   (b.)	   cloud	   fraction,	   (c.)	  
cloud	  mass	  flux,	  and	  (d.)	  non-‐precipitating	  condensate.	  	  The	  green	  line	  is	  the	  mean	  
of	  the	  black	  curves.	  	  It’s	  “mean	  green”...get	  it?	  
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a. 	  

b. 	  
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c. 	  

d. 	  
Figure	  5.57.	  	  As	  in	  Figure	  5.56,	  but	  for	  the	  coefficient	  of	  variation.	  	  Additionally,	  the	  red	  

lines	  denotes	  the	  trend	  lines	  fit	  to	  the	  green	  curves.	  
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Table	  5.1.	  List	  of	  parameters	  b	   and	  c	   corresponding	   to	   the	  best	   fit	   curve	   (of	   the	   form	  
given	  by	  equation	  5.10)	  for	  the	  green	  curves	  of	  Figure	  5.56	  and	  the	  correlation	  coef-‐
ficient	  for	  each	  best	  fit	  curve.	  	  	  

	  
Variable	   b	   c	   r2	  

Surface	  Precipitation	  Rate	   0.759	   0.330	   0.9976	  
Cloud	  Fraction	   0.053	   0.065	   0.9974	  
Cloud	  Mass	  Flux	   0.019	   0.006	   0.9988	  
Non-‐precipitating	  Condensate	   0.097	   0.076	   0.9962	  

	  
	  

	  
Table	  5.2.	  List	  of	  parameters	  b	   and	  c	   corresponding	   to	   the	  best	   fit	   curve	   (of	   the	   form	  

given	  by	  equation	  5.10)	  for	  the	  green	  curves	  of	  Figure	  5.57	  and	  the	  correlation	  coef-‐
ficient	  for	  each	  best	  fit	  curve.	  	  

	  
Variable	   b	   c	   r2	  

Surface	  Precipitation	  Rate	   0.283	   0.091	   0.9976	  
Cloud	  Fraction	   0.106	   0.075	   0.9974	  
Cloud	  Mass	  Flux	   0.253	   0.054	   0.9988	  
Non-‐precipitating	  Condensate	   0.132	   0.084	   0.9962	  

	  
	  
	  
 We conclude this section by restating a few important findings.  One, the variabil-

ity between realizations has a small positive relationship with increasing periodic forcing 

length that appears to be due to an extension of the time in which convection is active.  

Two, the variability does, indeed, scale with the mean, but the scaling factor is not, but 

close to, constant. The scaling factor tends to decrease with increases in the mean.  Three, 

the variability between realizations is logarithmically dependant upon the subdomain 

area.  

 

5.2.6 Correlation Analysis 
 
 There are a number of ways in which one could determine whether the results of a 
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simulation tend to approximate statistical equilibrium between the large-scale and con-

vective-scale atmospheric processes.  A few of these have been presented in previous sec-

tions, and now we shall add another based on correlation analysis.  In a very nearly 

equilibrated system, the forcing should lead the response in time with negligible lag, and 

in the case of a periodic forcing, the response should periodically rise and fall in accor-

dance to the temporal structure of the forcing.  For instance, if we refer once more to Fig-

ure 5.2a, which shows the mean precipitation rate from a series of constant forcing simu-

lations, we would expect that for a periodic forcing simulation that a compilation of the 

data at all times in the simulation would look the same.   

 Testing each of the periodically forced simulations in this way will provide addi-

tional insight into the point at which statistical equilibrium is approximated in terms of 

the length of the period.  Further, the same method can also be applied to determine the 

point among varying domain sizes at which statistical equilibrium is approximated.  In 

each case, the full time series of the full domain means for cloud fraction, surface precipi-

tation rate, non-precipitating condensate, and cloud mass flux are correlated with the the 

normalized periodic forcing.   

 The results in scatterplot form, seen in Figure 5.58 for simulations F04, F10, F20, 

F30, F60, and F120, take the shape of hysteresis loops.  Whether the upper or lower por-

tion of the loop is indicative of the response coincident with increasing or decreasing 

forcing is dependant on the period and variable in question. For instance, the lower por-

tion of the scatterplot in Figure 5.58a (upper left panel) for cloud fraction in the F04 

simulation corresponds to increasing forcing, and when the forcing period is changed to 

60 hours (Figure 5.58e, upper left panel) it is the upper portion of the loop that corre-
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sponds to the increasing forcing.  Recall that the cloud fraction maximum leads the forc-

ing maximum for a longer period.  In determining the correct orientation of this up-

per/lower, increasing/decreasing distinction, please refer to the figures in Section 5.2.3.   
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e. f. 	  
Figure	  5.58.	   	  Scatterplots	   for	  the	  full	  15	  cycles	  of	   the	  F04	  (a),	  F10	  (b),	  F20	  (c),	  F30	  (d),	  

F60	  (e),	  and	  F120	  (f)	  simulations	  of	  the	  full	  domain	  average	  values	  of	  cloud	  fraction	  
(upper	   left),	   surface	   precipitation	   rate	   (upper	   right),	   non-‐precipitating	   condensate	  
(lower	   left),	   and	   cloud	  mass	   flux	   (lower	   right)	   versus	   the	   normalized	   forcing.	   The	  
golden	  line	  is	  the	  linear	  regression	  trend	  line.	  	  The	  slope	  of	  this	  line	  and	  the	  correla-‐
tion	  coefficient	  (r2)	  are	  given	  to	  the	  lower	  left	  of	  each	  panel.	  	  	  	  	  

	  
	  
 There are a number of interesting features in Figure 5.58.  One is that we are able 

to see this aforementioned shift between leading and lagging forcings quite clearly.  An-

other is that we are able to get a better sense (visually) for the true range of variability of 

each variable, beyond that of a reported standard deviation.  Bearing in mind the relation-

ship between the normalized forcing and time it is once again evident that the high fre-

quency variability that is seen in the longer simulations is on the order of the period of 

the shorter simulations.  This once more demonstrates the reasons for the high frequency 

variability seen in the plots of means and standard deviations seen previously.   

 Perhaps, though, the most important feature to be gleaned from Figure 5.58 is the 

information surrounding the correlation and regression and the way these features change 
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with period.  The most striking pattern is the tendency for the data points to “hug” the re-

gression line more tightly as the period length is increased.  In other words, there is a ten-

dency for standard deviation at a particular value of the normalized forcing to decrease 

with increasing period.  Note that this is not the same measurement as the standard devia-

tion in the previous composite analyses as it considers the value when the forcing is both 

increasing and decreasing.  This motion toward the regression line is indicative of pro-

gress toward getting the same response from a forcing regardless of whether the forcing 

is increasing or decreasing; it is progress toward approximate statistical equilibrium 

 Additionally, we see that as the period is increased, there is convergence toward a 

single regression slope, especially in the case of the “flux variables,” surface precipitation 

rate and cloud mass flux.  In the case of the “storage variables,” cloud fraction and non-

precipitating condensate, one may argue the case that they are converging on a slope but 

not in a monotonic fashion.  Certainly, due to the difference in slope between the regres-

sions for these variables in simulations F60 and F120, there is not sufficient evidence to 

state this convergence as fact.  The pattern that is apparent is one in which the slope ini-

tially increases as the period length is increase, and then it tends to decrease toward the 

end of the available data.  

 The case for the convergence of the slopes for the flux variables is stronger, as 

they (generally) monotonically increase from short to long periods, with a slowing of the 

rate of change toward longer periods.  More interesting, perhaps, are the values to which 

the slopes converge.  Let’s focus on the case of the surface precipitation rate.  Referring, 

once again, to Figure 5.2a, the expected slope for a simulation run at an approximation to 

statistical equilibrium is ~2.5 mm hr-1 per a full increase of the large-scale forcing, and 
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interestingly enough, that is precisely the value of the slope for simulations F60 and 

F120.  This is supportive of the idea that while statistical equilibrium is not well ap-

proximated for quickly varying large-scale forcings, it is for slowly varying forcings.   

 However, there is one more element that is required to enter this idea into the 

realm of quasi-fact.  That is the correlation.  A slope closely matching that derived from 

the equilibrium simulations is essentially unsupportive if the correlation is not strong, as 

well.  In the case of surface precipitation, the correlation also tends to increase with in-

creasing period length.  The correlation coefficient at F60 is 0.948, and it is 0.970 for the 

F120 simulation.  Therefore, taking the regression slope and the correlation together, we 

have very strong support for the dependence of the approximation of statistical equilib-

rium upon the forcing period length in the case of the flux variables. 

 The correlation coefficients for the storage variables do not increase evenly.  In 

fact, they are not near a maximum in either F60 or F120.  This seems to be related to the 

shift in the forcing/response lag that moves the maximum response to a relatively earlier 

location.  It is suspected that since it appears that the shift in the lag seems to be reducing 

in a relative sense with increases in the forcing period, these correlations will improve but 

never be very strong due the lag.  It is likely, though, that a more stable slope would be 

encountered for simulations with more slowly varying forcings.   

 The other variable that needs to be checked against the correlations is the change 

in subdomain size.  Admittedly, the results are intuitive, predictable, and not too terribly 

interesting, but they are shown here for completeness.  We shall take as the example the 

cloud mass flux variable.  Figure 5.59 shows the scatterplots, regression lines, and corre-

lation coefficients for the whole, half, quarter, 16th, 64th, and 256th domain as applied to 
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Figure	  5.59.	   	  Scatterplots	  for	  the	  full	  15	  cycles	  of	  the	  F06	  simulation	  of	  the	  full	  domain	  

(upper	  left),	  half	  domain	  (upper	  center),	  quarter	  domain	  (upper	  right),	  16th	  domain	  
(lower	  left),	  64th	  domain	  (lower	  center),	  and	  256th	  domain	  (lower	  right)	  average	  val-‐
ues	  of	  cloud	  mass	  flux	  versus	  the	  normalized	  forcing.	  The	  golden	  line	  is	  the	  linear	  re-‐
gression	   trend	   line.	   	   The	   slope	   of	   this	   line	   and	   the	   correlation	   coefficient	   (r2)	   are	  
given	  to	  the	  lower	  left	  of	  each	  panel.	  

	  
the cloud mass flux.  From these plots, we get a better understanding of the range of vari-

ability at each subdomain.  Note that the ordinate axis values are variable.  The correla-

tion coefficients fall off quickly with decreasing domain size.  This trend clearly shows 

that simulations performed at small grid spacings are not well approximated by statistical 

equilibrium.  There is not much in the way of a trend for the regression slopes.  However, 

one may note that there may be increase in regression slope with decreasing domain size, 
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but this is generally due to the introduction of very large average cloud mass flux values 

that are the result of averaging over such a small area and it does not hold over all averag-

ing areas.  Additionally, there are instances when the domain size is very small for which 

the slope becomes negative due to the sheer number of measurements that are much 

smaller than the maximum values for a particular subdomain.   

 Extending this analysis, Figures 5.60 and 5.61 show the dependence on domain 

size for the F20 and F60 simulations, respectively.  We see much the same trend as in the 

F06 case, with correlation coefficients falling toward zero rather quickly.  The regression 

slopes also lack a coherent trend associated with changes in the domain size.  Comparing 

all three cases, however, we gain further insight into the trends that are associated with 

changes in the large-scale forcing period length.  The ability for the data to correlate bet-

ter with increasing period is visible in not only the full domain case but also for smaller 

averaging areas.    At any rate, it is clear that this tendency for a strong correlation breaks 

down at domains of 16th or smaller. 

 As a result of the correlation analyses, we have a broader understanding of the 

applicability of the quasi-equilibrium assumptions in terms of its dependencies on the 

frequency of variation of a large-scale forcing and the size of a given computational area.  

The idea that variability between realizations increases for smaller domains and smaller 

period lengths (independent of whether the forcing is increasing or decreasing) has been 

reinforced, and the dividing line of acceptable deviation from QE has been made more	  

clear.  It lies at the intersection of large-scale variations that are on the order of the diur-

nal cycle on a grid spacing scale that is between 256 km and ~181 km based on the above 

data.
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Figure	  5.60.	  	  As	  in	  Figure	  5.59	  but	  for	  the	  F20	  simulation.	  
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Figure	  5.61.	  	  As	  in	  Figure	  5.59	  but	  for	  the	  F60	  simulation.	  
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5.2.7 Probability Density Function Variations 
 
 One of the main tenets of how this research might be able to aid ongoing devel-

opment of stochastic convective parameterizations is by defining limits for such param-

eterizations.  While some such limits can be gleaned from results already presented, addi-

tional and more exact limits can be defined with a basis in the probability density func-

tions (PDFs) of some convection-related variables.  For this analysis, PDFs for the do-

main mean column liquid water (CLW, also known as the liquid water path), non-

precipitating condensate, and surface precipitation rate have been created.  From these 

PDFs we will be able to better represent the shape of the variable distributions, which has 

as of yet has not been made clear.  Previous discussion has focused primarily on the mean 

and the standard deviation but said little about the degree of skewness of the variables.   

 To begin, we shall examine an example distribution for the surface precipitation 

rate in Figure 5.62.  This example has been taken from F14 and represents the frequency 

of occurrence (as a fractional area) of a certain bin of surface precipitation rate averaged 

over the full domain for the entire length of the simulation.  The text on the figure that 

says “0 =” points to the fractional area for which precipitation is zero.  There is nothing 

particularly special about this simulation; in fact, it has the characteristic shape that is 

seen in all simulations, with the only difference being the length of the positively skewed 

tail of the distribution.  As one might expect, larger values become more prevalent for 

longer forcing periods. However, on plots like that in Figure 5.62, the difference is barely 

noticeable, visually, and therefore this is not shown.  The important relationship to see 

here is that there is an inversely exponential relationship between areal coverage and pre-

cipitation rate.  Additionally, this relationship also holds for the variables of non-
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precipitating condensate and column liquid water (Figures 5.63 and 5.64, respectively), 

except for the fact that, on the average, NPC is never exactly zero anywhere. 

 

	  
Figure	   5.62.	   	   Probability	   density	   function	   for	   the	   surface	   precipitation	   rate	   calculated	  

over	  the	  whole	  domain	  and	  averaged	  over	  the	  entire	  length	  of	  the	  F14	  simulation.	  
	  

	  

	  
Figure	  5.63.	  	  As	  in	  Figure	  5.62	  but	  for	  non-‐precipitating	  condensate	  in	  the	  F120	  simula-‐

tion.	  
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Figure	  5.64.	  	  As	  in	  Figure	  5.62	  but	  for	  column	  liquid	  water	  in	  the	  F30	  simulation.	  
 

 As stated, these figures show the results for the average over the full length of the 

simulations.  While this result is simple to understand, things become slightly more com-

plicated when we begin to track the PDF as it changes through time.  Figure 5.65 shows a 

series of PDFs for individual instances in the composite curve.  This surface precipitation 

data are taken from the F12 simulation, and the data for other variables and simulations 

are very similar to what is seen in this case.  The title of each plot denotes the percentage 

of the realization (one iteration of the large-scale forcing curve) that has passed until that 

point.  The main feature through the cycle is the shift in the amount of rain-free area 

noted in the figure text.  Early and late in the cycle, the forcing is small and the precipita-

tion is relatively low (see previous sections). At this point, the vast majority of the do-

main (70-80%) is experiencing zero precipitation.  As the forcing intensifies along with 

the precipitation, this precipitation free area diminishes to as low as 30%, though in most 

simulations it is no less than 40%. 

 The take-home point it that the shape of the curve really does not change through 
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time, but the parameters controlling it do.12  The lengths of the tails vary, generally in-

creasing with forcing, meaning that the mean, standard deviation, and skewness are all 

variable. Additionally, while the transition seen for the full domain case in Figure 5.65 is 

rather smooth, it can be choppier for smaller subdomains (not shown).  To put it in a hu-

morously redundant way, the variability has variability, which likely also has variability. 

 Even with all of this data (PDFs at each point in the composite and at all subdo-

mains), we do not have much that can help out a stochastic parameterization.  However, 

from this data, we can create something that will assist in reaching that goal.  It can be 

said that any one of those average PDFs could easily be representative of a particular 

GCM grid cell, but the problem is choosing the correct one.  From the standpoint of sto-

chastic convective parameterizations on the large scale, there is only so much that is de-

terministic, and there are some more random elements for which we must account.  What 

a GCM “knows” for “certain” is the large-scale forcing.  What we seem to know now is 

what the range of possible responses for that large-scale forcing might be as represented 

by the set of 15 realizations.  Now we shall try to reconcile to two, somewhat. 

 Based on the above calculations, we have been able to determine 15 possible dis-

tributions of various convective features.  In terms of the physical distribution of these 

variables across a range of domain sizes, the mean, standard deviation, and skewness, 

among other statistics, are known.  We can further create a more fundamental set of sta-

tistical distributions to describe the above statistical distributions.  That is, given the set 

of 15 means, the mean, standard deviation, and skewness of that distribution can also be 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 There were a couple of cases in which extreme events caused large deviations from this 
shape.  However, they are only visible under the microscope, if you will, whereby only 
the smallest precipitation values (< 0.1 mm hr-1) were considered.  Use of bins that ob-
scure that range smooths out such variations.   
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a. b.  

c. d. 	  

e. f. 	  
Figure	  5.65.	  	  PDFs	  of	  full	  domain	  surface	  precipitation	  rate	  averaged	  over	  15	  realizations	  

for	  noted	  instances	  in	  the	  F12	  cycle.	  
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calculated.  This is quite fabulous because it is exactly what we are searching for.  We 

need to know the probability of getting a certain set of statistical parameters for a given 

large-scale forcing.   

 While we know a few possible means, standard deviations, and skewnesses for a 

host of forcing and subdomain combinations, it is still not quite enough.  A collection of 

fifteen possibilities does not seem to be the most solid foundation.   However, they can be 

used to generalize a broader range of possibilities.  For instance, since the mean and stan-

dard deviation are always positive for the chosen variables, their distribution can be ap-

proximated by a three-parameter gamma distribution (Sivapalan et al. 1987; Ducharne et 

al. 2000).  The distribution can be calculated as:  

	   	  
PDF(x) = 1

Γ(φ)χ
x − µ
χ

⎛

⎝⎜
⎞

⎠⎟

φ−1

exp −
x − µ
χ

⎛

⎝⎜
⎞

⎠⎟ 	  	  	  	  	  	  	  	  	  	  	   χ,φ > 0  (5.12) 

	   	   χ = γ xσ x 2  (5.13) 

	   	   φ = σ x
2 χ 2  (5.14) 

	   	   µ = x −φχ . (5.15) 

Here, the three parameters given by (5.12, 5.13, and 5.15) are derived from the mean ( x ), 

standard deviation (σx), and skewness (γ x ) of the actual distribution of the 15 realiza-

tions.  In this way, the resulting gamma distribution has the same first three moments.  

The benefit of this calculation is that we have essentially interpolated the statistics from 

the realizations into a form that is much easier to manipulate.  To be clear, a sample input 

to this set of equations would be the mean, the standard deviation, and the skewness of 15 

means associated with a 30 hour periodic forcing at a resolution comparable to half the 

full domain size.  The result would be a distribution of means approximating the real 
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population of means.  The same can be done with a set of standard deviations.   

 In the special case that a set of values is negatively skewed, a gamma distribution 

can be constructed with the absolute value of the skewness by utilizing symmetry about 

the mean  (Ducharne et al. 2000).  Other problems arise when the skewness is either zero 

or undefined (e.g. σ=0).  In practice, these are artificially adjusted or thrown out.  Further, 

an entirely different method would be required to create an analytical distribution of the 

skewness for sets with values both positive and negative as the gamma distribution suits 

monotonic datasets.  However, in most cases, the GCM will most likely just require the 

possible mean and variance values rather than the skewness. 

 Included in Tables 5.3-5 are the data required to calculate the full spectrum of 

gamma distributions for the mean surface precipitation rate associated with the maximum 

composite surface precipitation rate (a specific point in the forcing cycle).  The data 

given in Tables 5.3 and 5.4 are also presented graphically for a different perspective in 

Figures 5.66 and 5.67, respectively.  Note that to get the complete spectrum of possible 

mean values based on the entirety of the simulation data, this process would need to be 

repeated at all points in the simulation.  Currently, datasets like this only exist for the 

points corresponding to the maximum and minimum of the composite mean for the sur-

face precipitation rate mean, standard deviation, and skewness.  As the calculation is rela-

tively straightforward, such data can be computed quickly if required.  Additionally, stor-

ing these parameters is not at all demanding of hard drive or memory space.  As such, 

this technique may be a powerful and efficient tool for making an informed introduction 

of stochastic variability in to climate and NWP models. 

 Much of what is shown in these tables and figures is information that can be in-



 169	  

ferred from previously presented data.  However, there is at least one unexpected feature 

that is visible when the data are presented in this way.  There appears to be a discontinu-

ity in the general pattern that has been laid out above in the case of the F24 simulation.  

24 hours, of course, is the approximate duration of the diurnal cycle.  However, there 

should be no special remnant of diurnal effects in that simulation as there is no active ra-

diation scheme in these simulations.  For some reason, there is a relative minimum in the 

peak composite precipitation rate and its standard deviation amongst realizations.  The 

expected result would be a smooth transition to higher precipitation rates as the period 

length is increased.  That pattern exists from the 2-hr forcing through the 20-hr forcing 

and from the 24-hr forcing through the 60-hr forcing.  A secondary decline is seen going 

from the 60-hr to the 120-hr forcing.  That decline is much less severe, but is also sus-

pect.  It is likely that this pattern is not qualitatively the same for any given variable 

states.  There is nothing special about choosing the maximum value in the composite, es-

pecially since the maximum value does not necessarily correspond to the statistical point 

of maximum response as defined in Section 5.2.3; it was simply an easily obtainable ex-

ample. 

 

 

 

 

 

 

Table	  5.3.	  Maximum	  composite	  values	  of	  domain	  mean	  surface	  precipitation	  rate	  [mm	  
hr-‐1]	  as	  dependant	  upon	  period	   length	  and	  subdomain	   size	   for	  use	   in	   calculating	  a	  
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gamma	  distribution.	  
	   	   Domain	  Size	  [Fraction]	  

	   	  	   Whole	   Half	   Quarter	   16th	   64th	   256th	  

F02	   1.536	   1.536	   1.603	   1.578	   1.554	   1.540	  
F04	   2.078	   2.078	   1.959	   1.988	   1.986	   2.019	  
F06	   2.274	   2.274	   2.312	   2.161	   2.098	   2.056	  
F08	   2.518	   2.518	   2.566	   2.480	   2.476	   2.459	  
F10	   2.593	   2.593	   2.572	   2.566	   2.655	   2.680	  
F12	   2.587	   2.587	   2.584	   2.614	   2.633	   2.632	  
F14	   2.534	   2.534	   2.747	   2.733	   2.474	   2.338	  
F16	   2.701	   2.701	   3.266	   3.107	   3.024	   2.984	  
F20	   2.682	   2.682	   2.819	   3.253	   3.330	   3.349	  
F24	   2.658	   2.658	   2.765	   2.741	   2.771	   2.755	  
F30	   2.659	   2.659	   2.862	   3.164	   3.237	   3.274	  
F60	   2.690	   2.690	   3.189	   3.416	   3.347	   3.260	  

Period	  of	  Forcing	  F[hr]	  

F120	   2.393	   2.393	   2.809	   2.904	   3.063	   3.106	  
	  
	  
	  

	  
Figure	  5.66.	  	  As	  in	  Table	  5.3.	  
	  
Table	  5.4.	  As	  in	  Table	  5.3	  but	  for	  the	  standard	  deviation	  [mm	  hr-‐1]	  of	  the	  means	  associ-‐

ated	  with	  the	  composite	  maximum.	  	  

Maximum Composite Mean Precipitation Rate [mm hr-1]

0.0 0.2 0.4 0.6 0.8 1.0
Domain Size [Fraction]

0

20

40

60

80

100

120

Pe
rio

d 
of

 F
or

ci
ng

 [h
r]

1.61.6 1.82.02.2 2.4

2.4

2.6

2.6

2.8

2.8

3.0

3.0

3.2

3.2

3.2



 171	  

	   	   Domain	  Size	  [Fraction]	  

	   	  	   Whole	   Half	   Quarter	   16th	   64th	   256th	  

F02	   0.095	   0.095	   0.643	   0.804	   0.791	   0.824	  
F04	   0.128	   0.128	   0.746	   0.848	   0.807	   0.785	  
F06	   0.098	   0.098	   0.581	   0.805	   0.907	   0.940	  
F08	   0.135	   0.135	   0.868	   1.258	   1.328	   1.343	  
F10	   0.117	   0.117	   1.135	   1.332	   1.483	   1.539	  
F12	   0.131	   0.131	   0.858	   1.137	   1.142	   1.113	  
F14	   0.146	   0.146	   1.109	   1.496	   1.573	   1.298	  
F16	   0.103	   0.103	   1.491	   1.761	   1.769	   1.741	  
F20	   0.128	   0.128	   1.230	   1.850	   1.980	   2.000	  
F24	   0.089	   0.089	   1.047	   1.114	   1.382	   1.314	  
F30	   0.161	   0.161	   1.355	   1.741	   1.892	   1.892	  
F60	   0.148	   0.148	   1.220	   1.566	   1.580	   1.539	  

Period	  of	  Forcing	  F[hr]	  

F120	   0.719	   0.719	   1.082	   1.302	   1.984	   2.071	  
	  
	  
	  

	  
Figure	  5.67.	  	  As	  in	  Table	  5.4.	  
	  
	  
Table	  5.5.	  As	  in	  Table	  5.3	  but	  for	  the	  skewness	  of	  the	  means	  associated	  with	  the	  com-‐

posite	  maximum.	  	  
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	   	   Domain	  Size	  [Fraction]	  

	   	  	   Whole	   Half	   Quarter	   16th	   64th	   256th	  

F02	   0.332	   0.332	   0.903	   0.717	   0.522	   0.367	  
F04	   -‐0.233	   -‐0.233	   0.684	   0.855	   0.825	   0.665	  
F06	   -‐0.149	   -‐0.149	   -‐0.538	   -‐0.137	   -‐0.055	   -‐0.192	  
F08	   -‐0.328	   -‐0.328	   0.113	   0.011	   -‐0.087	   -‐0.055	  
F10	   -‐0.046	   -‐0.046	   0.154	   0.030	   0.221	   0.305	  
F12	   -‐0.227	   -‐0.227	   0.392	   0.491	   0.159	   0.038	  
F14	   0.013	   0.012	   0.719	   0.579	   0.977	   0.499	  
F16	   0.080	   0.080	   0.893	   0.112	   -‐0.075	   -‐0.069	  
F20	   0.085	   0.085	   -‐0.187	   0.276	   0.322	   0.275	  
F24	   0.392	   0.392	   0.158	   0.120	   -‐0.014	   -‐0.009	  
F30	   -‐0.477	   -‐0.477	   -‐0.069	   -‐0.216	   -‐0.045	   -‐0.055	  
F60	   0.134	   0.134	   0.654	   0.401	   0.496	   0.516	  

Period	  of	  Forcing	  F[hr]	  

F120	   -‐2.548	   -‐2.548	   -‐0.842	   -‐0.656	   0.144	   0.172	  
	  
 

	  

5.3	  	   More	  Periodic	  and	  Constant	  Forcing	  Comparisons	  
 
 In addition to the comparisons made above, a couple of other areas were given at-

tention with regard to how the periodic and constant forcings were related.  First, with re-

gard to the general atmospheric conditions, Figure 5.68 shows that in both the constant 

forcing simulations (a) and the periodic forcing simulations (b, c, and d) the temperature 

structure remains fairly constant on the average, regardless of changes in the large-scale 

forcing.  The only thing that even slightly stands out is a slightly different vertical struc-

ture in the case of the 0.1 magnitude constant forcing simulation, which is warmer near 

the surface and cooler aloft.  No other significant variations are noted. 

 The same analysis was performed in the case of relative humidity profiles.  This is 	  
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a. b.

c. d. 	  
Figure	   5.68.	   	   Average	   vertical	   temperature	   profiles	   [K]	   versus	   normalized	   large-‐scale	  

forcing	  for	  (a)	  constant	  forcing	  simulations,	  (b)	  F02,	  (c)	  F10,	  and	  (d)	  F20.	  
	  
	  
shown in Figure 5.69.  In this case, there is considerable variation between both the dif-

ferent forcing magnitudes as well as the different forcing period lengths.  When the forc-

ing is very rapid (F02), average conditions at low forcing are such that there is a reduc-

tion in relative humidity aloft moreso than when the forcing is strong.  This pattern is out 

of sync with the results of the constant forcing simulations, which show a pattern that is 

progressively better reproduced as the forcing period length is increased.  Constant forc-‐

Constant Forcing - Temperature Profile

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Forcing

0

5

10

15
H

ei
gh

t [
km

]

201

218

235

252

269

286

303

F02 - Temperature Profile

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Forcing

0

5

10

15

H
ei

gh
t [

km
]

202
210
219

227
236
244

253
262

270

279

287

296
305

F10 - Temperature Profile

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Forcing

0

5

10

15

H
ei

gh
t [

km
]

202 202
210 210

219 219
227 227

236 236
244 244

253 253
262 262

270 270

279 279

287 287

296 296
305 305

F20 - Temperature Profile

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Forcing

0

5

10

15
H

ei
gh

t [
km

]

202 202
210 210

219 219
227 227

236 236
244 244

253 253
262 262

270 270

279 279

287 287

296 296
305 305



 174	  

a. b.

c. d. 	  
Figure	  5.69.	  	  As	  in	  Figure	  5.68	  but	  for	  relative	  humidity	  [fraction].	  	  Additionally,	  (d)	  is	  for	  

F24	  rather	  than	  F20.	  	  The	  white	  areas	  denote	  regions	  of	  supersaturation.	  
	  	  	  
	  
ing, by the way, is very similar to having a varying forcing with infinite period length.  

When in this state, we see that most of the column (except for very near the surface) is 

near saturation when the forcing is weak, and there is a dry region that is present aloft 

when the forcing is strong.  Comparing Figure 5.69 to Figures 5.29 and 5.30, we see that 

the shape of the drier regions by relative humidity correspond to moist regions as defined 

by cloud fraction and non-precipitating condensate.  Also, the white regions in the lower 
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levels of Figure 5.69 correspond very well with the cloud fraction maxima seen in Figure 

5.29.  Taking the constant forcing results (Figure 5.69a) to represent the result of a long-

period simulation, we once again see the cloud cover maximum well ahead of the forcing 

maximum.   

 	  	  	  

a. b. 	  
Figure	  5.70.	  	  The	  domain	  averaged	  precipitation	  rate	  (a)	  and	  the	  cloud	  fraction	  (b)	  ver-‐

sus	   the	   normalized	   forcing	   for	   all	   constant	   and	   periodic	   forcing	   simulations.	   	   The	  
black	   line	  denotes	   the	   results	  of	   the	   constant	   forcing	   simulations,	   and	   the	  colored	  
lines	  represent	  the	  periodic	  forcing	  simulation	  results.	  	  Colors	  trending	  from	  blues	  to	  
reds	  indicate	  longer	  period	  lengths.	  

	  
	  
 More substantial comparisons were performed to determine the differences that 

arise due to the forcing magnitudes and their variation time scales.  The results of the 

analysis for domain-averaged precipitation rates are shown in panel (a) of Figure 5.70.  

The black line, representing the results of the constant forcing simulations, is a repeat of 

that in panel (a) of Figure 5.2.1 with the addition of the point corresponding to zero forc-
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ing/precipitation.  This line is quite well behaved, showing a linear increase of precipita-

tion rate with forcing magnitude.   

 The precipitation rates from the periodic forcing simulations, shown as colored 

lines, are not nearly so.  Moving from blues to reds, the colors represent the length of the 

period of the forcing cycle, with red having the longest period.  In these cases, the plotted 

values are taken from the mean values plotted in the composite plots in Section 5.2.3.  

Here they are shown without regard to whether the forcing is increasing or decreasing but 

with regard to the forcing magnitude.  Different values for the same forcing are linearly 

averaged.  The F02 simulation (deep purple line) provides a line with negative slope that 

is also rather well behaved, but it is unlike the constant forcing result.  As the forcing pe-

riod is lengthened, the result is such that there is better alignment with the constant forc-

ing averages.  One can get a better feel for the data that went into creating this plot by re-

viewing Section 5.2.6, specifically Figure 5.58.  From this we can see that the reason for 

deviations from the constant forcing simulation in longer period forcing simulations, such 

as F120, represented by the red line, are due to the delayed response to the forcing that is 

brought about by the development of mesoscale organization as previously discussed.  

Thus, barring mesoscale organization, there is very good agreement between the constant 

forcing averages and the longest periodic forcing data.  The mid-range forcing period 

lengths show a generally consistent transition from large to small deviations. 

 The same analysis for cloud fraction is presented in panel (b) of Figure 5.70.  In 

this case, no cloud fraction value for zero forcing was assumed because that is entirely 

dependant on the initial state and also because the trend of the black curve does not do 

much to elucidate a solution.  The results that are shown for the periodic forcing simula-
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tions are rather interesting.  Especially after inspection of panel (a), not to mention the 

most basic understanding of the development of precipitation, one would expect to see 

more clouds to accompany more precipitation and more large-scale forcing.  This seems 

to be the case with most of the simulations.  That is, when the forcing is zero, the cloud 

fraction is very near its minimum, and the cloud fraction maximum corresponds closely 

to the forcing maximum.  However, for longer simulations (F120 in red, F60 in red-

orange, F30 in orange, and to a lesser extent F24 in yellow) the cloud fraction maximum 

tends to be found at an intermediate forcing magnitude, mainly as a result of the cloud 

fraction maximum being located very early in the forcing period.  This feature is simi-

larly present in the constant forcing curve, which has its maximum at one-tenth the 

maximum forcing magnitude.  The cloud fraction profiles shown in Figure 5.29 verify 

this placement relative to the forcing and indicate that these clouds are mainly present be-

tween 2 and 7 km altitude.   

 It is not entirely clear as to why this is the case.  However, the maximum in the 

constant forcing simulations and the relative agreement shown by the F60 and F120 

simulations seem to indicate that this is a result that’s cause is a combination of the lesser 

magnitude forcing, as well as the increasing nature of the forcing.  Investigating further, 

inspection of Figures 5.21 and 5.22 suggests that this is the same instance of the flux ver-

sus storage variables that was previously discussed.  The argument, which can be boiled 

down to a kind of balance relationship between precipitation rate and cloud fraction, is 

supported by comparison of Figures 5.1.1 and 5.1.2.  With the given forcing profile, it 

seems that the default state of the system is for the cloud fraction to be high with light 

precipitation.  As that forcing’s magnitude is increased, precipitation increases, thereby 
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the reducing cloud amount that had been built up somewhat.   

 It is very similar to the distinction between drizzling stratus and heavily raining 

cumulus.  This actually appears to be the case when looking at vertical profiles of cloud 

fraction in CF1 and CFX (Figure 5.71).  In the CF1 case, the cloud fraction is strongest 

nearer the surface in one thick layer, with little cloud aloft.  There remains a considerable 

amount of cloud at low (and even lower) levels in the case of CFX, but there is a bit more 

aloft, especially at mid levels.  This lower cloud fraction with higher elements is more in-

dicative of cumulus than stratus. 

a. b. 	  
Figure	  5.71.	  	  Cloud	  fraction	  vertical	  profiles	  for	  the	  CF1	  (a)	  and	  CFX	  (b)	  simulations.	  Vio-‐

lets	  and	  blues	  are	  lesser,	  yellows	  and	  greens	  are	  greater	  cloud	  fractions.	  
	  
 Additionally, the concepts corresponding to the discussion around Figures 2.4 and 

2.5 have some application here.  Most generally, the ideas that were discussed pointed to 

the fact that the sufficient addition of variability to a system can cause a shift in the gen-

eral mode of the system or introduce a bias.  While that discussion applied to stochastic 

variability for use in parameterizations, Figure 5.70 looks at variability in the form of the 

periodic forcing in comparison to the zero variability of the constant forcing runs.  Since 
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each of the simulations has the same amplitude, the variability with which to be con-

cerned is the time rate of change of the forcing.  Thus, shorter periods mean greater vari-

ability.  That is, variability is inversely proportional to the forcing strength.  When inter-

preted from this perspective, panel (a) of Figure 5.70 appears to show both a shift in 

mode, as well as a bias depending on the magnitude of the variability.  When there is 

high frequency variability, such as in F02, F04, and to a lesser extent F06 (violet/blue 

curves), the form of the relationship between large-scale forcing and the precipitation rate 

are completely reversed from that seen in the constant forcing case.   

 Additionally, when the variability is much less, or when the forcing is more 

slowly varying, the general form of the relationship (i.e. the slope) is similar, but it has 

been shifted, or biased, toward lower precipitation values for the same forcing magnitude.  

Dynamically, this simply means that the more the forcing varies, the more difficult it is 

for strongly precipitating mesoscale convection to develop.  That, in essence, is one ex-

ample of a bias that results from making the large scale forcing vary, rather than stay 

constant.  In the case of the very quickly varying forcing, a threshold has been crossed 

that results in a system that is unable of producing sustained mesoscale organization.  The 

regime has shifted, all else being equal.  The case for a mode shift as may be interpreted 

from panel (b) of Figure 5.70 is less clear, though higher variability curves do show a dif-

ferent relationship (slope) between cloud fraction and the forcing compared to the con-

stant forcing simulation results.  At any rate, the presence of a bias is clear. 
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Chapter	  6	  –	  Discussion	  and	  Conclusions	  
	  
 
 The need for cloud parameterization is not going away anytime soon since resolv-

ing individual clouds remains too computationally expensive on the large scale.  QE as-

sumptions, while essentially valid, contain a number of flaws, which derive mainly from 

the deterministic and diagnostic properties of QE parameterization.  Variability not cap-

tured by QE can be rather successfully parameterized stochastically in a number of ways, 

including both methods that include or neglect prior knowledge of distributions of con-

vective variability.  This goes to support the prophetic statement made by Lorenz in 1975, 

“I believe that the ultimate climatic models...will be stochastic, i.e., random numbers will 

appear somewhere in the time derivatives” (Palmer et al. 2005).  The variability itself has 

been determined to depend on a number of parameters.  This presents a sizeable chal-

lenge to truly effective implementation of stochastic convective parameterizations due to 

the amount of information that must be conclusively determined and then applied to 

models.   

The analysis described in this thesis has used a variety of methods to review and 

characterize departures from convective quasi-equilibrium. Fluctuations about the equi-

librium state that are found to be present in convective simulations of a cloud-resolving 

model are not well represented in convective parameterizations of large-scale models, 

and it is now recognized that inclusion of the associated effects of nondeterministic and 

nondiagnostic features will prove beneficial to large-scale simulation results.  It has been 
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the aim of this research to determine the response of the statistical characteristics of a va-

riety of convection-related parameters to an imposed periodic large-scale forcing, thus 

gaining insight into the types of variations that must be considered when attempting to 

improve upon convective parameterizations.   

While others have developed a number of approaches to stochastic parameteriza-

tion (see Section 2.3) with varying levels of success, we have stepped back to the most 

basic analyses of what we wish to call truth in the form of cloud-resolving model simula-

tion data to determine at the fine scale how variability is apportioned.  A succinct descrip-

tion of what has been done might be to call this a series of case studies or even a sensitiv-

ity study with regard to the varying periodic forcing functions employed, in which the 

most basic and interesting scientific question has been posed, “What happens if we do 

this?”   

In order to validate the claim that the results that are produced by the VVM are 

actually close to truth, the model was subjected to an intercomparison test, which was de-

signed to compare the results of CRM simulations from a number of models under the 

same forcing and other conditions (see Chapter 3).  While only a selection of model re-

sults are currently available, analysis of the results that could be procured suggested that 

the VVM produces acceptable representations of actual events.  Concerns remain regard-

ing a number of features of the VVM’s performance in the intercomparison study, espe-

cially with regard to the lack of high frequency temporal variability that was present in 

most other models and observations.  The effect that this may have on the analysis pre-

sented in this thesis is not well understood, but that uncertainty implies the need for simi-

lar types of analyses to be performed using at least one model that has demonstrated the 
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high frequency temporal variability that is absent in the VVM data.  Because of this, it 

does not appear to be an ideal model for testing under the prescribed circumstances. 

However, overall performance was in good agreement with a selection of observed vari-

ables and the other models participating in the intercomparison.  The degree to which 

these data are correlated defend the use of the VVM in characterizing the statistical prop-

erties of convection under a variety of conditions and permits the simulation results to be 

considered as nearly empirical, high-resolution data. 

Use of the model for characterizing convective properties was accomplished by 

subjecting the model to a series of tests that varied the rate at which a periodic large-scale 

forcing oscillated in time.  As a control, the model was also subjected to a series of con-

stant forcing simulations for a variety of large-scale forcing magnitudes, which provided 

a cloud-resolving model representation of statistical equilibrium.  There it was shown that 

the coefficient of variation is not independent of forcing magnitude, particularly those 

that are very small or very large.  This result flies in the face of conventional wisdom, 

which dictates that variability should scale with the mean.  As a consequence, parameter-

izations that use such an assumption fail to correctly represent variability brought on by 

nondeterminism (as represented by fluctuations of a response to a constant forcing).  This 

is particularly important because not only must a parameterization include representation 

of the fact that the convective elements within a large grid cell are not always the same 

for a giving forcing, but it must also include a representation of the fact that the relation-

ship of the nondeterministic variability is not a simple function of the mean response to 

the forcing.  Such seemingly minor variations are expected to bias aspects of GCM simu-

lations in ways that can alter the representation of statistical (periodic) features. These 
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types of ideas are well suited for implementation into a parameterization based on a sto-

chastic precept.   

While the equilibrium simulation results are alone useful, we find that there are 

additional layers of complexity to the way in which convection varies in response to a 

forcing if the forcing has a variable component.  With the application of a periodic forc-

ing at varying period lengths and consideration of the simulation results on a series of 

subdomain sizes, it was shown that there is a considerable range of responses to a given 

large-scale forcing that are dependent upon the rate of change in the forcing and in the 

size of the averaging domain.   

Specifically, the analyses show that the more slowly a forcing varies, the more it 

is well approximated by an equilibrium assumption. It was even shown that the introduc-

tion of variability can shift convection into different modes or bias it to be less than its 

expected statistical equilibrium values (see Section 5.3).  While it was seen for a number 

of variables that variability increased with forcing period length, a clear functional rela-

tionship was not able to be defined, due mainly to inconsistent variations between simula-

tions of more rapidly oscillating forcings.  The point at which the transition between be-

ing an acceptable approximation of equilibrium or not occurs is approximately located 

where the timescale of the variation of the large-scale forcing is greater than 30 hours.  

With this periodicity, values measuring convective response in simulations with varying 

forcing very closely match those found in simulations with constant forcing, and the time 

lag between the forcing and the response is below 5% of the length of the forcing period.  

While convective response values are comparatively close for shorter periods (as short as 

8-10 hours for some variables) the time lag is so great that it should not be considered 
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equilibrium. Adding to the complexity were the confirmed nondiagnostic effects of 

lagged responses to forcings that arise due to a number of factors, not the least of which 

is the presence of mesoscale activity, which has the ability to independently sustain and 

propagate convection.  This was clearly manifested in simulated differences in convective 

activity that were dependent upon whether the large-scale forcing was increasing or de-

creasing and also the rate at which it was doing so.   

Further, nondeterministic variability for a given situation is much greater at 

smaller domain sizes; this is the problem of insufficient sample size, which is one that 

grows in importance as grid spacing in GCMs approaches the lower tens of kilometers.  

This relationship was determined to be best described by a logarithmic function of the 

domain area.   The definition of where to draw the line between equilibrium and non-

equilibrium and determinism and non-determinism based on this criterion is somewhat 

subjective, especially in terms of the given weather regime as determined by the vertical 

wind shear.  Based on the statistics for the weather regime presented in this thesis, the 

best recommendation is that the line should be drawn such that the considered area (grid 

box area) is no smaller than about half the domain size used in this thesis.  This is equiva-

lent to about 33,000 km2 or grid spacing slightly larger than 180 km (approximately T80 

spectral resolution).  It is at this point that the coefficient of variation is larger than about 

one half.  This means that the standard deviation is half of the mean.  This seems to be a 

fitting definition of not exactly being deterministic.  Just to put out the numbers, when the 

standard deviation is the same magnitude of the mean, if that is where one may choose to 

draw the line, the computational domain is between a quarter and one 16th of the full do-
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main that was used.  This is somewhere in the vicinity of a 100 km grid spacing (ap-

proximately T125 spectral resolution). 

The simulations showed considerable agreement with previous work (e.g. X92), 

but due to differences in experiment design and a lack of additional work for comparison, 

there is little to say with regard to how these results compare to those obtained previ-

ously.  For that reason alone, this type of analysis should be repeated with additional 

models for verification of the presented results.  The additional call for such a compari-

son as a byproduct of the results of the intercomparison study makes for a very strong 

case for the need for more data.  Current intentions are to proceed with this action using 

SAM (see Chapter 3), which showed considerably more temporal variability in the inter-

comparison simulation and is a documented and readily available model. 

Cumulatively, the results of the performed experiment highlight both the com-

plexity underlying the development of, and the need for, stochastic convective parameter-

ization.  Classical assumptions about quasi-equilibrium are never exact and break down 

altogether when the time scale for changes in the resolved-scale weather is near or less 

than the convective adjustment time.  This is a problem that is made more severe in 

newer high-resolution models (e.g. Arribas 2004; Bechtold et al. 2008) just because 

shorter time scales are inherent in convective systems with smaller spatial scales. The ba-

sics of a statistical approach for the development of a stochastic parameterization as out-

lined at the end of Section 5.27, which are based on the results of the statistical analyses, 

are a likely path for future work, following a necessary complementary analysis using 

another CRM.  Such an approach seems promising in that it captures the effect of statisti-

cal variations in a diagnostic manner given a relatively wide variety of predictors.  Previ-
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ous studies have shown that there is promise in stochastic parameterizations when it 

comes to improvement of GCM simulations (See Chapter 1), and it is likely that this ap-

proach will have a similar effect. 
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Appendix	  1	  –	  TWP-‐ICE	  Simulation	  Data	  List	  
	  
	  

3-‐DIMENSIONAL,	  3-‐HOURLY	   PROFILES,	  10-‐MINUTE	   SCALARS,	  10-‐MINUTE	  
Air	  temperature	   Mean	  air	  pressure	   Mean	  liquid	  water	  path	  
Zonal	  wind	  speed	   Mean	  air	  temperature	   	  	  +	  Max.	  
Meridional	  wind	  speed	   Reference	  air	  density	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐1	  
Vertical	  wind	  speed	   Mean	  zonal	  wind	  speed	   	  	  	  	  	  	  +	  Max.	  
Water	  vapor	  mixing	  ratio	   Mean	  meridional	  wind	  speed	   	  	  	  	  	  	  	  	  	  	  +	  at	  4-‐km	  res.	  
Cloud	  water	  mixing	  ratio	   Min.	  vertical	  wind	  speed	   	  	  	  	  	  	  	  	  	  	  +	  at	  25-‐km	  res.	  
Rain	  water	  mixing	  ratio	   	  	  +	  Max.	  	   	  	  	  	  	  	  	  	  	  	  +	  at	  55-‐km	  res.	  
Ice	  (all	  forms)	  mixing	  ratio	   Mean	  relative	  humidity	   Mean	  ice	  water	  path	  
Relative	  Humidity	   	  	  +	  Min.	   	  	  +	  Max.	  
	   	  	  +	  Max.	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐1	  
	   	  	  +	  Min.	  at	  55-‐km	  res.	   	  	  	  	  	  	  +	  Max.	  
	   	  	  +	  Max.	  at	  55-‐km	  res.	   	  	  	  	  	  	  	  	  	  	  +	  at	  4-‐km	  res.	  
	   Mean	  water	  vapor	  mix.	  rat.	   	  	  	  	  	  	  	  	  	  	  +	  at	  20-‐km	  res.	  
	   	  	  +	  Min.	   	  	  	  	  	  	  	  	  	  	  +	  at	  55-‐km	  res.	  
	   	  	  +	  Max.	   Mean	  surface	  precipitation	  

rate	  
	   	  	  +	  Min.	  at	  55-‐km	  res.	   	  	  +	  Max.	  
	   	  	  +	  Max.	  at	  55-‐km	  res.	   	  	  	  	  	  	  +	  at	  55-‐km	  res.	  
	   Mean	  cloud	  water	  mix.	  rat.	   Mean	  precipitation	  rate	  at	  

2.5	  km	  elevation	  
	   	  	  +	  Max.	   ..+	  Max.	  at	  2.5-‐km	  res.	  
	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐1	  
Fractional	  area	  where	  pre-‐

cipitation	  at	  2.5-‐km	  eleva-‐
tion	  and	  res.	  >	  0.02	  mm	  h-‐1	  

	   	  	  	  	  	  	  +	  Max.	   ..+	  >	  00.20	  mm	  h-‐1	  
	   	  	  	  	  	  	  +	  Max.	  at	  55-‐km	  res.	   ..+	  >	  02.00	  mm	  h-‐1	  
	   Mean	  rain	  water	  mix.	  rat.	   ..+	  >	  20.00	  mm	  h-‐1	  
	   	  	  +	  Max.	   Mean	  cloud	  base	  height	  
	   	  	  +	  Max.	  at	  55-‐km	  res.	   	  	  +	  Min.	  
	   Mean	  ice	  mix.	  rat.	   	  	  +	  Max	  
	   	  	  +	  Max.	   	  	  +	  at	  4-‐km	  res.	  
	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐	  
	  	  +	  at	  55-‐km	  res.	  

	   	  	  	  	  	  	  +	  Max	   Mean	  cloud	  top	  height	  
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	   	  	  	  	  	  	  +	  Max.	  at	  20-‐km	  res.	   	  	  +	  Min.	  
	   	  	  	  	  	  	  +	  Max.	  at	  55-‐km	  res.	   	  	  +	  Max	  
	   Cloud	  fraction	   	  	  +	  at	  4-‐km	  res.	  
	   	  	  +	  vertical	  wind	  >	  0	  m	  s-‐1	   	  	  +	  at	  55-‐km	  res.	  
	   	  	  	  	  	  	  +	  buoyant	   Fractional	  area	  covered	  by	  

cloudy	  columns	  
	   	  	  +	  vertical	  wind	  >	  5	  m	  s-‐1	   Mean	  shortwave	  downwel-‐

ling	  flux	  at	  TOA	  
	   Mass	  flux	  averaged	  over	  

cloudy	  grid	  cells	  with	  verti-‐
cal	  wind	  >	  0	  m	  s	  -‐1	  

Mean	  shortwave	  upwelling	  
flux	  at	  TOA	  

	   	  	  +	  buoyant	   	  	  +	  Min.	  at	  4-‐km	  res.	  
	   Mass	  flux	  averaged	  over	  

cloudy	  grid	  cells	  with	  verti-‐
cal	  wind	  >	  5	  m	  s	  -‐1	  

	  	  +	  Max.	  at	  4-‐km	  res.	  

	   Mean	  boundary	  layer	  tracer	  
mixing	  ratio	  

Mean	  longwave	  upwelling	  
flux	  at	  TOA	  

	   	  	  +	  Min.	   	  	  +	  Min.	  at	  4-‐km	  res.	  
	   	  	  +	  Max.	   	  	  +	  Max.	  at	  4-‐km	  res.	  
	   Mean	  lower-‐troposphere	  

tracer	  mixing	  ratio	  
Mean	  latent	  heat	  flux	  at	  sur-‐

face	  (excluding	  precipita-‐
tion)	  

	   	  	  +	  Min.	   	  	  +	  Min.	  
	   	  	  +	  Max.	   	  	  +	  Max.	  
	   Mean	  mid-‐troposphere	  tracer	  

mixing	  ratio	  
Mean	  sensible	  heat	  flux	  at	  

surface	  
	   	  	  +	  Min.	   	  	  +	  Min.	  
	   	  	  +	  Max.	   	  	  +	  Max.	  
	   Mean	  upper-‐troposphere	  

tracer	  mixing	  ratio	  
	  

	   	  	  +	  Min.	   	  
	   	  	  +	  Max.	   	  
	   Mean	  shortwave	  downwel-‐

ling	  radiative	  flux	  
	  

	   	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  at	  55-‐km	  resolution	   	  
	   	  	  +	  Max.	   	  
	   	  	  	  	  	  	  +	  at	  55-‐km	  resolution	   	  
	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐	  
	  

	   	  	  	  	  	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  Max	   	  
	   Mean	  shortwave	  upwelling	  

radiative	  flux	  
	  

	   	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  at	  55-‐km	  resolution	   	  
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	   	  	  +	  Max.	   	  
	   	  	  	  	  	  	  +	  at	  55-‐km	  resolution	   	  
	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐	  
	  

	   	  	  	  	  	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  Max	   	  
	   Mean	  longwave	  downwelling	  

radiative	  flux	  
	  

	   	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  at	  55-‐km	  resolution	   	  
	   	  	  +	  Max.	   	  
	   	  	  	  	  	  	  +	  at	  55-‐km	  resolution	   	  
	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐	  
	  

	   	  	  	  	  	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  Max	   	  
	   Mean	  longwave	  upwelling	  

radiative	  flux	  
	  

	   	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  at	  55-‐km	  resolution	   	  
	   	  	  +	  Max.	   	  
	   	  	  	  	  	  	  +	  at	  55-‐km	  resolution	   	  
	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐	  
	  

	   	  	  	  	  	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  Max	   	  
	   Mean	  shortwave	  broadband	  

heating	  rate	  
	  

	   	  	  +	  Min.	   	  
	   	  	  +	  Max.	   	  
	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐	  
	  

	   	  	  	  	  	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  Max.	   	  
	   Mean	  longwave	  broadband	  

heating	  rate	  
	  

	   	  	  +	  Min.	   	  
	   	  	  +	  Max.	   	  
	   	  	  +	  where	  surface	  precipita-‐

tion	  rate	  <	  0.02	  mm	  h-‐	  
	  

	   	  	  	  	  	  	  +	  Min.	   	  
	   	  	  	  	  	  	  +	  Max.	   	  
	   Mean	  latent	  heating	  rate	   	  
	   Mean	  water	  vapor	  tendency	   	  
	   Mean	  large-‐scale	  water	  va-‐

por	  horizontal	  flux	  conver-‐
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gence	  
	   Mean	  large-‐scale	  water	  va-‐

por	  vertical	  flux	  conver-‐
gence	  

	  

	   Mean	  water	  vapor	  resolved	  
and	  subgrid-‐scale	  vertical	  
flux	  convergence	  

	  

	   Mean	  water	  vapor	  tendency	  
from	  exchange	  with	  hy-‐
drometeors	  

	  

	   Mean	  water	  vapor	  tendency	  
from	  nudging	  

	  

	   Mean	  hydrometeor	  tendency	   	  
	   Mean	  large-‐scale	  hydrome-‐

teor	  vertical	  flux	  conver-‐
gence	  

	  

	   Mean	  hydrometeor	  resolved	  
and	  subgrid-‐scale	  vertical	  
flux	  convergence	  

	  

	   Mean	  sedimentation	  flux	  
convergence	  of	  hydrome-‐
teors	  

	  

	   Mean	  potential	  temperature	  
tendency	  

	  

	   Mean	  large-‐scale	  potential	  
temperature	  horizontal	  
flux	  convergence	  

	  

	   Mean	  large-‐scale	  potential	  
temperature	  vertical	  flux	  
convergence	  

	  

	   Mean	  potential	  temperature	  
resolved	  and	  subgrid-‐scale	  
vertical	  flux	  convergence	  

	  

	   Mean	  potential	  temperature	  
tendency	  from	  microphys-‐
ics	  

	  

	   Mean	  potential	  temperature	  
tendency	  from	  radiative	  
heating	  

	  

	   Mean	  potential	  temperature	  
tendency	  from	  nudging	  
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