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ABSTRACT 

 

 

 

SIMULATION MODELING AS A TOOL FOR THE CONTROL OF FOOT-AND-MOUTH DISEASE IN ENDEMIC 

REGIONS 

 

 

 

Foot and mouth disease (FMD) is endemic in many parts of the world (Anjum et al., 2006; Farooq et 

al., 2018, 2017a, 2017b, 2017c, 2016; Gleeson, 2002; Jamal et al., 2010; Navid et al., 2018; Rweyemamu 

et al., 2008; Yano et al., 2018), and it is associated with substantial economic losses (Ferrari et al., 2014; 

Jemberu et al., 2014; Knight-Jones and Rushton, 2013), which amount to USD 6.5 and 21 billion, and > 

USD 1.5 billion in endemic and disease-free settings, respectively (Knight-Jones and Rushton, 2013). 

International organizations such as the Food and Agriculture Organization of the United Nations (FAO), 

the World Organization for Animal Health (OIE), the European Commission for the Control of Foot and 

Mouth Disease (EuFMD) have called for a more targeted control strategy in the ‘Progressive Control 

Pathway for FMD’ to reduce the disease burden and high economic costs associated with it (Abbas et al., 

2014; Jamal and Belsham, 2013; Paton et al., 2009; Rweyemamu et al., 2008a; Sumption et al., 2012).  

Simulation modeling has become common for investigating the spread of highly contagious diseases 

such as FMD, and for conducting risk assessments (Dorjee et al., 2016; Guitian and Pfeiffer, 2006; Kao, 

2002; Keeling, 2005; Morris et al., 2002). Many models have been developed to mimic the spread of 

FMD in specific regions or countries (Bates et al., 2003d; Garner and Beckett, 2005; Harvey et al., 2007b; 

Stevenson et al., 2013; Wongsathapornchai et al., 2008). In disease-free countries, models are used to 

identify gaps in the preparedness such as estimating required resources (Garner et al., 2016; Roche et 

al., 2014), whereas, in endemic countries, models can be useful to compare mitigation strategies to 

guide future directions of FMD control program (Souley Kouato et al., 2018).   
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Most of the reported literature on FMD simulation models is, however, associated with disease-free 

countries with minimal application of these models in countries with an endemic status of FMD 

(Pomeroy et al., 2017). Use of simulation models to endemic settings, therefore, would be beneficial in 

advancing our knowledge and understanding of FMD dynamics, and to facilitate both local and global 

control of FMD (Pomeroy et al., 2017). The overall goal of this dissertation was to build and demonstrate 

the application of spatially-explicit stochastic simulation models as a tool to evaluate mitigation 

strategies for FMD control in endemic settings. 

Most of the reported literature on FMD simulation models is, however, associated with disease-free 

countries with minimal application of these models in countries with an endemic status of FMD 

(Pomeroy et al., 2017). Chapter 1 of this dissertation followed the guidelines (Moher et al., 2009) 

established in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The 

aim was to review the existing published original research on spatially explicit stochastic simulation 

models (SESS) of FMD spread, with a specific focus on assessing these models for their application in 

FMD-endemic settings. The goal was to identify the specific components of endemic FMD needed to 

adapt the SESS models for application in FMD-endemic settings. It was revealed that existing SESS 

should be adapted by incorporating multiple co-circulating serotypes, livestock population dynamics, 

and routine prophylactic vaccination (RPV) to extend their potential use in FMD-endemic settings. 

Application of SESS models require datasets on the location and population of individual livestock 

holdings, and these data are often not available for developing countries. To overcome this lack of data, 

Chapter 2 of this dissertation demonstrated the methodology to generate these data synthetically for 

livestock in Pakistan and Thailand. The approach consisted of three main steps, i.e., microsimulating 

aggregate census data, creating geospatial probability surface, and, finally, distributing the 

microsimulated dataset on the geospatial probability surface. The resulting simulated dataset is a crucial 
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input for the application of SESS models in endemic regions for modeling FMD spread and evaluating 

mitigation strategies for its control. 

The use of SESS models in endemic regions requires adaptation of these models to incorporate 

necessary components of endemic FMD such as livestock population dynamics, multiple co-circulating 

serotypes, and routine prophylactic vaccination (RPV). Chapter 3 of this dissertation aimed to modify the 

underlying modeling framework of the North American Animal Disease Spread Model (NAADSM) to 

include RPV as an additional mitigation strategy for FMD control. The resulting framework is called 

“Simulation Model for Infectious Animal Diseases in Endemic Regions (SMIAD-ER).” The SMIAD-ER is a 

uniquely equipped model to simulate the spread and evaluate alternative mitigation strategies for 

infectious animal diseases such as FMD in endemic regions. A demonstration of the prototype version of 

SMIAD-ER to FMD in Punjab, Pakistan, revealed that there was no aberrant behavior of FMD spread, 

which gave confidence that modification in underlying code did not result in any unintended change to 

the framework. Besides, the implementation of RPV as a mitigation strategy contributed to building 

regional herd immunity for FMD control. 

Model building is an iterative process which moves from being simple to add complexity to the 

framework gradually. The prototype version of SMIAD-ER did not have the flexibility to incorporate 

capacity and coverage for RPV. Since the capacity and coverage are critical components of vaccination 

programs, Chapter 4 of this dissertation aimed to enhance SMIAD-ER by modifying the underlying 

modeling framework to allow users with the flexibility to parameterize capacity and coverage for RPV to 

mimic the situation of a control program in endemic regions more realistically. As a demonstration for 

Sindh province, Pakistan, four scenarios, i.e., baseline, enhanced movement restrictions, improved 

disease detection, enhanced RPV, were parameterized to compare two performance indices, i.e. 

outbreak duration, vaccine immune holdings by the end of the outbreak, and the ratio of these two 

indices. Results indicated that improved FMD detection scenario resulted in the least number of 



v 

 

holdings vaccinated with a day increase in outbreak duration followed by baseline, enhanced movement 

restriction, and enhanced RPV scenario. The results should, however, be considered for decision-making 

in line with the limitations of the study and assumptions of SMIAD-ER. 

Like any study, there are limitations to the approach taken by this dissertation. Chapter 5 of this 

dissertation aimed to present the limitations of the approach and to suggest recommendations for 

future work. The limitations, for instance, include reliance on the opinions of a very limited number of 

veterinarians to parameterize SMIAD-ER, the use of FMD outbreaks data as a proxy for prevalence. 

Future work should select a large number of stakeholders to glean model parameters, obtain reliable 

estimates on the FMD prevalence preferably by production-type and region, reach a consensus in expert 

opinions through the Delphi approach. Moreover, endemic countries need to strengthen their 

monitoring and surveillance systems, implement stricter movement restrictions through legislation and 

public awareness, and implement aggressive vaccination campaigns to reduce the burden FMD to 

ensure economic gains for future. Also, a graphical user interface should be added to SMIAD-ER to 

facilitate novice modelers from endemic settings to benefit from the model. Besides, SMIAD-ER should 

be enhanced to equip it with the capability to model multiple co-circulating serotypes and livestock 

population dynamics since these are unequivocally the necessary components of endemic FMD.  
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CHAPTER 1: CHALLENGES TO THE APPLICATION OF SPATIALLY EXPLICIT STOCHASTIC SIMULATION 

MODELS FOR FOOT-AND-MOUTH DISEASE CONTROL IN ENDEMIC SETTINGS: A SYSTEMATIC REVIEW1 

 

 

 

Summary 

Simulation modeling has become common for estimating the spread of highly contagious animal 

diseases. Many models have been developed to mimic the spread of foot and mouth disease (FMD) in 

specific regions or countries to conduct risk assessment, to analyze outbreaks using historical data or 

hypothetical scenarios, to assist in policy decisions during epidemics, and policy formulation in 

preparedness planning, and in evaluating economic impacts. Most of the available FMD simulation 

models were designed for and applied in disease-free countries, while there has been limited use of 

such models in FMD endemic countries. 

The objective of this paper is to report the findings from a study conducted to review the existing 

published original research literature on spatially explicit stochastic simulation models (SESS) of FMD 

spread, with a specific focus to assess these models for their potential use in endemic settings. The goal 

                                                           
1 This chapter of the dissertation is intended for publication In the Preventive Veterinary Medicine 

journal and is formatted in line with journal requirements. The manuscript has been submitted to the 

journal on July 23, 2019. 
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is to identify the specific components of endemic FMD needed to adapt the SESS models for their 

potential application in FMD endemic settings. 

This systematic review follows the PRISMA guidelines, and three databases were searched, which 

resulted in 1176 citations. Eighty citations finally met the inclusion criteria and were included in the 

qualitative synthesis, which identified nine unique SESS models. These SESS models were assessed for 

their potential application in endemic settings. All of the assessed SESS models can be adapted for use in 

FMD endemic countries by modifying the underlying code to include multiple co-circulating serotypes, 

routine prophylactic vaccination (RPV), and livestock population dynamics to more realistically mimic 

the endemic characteristics of FMD. 

The application of SESS models in endemic settings will help evaluate strategies for FMD control, 

which will improve livestock health, provide economic gains for producers, help alleviate poverty and 

hunger, and will complement efforts to attain Sustainable Development Goals and the 2030 Agenda.  

Highlights 

• Endemic countries are underrepresented in the literature on SESS models for FMD 

• SESS models can mimic FMD spread in disease-free settings, but not in endemic settings 

• SESS models should be adapted to extend their application in endemic settings 

• Their use in endemic settings will guide future directions for FMD control programs 

• FMD control will be beneficial for animal health, food security, and economic gains 

Keywords 

Foot and Mouth Disease, FMD, Systematic review, Modeling, Spatially explicit, Endemic, Simulation, 

Stochastic 
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1  Introduction 

Foot and mouth disease is endemic in many parts of the world (Anjum et al., 2006; Farooq et al., 

2018, 2017a, 2017b, 2017c, 2016; Gleeson, 2002; Jamal et al., 2010; Navid et al., 2018; Rweyemamu et 

al., 2008b; Yano et al., 2018), and is associated with substantial  economic losses (Ferrari et al., 2014; 

Jemberu et al., 2014; Knight-Jones and Rushton, 2013). The costs associated with production decline and 

vaccination in endemic regions amount to between USD 6.5 and 21 billion, and the annual outbreak-

associated losses in FMD-free countries and zones exceed USD 1.5 billion (Knight-Jones and Rushton, 

2013). International organizations such as the Food and Agriculture Organization of the United Nations 

(FAO), the World Organization for Animal Health (OIE), the European Commission for the Control of Foot 

and Mouth Disease (EuFMD) have called for a more targeted control strategy in the ‘Progressive Control 

Pathway for FMD’ to reduce the disease burden and high economic costs associated with it (Abbas et al., 

2014; Jamal and Belsham, 2013; Paton et al., 2009; Rweyemamu et al., 2008a; Sumption et al., 2012).  

Simulation modeling has become common for investigating the spread of highly contagious diseases 

and for conducting risk assessments (Dorjee et al., 2016; Guitian and Pfeiffer, 2006; Kao, 2002; Keeling, 

2005; Morris et al., 2002). These models can be categorized as deterministic or stochastic based on the 

way randomness incorporated, and non-spatial or spatially-explicit based on how spatial relationships 

are considered (Carpenter, 2011). Spatial models require “locational data” for herds of animals and 

incorporate spatial proximity and spatial relationships in estimating disease risk (Carpenter, 2011). The 

spatially explicit stochastic simulation models incorporate uncertainty in the inputs and outputs 

parameters, heterogeneity in disease processes, and integrate geographic locations and spatial 

proximity of herds that affect their relative exposure and transmission risk (Carpenter, 2011; Patyk et al., 

2011). 

Many models have been developed to mimic the spread of FMD in specific regions or countries 

(Bates et al., 2003b; Garner and Beckett, 2005; Harvey et al., 2007; Stevenson et al., 2013; 
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Wongsathapornchai et al., 2008). These models have been used for risk assessment, to analyze 

outbreaks using historical data or hypothetical scenarios, to assist in policy decisions during outbreaks, 

and policy formulation in preparedness planning, and in evaluating economic impacts (Bates et al., 

2003a; Dürr et al., 2014; Ferguson et al., 2001a; Keeling et al., 2001; McReynolds et al., 2014; Morris et 

al., 2001; Tomassen et al., 2002; Yoon et al., 2006a). In disease-free countries, models are used to 

identify gaps in the preparedness such as estimating required resources (Garner et al., 2016a; Roche et 

al., 2014), whereas, in endemic countries, models can be useful to compare mitigation strategies to 

guide future directions of FMD control program (Souley Kouato et al., 2018).   

Most of the reported literature on FMD simulation models is, however, associated with disease-free 

countries with minimal application of these models in countries with an endemic status of FMD 

(Pomeroy et al., 2017). The development of simulation models of infectious livestock diseases such as 

FMD in endemic settings is enormously challenging for the reasons such as the lack of interest and 

understanding of perceived needs, political or economic constraints, insufficient data to support model 

parameters, and complexity of FMD epidemiology in endemic settings (Brooks-Pollock et al., 2015; 

Knight-Jones et al., 2016b). For instance, routine prophylactic vaccination (RPV) is practiced in endemic 

settings to control FMD, but factors such as duration of natural immunity, the rate of vaccine-induced 

antibody waning and the rate of disease reintroduction influence FMD control and are critical 

determinants of the success of vaccination programs (Ringa and Bauch, 2014). Also, the circulation of 

multiple serotypes of FMD virus is a common characteristic in endemic settings (Ahmed et al., 2018; 

Ullah et al., 2017). The transmission patterns and duration of immunity are variable for different 

serotypes (Pomeroy et al., 2015).  Application of simulation models to endemic settings, therefore, 

would be beneficial in advancing our knowledge and understanding of FMD dynamics, and to facilitate 

both local and global control of FMD (Pomeroy et al., 2017).  
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The objective of this paper was to report the findings from a study conducted to review the existing 

published original research literature on spatially explicit stochastic simulation models (SESS) of FMD 

spread, with a specific focus on assessing these models for their potential use in endemic settings. The 

goal was to identify the specific components of endemic FMD needed to adapt the SESS models for their 

potential application in FMD endemic settings. The use of SESS models in endemic settings will help 

evaluate strategies for FMD control which will improve livestock health, provide economic gains for 

producers, help alleviate poverty and hunger, which and will complement efforts to attain Sustainable 

Development Goals and the 2030 Agenda.  

2 Methods 

2.1 Protocol 

This systematic review follows the guidelines established in the Preferred Reporting Items for 

Systematilc Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009).  

2.2 Definition of SESS 

For this systematic review, the definition of a SESS model was developed to facilitate the process of 

identifying the search items that could be included in the qualitative synthesis (adapted from Carpenter, 

2011; Patyk et al., 2011). A SESS model was defined as “one that takes input parameters in the form of 

statistical distributions, consequently generating a distribution of values for results and incorporates 

geographic locations and spatial proximity of animals or herds that affect their relative exposure and 

transmission risk.”   

2.3 Eligibility criteria 

Any original research in the English language published during any timespan that described or used 

a SESS model for simulating FMD spread or evaluating mitigation in any part of the world would be 

included. 
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2.4 Information sources and search strategy 

2.4.1 Databases 

Three databases, i.e., Google Scholar (GS), PubMed, and Web of Science (WoS), were chosen to 

identify the relevant literature.  

2.4.2 Search strategy 

All three databases were searched by the primary author on the same day, i.e., October 7, 2018, to 

identify the literature. The keywords used were ((foot and mouth disease OR FMD OR FMDV) AND 

(stochastic AND simulation)). These keywords were consistent across all databases searched. These 

keywords were chosen to be sensitive in capturing all possible publications, including these keywords. 

The resulting citations were managed in Microsoft Excel (2016).  

2.5 Screening and inclusion/exclusion criteria 

The citations identified through the database search were first screened (Step 1-3) and then 

assessed to identify SESS models for FMD (step 4-5). Eventually, a flowchart (Figure 1.1) was created  as 

per PRISMA guidelines (Moher et al., 2009).  

2.5.1 Screening criteria 

The search results were screened in three steps. In step 1, citations were checked for duplicates 

across databases and within the database. All duplicates were removed from the pool of citations at this 

stage. In the second step, citations were screened for their publication language. Citations not in the 

English language were removed. In step 3, citations were checked for their document type. Only the 

publications that were original research were retained, and all other document types were excluded 

because their validity was challenging to evaluate. 

2.5.2 Inclusion criteria 

In step 4, the title and abstract of remaining citations were evaluated to determine if they contained 

the word(s) foot and mouth disease, FMD or FMDV, and those citations that did not include these words 
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were excluded. The rationale for this strict criterion was to move from being sensitive as indicated 

above to be specific to the disease of interest, i.e., FMD. 

In step 5, remaining citations were evaluated to determine if they describe or use a SESS model to 

understand FMD spread, and to evaluate mitigation strategies. Citations that did not meet this criterion 

were excluded, and the remaining citations were selected for qualitative synthesis. 

The remaining citations were grouped based on the unique SESS model they described or used. An 

additional group was created for citations that compared different models to evaluate alternative 

mitigation strategies and aid in decision making.   

2.6 Assessment of final citations and data extraction 

Each unique SESS was then evaluated for its assumptions, epidemiologic design with specific 

emphasis on its application in endemic settings. Specifically, each SESS model was assessed for its ability 

to model multiple serotypes of FMD virus in parallel, the range of mitigation strategies (emergency 

vaccination, RPV, stamping-out), and livestock population dynamics. These factors were chosen because 

of their epidemiologic significance in endemic FMD. 

After evaluation of each SESS, the data on various features were extracted for comparison of 

different SESS. Each SESS was then summarized, and limitations in each SESS were highlighted. Finally, 

suggestions were made for adaptation of the SESS models for their potential use in endemic settings. 

3 Results 

Figure 1.1 shows the flow chart that summarizes the process of identifying citations from different 

databases, screening of citations, and assessment against inclusion criteria. 

3.1 Database searches and screening 

The database search resulted in 1176 accessible citations: 1011, 39, and 126 from GS, PubMed, and 

WoS, respectively. In step 1, all of the 39 citations from PubMed and 97 citations from WoS were 
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identified as duplicate with GS citations. Out of 1011 GS citations, four were duplicated within GS. All 

140 duplicate citations were removed.  

In step 2, the remaining 1036 citations were screened for the language of their publication, and 22 were 

removed because they were not in the English language. In step 3, the remaining 1014 citations were 

checked for document type, and 287 were excluded because they were not published original research. 

3.2 Inclusion criteria 

After screening, of the remaining 727 citations, 647 were excluded because the citations either did 

not contain the word(s) foot and mouth disease, FMD, FMDV in their title or abstract, or did not 

describe or use a SESS for FMD, and hence failed to meet the inclusion criteria. The remaining 80 

citations were included in the qualitative synthesis.   

3.3 Unique SESS models 

Nine unique SESS models were identified, and relevant citations were grouped in Table 1.1. Each 

unique SESS model was assessed for its assumptions, epidemiologic design with specific emphasis on its 

application in endemic settings.  

3.4 Top five SESS models 

Below is a short description of the top five SESS models (based on the number of citations identified 

in the study) with emphasis on their suitability for the general aim of this study.  For a more detailed 

description of these SESS models, readers are referred to the original citations specified in Table 1.1. 

3.4.1 Warwick model 

In response to an outbreak of FMD that hit the UK in 2001, a stochastic, spatial model was 

developed to simulate between farm spread of FMD (Keeling et al., 2001). The model was designed to 

act as a decision support tool during the 2001 epidemic. Since then, this SESS model has undergone 

various adaptations (Keeling et al., 2003; Tildesley et al., 2006) and is now termed the Warwick model. 
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The Warwick model has been used for FMD to: understand predictors of transmission risk (Savill 

et al., 2006), indentify high risk areas (Le Menach et al., 2005), understand spatio-temporal process 

(Diggle, 2006), evaluate mitigation strategies (Tildesley et al., 2012, 2009), determine optimal control 

strategies (Tildesley and Keeling, 2008; Tildesley and Ryan, 2012), guide policy makers (Porphyre et al., 

2013), assist in real-time policy making (Probert et al., 2018), understand effect of vaccine availability 

constraints on epidemiologic and economic outcomes (Porphyre et al., 2018), estimate prevalence of 

asymptomatic carriers (Arnold et al., 2008), understand effect of livestock density vs. farm density 

(Meadows et al., 2018), assess agreement between model outputs and epidemic data (Tildesley et al., 

2008), understand impact of resolution of spatial data to inform control policies (Tildesley et al., 2010), 

determine the predictor of findl epidmeic size (Tildesley and Keeling, 2009), and computation 

advancement (Sellman et al., 2018). 

3.4.2 DADS model 

The Davis Animal Disease Simulation (DADS) model is a stochastic, spatial simulation model to 

simulate the spread and evaluate the alternative mitigation strategies for FMD control in a designated 

geographical area (Bates et al., 2003a, 2003b). It has been used to: estimate FMD spread (Carpenter et 

al., 2007; Zingg et al., 2015), examine epidemic and economic impacts (Carpenter et al., 2011), evaluate 

mitigation strategies (Dickey et al., 2008; Dürr et al., 2014; Pineda-Krch et al., 2010), evaluate the effect 

of animal movement tracing (Mardones et al., 2013), and to examine the importance to stochasticity 

and modifying the assumption of homogeneous mixing (Carpenter, 2011). 

An optimal control model was formulated based on the DADS structure to evaluate the control 

strategies for FMD in the USA (Kobayashi et al., 2007a, 2007b). The DADS has been recently modified at 

the Technical University of Denmark and is now termed as DTU-DADS. This modified DTU-DADS is being 

used in FMD free countries to understand the spread of FMD as a result of a hypothetical incursion, 
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evaluation of mitigation strategies and helping with contingency planning (Boklund et al., 2017, 2013; 

Dórea et al., 2017; Halasa et al., 2015, 2014). 

3.4.3 AusSpread model 

AusSpread is a stochastic, spatial simulation model that operates in a GIS environment to 

simulate between herds the spread of FMD (Beckett and Garner, 2007; Garner and Beckett, 2005). 

AusSpread is the outcome of more than ten years of extensive work of the Australian Government’s 

Department of Agriculture, Fisheries, and Forestry (Garner and Lack, 1995a, 1995b). The intention 

behind this extensive effort was to have a model that could be used as a decision-support tool for 

infectious diseases like FMD that pose the most significant economic threat to Australia (Productivity 

Commission, 2002).  

Since the development of AusSpread model, it has continuously been used in FMD-free regions 

to: evaluate alternative mitigation strategies East et al., 2014; Elbakidze et al., 2009; Ward et al., 2009), 

assist in preparedness planning (East et al., 2016), estimate resources (Garner et al., 2016a; Roche et al., 

2014), evaluate benefits of effective traceability system (Hagerman et al., 2013) and early detection 

(Garner et al., 2016b). 

3.4.4 ISP model 

InterSpread Plus (ISP) is a stochastic, spatial simulation model of between farm spread of 

infectious diseases such as FMD (Stevenson et al., 2013). The ISP was developed to mimic the spread of 

FMD in New Zealand, a country free of FMD, to aid in preparedness planning and decision making 

(Owen et al., 2011; Stevenson et al., 2013). The ISP is a revised version of the InterSpread (IS) model that 

has been used to model alternative mitigation strategies during the 2001 FMD epidemic in the UK 

(Morris et al., 2001).  

The ISP has been used for FMD to: evaluate alternative mitigation strategies (Sanson et al., 

2017; Velthuis and Mourits, 2007; Wada et al., 2017; Yoon et al., 2006), assist in design of contingency 
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plan (Martínez-López et al., 2010), and evaluate benefits of effective traceability system (Sanson et al., 

2014). 

3.4.5 NAADSM model 

The North American Animal Disease Spread Model (NAADSM) is a stochastic, spatial model 

developed in the US with the capability of modeling between farms spread of infectious animal diseases 

such as FMD, CSF (Harvey et al., 2007; Schoenbaum and Disney, 2003).  

The NAADSM is the only open-source SESS model with a friendly user interface, and it has been 

used for FMD to: understand FMD spread and evaluate alternative mitigation strategies (Gale et al., 

2015), identify optimal vaccination strategy (McReynolds et al., 2014), evaluate economic impacts 

(Pendell et al., 2015; Schroeder et al., 2015), and understand the effect of model complexity on model 

prediction Zagmutt et al., 2016). 

3.5 Assessment of SESS models 

The SESS models assessed in this systematic review are equipped to simulate the impact of 

emergency vaccination because of their design and underlying assumption of application in epidemic 

settings, which are otherwise disease-free. ‘Routine Prophylactic Vaccination (RPV)’ is practiced 

cyclically in endemic settings to control FMD, hence application of these SESS models in such settings 

would require modification of SESS models to equip them with a capability to evaluate the impact of 

RPV on FMD dynamics.  

All of the assessed SESS models were designed and applied in for FMD-free countries to mimic the 

spread of FMD and evaluate alternative mitigation strategies in the face of the incursion. In such an 

application, modelers assume that there is be only one circulating serotype and use the progression 

parameters for that serotype. In endemic settings, however, co-circulation of multiple serotypes is a 

crucial component of FMD epidemiology, which needs to be added as an additional option for the 

modeler to include progression parameters for multiple serotypes in parallel.  
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Additionally, the assessed SESS models do not take into consideration population dynamics, i.e., 

births and deaths that might be occurring during the simulation, except in the case of stamping-out. Any 

application of these models in endemic settings would require the addition of population dynamic 

parameters.  

3.6 Multiple SESS models 

As indicated in Table 1.1, ten citations reported using more than one SESS model. These studies 

ranged from model comparisons and country comparisons (Boklund et al., 2013; Dubé et al., 2007; 

Garner et al., 2016c; Hagersman et al., 2012; Halasa et al., 2014; Rawdon et al., 2018; Roche et al., 2015; 

Sanson et al., 2011) to ensemble modeling and structured decision-making (Probert et al., 2016; Webb 

et al., 2017). The model comparison highlights the consistency in outcomes from commonly used SESS 

models. These findings are essential for increasing end-user confidence in model outcomes and their use 

in informed decision making.  

4 Discussion 

Published original research describing or using SESS model(s) were assessed in this study with the 

goal to identify the specific components of endemic FMD needed to adapt the SESS models for their 

potential application in FMD endemic settings. It should be emphasized that this current study did not 

review all models, but only spatially explicit, stochastic simulation (SESS) models used for FMD as 

identified through the database search. Although all of the assumptions of these SESS models were 

reviewed, only the elements necessary for endemicity were considered. A potential bias could have 

arisen from restricting this review to the English language, published original research articles, and the 

specific category of models included, i.e., SESS. Many different types of models could have been 

selected, ranging from deterministic to automata models, to non-spatial models. It should be 

emphasized, that only spatially explicit models were included because of their ability to account for 

uncertainty in the inputs and outputs, the importance of geography, demography and heterogeneity in 
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disease processes, and their role in the choice of disease control options. We, however, acknowledge 

the work of all models on FMD, and our decision to include one type of model does not imply that other 

models were not useful. Other models may be more suitable for the specific objectives for which they 

were constructed, and for their intended use. 

It was surprising to identify nine SESS models which leads to think why there was a need for such a 

large number of models. One potential reasoning for this lies in the fact that different kinds of data may 

be available in different circumstances to simulate FMD spread. For example, the Warwick model 

(Keeling et al., 2001) uses a transmission kernel method to model FMD spread which encompasses all 

possible routes of spread. On the other hand, models such as NAADSM (Harvey et al., 2007), incorporate 

different modes of diseases spread such as contact spread and airborne. Second potential reason for a 

large number of SESS models is the level of complexity models incorporate based on local animal 

husbandry, and perceived disease epidemiology in case of incursion. For example, AusSpread model 

(Beckett and Garner, 2007; Garner and Beckett, 2005) allows to incorporate animal assembly areas and 

wildlife in the disease spread, while NAADSM (Harvey et al., 2007) do not incorporate congregation 

points and ignores effect of wildlife. Despite differences in the way SESS models incorporate disease 

spread, animal husbandry and perceived epidemiology, studies conducted on model comparisons and 

country comparisons (Boklund et al., 2013; Dubé et al., 2007; Garner et al., 2016c; Hagersman et al., 

2012; Halasa et al., 2014; Rawdon et al., 2018; Roche et al., 2015; Sanson et al., 2011) highlight the 

consistency in outcomes from commonly used SESS models. These findings are essential to increase 

end-user confidence in model outcomes and their usefulness in informing decision making. 

Foot and mouth disease is endemic in several parts of the world (Anjum et al., 2006; Gleeson, 2002; 

Jamal et al., 2010; Rweyemamu et al., 2008b), and it is associated with substantial economic losses 

(Ferrari et al., 2014; Jemberu et al., 2014; Knight-Jones and Rushton, 2013). Livestock population 

dynamics, multiple co-circulating serotypes, and routine prophylactic vaccination are key characteristics 
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of endemic FMD (Ahmed et al., 2018; Hunter, 1998; Knight-Jones et al., 2016a; Ullah et al., 2017). 

Published original research describing or using SESS model(s) for understanding the dynamics of FMD 

and evaluating mitigation strategies for its control were qualitatively assessed for their ability to mimic 

endemic FMD and potential application in endemic settings. None of the SESS models mentioned in 

Table 1.1 and described above are applicable in endemic settings in their current form, taking into 

consideration the characteristics of endemic FMD. The sole reason for this is that these SESS models 

were developed with an aim to mimic the characteristics of FMD in disease-free settings, and the 

assumptions of these models vary from the features of FMD in endemic settings. For instance, stamping-

out is often employed as a mitigation strategy in disease-free countries. However, it may not be applied 

as an appropriate mitigation strategy in endemic settings because of limited resources and the inability 

to pay compensation to livestock owners (Hunter, 1998).  

All of the SESS models described in this review can model emergency vaccination as a mitigation 

strategy, but none of them can model RPV which  is often cyclically practiced in endemic settings and is 

relied upon as one of the key measures for control and eradication (Cai et al., 2014; Doel, 2003; Hunter, 

1998; Knight-Jones et al., 2016a). The reason behind this drawback is very straightforward - models are a 

simplification of a complex system. Since these SESS models are designed to simplify the system of FMD 

in disease-free countries, they do not include RPV as a mitigation strategy. For adapting a SESS model 

such as NAADSM for endemic settings, it must have the option to model the effect of RPV as part of 

FMD control strategies. The adapted SESS models should have flexible user-defined options for 

specifying the frequency of vaccination. The option to alter the effectiveness of vaccines should be 

available. The use of the same vaccine in emergency situations could show more effectiveness when 

compared to RPV in endemic settings (Elnekave et al., 2013). Vaccine factors such as maintenance of 

cold chain, type of serotype, quality control of vaccine and duration of immunity greatly influence its 

effectiveness (Jamal et al., 2014, 2008; Ringa and Bauch, 2014). Although the SESS models include 
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emergency vaccination, the modified SESS must have the option to alter the parameters associated with 

RPV, such as the inclusion of duration of vaccine immunity, coverage, efficacy, and capacity, in order to 

more realistically mimic endemic FMD. 

The FMD-free countries usually employ SESS models for preparedness planning and as a decision 

support tool. To inform these decisions, modelers and epidemiologists do not include multiple co-

circulating serotypes; hence, parameters for only one serotype are used to model the spread. Although 

all the SESS models realistically mimic the underlying system of FMD-free countries, they have a limited 

ability to be applied to the conditions when the disease is endemic.  Multiple co-circulating serotypes, 

for instance, are common in endemic countries (Ahmed et al., 2018; Ullah et al., 2017; Vosloo et al., 

2002) which complicates disease spread and ultimately its control and eradication. The existing SESS 

model(s) such as NAADSM need to be adapted by changing the underlying code to include options for 

modeling multiple co-circulating serotypes. Simplifying assumptions should be made to find the balance 

between model realism vs. complexity while modeling multiple co-circulating serotypes. The adaptation 

should be coupled with sensitivity analysis and adapted SESS models must undergo rigorous model 

verification and validation (Reeves et al., 2011).  

In FMD-free countries, when these SESS models are used for preparedness planning, culling is 

usually employed with or without emergency vaccination. These strict actions in conjunction with 

disease tracing, surveillance, and availability of resources have led to prompt disease control and 

subsequent eradication, which results in simulations ending in a very short time and population 

dynamics having little impact. Therefore, modelers have not considered population dynamics during 

simulation runs because of it being close to the reality of disease-free settings. Furthermore, when SESS 

models would be used in endemic settings, FMD outbreaks would continue for a longer duration, and it 

would take longer to control the disease; therefore, eradication cannot be considered a short-term goal. 

Population turnover is associated with FMD dynamics, such as herd-immunity. As newborns are added 
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to the herd, it increases the proportion of unvaccinated naive hosts, thus decreasing herd immunity 

(Knight-Jones et al., 2016a). Thus, population demographics are also associated with herd susceptibility 

and infectivity, which are of key significance in disease modeling. Application of SESS models in endemic 

settings should afford the flexibility to parameterize population dynamics (birth, death processes) to 

realistically mimic the natural spread of FMD and assess the impact of a changing susceptible 

population.  For example, the underlying code of any of these SESS model should allow modifications to 

add the option of increasing the number of animals in the herd when disease simulation runs exceed 

365 days and continue this after every 365 days. Some simplifying assumptions should be made, such as 

applying a country-level growth rate. Subsequently, complexity can be added, such as using a 

production type-specific growth rate or applying a regional growth rate to account for birth and death 

process in a specific production type or a geographic region, respectively.  

In endemic settings, FMD is associated with substantial economic losses (Ferrari et al., 2014; 

Jemberu et al., 2014; Knight-Jones and Rushton, 2013). International organizations such as the Food and 

Agriculture Organization of the United Nations (FAO), the World Organization for Animal Health (OIE), 

the European Commission for the Control of Foot and Mouth Disease (EuFMD) have called for a more 

targeted control strategy in the ‘Progressive Control Pathway for FMD’ to reduce the disease burden 

and high economic costs associated with it (Jamal and Belsham, 2013; Paton et al., 2009; Rweyemamu 

et al., 2008a; Sumption et al., 2012). Endemic countries can benefit from the virtual lab of simulation 

modeling and evaluate alternative mitigation strategies for FMD control and ultimate eradication. The 

SESS models, however, should have flexible stop conditions. For instance, a stop condition can be added 

to NAADSM to “end simulation when prevalence reaches a certain threshold.” Such flexible stop 

conditions can help countries evaluate their progress and identify the key actions that can be taken to 

achieve project-specific goals and milestones.  
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Model building is a resource-intensive process requiring financial resources as well as technical 

expertise. Since the process is intensive, it would be wise to adopt a model built for one country to 

mimic the situation in another country. The model adaptation can be a small change of parameters used 

in one country to parameters for another country, or it may require changing the underlying code and 

logic. Before embarking on model adaptation, the researcher should understand the intended purpose 

of the existing model as well as the adapted model. Model adaptation provides several advantages for 

both the modeler and the end user. It provides modelers access to datasets that can be used for model 

validation. The adaptation process also provides a platform to exchange model outcomes among 

researchers and provides opportunities for end users such as disease modelers, epidemiologists, and 

experts from endemic countries (Dubé et al., 2011). Such interactions are essential for modelers to get 

acquainted with animal production systems to inform the models in a better way (Salman, 2004). For 

end-users, it is cheaper to adapt a model than building one from scratch and gives them technical 

expertise in epidemiology and disease modeling (Dubé et al., 2011). The modified model should, 

however, undergo rigorous verification and validation (Reeves et al., 2011). The extended use of 

adapted models will lead to an improvement in FMD control and reduce the global burden of the 

disease. Finally, model adaptation would be a win-win situation for modelers, epidemiologists, and end-

users in endemic settings.   

5 Conclusion 

Simulation modeling is a useful tool to understand the spread and to evaluate the mitigation 

strategies for FMD. Several varieties of models have been developed to understand FMD dynamics. The 

available literature on simulation modeling for FMD is often restricted to FMD-free countries, and 

existing spatially explicit stochastic simulation models for FMD require modifications before their 

application in endemic settings. More specifically, these models should be adapted by incorporating 

components of FMD epidemiology in endemic settings to mimic endemicity. The adapted models should 
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undergo sensitivity analysis, verification, validation, and agreement analysis for transparency and to 

build credibility. The application of such models in endemic countries can complement FMD control 

which will improve livestock health, provide economic gains for producers, help alleviate poverty and 

hunger, which and will complement efforts to attain Sustainable Development Goals and the 2030 

Agenda.  
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Figure 1.1: Flow diagram of the literature search, screening and inclusion/exclusion criteria (adapted from Moher et al., 2009 
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Tables 

Table 1.1: SESS models with corresponding citations 

 

 

SESS Model (number of citations) Reference of search results 

Warwick model (19) (Arnold et al., 2008; Diggle, 2006; Keeling et al., 2003, 2001; Le Menach et al., 

2005; Meadows et al., 2018; Porphyre et al., 2018, 2013; Probert et al., 2018; 

Savill et al., 2006; Sellman et al., 2018; Tildesley et al., 2012, 2010, 2009, 2008, 

2006; Tildesley and Keeling, 2009, 2008; Tildesley and Ryan, 2012)  
Davis Animal Disease Simulation model (16) (Bates et al., 2003a, 2003b; Boklund et al., 2017; Carpenter, 2011; Carpenter et 

al., 2011, 2007; Dickey et al., 2008; Dórea et al., 2017; Dürr et al., 2014; Halasa et 

al., 2014, 2015; Kobayashi et al., 2007a, 2007b; Mardones et al., 2013; Pineda-

Krch et al., 2010; Zingg et al., 2015)  
AusSpread model (10) (Beckett and Garner, 2007; East et al., 2016, 2014; Elbakidze et al., 2009; Garner 

and Beckett, 2005; Garner et al., 2016a, 2016b; Hagerman et al., 2013; Roche et 

al., 2014; Ward et al., 2009)  

InterSpread Plus model (9) (Martínez-López et al., 2010; Morris et al., 2001; Owen et al., 2011; Sanson et al., 

2017, 2014; Stevenson et al., 2013; Velthuis and Mourits, 2007; Wada et al., 2017; 

Yoon et al., 2006a)  
North American Animal Disease Spread Model (7) (Gale et al., 2015; Harvey et al., 2007; McReynolds et al., 2014; Pendell et al., 

2015; Schoenbaum and Disney, 2003; Schroeder et al., 2015; Zagmutt et al., 2016)  

Australian Animal Disease Spread model (3) (Bradhurst et al., 2016, 2015; Van Andel et al., 2018) 

Central Veterinary Institute model (2) (Backer et al., 2012; Bergevoet and Van Asseldonk, 2014) 

Traulsen model (2) (Traulsen et al., 2011, 2010)  
Hayama model (2) (Hayama et al., 2016, 2013)  
Multiple models (10) (Boklund et al., 2013; Dubé et al., 2007; Garner et al., 2016c; Hagerman et al., 

2012; Halasa et al., 2014; Probert et al., 2016; Rawdon et al., 2018; Roche et al., 

2015; Sanson et al., 2011; Webb et al., 2017) 
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CHAPTER 2: ESTIMATING THE LOCATION OF INDIVIDUAL LIVESTOCK HOLDINGS AND THEIR 

POPULATIONS IN TWO DEVELOPING COUNTRIES FOR USE IN SPATIAL DISEASE SPREAD MODELS2 

 

 

 

1 Introduction 

Globally, the livelihoods of one billion people are linked directly to livestock (FAO, 2011, 2009). 

Healthy livestock are a critical element to ensure food security and achieve Sustainable Development 

Goals (FAO, 2018). However, infectious diseases of livestock such as Foot-and-Mouth Disease (FMD), 

Classical Swine fever (CSF), and African Swine Fever (ASF) pose severe detrimental impacts on the trade 

of animals, animal products, and subsequently endanger global food security. 

Foot and mouth disease is endemic in many parts of the world (Anjum et al., 2006; Farooq et al., 2018, 

2017a, 2017b, 2017c, 2016; Gleeson, 2002; Jamal et al., 2010; Navid et al., 2018; Rweyemamu et al., 

2008b; Yano et al., 2018), and is associated with substantial  economic losses (Ferrari et al., 2014; Jemberu 

et al., 2014; Knight-Jones and Rushton, 2013). For instance, annual losses associated with production 

decline and vaccination in FMD-endemic regions range from USD 6.5 and 21 billion, and in FMD-free 

countries and zones, annual outbreaks associated losses exceed USD 1.5 billion (Knight-Jones and 

                                                           
2 This chapter of the dissertation is intended for publication In the Agriculture, Ecosystems & 

Environment journal and is formatted to meet journal requirements. 
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Rushton, 2013). These economic losses call for efforts to conduct a risk assessment, preparedness 

planning and to evaluate the effectiveness of mitigation strategies which will fit within the sociopolitical 

and socioeconomic constraints of different countries (Marsot et al., 2014).  

Simulation modeling has become a common tool for estimating the spread and impact of highly 

contagious diseases and for conducting risk assessments (Dorjee et al., 2016; Guitian and Pfeiffer, 2006; 

Kao, 2002; Keeling, 2005; Morris et al., 2002).  Several models have been developed to simulate the spread 

of FMD in specific regions or countries (Bates et al., 2003a, 2003b; Garner and Beckett, 2005; Harvey et 

al., 2007; Stevenson et al., 2013; Wongsathapornchai et al., 2008). These models have been used for risk 

assessment, analysis of outbreaks using historical data or hypothetical scenarios, assistance with policy 

decisions during outbreaks, policy formulation in preparedness planning, and in evaluation of economic 

impacts (Bates et al., 2003a; Dürr et al., 2014; Ferguson et al., 2001a; Keeling et al., 2001; McReynolds et 

al., 2014; Morris et al., 2001; Tomassen et al., 2002; Yoon et al., 2006a).  

Simulation models can be categorized as deterministic or stochastic based on the way uncertainty is 

considered, and non-spatial or spatially-explicit based on how spatial relationships are treated (Carpenter, 

2011). Spatial models require locational data for herds of animals, which are essential for risk assessment, 

modeling contact spread, assessing animal movements, and implementation of control strategies 

(Robinson et al., 2007). The spatially explicit stochastic simulation models incorporate uncertainty in the 

inputs and outputs parameters, heterogeneity in disease processes, and integrate geographic locations 

and spatial proximity of holdings that affect their relative exposure and transmission risk. 

Although many of the existing spatially-explicit stochastic simulation models (SESS) for FMD were 

designed for and applied in FMD-free settings (Zaheer et al. 2019, submitted), ongoing efforts have 

resulted in the development of the Simulation Model for Infectious Animal Diseases in FMD Endemic 

Regions (SMIAD-ER), an adapted SESS model (Zaheer et al., in preparation). The application of SMIAD-ER 
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in FMD endemic countries requires data on the location and population of individual livestock holdings. 

The SMIAD-ER incorporates demography and geography of holdings, and infection rate to be a function 

of demographics, distances between holdings and interaction among them. Therefore, if reliable and 

accurate data on the demography and geography of holdings are not available, the outputs of and 

recommendations from the model will be inaccurate and unrealistic.  

As such, data on the size and distribution of at-risk livestock populations and relative proximity to the 

source of infection are essential to adequately prepare for and respond to disease events (Woolhouse, 

2003). Quantification and mapping of disease risk locations are essential for the implementation of 

successful control and eradication programs. A better understanding of the geography of livestock 

holdings is essential for assessing the risk of livestock diseases such as FMD. Likewise, the demographic 

data on livestock holdings are fundamental to our understanding of how an infectious disease would 

spread (Buhnerkempe et al., 2014; Porphyre et al., 2013b), and for identifying the holdings at risk of 

becoming infected. This information, in turn, facilitates decision making for effective control (Bessell et 

al. 2010; Tomassen et al. 2002; Hugh-Jones 1976). 

Several efforts have been made to predict the location and population of livestock holdings or 

population density at different spatial resolutions. The US Department of Agriculture and Colorado State 

University utilized aerial photography, environmental, topographic and meteorological covariates to 

develop a spatial microsimulation tool called the Farm Location and Agricultural Production Simulator 

(FLAPS) which simulates the distribution and population of individual livestock holdings in the 

coterminous USA (Burdett et al., 2015). The Food and Agriculture Organization of the United Nations 

(FAO) developed Gridded Livestock of the World (GLW) (Wint and Robinson, 2007), a global dataset of 

livestock population at 1 km2 resolution utilizing predictors such as climatologic, topographic, 

demographic and land-cover data (Robinson et al., 2014). Moreover, agro-ecological factors have been 
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used to map the 1 Km2 distribution of chickens, ducks, and geese across the extent of China (Prosser et 

al., 2011) and domestic ducks in Monsoon Asia (Van Boeckel et al., 2011). Moreover, in New Zealand, 

environmental and socioeconomic data have been used to predict the number of cattle and livestock units 

on farms (van Andel et al., 2017).  However, the prediction of the location and population of individual 

livestock holdings in developing countries has several challenges.  

For example, the GLW dataset is considered coarse and only provides population density at 1 Km2 and 

not the spatial coordinates and the number of livestock at an individual holding level, which is required 

for SESS models (Harvey et al., 2007, Zaheer et al., in preparation). The data at 1 Km2 do not allow the 

differentiation between holdings of different production type within an area which is required to model 

the disease spread among different combinations of production types. The progression and spread of 

disease vary from production type to production type because of biological differences and animal 

husbandry. Therefore, the data should be available for the location and population of individual livestock 

holdings.  

The FLAPS model, for example, utilizes aerial imagery and remote sensing techniques to differentiate 

between farm and non-farm structures; the lack of structured farming system in many developing 

countries precludes this approach for location identification by aerial imagery. For instance, according to 

the most recent national census of livestock on Pakistan, 67.5% cattle, and 71.4% buffalo were in holdings 

with one to ten animals that are generally housed in backyards (Pakistan Bureau of Statistics, 2006). 

Moreover, methods that utilize agro-ecological, environmental, and socioeconomic data are not 

applicable in developing countries due to the lack of reliable predictor datasets.  

Due to these limitations, there is a need to adapt the practical and reliable existing methods to 

generate a simulated dataset of location and population of individual livestock holdings, in developing 

countries for use in SESS models. Our objective is to generate a spatially-resolved simulated dataset on 
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the location and population density of individual livestock holdings in developing countries by 

microsimulating census data, creating geospatial probability surfaces and, finally, distributing the 

microsimulated dataset on the geospatial probability surface. The simulated dataset will be a key input 

for application of SMIAD-ER in developing countries for modeling FMD spread and evaluating mitigation 

strategies for its control.      

2 Methods 

The process of generating the simulated data on the location and population density (Figure 3.1) of 

individual livestock holdings comprised of three key steps, i.e., microsimulation of census data, creation 

of a geospatial probability surface, and distribution of holdings on a probability surface. 

2.1 Study area and animal types 

Two developing countries, Pakistan (Figure 3.2) and Thailand (Figure 3.3), were selected to 

demonstrate this approach. Both of these countries are endemic for FMD and lack data on the location 

and population of individual livestock holdings. Generated datasets from this approach will be used as a 

key input for SMIAD-ER.  

2.1.1 Pakistan 

Pakistan has a human population of about 207 million (Central Intelligence Agency, 2019) and  is 

comprised of five provinces, Baluchistan, Khyber Pakhtunkhwa (KPK), Gilgit-Baltistan (GB), Punjab and 

Sindh, and three territories, Islamabad Capital Territory (ICT), Federally Administered Tribal Areas (FATA) 

and Azad Kashmir. These provinces and territories represent the first administrative level (Figure 3.2). 

For this study, two provinces, Punjab and Sindh, and one territory, ICT, were selected because of their 

role in the livestock sector. Punjab and ICT were treated as one unit, as done elsewhere (Pakistan 

Bureau of Statistics, 2006), and are hereafter referred to as Punjab. The selected provinces have a 

variety of livestock, such as cattle, buffalo, sheep, and goats. There are; however, no domesticated pigs 
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in Pakistan owing to cultural and religious barriers (Deka et al., 2014). For this demonstration, only cattle 

and buffalo population were used and termed as “bovines.” 

2.1.2 Thailand 

Thailand has a human population of 68.15 million and is comprised of 77 provinces, which represent 

the first administrative level (Central Intelligence Agency, 2019). Thailand can also be divided into four 

distinct regions, i.e., central, northeastern, northern and southern (Figure 3.3), as demonstrated in the 

most recent agricultural census conducted in 2013 (National Statistical Office, 2013). For this study, 

three regions, central (26 provinces), northeastern (20 provinces), and northern (17 provinces), were 

selected because of their role in the livestock sector. A list of provinces included in three selected 

regions is available in the appendix. Thailand has a variety of livestock such as beef cattle, buffalo, dairy, 

sheep, goat, swine. However, only beef cattle, buffalo, dairy cattle, and swine were included in the 

study. 

For simplicity and consistency, in the rest of the manuscript, the term “region” refers to provinces in 

Pakistan and regions in Thailand, unless otherwise noted. Likewise, the term “livestock” refers to the 

livestock of interest to this study unless indicated otherwise. 

2.2 Datasets 

Datasets used in our analyses included livestock census (National Statistical Office, 2013; Pakistan 

Bureau of Statistics, 2006), geographical features and land cover (Broxton et al., 2014; ESRI, 1992; 

GADM, 2015; Jarvis et al., 2008; OpenStreetMap Contributors, 2018), empirical holding locations from 

Pakistan and Thailand (spatial coordinates for a set of holding with associated livestock population), 

surveys of expert veterinarians from Pakistan and Thailand, and expert opinions. A description of each 

dataset is provided in the appendix.  
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2.3 Microsimulation of census data 

Microsimulation (Harland, 2013; Harland et al., 2012; Lovelace and Dumont, 2016) was used to 

generate a simulated dataset of the livestock population in individual holdings by downscaling the 

census data based on statistical distributions (Burdett et al., 2015), using R Studio 3.4.1 (R Core Team, 

2017) and Python 2.7 (Van Rossum and Drake Jr, 1995). We downscaled the census data to individual 

holdings based on uniform and lognormal distribution.  

For each livestock, the census data (Table 3.1) is formatted in different herd-class. For each herd-

class, the lower and upper class bound is provided except in the case of the largest herd-classes which 

upper bound is not available. In that case, the upper bound is based on expert-opinion of field-based 

personnel (Anonymous, Personal Communication). The census data provide the number of livestock 

holdings for each herd-class and the corresponding number of livestock in that herd-class.   

When a uniform distribution was used, it was assumed that within a bin (class-interval) there is an 

approximately an equal number of holdings for each bin (class) element. For example, if the bin size is 1 

- 5, then there are — roughly an equal number of holdings with 1, 2, 3, 4, and five animals. First, the 

algorithm makes an array of numbers between lower and upper boundary of the bin and divides the 

total number of holdings into parts that equal the number of bin elements. Second, it multiplies each 

element of the bin with the respective number of holdings and sums all numbers (s1) and compares s1 

with the expected number of holdings for that bin (s2). If s1>s2, it decreases one holding from the 

highest element of the bin and adds it to the lowest element of the bin and compares s1 and s2 again. If 

s1<s2, it decreases one holding from the lower element of the bin and adds it to the highest element. 

The loop continues, and at each iteration, it compares s1 with s2. The loop concludes when s1 equals s2. 

Finally, Microsoft Excel 2016 files were written that lists all the holdings for each herd-class and the 

corresponding number of animals in individual holdings. 
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When a lognormal distribution was used, the algorithm generates a list of holdings with the 

corresponding number of animals (s1) and compares it with the expected number of animals (s2). If 

s1>s2, it calculates the number exceeding s2, then it randomly selects the equivalent number of 

holdings and reduces the corresponding number of animals in the selected holdings by 1. If s1<s2, it 

calculates the number lagging s2, then it randomly selects an equivalent number of holdings and 

increments the corresponding number of animals in the selected holdings by 1. Finally, an MS Excel file 

is written that has a list of all the holdings for herd-class 5 with the corresponding number of animals. 

2.3.1 Pakistan 

The most recent national-level livestock census was conducted in 2006 (Pakistan Bureau of 

Statistics, 2006). The census provides data on the number of holdings and the number of livestock by 

species and herd-class, all aggregated to the district (equivalent to a county in the US), or second 

administrative level in the census. For this study, aggregate data at the provincial level were used since 

there have been changes to the number of districts and their boundaries after 2006. The census data for 

bovines are represented in nine herd classes (based on the number of animals), but we consolidated 

them to five herd classes (Table 3.2), as detail on small herd sizes was not needed from the perspective 

of local animal husbandry, and FMD spread in Pakistan. Uniform and lognormal distributions were 

assumed to downscale aggregate census data to individual livestock holdings for herd-class 1 through 4 

and herd-class 5, respectively. 

2.3.2 Thailand 

The most recent national-level livestock census was conducted in 2013 (National Statistical Office, 

2013). The census provides data on the number of holdings and the number of animals by species and 

herd-class, all aggregated to the provincial level (equivalent to a state in the US), or second 

administrative level in the census. For this study, aggregate data at the regional level were used based 
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on the expert opinion of field personnel (Anonymous, personal communication). The census data for 

beef cattle, dairy cattle, and swine are reported in nine herd-classes (based on the number of animals). 

For buffalo, the data are represented by seven herd-classes (based on the number of animals). Similar to 

our approach in Pakistan, the census herd-classes were consolidated to five herd classes (Table 3.3), 

which was appropriate from the perspective of animal husbandry and FMD spread in Thailand. 

Lognormal distributions were assumed to downscale aggregate census data to individual livestock 

holdings for all herd-classes. 

2.4 Creation of the geospatial probability surface 

The creation of geospatial probability surface was a multistep process that involved, acquisition and 

geoprocessing of data, a survey of expert veterinarians’ opinions to estimate weights for different 

geographic features, empirical holding locations to make additional probability buffers around different 

geographic features, and creation of the final geospatial probability surface.  

2.4.1 Acquisition and geoprocessing of data 

The geographic datasets (Table 3.4) on administrative boundaries (GADM, 2015), water bodies (ESRI, 

1992), road networks (OpenStreetMap Contributors, 2018), elevation (Jarvis et al., 2008), and land cover 

(Broxton et al., 2014) were clipped to match the boundary of the regions of interest and were projected 

and resampled to a cell size of 100 m. The details on geoprocessing are available in the appendix. 

2.4.2 Expert opinion and estimation of weights 

A critical step in the creation of probability was to estimate the weights for different land cover 

types and geographic features. An anonymous questionnaire was developed, and pilot tested to seek 

expert opinions from veterinarians in Pakistan and Thailand. The questionnaire was approved by the 

Research Integrity and Compliance Review Office (RICRO) at the Colorado State University.  
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A convenience sample of veterinarians was selected, and consent was sought for participation in 

the survey. The questionnaire requested data on duration of experience with animal health, the domain 

of experience, and the region they represent. The questionnaire contained detailed questions seeking 

the participant’s opinion on the importance of different land cover and geographic features such as 

croplands, open lands, urban areas, and slope on animal agriculture. The questions were included for all 

livestock types and their herd-classes. A copy of the questionnaire is available in the appendix.  

The survey responses from different regions were combined for each country to overcome the 

small sample size. Then, median weights were estimated for all livestock types and regions.  

2.4.3 Initial geospatial probability surface 

For the creation of initial geospatial probability surface, the land cover and slope were 

multiplied with their respective weights estimated from survey responses, using the raster calculator in 

Spatial Analyst Tools in ArcGIS 10.5 (ESRI, 2012). Permanent water bodies were masked out as they 

could not realistically be locations for livestock holdings.  

2.4.4 Empirical holding locations and personal communications for additional probability buffers 

Each survey participant was requested to share a list of empirical holding locations with 

associated animal population and species. Empirical holding locations were also obtained through open-

source such as Google Maps for large bovine holdings in Pakistan. These data helped to a determined 

distance of these holdings from the main, primary, and smaller highway since livestock holdings are 

more likely to be closer to highways because of the importance of road networks in the transport of 

feed, other equipment, live animals, and their products.  

Based on the percentage of empirical holdings that fell within 1,000 m, 500 m, and 100 m from 

main, primary, and smaller highways respectively, additional weights were assigned to buffers around 

these highways.  
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Moreover, based on personal communications with veterinarians, additional probability values 

were assigned to a 5 km radius around urban areas. The rationale for these weights was to ensure that 

areas in the vicinity of urban build-up were assigned a higher probability and more likely to contain 

livestock holdings due to supply-demand needs. 

2.4.5 Final geospatial probability surface 

In the final step of creating the geospatial probability surface, additional weights for buffers 

around highways and urban areas were added to the raster calculator in combination with weights for 

different land cover types and slope. This resulted in the creation of a final probability raster for all herd-

classes of each livestock type in the regions of interest. The final probability rasters were normalized (0 – 

100) using the raster calculator in Spatial Analyst tools in ArcGIS 10.5 (ESRI, 2012). 

The final normalized probability surface was classified into three equal intervals, i.e., low, 

medium, and high. For the next section of methods, the probability surface will be termed as the 

categorized probability surface. 

2.5 Distribution of random holdings on the categorized geospatial probability surface 

2.5.1 Holdings on categorized geospatial probability surface 

The empirical holding locations were used to estimate the percentage of holdings which fall on 

low, medium, and high probability zones of the probability raster (see appendix). Based on the resulting 

percentage, an equivalent number of holdings of different livestock type and herd-class were identified 

to be randomly distributed on the categorized probability raster. 

2.5.2 Minimum distance between holdings 

Based on personal communication with veterinarians and empirical information, the minimum 

distance, a minimum distance between holdings was assigned to ensure holdings are placed within a 
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specified distance from each other (see appendix). The minimum distances were unique to small 

holdings (herd-class 1), medium holdings (herd-class 2 & 3), large holdings (herd-class 4 & 5).  

2.5.3 Creation of random holdings 

 The “random point generator” was used to create random holdings within the low, medium, 

and high probability zones in predefined polygons representing regions in Pakistan and Thailand. At the 

level of region, the algorithm created a collection of random points within the predefined polygons (low, 

medium, and high). Each generated point was tested to make sure that it was not within its minimum 

distance from any other point. The placement of points with a larger minimum distance was prioritized 

so that the larger distance points have fewer chances of a conflict. Once the predefined number of non-

conflicting points was created in each region, the point layers were merged, and a MultiPoint output 

layer was created. 

In this process, the largest herd-class (i.e., 5) is given priority followed by holdings with the 

largest distance between holdings. The largest herd-class was given priority so that they had the best 

chance of being placed in the appropriate probability zone. This was necessary to ensure that the largest 

holdings were placed in the high probability zone, which would be closest to the main highways, around 

urban areas and other suitable land cover features. If more than one livestock type had similar value for 

minimum distance between holdings, then, dairy was preferred over beef and beef was preferred over 

swine.  

The geographical boundaries of the data were projected to “Web Mercator” because of 

computational ease and conservation of distances (ESRI, 2010). During the creation of random holdings, 

each polygon (low, medium and high) was split into many smaller pieces, and a proportional number of 

holdings were assigned to each small piece of the polygon. Then, a spatial index was used to determine 

if any holdings were within the minimum distance from each new holding. If a holding was within the 
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minimum distance, a new holding was assigned. Once all holdings were assigned, holdings were merged 

into one large multipoint geometry. The final multipoint geometry was exported as an ESRI Shapefile 

and was projected to WGS84 (EPSG:4326) from Web Mercator (ESPG:3857). 

2.5.4 Joining location and population data 

In this step, the datasets on the locations of individual holdings (output from section 2.5) and 

microsimulated livestock population in individual holdings, were joined. The resulting file contained the 

data on the locations and populations of individual livestock holdings in Pakistan and Thailand for each 

livestock-type.  

2.6 Creation of density maps 

The combined dataset on the location and population of individual livestock holdings was processed 

to create a separate file for each herd-class of livestock by region and country. These files were used to 

generate per square Kilometer kernel density of holdings using the Kernel Density function in the Spatial 

Analyst tools of ArcGIS 10.2 (ESRI, 2012). The population field was set to “none,” and the cell size was 

set to 1,000 m.   

3 Results 

3.1 Microsimulation of census data 

The census data for livestock were downscaled to individual livestock holdings to estimate the 

number of livestock using microsimulation assuming uniform (Table 3.5) and lognormal distribution. The 

datasets provide a list of individual livestock holdings with the corresponding number of animals in each 

holding. Other microsimulated datasets can be obtained from authors, upon request. 

3.2 Geospatial probability surfaces  

A total of nine and seven veterinarians from Pakistan and Thailand, respectively, responded to the 

questionnaire. The weights used to create intermediate and final geospatial probability surface are 
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presented (Table 3.6). The resulting final probability surfaces (Figure 3.4-3.9) for each herd-class of 

livestock in Pakistan and Thailand are categorized into three intervals - low, medium, high which 

represent 0-33, 33-67 and 67-100 percent probability areas, respectively. The geospatial probability 

surfaces for the central and northern region of Thailand are available in the appendix. 

3.3 Individual holdings with associated location and population 

The resulting joined dataset on the location of randomly distributed holdings on geospatial 

probability surface and downscaled data on livestock population in individual holdings is available from 

the primary author upon request  

3.4 Livestock holding density 

For a demonstration of Kernel Density maps of bovines in Pakistan (Figure 2.10-2.11), herd-class 2 & 

3, and 4 & 5 were merged and termed ‘medium holdings,’ and ‘large holdings,’ respectively. The herd-

class one was termed as ‘small holdings.’ For beef, dairy, and swine in Thailand (Figure 3.12-3.15), herd-

class 2 through 5 were merged and are termed ‘large holdings.’ The herd-class one is termed ‘small 

holdings.’ For buffalo in Thailand, herd-class 1 through 3 and 4 & 5 were merged and are termed ‘small 

holdings’ and ‘large holdings,’ respectively. The Kernel Density maps for livestock central and northern 

region of Thailand are available in the appendix. 

Density maps provide quite interesting information on the areas with varying density of livestock 

holdings. For instance, Figure 2.11(a) shows density of small bovine holdings (herd-class 1) for Sindh, 

Pakistan with a range of up to 141.45 holdings/Km2. A simple analysis of this density map reveals that 

approximately 98.7% area of Sindh region has 1-50 holdings of small bovines/Km2, 0.6% area has >50-

100 holdings/Km2, while another 0.3% has >100-144.45 holdings/Km2. Figure 2.11(b) shows density of 

medium bovine holdings (herd-class 2 and 3) for Sindh, Pakistan with a range of up to 6.97 

holdings/Km2. A simple analysis of this density map reveals that approximately 85% area of Sindh region 
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has up to 3 holdings of medium bovines/Km2, and 14.4% area has >3-6.97 holdings/Km2. Figure 2.11(c) 

shows density of large bovine holdings (herd-class 4 and 5) for Sindh, Pakistan with a range of up to 

1.078 holdings/Km2. A simple analysis of this density map reveals that approximately 97.7% area of 

Sindh region has up to 1 holdings of large bovines/Km2, and 0.6% area has >1-1.078 holdings/Km2. 

4 Discussion 

To our knowledge, this is the first ever attempt to downscale census data to individual holdings and 

to use the geographic information system to generate a microsimulated synthetic dataset on the 

location and population of individual livestock holdings. We successfully produced a synthetic dataset on 

the location and population of individual livestock holdings in two developing countries, Pakistan and 

Thailand. As such, these data are essential to adequately prepare for and respond to disease events 

(Woolhouse, 2003). 

Firstly, the agricultural census dataset used for Pakistan is more than a decade old and may not 

reflect the actual number of livestock holdings and associated populations. Although newer census data 

for Punjab province was made available in 2018 (L & DD, 2018), this dataset does not provide the 

number of holdings for each herd class and the associated animal population. Albeit the newer census 

was not used, it would not have affected the results of this study significantly because there was not a 

significant change in the number of animals from 2006 to 2018 (L & DD, 2018). The authors believe that 

the applied method can be replicated when a newer census when the required information is available. 

Secondly, a very small convenience sample, comprised solely of veterinarians, was chosen for the 

questionnaire ignoring other relevant professionals. This might have affected the validity of responses 

which were less variable among different herd-classes as evident from geospatial probability surfaces 

Figure 3.5–3.10. Despite these shortcomings, our method provides a starting point as veterinarians are 

the critical stakeholders for animal health in any given country (Bellemain, 2013). In the future, if 
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resources are available to expand on this study, increasing the sample size, selecting respondents 

systematically, and including other relevant professionals such as agricultural and natural resource 

scientists who may have had different opinions and experiences would yield more reliable estimates to 

create geospatial probability surface. Also, more work is needed on algorithm optimization to fit all 

holdings within the boundary of regions which can be achieved by adjusting weights for different 

features and the minimum distance between holdings through more stakeholder consultations on the 

role of different factors on animal agriculture in Pakistan and Thailand. 

Thirdly, we only had a very small number of empirical holding locations which were used to estimate 

additional probability values. For example, there were only 220 empirical holdings data available from 

Pakistan, which were very small compared to the total number of holdings to be distributed. Therefore, 

the use of this small number of holdings to determine additional probability and determining the 

percentage of holdings onto different probability zones might have been an oversimplification of a 

rather complex mechanism. Out of those 220 empirical holding locations, 55% were large holdings 

followed by 33% medium holdings, and 1% small holdings. Likewise, only 430 empirical holding locations 

were available from Thailand. This small number was further divided into four animal types, with the 

highest number of holdings available from dairy, followed by swine, beef, and buffalo. Future work 

should focus on obtaining more data on empirical holding locations to have more confidence in 

additional probability buffers and distributing random holdings on the surface.  

Despite these limitations, this is first ever attempt to estimate the locations and populations of 

individual livestock holdings in developing countries. Developing countries often lack detailed datasets, 

though some developed countries do not make this data public owing to privacy issues. The generation 

of these synthetic, simulated datasets can have several uses in endemic countries. These data can help 

authorities in determining resources needed in regions with varying livestock density in peace-time and 
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during times of infectious disease outbreaks and natural disasters such as floods, earthquakes. It can, 

also, guide the authorities in developing sentinel sites close to highly dense areas or areas around 

critically important livestock, to act as an early warning system.  

The geospatial probability surface, for instance, provide a very useful visualization of a regions 

landscape in terms of its suitability for animal agriculture. Figure 2.5(a) shows a geospatial probability 

surface for bovines of herd-class 1 in Sindh, Pakistan. It is evident that most of the region’s landscape is 

covered by medium and high probability areas for animal agriculture oif herd-class-1 with minimal area 

with low probability. This is quite intuitive from the perspective of backyard or subsistence animal 

agriculture system which is found almost everywhere in that region. On the other hand, figure 2.5(b-e), 

show that for bovine herd-class 2 through 5, there are distinct areas of low medium and high probability 

for animal agriculture. Most of the high probability areas are around urban-buildups with medium 

probability areas in areas dense with croplands. This information is quite useful for departments of 

agriculture and livestock to know where livestock holdings are more likely to be and hence invest 

resources in that area for management of animal diseases. For example, areas that are highly favorable 

for animal agriculture around urban areas with intensive road connectivity may play a significant role in 

the favoring the spread of infectious animal diseases such as Foot-and-Mouth Disease, African swine 

Fever etc. The same visual information can also be useful to know which areas should be focused for 

sentinel surveillance for such diseases and implementation of control actions such as quarantine, 

movement restriction, risk based vaccination programs and stamping out.    

Additionally, the data on the location and population of individual livestock holdings can be used in 

spatial modeling for infectious animal diseases, such as FMD, ASF, and CSF. For example, one application 

could be to use these datasets in SMIAD-ER to understand the spread of FMD and evaluating alternative 

mitigation strategies for its control in developing countries such as Pakistan and Thailand (Zaheer et al., 
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in preparation). In the spatial models, these data are essential to assess the risk, model contact spread, 

and movements, and implement control strategies (Robinson et al., 2007) which makes the distribution 

and population of livestock holdings a critical component in estimation of an effective reproductive 

number (Porphyre et al., 2013). The effective reproduction number is a key indicator of whether an 

outbreak is under control and hence guides planning and policy formulation to promote safe, 

sustainable and equitable livestock sector development (Paine et al., 2010, Robinson et al., 2014). 

5 Conclusion 

The data depicting the size and distribution of at-risk livestock populations and their proximity to 

the source of infection is essential to prepare for and respond to disease events adequately. These data 

are, however, not available in the desired form or at the required spatial resolution for use by animal 

health officials. The importance of spatial demographic datasets of livestock, therefore, calls for its free 

availability through a central open-access data repository. This study generates a simulated dataset on 

the locations and populations of individual livestock holdings in two developing countries, Pakistan and 

Thailand. This synthetic dataset will have applications in animal health, preparedness planning, and 

policymaking. Particularly, these data could be used in spatially-explicit stochastic simulation models 

such as the Simulation Model for Infectious Animal Diseases in Endemic Regions (SMIAD-ER) to 

understand the spread of FMD and evaluate mitigation strategies for its control. The control of such high 

consequence animal disease would improve livestock health, improve economic gains for producers, 

and help alleviate poverty and hunger, which and will complement efforts to attain the Sustainable 

Development Goals and the 2030 Agenda.   
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Figure 2.1: Flow diagram of generating simulated dataset on location and population of individual livestock holdings 
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Figure 2.2: Map of Pakistan showing its provinces and territories 
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Figure 2.3: Map of Thailand showing its regions 

  



   

 

 

61 

 

 

Figure 2.4: Geospatial probability surface for bovines in Punjab, Pakistan where (a) to (e) represent herd-

class 1 through 5, respectively 
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Figure 2.5: Geospatial probability surface for bovines in Sindh, Pakistan where (a) to (e) represent herd-

class 1 through 5, respectively 
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Figure 2.6: Geospatial probability surface for dairy cattle in Northeastern, Thailand where (a) to (e) 

represent herd-class 1 through 5, respectively 
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Figure 2.7: Geospatial probability surface for beef cattle in Northeastern, Thailand where (a) to (e) 

represent herd-class 1 through 5, respectively 
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Figure 2.8: Geospatial probability surface for swine in Northeastern, Thailand where (a) to (e) represent 

herd-class 1 through 5, respectively 
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Figure 2.9: Geospatial probability surface for buffalo in Northeastern, Thailand where (a) to (e) 

represent herd-class 1 through 5, respectively 
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Figure 2.10: Holding density (/Km2) for bovines in Punjab, Pakistan where (a) to (c) represent small, 

medium and high density 
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Figure 2.11: Holding density (/Km2) for bovines in Sindh, Pakistan where (a) to (c) represent small, 

medium and high density 
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Figure 2.12: Holding density (/Km2) for dairy cattle in Northeastern, Thailand were (a) and (b) represent 

small, and large holdings 
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Figure 2.13: Holding density (/Km2) for beef cattle in Northeastern, Thailand were (a) and (b) represent 

small, and large holdings 
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Figure 2.14: Holding density (/Km2) for swine in Northeastern, Thailand were (a) and (b) represent small, 

and large holdings 
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Figure 2.15: Holding density (/Km2) for Buffalo in Northeastern, Thailand, where (a) and (b) represent 

small, and large holdings  
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Tables 

 

Table 2.1: Aggregate census data for Pakistan and Thailand by region, attribute, and herd-class 

 

Country Region Livestock Attribute  Herd class Total 

1 2 3 4 5 

Pakistan 

  

  

Punjab 

  

Bovines 

  

Holdings 7,265,425 271,459 41,574 19,220 13,986 7,611,664 

Animals 23,930,959 3,723,894 1,016,475 724,486 2,763,831 32,159,645 

Sindh 

  

Bovines 

  

Holdings 2,162,006 195,776 29,917 12,444 9,150 2,409,293 

Animals 8,663,463 2,738,237 724,828 476,474 1,662,188 14,265,190 

Thailand 

  

Central Dairy Holdings 9,058 1,155 128 3 1 10,345 

Animals 172,756 70,211 16,191 1,070 734 260,962 

Beef Holdings 45,351 1,412 441 32 16 47,252 

Animals 405,157 85,837 55,672 10,955 15,470 573,091 

Swine Holdings 11,393 725 692 340 967 14,117 

Animals 116,678 44,044 106,003 124,033 2,775,481 3,166,239 

Buffalo Holdings 2,141 693 459 63 11 3,367 

Animals 8,850 8,856 12,356 3,747 1,749 35,558 

Northeastern Dairy Holdings 5,001 454 51 1 0 5,507 

Animals 64,524 27,790 6,669 350 0 99,333 

Beef Holdings 385,406 378 87 9 11 385,891 

Animals 1,576,184 23,122 11,273 3,287 14,960 1,628,826 

Swine Holdings 68,991 1,437 627 201 522 71,778 

Animals 588,055 87,928 89,415 77,116 632,278 1,474,792 

Buffalo Holdings 149,881 4,757 822 55 18 155,533 

Animals 468,220 57,239 20,634 3,248 10,841 560,182 

Northern 

  

Dairy Holdings 1,633 273 29 1 2 1,938 

Animals 30,399 16,347 3,584 300 6,150 56,780 

Beef Holdings 47,807 911 128 12 48 48,906 
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Animals 422,502 54,483 16,030 4,000 154,970 651,985 

Swine Holdings 49,294 1,325 619 127 492 51,857 

Animals 383,048 80,277 90,793 45,057 579,900 1,179,075 

Buffalo 

  

Holdings 10,139 1,999 781 94 10 13,023 

Animals 41,810 25,250 20,751 5,569 1,247 94,627 
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Table 2.2: Census and new herd-classes for livestock in Pakistan 

Census herd-class New herd-class 

1 – 2 1 

3 – 4 1 

5 – 6 1 

7 – 10 1 

11 – 15 2 

16 – 20 2 

21 – 30 3 

31 – 50 4 

>50 5 
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Table 2.3: Census and new herd-classes for livestock in Thailand 

Livestock-Type Census herd-class New herd-class 

Beef, dairy, swine 1 – 2 1 

 3 – 4 1 

 5 – 9 1 

 10 – 19 1 

 20 – 49 1 

 50 – 99 2 

 100 – 299 3 

 300 – 499 4 

 ≥500 5 

Buffalo 1 – 2 1 

 3 – 4 1 

 5 – 9 1 

 10 – 19 2 

 20 – 49 3 

 50 – 99 4 

 ≥99 5 
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Table 2.4: Datasets used to create the geospatial probability surface 

Dataset Description Usage 

Administrative boundary Boundaries for different administrative 

levels in Pakistan and Thailand 

Used as the base map, for processing extent and 

other geoprocessing 

Waterbodies Waterbodies in Pakistan and Thailand Used to mask out the water bodies from 

probability surface 

Road network Road network for different road types in 

Pakistan and Thailand 

Used to make probability buffers around 

different highway types 

Elevation This dataset provides the elevation for 

Pakistan and Thailand 

This dataset was used to calculate slope to be 

included in the probability surface 

Landcover Different land cover types in Pakistan and 

Thailand  

Creation of geospatial probability surface 

Expert-based opinions With anonymous veterinarians in Pakistan 

and Thailand 

To aid in determining arbitrary upper bound for 

herd-class 5 

To discuss probability buffers around different 

geographic features 

Survey questionnaire Anonymous veterinarians from Pakistan 

and Thailand responding to  

To seek weights for different geographic 

features for animal agriculture in Pakistan and 

Thailand 

Empirical holding locations The physical location of holdings with 

associated animal population 

To aid in the creation of probability buffers 

around different highway types 

To help in the placement of random holdings on 

probability surface 
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Table 2.5: Disaggregated number of holdings for each bin element (Sindh province, bovines, herd-class 

3) 

Animals Holdings 

21 2227 

22 2181 

23 2155 

24 2133 

25 2120 

26 722 

27 709 

28 687 

29 661 

30 611 
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Table 2.6: Weights for different geographical features estimated using expert opinion and empirical holding locations  

Country Animal Type Herd 

Class 

Croplands Urban 

areas 

Open-

lands 

Slope 

(>10%) 

Around 

urban areas 

Main 

highways 

Primary 

highways 

Smaller 

highways 

Pakistan Bovines 1 100 -40 20 -20 0 24 4 12 

2 80 20 20 -40 70 8 21 7 

3 80 20 20 -60 70 8 21 7 

4 40 60 20 -60 70 25 11 19 

5 80 60 20 -80 70 25 11 19 

Thailand Dairy 1 80 -100 20 -40 30 11.4 8.9 44 

2 80 -100 0 -40 50 11.1 11.1 50 

3 60 -100 0 -40 50 22.3 5.6 50 

4 70 -100 -10 -60 70 0 0 0 

5 80 -100 -10 -60 70 66.7 0 66.7 

Beef 1 100 -80 60 -20 30 7.4 22.2 51.8 

2 80 -80 40 -20 50 57.1 20 80 

3 100 -100 60 -20 50 57.1 50 50 

4 90 -100 40 -50 70 66.7 33.5 100 

5 90 -100 40 -50 70 66.7 33.5 100 

Swine 1 0 -60 20 -20 30 50 0 66.7 

2 0 -100 40 -40 50 0 0 0 

3 0 -100 60 -60 50 0 0 0 

4 0 -100 60 -60 70 25 50 50 

5 0 -100 60 -60 70 60 26 48 

Buffalo 1 80 -70 60 -30 30 12.5 12.5 50 

2 80 -80 60 -30 50 50 0 50 

3 80 -80 60 -40 50 0 0 0 

4 90 -100 60 -40 70 80 20 80 

5 90 -90 50 -50 70 80 20 80 
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CHAPTER 3: ADAPTATION OF THE NORTH AMERICAN ANIMAL DISEASE SPREAD MODEL FOR FOOT-AND-

MOUTH DISEASE IN ENDEMIC SETTINGS: A PILOT ASSESSMENT AND DEMONSTRATION3 

 

 

 

1 Introduction 

Foot and mouth disease (FMD)  is endemic in many parts of the world (Anjum et al., 2006; Farooq et 

al., 2018, 2017a, 2017b, 2017c, 2016; Gleeson, 2002; Jamal et al., 2010; Navid et al., 2018; Rweyemamu 

et al., 2008b; Yano et al., 2018), and is associated with substantial  economic losses (Ferrari et al., 2014; 

Jemberu et al., 2014; Knight-Jones and Rushton, 2013). International organizations such as the Food and 

Agriculture Organization of the United Nations (FAO), the World Organization for Animal Health (OIE), 

the European Commission for the Control of Foot and Mouth Disease (EuFMD) have called for a more 

targeted control strategy in the ‘Progressive Control Pathway for FMD’ to reduce the disease burden 

and high economic costs associated with it (Abbas et al., 2014; Jamal and Belsham, 2013; Paton et al., 

2009; Rweyemamu et al., 2008a; Sumption et al., 2012).  

Simulation modeling has become a useful tool to investigate the spread and evaluate the 

effectiveness of alternative mitigation strategies for infectious diseases including FMD (Dorjee et al., 

2016; Guitian and Pfeiffer, 2006; Kao, 2002; Keeling, 2005; Morris et al., 2002). Many models have been 

                                                           
3 This chapter of the dissertation is intended for publication In the Preventive Veterinary Medicine 

journal and is formatted in line with journal requirements. 
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developed to mimic the spread of FMD in specific regions or countries (Bates et al., 2003d; Garner and 

Beckett, 2005; Harvey et al., 2007b; Stevenson et al., 2013; Wongsathapornchai et al., 2008). These 

models have been used for various purposes such as for risk assessment, to analyze outbreaks using 

historical data or hypothetical scenarios, to assist in policy decisions during outbreaks, and policy 

formulation in preparedness planning, and in evaluating economic impacts (Bates et al., 2003c; Dürr et 

al., 2014; Ferguson et al., 2001a; Keeling et al., 2001; McReynolds et al., 2014; Morris et al., 2001; 

Tomassen et al., 2002; Yoon et al., 2006a). Overall, however, the purpose of the application of 

simulation models differs among countries depending on the interest as well as the status of the disease 

in the applied geographical areas. In disease-free countries, models are used to identify gaps in the 

preparedness such as estimating required resources (M. G. Garner et al., 2016; Roche et al., 2014), 

whereas, in endemic countries, models can be useful to compare mitigation strategies to guide future 

directions of FMD control program (Souley Kouato et al., 2018). 

Most of the reported literature on FMD simulation models is, however, associated with disease-free 

countries with minimal application of these models in countries with an endemic status of FMD 

(Pomeroy et al., 2017). The development of simulation models of infectious livestock diseases such as 

FMD in endemic settings is enormously challenging for reasons such as the lack of interest and 

understanding of perceived needs, political or economic constraints, insufficient data to support model 

parameters, and the complexity of FMD epidemiology in endemic settings (Brooks-Pollock et al., 2015; 

Knight-Jones et al., 2016b). 

Recently, a systematic review of the existing spatially-explicit simulation models (SESS) revealed a 

set of possible additions to these models to extend their applicability to FMD-endemic regions to 

understand FMD spread and to evaluate the effectiveness of alternative mitigation strategies for its 

control (Zaheer et al., 2019, submitted). The key findings were to include components such as: a module 

to simulate co-circulating FMD serotypes, ability to alter the livestock population dynamics during the 
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simulation runs (growth rate), flexibility to implement “routine prophylactic vaccination’ (RPV), and 

alteration of existing simulation stop conditions to make them flexible for endemic settings (Zaheer et 

al., 2019, submitted). The identified additional components are known to be key characteristics of FMD 

epidemiology in the endemic region (Ahmed et al., 2018; FAO and OIE, 2016; Hunter, 1998; Knight-Jones 

et al., 2015, 2016a; Ullah et al., 2017). 

One SESS included in the systematic review was the North American Animal Disease Simulation 

Model (NAADSM) (Harvey et al., 2007b; Schoenbaum and Disney, 2003). The NAADSM is a spatially 

explicit, stochastic, state-transition model (Harvey et al., 2007b; Schoenbaum and Disney, 2003), in 

which disease spread occurs between animal holdings at precisely specified locations and is affected by 

the relative locations and distances between holdings. If disease occurs within a certain holding, it 

follows a natural, predictable cycle over time, moving from one disease state to the next. This cycle may 

be interrupted by disease control measures – destruction, vaccination, movement control, etc. (Harvey 

et al., 2007b). The existing model and simulation engine component of NAADSM was developed 

exclusively for the North American continent under a collaboration among the United States 

Department of Agriculture, the Canadian Food Inspection Agency, the University of Guelph, and the 

Animal Population Health Institute of Colorado State University. The model and simulation framework 

continue to concentrate only on the United States and Canadian policy and animal husbandry 

techniques unique to North America, which limits the use of NAADSM elsewhere. A more detailed 

description of NAADSM is available elsewhere (Harvey et al., 2007b). 

The intent to use NAADSM in endemic countries would require its adaption to include required 

endemicity components (Zaheer et al., 2019 submitted). This paper aims to adapt NAADSM to have a 

modeling framework equipped with components needed to simulate the spread of and evaluate the 

effective mitigation strategies for infectious animal diseases such as FMD for use in endemic settings. 

The first objective of this study was to ascertain the behavior of the adapted model when parameterized 
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with estimates from endemic settings. The second objective was to demonstrate the application of the 

model to assess the use of ‘routine prophylactic vaccination’ (RPV) as a mitigation strategy. The resulting 

framework will be called “Simulation Model for Infectious Animal Diseases in Endemic Regions (SMIAD-

ER),” which will be a spatially explicit, stochastic, state-transition simulation model. 

2 Methods 

To build the prototype version of SMIAD-ER, the underlying source code of NAADSM 3.2.19 was 

modified to equip the model with ‘routine prophylactic vaccination (RPV),’ as an additional disease 

control strategy. This addition will provide users with the flexibility to enable/disable implementation of 

RPV during the simulation. Once RPV is enabled, the frequency of vaccination can be input as a point 

estimate such as 1, 2, or 3, which refers to every 365, 180, and 120 days, respectively. In addition, a 

probability distribution function is specified to model the ‘duration of immunity’ for RPV.  

2.1 Data sources 

The data sources used in this demonstration included: FMD outbreaks data (FAO Pakistan, 

unpublished data), a simulated dataset on the location and population of individual bovine holdings 

(Zaheer et al., in preparation), expert opinions and personal communications with anonymous 

veterinarians in Pakistan. 

2.2 Assumptions of SMIAD-ER 

Demonstration of the functionality of the prototype version of SMIAD-ER in this paper was based on 

the following assumptions: 

• The input livestock holdings included in this demonstration represented the total number of 

bovine holdings in Punjab, Pakistan, for 2006. 
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• There were only two production-types in Punjab, Pakistan, i.e., cattle and buffalo. And the 

holdings only have >50 animals. All holdings of cattle and buffalo with <51 animals were 

ignored. 

• No effect of small ruminants (sheep, goat) and wild animals (wild boar) on FMD spread was 

included. 

• Occurrence of FMD and its spread beyond the provincial boundary of Punjab, Pakistan was 

ignored. 

• The impact of seasonality and meteorological factors on FMD spread was not included. 

• The bovine population is closed, and the population size was constant. Individual holdings did 

not enter or leave the study area except via stamping-out as a control measure. 

• All holdings in the same production-type had the same disease progression parameters. 

• Individual animals within a holding were equally likely to come into contact with any other 

individual from other holdings. 

• There were homogenous contact rates between specific pairs of production types, such as cattle 

to cattle, buffalo to cattle, etc. 

• The disease spread parameters and other parameters used in this demonstration represented 

the field situation of FMD in Punjab, Pakistan. 

• Mortality from FMD or other causes during the simulation duration was not included. 

• There was only one circulating serotype of FMD, i.e., O. 

• There was no carrier status among recovered holdings. 

• The coverage and efficacy of emergency vaccination and RPV were 100%. 

• The infection status at the start of the simulation represented the prevalence of FMD in Punjab, 

Pakistan. 
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• Holdings of both production-types were assumed to have been attempted to be vaccinated 

based on the user-defined period before the start of the simulation and it was termed ‘last 

vaccination day’. 

2.3 Scenarios 

For the demonstration of a prototype version of SMIAD-ER, two scenarios were developed to 

ascertain the behavior of the model when parameterized with estimates from endemic settings and 

application of ‘routine prophylactic vaccination’ (RPV) as a mitigation strategy. 

2.3.1 Baseline scenario (sc1) 

In the baseline scenario (sc1), the model was parameterized to mimic the field situation of FMD in 

Punjab, Pakistan, in 2012-2014. In this scenario, only emergency vaccination, i.e. only in the face of 

detection, was implemented as a mitigation strategy. This scenario was parameterized to show the 

functionality of the model when parameterized with baseline parameters (field conditions as expressed 

by anonymous veterinarians). 

2.3.2 Enhanced scenario (sc2) 

In the enhanced scenario (sc2), in addition to the parameters used in the baseline scenario, the 

model was parameterized to enable RPV, with default coverage and efficacy of 100%, as an additional 

mitigation strategy. This scenario was parameterized to show the functionality of the model when 

parameterized with a combination of baseline parameters and application of RPV, as a common 

mitigation strategy in FMD endemic countries. 

2.4 Scenario parameters 

The prototype of SMIAD-ER was parameterized to mimic the situation of FMD in Punjab, Pakistan. 

2.4.1 Production types and their status 

Two production types, i.e., cattle and buffalo, were included in this demonstration. Data on the 

population and location of 13,986 individual holdings of cattle and buffalo with >50 animals were 
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obtained from a study that utilized a microsimulation approach and geographic information system to 

generate a simulated dataset on the location and population of individual livestock holdings in 

developing countries (Zaheer et al., in preparation). Based on FMD outbreaks data from 2012-14 

(unpublished data, FAO Pakistan) and personal communication with expert veterinarians, holdings were 

randomly assigned one of the six possible status, i.e., 100 clinical infectious, 200 subclinical infectious, 

600 latent infected, 900 naturally immune, 210 vaccine immune, and 11,976 susceptible. 

2.4.2 Progression parameters 

FMD progression parameters were based on the assumption that only one serotype of FMD was 

circulating, i.e. O, and similar progression parameters were used for both production types. The 

parameters (as shown in Table 2.1) were obtained from published literature and estimated using 

Within-Herd model 0.9.7 (see appendix). 

2.4.3 Spread parameters 

For each production type combination, the parameters for contact and airborne spread were 

obtained from an anonymous veterinarian with more than nine years of experience working with FMD 

outbreaks in Punjab, Pakistan (see appendix). 

2.4.4 FMD detection parameters 

For both production types, the estimated probability of observing clinical signs of FMD, given the 

number of days the holding had been clinically infectious, and the estimated probability of reporting an 

observed clinical holding, given the number of days since FMD was first detected in any holding was 

obtained from an anonymous veterinarian from Punjab, Pakistan with extensive experience with FMD 

outbreaks (see appendix).  

2.4.5 Disease tracing 

The SMIAD-ER has an assumption that when tracing is enabled if a holding is identified as having 

contact with another infected holding, the holding is quarantined and can no longer take part in disease 
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spread through contacts (both direct and indirect). Based on personal communications with FMD 

experts in Pakistan, it was revealed that no such tracing mechanism exists in the country and also, there 

is no existing mechanism to quarantine holdings if identified as being a source of or having exposure 

from other holdings. Therefore, tracing was disabled for this demonstration.  

2.4.6 Zones 

Based on the opinion of a veterinarian from Pakistan, a zone with a 3-km radius was created around 

detected infected holdings of each production-type. Inside the zone, the probability of FMD detection 

was multiplied with 1.5.  

2.4.7 Vaccination 

The parameters for emergency vaccination and RPV were based on a combination of personal 

communications, expert opinion, and published literature. 

2.4.7.1 Emergency vaccination 

The threshold for implementing emergency vaccination was set to the detection of FMD in four 

holdings of any production-type. The emergency vaccination capacity was set to increase to 35 

holdings/day at day 15 post detection and was constant after that (see appendix). For both production 

types, the delay in mounting an immune response was set to four days and minimum day between two 

emergency vaccinations was set to 21 days. The model was set to implement emergency vaccination to 

infected holdings which were detected, and a vaccination ring of a 10-km radius was established. The 

duration of immunity for emergency vaccination was modeled using a triangular distribution (30, 180, 

210). Buffalo holdings were given a priority when implementing emergency vaccination.  

2.4.7.2 Routine prophylactic vaccination (RPV) 

For sc2, RPV was enabled as a control strategy. For both production types, the frequency of RPV was 

set to twice every year, i.e., once every 180 days. The duration of immunity linked to RPV was modeled 

using triangular distribution (180, 270, 365 days). The livestock holdings were assigned a random value 
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between 1 to 20 for ‘last vaccinated day’ which refers to ‘days in state.’ Based on this value and the 

probability distribution function (PDF) for ‘vaccine immunity,’ ‘days left in-state’ were estimated. Once a 

holding became eligible to receive the first dose of RPV, the vaccine was administered, and it mounted 

immune response based on the point estimate for ‘time needed to mount an immune response.’ The 

parameters for capacity, coverage, and biological efficacy of RPV were not included in the 

demonstration of a prototype version of SMIAD-ER.  

2.4.8 Destruction parameters 

Based on personal communications with animal health experts in Pakistan, destruction of holdings, 

as a control strategy, in response to detection of FMD was not modeled. 

2.4.9 Iterations and set-up 

Both scenarios were run for 1000 iterations and simulations were set up to stop at day 370 of the 

iteration. 

2.5 Statistical analysis 

The output from both the scenarios was used to produce descriptive statistics such as minimum, 

maximum, mean, standard deviation, and quartiles for the duration of the outbreak, the number of 

vaccine immune holdings by the end of outbreak and day 370 of the iteration using R (R Core Team, 

2017).  

3 Results and Discussion 

The prototype version of SMIAD-ER was run until day 370 for 1,000 iterations to ascertain the 

behavior of the model when parameterized with estimates from endemic settings and to determine if 

the model can be used to evaluate the effectiveness of RPV as a mitigation strategy. The outputs from 

both scenarios were extracted for three performance indices, i.e. ‘outbreak duration,’ ‘vaccine immune 

holdings by the end of the outbreak,’ and ‘vaccine immune holdings by day 370 of iteration’. Due to 
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computer hard-drive issues, outputs were not extracted for eight iterations of ‘baseline scenario’ 

(partially available for one of the eight iterations). The outputs were available for all 1,000 iterations of 

‘enhanced scenario.’ 

The summary statistics (Table 2.2) and hypotheses testing reveals that there was no statistically 

significant difference between scenarios for ‘outbreak duration’ (p-value=0.18). Although, the summary 

statistics in Table 2.2 show that there were more (1.47%) ‘vaccine immune holdings by the end of the 

outbreak’ in sc1 compared to sc2, yet this difference was not statistically significant (p-value=0.08), and 

this difference can be attributed to the stochastic nature of the simulations. There was, however, a 

difference between scenarios for ‘vaccine immune holdings by day 370 of simulation’ (p-value=<0.001) 

with more vaccine immune holdings in sc2 compared to sc1 (Table 2.2). 

To the best of our knowledge, SMIAD-ER is the first-ever spatially-explicit, stochastic, state-

transition simulation model built for endemic regions to model the spread and evaluate the 

effectiveness of alternative mitigation strategies for infectious animal diseases such as FMD. 

The similarity in the ‘duration of outbreak’ and ‘vaccine immune holdings by the end of outbreak’ 

between ‘baseline’ and ‘enhanced’ scenarios give us confidence that SMIAD-ER behaved in the same 

way and no aberrant outputs were obtained. Ideally, the outbreak duration for ‘enhanced scenario’ 

should be smaller than the outbreak duration in the ‘baseline scenario’ where RPV was not 

implemented. The reason for this outcome is that we had assigned a ‘last vaccination day’ to all the 

holdings in the range of 1-20 days before the start of simulations. Due to this, the first round of RPV did 

not start until 161-180 day of simulation. At that time in the simulation, the outbreak had already 

ended, and there were no available infected holdings to keep the infection going. Therefore, although 

RPV had initiated, it did not have any effect on reducing the duration of the outbreak. Likewise, since 

RPV did not begin until at least day 161 of simulation, which is after the end of the outbreak, there was 

no difference in the number of vaccine immune holdings by the end of the outbreak in both scenarios. 
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As expected, there was a difference in the vaccine immune holdings between the two scenarios with 

more holdings being vaccine immune by day 370 in ‘enhanced scenario’ compared to the ‘baseline 

scenario’ (Table 2;2). Although the application of RPV in ‘enhanced scenario’ did not reduce the 

outbreak duration, it gives confidence that RPV strategy was implemented without any aberrant 

behavior of the model, and holdings became immune adding to the regional herd-immunity. This also 

gives hope that, if the random values for the ‘last vaccination day’ of RPV were not limited to between 

1-20 and rather kept in the range of 1-180 days prior to the start of the simulation, the RPV will start 

early in the simulation and lead to considerable differences between the two scenarios in terms of 

‘duration of outbreak’ and ‘vaccine immune holdings by the end of outbreak’. We also believe that the 

high number of vaccine immune holding by day 370 for ‘enhanced scenario’ is an overestimation since 

our prototype version of SMIAD-ER did not account for the coverage, capacity, and efficacy of RPV. 

These factors are highly related to assessing the effect of RPV as a mitigation strategy in endemic 

settings where limited resources, lack of infrastructure and paucity of good quality vaccine has a 

significant role to play in the overall effectiveness of RPV in FMD control programs (Jamal et al., 2014, 

2008; Ringa and Bauch, 2014). 

Surprisingly, the outbreak duration was quite short in both scenarios, which behaved similarly 

because of the factors described above. One reason for this quick suppression of disease spread is the 

fact that the initial status of holdings was based on data of FMD outbreaks which do not reflect the 

whole province of Punjab, Pakistan. Also, the reporting of FMD cases is very limited in the province with 

most reporting from areas where FAO is implementing a Progressive Control Pathway for FMD control. 

In addition, the literature on the prevalence of FMD is non-existent for Pakistan because of the 

complexity in estimating prevalence in a setting where the disease is endemic and about 83% of the 

reported outbreaks test positive for FMD (unpublished FAO Pakistan data). Future research should focus 

on using other ways to estimate infection status at the start of simulations to better mimic the field 
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situation. A potential solution could be to add a function such as ‘new infection due to unaccounted for 

reasons’ and model it as a probability distribution function based on personal communication with 

expert veterinarians. It would allow the model to add a certain number of infections randomly after a 

specified time period to account for the underestimation of initial infection status and new infections 

which model could not account for.  

Another reason for the early end of an outbreak was that emergency vaccination continued at its 

full capacity, i.e., 35 holdings/day after day 15 until day 370. For endemic countries, it is unrealistic to 

implement emergency vaccination for a long time because of limited resources and the inability to keep 

track of infected holdings. Future research should focus on limiting the time period during which 

emergency vaccination is implemented to mimic the realistic situation of resources. Doing so would 

allow the model to keep the infection going as would happen in a field condition in an endemic setting. 

Another limitation of this demonstration is that parameters for disease spread, detection, and 

vaccination could be biased because they were based on the expert opinion of one field veterinarian. 

Future demonstrations of the model should increase the number of expert veterinarians for parameter 

estimation using a Delphi approach (Hus and Sandford, Brian, 2007; Okoli and Pawlowski, 2004).  

Future versions of SMIAD-ER should equip the model with the capability to model multiple co-

circulating FMD serotypes in parallel, the ability to include livestock population dynamics to account for 

population susceptibility and herd-immunity. Also, the model should have the flexibility for users to 

specify the biological efficacy of emergency vaccination in addition to the coverage, capacity, and 

biological efficacy for RPV. 

With the addition of more complex endemicity parameters to the modeling framework, changes 

would be needed to enhance its engine efficiency to deal with added complexity in the calculations and 

algorithms such as the use of vector mathematics, use of raster maps, Voronoi tessellations and 
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different coding frameworks. These changes in engine efficiency, coupled with the incorporation of 

endemicity, would make SMIAD-ER more useful in endemic settings. 

Moreover, a graphical user interface should be added which will allow novice modelers from 

endemic regions to use the model for their current conditions and utilize modeling as a tool to evaluate 

alternative mitigation strategies for control of FMD in endemic regions. The control of FMD in endemic 

areas is critical and will help improve livestock health, provide economic gains for producers, help 

alleviate poverty and hunger, and will complement efforts to attain Sustainable Development Goals and 

the 2030 Agenda. 
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Tables 

Table 3.6: FMD progression parameters for serotype-O 

Parameter Probability distribution function Reference 

Latent period Weibull (1.78, 3.97)  Mardones et al., 2010 

Subclinical infectious period Gamma (1.22, 1.67)  Mardones et al., 2010 

Clinical period Gamma (23.20, 1.74)  NAADSM Development Team, 2012 

Natural immunity Gaussian (1095, 180) Cunliffe, 1964; Moonen et al., 2004; USDA, 2013 
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Table 3.7: Performance indices from baseline and enhanced scenario 

Statistic 

 

  

Outbreak duration (days) 

  

Vaccine immune holdings by 

the end of the outbreak 

Vaccine immune holdings by 

the day 370 

Baseline* Enhanced** Baseline* Enhanced** Baseline*** Enhanced** 

Minimum 69.0 69.0 1708.0 1698.0 3123.0 1386.0 

1st quartile 76.0 76.0 1854.0 1847.0 3228.0 12386.0 

Mean 79.3 79.6 1919.0 1912.0 3255.7 12386.0 

SD 4.6 4.6 88.8 88.9 41.6 0.2 

3rd quartile 82.0 82.0 1971.0 1970.0 3285.0 12386.0 

Maximum 102.0 102.0 2298.0 2264.0 3381.0 12387.0 

*Based on 993 iterations 

**Based on 1000 iterations 

***Based on 992 iterations
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CHAPTER 4: SIMULATION MODEL FOR INFECTIOUS ANIMAL DISEASES IN ENDEMIC REGIONS (SMIAD-ER): 

APPLICATION FOR FOOT-AND-MOUTH DISEASE CONTROL STRATEGIES4 

 

 

 

1 Introduction 

Foot and mouth disease (FMD)  is endemic in many parts of the world (Anjum et al., 2006; Farooq et 

al., 2018, 2017a, 2017b, 2017c, 2016; Gleeson, 2002; Jamal et al., 2010; Navid et al., 2018; Rweyemamu 

et al., 2008b; Yano et al., 2018), and is associated with substantial  economic losses (Ferrari et al., 2014; 

Jemberu et al., 2014; Knight-Jones and Rushton, 2013). International organizations such as the Food and 

Agriculture Organization of the United Nations (FAO), the World Organization for Animal Health (OIE), 

the European Commission for the Control of Foot and Mouth Disease (EuFMD) have called for a more 

targeted control strategy in the ‘Progressive Control Pathway for FMD’ to reduce the disease burden 

and high economic costs associated with it (Abbas et al., 2014; Jamal and Belsham, 2013; Paton et al., 

2009; Rweyemamu et al., 2008a; Sumption et al., 2012).  

Simulation modeling has become a useful tool to investigate the spread and evaluate the 

effectiveness of alternative mitigation strategies for infectious diseases including FMD (Dorjee et al., 

2016; Guitian and Pfeiffer, 2006; Kao, 2002; Keeling, 2005; Morris et al., 2002). Several models have 

                                                           
4 This chapter of the dissertation is intended for publication in the Preventive Veterinary Medicine 

journal and is formatted accordingly. 
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been developed to mimic the spread of FMD in specific regions or countries (Bates et al., 2003d; Garner 

and Beckett, 2005; Harvey et al., 2007b; Stevenson et al., 2013; Wongsathapornchai et al., 2008). These 

models have been used for various purposes such as for risk assessment, to analyze outbreaks using 

historical data or hypothetical scenarios, to assist in policy decisions during outbreaks, and policy 

formulation in preparedness planning, and in evaluating economic impacts (Bates et al., 2003c; Dürr et 

al., 2014; Ferguson et al., 2001a; Keeling et al., 2001; McReynolds et al., 2014; Morris et al., 2001; 

Tomassen et al., 2002; Yoon et al., 2006a). In disease-free countries, models are used to identify gaps in 

the preparedness such as estimating required resources (Garner et al., 2016; Roche et al., 2014), 

whereas, in endemic countries, models can also be useful for comparing mitigation strategies to guide 

future directions of FMD control program (Souley Kouato et al., 2018).  

Most of the reported literature on FMD simulation models is, however, associated with disease-free 

countries with minimal application of these models in countries with an endemic status of FMD 

(Pomeroy et al., 2017). The development of simulation models of infectious livestock diseases such as 

FMD in endemic settings is enormously challenging for reasons such as the lack of interest and 

understanding of perceived benefits, political or economic constraints, insufficient data to support 

model parameters, and the complexity of FMD epidemiology in endemic settings (Brooks-Pollock et al., 

2015; Knight-Jones et al., 2016b).  

A systematic review of the existing spatially-explicit simulation models (SESS) revealed a set of 

possible additions to these models to extend their applicability to FMD-endemic regions to understand 

FMD spread and to evaluate the effectiveness of alternative mitigation strategies for its control (Zaheer 

et al., 2019, submitted). The key findings were to include components such as: a module to simulate co-

circulating FMD serotypes, ability to alter the livestock population dynamics during the simulation runs 

(growth rate), flexibility to implement “routine prophylactic vaccination’ (RPV), and alteration of existing 

simulation stop conditions to make them flexible for endemic settings (Zaheer et al., 2019, submitted). 
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The identified additional components are known to be key characteristics of FMD epidemiology in 

endemic regions (Ahmed et al., 2018; FAO and OIE, 2016; Hunter, 1998; Knight-Jones et al., 2015, 2016a; 

Ullah et al., 2017). 

One such SESS model is the North American Animal Disease Spread Model (NAADSM) (Harvey et al., 

2007; Schoenbaum and Disney, 2003) which is being used in FMD-free settings to understand the 

dynamics of a hypothetical outbreak of FMD, evaluating alternative mitigation strategies, and aid in 

preparedness planning and decision-making (Gale et al., 2015; McReynolds et al., 2014; Pendell et al., 

2015; Schroeder et al., 2015; Zagmutt et al., 2016). 

Recently, researchers at the Colorado State University adapted the NAADSM for use in FMD-

endemic countries by including RPV as an additional mitigation strategy (Zaheer et al., in preparation). 

The modified modeling framework is labeled the Simulation Model for Infectious Animal Diseases in 

Endemic Regions (SMIAD-ER), which is a state-transition, spatially-explicit, stochastic, simulation model 

of the between-herd spread of infectious animal diseases such as FMD. The prototype version of SMIAD-

ER was used to demonstrate its application in Pakistan, an FMD endemic country. The model was 

parameterized with estimates derived from data obtained from Punjab, Pakistan, and model outputs 

revealed no aberrant behavior in simulation outputs from two scenarios, i.e., baseline scenario (no RPV) 

and RPV scenario (implementation of RPV) (Zaheer et al., in preparation).  

The demonstration of SMIAD-ER (Zaheer et al., in preparation), resulted in a small ‘outbreak 

duration’ in both scenarios because of the small number of infected holdings at the start of the 

simulations. The infected livestock holdings were based on FMD outbreaks data and expert opinion. 

Another reason for the early end of an outbreak was that emergency vaccination continued at its full 

capacity, i.e., 35 holdings/day after day 15 until day 370. For endemic countries, it is unrealistic to 

implement emergency vaccination (e.g., ring vaccination) for a long period of time because of limited 
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resources and the inability to keep track of infected holdings. Therefore, future versions of SMIAD-ER 

should have the flexibility to restrict emergency vaccination at a user-specified time point to reflect the 

availability of resources.   

Moreover, differences were found between ‘baseline’ and the ‘RPV’ scenario for ‘vaccine immune 

holdings by day 370’ of the simulation scenario, with more vaccine immune holdings in the latter 

scenario  (Zaheer et al., in preparation). There were, however, no differences in the scenarios for 

‘vaccine immune holdings by the end of the outbreak’ which suggests that implementation of RPV did 

not contribute to building herd-immunity during the outbreak. A possible reason for this similarity was 

the way holdings were assigned ‘last vaccination day’ which was set between 1-20 days before the start 

of the simulation (Personal Communication, anonymous veterinarian). Therefore, RPV did not start until 

day 161 of simulations. Hence, implementation of RPV did not have any impact on reducing outbreak 

duration since the outbreak had already ended. Also, the demonstration of the prototype version of 

SMIAD-ER did not incorporate the coverage, capacity, and efficacy of RPV. The future versions of SMIAD-

ER should include these features to more realistically mimic the impact of RPV in reducing FMD burden 

during simulations.   

This paper aimed to report the enhanced features of SMIAD-ER by modifying its underlying 

framework to better mimic FMD in endemic settings. The objective was to demonstrate the usefulness 

of SMIAD-ER in assessing the effectiveness of various mitigation strategies for FMD control by 

parameterizing the model with estimates from FMD-endemic settings. 

2 Methods 

This demonstration of SMIAD-ER was based on cattle and buffalo holdings in Sindh province of 

Pakistan (Figure 4.1), a country endemic for FMD (Anjum et al., 2006; Farooq et al., 2018, 2017a, 2017b, 

2017c, 2016; Jamal et al., 2010; Navid et al., 2018).  
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2.1 Assumptions of SMIAD-ER 

The demonstration of SMIAD-ER in this paper was based on the following assumptions: 

• The input holdings represented the total holdings of the livestock of interest in Sindh, Pakistan 

for 2006. 

• There were four production-types in Sindh, i.e., medium buffalo (11-30 animals), medium cattle 

(11-30 animals), large buffalo (>30 animals), large cattle (>30 animals). 

• The population was closed, and the population size was constant. Individual holdings do not 

enter or leave the study area except via stamping-out as a control measure. 

• The effect of bovine holdings with 1-10 animals, small ruminants (sheep, goat) and wild animals 

(deer, wild boar) on FMD spread was ignored (i.e., negligible risk). 

• The occurrence of FMD and its spread beyond the provincial/regional boundary was ignored. 

• The impact of seasonality and meteorological factors on FMD spread was not included. 

• All holdings in the same production-type had the same disease progression parameters. 

• Individual animals within a holding were equally likely to come into contact with any other 

individual animals from other holdings of any production-type. 

• There were homogenous contact rates between specific pairs of production types, such as 

medium cattle to large buffalo, large buffalo to medium buffalo, etc. 

• The disease spread parameters and other parameters used in this demonstration represented 

the field situation of FMD in Pakistan. 

• The change in the population due to the potential mortality from FMD or other causes during 

the simulation duration was not considered. 
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• There was only one circulating serotype of FMD, i.e., Serotype O. 

• There was no carrier status among recovered holdings. 

• The infection status at the start of the simulation represented the prevalence of FMD in Sindh, 

Pakistan. 

• Emergency vaccination was not performed beyond the user-defined time period due to limited 

resources. 

• Routine prophylactic vaccination was not implemented beyond a user-defined time period. 

• Holdings of all production-types were assumed to have been vaccinated based on the user-

defined period before the start of the simulation, and it was termed ‘last vaccination day.’ 

2.2 Additional features to SMIAD-ER 

To mimic endemic FMD, the implementation of RPV in the prototype version of SMIAD-ER was 

modified in four ways.  

• Firstly, we added an option for users to specify the coverage for RPV. At the start of the 

simulations, all units were assigned a value for ‘last vaccination day’ by production type. If a 

production-type was set to be vaccinated once a year, holdings for that production-type were 

assigned a value between 1-365 days for ‘last vaccination day.’ Based on the coverage, when a 

holding was due for a vaccination, its status was changed to ‘susceptible.’ The model then 

selected a random holding from the pool and attempted to vaccinate it.  

• Secondly, we added a capacity function for RPV as point value to ensure that no more than a 

user-specified number of holdings could be vaccinated on each day when they come due. This is 

likely not to affect the model outputs because holdings will be vaccinated based on ‘last 

vaccination day’ and based on ‘coverage,’ not enough holdings will be selected randomly to 
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surpass the capacity. Nonetheless, if it happens, holdings exceeding capacity will not be 

vaccinated and remain ’susceptible’.  

• Thirdly, we added a user-defined function for ‘vaccine efficacy’ as a probability distribution 

function (PDF). Based on a random number from the specified distribution, the holding which 

was vaccinated can either become immune and be labeled as ‘vaccine immune’ or cannot 

mount an immune response and remain ‘susceptible’.  

• Lastly, we added a condition to stop RPV at a user-defined day of simulation. Based on this stop 

condition for RPV, holdings that come due post that day were not subject to be vaccination. 

2.3 Data sources 

The datasets used in this demonstration included: unpublished FMD outbreaks data from FAO 

Pakistan5; simulated dataset from the location and population of individual livestock holdings in Pakistan 

(Zaheer et al., in preparation), expert opinions and personal communications with anonymous 

veterinarians in Pakistan. 

2.4 Model parameters 

In this section, the baseline parameters used in SMIAD-ER are described. 

2.4.1 Production-types and their status 

The data on the population and location of individual livestock holdings were obtained from a 

study that utilized the microsimulation approach and geographic information system to generate a 

simulated dataset on the location and population of individual livestock holdings in Pakistan (Zaheer et 

al., in preparation). 

                                                           
5 Progressive Control Pathway Project for FMD control in Pakistan, Food and Agriculture Organization of the United 

Nations, ASI premises, National Agricultural Research Center, Islamabad 44000, Pakistan. 
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We included four production-types of livestock (Table 4.1) from Sindh, i.e., medium buffalo (11-

30 animals), medium cattle (11-30 animals), large buffalo (>30 animals), large cattle (>30 animals). 

Based on FMD outbreaks data (unpublished data, FAO Pakistan) and personal communication with 

expert veterinarians, holdings were randomly assigned one of the six possible statuses, i.e., clinical 

infectious, subclinical infectious, latent infected, naturally immune, vaccine immune, and susceptible 

(Table 4.1). 

2.4.2 Progression parameters 

FMD progression parameters (Table 4.2) were based on the assumption that only one serotype 

of FMD is circulating, i.e., Serotype O. The parameters for the subclinical, latent and natural immune 

period were similar for all production-types (medium – buffalo and cattle, large – buffalo and cattle). 

The parameters for the clinical period were estimated using Within-Herd (WH) model 0.9.7 (NAADSM 

Development Team, 2012), and the parameters used in the WH model are available in appendix.  

2.4.3 Spread parameters 

For all 16 possible production-type combinations, the parameters for direct and indirect contact 

spread and airborne spread were obtained from a veterinarian (anonymous) with extensive experience 

working with FMD outbreaks in Pakistan. 

For all production-type combinations, latent and subclinical holdings were assumed to be able 

to spread disease by direct contact. For indirect contact, only subclinical holdings were assumed to be 

infectious. The delay in shipment, for both direct and indirect contact, was set to zero days. The effect of 

movement restrictions on the baseline direct and indirect contact rate was set to zero as gleaned from 

expert opinion. 

The probability of infection transfer from source to recipient holdings amid direct and indirect 

contact was set between 0-1 as suggested by an expert veterinarian from Pakistan. Likewise, the 
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distance distribution of recipient holdings for direct and indirect contact spread was specified by 

BetaPERT distribution. The probability of infection transfer and distance distribution parameters are not 

included here due to the sheer volume of the inputs, and these parameters can be obtained from the 

primary author upon request. 

For airborne spread, the maximum distance for local area spread was set to 3-Km for all 

production type combinations. The rate of FMD spread was set to decline linearly from source holdings, 

and the direction of airborne spread was set to happen equally in 0-360o from the source holding. The 

probability of infection transfer was set between 0-1, and it is not included here due to the sheer 

volume of the inputs, and these parameters can be obtained from the primary author upon request.  

2.4.4 FMD detection parameters 

For all production-types in Pakistan (Table 4.3), the estimated probability of observing clinical 

signs of FMD, given the number of days the holding had been clinically infectious, and the estimated 

probability of reporting an observed clinical holding, given the number of days since FMD was first 

detected in any holding were gleaned from anonymous veterinarian from Pakistan with extensive 

experience with FMD outbreaks. 

2.4.5 Disease tracing 

The SMIAD-ER had an assumption that when tracing is enabled and a holding is identified as 

having had contact with another infected holding, the holding is quarantined and can no longer take 

part in disease spread through contacts (both direct and indirect). Based on personal communications 

with FMD experts in Pakistan, it was revealed that no such tracing mechanism exists in the country and 

also,  no mechanism exists to quarantine holdings if identified as being a source of or having exposure 

from other holdings. Therefore, tracing was disabled for this demonstration. 
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2.4.6 Examination of traced holdings 

In SMIAD-ER, examination of holdings identified by tracing is nested within the tracing. Since 

tracing was not enabled, the examination of holdings for clinical signs was not enabled.  

2.4.7 Diagnostic testing of traced holdings 

Diagnostic testing of holdings identified by tracing is nested within the tracing and examination 

of clinical signs. Since tracing was not enabled, diagnostic testing of holdings was not activated. 

2.4.8 Zones 

Based on the opinion of veterinarians from Pakistan, zones were not enabled.  

2.4.9 Destruction 

As gleaned from personal communications with FMD experts in Pakistan, the destruction of 

holdings was not enabled.  Pakistan is currently at stage 2 of the Progressive Control Pathway for FMD. 

At this stage, countries focus on reducing disease burden and do not employ destruction as a control 

option (FAO and OIE, 2016).   

2.4.10 Vaccination 

The parameters for emergency vaccination and RPV were based on a combination of personal 

communications, expert opinion, and published literature (Doel, 1996).  

2.4.10.1 Emergency vaccination 

The threshold for implementing emergency vaccination was set to the detection of FMD in five 

holdings of any production-type. The emergency vaccination capacity was kept constant at five 

holdings/day of any production-type from when it first started. The emergency vaccination was set to 

end after 30 days from when it first started. 
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For all production-types, the delay in mounting an immune response was set to 14 days. The 

model was set to implement emergency vaccination to infected holdings which were detected, and a 

vaccination ring of 100 m radius was established for all production-types. The duration of immunity for 

emergency vaccination (days) was modeled using a triangular distribution (30, 180, 210). For the 

implementation of emergency vaccination, production-types were prioritized as large cattle > large 

buffalo > medium buffalo > medium cattle. 

2.4.10.2 Routine prophylactic vaccination (RPV) 

For large cattle and buffalo production-types, the frequency of RPV was set to twice a year. The 

duration of immunity (days) linked to RPV was modeled using triangular distribution (30, 120, 180 days). 

The biological efficacy (%) of RPV was modeled using triangular distribution (60, 75, 95). The RPV 

coverage for each of these two production-types was 0.35%, and the capacity was set to 250 

holdings/day.  

For medium cattle and buffalo production-types, the frequency of RPV was set to once a year. The 

duration of immunity (days) linked to RPV was modeled using triangular distribution (30, 120, 180 days). 

The biological efficacy (%) of RPV was modeled using triangular distribution (60, 75, 95). The RPV 

coverage for each of these two production-types was 0.125%, and the capacity was set to 250 

holdings/day.   

2.5 Scenarios 

As a demonstration, four scenarios (Table 4.4) were developed, i.e., baseline, enhanced movement 

restrictions, improved disease detection, enhanced RPV. All scenarios were run until day 200 of 

simulation for 15 iterations due to time constraints and available resources. 
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2.6 Performance indices 

To ascertain if there were differences among scenarios, two important indices were extracted: 1) 

‘Outbreak duration’ which provides the number of the days until the end of the outbreak in a simulated 

scenario 2) ‘Vaccine immune holdings by the end of the outbreak’ which is the number of holdings of 

different production-types that were immune because of vaccination by the end of the outbreak.  

The ratio of ‘vaccine immune holdings by the end of the outbreak’ and ‘outbreak duration’ was 

calculated to compare the scenarios. For brevity, this index will be referred as ‘VO ratio’ in the rest of 

this manuscript. The ‘VO ratio’ is a unitless quantity depicting the change in the number of vaccine 

immune holdings by the end of the outbreak with each day increase in the outbreak duration.  

2.7 Statistical analysis 

The outputs from the four scenarios were used to produce descriptive statistics such as minimum, 

maximum, mean with confidence interval, quartiles and standard deviation for two performance 

indices, i.e.  ‘outbreak duration, and ‘vaccine immune holdings by the end of outbreak’ and the ‘ratio of 

vaccine immune holdings by the end of outbreak and outbreak duration’. One Way Analysis of Variance 

(ANOVA) was used to test the significant difference among scenarios for two performance indices and 

the ‘VO ratio’. To ensure that the assumptions of ANOVA were met, we performed a Shapiro-Wilk test 

for normality, and Levene’s test for homogeneity of variances using package ‘lawstat’ (Hui et al., 2008). 

If either of these two assumptions was violated, we performed the Kruskal-Wallis test for ANOVA. If 

ANOVA results were significantly different, we performed posthoc multiple comparisons which were an 

extension of the Wilcoxon Rank Sum test, to further explore which pairs of scenarios were different 

from each other. We adjusted p-values using Bonferroni method to minimize the familywise error rate. 

All the analysis was performed using R (R Core Team, 2017). A p-value of <0.05 was considered 

statistically significant.  
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3 Results 

Outputs from four scenarios which ranged from baseline (sc1), implemented movement restriction 

(sc2), improved disease detection (sc3) and enhanced RPV (sc4) were extracted for the two performance 

indices and ’VO ratio’. Due to computer hard-drive issues, outputs were not extracted for four iterations 

of sc1, four iterations of sc3 and one iteration of sc4. 

3.1 Outbreak duration 

A comparison of ‘outbreak duration’ (Table 4.5) revealed that sc1 and sc4 have similar minimum, 

maximum, mean with 95% CI, standard deviation. Likewise, sc2 and sc3 had the similar minimum, 1st 

quartile, and maximum for ‘outbreak duration’. The mean ‘outbreak duration’ and its confidence 

interval for sc1 were different than the mean and confidence interval of sc2 and sc3. The median 

‘outbreak duration’ for sc1 and sc3 were similar; however, these are different from sc2 and sc4, which 

had a median of 99 and 98.5 days, respectively. The variability of the estimates using the standard 

deviation for sc1 (4.6 days) and sc4 (4.8 days) was different than sc2 (3.3 days) and sc3 (2.1 days). The 

figure, 4.2 provides a histogram of ‘outbreak duration’ among the four scenarios. 

The data on the ‘outbreak duration’ were normally distributed with W-statistics of 0.93 for sc1, 0.91 

for sc2, 0.90 for sc3, and 0.89 for sc4. Test for the homogeneity of variances suggested that variances 

were not equal among scenarios, and non-parametric ANOVA indicated that there were no differences 

in ‘outbreak duration’ among four scenarios. 

3.2 Vaccine immune holdings by the end of the outbreak 

Test for normality of data on ‘vaccine immune holdings by the end of the outbreak’ suggested that 

observed data were normally distributed with W-statistics of 0.92 for sc1, 0.93for sc2, 0.93 for sc3, and 

0.90 for sc4. Test for the homogeneity of variances suggested that variances were not equal among 

scenarios, and One Way non-parametric ANOVA suggested that at least the median of one scenario was 
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not equal to the median of another scenario. Posthoc multiple comparisons (six comparisons) suggested 

no difference in the medians between sc1 and sc2. All other five comparisons suggested that medians 

were different, i.e. sc1 > sc3, sc1 < sc4, sc2 > sc3, sc2 < sc4, and sc3 < sc4. 

3.3 VO ratio 

Normality testing revealed that data on the ‘VO ratio’ were normally distributed for all scenarios 

with W-statistics of 0.95 for sc1, 0.94 for sc2, 0.94 for sc3, and 0.89 for sc4. Test for the homogeneity of 

variances suggested that variances were not equal among scenarios, One Way non-parametric ANOVA 

suggested that the median of at least one was not equal to the median of another scenario. Posthoc 

multiple comparisons (six comparisons) suggested no difference in median ‘VO ratio’ between sc1 and 

sc2, and sc1 and sc3. All other four comparisons suggested that medians were different, i.e. sc1 < sc4, 

sc2 > sc3, sc2 < sc4, and sc3 < sc4. 

4 Discussion 

To the best of our knowledge, this is the first demonstration of SMIAD-ER as a tool to evaluate 

alternative mitigation strategies for FMD. SMIAD-ER is the first-ever spatially-explicit, stochastic, state-

transition simulation model built for endemic regions. 

Hypothesis testing for ‘outbreak duration’ revealed that there were no statistically significant 

differences among scenarios using outputs from our simulations. It might give the impression that in 

reality, there is no difference in the outbreak duration in the field among situations when movement 

restrictions are implemented, disease detection is improved and RPV is enhanced. We should, however, 

be cautious in making such a definite conclusion because our findings are only valid for the parameters 

we used in SMIAD-ER. For instance, we only implemented five and ten percent effect of movement 

restrictions on baseline direct and indirect contact rate on day four and seven post detection. It is 

possible that we would observe a difference in outbreak duration between the baseline scenario and 
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movement restriction scenario if a different level of movement restrictions are implemented. Likewise, 

we did not see a difference in outbreak duration between baseline and the improved FMD detection 

scenario which could also be explained for the fact that findings are only valid for the parameters we 

used, and higher levels of FMD detection probabilities may result in differences in outbreak duration 

when compared with the baseline scenario. 

In terms of ‘vaccine immune holdings by the end of the outbreak’, we found statistically significant 

differences among the five pairs of scenarios. The statistically significant differences observed in the 

baseline scenario vs. improved disease detection scenario is borderline. Although we considered it as 

statistically significant, yet we believe this difference can be explained because of the stochastic nature 

of processes in SMIAD-ER. The statistically significant difference observed in the movement restriction 

scenario vs. improved FMD detection scenario can be attributed to disease spread processes happening 

during simulation in two scenarios. These processes could have resulted in different FMD spread 

patterns and consequently differences in vaccine immune holdings. On average, an improved FMD 

detection scenario has fewer vaccine immune holdings by the end of outbreak compared to a 

movement restriction scenario. This points to the fact that fewer vaccine immune holdings means saving 

limited resources spent on vaccination while vaccinating more holdings in the movement restriction 

scenario did not result in reducing outbreak duration compared to the improved FMD detection 

scenario.  The differences observed in the baseline scenario vs the enhanced RPV scenario, the 

movement restriction scenario vs. the improved FMD detection scenario, the improved FMD detection 

scenario vs the enhanced RPV scenario are rather obvious because in the enhanced RPV scenario, 

coverage of RPV was increased 20 times compared to baseline, the movement restriction and improved 

FMD detection scenario which resulted in more vaccine immune holdings by the end of outbreak in 

enhanced RPV scenario compared to all other scenarios.  
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Looking alone at outbreak duration or vaccine immune holdings by the end of the outbreak does not 

provide insight into how both of these could be playing a role. ‘VO ratio’ is a unitless quantity that gives 

insight into how one day increase in outbreak duration translates to vaccine immune holdings by the 

end of the outbreak. For example, in the case of the baseline scenario, mean ‘VO ratio’ was 0.49 which 

means that on average, a one day increase in the outbreak duration in the baseline scenario resulted in 

about 0.49 less holding vaccinated. Likewise, a one day increase in outbreak duration resulted in, on 

average, 0.54 and 0.46 fewer holdings vaccinated in the movement restriction scenario and in the 

improved FMD detection scenario, respectively. In the enhanced RPV scenario, however, a one day 

increase in the outbreak duration resulted in, on average, nine more holdings becoming vaccine 

immune. This means that an increase in outbreak duration resulted in fewer vaccine immune holdings in 

the improved FMD detection scenario compared to the movement restriction scenario (median: 0.45 vs 

0.52) and the enhanced RPV scenario (median: 0.45 vs 8.84). Similarly, the movement restriction 

scenario resulted in fewer vaccine immune holdings as the outbreak duration increased compared to 

the enhanced RPV scenario (median: 0.52 vs 8.84), and baseline resulted in fewer vaccine immune 

holdings with each day increase in the outbreak duration compared to the enhanced RPV scenario 

(median: 0.50 vs 8.84).  

The ‘VO ratio’ has potential applications in policy-making, e.g., to choose a mitigation strategy which 

results in fewer vaccine immune holdingsto limit the use of scarce resources on vaccinating more 

holdings without added benefit in terms of reducing outbreak duration. For example, in our 

demonstration, improved FMD detection had the smallest increase in mean (0.44) and median (0.45) 

number holdings vaccinated with each day increase in outbreak duration compared to the baseline, the 

movement restriction, and the enhanced RPV scenarios.  

Our demonstration of SMIAD-ER in Sindh Pakistan to evaluate alternative mitigation strategies for 

FMD has four main limitations. Firstly, the inclusion of specific production-types, movement restrictions, 
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disease detection, and vaccination parameters were based on the opinion of a single veterinarian from 

Pakistan. Although the veterinarian had extensive experience in dealing with FMD in the field and 

laboratory and with the implementation of the control program,  one veterinarian’s professional opinion 

cannot account for all possibiilities. Future work should focus on selecting a larger sample of 

veterinarians and the use of techniques such as the Delphi approach to reach a consensus on estimates 

to include in the model.  

The second limitation is the use of outbreak data to inform starting disease states for holdings of 

different production types. Outbreak data are likely to under-represent true  burden of the disease 

because these data lack a suitable denominator. Future work should also focus on obtaining reliable 

estimates on the spatiotemporal prevalence of FMD by production type. This will allow users to assign 

disease states closer to reality and not just randomly, as done in this demonstration. 

Thirdly, we only simulated each scenario for 15 iterationswhich is quite a small number. The reason 

for this small number of iterations was the slow nature of SMIAD-ER’s simulation engine. Future work 

should focus on enhancing the efficiency of the simulation engine to speed-up calculations and 

algorithms by using techniques such as vector mathematics, raster maps, Voronoi tessellations and 

different coding frameworks to incorporate more complicated process as they happen in endemic 

settings, and include more production-types with the increased number of holdings. These changes in 

engine efficiency would make SMIAD-ER more useful in endemic settings. 

Lastly, one issue endemic settings often face is under-reporting of FMD cases. In the future, a 

potential solution could be to add a ‘new infections module’, and these new infections can be modeled 

as a probability distribution function based on expert veterinarians. It would allow the model to add a 

certain number of infections randomly after a specified time period to account for the underestimation 

of  the initial infection status and new infections which the model could not account for. 
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Future versions of SMIAD-ER should also equip the model with the capability to model multiple co-

circulating FMD serotypes in parallel, the ability to include livestock population dynamics to account for 

population susceptibility and herd-immunity. Also, the future model should have the flexibility for users 

to specify the biological efficacy of emergency vaccination in addition to the coverage, capacity, and 

biological efficacy of RPV. 

Moreover, a graphical user interface should be added which will allow novice modelers from 

endemic regions to use the model for their current conditions and utilize modeling as a tool to evaluate 

alternative mitigation strategies for control of FMD in endemic areas. Control of FMD in endemic areas 

is critical and will help improve livestock health, provide economic gains for producers, help alleviate 

poverty and hunger, and will complement efforts to attain Sustainable Development Goals and the 2030 

Agenda. 
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Tables 

Table 4.1: Status of holdings of each production-type in Sindh, Pakistan* 

 

 

 

 

 

 

 

*Estimated from outbreaks data and expert opinion 

  

Production type Clinical Subclinical Latent Naturally immune Vaccine immune Susceptible Total 

Medium buffalo 148 443 2,953 591 142 109,307 113,584 

Medium cattle 143 574 3,586 717 138 105,190 110,348 

Large buffalo 390 1,171 3,122 1,561 41 5,399 11,684 

Large cattle 331 1,325 3,311 1,655 35 3,257 9,914 

Total 1,012 3,513 12,972 4,524 356 233,153 245,530 
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Table 4.2: FMD progression parameters for different production-types in Sindh, Pakistan 

 

 

 

 

*Mardones et al., 2010 

**NAADSM Development Team, 2012 

***Cunliffe, 1964; Moonen et al., 2004; USDA, 2013 

  

Production-type Latent*  Subclinical*  Clinical** Natural immunity*** 

Medium holdings Weibull (1.78, 3.97) Gamma (1.22, 1.67) Pearson 5 (21.55, 513.16) Gaussian (1095, 180) 

Large holdings Weibull (1.78, 3.97) Gamma (1.22, 1.67) Beta (25.19, 174.6, 1.95, 387.4) Gaussian (1095, 180) 
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Table 4.3: FMD detection parameters for all production-types in Sindh, Pakistan 

  

Probability Day Medium Buffalo Large Buffalo Medium Cattle Large Cattle 

Observing clinical signs, given the 

number of days the holding is clinically 

infectious 

1 

4 

7 

0.20 

0.50 

0.70 

0.20 

0.50 

0.70 

0.25 

0.50 

0.75 

0.25 

0.50 

0.75 

Reporting an observed clinical holding, 

given the number of days since the 

disease was first detected in any holding 

1 

3 

5 

0.10 

0.20 

0.50 

0.10 

0.40 

0.70 

0.10 

0.20 

0.50 

0.10 

0.40 

0.70 
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Table 4.4: Scenarios for the demonstration of SMIAD-ER in Sindh, Pakistan 

Scenario Description 

Baseline (sc1) To show the baseline level of FMD spread and control as detailed in section 2.4 

Implemented movement restrictions 

(sc2) 

Assuming that the implementation of  movement restriction will affect FMD spread 

Baseline effect of movement restrictions on the contact spread was enhanced to 5 and 10 percent 

reduction in mean baseline contact rate on day four and seven post-detection, respectively for all 

production-type combinations 

Improved disease detection (sc3) Assuming that improved disease detection will lead to early implementation of control strategies and 

hence reducing FMD burden 

The baseline level of disease detection multiplied with 1.25 for all production-types 

Enhanced RPV (sc4) Assuming that enhancing the frequency and coverage of RPV will help build herd-immunity, which 

will in turn help reduce disease burden 

The baseline coverage of RPV was increased 20 times for all production-types 
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Table 4.5: Summary statistics of performance indices from four scenarios for the demonstration of SMIAD-ER in Sindh, Pakistan 

Statistic Outbreak duration Vaccine immune holdings by the end 

of the outbreak 

Ratio of vaccine immune holdings by the 

end of outbreak and outbreak duration 

sc1 sc2 sc3 sc4 sc1 sc2 sc3 sc4 sc1 sc2 sc3 sc4 

Minimum 92.0 92.0 93.0 93.0 41.0 48.0 39.0 721.0 0.38 0.47 0.39 6.68 

1st quartile 95.5 96.5 96.5 94.0 46.0 50.0 43.0 829.5 0.46 0.50 0.44 8.23 

Mean  

(95% CI) 

 

98.4 

(95.2, 

101.5) 

98.1 

(96.3, 

99.9) 

97.2 

(95.8, 

98.6) 

98.4 

(95.6, 

101.1) 

48.1 

(45.8, 

50.4) 

52.5 

(50.7, 

54.2) 

44.2 

(42.6, 

45.8) 

879.8 

(831.8, 

927.9) 

0.49  

(0.45,  

0.53) 

0.54 

(0.51, 

0.56) 

0.46 

(0.43, 

0.48) 

9.00 

(8.28, 

9.73) 

Median 97.0 99.0 97.0 98.5 49.0 51.0 44.0 870.5 0.50 0.52 0.45 8.84 

St. Dev.  4.6 3.3 2.1 4.8 3.4 3.2 2.4 83.2 0.05 0.05 0.03 1.26 

3rd quartile 101.0 100.0 97.5 100.8 50.5 55.0 45.0 958.5 0.53 0.57 0.47 10.20 

Maximum 107.0 102.0 101.0 108.0 52.0 59.0 48.0 977.0 0.56 0.64 0.50 10.50 
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Figures 

 

Figure 4.1: Map of Pakistan showing its provinces and territories (extracted from Zaheer et al., in preparation)  
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Figure 4.2: Histogram of outbreak duration (days) among four scenarios (1, 2, 3 and 4 represent sc1, sc2, sc3, and sc4, respectively) 
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CHAPTER 5: CONTROL OF FOOT-AND-MOUTH DISEASE IN ENDEMIC REGIONS: CONCLUSIONS, 

LIMITATIONS AND RECOMMENDATIONS 

 

 

 

This chapter aims to summarize our observations on the application of simulation models as a tool 

for the control of foot-and-mouth disease (FMD) in endemic settings with a specific emphasis on the 

limitations of our work and recommendations for future directions.  

Several tools such as simulation modeling, risk analysis, and epidemiologic studies are available to 

assist in decision making processes for infectious animal disease control. Simulation modeling is a 

relatively cheaper and quicker tool to evaluate effectiveness of alternate mitigation strategies of 

infectious animal disease control. Although other simulation modeling approaches can be considered, 

our focus through this dissertation, has been on spatially-explicit stochastic simulation models (SESS). 

The advantage of using SESS models is that they can incorporate stochasticity and spatial relationships 

when mimicking the epidemiologic cycle of infectious animal diseases.  

We have used foot-and-mouth (FMD) as an example of an infectious animal disease to demonstrate 

the application of SESS models in disease endemic settings. We have, however, recognized that several 

models exist to simulate incursion of FMD in disease-free countries but not for FMD-endemic countries. 

The SESS models require accurate data on the location and population of individual livestock holdings. 

Therefore, reliable field data are essential in our attempt to build and evaluate our SESS model. Through 

this dissertation, we were able to generate a first-ever dataset on the location and population of 

livestock holdings in certain areas of Pakistan and Thailand. Moreover, we have built a SESS modeling 

framework for infectious animal diseases in endemic regions. Our modeling framework is called the 

“Simulation Model for Infectious Animal Diseases in Endemic regions”.  
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Although we attempted to select FMD-endemic countries with available reliable outbreaks data, 

specific data on the location and population of individual livestock holdings were not available from 

Pakistan and Thailand. In absence of such data, approaches that integrate geographic information 

system can be used to synthesize these data based on a set of assumptions and assigning weights to 

geographic layers. A major hurdle faced in synthesizing data on the location and population of livestock 

holdings was the selection of surrogate variables such as croplands, open lands, urban areas, slope, 

which influence the presence or absence of livestock holdings. We sought the opinion of conveniently 

selected veterinarians from Pakistan and Thailand to estimate weights for different geographic features 

and land cover types to determine suitable locations for livestock holdings. We, however, acknowledge 

that veterinarians are only one of the several professionals such as natural resource scientists, 

agricultural experts, who could have contributed to approach with an expert opinion on animal 

agriculture. The simulated dataset on the location and population should be validated, which is 

impossible in the absence of actual field data. We had access to a very small dataset on the location and 

population of individual livestock holdings from Pakistan and Thailand, which could not be used for 

validation. These data were, however, used to inform the creation of geospatial probability surface to 

identify suitable locations for livestock holdings. The future work should attempt to have a large dataset 

on the location and population of true holdings to facilitate validation.  

Data on the spatial prevalence of FMD are critical to the application of SESS models in endemic 

countries, and these data can be gleaned from sources such as cross-sectional studies, outbreak reports, 

national database, and reported outbreaks to OIE. These data are used to assign an initial disease state 

to holdings at the start of the simulation. In endemic settings, prevalence data is often lacking due to 

more focus on outbreaks. In the absence of prevalence data, we used outbreaks data as numerator and 

population data as a denominator to estimate the prevalence. We acknowledge that outbreaks reported 
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do not represent the true number of infected holdings in a specific area during a specified time period as 

there are concerns of under-reporting  

Future work should focus on strengthening monitoring and surveillance system to obtain 

production-type specific and regional data on FMD prevalence for use in SESS models and beyond. 

Efforts should also be made to estimate contact networks from expert opinions using the Delphi 

approach. Data on contact networks, distance distributions and any associated delays is required in SESS 

models to simulate direct and indirect spread. Data on the estimates of the effectiveness of movements 

restrictions on contact spread should be gleaned from expert opinion through a Delphi approach. The 

future work should focus on the selection of a large number of experts with expertise in FMD 

epidemiology and vaccination to glean estimates for the incorporation of vaccination parameters in SESS 

models. Additionally, a user interface should be added to SMIAD-ER to allow epidemiologists and 

models from endemic settings to use SMIAD-ER as tool for FMD control. The simulation engine of 

SMIAD-ER should also be made efficient to allow models to incorporate more complexity and ease in 

computations.  

Assumptions of the models should be well-documented, and these assumptions should be 

considered when interpreting the findings of the SESS models. The outputs and recommendations from 

this dissertation should be interpreted and taken for policy consideration in line with the assumptions. 

In our opinion, since our demonstration was based on the opinion of a single expert veterinarian from 

Pakistan, caution should be made when considering our findings for policy decisions. This demonstration 

will help in increasing the confidence of veterinarians in endemic countries Aon the usefulness of 

models in FMD control which will in turn facilitate gathering more data for model parameterization.  
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Finally, the control of FMD in endemic settings will help improve livestock health, provide economic 

gains for producers, help alleviate poverty and hunger, which can and will complement efforts to attain 

Sustainable Development Goals and the 2030 Agenda. 
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APPENDICES 

 

 

 

Chapter 1 

PRISMA checklist 

Table 1.2: PRISMA Checklist 

Title 

Title The title of the paper identifies it as a systematic review 

Abstract 

Abstract Included 

Introduction 

Rationale Described 

Objectives Explicitly stated 

Methods 

Protocol and registration No approved and registered protocol exists 

However, it follows PRISMA protocol (PVM publishes systematic 

review and meta-analysis without approved and registered protocol) 

Eligibility Criteria I did specify study characteristics (language, document type, disease, 

simulation modeling, spatially explicit, stochastic) 

Rationale 

Information sources List databases, timespan and date searched 

Search Described the search strategy 

Study selection Screening criteria 

Data collection process Use of MS Excel and tabulation 

Data items List of variables for which data was sought 

Assessment of SESS models and data extraction 

Risk of bias in individual 

studies 

N/A, not a meta-analysis 

Summary measures N/A, not a meta-analysis 

Synthesis of results Qualitative synthesis based on assessment of SESS models  

Risk of bias across studies N/A, not a meta-analysis 

Additional analyses N/A, not a meta-analysis 

Results 

Study selection # identified, # duplicates, # screened, # assessed for eligibility, # 

excluded (reasons), # included in qualitative synthesis. 

Flow diagram 

Table 1.1 

Study characteristics SESS characteristics, Table 2  

Risk of bias within studies N/A 

Results of individual studies Table 2 

Synthesis of results N/A, not a meta-analysis 

Risk of bias across studies N/A, not a meta-analysis 

Additional analysis N/A, not a meta-analysis 
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Discussion 

Summary of evidence Identified three key components of missing in the assessed models 

because of underlying assumptions and reasons behind the design 

(application in free-settings) 

Provided a framework for model adaptation 

Limitations Described that only assessed SESS models used for FMD 

Could be more models (not SESS, not published original research, not 

used for FMD)  

Conclusions Described 

Funding 

Funding No specific funding 
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Chapter 2 

This appendix contains the supporting material for the draft manuscript titled “estimating the 

location and population of livestock holdings in developing countries for spatial disease spread models.” 

List of provinces by region, Thailand 

 

Figure 2.16: List of provinces by region, Thailand  

Central Northeastern Northern

Ang Thong Amnat Charoen Chiang Mai

Bangkok Bueng Kan Chiang Rai

Chachoengsao Buri Ram Kamphaeng Phet

Chai Nat Chaiyaphum Lampang

Chanthaburi Kalasin Lamphun

Chon Buri Khon Kaen Mae Hong Son

Kanchanaburi Loei Nakhon Sawan

Lop Buri Maha Sarakham Nan

Nakhon Nayok Mukdahan Phayao

Nakhon Pathom Nakhon Phanom Phetchabun

Nonthaburi Nakhon Ratchasima Phichit

Pathum Thani Nong Bua Lam Phu Phitsanulok

Phetchaburi Nong Khai Phrae

Phra Nakhon Si Ayutthaya Roi Et Sukhothai

Prachin Buri Sakon Nakhon Tak

Prachuap Khiri Khan Si Sa Ket Uthai Thani

Ratchaburi Surin Uttaradit

Rayong Ubon Ratchathani

Sa Kaeo Udon Thani

Samut Prakan Yasothon

Samut Sakhon

Samut Songkhram

Saraburi

Sing Buri

Suphan Buri

Trat
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Description of datasets used 

2.7: Description of datasets used 

Dataset Description Usage 

Administrative 

boundary 

Boundaries for different 

administrative levels in Pakistan 

and Thailand 

Used as the base map, for processing 

extent and other geoprocessing 

Waterbodies Waterbodies in Pakistan and 

Thailand 

Used to mask out the water bodies 

from probability surface 

Road network Road network for different road 

types in Pakistan and Thailand 

Used to make probability buffers 

around different highway types 

Elevation This dataset provides the 

elevation for Pakistan and 

Thailand 

This dataset was used to calculate 

slope to be included in the probability 

surface 

Landcover Different land cover types in 

Pakistan and Thailand  

Creation of geospatial probability 

surface 

Expert-based 

opinions 

With anonymous veterinarians in 

Pakistan and Thailand 

To aid in determining arbitrary upper 

bound for herd-class 5 

To discuss probability buffers around 

different geographic features 

Survey 

questionnaire 

Anonymous veterinarians from 

Pakistan and Thailand responding 

to  

To seek weights for different 

geographic features for animal 

agriculture in Pakistan and Thailand 

Empirical holding 

locations 

Physical location of holdings with 

associated animal population 

To aid in the creation of probability 

buffers around different highway 

types 

To help in the placement of random 

holdings on probability surface 
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Geoprocessing 

Projections and coordinate system 

For the creation of geospatial probability surfaces, the following projections and coordinate system 

were used: 

• Punjab, Pakistan: Kalianpur 1962/India Zone I (EPSG: 24376) 

• Sindh, Pakistan: Kalianpur 1962/India Zone IIa (EPSG: 24377) 

• All regions, Thailand: Indian 1954/UTM Zone 47N (EPSG: 23947) 

Administrative Boundary: 

Pakistan: The administrative boundary for provinces was used and “select by attribute” tool was 

used to create boundary files for Punjab (Punjab and ICT) and Sindh.  

Thailand: Using the list of provinces in each of four regions of Thailand (available from 2013 

agricultural census), the “select by attribute tool” was used to create boundary file for each region. Each 

regional file was dissolved to have single feature polygon.  

These layers were projected accordingly. 

Waterbodies: 

The country-level dataset on permanent waterbodies was clipped to the province/region and 

was projected accordingly. 

Road networks: 

The country-level dataset on the road network was first clipped to the province/region of 

interest. Secondly, the roads were reclassified as below: 

{"main": ["motorway", "motorway_link", "trunk", "trunk_link"], 
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                       "primary": ["primary", "primary_link"], 

                       "smaller": ["secondary", "secondary_link", "tertiary", "tertiary_link"]} 

Finally, those roads projected accordingly. 

Elevation: 

The country-level elevation data was clipped to the province/region of interest. Then, the Slope 

tool from the Spatial Analyst tools in ArcGIS 10.x was used to calculate the percent slope. It was used to 

calculate slope %. The slope was reclassified as 0 (>10%) and 1 (≤10%). The slope raster was, then, 

projected accordingly. 

Land cover: 

The global land cover data was geoprocessed to the province/region of interest. Then, it was 

reclassified as: 

• Open lands = open/barren lands/sparsely vegetative 

• Croplands = croplands/grasslands/woody savannas, natural vegetation/open-closed 

shrublands/savanna 

• Urban = urban and built-ups 

• Other = all other land cover types (of no interest) 

The reclassified, landcover rasters were then, projected accordingly. Note: All datasets were 

resampled to the cell size of 100 m. 
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Table 2.8: Final holdings (%) on probability surface 

Country Livestock 

Herd-

class 

Probability Zone 

Low Medium high 

Pakistan Bovines 1 12.0 0.0 88.0 

  2 0.0 64.0 36.0 

  3 3.5 24.0 72.5 

  4 0.0 20.0 80.0 

  5 0.0 40.0 60.0 

Thailand Dairy 1 3.36 27.52 69.13 

  2 2.78 34.72 62.50 

  3 0 38.89 61.11 

  4 0 0 100.00 

  5 9.09 63.64 27.27 

 Beef 1 0 80.77 19.23 

  2 0 100.00 0 

  3 0 0 100.00 

  4 0 0 100.00 

  5 12.50 62.50 25.00 

 Swine 1 33.33 33.33 33.33 

  2 0.00 0 100.00 

  3 0.00 0 0.00 

  4 0.00 25.00 75.00 

  5 10.00 60.00 30.00 

 Buffalo 1 0 90.48 9.52 

  2 0.00 100.00 0 

  3 33.00 33.00 34.00 

  4 0 0.00 100.00 

  5 12.50 62.50 25.00 
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Table 2.9: Processing order and the minimum distance between holdings 

Country Region Herd Class Livestock Minimum distance (m) 

Pakistan 

All 5 

Bovines 

750 

 4 750 

 3 100 

 2 100 

 1 15 

Thailand All 

5 Dairy 500 

5 Beef 500 

5 Swine 500 

5 Buffalo 200 

4 Dairy 250 

4 Beef 250 

4 Swine 250 

4 Buffalo 100 

3 Dairy 200 

3 Beef 200 

3 Swine 200 

3 Buffalo 50 

2 Dairy 100 

2 Beef 100 

2 Swine 100 

2 Buffalo 10 

1 Dairy 50 

1 Beef 50 

1 Swine 50 

1 Buffalo 5 
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Table 2.10: Holdings successfully placed on geospatial probability surface  

Country Region Species Herd class Original holdings Success 

Pakistan 

Punjab 

Bovines 

1 7,265,425 93.89% 

2 271,459 95.55% 

3 41,574 97.19% 

4 19,220 97.77% 

5 13,986 95.35% 

Sindh 

1 2,162,006 76.05% 

2 195,776 99.93% 

3 29,917 92.99% 

4 12,444 99.94% 

5 9,150 99.97% 

Thailand 

Central 

Dairy 

1 9,058 94.16% 

2 1,155 91.95% 

3 128 86.72% 

4 3 100.00% 

5 1 0.00% 

Beef 

1 45,351 90.21% 

2 1,412 96.03% 

3 441 80.27% 

4 32 100.00% 

5 16 100.00% 

Swine 

1 11,394 97.24% 

2 725 88.28% 

3 691 75.69% 

4 340 99.71% 

5 967 91.42% 

Buffalo 

1 2,141 81.64% 

2 693 98.12% 

3 458 83.62% 

4 63 100.00% 

5 11 100.00% 

Northeastern 

Dairy 

1 5,001 81.88% 

2 454 97.14% 

3 51 98.04% 

4 1 0.00% 

5 N/A N/A 

Beef 

1 385,406 99.34% 

2 378 82.54% 

3 87 93.10% 

4 9 100.00% 

5 11 100.00% 

Swine 1 68,991 99.93% 
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2 1,437 99.86% 

3 627 100.00% 

4 201 100.00% 

5 522 99.81% 

Buffalo 

1 149,880 99.05% 

2 4,757 81.94% 

3 822 99.88% 

4 55 100.00% 

5 18 100.00% 

Northern 

Dairy 1 1,632 93.20% 

2 274 93.43% 

3 29 96.55% 

4 1 0.00% 

5 2 100.00% 

Beef 

1 47,807 96.13% 

2 991 89.00% 

3 128 95.31% 

4 12 91.67% 

5 48 97.92% 

Swine 

1 49,294 97.31% 

2 1,325 97.89% 

3 618 99.19% 

4 127 97.64% 

5 492 94.92% 

Buffalo 

1 10,138 93.08% 

2 1,999 98.70% 

3 782 94.50% 

4 94 96.81% 

5 10 100.00% 
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Probability surfaces 

 

Figure 2.17: Geospatial probability surface for dairy cattle in Central, Thailand where (a) to (e) represent 

herd-class 1 through 5, respectively 
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Figure 2.18: Geospatial probability surface for beef cattle in Central, Thailand where (a) to (e) represent 

herd-class 1 through 5, respectively   
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Figure 2.19: Geospatial probability surface for swine in Central, Thailand where (a) to (e) represent herd-

class 1 through 5, respectively 

  



   

 

165 

 

 

Figure 2.20: Geospatial probability surface for buffalo in Central, Thailand where (a) to (e) represent 

herd-class 1 through 5, respectively 
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Figure 2.21: Geospatial probability surface for dairy cattle in Northern, Thailand where (a) to (e) 

represent herd-class 1 through 5, respectively 
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Figure 2.22: Geospatial probability surface for beef cattle in Northern, Thailand where (a) to (e) 

represent herd-class 1 through 5, respectively 
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Figure 2.23: Geospatial probability surface for swine in Northern, Thailand where (a) to (e) represent 

herd-class 1 through 5, respectively 
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Figure 2.24: Geospatial probability surface for buffalo in Northern, Thailand where (a) to (e) represent 

herd-class 1 through 5, respectively 
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Density maps 

 

Figure 2.25: Holding density (/Km2) for dairy cattle in Central, Thailand, where (a) and (b) represent 

small, and large holdings 
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Figure 2.26: Holding density (/Km2) for beef cattle in Central, Thailand, where (a) and (b) represent 

small, and large holdings 



   

 

172 

 

 

Figure 2.27: Holding density (/Km2) for swine in Central, Thailand, where (a) and (b) represent small, and 

large holdings  
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Figure 2.28: Holding density (/Km2) for buffalo in Central, Thailand, where (a) and (b) represent small, 

and large holdings 
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Figure 2.29: Holding density (/Km2) for dairy cattle in Northern, Thailand, where (a) and (b) represent 

small, and large holdings  
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Figure 2.30: Holding density (/Km2) for beef cattle in Northern, Thailand, where (a) and (b) represent 

small, and large holdings 
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Figure 2.31: Holding density (/Km2) for swine in Northern, Thailand, where (a) and (b) represent small, 

and large holdings  
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Figure 2.32: Holding density (/Km2) for buffalo in Northern, Thailand, where (a) and (b) represent small, 

and large holdings  
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Questionnaire 

VERBAL RECRUITMENT/CONSENT TEMPLATE:  No Identifiers Collected 

Hello, my name is Muhammad Usman Zaheer, and I am a Ph.D. candidate from Colorado State 

University in the Department of Clinical Sciences. We are conducting a research study on estimating the 

geolocation of livestock premises and their population. The title of our project is “Geolocation of 

livestock premises and their population in Pakistan and Thailand: A simulation process model.” The 

Principal Investigator is Dr. Sangeeta Rao, Department of Clinical Sciences, and I am the Co-Principal 

Investigator. Other investigators are Dr. Katie Steneroden, Dr. Mo. Salman, Dr. Stephen Weber, Dr. 

Sheryl Magzamen, Dr. Chris Burdett, and Mr. Shaun Case. 

We would like you to use the attached anonymous questionnaire entitled “Professional opinion 

of veterinarians about the role of different factors in estimating suitable geolocation for livestock 

premises and their population in Pakistan” to provide your professional opinion about animal agriculture 

in your country based on your experience. A complete response to this questionnaire will take 

approximately 20-30 minute. Your participation in this research is voluntary. If you decide to participate 

in the study, you may withdraw your consent and stop participation at any time without penalty.  

A minimum of five years of professional livestock experience is required to respond to this 

questionnaire.  

Would you like to participate?   

If yes:  Proceed.  

If no:  Thank you for your time.   

We will not collect your name or personal identifiers. When we report and share the data with 

others, we will combine the data from all participants.  There are no known risks or direct benefits to 
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you, but we hope to be able to estimate geolocation of livestock premises and their population, 

subsequently use this set of data for evaluating risk, and a better understanding of animal disease 

spread such as Foot-and-Mouth Disease (FMD).  

Please read the attached “Background and introduction of the project” and “List of the 

glossary.” 

If you have any questions regarding understanding and answering the questionnaire, please do 

not hesitate to contact me at: 

Dr. Muhammad Usman Zaheer 

Ph.D. Candidate Epidemiology 

Department of Clinical Sciences  

CVMBS, CSU, CO 80523 USA 

Phone: +1-509-919-8351 

Email: Usman.Zaheer@ColoState.Edu 

If you have questions about your rights as a volunteer in this research, contact the CSU IRB at 

RICRO_IRB@mail.colostate.edu; +1-970-491-1553.  

  

mailto:Usman.Zaheer@ColoState.Edu
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Geolocation of livestock premises and their population in Pakistan: A simulation process model 

Executive Summary: 

Availability of exact geolocation [longitude (x) and latitude (y) numerical coordinates] of 

livestock premises can be very useful in evaluating risk and understanding disease spread. The data on 

the geolocation of livestock premises, however, are usually not available at the herd/farm level due to 

privacy issues. Different factors such as land cover, roads, human population settlements/density, etc. 

play an important role in estimating suitable location for livestock premises. We aim to develop a 

simulation model to estimate the geolocation of the livestock premises and their population in Pakistan.  

The Farm Location and Agricultural Production Simulator (FLAPS) is a model that can simulate estimated 

geolocation of individual livestock premises and their population in the USA. The FLAPS model was 

developed using a Geographic Information System (GIS), and other statistical and simulation modeling 

techniques. There are, however, constraints when adapting FLAPS for use in developing countries such 

as Pakistan. One of these constraints is the lack of organized exclusive structured farming system and a 

relatively higher number of backyard/household farming. This constraint, however, can be addressed by 

obtaining the experienced opinion of veterinarians working in Pakistan using a questionnaire. The 

output from this questionnaire will be used to develop a probability surface to simulate geolocation of 

livestock premises and their population in Pakistan. Finally, the simulated geolocation of livestock 

premises and their population will be an important component for the development of an animal 

disease spread model such as Foot-and-Mouth Disease (FMD) model for Pakistan. 
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Background and introduction of the project: 

Availability of exact geolocation [longitude (x) and latitude (y) numerical coordinates] of 

livestock premises can be very useful in evaluating risk and understanding disease spread. The data on 

the geolocation of livestock premises, however, are usually not available at the herd/farm level due to 

privacy issues. Different factors such as land cover (pastures, croplands, open areas, developed areas, 

water bodies, etc.), roads, slope, human population settlements/density, etc. play an important role in 

estimating suitable location for livestock premises. This estimation can be challenging in the absence of 

good quality data. We aim to develop a simulation model to estimate the geolocation of the livestock 

premises and their population in Pakistan.   

The Farm Location and Agricultural Production Simulator (FLAPS) is a simulation model that is 

used in the USA to estimate the geolocation of individual livestock premises and their population 

because this information is withheld due to privacy and confidentiality concerns. The FLAPS model was 

developed using a Geographic Information System (GIS), and other statistical and simulation modeling 

techniques. In the development of the FLAPS, researchers randomly sampled for the presence or 

absence of livestock farms throughout the conterminous USA. Farms were recognized due to the 

presence of infrastructure indicating a livestock production system for various species (e.g., cattle, 

poultry, and swine). If a farm was found, they measured the distance between the farm and different 

geographical features such as open areas, grassland, urban areas, pastures, and roads. This process was 

then repeated for the remaining random sites where a farm was not found. These data were then used 

as input to statistical models whose results allowed them to create geospatial probability surface 

depicting the probability of livestock presence for the various species of interest. Herd size was then 

simulated from aggregated agricultural census data by disaggregating the state and county-level data to 

the level of individual premises. Finally, the location of farms was also simulated using the probability 

surface to guide placement. 
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There are, however, constraints when adapting this methodology in developing countries such 

as Pakistan. One of these constraints is the lack of an organized structured farming system and a 

relatively higher number of backyard/household farming in which there are 1-10 animals in a household. 

These households are non-differentiable from households without animals using satellite imagery. This 

constraint, however, can be addressed using the professional opinion of veterinarians working in 

Pakistan. A questionnaire is attached, which can be used to obtain the required data. The questions 

focus on the role of different geographic factors play in animal agriculture and geolocation of some 

livestock premises in Pakistan. The output from this questionnaire will be used to develop a probability 

surface to simulate geolocation of livestock premises and their population in Pakistan. The geolocation 

data of livestock premises will be used for model validation only, and it will not be shared as the final 

product of the model. Finally, the simulated geolocation of livestock premises and their population will 

be an important component for the development of an animal disease spread model such as Foot-and-

Mouth Disease (FMD), for Pakistan. 
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List of Glossary 

• Livestock: refers only to Buffalo and cattle  

• Livestock Premises: refers to a farm, ranch, household or any other establishment used for 

keeping/housing buffalo and cattle  

• Land Cover: refers to the observed physical cover including the vegetation (natural or planted) 

and human constructions which cover the earth's surface. 

• Geospatial Probability Surface: refers to a surface depicting the probability of the presence of 

livestock of one or more species 

• Modeling: refers to an act of making a model and a model is an abstract representation of a 

complex system. In epidemiology, a model can be a representation of generalized characteristics 

of the system (such as, livestock population) divided into components that are of interest to a 

researcher (for simplicity and understanding) and removal of unnecessary information. 

• Simulation: refers to a reality/environment on which the model lives. It helps to understand the 

behavior of a system (such as livestock population) in real life over time.  

• Simulation Modelling: refer to a process in which a model lives a reality in a simulation 

environment and help us understand changes to output with changes in inputs. 

• Herd-size Category: refers to the different categories for herd size (number of animals) derived 

directly from livestock/agricultural census or by combining two or more categories from the 

census for simplicity and computational ease  

• The direction of Influence: refers to whether a factor influence/affect a certain herd-size 

category positively or negatively  

• Level Influence: refers to the importance of a factor for a certain herd-size category. It ranges 

from 0 to 5 

o 0: If there is no influence of factor on herd size category 
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o 1: if the influence of factor on herd size category is more than 0% and less than equal to 

20% 

o 2: if the influence of factor on herd size category is more than 20% and less than equal 

to 40% 

o 3: if the influence of factor on herd size category is more than 40% and less than equal 

to 60% 

o 4: if the influence of factor on herd size category is more than 60% and less than equal 

to 80% 

o 5: if the influence of factor on herd size category is more than 80% and less than equal 

to 100% 
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Professional opinion of veterinarians about the role of different factors in estimating suitable geolocation 

for livestock premises and their population 

1. Name of Province/Region: ____________  

2. Number of years of professional livestock experience : _________ 

3. Which of the following describe your experience with animal agriculture (encircle all that apply): 

a. Field veterinarian 

b. Farm management 

c. Laboratory researcher 

d. Disease surveillance 

e. Project management 

f. Senior executive 

g. Other (please explain) ______________________ 

4.  Please provide your opinion on the following items in the table below: 

a. “Direction of influence” (positive/negative) of ‘each factor’ on a ‘herd size category.’  

b. “Level of influence” (0-5) of ‘each factor’ on a ‘herd size category.’ 

▪ 0: If there is no influence of factor on herd size category 

▪ 1: if the influence of factor on herd size category is more than 0% and less than 

or equal to 20% 

▪ 2: if the influence of factor on herd size category is more than 20% and less than 

or equal to 40% 

▪ 3: if the influence of factor on herd size category is more than 40% and less than 

or equal to 60% 

▪ 4: if the influence of factor on herd size category is more than 60% and less than 

or equal to 80% 



   

 

186 

 

▪ 5: if the influence of factor on herd size category is more than 80% and less than 

or equal to 100% 

Example:  

• If in your opinion, “cropland/grassland/pasture” positively influence the herd-class 1 and the 

‘level of influence’ is more than 60% and less than or equal to 80%, then you will put 4 in the 

respective cell.  

• In contrast, if, in your opinion, “urban/developed area” negatively influence the herd-2 and the 

“level of influence’ is more than 80% and less than or equal to 100%, then you will put 5 in the 

respective cell. 

o This ‘direction of influence’ and ‘level of influence’ can be the same or different for 

other herd size categories.  

Please see the sample in the table below: 

Herd-

class 

Question 

Factor 

Cropland/ 

grassland / 

pasture 

Open/barren 

land 

Urban/developed 

area 

Slope 

(≤10%) 

1 Direction of 

influence 

(Positive/Negative) 

Positive 
   

Level of influence 

(0 to 5) 

4 
   

2 Direction of 

influence 

(Positive/Negative) 

  
Negative 

 

Level of influence 

(0 to 5) 

  
5 
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Please provide your opinion in the table below, taking the above table as an example only. 

Livestock: Bovines/beef cattle/buffalo/dairy cattle/swine 

Herd-class Question Cropland/ 

grassland / pasture 

Open/barren land Urban/developed area Slope (≤10%) 

1 Direction of 

influence 

(Positive/Negative) 

        

Level of influence 

(0 to 5) 

        

2 Direction of 

influence 

(Positive/Negative) 

        

Level of influence 

(0 to 5) 

        

3 Direction of 

influence 

(Positive/Negative) 

        

Level of influence 

(0 to 5) 

        

4 Direction of 

influence 

(Positive/Negative) 

        

Level of influence 

(0 to 5) 

        

5 Direction of 

influence 

(Positive/Negative) 

        

Level of influence 

(0 to 5) 
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Any additional comments: 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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Empirical locations of livestock holdings are necessary to create additional probability buffers around 

different highway types, and percent holdings to be placed on different probability zones. Please 

provide physical locations of livestock holdings (ranging from herd-class 1 to 5). Please provide as much 

address details as possible. 

Note: Please extend the table to accommodate more livestock premises 
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Locational details of livestock premises 

  

Livestock-type Herd-class 

[Check (✓) that apply] 

Province/Region 

  

Longitude (x) 

 

Latitude (y) 

 

1 2 3 4 5 
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Chapter 3 

Starting status of holdings 

Under the UN-FAO project “GCP/PAK/123/USA Development of Technical Framework for the 

Control of Foot and Mouth Disease in Pakistan”, outbreaks data was collected in Pakistan. During 2012-

2014, a total of 121 suspected outbreaks were reported from bovine holdings with > 50 animals, and 

100 (82.6%) of them were positive by ELISA for latest one serotype pf FMD. The period prevalence was 

calculated, i.e., 71.05 holding/10,000 holdings. It was assumed that each outbreak represents a unique 

holding and positive holdings were divided by a total number of holdings, i.e., 13,986 to calculate % of 

positive holdings. It was assumed that these positive holdings are clinical infectious. 

In addition, the anonymous veterinarian was asked to provide his opinion on ‘for each clinical 

infectious holding, how many other holdings are present, which are subclinical infectious holdings.’ Also, 

the veterinarian was asked, ‘for each infectious holding (clinical and subclinical) holding, how many 

other holdings are exposed but not infectious yet.’ The response to these two questions was 2. Based on 

this information, 200 holdings were given a ‘subclinical ‘status, and 600 holdings were given ‘latent’ 

status. 

To ascertain the number of naturally immune holdings, it was assumed that all infected holdings 

(latent, subclinical and clinical) holdings would mount natural immunity upon recovery. Thus, 1600 

holdings were assigned a ‘natural immune’ status. To account for the ‘vaccine immune’ holdings at the 

start of the simulation, based on the personal communication with expert veterinarians, 210 holdings 

were given ‘vaccine immune’ status, i.e. 0.14%. All other holdings were set to ‘susceptible’ status. 

Estimation of holding-level clinical duration 

The estimates for holding level duration of clinical infection, WH 0.9.7 was used based on parameter 

estimates from personal communication with an anonymous veterinarian.  
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A total of 100 iterations were run, and the numbers of days for which the herd remained clinical was 

extracted from each iteration. That data was fitted to different distributions, and the best fitting 

distribution (Gamma) will be used in SMIAD-ER model.  
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Table 3.3: Parameters for WH0.9.7 

Parameter PDF/estimate Reference 

Population Lognormal (197.61, 172.45) Zaheer et al 2019  

in preparation 

Initially latent animals Fixed value (1) Personal Communication 

Initially sub-clinical infectious 

animals 

Fixed value (1) Personal Communication 

Initially clinical infectious 

animals 

Fixed value (1) Personal Communication 

Adequate exposure/day Uniform (1, 5) Personal Communication 

Latent Period Weibull (1.78, 3.97)  Mardones et al., 2010 

Sub-clinical infectious period Gamma (1.22, 1.67)  Mardones et al., 2010 

Clinical period Exponential (4.75, 0.74)  USDA, 2013 

Natural immunity Gaussian (1095, 180) Cunliffe, 1964; Moonen et al., 

2004 

 

The resulting data on the duration of clinical infection for 100 iterations were fit in R using 

fitdistrplus package, and Anderson-darling test was applied (Delignette-Muller and Dutang, 2015; R Core 

Team, 2017). The parameters for shape and scale were estimated using the Maximum Likelihood 

Estimation method. The Gamma distribution (23.20, 1.74) was used to model clinical infectious period of 

FMD progression for both production-types using SMIAD-ER. 

Spread Parameters 

Contact Spread 
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Table 3.4: Contact spread parameters for different production type combinations 

Production Type Combination Direct Contact Indirect Contact 

Cattle to Cattle 

Can latent holdings spread FMD Yes No 

Can sub-clinical holdings spread FMD Yes Yes 

Mean baseline contact rate/day (point value) 0.2 

 

3 

 

Distance distribution of recipient units 

BetaPERT 

(0.1, 1, 30) 

 

(0.05, 4, 50) 

 

Probability of infection transfer if source holding 

is infected (point value) 

0.85 

 

0.50 

 

Delay in shipments? (Number of days that on 

average it takes from shipment of animals reach 

from source to recipient unit) 

0 0 

Effect of movement restrictions on mean 

baseline contact rate, after detection in any 

production type 

Day        Prob. 

1             95 

4             80                 

7             60 

 

Day       Prob. 

1           100                 

4            90 

7            70   

Cattle to Buffalo 

Can latent holdings spread FMD Yes No 

Can sub-clinical holdings spread FMD Yes Yes 

Mean baseline contact rate/day (point value) 0.033 3 

Distance distribution of recipient units 

BetaPERT 

(1, 15, 50) 

 

(0.05, 4, 50) 

 

Probability of infection transfer if source holding 

is infected (point value) 

0.70 0.40 

Delay in shipments? (number of days that on 

average it takes from shipment of animals reach 

from source to recipient unit) 

0 0 

Effect of movement restrictions on mean 

baseline contact rate, after detection in any 

production type 

Day         Prob. 

1              95 

4              80 

7              60 

Day           Prob. 

1               100 

4               90 

7               70 

Buffalo to Buffalo 

Can latent holdings spread FMD Yes No 

Can sub-clinical holdings spread FMD Yes Yes 

Mean baseline contact rate/day (point value) 3  3 

Distance distribution of recipient units (Km) 

BetaPERT 

(0.02, 0.2, 10) (0.05, 4, 50) 

 

Probability of infection transfer if source holding 

is infected (point value) 

0.50 .30 

Delay in shipments? (number of days that on 

average it takes from shipment of animals reach 

from source to recipient unit) 

0 0 
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Effect of movement restrictions on mean 

baseline contact rate, after detection in any 

production type 

Day         Prob. 

1              95 

4              80 

7              60 

Day           Prob. 

1                100 

4                 90 

7                 70 

Buffalo to Cattle 

Can latent holdings spread FMD Yes No 

Can sub-clinical holdings spread FMD Yes Yes 

Mean baseline contact rate/day (point value) 0.017 3 

Distance distribution of recipient units 

BetaPERT 

(1, 7.5, 60) 

 

(0.05, 4, 50) 

 

Probability of infection transfer if source holding 

is infected (point value) 

1 0.60 

Delay in shipments? (number of days that on 

average it takes from shipment of animals reach 

from source to recipient unit) 

0 0 

Effect of movement restrictions on mean 

baseline contact rate, after detection in any 

production type 

Day          Prob. 

1               95 

4               80 

7               60 

Day           Prob. 

1               100 

4                90 

7                70 

 

Airborne spread 

The parameters for local area spread were sought from anonymous veterinarian working on 

FMD outbreaks in Pakistan. It was assumed that maximum distance for local area spread is 3-Km for all 

production type combinations. It was assumed that the rate of FMD spread decreases linearly from the 

source. 
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Table 3.5: Parameters for local area spread of FMD (through aerosol, rodents, birds, stray animals) 

Parameter Cattle to 

Cattle 

Cattle to 

Buffalo 

Buffalo to 

Buffalo 

Buffalo 

to Cattle 

Probability of FMD spread/contagious day at 1 km 

distance, from average sized unit 

0.90 0.65 0.60 0.80 

Area at risk (0-360 degree) 360 360 360 360 

Airborne transport delay (days) 0 0 0 0 
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Disease Detection 

Based on the opinion of a field veterinarian 

Table 3.6: Probability of observing and reporting clinical infectious holdings 

Parameter Cattle Buffalo 

Probability of observing clinical signs, given the number of days the 

unit is clinically infectious (relational function) 

 

 

Day 

1  

3 

5 

Prob. 

2 

45 

90 

Day 

0 

3 

6 

Prob. 

1 

40 

90 

Probability of reporting an observed clinical unit, given the number of 

days since the disease was first detected in any unit (relational 

function) 

Day 

1 

2 

Prob. 

50 

90 

Day 

1 

2 

Prob. 

50 

90 
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Emergency vaccination 

Table 3.7: Emergency vaccination capacity 

 

  

Days  Holdings vaccinated 

1  2 

2  5 

5  15 

10  35 
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Chapter 4 

Holding-level clinical infectious period 

The With-in Herd (WH) model 0.9,7 was parameterized with estimates presented in table 4.6-

4.7. The model was run for 1,000 iterations until the end of the outbreak. The clinical infectious period 

from all iterations was fit to different statistical distributions using Easy-Fit software (Schittkowski, 

2002). The distribution with the highest rank for the Anderson-Darling test was selected for use in 

SMIAD-ER to model holding level clinical infectious period. If the highest ranked distribution was not 

available in SMIAD-ER, the next distribution was chosen. 

Table 4.6: Input parameters for use in WH0.9.7 for medium holdings (cattle and buffalo) 

Item Parameters Reference 

Population Uniform (11, 30) Zaheer et al., in preparation  

Initially latent animals Fixed value (1) N/A 

Initially sub-clinical infectious 

animals 

Fixed value (1) N/A 

Initially clinical infectious 

animals 

Fixed value (1) N/A 

Adequate exposure/day Uniform (1, 5) N/A 

Latent Period Weibull (1.78, 3.97)  Mardones et al., 2010 

Sub-clinical infectious period Gamma (1.22, 1.67)  Mardones et al., 2010 

Clinical period Exponential (4.75, 0.74)  USDA, 2013 

Natural immunity Gaussian (1095, 180) Cunliffe, 1964; Moonen et 

al., 2004 
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Table 4.7: Input parameters for use in WH0.9.7 for large holdings (cattle and buffalo) 

Item Parameters Reference 

Population Uniform (31, 1707) Zaheer et al., in preparation  

Initially latent animals Fixed value (1) N/A 

Initially sub-clinical infectious 

animals 

Fixed value (1) N/A 

Initially clinical infectious 

animals 

Fixed value (1) N/A 

Adequate exposure/day Uniform (1, 5) N/A 

Latent Period Weibull (1.78, 3.97)  Mardones et al., 2010 

Sub-clinical infectious period Gamma (1.22, 1.67)  Mardones et al., 2010 

Clinical period Exponential (4.75, 0.74)  USDA, 2013 

Natural immunity Gaussian (1095, 180) Cunliffe, 1964; Moonen et 

al., 2004 
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