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ABSTRACT

GRADUATE STUDENTS’ REPRESENTATIONAL FLUENCY IN ELLIPTIC CURVES

Elliptic curves are an important concept in several areas of mathematics including number

theory and algebraic geometry. Within these fields, three mathematical objects have each been

referred to as an elliptic curve: a complex torus, a smooth projective curve of degree 3 in P
2

with a chosen point, and a Riemann surface of genus 1 with a chosen point. In number theory

and algebraic geometry, it can be beneficial to use different representations of an elliptic curve

in different situations. This skill of being able to connect and translate between mathematical

objects is called representational fluency. My work explores graduate students’ representational

fluency in elliptic curves and investigates the importance of representational fluency as a skill for

graduate students. Through interviews with graduate students and experts in the field, I conclude 3

things. First, some of the connections between the above representations are made more easily by

graduate students than other connections. Second, students studying number theory have higher

representational fluency in elliptic curves. Third, there are numerous benefits of representational

fluency for graduate students.
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Chapter 1

Introduction

Connecting mathematical ideas by translating between different representations of these ideas

is common in all levels of math. For example, in grade school mathematics classes, students are

taught to connect the ideas of fractions and decimals. In undergraduate mathematics, students often

connect high school concepts with what they are learning in their courses, such as rate of change

and derivatives in calculus or functions and linear transformations in linear algebra [1]. It is com-

mon in graduate math courses for students to connect, and translate between, ideas from differ-

ent courses and/or different areas of mathematics. This skill of creating, interpreting, connecting

and translating between different representations of the same concept is called representational

fluency [2]. Representational fluency is important for developing understanding and is used by

mathematicians of all levels. In this thesis we will consider a specific example of representational

fluency in graduate level mathematics.

Historically, three mathematical objects have all been referred to as "elliptic curves": complex

tori, smooth projective curves of degree 3 in P
2 with a chosen point, and Riemann surfaces of genus

1 with a chosen point. These three objects will be introduced in Chapter 2, along with proofs of

their equivalence. While proving this equivalence, I will be demonstrating representational fluency,

and more specifically, translating between the three representations of elliptic curves. Chapter 3

will explain in more detail the theory of representational fluency and how it will be used throughout

the thesis. In Chapter 4, I will explain my methods for participant selection, data collection and

analysis. This will lead into my summary of results in Chapter 5 and discussion of results in

Chapter 6.

Therefore, the overall purpose of this thesis is to investigate graduate students’ representational

fluency in elliptic curves. More specifically, I will be investigating the following questions: How

do graduate students connect and translate between different representations of elliptic curves?

And what benefits does representational fluency at a graduate level have for graduate students?
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Chapter 2

Math Background

Three mathematical objects have each been referred to as an elliptic curve: complex torus,

smooth projective curve of degree 3 in P
2, with chosen point, and Riemann surface of genus 1,

with chosen point. This chapter will start by introducing these three objects in Section 2.1, then

will go over proofs of the equivalences in Section 2.2.

2.1 Overview of Elliptic Curves

2.1.1 Complex Torus C/L

We take ω1, ω2 ∈ C \ {0}, where ω1 ̸= λω2 for all λ ∈ R. We then take L = {Zω1

⊕
Zω2 =

mω1 + nω2 | m,n ∈ Z}. We call L a lattice. We can form the quotient group, C/L, this is called

the complex torus. We say z1 + L ≡ z2 + L ⇐⇒ z2 − z1 ∈ L. We can impose the quotient

topology on C/L: a set U ⊂ C/L is open if and only if π−1(U) is open in C. We can define the

fundamental parallelogram by taking the vertices to be {0, ω1, ω2, ω1 + ω2}. An element z0 being

in the fundamental parallelogram tells us that for any coset z+L, there is another z0+L ≡ z+L.

As a final note, C/L is an abelian group.

2.1.2 Smooth projective curves of degree 3 in projective space P
2

We consider smooth projective curves of degree 3 in projective space P
2. These are solutions

to homogeneous equations in three variables. We dehomogenenize by setting z = 1 then replace x

by x/z, and y by y/z. We then replace the projective space by affine space A
2
C
= C

2. This family

of curves are isomorphic to curves in Weierstrass form:

E : y2 = x3 + ax+ b

with a, b, c ∈ C.

2



We claim that E is in fact a group. This sketch will follow [3, Section 3.2]. To define our

binary operation on a pair of given points, we draw a secant line between the two points, find

the third intersection point, and then reflect across x = 0. This works by Bezout’s Theorem,

which says every line (deg 1) and cubic (deg 3) intersect in 3 points in P
2, when counted with

multiplicities. This is because we can create secant lines that are tangent to the curve, giving a

point with multiplicity greater than 1. The identity of the group is the point at infinity. In projective

space, this is called the point [0 : 1 : 0]. Negatives of points are reflections across the x-axis, where

the third point becomes ∞. The reflection makes the group nicer, since the sum of 3 points on the

curve intersect with a line equals zero and is shown in Figure 2.1.

Figure 2.1: Elliptic curve addition (Image from [3, Figure 3.3])

2.1.3 Riemann Surface of genus 1 with chosen point

In this section we build the definition of a Riemann surface following [4]. The intuition here is

that we want a Riemann surface to be a space which locally looks like an open set in the complex

plane.

Definition 2.1.1. A complex chart on X , a topological space, is a homeomorphism ϕ : U → V

where U ⊂ X is an open set in X and V ⊂ C is an open set in the complex plane

3



We can think of a chart on X as giving a local complex coordinate z = ϕ(x) for x ∈ U . We

must have charts around every point of X in order for X to locally look like the complex plane

everywhere. We need these charts to be compatible, which means the transition function between

2 charts is holomorphic, which leads us to the idea of complex atlas.

Definition 2.1.2. A complex atlas A on X , a topological space, is a collection A = {ϕα : Uα →

Vα} of pairwise compatible charts whose domain cover X .

To build our definition of a Riemann surface we need to define a few conditions for our topo-

logical space X .

Definition 2.1.3. X is said to be Hausdorff if for every two distinct points x and y in X , there are

disjoint neighborhoods U and V of x and y, respectively.

Definition 2.1.4. X is second countable if there is a countable basis for its topology.

Definition 2.1.5. A Riemann surface is a second countable connected Hausdorff topological space

X together with a complex structure.

We care about Riemann surfaces of genus 1, which means that our surface has one hole and is

a simple torus. We also want our Riemann surface to have a chosen point.

2.2 Main Theorem

All of the objects presented above are often referred to as Elliptic curves. The reason for this

is presented in the following theorem:

Theorem 2.2.1 ( [4], Proposition 7.1.7, [3], [5]). The 3 following types of objects are equivalent.

Each is an abelian group.

1. Complex torus C/L, for some lattice L

2. Smooth projective curve of degree 3 in P
2, with chosen point

3. Riemann surface of genus 1, with chosen point.

We will prove this theorem in the following subsections.
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2.2.1 Proving Smooth projective curves of degree 3 in projective space P
2

are Riemann Surfaces of genus 1 with chosen point

In this section of the thesis, we will be proving that smooth projective curves of degree 3 in P
2

are Riemann surfaces of genus 1. The backwards direction is an application of the Riemann Roch

Theorem following [6, Section 2.3] and the forwards direction uses charts to show that we have a

Riemann surface.

Proof. (⇐=) Let X be a Riemann surface of genus 1 with a chosen point. We need to go through

some definitions following [4, Chapter 5] before proceeding with this proof.

Definition 2.2.1. A divisor on X is a function D : X → Z such that the set of points p ∈ X where

D(p) ̸= 0 is a discrete subset of X . Equivalently, a divisor is an element of the free abelian group

generated by the points of X .

Definition 2.2.2. The degree of a divisor D on a compact Riemann surface is the sum of values of

D:

deg(D) =
∑

p∈X
D(p).

Next, let f be a meromorphic function on X which is not zero.

Definition 2.2.3. The order of f at p is

ordp(f) =





k f has a zero of multiplicity k at p

−k f has a pole of multiplicity k at p

Definition 2.2.4. The divisor of f is the divisor defined by the order function:

div(f) =
∑

p

ordp(f)p.

Similarly, let ω be a meromorphic 1-form on X which is not identically zero.
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Definition 2.2.5. The canonical divisor on X , is the divisor defined by the order function:

div(ω) =
∑

p

ordp(ω)p.

Let D be a divisor on a Riemann surface X . The space of meromorphic functions with poles

bounded by D, denoted L(D), is the set

L(D) = {f meromorphic |div(f) ≥ −D}.

To understand this terminology, suppose that D(p) = d > 0. Then if f ∈ L(D), we must have

that ordp(f) ≥ −d, which means that f may have a pole of order at most d at p. Similarly, if

D(p) = d < 0, then f must have a zero of order d at p. Some immediate observations are that

dimL(0) = 1 because holomorphic functions are constant on a Riemann surface and dimL(D) = 0

if deg(D) < 0. We can now introduce a theorem that will help prove that a Riemann surface of

genus 1 is a smooth projective curve of degree 3 in P
2.

Theorem 2.2.2 (Riemann-Roch). [4, Theorem 6.3.11] Let X be a Riemann surface of genus g.

Then for any divisor D and any canonical divisor K,

dimL(D)− dimL(K −D) = deg(D) + 1− g

We have a Riemann surface of genus 1, so g = 1. We also know that deg(K) = 2g − 2 = 0,

therefore deg(K−D) < 0, if D is effective and dimL(K−D) = 0. Further, dimL(D) = deg(D).

Pick a point p in X , L(np) = {f that are allowed at most a pole of order n at p}. Consider L(np)

for n = 0, 1, 2, ..., 6.
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Table 2.1: Meromorphic functions for different n values

n dimL(np) functions

0 1 constants

1 1 constants

2 2 x, pole of order 2

3 3 y, pole of order 3

4 4 x2

5 5 xy
6 6 y2, x3

There are 7 functions in a 6 dimensional space, therefore, there must be a linear relationship

between these functions. Let us assume ay2+by+cxy = dx3+ex2+gx+h where a, b, c, d, e, g, h ∈

C. Using a change of coordinates in the plane, we can manipulate this equation to look like y2 =

4x3 + g2x+ g3 with g2, g3 ∈ C. This curve is equivalent to the Weierstrass form in Section 2.1.2

(=⇒) Let E be a smooth projective curve of degree 3 in P
2, first, we want to put E into Weierstrass

form as shown in Section 2.1.2. In order to show E is a Riemann surface we must show that for all

points in E there exists a chart and that our transition functions are holomorphic. These charts are

holomorphic maps from an open set in E around p to an open set in C and more specifically they

can be chosen to be projections to the x or y axis. For all points p ∈ E, there exists a projection πp

to either the x or y axis from an open set around p, Up along the curve such that we have the chart

(Up, πp). Around most points both projections work as a chart, but there are a few points where

only one projection works. If one of the partial derivatives of E at a point p is zero, then we can not

project to the opposite axis, we must project to the axis of the variable whose partial derivative is

zero. Suppose (Uα, πα) and (Uβ, πβ) are two charts such that Uα ∩ Uβ is nonempty. The transition

function ϕα,β : πα(Uα ∩ Uβ) → πβ(Uα ∩ Uβ) is a map defined by

ϕα,β = πβ ◦ π−1

α .
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We know π−1
α exists due to the Implicit Function Theorem. Since πα and πβ are both holomorphic,

the transition function ϕα,β is also holomorphic. Therefore, we have a Riemann surface.

To show that this Riemann surface has genus one, we will use the following theorem,

Theorem 2.2.3 (Riemann-Hurwitz Formula). [7, Theorem 4.4.1] Let f : X → Y be a non-

constant, degree d, holomorphic map of compact Riemann Surfaces. Denote by gX (respectively

gY ) the genus of X (respectively Y ). Then

2gX − 2 = d(2gY − 2) +
∑

x∈X
vx,

where vx is the differential length of f at x.

We know that projection on to the x axis gives a map of degree 2 to P
1, so d = 2. Since Y is

P
1, gY = 0. We also know that we have 4 ramification points with differential length at each equal

to 1. So we have

2gX − 2 = 2(−2) + 4 =⇒ gX = 1.

Therefore, we have shown that E is a Riemann surface of genus one.

2.2.2 Proving Complex Tori are Smooth projective curves of degree 3 in pro-

jective space P
2

This section of the thesis will be sketching the proof of complex tori are equivalent to smooth

projective curves of degree 3 in P
2. The forward direction of the proof will be following [3, Section

6.3]. We will be sketching out the proof for the backwards direction following [5, Chapter 6]

and [3, Section 6.1]. For the sake of clarity we have omitted some of the proofs that are technical

and not as demonstrative of important ideas but refer the reader to the appropriate citations for

details.
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Proof. (=⇒) We aim to prove that complex tori are smooth projective curves of degree 3 in P
2.

Let L = {mω1 + nω2|m,n ∈ Z} be a lattice. Then the Weierstrasss ℘-function is defined on this

lattice by

℘(z) =
1

z2
+

∑

ω∈L\{0}

(
1

(z − ω)2
− 1

ω2

)
. (2.1)

It has poles at the points of L and no other poles in the complex plane. Since the right hand side

of (2.1) is not changed if z is replaced by −z we see that ℘(z) = ℘(−z) because of the squared

terms in the function and the fact that we are summing over all of the points of the lattice and so

the function is even. We also can observe that ℘(z) is uniformly convergent, so we can compute

its derivative,

℘′(z) = −2
∑

ω∈L\{0}

1

(z − ω)3
. (2.2)

It is clear that ℘′(z) is doubly periodic, meaning ℘′(z + ω) = ℘′(z) for all ω ∈ L. Integrating

this with respect to z gives us that ℘(z + ω) = ℘(z) + c(ω) for all z ∈ C. Let z = −1

2
ω, then

℘(1
2
ω) = ℘(−1

2
ω)+ c(ω). Since ℘(z) is even we have that c(ω) = 0 and therefore ℘ is also doubly

periodic.

Next, we need to define the Eisenstein series of weight 2k in order to state a theorem needed for

this proof. The Eisenstein series of weight 2k is the series

G2k(L) =
∑

ω∈L\{0}
ω−2k.

It is standard to let g2 = 60G4(L) and g3 = 140G4(L).

Theorem 2.2.4 ( [3],Theorem 5.3.5). (a) The Laurent series for ℘(z) around z = 0 is given by

℘(z) =
1

z2
+

∞∑

k=1

(2k + 1)G2k+2z
2k.

9



(b) The Weierstrass ℘ function satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

for all z ∈ C \ L.

Proof of Theorem 2.2.4. (a) for z with |z| < |ω| we have

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1

(1− z
ω
)2

− 1

)
=

∞∑

n=1

(n+ 1)
zn

ωn+2
=

∞∑

k=1

(2k + 1)G2k+2z
2k

(b) To see this we write out the first few terms of the Laurent expansions around 0:

℘′(z)2 = 4z−6 − 24G4z
−2 − 80G6 + · · ·

℘(z)3 = z−6 + 9G4z
−2 + 15G6 + · · ·

℘(z) = z−2 + 3G4z
2 + · · ·

Comparing these expansions, we see that the function f(z) = ℘′(z)2−4℘(z)3+60G4℘(z)+

140G6 is holomorphic at z = 0 and satisfies f(0) = 0. We then have the following facts:

(1) (2.1) converges absolutely and uniformly on every compact subset of C/L. The series

defines a meromorphic function on C having a double pole at each lattice point and no

other poles [3, Theorem 3.1]; (2) a holomorphic doubly periodic function is constant [3,

Proposition 2.1]. From these two facts and that f(z) is holomorphic, we know that f(z) is

constant and therefore f(z) = 0. Therefore, ℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.

Returning to proving that complex tori are smooth projective curves of degree 3 in P
2, we now

want to show that the polynomial f(x) = 4x3 − g2x− g3 has distinct roots, which is equivalent to

the Weierstrass form introduced in Section 2.1.2. Let {ω1, ω2} be a basis for L and let ω3 = ω1+ω2.

Since ℘′(z) is an odd and doubly periodic function, we know that ℘′(ωi

2
) = −℘′(−ωi

2
) = −℘′(ωi

2
),

10



therefore ℘′(ωi

2
) = 0 for i ∈ {1, 2, 3}. Then, f(x) = 0 at each of the values x = ℘(ωi

2
). We want to

show that these three values are distinct. Consider the function ℘(z)−℘(ωi

2
). This function is even,

so it has a double zero at z = ωi

2
. Since it is a double periodic function with only a pole of order 2

at the lattice points, it only has these zeros in the fundamental parallelogram. So, ℘(ωi

2
) ̸= ℘(

ωj

2
)

for j ̸= i. Finally, we can introduce the last proposition needed for this direction of the proof.

Proposition 2.2.1. [3, Proposition 3.6] Let E be the curve

E : y2 = 4x2 − g2x− g3,

which is an elliptic curve. Then the map

ϕ : C/L → E(C) ⊂ P
2

z 7→ [℘(z) : ℘′(z) : 1]

is an isomorphism of Riemann surfaces.

Proof of 2.2.1. Let (x, y) ∈ E(C). Then ℘(z)− x is a nonconstant meromorphic doubly periodic

function, so it has a zero, say z = a. Then, ℘′(a)2 = y2, so replacing a by −a if necessary, we

obtain ℘′(a) = y. Then ϕ(a) = (z, y) and we see that the map ϕ is surjective.

Suppose ϕ(z1) = ϕ(z2). Assume that 2z1 ̸∈ L. Then the function ℘(z) − ℘(z1) is an elliptic

function of order 2 that vanishes at z1,−z1 and z2. Two of these values must be congruent modulo

L. Therefore z2 ≡ ±z1 mod L for some choice of sign. Then ℘′(z1) = ℘′(z2) = ℘′(±z1) =

±℘′(z1) implies that z2 ≡ z1 mod L. If 2z1 ∈ L, then ℘(z)− ℘(z1) would have a double zero at

z1 and a zero at z2, concluding again that z2 ≡ z1 mod L. Therefore, ϕ is injective.

We have shown that ϕ : C/L → E(C) ⊂ P
2 is an isomorphism of Riemann surfaces, finishing

our proof that complex tori are smooth projective curves of degree 3 in P
2.

(⇐=) In this proof we aim to define a map from E to C/L. In order to do we start with supposing

that we have constructed a lattice L that corresponds to E. Then we define a function that we want

11



to show is essentially ℘−1, which ends up locally being an integral containing a square root. In

order to make this integral well-defined, we take two branch cuts and glue two copies of P1 together

to form a Riemann surface which is essentially E. After compactifying this Riemann surface, we

use facts from analytic continuation to justify that our integral is well defined. Integrating along

different paths on this Riemann surface end up being equal modulo some lattice L, which gives us

our map. The following shows a sketch of the details to accomplish this.

Any elliptic curve over C can be expressed in the form E : y2 = 4x(x− 1)(x−λ) with λ ∈ C.

There is a map

E → P
1

(x, y) 7→ x

which is a double cover ramified at 0, 1, λ and ∞.

We are essentially trying to find an inverse to the Weierstrass ℘ function. Once we construct

the inverse, we will also have our parameters ω1 and ω2 for our lattice. Let w = ℘(z), then by

Theorem 2.2.4, we know w satisfies the following:

(
dw

dz

)2

= 4w(w − 1)(w − λ)

dw

2
√

w(w − 1)(w − λ)
= dz

z(w) =

∫ w

0

dw

2
√

w(w − 1)(w − λ)
. (2.3)

Since the square root is not single valued, this line integral is not path independent. To solve this

problem, it is necessary to make branch cuts. We take two copies of P1 and make branch cuts.

When we glue the two copies together along the branch cuts, we form a Riemann surface. To show

that this is a Riemann surface, we will define the charts.

Let our double cover of C \ {0, 1, λ} be U , and compactify it by adding the preimages of

0, 1, λ and ∞ which we denote by α, β, γ and ∞, respectively. We denote this compactified space

12



R. We now want to show that U and R are Riemann surfaces. Let e : U → C \ {0, 1, λ} be

the covering map and fix ζ0 ∈ U with e(ζ0) = z0. Consider an open disk D ⊂ C \ {0, 1, λ},

because U is a double cover, e−1(D) is a disjoint union of two open sets ∆1 ∪ ∆2. We have

(∆j, e) for j ∈ {1, 2} as charts. Therefore U is a Riemann surface. For R we extend our map

e so that e : R → C ∪ {∞}. We now just need to define charts about α, β, γ and ∞. Let

D×
0 be a punctured disc centered at 0. An open disc of α is then given by {α} ∪ e−1(D×

0 ) and we

define a chart ({α}∪e−1(D×
0 ),

√
ζ − α). Similarly, we can define the following compatible charts:

({β} ∪ e−1(D×
1 ),

√
ζ − β), ({γ} ∪ e−1(D×

λ ),
√
ζ − γ) and ({∞}∪ e−1(D×

∞), 1√
ζ
) where D×

∞ is of

the form z > R for some R ≥ max{|0|, |1|, |λ|}. Therefore R is a compact Riemann surface.

We now want to show that
√
z(z − 1)(z − λ) can be analytically continued to be a well defined

function on U .

Definition 2.2.6 ( [5], 6.6). Let f be a function element at a, and let C = {C(t)|t ∈ [α, β]} ∈ C

be a path from a to b. A function element g at b is an analytic continuation of f along C if there

exists a partition

a = t0 < t1 < · · · < tn = b

and function elements fj on open disks Dj centered at C(tj) for 0 ≤ n ≤ n, such that

1. f0 = f

2. fn = g

3. C([tj−1, tj]) ⊂ Dj−1

4. fj is a direct analytic continuation of fj−1

We see that
√

z(z − 1)(z − λ) is an analytic function on D0 with
√
z0(z0 − 1)(z0 − λ) = q0.

We have the following fact: there exists a unique analytic function F : U → C such that F (ζ0) =

q0 and the following holds: for any ζ1 ∈ U , any path C ⊂ U from ζ0 to ζ1, and any open disk

D ⊂ C \ {0, 1, λ} containing z1 = e(ζ1), if e−1 is a map from D to the component ∆ of e−1(D)
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that contains ζ1, then (F ◦ e−1, D) is an analytic continuation of (
√
z(z − 1)(z − λ), D0) along

e(C) [5], Proposition 6.24. We write

F (ζ) =
√

(ζ − α)(ζ − β)(ζ − γ)

for the function produced by this proposition where α, β and γ are the same as what was introduced

earlier. The reciprocal of this is given by

F (ζ)−1 =
1√

(ζ − α)(ζ − β)(ζ − γ)

where F (ζ0)
−1 = 1

q0
, F (ζ)−1 is analytic in U . By Riemann’s removable singularity theorem,

F (ζ)−1 is a meromorphic function on R. We now look at its behavior near each of α, β, γ and ∞.

The local coordinate near α is s =
√
ζ − α. We have s2 = z−α, which gives us (z− 1)(z−λ) =

(s2 +−1)(s2 − λ). Therefore

F (ζ)−1 = s−1
1√

(s2 − 1)(s2 − λ)
.

F (ζ)−1 has simple poles at α, β and γ.

The local coordinate near ∞ is s = 1√
ζ
. We have z = s−2, which means we have

F (ζ)−1 = s3
1√

(1− s2)(1− λs2)
.

We can write the integral of (2.3) as

ŵ(C) =

∫

C

1

2
F (ζ)−1dζ. (2.4)

For z ∈ C \ {0, 1, λ} consider a loop C ⊂ C \ {0, 1, λ} based at z0. All piecewise smooth

loops close to C will have the same total winding number. We are interested in only looking

at loops with even total winding number because every loop brings us across the branch cut so
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loops with even winding number will end on the same part of the double cover. We will call

the subgroup of even total winding number H and it is generated by the equivalences classes of

Γ2
0,Γ

2
1,Γ

2
λ,Γ0Γ1, and Γ1Γλ where Γi is a piecewise smooth loop based at z0 with winding number

equal to 1 about i. We can lift these loops to the respective loops Γα,Γβ,Γγ,Γ1 and Γ2 in R with

base point ζ0. Due to Γα,Γβ and Γγ being loops in small disks around α, β and γ respectively,

integrating 2.4 along these paths, the integral depends only on the endpoints and is therefore equal

to zero [5]. The loops Γ1 and Γ2 are two closed paths for which the integral 2.4 is nonzero. Define

ω1 =

∫

Γ1

1

2
F (ζ)−1dζ and ω2 =

∫

Γ2

1

2
F (ζ)−1dζ. (2.5)

We let L ⊂ C be given by

L = Zω1 + Zω2

Now, let w : R → C/L be defined by w(ζ) = ŵ(C) mod L for any piecewise smooth path

C ⊂ R from ζ0 to ζ1, where ŵ(C) is from (2.4). To see that this map is well defined, let C and C ′

be two piecewise smooth paths from ζ0 to ζ1. We want to show that w(C ′)− w(C) ∈ L. Without

loss of generality, we assume the following: if ζ /∈ {α, β, γ,∞}, then neither C nor C ′ meets any

point in {α, β, γ,∞}, whereas if ζ ∈ {α, β, γ,∞}, then C and C ′ meet {α, β, γ,∞} only at their

final points. We have w(C ′) − w(C) = w(C ′C−1), where C ′C−1 is a loop with base point ζ0.

We know the following fact: if C and C ′ are homotopic in R, then w(C) = w(C ′) [5, Lemma

6.26]. Therefore, we can homotopically perturb C ′C−1 near ζ , so that C ′C−1 does not meet any

point in {α, β, γ,∞}. We know by our fact above that w(C ′C−1) depends only on equivalence

classes of C ′C−1 in R. The equivalence classes of loops in R are generated by Γα,Γβ,Γγ,Γ1 and

Γ2. But, we have shown that w(Γα) = w(Γβ) = w(Γγ) = 0. Therefore, w(C ′C−1) is an integer

combination of w(Γ1) and w(Γ2). This shows that w(C ′)− w(C) ∈ L, proving w is well defined.

This map is also continuous and open, for details of the proof of this fact, see [5, Proposition 6.28].

Therefore, ω1 and ω2 defined in (2.5) generate a lattice that gives rise to an elliptic curve over C.
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2.2.3 Proving Complex Tori are Riemann Surfaces of genus 1 with chosen

point

In this section we prove that complex tori are Riemann surfaces of genus one with a chosen

point. The forward direction of the this proof is following [4, Section 1.2] and the backwards

direction is a sketch following [4, Section 7.1].

sketch of proof. (=⇒) Let E be a complex torus, we want to show that E is a Riemann Surface of

genus one. We know that every open set in E = C/L is the image of an open set in C because

our projection map π : C → C/L is a covering space. Since L is a subset of C there exists

an ϵ > 0 such that 2ϵ < |ω| for ω ∈ L \ {0}. For any z ∈ C, we can define the open disk

Dz = D(z, ϵ) around z with radius ϵ. Our choice of ϵ tells us that no two points in Dz can differ

by an element of the lattice. The restriction of π to Dz maps Dz homeomorphically onto the open

set π(Dz). For each z ∈ C, define ϕz : π(Dz) → Dz to be the inverse of the map π|Dz
. These

are complex charts on E. We now want to check that the transition functions are holomorphic.

Choose two points α and β with charts ϕα and ϕβ . Let U = π(Dα) ∩ π(Dβ). If U is not empty let

T (z0) = ϕβ(ϕ
−1
α (z0)) = ϕβ(π(z0)) for z0 ∈ ϕα(U). T (z0) = z0 + ω for some ω ∈ L, which is

holomorphic. This is a translation by some element in the lattice and is therefore a biholomorphic

function. Thus E is a Riemann surface.

Next, we can look at the fundamental parallelogram P , as defined in Section 2.1.1. The oppo-

site edges are identified together, giving us the Riemann surface with genus one.

(⇐=) This full proof requires the Abel-Jacobi map and is given in [4, Chapter 8], we will pro-

vide a sketch. Let X be a Riemann surface of genus 1. Our goal is to show that the universal

cover of X called Y is isomorphic to C. From Riemann-Roch, we know that for the canonical

divisor K, deg(K) = 2g − 2. For our genus 1 curve, we let ω0 be a meromorphic 1-form and

K0 = div(ω0) be a canonical divisor on X . We know that deg(K0) = 0 and from Riemann-Roch

h0(K0)−h1(K0) = 0, then by Serre Duality, h0(K0)−h0(K0−K0) = 0. We know that h0(∅) = 1
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because only the constant functions are holomorphic, therefore h0(K0) = 1. Let

L(D) = {f meromorphic |div(f) +D ≥ 0}

and let ω0 be a 1-form with divisor K0. If f ∈ L(D) then div(fω0) = div(f) + K0 ≥ 0. The

divisor div(fω0) has degree 0, therefore all coefficients of div(fω0) equal zero so fω0 has no zeros

or poles. We use ω to define ϕ : Y → C and let π be the covering map. Consider the pullback

π∗ω, this is a holomorphic 1-form on Y with no zeros. Fix p0 ∈ Y and for p ∈ Y , choose a path γ

from p0 to p, then

ϕ(p) =

∫

γ

π∗ω.

This integral does not depend on the path because Y is simply connected, meaning every path is

homotopic to each other and π∗ω is holomorphic, so the integral is well defined. Therefore, ϕ is

holomorphic and is the isomorphism between Y and C.
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Chapter 3

Theoretical Framing

The goal of this research is to understand how experts and graduate students understand elliptic

curves. We saw in the math background section that there are three mathematical objects equiva-

lent to each other that are all referred to as elliptic curves. In this study I am particularly interested

in the six connections between these three mathematical objects, and to what degree students and

faculty understand these connections. In other words, I am interested in exploring faculty and stu-

dents’ representational fluency surrounding elliptic curves. In this section I define representational

fluency and how it relates to this study.

Fonger defines representational fluency as “the ability to create, interpret, translate between,

and connect multiple representations” of mathematical objects and defines a representation as "a

symbolized from that stands for somethings from a person’s point of view" [2]. Since there are

three mathematical objects that are all equivalent to elliptic curves, each object can be viewed as

a representation of elliptic curves from the point of view of different areas of mathematics. A

complex torus C/L, for some lattice L, is a representation from the point of view of the complex

analysis. From the algebraic/arithmetic geometry point of view, an elliptic curve is represented by

a smooth projective curve E of degree 3 in P
2, with chosen point. Finally, a Riemann surface of

genus 1, with a chosen point is a representation from a complex algebraic geometry point of view.

I will be looking at how graduate students can create, interpret, translate between and connect

these three representations of elliptic curves. The theory of representational fluency provides the

language needed to articulate and investigate my research questions:

1. How do graduate students connect and translate between different representations of elliptic

curves?

2. What benefits does representational fluency at a graduate level have for graduate students?
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A translation is describes as a student’s movement from one representation to another in which

the meaning of the mathematical object is interpreted with respect to the target representation [8].

The process of translating includes creating the target representation and interpreting properties of

the original representation in the target representation [2]. In terms of elliptic curves, I am inter-

preting translating as a student proving that their original representation is equivalent to their target

representation. This means that I will be looking for 6 translations between the 3 representations

of elliptic curves. In order for a student to make a connection between representations, "a student

must articulate an invariant feature of the mathematical object being represented across represen-

tational forms" [2]. For example, a student can represent a line with the formula y = mx + b or a

graph, and in order to connect the representations they might identify the slope of both to be equal

to m, which would be the invariant feature. For elliptic curves, examples of invariant features are

that all representations are complex manifolds and are abelian groups.

Representational fluency is prevalent in literature in a variety of ways. It most often is used

around the Rule of Four, which outlines students’ translations between four representations: ver-

bal, graphic, numeric and symbolic [9]. Nathan et al. used representational fluency and the Rule

of Four to investigate middle school students’ ability to solve problems using tabular, graphical,

verbal and symbolic representations and to translate between these [10]. They found that stu-

dents succeeded more with graphical representations and that instructions about intuitions from

instructors can enhance students’ abilities to translate. Adu-Gyamfi, Stiff and Bossé investigated

translation errors made by undergraduate students in college algebra translating between table,

graph and equation representations [11]. This shows that even at the college level students make

errors when translating. Finally, [1] demonstrates representational fluency being used not with the

Rule of Four. They examined linear algebra students’ representational fluency of function as a high

school function and function as a linear transformation. They found that higher representational

fluency relied on metaphorical thinking.

The National Council of Teachers of Mathematics (NCTM) outlines that it is important for

students at all levels to connect mathematical ideas and be able to translate among different mathe-
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matical representations [12]. The mathematics community agrees on the importance of a student’s

ability to translate for mathematical understanding and problem solving skills [13]. There is re-

search linked to representational fluency at levels up through undergraduate math [11], but there is

limited research on representational fluency and its importance at the graduate level of mathemat-

ics. I aim to fill this gap by investigating graduate students’ representational fluency around elliptic

curves. Also, I will explore its importance by asking professors and graduate students about their

opinions about why it matters.
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Chapter 4

Methodology

4.1 Participants

This study occurred at an university’s department of mathematics1. Four professors and ten

graduate students agreed to participate. The professors were chosen based on their area of research.

All four professors study algebraic geometry and/or number theory. There was one professor who

studies more number theory, 3 who study more algebraic geometry and one who studies an area

between the two, called arithmetic geometry. Graduate students were chosen based on if they took

the elliptic curves course offered at the university or if they studied number theory or algebraic

geometry. There was one master’s student and nine PhD students. Graduate students ranged from

second year to sixth year in the program. Participants’ general area of research and whether or not

Table 4.1: Overview of graduate student participants

Pseudonym Area of Research Completed Elliptic Curves course

Alex Number Theory Yes

Taylor Other Yes

Cameron Other Yes

Logan Number Theory Yes

Ryan Number Theory Yes

Sam Algebraic Geometry No

Quinn Algebraic Geometry No

Drew Number Theory Yes

Jordan Other Yes

Dakota Algebraic Geometry Yes

1This study was determined to be not human reseearch by the IRB committee at Colorado State University. I still

had informed consent, took steps to protect identities, and took steps for quality research. I followed the 8 markers

of quality resesearch: (a) worthy topic, (b) rich rigor, (c) sincerity, (d) credibility, (e) resonance, (f) significant

contribution, (g) ethics, and (h) meaningful coherence, which are outlined in [14]. For example, I used methods

and procedures that fit my research goals and questions, and I meaningfully connected literature, research questions,

results and discussion.
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they took the elliptic curves course is displayed in (4.1). An individual’s specific area of research,

year in school, and what program they were in were left out to preserve anonymity. All participants

will be referred to using they/them/theirs pronouns.

4.2 Data collection

This study took place in two rounds. During the first round, all professors participated in a

semistructured interview either in person or over zoom. The goal of these interviews was to un-

derstand how experts in the field understand the connections and translations between these math-

ematical objects representing elliptic curves. The goal here was both to understand the experts’

representational fluency and to identify what translating between the representations looked like

in practice, since it was not reasonable to expect full proofs as I wrote out in Chapter 2 for the

translations. Therefore, I did these interviews first so that I could go into interviews with graduate

students knowing what was reasonable. These interviews with professors lasted between 14 and 33

minutes. The next round of the study included semistructured interviews with all graduate student

participants [15]. These interviews occurred in person or over zoom a year after the elliptic curves

course had occurred. The goal of these interviews was to investigate graduate students’ represen-

tational fluency around elliptic curves by seeing what connections and translations the graduate

students understood. These interviews lasted between 4 and 31 minutes. All interviewees were

asked the following questions:

1. What is your familiarity/experience with Elliptic curves?

2. How do you think about a Riemann surface of genus 1 with a chosen point?

3. How do you think about a complex torus?

4. How do you think about a smooth projective curve E of degree 3 in P
2, with chosen point?

5. How do you think about these objects as being connected, if at all?
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6. What do you think graduate students gain by understanding/learning these connections? OR

What do you think graduate students gain by being able to connect different areas of mathe-

matics?

Questions 1 through 4 aimed to see how participants create these representations. Question 5 aimed

to see how participants connected the representations then with some prompting got participants

to show their understanding of translations. The last questions get at participant’s’ perspectives on

the value of representational fluency, both in mathematics in general, and specific to elliptic curves.

Examples of follow up questions included:

• What do you mean by that?

• Can you explain that in more detail?

I started the process with a trial pilot interview with a professor and a pilot interview with a graduate

student, but the interviews were left in because no questions were changed after them.

4.3 Data Analysis

There were three stages of data analysis in this study: analysis of professor interviews, analysis

of graduate student interviews and a cross-case analysis. All interviews were video recorded and

transcribed for this process. I used thematic analysis techniques, which is the process to iden-

tify and organize data into recurring patterns and themes [16], for all stages. Starting with the

interviews with professors, I read through the transcripts and summarized their responses to find

common themes among their responses using open coding. I used these common themes to build

my coding rubric for the graduate student interviews. My rubric was built on what experts said

for each translation. In analyzing the graduate student interviews, I read through each transcript to

again summarize the interviews. From there, I was able to apply my rubric to see which transla-

tions and connections each graduate student was able to complete. After this, I identified themes

within my data specifically looking at which translations were made and by whom. This process

resulted in a few themes I highlight in Chapter 6.
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4.4 Positionality Statement

I am a graduate student in the mathematics department at the university where the study oc-

curred. I had taken the elliptic curves course that was offered and became interested in the connec-

tions that were in introduced in the course. Doing the project allowed me to increase my under-

standing on elliptic curves. Due to being in the department, I had relationships with all participants

prior to the interviews. I had all of the faculty members as professors prior to the interviews and

had been in classes or seminars with every graduate student participant. This resulted in me having

a collegial relationship with each participant, so interviewees felt comfortable sharing what they

knew as well as what they did not know.
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Chapter 5

Results

In this chapter, I will be summarizing interviews with all participants. The first section sum-

marizes interviews with professors who are experts in the field, then I summarize interviews with

graduate students. The final section of this chapter summarizes my results with professors by

creating a coding rubric for what I was looking for in my interviews with graduate students and

summarizes results from the graduate student interviews into a figure.

5.1 Professor Interviews

Professor 1 first thinks of an elliptic curve as "a donut. So complex torus with one hole, genus,

genus one." They started out by explaining that from C/L one can identify opposite edges and

wrap up to get the shape of the Riemann surface of genus one. Then, going from the complex

torus to the projective cubic, Professor 1 described using L invarient functions to find that we need

a function of order two at every lattice point. This then gives the Weierstrass ℘-function. For the

other direction, Professor 1 explained that you use elliptic integrals to figure out what lattice we

need. From there, they described using the Weierstrass ℘-function and it’s derivative to get the

equation for the cubic. They then explained that proving that a Riemann surface of genus one

is equivalent to C/L involves showing that the universal cover of the Riemann surface is C, and

then we have to mod out by a lattice because of the loops of the fundamental group. Professor 1

explains that you can use Riemann Roch Theorem to prove that a Riemann surface of genus one is

a smooth projective cubic. For the other direction, they explained that there is a theorem that says

that algebraic equations describe abstract things like the Riemann surface of genus one. When

asked about why it is important for graduate students to be able to make these connections and

translations, professor 1 explained that in graduate school students learn a lot of big topics and it

is important to see that they are all connected so that a student doesn’t get stuck thinking that what

they do is the best.
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Professor 2 has less experience with elliptic curves. They state that they do not work directly

with elliptic curves but see them show up frequently in talks. They explained that they do not

distinguish between a Riemann surface of genus one with a fixed point and a complex torus, al-

though they were able to explain their reasoning as translations between the two. They explained

that we can view the Riemann surface as C and then we are able to mod out by a lattice to get the

complex torus. From a torus to the Riemann surface, one can identify opposite edges with each

other to get the donut shape. For the translation from the Riemann surface to a cubic in projective

space, Professor 2 explained that there is a formula that tells you for what functions the degree

of the canonical bundle is zero. This formula ends up telling us that we need a degree 3 curve

in projective space. Professor 2 finished up by explaining the importance of this representational

fluency by explaining that when a mathematician understands these connections and can translate

between representations, they are able to listen to talks on something and translate it to the area of

mathematics they are familiar with. Therefore, this skill gives mathematicians the dictionary to be

able to understand more talks. Professor 2 explained "I go to a lot of talks where someone talks

about elliptic curves and they write down like y2 equals something. And that’s a language that I’m

less comfortable with. And I, in my mind, I like go, okay, they’re just talking about a lattice or

a donut with a complex structure." Also, answering the question more generally, they said given

a problem it is good to translate it into different ways of thinking because one may be easier to

prove.

Professor 3 explained that when they teach a course on elliptic curves they start with the com-

plex tori representation. They explain that from there the class discovers the Weierstrass ℘-function

and can see that this function and its derivative satisfy a cubic equation, getting us into the projec-

tive cubic representation. For the translation from complex torus to Riemann surface, Professor 3

explained that the complex torus is a Riemann surface by definition and we can see that because

the charts on the Riemann surface are inherited from the charts of the complex plane. When trans-

lating from a smooth projective cubic in projective space to a Riemann surface, they explained that

this uses the Implicit Function Theorem to find charts which are the projections onto the coordinate
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axes, this gives us a Riemann surface. Professor 3 says that it is much more difficult to translate

the other direction and continues to explain that this translation involves finding functions that are

meromorphic and satisfy the Cauchy Riemann equations. When asked about the importance of

representational fluency of elliptic curves for graduate students, Professor 3 enthusiastically said

that "it really does illustrate one of sort of, what are the unifying principles of mathematics" and

further explained that every area of math has an elliptic curve problem at the foundation of it.

When asked to describe elliptic curves, Professor 4 said that there are two different ways that

they think of them, as either cubics in a plane or as complex tori. As they continued talking they

also mentioned that one can represent an elliptic curve with a Riemann of genus one with a point.

When describing the translation between the representation as complex torus to the representation

as a projective cubic, Professor 4 described a theorem that says that any meromorphic periodic

function can be written as a combination of the Weierstrass ℘-function and its derivative. Then,

we can use these functions to a smooth projective cubic. In order to translate the other direction,

Professor 4 explains that we want to produce C and the lattice from our cubic. To produce C,

one can think of an elliptic curve as a Riemann surface and then can show that C is its universal

cover. From there, they explained that to find the lattice you use elliptic integrals. Translating from

a complex torus to a Riemann surface of genus one, Professor 4 explained that when they cover

the complex torus with analytic charts and check that the transition functions are holomorphic,

which shows that the complex torus is a Riemann surface. For translating the other direction, we

know that C is the universal cover of the Riemann surface, then when we integrate along loops

from a point, as the loops differ we see that the integrals are equal modulo periods, which gives

us our lattice. Switching over to the translations between projective cubics and Riemann surfaces,

Professor 4 explained that from a projective cubic, we can write y as a function of x or x as a

function of y due to the inverse function theorem. From this fact we can use x or y as our charts

and then we see that we have a Riemann surface. Professor 4 used ideas that we had already

discussed to show that a Riemann surface is a complex torus which is a projective cubic, showing

the last translation. When asked about the importance for graduate students to understand these
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connections and translations, Professor 4 explained that it is easy to make mistakes when you don’t

understand the symbols from other areas of mathematics.

5.2 Graduate Student Interviews

Alex is a graduate student studying number theory, who has taken the elliptic curves course.

They first think of an elliptic curve as the complex plane modulo a lattice, then as a smooth pro-

jective curve and finally as a Riemann surface. Alex thinks about a Riemann surface as being a

complex torus by cutting the Riemann surface along two circles to get the lattice. They think of

going the other way by gluing the lattice together to first get a tube then glue the ends together

and get the donut shape of the Riemann surface. Alex thinks of translating from complex torus

to the projective curve by using the Weierstrass ℘-function and the other direction by using the

Weierstrass ℘-function and Uniformization Theorem. They were not sure on how to prove that the

projective curve is a Riemann surface but guessed that you have to projectivize and dehomogenize

the other direction. Alex believes that it is important to be able to connect different areas of math

because your results might be related to other things that give you a bigger perspective. Having a

broader idea can help attack your problem from a different angle. Although, they stated “along this

specific strain of ideas, unless you actually have to write down the details, I don’t think very many

people think about the details very often, because it’s kind of convoluted and doesn’t necessarily

help you intuitively understand the story.”

Taylor is a graduate student who took the elliptic curves course but is not studying something

related to number theory or algebraic geometry. When first asked what an elliptic curve is, Taylor

knew that there were different ways to think of elliptic curves and started out by drawing the cubic

in complex space. Taylor described the projective curves and complex tori as being equivalent by

looking at tessellations of the complex plane. When asked what they meant by a tessellation they

explained “the complex tori is defined so we take those two complex numbers, I’ll call them omega

one, omega two, and then do the gluing. Like this to you know, the tori is defined by this looping.

And so these two complex numbers can be used to define the particular tori. And then this just
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leads to a tessellation. So there was two of these three, passing that to the board that continues on to

to omega two and then this would be minus omega two from here and down like that. So, creating

this tessellation.” I interpreted this as Taylor describing the lattice for the complex torus. Taylor

then described drawing lines on a Riemann surface of genus one to see that it is equivalent to the

cubic in projective space. Those were all the connections that Taylor attempted to make. Taylor

believes that being able to connect different areas of math is important because a student will often

have one area that they are more confident in that becomes their “crutch”, in this example the

complex tori was Taylor’s crutch. From the area that the student is more confident in, a student can

learn the translations and move to some other area to learn the tools and theorems and algorithms

in that area of math to solve problems.

Cameron is a graduate student who took the elliptic curves course and is studying differential

geometry. They remembered from the class that an elliptic curve is a projective curve of degree

three. Cameron did not recall that elliptic curves are also complex tori and Riemann surfaces of

genus one with a chosen point, but was able to make a few connections and translations when

reminded that the three objects are equivalent. Cameron stated that given a Riemann surface of

genus one, one can cut along two circles to get the lattice or torus. Given a complex torus, Cameron

knew that you can use the Weierstrass ℘−function to get a map to the projective curve. Going the

other direction, they hypothesized that there must be some computations that someone can do to

find the lattice generators, but was not sure how to do this. The final connection that Cameron

attempted to make was from the cubic in projective space to the Riemann surface of genus one.

They guessed that if you parameterize the cubic, you would get the donut shape of the Riemann

surface. When asked about if graduate students benefit from the ability to connect different areas

of math, Cameron stated that “I think anyone who studies math has an innate bias to think it’s

beautiful when there’s like a unifying result.” They believe that it is nice to look and think of things

in different ways because making connections can help make pictures in your head. Although,

they do think that connecting to other areas of math may not be necessary for graduate students in

certain specializations.
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Jordan is a graduate student who took the elliptic curves course but is not studying number

theory or algebraic geometry. Jordan was able to draw an elliptic curve over the complex numbers

but was not sure what a complex torus or a Riemann surface was so was unable to make any

connections or translations. Jordan believes that making connections can help graduate students

see something that they might not expect, which can help solve your problem.

Logan is a graduate student studying number theory who took the elliptic curves course. They

first think of elliptic curves as the projective curve with the group law and then as the complex

numbers modulo a lattice. Logan stated that given a complex torus you can identify the edges

with the opposing edge and wrap the complex torus up to see the Riemann surface. They were not

sure how to go the other direction. The connections between the projective curve and the Riemann

surface were not clear to Logan; they knew they were connected but were not sure how. Showing

the connections between the projective curve and the complex torus, Logan stated that you can

use the Weierstrass ℘-function for both directions. When asked about the benefits for graduate

students to be able to connect different areas of math, Logan stated “I think it is important because

no subject or idea in mathematics is isolated. Concepts in mathematics only make sense within a

broader context, and in fact, have to make sense in a broader context to be a worthwhile concept!

Practically, making connections is good for learning and remembering. In research you often need

to have various ways of attacking a problem to make progress-if we only understand topics from

one viewpoint, we may never see a solution, proof, etc.”

Ryan is a graduate student studying number theory who took the elliptic curves course. They

first think about elliptic curves as a projective curve and then are familiar with the equivalences

to the other two objects. Ryan said that a smooth projective curve is a Riemann surface because

the curve is projective, then it being genus one comes from looking at the differentials. Going

the other direction they remember that there is some theorem about compact Riemann surfaces

always being projective curves but they are not sure how to get the exact equation. Translating

from complex torus to cubic in projective space, Ryan was not sure. They did identify the other

direction as using the Weierstrass ℘-function and the L function. Ryan thinks that the connection
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between the complex torus and the Riemann surface is clear because the torus wraps up to a donut

with one hole and then has the two loops from wrapping up. For the other direction Ryan thinks

that one can look at differential forms and homology to see that the Riemann surface is a complex

torus. Ryan believes that having different points of view is always productive because if you can’t

make progress from one point of view, moving to another point of view your question might be

obvious or at least more accessible. Different areas of math also have different tools to help solve

the problem. For this specific example of connecting different areas of math, Ryan said that “it

always confused me when I was an undergrad that they would talk about an elliptic curve and write

down an equation. And then, like, the next minute, they’d be talking about a torus”.

Dakota is a graduate student studying algebraic geometry who took the elliptic curves course.

They were familiar with the three mathematical objects and knew they were all equivalent but

hadn’t thought about elliptic curves in a while so felt a bit rusty. Dakota stated that given a curve

in projective space, you can use the Riemann Roch Theorem to see that the curve is a genus one

Riemann surface. From the complex torus to the Riemann surface of genus one, they said it is clear

looking at the lattice that you get a genus one Riemann surface. The last connection that Dakota

attempted to make was from a complex torus to the projective curve. They said that there is some

formula to get A and B or the discriminant for the curve. Dakota was not sure about the rest of

the connections. Dakota believes that being able to connect different areas of math is important

because it allows you to” reformulate your problem into another language, and then read and then

get to use tools from that language can help answer questions from the original perspective that

you were working with”.

Sam is a graduate student studying algebraic geometry that has not taken the elliptic curves

course. They have heard elliptic curves come up frequently but were not confident on what they

are. Sam thinks of a genus one Riemann surface as being equivalent to a complex torus because

they are both complex and torus shaped. The other connection Sam attempted was the cubic in

projective space to the complex torus. They said that if you look at the curve in projective space

it should look like a torus. Sam believes that connecting different areas of math makes for better
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collaborations. They explained that the more you and your collaborator know about each other’s

areas of math the easier it is to find a middle ground to collaborate on. For themselves, they find

that getting a new perspective can help give a better understanding of the original definition and its

place in mathematics.

Quinn is a graduate student studying algebraic geometry that has not taken the elliptic curves

course. They were fairly unfamiliar with elliptic curves, and had only heard them mentioned in

talks. They view Riemann surfaces of genus one and complex tori as the same thing. Quinn was

not able to make any of the connections. Quinn thinks that it is important for graduate students to

be able to connect different areas of math because “it seems like in math, we, as humans, we’re

trying to like categorize things and draw these boundaries between different fields. And so I think

it’s important to continue to realize that those boundaries are illusions, and they’re just human

constructs”.

Drew is a graduate student studying number theory who took the elliptic curves course. They

felt very confident on the topic of elliptic curves. Drew was comfortable with these three mathe-

matics objects being equivalent, they stated that they have not thought about these translations in

detail much. They were unsure about all translations. Drew believes that it is very important to

be able to connect different areas of math and explained that “you don’t really fully understand a

mathematical object until you can pin it down from all of the major angles. I personally find that

that’s a bit of a shortcoming with off of how we introduce material in a general sense, is you’re

given a new mathematical object and you’re given a very narrow window on what it is, like a alge-

braist will introduce a mathematical object to be like, Oh, yes, here’s the group structure, whereas

a topologists will tell you about the topology... none of these are really the whole picture, right?

There’s a lot of details that are missing.” They continued to say that as a graduate student, one

perspective is not always enough to solve a problem. Even when it is enough, you may not get the

easiest or most graceful solution.
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5.3 Summary of Results

From the interviews with professors, I was able to determine a rubric outlining what I was look-

ing for from graduate students to determine if they successfully connected and translated between

the three mathematical objects. These mathematical objects are

1. Complex torus C/L, for some lattice L

2. Smooth projective curve E of degree 3 in P
2, with chosen point

3. Riemann surface of genus 1, with chosen point.

From (1) to (2) a complete translation included mentioning using the Weierstrass ℘−function.

Translating the other way, from (2) to (1) I was looking for the interviewee to talk about uni-

formization or the use of branch cuts and elliptic integrals. When translating between (1) and (3)

students needed to use charts and show that the transition functions are holomorphic or discuss

how to identify opposite edges with one another and glue together to get the donut shape, thus

showing that the genus is one. From (3) to (1), I was looking for graduate students to show that

C is the universal cover of the Riemann surface and then when integrating along different loops,

the integrals are equal modulo periods of a lattice. When translating from (2) to (3), I was looking

for graduate students to use charts and show that the transition functions are holomorphic. For the

final translation, from (3) to (2), students need to talk about Riemann Roch Theorem to make the

translation. This rubric for translations is summarized in Figure 5.1.

In order to make a connection, a graduate student had to express that the two representations

were connected and make an attempt at the translation. This attempt could be intuition or not

completely correct. For example, from (1) to (2) the connection made by Dakota was "I remember

some form, there’s like some formula that you know, you you that goes between the two that you

can calculate like your A and B or like your discriminate or something, I just don’t remember

what that formula is". From (3) to (2), an example of a connection from Ryan is "I’ve just seen

the theorem that Riemann surfaces, compact Riemann surfaces are always curves. I don’t actually

know how you like take a complex Riemann surface and get like that equation, you know. But
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somehow you do that". Any time a participant made a connection, they were on the right track but

were not able to accurately state the translation.

Figure 5.1: Summary of key for translations

In Figure 5.2, I summarize the representational fluency of the graduate students. They received

a solid arrow if they were able to make that translation between representations and a dotted arrow

if they were able to connect the two representations but were not able to state the translation

correctly.
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Figure 5.2: Summary of graduate students’ translations and connections
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Chapter 6

Discussion and Conclusion

From Chapter 2, I described three mathematical objects and then tested the understanding

graduate students have regarding the connections and translations between the objects. Restated,

these mathematical objects are

1. Complex torus C/L, for some lattice L

2. Smooth projective curve E of degree 3 in P
2, with chosen point

3. Riemann surface of genus 1, with chosen point.

Now, in this section, we will discuss our findings of how graduate students associate these

objects with each other. In particular, there is a high prevalence of the translation of object (1) to

(3), and object (1) to (2); conversely, the translations of object (2) to (3), (3) to (2), and (3) to (1)

were less commonly made.

For object (1) to (3), I looked for graduate students to use charts and show that the transition

functions are holomorphic. It then follows that the complex torus is a Riemann surface, after which

I look for the student to talk about how to identify opposite edges with one another and glue the

edges together to get the donut shape, thus showing that the genus is one. This connection was

made by five of the ten graduate students. That being said, if the graduate student only talked about

the genus one deduction, then I counted this as a full understanding of the translation of object (1)

to (3) because some of the professors also stated this as the translation. Hence, this explanation

also warranted a solid arrow.

Similarly, the translation of object (1) to (2) was also expressed by five graduate students. In

this case, I looked for graduate students to mention the Weierstrass ℘-function. Four students saw

this relationship and hence were interpreted as for fully understanding, earning a solid arrow. One

student, instead, stated they believed that there was a formula to get A and B or the discriminant
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from the lattice; they received a dotted arrow since I considered knowledge of the existence of a

formula sufficient for connecting the two objects but not complete for translating between repre-

sentations.

On the other hand, the translations of object (2) to (3), (3) to (2), (3) to (1) were not expressed

by most of the graduate students. First, the proof from object (2) to (3) was partially constructed by

two students. They both were unsure of their work, as evidenced by one participant using "proba-

bly" in their explanation and the other saying "but I don’t know the details so well" demonstrating

an incomplete understanding of the translation, but it is noteworthy that they were both on the right

track and were therefore able to make the connection. The opposite direction, object (3) to (2),

was only attempted by three students, of which only one student demonstrated a partially correct

understanding.

The most translations made by a graduate student was three. Only Alex was able to complete

three translations, along with one additional connection. Ryan completed 2 translations as well

as 2 more connections and Logan completed 2 translations with one additional connection. All

three of these interviewees with the highest levels of representational fluency in elliptic curves are

studying number theory. Overall, number theorists knew this mathematics more than the graduate

students who studied other areas of mathematics. This may be due to the fact that the course

covering elliptic curves was advertised as a number theory course and taught by a number theorist.

There was student, Drew, who studies number theory but made zero connections or translations.

They stated that they knew these three mathematical objects are equivalent but had not thought

through the translations and did not attempt to during the interview.

The importance of having representational fluency between different areas of mathematics was

consistent across all interviews except 1. Almost all interviewees agreed that the ability to make

connections and translations in mathematics is crucial for success as a graduate student. A few dif-

ferent trends in reasoning showed up throughout the rest of the interviews. The first trend was the

notion that being able to connect different areas of math helps a student develop a broader perspec-

tive and understanding of the math concept that they are studying. Drew stated “you don’t really
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fully understand a mathematical object until you can pin it down from all of the major angles.”

This trend also showed up among the professors interviewed. Professor 1 stated that in graduate

school, students learn big topics and it is important to see that they all connect together. In doing

so, students do not get stuck thinking that what they do is the best thing in the world. Adaptabil-

ity was the next major trend in participants’ interviews. Coming from a broader perspective and

having the ability to connect and be able to translate between different areas of math, students are

able to approach their problems in different ways. Dakota stated that “you can reformulate your

problem into a different language to use tools from that language to help solve your problem.”

Many of the interviewees mentioned the fact that different areas of math have different languages

and tools that allow mathematicians to attack their problem in different ways. Professor 4 said

that if you do not understand the symbols from another area of math then it can be easy to make

mistakes. Ryan stated that “it just happens that like, you can’t make progress from one point of

view. But from the other point of view, it might even just be obvious, if not just like, easier to get

your hands on.” Going along with having different tools when in a different area of mathematics,

Professor 2 and Sam mentioned that understanding the other area’s tools and language can help a

mathematician collaborate with others or understand more talks. While every person interviewed

felt that connecting different areas of math as an important skill for graduate students to be able

to do, only one person interviewed talked about this specific example. Professor 3 stated that this

“really illustrated one of sort of, what are the unifying principles of mathematics.” Professor 3

continued by explaining that almost every area of mathematics has an elliptic curve problem at the

foundation of it.

Overall, despite a majority of interviewees believing that there are benefits for graduate students

to have representational fluency between different areas of mathematics, no graduate students had

complete representational fluency in elliptic curves. The importance and difficulties are consistent

with studies done at lower levels of mathematics [9, 10]. In the case of this thesis our findings

may be due to the fact that the course given on elliptic curves at the university where this study

occurred did not teach the translations explicitly. The students that completed translations had
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thought through them on their own. This work leads to some implications for learning and teaching

graduate level mathematics. Learners should be aware of the connections that the mathematical

concepts they are learning about have to other areas of mathematics as the NCTM outlines that

representational fluency is important for students at all levels [12]. Graduate students who want

to improve their understanding should work through the connections and translations that appear

in their own work and courses. On the teaching side, Shulman states that instructors need to have

“at hand a veritable armamentarium of alternative forms of representation” and apply the most

powerful ones to make the concepts more understandable to students [17]. Instructors of courses

on elliptic curves could do more to encourage their students to think through the connections

introduced in Chapter 2 and help introduce the mathematical ideas that the interviewees were

lacking which lead to their inability to connect and translate. Another implication for instructors

of graduate courses in general is to take time to emphasize the importance of representational

fluency for graduate students in mathematics. This thesis discussed one example but there are

many other examples of connections in mathematics.
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