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ABSTRACT 
 
 
 

ANALYSIS OF THE RELATIONSHIP BETWEEN GENOMIC INSTABILITY, 

HETEROZYGOSITY LEVELS AND PHENOTYPE 

IN SACCHAROMYCES CEREVISIAE 
 
 
 

Understanding the forces that mediate genome evolution is a central problem in 

genetics, with implications for diverse processes that range from speciation, to 

biotechnological applications, to human disease. The central theme of my dissertation 

was the characterization of two forces, genomic instability and natural selection, that 

significantly impact genome structure by influencing the levels of genomic 

heterozygosity. While genomic instability processes can act to erode heterozygosity 

from the genome, natural selection may favor the maintenance of heterozygous alleles 

in cases where there is a positive correlation between heterozygosity and higher fitness. 

In Chapter I, I reviewed different types of mitotic mutations that can result in the 

appearance of tracts of homozygosity in genomes and recent discoveries about the 

temporal accumulation of such events. I also introduce the concept of heterosis, a 

phenomenon characterized by a positive correlation between genomic heterozygosity 

and phenotype in many species, and its potential role in contributing to the long-term 

maintenance of genomic heterozygosity.  

In Chapter II, I describe the characterization of a mechanism of systemic 

genomic instability in yeast that challenges the conventional model of gradual and 

independent accumulation of mutations. We showed that a subset of mitotic cells within 
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a population experience bursts of genomic instability, which results in multiple 

independent events of loss-of-heterozygosity (LOH) accumulating over one or a few 

generations of mitotic cell division. We named this outcome “systemic genomic 

instability”. The occurrence of this phenomenon was initially identified in the 

heterozygous yeast strain JAY270, and then validated in a conventional laboratory 

strain background, whose genome is almost fully homozygous. Elevated rates of 

coincident LOH was also observed in mutant strains incapable of entering meiosis, 

indicating cryptic initiation of meiotic recombination followed by return-to-growth in a few 

cells in the population was not responsible for the higher than expected rates of 

coincident LOH. This finding brings to light a novel and intriguing mechanism of 

genomic instability in yeast that has relevant parallels to bursts of accumulation of copy 

number alterations in the human genome, providing a powerful experimental model 

system to dissect the fundamental mechanisms responsible for the generation of rapid 

changes in chromosome structure. 

In Chapter III, we explored the role that genomic heterozygosity plays on the 

superior industrial traits of the JAY270 strain. In the previous Chapter we showed that 

mitotic recombination leading to LOH occurs at a high frequency during JAY270’s clonal 

propagation. These LOH events act against the long-term maintenance of genomic 

heterozygosity, yet about 60% of JAY270’s genome has remained heterozygous over 

time. We hypothesized that specific heterozygous alleles may have a positive impact on 

the traits of this strain and therefore were maintained through selection. We generated a 

collection of inbred strains derived from JAY270, and assessed them phenotypically 

under different growth conditions. Our results demonstrated that genomic 
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heterozygosity indeed has a substantial impact on two important industrial traits of this 

strain – heat stress tolerance and growth kinetics. We identified several genomic 

regions potentially associated with those traits and conducted experiments to 

investigate the bulk contributions of heterozygosity blocks in three specific 

chromosomes. This study revealed candidate regions containing loci that potentially 

underlie important industrial traits of JAY270 and details on the extent to which 

heterozygosity may impact JAY270’s genome evolution and phenotype. 

The combined results of these research projects provide important insights about 

the role of genomic instability mechanisms and their phenotypic outcomes in 

determining genome evolution, contributing discoveries that may have important 

practical implications for diverse fields, including biotechnology, cancer development 

and evolution, as well as genome sciences. 
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CHAPTER I 
 
 
 

Introduction and Background 

 

General classes of mitotic mutations 

 A genome contains all of the information necessary for cellular function. Cells 

devote a repertoire of enzymatic pathways to accurately replicate and maintain their 

DNA molecules and the information encoded by its nucleotide sequence. Even though 

these pathways are extremely reliable, failure to faithfully replicate the DNA or to 

appropriately repair DNA damage does occur occasionally, and can lead to mutations 

that alter the DNA sequence and, consequently, the way cells behave and interact with 

an ever-changing environment. 

 When mutations occur in the germline they are passed on to the offspring and 

have long-term consequences on a species. On the other hand, mutations that occur in 

mitotically dividing somatic cells are not heritable, but they may have important 

functional outcomes to a cell’s clonal lineage. For instance, mutations that occur in 

somatic cells are an underlying cause of cancer in humans (Hanahan and Weinberg 

2000) and, in single celled microorganisms, they have a significant impact in adaptive 

evolution to new environmental conditions (Payen et al. 2016; Venkataram et al. 2016).  

 Spontaneous single nucleotide mutations and small insertions or deletions 

commonly result from DNA damage and replication errors that evade repair (Boiteux 

and Jinks-Robertson 2013; Zhu et al. 2014). They represent are an essential source of 

genetic variability, but in diploid cells, the potential detrimental effects of non-
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synonymous mutations are usually compensated by the presence of a second intact 

wild type allele of the mutated gene. In contrast, mutational events that result in 

structural chromosomal alterations have a greater potential for leading to phenotypic 

changes because a single event can alter the genotype of multiple loci at once (Putnam 

and Kolodner 2017). These structural alterations can cause, for instance, gene dosage 

imbalances as a result of segmental deletions and amplifications (Putnam and Kolodner 

2017). In addition, chromosomal alterations that result from recombination events 

between homologous chromosomes often lead to extensive copy-neutral loss-of-

heterozygosity (LOH) (Symington, Rothstein, and Lisby 2014; Putnam and Kolodner 

2017), which may unmask recessive mutant alleles. This dissertation focuses on the 

characterization of mutational events that lead to structural chromosomal alterations, 

particularly LOH, and their phenotypic consequences.  

 

Mechanisms leading to loss-of-heterozygosity (LOH) 

 Generally, structural chromosomal alterations arise as a result of inappropriate 

repair of DNA double-strand breaks (DSBs), triggered by local DNA lesions and/or 

replication fork collapse (Pâques and Haber 1999; Putnam and Kolodner 2017). In 

yeast, as well as in human cells, several repair mechanisms compete hierarchically to 

repair eventual DSBs and, although different organisms favor different repair pathways 

their genetic outcomes are essentially identical. Typically, these mechanisms are 

classified in two categories. Cells may repair DSBs by simply re-joining the two broken 

chromosome ends through a non-homologous end joining pathway (NHEJ) (Chang et 

al. 2017). Alternatively, cells may repair DSBs using pathways that rely on an unbroken 
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DNA template through homologous recombination (HR). In this scenario, if the perfectly 

identical and allelic sister chromatid is the chosen homologous template for repair, the 

initial DNA lesion will have no genetic consequence (Pâques and Haber 1999; 

Symington, Rothstein, and Lisby 2014). However, in heterozygous diploid cells, the 

homologous chromosome (non-sister chromatid) may also be used as the donor 

sequence for repair, providing the potential for LOH tract accumulation and other 

changes in the chromosome structure to occur. For instance, interstitial and terminal 

copy-neutral LOH tracts, ranging from a few to hundreds of kilobases, may arise as a 

result of interhomolog allelic mitotic homologous recombination (Symington, Rothstein, 

and Lisby 2014).  

 The HR pathway is initiated by 5’-3’ resection at the DSB. One of the resulting 3’ 

single-stranded DNA (ssDNA) tails invades the double stranded DNA (dsDNA) of the 

homologous template to form a displacement loop (D-loop). The 3’ end of the resected 

tail is then used to prime the synthesis using the complementary donor strand as 

template. The displaced donor strand is then available for annealing to the other 

resected tail on the broken molecule. Through DNA synthesis, branch migration and 

ligation, these structures eventually progress to form a double Holliday junction (dHJ) 

intermediate. Resolution of the dHJ may occur by dissolution and re-annealing of 

recipient DNA, or by endonucleolytic cleavage.  The orientation of the cleavage of the 

the dHJ may lead to the formation of either crossover (perpendicular orientation) or non-

crossover (parallel orientation) outcomes. Formation of a non-crossover product, i.e. a 

gene conversion tract, will result in a daughter cell with an interstitial copy neutral LOH 

tract after the ensuing cell division (Chen et al. 2007) (Figure 1A).  Alternatively, the dHJ 
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may be resolved to yield a crossover product, which can result in reciprocal terminal 

LOH tracts if the recombinant chromatids segregate to different daughter cells 

(Symington, Rothstein, and Lisby 2014) (Figure 1B).  

 An identical terminal LOH genetic outcome may also arise as a result of break-

induced replication (BIR), a synthesis-dependent recombination pathway for repair of 

single-ended DSBs that results in the non-reciprocal transfer of DNA from the donor 

homologous chromosome to the broken, recipient molecule (Llorente, Smith, and 

Symington 2008; Malkova and Ira 2013; Donnianni and Symington 2013) (Figure 1C). 

This pathway is also initiated by single strand invasion and D-loop formation. However, 

in this case, the homologous chromosome is used as a template for conservative DNA 

synthesis that may replicate  > 100 kb of the template until the end of the chromosome, 

resulting in extensive LOH. Although the genetic outcome of repair through BIR is 

indistinguishable from interhomolog allelic mitotic recombination resolved by crossover, 

it has been demonstrated that BIR is suppressed when both ends of a DSB are 

available to initiate repair (Stark and Jasin 2003; Llorente, Smith, and Symington 2008) 

and the efficiency of this repair pathway is greatly reduced (<40%) when the length of 

DNA to be synthesized is greater than ~100 Kb (Donnianni and Symington 2013). In 

addition to the pathways described above, LOH can be generated by other types of 

mutational events. For example point mutations may lead to localized LOH and 

segmental deletions and whole chromosome loss may lead to extensive LOH due to the 

loss of one haplotype (Symington, Rothstein, and Lisby 2014; Putnam and Kolodner 

2017). 
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Figure 0.1. Genetic outcomes of interhomolog mitotic homologous 
recombination. 
Cells may repair DSB lesions through different pathways that rely on homologous 
recombination. Circles indicate centromeres. Three different heteroalleles are 
represented by A/a, ACE2/ace2-A7 and B/b. Duplicated homologous chromosomes in 
diploid cells are represented in colors blue and red. A) Gene conversion. Unidirectional 
genetic exchange between a donor homolog (red) and a recipient homolog (blue) leads 
to a non-reciprocal interstitial tract of LOH in only one of the resulting daughter cells. B) 
Crossover. Recombination resolved by a crossover yields extensive LOH if the 
recombinant molecules segregate to opposite cells in the subsequent cell division. C) 
Break-induced replication (BIR). One-ended DSBs repaired through conservative 
synthesis lead to extensive LOH in one of the resulting daughter cells. Note: all LOH 
events shown above span the ACE2 locus, which will be relevant for the experiments 
described in Chapters II and III of this dissertation. 
 

Incremental steps or large jumps in the accrual of chromosomal alterations?  

 Over the last four decades, the development and advancement of whole-genome 

sequencing technologies have enabled a revolution in our understanding of the 

organization and evolution of genomes (Shendure et al. 2017). The systematic and 

comprehensive characterization of thousands of cancer and microbial genomes to date 
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have revealed many details about the nature, frequency and distribution of mutations 

(Ciriello et al. 2013; Alexandrov and Stratton 2014; Peter et al. 2018). The landscape of 

somatic mutations found in most cancer genomes is astounding when compared to 

normal healthy cells. An average cancer genome contains about 1000 - 10000 point 

mutations, 10 - 100 small insertions and deletions and 1 - 10 large scale chromosomal 

rearrangements (reviewed in Zhang and Pellman 2015). Large-scale genomic studies 

have revealed the existence of mutation hotspots, genomic regions including late 

replicating and heterochromatic regions that are more prone to accumulate mutations. 

In addition, most cancer types are associated with a characteristic mutational signature, 

which suggests cancers may be driven by different mutational processes (Ciriello et al. 

2013; Alexandrov and Stratton 2014). For instance, colorectal carcinoma, uterine 

carcinoma and acute myeloid leukemia are frequently associated with point mutations, 

while ovarian and breast carcinoma are characterized by copy number changes (Ciriello 

et al. 2013). Although it is now evident that the type and distribution of mutations are not 

uniform throughout the genome, their frequency of appearance is estimated to be low 

and these events are generally thought to accumulate independently of each other over 

time, in a random and gradual fashion (Stratton, Campbell, and Futreal 2009). While 

literature overwhelmingly supports this general mechanism, mounting evidence is 

emerging for the co-existence of punctuated bursts of mutation accumulation, in which 

multiple mutational events take place over a single or a few cell division cycles (Zhang 

et al. 2015; Zhang and Pellman 2015; Sottoriva et al. 2015; Gao et al. 2016; Field et al. 

2018).  One relatively well understood example is chromothripsis, a mutational 

phenomenon characterized by extensive chromosomal rearrangements confined to a 
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single chromosome, a chromosome segment or occasionally a few chromosomes 

(Stephens et al. 2011; Leibowitz, Zhang, and Pellman 2015). These massive localized 

rearrangements have been shown to arise over a single cell division as a result of 

nuclear reincorporation of mis-segregated chromosomes (Zhang et al. 2015) and also 

as a result of telomere crisis caused by rupture and fragmentation of dicentric 

chromosomes (Maciejowski et al. 2015). Other examples include chromoplexy (Baca et 

al. 2013), firestorms (Hicks et al. 2006) and kataegis (Roberts et al. 2012), all of which 

are associated to numerous point mutations or chromosomal rearrangements confined 

to one or a couple limited genomic regions. In addition to these examples of bursts of 

clustered mutations, a few recent studies have also reported evidence of punctuated 

bursts of copy number alterations (CNAs) distributed on a genome-wide scale in some 

types of cancer and neurodevelopmental disorders (Gao et al. 2016; Liu et al. 2017; 

Field et al. 2018).  

Recent genomic analysis of thousands of individual cells extracted from tumors 

of patients with triple-negative breast cancer revealed that cells extracted from the same 

tumor could be broadly clustered into only 1 to ~3 discrete phylogenetic subpopulations 

based on their copy number profiles (Gao et al. 2016). Each phylogenetic branch was 

composed of tens of individual cells with highly rearranged genomes compared to 

normal cells, yet with very similar alterations to each other indicating stable clonal 

expansion. Importantly, cells with intermediate rearranged karyotypes were not detected 

in any of the 12 tumor samples analyzed, which should have been observed if the CNAs 

accumulated gradually or sequentially. Instead, advanced mathematical modeling 

pointed to a scenario through which the majority of CNAs were acquired at early stages 
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of tumor evolution, in short punctuated bursts, followed by stable clonal expansions that 

formed the tumor mass. 

 

 

Figure 0.2. Models of mutation accumulation. 
Left) Traditional model of gradual accumulation of mutations, where new mutations 
emerge in incremental, sequential steps. Dashed lines indicate the time of appearance 
of new mutations. Right) Punctuated model of mutation accumulation, in which multiple 
mutations accumulate over a short period of crisis, followed by stasis and clonal 
expansion of mutant cells. Insets represent the rate of mutation accumulation over time 
for each model. 
 

 Similar conclusions were drawn from single cell whole genome sequencing data 

and mathematical modeling approaches used to investigate genomic heterogeneity in 

uveal melanoma (UM), the most frequent type of primary eye cancer, which often leads 

to metastatic death (Field et al. 2018). UM is often associated with inactivation of one 

allele of the BAP1 tumor suppressor gene, followed by loss of the second functional 

allele through an LOH event spanning the BAP1 locus on chromosome 3. The patterns 

of genome-wide CNA and LOH of thousands of single cells from 151 different tumor 

samples were strikingly reminiscent of those found in breast cancer: single genomes 

from the same tumor sample could be clustered into few and narrowly defined 

phylogenetic branches, whereas cells with intermediate rearrangements were not found. 
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Combined, these results strongly imply that the rearrangements present in each tumor 

subpopulation most likely accumulated rapidly, through an early burst of genome-wide 

instability in one or a few founding cells. Those highly rearranged cells then expanded 

stably to give rise to genomically uniform subpopulations that were ultimately found in 

the advanced stage tumors. 

 The discovery of rare bursts of chromosomal alterations has the potential to 

transform our understanding of the initial steps of cancer formation and phenotype-

genotype evolution in general. However, mechanisms and cellular pathways governing 

these bursts are yet well characterized and their investigation is technically very 

challenging. In Chapter II of this dissertation, we provide experimental evidence that an 

analogous phenomenon of systemic genomic instability leading to punctuated bursts of 

chromosomal alterations also occurs in the yeast Saccharomyces cerevisiae. The 

significance of this finding is mainly threefold, (1) it indicates that the punctuated 

evolutionary model might be widespread among higher eukaryotes, (2) it provides a 

powerful model system that may facilitate the investigation of the underlying molecular 

mechanisms leading to punctuated bursts of genomic instability and (3) it reveals a 

novel mutational mechanism that can contribute to rapid changes in phenotype and 

adaptive evolution of natural populations of yeast. We discuss in Chapter II plausible 

underlying causes for transient genomic crises and, in Chapter IV, we propose future 

perspectives for the research in this field and some of the technical challenges that will 

need to be overcome.  
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A tug of war in the regulation of genomic heterozygosity in yeast  

 Loss of a functional tumor suppressor allele through LOH can lead to 

uncontrolled cell proliferation and tumorigenesis (Ryland et al. 2015). For instance, this 

mechanism accounts for a large portion of the cases of retinoblastoma, which are 

frequently associated with loss of a functional copy of the Rb allele (Cavenee et al. 

1983). LOH is not only an outcome of genomic instability that plays an important role in 

tumorigenesis, but these events are also a driving force in the evolution of unicellular 

microorganisms (Magwene et al. 2011). Mechanisms leading to LOH have an elevated 

potential for leading to phenotypic changes because one single mutational event has 

the capability of altering the genotype of long stretches of DNA harboring hundreds of 

genes. Population genomic analyses of many yeast isolates have shown that 

heterozygosity is common among wild diploid strains and LOH might represent a path of 

easy access to new allelic combinations and phenotypes (Magwene et al. 2011). For 

example, LOH has been correlated to recurrent acquisition of drug resistance (Coste et 

al. 2006), adaptation to nutrient-limited conditions (Smukowski Heil et al. 2017), among 

others.  

 An important feature of this type of mutational event is that the resulting LOH 

tract can never be reverted back to the original heterozygous genotype. The high rates 

of LOH events during mitotic cell division and the irreversible nature of these events 

lead to many intriguing questions: How is heterozygosity maintained overtime in the 

genomes of wild yeast strains? How does heterozygosity influence phenotype? What 

are the phenotypic consequences of LOH? 
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 One possibility is that human-associated environments facilitate outcrossing 

between unrelated strains, thus contributing to the maintenance of heterozygosity in 

strains isolated from those settings (Magwene et al. 2011). Another possibility, and the 

one explored in this dissertation, is that heterozygosity itself may be advantageous to 

natural yeast populations. A positive correlation between heterozygosity and fitness has 

been described in many other species, a phenomenon named hybrid vigor or heterosis 

(Birchler et al. 2010; Melchinger et al. 2007). This relationship has been characterized in 

a few studies showing evidence that S. cerevisiae strains also benefit from 

heterozygous genomes. Using a yeast collection with strains originated from two major 

groups, the “domesticated” strains, which were selected from environments associated 

with human activity (laboratory, industry, clinic) and the “wild” strains, which were 

isolated from natural habitats, Plech et al. 2014 showed that heterosis is prevalent in the 

group of domesticated yeast strains (Plech, de Visser, and Korona 2014).  In addition, 

Shapira et al. 2014 successfully demonstrated that yeast heterosis is governed by the 

combined effects of different genetic interactions – dominance, overdominance and 

epistasis (Shapira et al. 2014). 

 Although these studies established the initial background necessary for 

understanding how this complex phenomenon manifests itself in yeast, the genomic 

regions and specific genes associated with the heterotic phenotype were not 

investigated. In addition, the hybrid strains analyzed in those studies were artificially 

created by mating spores derived from homozygous unrelated strains, i.e. the heterotic 

phenotypes analyzed are not observed in nature. In Chapter III of this dissertation, we 

contribute insights into this problem by demonstrating that heterozygosity likely plays a 
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role in the fitness of a natural hybrid S. cerevisiae strain. We use different approaches 

to reduce the abundance and genomic distribution of heterozygous alleles and show 

that phenotype is altered each time heterozygosity is reduced.  

 In summary, my doctoral research focused on the investigation of two counter-

acting forces that regulates the levels of heterozygosity on the genome and, 

consequently, contribute to shaping genome structure. In Chapter II, I describe a novel 

phenomenon of genomic instability that can very rapidly erode heterozygosity from the 

genome. In Chapter III, I investigate the impact of heterozygosity on fitness, and how 

this relationship may contribute to the maintenance of heterozygous genomes in wild 

isolates of S. cerevisiae (Figure 3). The combined results presented here provide an 

experimental model system to further dissect the fundamental mechanisms responsible 

for bursts of systemic genomic instability that might underlie cancer and genomic 

disorders. In addition, they also provide insights into the roles of heterozygosity and 

mitotic recombination in shaping the genome architecture of S. cerevisiae. 
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Figure 0.3. The levels of heterozygosity in the yeast genome are regulated by the 
balance between the counter-acting forces of heterosis and loss-of-
heterozygosity. 
In Chapter II of this dissertation, we described the occurrence of genome instability 
episodes that lead to the accumulation of multiple tracts of loss-of-heterozygosity over 
one or a few mitotic cell divisions. In Chapter III, we investigated the role that 
heterozygous alleles play on fitness, a relationship that could be contributing to the 
long-term maintenance of highly heterozygous genomes in many yeast strains.  
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CHAPTER II1 
 
 
 

Mitotic systemic genomic instability in yeast 

 

Summary 

 Conventional models of genome evolution generally include the assumption that 

mutations accumulate gradually and independently over time. We characterized the 

occurrence of sudden spikes in the accumulation of genome-wide loss-of-

heterozygosity (LOH) in Saccharomyces cerevisiae, suggesting the existence of a 

mitotic systemic genomic instability process (mitSGI). We characterized the emergence 

of a rough colony morphology phenotype resulting from an LOH event spanning a 

specific locus (ACE2/ace2-A7). Surprisingly, half of the clones analyzed also carried 

unselected secondary LOH tracts elsewhere in their genomes. The number of 

secondary LOH tracts detected was 20-fold higher than expected assuming 

independence between mutational events. Secondary LOH tracts were not detected in 
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control clones without a primary selected LOH event. We then measured the rates of 

single and double LOH at different chromosome pairs and found that coincident LOH 

accumulated at rates 30-100 fold higher than expected if the two underlying single LOH 

events occurred independently. These results were consistent between two different 

strain backgrounds, and in mutant strains incapable of entering meiosis. Our results 

indicate that a subset of mitotic cells within a population experience systemic genomic 

instability episodes, resulting in multiple chromosomal rearrangements over one or few 

generations. They are reminiscent of early reports from the classic yeast genetics 

literature, as well as recent studies in humans, both in the cancer and genomic disorder 

contexts, all of which challenge the idea of gradual accumulation of structural genomic 

variation. Our experimental approach provides a model to further dissect the 

fundamental mechanisms responsible for mitSGI. 

 

Introduction 

Heterozygosity is often associated with beneficial phenotypes in a variety of 

multicellular eukaryotes ranging from plants, to livestock, and even humans (Chen 

2013). At the organismal level, heterozygosity can be promoted and maintained through 

breeding between unrelated individuals, and conversely, can be lost through inbreeding 

(Charlesworth et al. 2009). It can also be lost at the cellular level through allelic mitotic 

recombination between homologous chromosomes. Such loss-of-heterozygosity (LOH) 

events typically have negative consequences, such as somatic mosaicism or loss of 

tumor suppressor genes (Lapunzina and Monk 2011), but unless these mutations occur 
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in the germline, they are not heritable and do not have long term consequences for the 

species. 

 Single cell eukaryotes including various yeast species also benefit from 

heterozygous genomes (Magwene 2014; D’Enfert et al. 2017). However, maintaining 

heterozygosity is more challenging in these cases as a mitotic LOH event leads to 

immediate fixation of the homozygous state in a clonal cell lineage. High levels of 

genomic heterozygosity have been described in several Saccharomyces cerevisiae 

strains (Argueso et al. 2009; Magwene et al. 2011; Borneman et al. 2011). One of the 

first examples to be characterized was the JAY270/PE-2 strain used in bioethanol 

production (Argueso et al. 2009). This heterothallic diploid was originally isolated as a 

robust and highly productive contaminant at a sugarcane distillery (Basso et al. 2008). 

Similarly isolated wild strains are also heterothallic and heterozygous (Babrzadeh et al. 

2012), and genomic heterozygosity is suspected to contribute to their industrial traits. 

Interestingly, in most of the strains described above, including JAY270/PE-2, 

heterozygosity is not evenly distributed across the genome. Heterozygous regions are 

interspersed with stretches of homozygosity indicating the occurrence of LOH events in 

clonal ancestors (Magwene et al. 2011). However, it is still unclear what, if any, 

consequences these LOH events may have on their general fitness. 

 The relationship between genomic heterozygosity, LOH, and phenotypic 

consequences in yeast is better understood in the human pathogen Candida albicans. 

In that system, LOH events have been shown to have a profound effect on clinically 

relevant traits, particularly drug resistance (D’Enfert et al. 2017; Bennett, Forche, and 

Berman 2014). For example, LOH leading to homozygosis of a hyperactive form of 



 22 

Tac1, a transcription factor that regulates the multidrug transporter genes, results in 

increased efflux of azole antifungal drugs (Coste et al. 2006). In addition to providing a 

recurrent path to drug resistance, LOH has been shown to play a significant role in the 

evolution of the C. albicans genome (Hirakawa et al. 2015; Ford et al. 2015). 

 In this study, we identified and characterized a specific and easily discernible 

phenotypic transition in the S. cerevisiae JAY270/PE-2 strain, from smooth to rough 

yeast colony morphology, caused by an LOH event spanning the ACE2 locus on 

chromosome XII (Chr12). Whole genome analyses of rough clones selected for carrying 

this specific Chr12 LOH event revealed that additional unselected recombination events 

were often present elsewhere in the genome. This initial observation was validated by 

direct measurements of coincident LOH rates at different chromosomes, suggesting the 

existence of a mitotic systemic genomic instability (mitSGI) process. The high rate of 

coincident LOH uncovered in our study resembles the bursts of accumulation of copy 

number alterations (CNAs) in human cancer (Gao et al. 2016) and genomic disorders 

(Liu et al. 2017). The results reported here have important ramifications for the 

characterization of mitSGI mechanisms that contribute to structural genomic variation. 

 

Results 

Appearance of altered colony morphology derivatives of JAY270 

 One of the most desirable features of the JAY270/PE-2 bioethanol production 

strain (henceforth referred to simply as JAY270) is that it does not normally aggregate 

during industrial sugarcane extract fermentation (i.e. cells stay in suspension in liquid 

culture). Accordingly, JAY270 produces normal hemispherical colonies with smooth 
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surfaces and edges when grown in solid agar medium (Fig. 2.1A). While this is the 

phenotype typically observed, over the course of our studies using this strain we noticed 

the sporadic occurrence of colonies clonally derived from JAY270 that displayed altered 

morphology: relatively flat-growing colonies with rough surfaces and edges (Fig. 2.1B). 

Under bright field microscopic examination, yeast cells derived from such rough 

colonies appeared to grow in chains, showing a budding pattern consistent with a defect 

in the separation of the daughter cells from their mother (Fig. 2.1C-D). We stained these 

cells with calcofluor white to visualize the chitin-rich ring septa, confirming the 

attachment of mother and daughter cells at the budding neck site (Fig. 2.1E-H). 

 

Figure 0.1. Smooth and rough colony morphologies, mother-daughter cell 
attachment, and phenotypes of diploids derived from mating specific haploids. 
A-H show images of the JAY270 smooth parent diploid strain (left panels) and its 
spontaneous rough derivative JAY663 (right panels). A and B, colony morphologies on 
YPD agar after 3 days growth at 30C. C and D, bright field, and E-H, fluorescence 
microscopy of cells stained with calcofluor white to highlight chitin septa and the mother-
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daughter cell attachment. Scale bars are 1mm (A-B), 20µm (C-F) and 5µm (G-H). I and 
J, Smooth (S, white circles) and rough (R, black stars) phenotypes of diploids formed by 
crossing the indicated MATa and MATα haploids isolated from three tetrads of each 
JAY270 (I) and JAY663 (J). Thick black lines indicate the four diploids derived from 
matings of intra-tetrad sibling haploids. The colored backgrounds for each haploid 
correspond to their inferred genotype (Blue, dominant wild type allele; Red, recessive 
mutant allele). All 12 haploids from panel I had their whole genomes sequenced. Co-
segregation analysis with JAY270 HetSNPs (Fig. S2.1) was used for identification of the 
causal mutation at the ACE2 locus (Figs. S2.2 and S2.3). Main results in this figure 
were generated by: ARP. 
 

 We initially isolated five independent examples of such rough colonies for genetic 

characterization (JAY663, JAY664, JAY665, JAY912 and JAY913), all of which were 

derived either directly from JAY270 or from JAY270-isogenic strains. The phenotype of 

these isolates was stably maintained and was not reversible over several clonal 

generations, suggesting that it was likely hard-wired genetically and not caused by a 

transient transcriptional or post-transcriptional state. We estimated that these five rough 

colony isolates appeared spontaneously from a pool of ~50,000 smooth colonies. 

Assuming a genetic origin and based on this high frequency of occurrence in diploid 

cells, we reasoned that this phenotype was unlikely to be caused by a rare dominant de 

novo nucleotide point mutation, but instead, mitotic recombination leading to loss-of-

heterozygosity (LOH) provided a more plausible mechanism. 

 In a parallel project, we observed that crossing two specific haploid descendants 

of JAY270 (JAY291 MATa and JAY292 MATa) resulted in diploid cells with the same 

rough colony morphology and mother-daughter cell attachment pattern observed in the 

five rough-colony isolates above. This was despite the fact that JAY291, JAY292, and 

all other haploid derivatives of JAY270 have the normal smooth colony phenotype. This 

indicated that the rough colony phenotype was diploid-specific, and the ability to 
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consistently reproduce the mutant phenotype in controlled crosses between specific 

haploids opened an avenue to investigate its genetic basis. 

 We previously reported the whole genome sequence of the JAY291 

haploid(Argueso et al. 2009). Since then we have sequenced the genomes of 55 

additional JAY270-derived haploids. This genome sequence dataset, comprising 

fourteen sets of four-spore tetrads, was generated in a project to characterize the 

abundance, distribution and phasing of heterozygous loci in the JAY270 genome, the 

full results of which will be described elsewhere. These haploid genomic sequences 

were used to create a draft map of phased heterozygous single nucleotide 

polymorphisms (HetSNPs) containing 12,023 loci unevenly distributed across the 

genome (Fig. S2.1).  

 We carried out crosses between twelve sequenced haploid descendants of 

JAY270 (3 tetrads; Fig. 2.1I). All possible MATa x MATa crosses were performed 

producing 36 different diploids. Among them, we found eight with rough and 28 with 

smooth colony surfaces, in a pattern that was consistent with recessive inheritance of a 

trait controlled by a single gene. Even though the rough colony phenotype was not 

observed in any of the haploid parents, the phenotypes of their respective diploid 

combinations allowed us to infer which allele was present in the parents: either the wild 

type dominant allele or the recessive mutant allele. 

 In addition, we induced sporulation of one of the spontaneous rough-colony 

isolates, JAY663, dissected tetrads, and examined the phenotypes of the haploid 

derivatives. None of the resulting haploids displayed the rough colony phenotype; they 

were all smooth (~100 examined). We then took twelve of these haploids (JAY2176 
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through JAY2187 comprising three full tetrads, determined their mating types, and 

conducted all possible mating combinations between them (Fig. 2.1J). In this case, all 

36 crosses resulted in rough colony diploids. This result was consistent with JAY663 

being homozygous for the causal recessive mutant allele, and supported the hypothesis 

that copy neutral LOH could be responsible for the sporadic appearance of the mutant 

phenotype in JAY270. 

 

Genetic basis of the rough colony phenotype 

 Based on the interpretation that the rough colony phenotype was associated with 

monogenic recessive inheritance of a diploid-specific trait, we divided the sequenced 

JAY270-derived haploids from Fig. 2.1I into two groups according to their inferred 

genotype. Group 1 included the six haploids inferred to carry the mutant recessive 

allele, whereas group 2 included the six haploids with the wild type dominant allele. We 

then compared the genome sequences of the twelve haploids to the draft JAY270 

HetSNPs map. We interrogated each of the HetSNPs searching for alleles that co-

segregated in all six individuals within group 1, and that conversely, had the other allele 

co-segregating in all six individuals within group 2. This analysis identified two candidate 

regions that fit the strict co-segregation criterion (Fig. S2.2A-C). One of the candidate 

regions corresponded to ~30 Kb on Chr11, including thirteen genes; and the other 

spanned ~15 Kb containing nine genes on the right arm of Chr12, located ~50 Kb 

centromere proximal to the ribosomal DNA genes tandem repeats (rDNA).  

 We reviewed the annotations of the 22 candidate genes, and identified a gene 

located in the Chr12 region, ACE2, which encodes a transcription factor that controls 
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the expression of genes involved in the mother-daughter cell separation process (Weiss 

2012). In cells lacking Ace2p, the daughter cell remains attached to the mother cell wall 

at the bud neck, resulting in the accumulation of multicellular clusters. Importantly, a 

diploid-specific rough colony phenotype is observed in ace2/ace2 homozygous mutant 

strains in certain genetic backgrounds (Voth et al. 2005). 

 We inspected the genomic sequence of the ACE2 gene in JAY291, and 

compared it to the sequence in the S288c reference genome. Only one difference was 

identified: The wild type ACE2 allele in S288c contains a homopolymer run of eight 

adenine nucleotides, while the mutant allele in JAY291 has seven adenines in this 

region, resulting in a -1 frameshift mutation and a stop codon shortly downstream. 

Hence, we named the mutant allele ace2-A7. We then conducted reciprocal 

complementation tests to formally demonstrate that ace2-A7 was the causal mutation 

responsible for the rough colony phenotype. The mutant alleles in haploids JAY291 and 

JAY292 were replaced with the wild type allele, resulting respectively in the isogenic 

ACE2 strains JAY1051 and JAY1039. When these allele replacement strains were 

crossed to ace2-A7 strains (Fig. S2.2D), the resulting diploids displayed the smooth 

colony phenotype, thus confirming that the wild type ACE2 allele fully complemented 

the ace2-A7 mutation in heterozygous diploids. 

 

Analysis of Chr12 LOH in spontaneous rough colony isolates 

 After identifying the association between the ACE2 locus and the rough colony 

phenotype, we determined its sequence in the five spontaneous rough colony 

derivatives isolated earlier in the study. We PCR-amplified and Sanger-sequenced the 
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region containing the adenine homopolymer run in ACE2 from JAY270, from the haploid 

derivatives JAY290 and JAY291, and from the rough colony isolates (Fig. S2.3A-B). 

This analysis confirmed the presence of a run of 8 adenines in ACE2 (JAY290) and 7 

adenines in ace2-A7 (JAY291). The chromatogram in the JAY270 heterozygous diploid 

was consistent with a mixture of ACE2 and ace2-A7 DNA templates being present in 

the sequencing reaction: single nucleotide peaks were observed at positions primer-

proximal to the homopolymer run, and out-of-register double peaks were seen 

downstream of the seventh adenine nucleotide. The chromatograms for all five rough 

colony isolates showed the presence of the ace2-A7 frameshift mutation and absence 

of the ACE2 allele. The loss of the ACE2 allele in the diploid rough-colony isolates may 

be explained by either a copy-neutral LOH mechanism such as inter-homolog mitotic 

recombination, by a segmental deletion spanning ACE2, or Chr12 monosomy. To 

distinguish between these scenarios, we conducted tetrad analysis with the five 

spontaneous rough colony isolates. Four of them produced tetrads that had four viable 

haploid spores, and each spore had a copy of the ACE2 locus as determined by PCR 

(data not shown). One of the isolates, JAY664, produced tetrads with two viable and 

two inviable spores, indicating the presence of a recessive-lethal mutation. We 

performed array-CGH analysis on JAY664 and determined that two copies of Chr12, 

including the ACE2 locus, were present (Fig. S2.3C-D). Together, these results showed 

that all five rough colony isolates were homozygous for ace2-A7, in agreement with the 

initial hypothesis that the high frequency of smooth to rough colony morphology 

transitions among JAY270 derivatives was caused by interhomolog recombination 

leading to copy-neutral LOH. Unexpectedly, the JAY664 array-CGH also showed that 
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this rough colony isolate did carry copy number alterations in genomic regions other 

than Chr12. In particular, a terminal deletion on the right arm of Chr6 spanned multiple 

essential genes and explained the 2:2 spore viability phenotype (Fig. S2.3E).  

 Interestingly, the breakpoint for the Chr6 deletion occurred at a position 

immediately distal to FAB1, where a tRNA gene and Ty1 retrotransposon sequences 

are found in the S288c reference genome and in the JAY270 maternal Chr6 homolog, 

which sustained the deletion. We analyzed the status of HetSNP markers flanking the 

breakpoint and found that a proximal marker (Chr6 - 185 Kb) remained heterozygous, 

while a distal marker (Chr6 - 229 Kb) lost heterozygosity through a deletion mechanism 

(Fig. S2.4A-B). Even though we did not characterize the precise sequences that were 

joined at the deletion breakpoint in JAY664, this pattern was consistent with non-allelic 

homologous recombination (HR) involving Ty retrotransposon repeats, a major class of 

gross chromosomal rearrangements observed in S. cerevisiae (Argueso et al. 2008; 

Putnam and Kolodner 2017). 

 LOH is typically a regional, rather than local, mutational mechanism. Interstitial 

tracts of homozygosity can span tens of kilobases, and terminal tracts are even longer, 

extending all the way to the telomeres (St Charles and Petes 2013). Therefore, in 

addition to being homozygous for ace2-A7, the rough colony isolates might also be 

homozygous for flanking HetSNPs. We tested this model initially at low resolution by 

determining the genotypes at eleven Chr12 HetSNPs using PCR (Table S2.3). The 

results of this analysis were compiled to produce the LOH tract maps shown in Fig. 2.2. 

As expected, JAY270 was heterozygous for all eleven markers tested. Notably, Chr12 

in this strain is only heterozygous for positions to the left of the rDNA cluster (Fig. S2.1). 
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This pattern is similar to that described previously for other heterozygous diploid S. 

cerevisiae genomes and is suggestive of ancestral LOH events mediated by rDNA 

instability (Magwene et al. 2011). 

 

 

Figure 0.2. LOH tract maps of Chr12 from five original rough colony isolates. 
The genotypes at twelve phased JAY270 Chr12 HetSNP marker loci were determined 
using PCR and RFLP or Sanger sequencing analyses (Table S2.3). The approximate 
coordinates of the markers are shown in Kb. The Chr12 homolog containing the ace2-
A7 allele was arbitrarily designated as maternal (Chr12-M, red) and the homolog 
containing the wild type ACE2 allele as paternal (Chr12-P, blue). JAY270 was 
heterozygous at all markers, and all rough colony isolates were homozygous for the 
ace2-A7 allele. White boxes distal to the 450 Kb HetSNP represent ~1.5 Mb of 
ribosomal DNA repeats (rDNA). Chr12 regions distal to the rDNA do not contain any 
heterozygous markers in JAY270. The red or blue shading corresponds to the directions 
(M or P, respectively) and approximate breakpoint positions of the LOH tracts 
determined at high resolution using whole genome sequencing (detailed in Fig. S2.6). 
Main results in this figure were generated by: ARP, MJC, NMVS. 
 

 Analysis of the JAY663 isolate showed that, while it was homozygous for the 

ace2-A7 mutation, it remained heterozygous at all other flanking markers, including 

those immediately proximal and immediately distal to the ACE2 locus. A mitotic gene 

conversion tract limited to the 8.7 Kb region between these HetSNPs could explain this 

result. Alternatively, a de novo -1 contraction mutation in the adenine homopolymer run 

of the ACE2 allele could also account the for the JAY663 genotype (Tran et al. 1997). 
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 The four remaining isolates (JAY664, JAY665, JAY912, and JAY913) were 

homozygous for regions well beyond the ACE2 locus. In this low-resolution map, all four 

LOH tracts were unidirectional, continuous, and homozygous for SNPs present in the 

Chr12 homolog that contained the ace2-A7 allele, which we arbitrarily designated the 

maternal homolog (Chr12-M; red in all figures). Subsequent high resolution LOH 

mapping using whole genome sequencing (WGS; below) confirmed the initial results 

and revealed additional complexities to the tracts. The centromere-proximal breakpoints 

of the LOH tracts were roughly mapped to positions ranging from 39 Kb (JAY913) to 

184 Kb (JAY664) from the ACE2 locus. On the distal side, these isolates had an 

additional 45 Kb of LOH that extended to the HetSNP at position 450 Kb, located 1.4 Kb 

proximal to the rDNA repeats. From this point, Chr12 contains ~1.5 Mb of rDNA repeats 

plus another ~0.6 Mb of distal homozygous single copy sequences. Since the 450 Kb 

HetSNP was the most distal marker in Chr12, we could not distinguish if these LOH 

tracts were generated as very long interstitial gene conversion events, or if they 

extended to the right telomere. This initial PCR-based analysis also revealed an 

unexpected secondary LOH event on the left arm of Chr12 in JAY664, but in this case, 

it was associated with homozygosity for the SNPs from the paternal homolog (Chr12-P, 

blue in all figures; see below). 

 

Analysis of selected Chr12 LOH 

 Taken together, the results described above showed that the majority of the 

isolates with altered colony morphology were homozygous not only at the ACE2 locus, 

but also for surrounding regions, indicating that interhomolog mitotic recombination was 
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frequent in JAY270 and that it likely had substantial effect on the genetic makeup of this 

strain. In addition, the distribution of HetSNPs in the genome is notably uneven (Fig. 

S2.1), with long tracts of homozygosity, suggesting that abundant LOH occurred in the 

JAY270 lineage.  

 To gain a deeper understanding of the impact of genome instability processes on 

the present genetic composition of JAY270, we conducted experiments to directly 

measure the rate of LOH in this strain (Fig. 2.3A). Starting with a homozygous ura3/ura3 

derivative of JAY270 (FGY050; gift from F. Galzerani), we introduced one copy of the 

KlURA3-ScURA3-KanMX4 CORE2 counter selectable cassette (Zhang et al. 2013) at a 

position immediately proximal to ACE2 (1.3 Kb from the adenine homopolymer run). We 

grew cultures of strains carrying this insertion and plated the cells in media containing 5-

FOA to identify clones that had lost the cassette. We performed this assay in a 

derivative of JAY270 carrying the hemizygous CORE2 insertion in Chr12-M. The 

frequency of homozygosity for the ACE2 allele was 1.2 x 10-4, comparable to the 

unselected frequency of ace2-A7 homozygosity (5 in ~50,000) estimated earlier in the 

study. We also used hemizygous CORE2 insertions to measure LOH rates at two other 

positions in the genome (Chr4 near SSF2, and Chr13 near ADH6), and on Chr5 by 

deleting one allele of the CAN1 gene (can1D::NatMX4/CAN1), and selecting for loss of 

the remaining WT allele in clones resistant to canavanine. In order to provide a 

reference for comparison of LOH rates from JAY270, we introduced these same four 

constructs in a standard laboratory yeast strain background routinely used to study 

genome instability mechanisms, including LOH (CG379; Fig. 2.3B) (Morrison et al. 

1991; Conover et al. 2015). The rates of LOH were not significantly different between 
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the two strain backgrounds at Chr12 (p=0.225), and were slightly higher in JAY270 at 

Chr5 (p<0.001) and slightly higher in CG379 at Chr13 (p=0.021) and Chr4 (p<0.001). In 

general, this analysis indicated that the two strains backgrounds have comparable 

levels of chromosome stability, and therefore JAY270 genome is not inherently 

unstable. 

 

Figure 0.3. Quantitative analyses of LOH. 
The measured median rates (blue bars) of single and double LOH events are shown in 
panels A for the JAY270 strain background, B for the CG379 strain background, and C 
for CG379 MATa / matΔ strains. In the X axis, Chr12, Chr4, or Chr13 indicate diploids 
with hemizygous insertions of the CORE2 cassette (KlURA3-ScURA3-KanMX4) at each 
of those chromosomes. Chr5 indicates hemizygous deletion of CAN1. These strains 
were used to determine the rates of single LOH individually at each CORE2 insertion or 
at CAN1. Error bars indicate 95% confidence intervals (CI) for each rate measurement. 
The rates expected for independent double LOH events (red bars; exp.) were calculated 
by multiplying the respective rates of single LOH at Chr4 and Chr5 or Chr13 and Chr5. 
The matching rates of observed (obs.) double LOH for each loci pair are shown in blue 
to the right, measured from strains carrying one copy of CORE2 and one copy of CAN1. 
The expected 95% CI for independent double LOH rates were calculated by multiplying 
upper or lower 95% CI boundaries from the corresponding single rates, therefore they 
likely overestimate the expected 95% CI. The rate of single Chr12 LOH for the strain 
background in panel C was not determined (N.D.). Main results in this figure were 
generated by: NMVS, GMA, MJC. 
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 We also used the 5-FOAR selection approach to characterize the qualitative 

nature of the Chr12 LOH tracts in a larger set of independent clones (Fig. S2.5A-B). We 

used nine PCR-RFLP markers to map LOH tracts from 5-FOAR clones derived from 

CORE2 insertions on Chr12-M and Chr12-P. The patterns observed were similar 

between the two LOH directions, and resembled the tracts observed in the five initial 

spontaneous rough colony isolates (Fig. 2.2). All 41 selected Chr12 LOH clones were 

heterozygous for the left arm, and 39 had uninterrupted unidirectional LOH tracts on the 

right arm, starting at positions between CEN12 and ACE2, and extending up to the 450 

Kb HetSNP. This predominant tract pattern was consistent with a simple interhomolog 

mitotic crossover mechanism. 

 The region between CEN12 and ACE2 was divided in five intervals delimited by 

HetSNP markers. The distribution of breakpoints found at these intervals was not 

significantly different between the strains carrying the CORE2 insertion at Chr12-M or 

Chr12-P (c2 = 0.855; p = 0.93), suggesting that both homologs shared similar mitotic 

recombination properties. We pooled the observed breakpoint distribution data from the 

19 5-FOAR clones derived from the Chr12-P insertion, and the breakpoints from 23 

spontaneous rough isolates that were mapped using WGS (below; Fig. S2.5C and Fig. 

S2.6). We compared the total number of breakpoints leading to ace2-A7/ace2-A7 LOH 

observed within each interval to the expected distribution if breakpoints were allocated 

purely as a function of the size of the physical interval. This analysis indicated that the 

observed breakpoint distribution was not significantly different from this simple model 

(c2=6.846; p=0.1442) (Fig. S2.5D). Since LOH breakpoints in this region of the genome 
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were relatively evenly distributed, it does not appear that a mitotic recombination 

hotspot (i.e. fragile site) was present. 

 

Genome-wide analysis LOH and CNA in the JAY664 isolate 

 In addition to the two copy-neutral Chr12 LOH events and the Chr6 terminal 

deletion discussed above, we also detected additional structural alterations in the 

genome of the rough colony isolate JAY664. Using pulse-field gel electrophoresis 

(PFGE) we detected a size reduction in the long homolog of Chr11 (Fig. 2.4A), and 

array-CGH showed a 15 Kb full deletion (0 copies) near the right end of that 

chromosome. (Fig. 2.4B). Analysis of PCR markers proximal to (Chr11 - 639 Kb) and 

within (Chr11 - 653 Kb) the deletion showed that the deleted region was hemizygous in 

the JAY270 genome (Fig. S2.4C-E). In JAY664, however, the proximal marker became 

homozygous, and the distal hemizygous region was lost. The combination of array-CGH 

and PCR genotyping showed that JAY664 experienced a copy-neutral LOH event with a 

breakpoint proximal to the Chr11 - 639 Kb marker, leading to homozygosis for the 

haplotype lacking the hemizygous region represented in the microarray. A similar 

pattern of proximal LOH and distal CNA was also detected for the right end of Chr7 (Fig. 

2.4C and Fig. S2.4F-I). Altogether in JAY664, including PFGE, array-CGH and WGS 

methods, we detected structural alterations at eight independent regions of the genome. 
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Figure 0.4. Analysis of unselected chromosomal changes in JAY664. 
A shows a PFGE of JAY270 and the JAY664 rough colony isolate. Arrows indicate the 
chromosomal bands that differed between the two strains, with the respective 
chromosome number next to them. B shows the Chr11 array-CGH copy number plot for 
JAY664 relative to JAY270. The X-axis indicates the chromosomal coordinates and Y-
axis has the Log2 (Cy5-JAY664) / (Cy3-JAY270) ratio, with the corresponding DNA 
copy number (i.e. 0x, 2x, 3x) indicated to the right. Blue dots correspond to individual 
probes in the array and their Log2 Cy5/Cy3 ratios and positions along the chromosome. 
The inset to the right shows a close-up view of the right end of Chr11 where a full 
deletion of the probes in the region (pink shading) was detected. The positions of three 
PCR markers evaluated in the analysis are indicated, and their genotypes are indicated 
by blue and red circles according to the presence of paternal or maternal alleles (see 
Table S2.3 and Fig. S2.4). Note that only the sequences from the S. cerevisiae S288c 
reference genome are represented in the array. The probes within the array-CGH 
deletion signal are hemizygous in JAY270 (orange, 1x), including the 653 Kb PCR 
marker. JAY664 is homozygous for the maternal right terminal segment of Chr11, and 
therefore completely lost the signal for the paternal probes in the array, while duplicating 
maternal JAY270 hemizygous sequences (green). The maternal hemizygous 
sequences are not present in the S288c genome and thus not represented in the array. 
The position of the Chr11 LOH breakpoint determined by WGS was near the 581 Kb 
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HetSNP. Panel C shows a similar analysis of Chr7 in JAY664. Gray and purple lines 
represent the hemizygous regions at the ends of the paternal and maternal homologs, 
respectively. A proximal LOH event (WGS breakpoint at 784 Kb) and distal CNV event 
with deletion of one hemizygous region (purple, including the 1073 marker) and 
duplication of sequences (gray) not present in the array. The inset to the left shows the 
amplification (blue shading) of probes near the left telomere, but no proximal LOH 
occurred on that region of Chr7. Instead, the sequences represented by these probes 
are actually present as a hemizygous insertion near the left telomere of Chr12 in 
JAY270. An LOH event at that region (see JAY664 Fig. 2.2 and Fig. S2.6) caused them 
to be duplicated, while deleting hemizygous regions not represented in the array. Main 
results in this figure were generated by: NMVS, JLA. 
 

Investigation of systemic genomic instability 

 The remarkably high number of coincident rearrangements observed in JAY664’s 

genome suggested that they might not have accumulated sequentially or independently. 

Instead, a simpler scenario would be that the observed karyotype arose during a burst 

of systemic genomic instability in one or a few ancestor cells in the JAY664 lineage. If 

this model were correct, then the existence of a primary LOH event should increase the 

likelihood of existence of secondary LOH events, thus other rough colony isolates with a 

primary selected Chr12 LOH event should also carry a higher than expected number of 

unselected LOH events elsewhere in their genomes. 

 To test this hypothesis, we initially analyzed 29 independent smooth clones 

derived from JAY270, all isolated after five transfer cycles in liquid culture without single 

cell bottlenecks (~57 cell generations; Methods). Since these clones were smooth, they 

should not carry LOH on Chr12, and indeed, PCR analysis confirmed that they were all 

heterozygous ACE2/ace2-A7 (data not shown). We performed PFGE to detect 

unselected chromosomal rearrangements in these isolates lacking a primary LOH 

event. No visible rearrangements were observed in any of the 29 smooth clones (Fig. 

S2.7) for chromosomes other than Chr12 (rDNA) and Chr8 (CUP1 tandem repeats). 
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This observation was corroborated by a second experiment in which we generated two 

independent mutation accumulation lineages of JAY270 that were cultured with 10 

single colony bottlenecks for a total of ~220 cell generations. PFGE analysis of smooth 

clones from intermediate and final points along the two lineages also showed no visible 

chromosome size polymorphisms (Fig S2.8). 

 The rate of mitotic crossover for the entire yeast genome has been estimated to 

be ~6.2 x 10-4 / cell / cell division (St. Charles and Petes 2013). Based on this value, we 

calculated that roughly one of the 29 smooth clones from the liquid growth regimen, and 

less than one of the two bottleneck lineages, should have had at least one LOH event. 

Although the PFGE approach can only detect a subset of structural chromosomal 

changes (interstitial events, LOH in the longer chromosomes and LOH in chromosomes 

without structural variation between homologs are not detectable), the lack of any visible 

chromosomal rearrangements in the smooth clones derived from these two experiments 

indicated that rearrangements were not abundant in JAY270 when a primary LOH event 

was not selected. 

 Next we performed a similar liquid growth without bottlenecking regimen 

analysis, this time plating ~1,000 cells after every passage cycle to identify rough 

colonies. Twenty independent spontaneous rough colonies were obtained relatively 

quickly using this approach. Eleven of them were isolated after ~43 or less cell 

generations, and only one of them was isolated after more than ~57 (JAY1127; ~85 

generations, Table S2.4). PCR analysis of the new rough clones showed that all were 

homozygous ace2-A7/ace2-A7 (data not shown). Combined with the original set of five 

(Fig. 2.2), a total of 25 independent rough colony isolates were analyzed by PFGE (Fig. 
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2.4 and Fig. S2.9). Strikingly, six of them showed at least one visible size polymorphism 

for chromosomes other than Chr12 and Chr8. This result showed that, despite its 

limitations, the PFGE approach was able to detect unselected chromosomal 

rearrangements in the rough clones, whereas none were seen among the smooth 

clones. This difference was especially notable since the rough clones were derived from 

fewer cell generations. 

 We then used WGS in order to quantify and characterize all LOH events present 

in the 25 rough colony isolates (Fig. 2.5). This analysis yielded detailed primary LOH 

tracts for Chr12 in all clones, and revealed a total of 27 unselected secondary LOH 

tracts. Based on the estimated rate of genome-wide mitotic crossover (St. Charles and 

Petes 2013), we calculated that only one clone out of the 25 should have had one 

unselected LOH event, in addition to the selected event spanning the ACE2 locus (6.2 x 

10-4 crossovers/genome x 57 cell divisions x 25 clones). Note that this was an inflated 

estimate given that most rough clones analyzed were selected after 43 or less cell 

divisions (Table S2.4), and importantly, LOH is only detectable at the ~60% of the 

JAY270 genome that is heterozygous (Fig. S2.1). In addition to the high number of total 

secondary LOH events detected, the distribution of secondary LOH events per clone 

was also biased. Out of the thirteen clones with unselected LOH, four had two 

unselected events, three had three unselected events, and finally, one outlier (JAY664) 

had an astounding seven unselected LOH events. The probability of randomly 

identifying just one rough clone containing only two unselected LOH events is smaller 

than 10-5. The probability of having the distribution we actually found is far lower. 
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Therefore, our WGS analysis indicated the occurrence of systemic bursts of genomic 

instability leading to LOH. 

 

 

Figure 0.5. Genome-wide map of LOH tracts in spontaneous rough colony 
isolates. 
The top horizontal line is the linear end-to-end depiction of the 16 S. cerevisiae 
chromosomes in JAY270 with HetSNPs represented as paternal (blue) and maternal 
(red) markers. Chromosome numbers are indicated above, and the position of the 
ACE2 locus is shown. Each horizontal line below corresponds to the genomes of the 25 
spontaneous rough colony isolates sequenced. Only the HetSNPs that were 
homozygous P/P or M/M are shown (heterozygous markers are omitted to emphasize 
visualization of the LOH tracts). As expected from selection for the rough colony 
morphology, all clones were homozygous for the maternal ace2-A7 allele (red). In 
addition, 27 unselected M/M or P/P LOH tracts were detected elsewhere in the 
genomes of the rough colony isolates. Plots were generated to scale in Python 2.7 
using the matplotlib package and a custom script. For size reference, Chr1 is 230 Kb. 
Main results in this figure were generated by: NMVS, JLA, EPM, PAM, VPA, PC, KTN. 
 

ACE2
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 The detailed maps of Chr12 LOH in the 25 sequenced rough clones (Fig. S2.6) 

showed that 20 tracts were unidirectional, continuous and extended from a position 

between CEN12 and the rDNA cluster. In five cases, the tracts had complex 

discontinuities and some even showed limited LOH for the paternal allele near the 

breakpoint. Among the unselected LOH tracts (Fig. 2.5), 15 were interstitial (median 

size 5.0 Kb) and 12 were terminal (median size 232.1 Kb) consistent with gene 

conversion and mitotic crossover mechanisms, respectively. We also identified 15 de 

novo point mutations among the sequenced clones. However, the small overall number 

detected was not sufficient to draw conclusions regarding nucleotide mutational 

signatures. The full WGS LOH and point mutation analyses in the rough clones is 

presented in Table S2.5. 

 

Validation and quantification of coincident LOH 

 The discovery of multiple LOH tracts in spontaneous rough colonies suggested 

the possibility that allelic mitotic recombination, and chromosomal rearrangements in 

general, may arise and accumulate during systemic genomic instability episodes, rather 

than independently of each other. Alternatively, it could also be possible that 

homozygosity at or near the Chr12 ACE2 locus itself could destabilize the genome, thus 

increasing the likelihood of secondary rearrangements. We conducted a new round of 

experiments to validate and quantify the observation of systemic genomic instability, 

and did so under conditions that removed any possible influence from Chr12 status. 

 Earlier in the study we used diploid strains individually hemizygous for either the 

counter selectable CORE2 cassette or CAN1 gene, and measured the rate of LOH at 
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the individual loci by selection for resistance to 5-FOA or canavanine independently. We 

used the same approach to measure rates of coincident double LOH in diploids that 

were hemizygous for both CORE2 and CAN1, and selected for simultaneous resistance 

to 5-FOA plus canavanine. If the occurrence of LOH at a CORE2 insertion locus were 

completely independent from the occurrence of LOH at the CAN1 locus, then the rate of 

LOH at both loci should be equal to the multiplicative product of the two individual rates. 

This independent mutation model predicts very low double LOH rates, in the 10-9 

/cell/division range (Fig.2.3A-C, red bars). The double LOH rates that we measured 

experimentally were 30-100 fold higher than expected. This was observed in two 

different strain backgrounds (JAY270 and CG379) for double LOH events at two 

different pairs of genomic regions (Chr4 and Chr5; Chr13 and Chr5), in all cases with 

Chr12 remaining unaltered. 

 Finally, we considered the possibility that the systemic genomic instability 

mechanism causing the high rates of double LOH could result not from a mitotic 

process, but instead could be due to sporadic and transient initiation of meiotic 

recombination in a few cells in the population followed by return-to-growth (RTG) 

(Laureau et al. 2016). Unlike mitotic recombination, which is sporadic and unscheduled, 

meiotic recombination is initiated as a well coordinated systemic and genome wide 

event (Keeney, Lange, and Mohibullah 2014). To distinguish between these 

mechanisms, we repeated the double LOH measurements in diploids deleted for the 

MATa locus. These MATa/matD diploids behaved essentially like haploids. They 

efficiently mated to a MATa haploid tester strain and lost the ability to sporulate (data 

not shown). Since MATa/matD diploids are unable to activate the meiotic developmental 
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program, they are also unable initiate meiotic recombination. The rate of single LOH in 

the MATa/matD diploids was similar or slightly lower than the rate in the MATa/MATa 

diploids, consistently with earlier studies (Pâques and Haber 1999). Importantly, the 

observed rate of double LOH was ~50 fold higher than expected if the single LOH 

events were initiated independently of each other. Taken together, our results support 

the existence of a mitotic systemic genomic instability (mitSGI) process in yeast cells, 

which is independent and qualitatively different from sporadic initiation of meiosis and 

RTG. 

 

Discussion 

Rough colony phenotype and mutation in ACE2 

 We showed that a colony morphology transition in JAY270 resulted from an LOH 

event at a region of Chr12 heterozygous for a mutation in the ACE2 gene. This gene 

encodes a transcription factor that controls the expression of genes involved in septum 

destruction and mother-daughter cell separation (Weiss 2012). The ace2-A7 -1 

frameshift allele found in JAY270 leads to a premature stop codon resulting in a 

truncated, likely inactive, protein that lacks three zinc finger domains and a nuclear 

localization sequence (McBride, Yu, and Stillman 1999). Interestingly, another 

heterozygous diploid industrial strain, FostersB used in brewing (Borneman et al. 2011), 

has a +1 frameshift variant in the same adenine homopolymer region of ACE2 (ace2-A9 

allele). The ACE2 gene has also been shown to be involved in the transition between 

the yeast and hyphal forms of C. albicans, an important trait for pathogenesis. In that 

context, inactivation of the ACE2 ortholog contributes to the formation of cell filaments 
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during hyphal growth, and an alternative isoform of the Ace2 protein helps prevent 

inappropriate activation of cell detachment from hyphae (Calderón-Noreña et al. 2015). 

In S. cerevisiae, and in particular in JAY270 during bioethanol production, it is not 

known if or how the switch between dispersed to aggregated cell growth states has an 

effect on fitness. However, it is possible that JAY270’s heterozygous ACE2/ace-A7 

genotype may offer an advantage by giving the population the ability to quickly access 

the aggregated state through LOH. This may provide a short-term adaptive solution as 

cells encounter various environmental challenges during industrial fermentation (Basso 

et al. 2008). Individuals in the population could then return to the dispersed state 

through expansion or contraction of the adenine run (Tran et al. 1997), or through 

sporulation and mating to an ACE2 haploid. 

 

mitSGI and precedents of coincident recombination 

 Beyond the genetic characterization of the rough colony phenotype in JAY270, 

this study allowed us to uncover the mitSGI phenomenon through which multiple LOH 

events can accumulate in a cell lineage. Using PFGE, array-CGH and WGS, we 

determined that yeast clones carrying a primary selected LOH tract at Chr12 were more 

likely than expected to carry unselected LOH tracts. We also showed in quantitative 

LOH assays that combinations of double LOH at Chr5 and Chr4 or Chr13, occurred at 

rates 30-100 fold higher than expected if single LOH events occurred independently. 

We interpret these results as evidence for the occurrence of bursts of genomic 

instability leading to multiple LOH events over one or few mitotic cell generations. 
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 Spontaneous mitotic recombination events like the ones described here are 

triggered by local DNA lesions and/or replication fork collapse episodes, which then 

lead to chromosomal breakage and allelic HR repair using the homolog as template 

(Symington, Rothstein, and Lisby 2014). Such precursor lesions are thought to occur 

randomly in vegetative cells, both spatially and temporally, therefore mitotic 

recombination events involving different chromosomes should not be coincident. In 

contrast, meiotic recombination is known to be a systemic genetic variation process, 

since it occurs simultaneously throughout the genome and involves intricate 

coordination between generation and repair of genome-wide double strand breaks 

(Keeney, Lange, and Mohibullah 2014). 

 While our study is, to our knowledge, the first to describe the mitSGI 

phenomenon through the lens of high-resolution genome-wide analytical methods, there 

have been sparse reports of elevated coincident mitotic recombination in yeasts as well 

as in mammalian cells dating back decades (Fogel and Hurst 1963; Hurst and Fogel 

1964; Minet, Grossenbacher, and Thuriaux 1980; Golin and Tampe 1988; Freeman and 

Hoffmann 2007; Forche et al. 2009; C. Y. Li, Yandell, and Little 1994; Grygoryev et al. 

2014). The typical experimental design in those cases was to select clones for carrying 

a recombination event at a primary locus, and then screening the resulting clones for 

the occurrence of secondary unselected recombination at one or a limited number of 

unlinked loci. The same intriguing observation, shared in all cases, was a frequency of 

coincident recombination that was higher than that predicted assuming the individual 

events occurred independently. 
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 In some of the yeast studies, the high coincident recombination rates were 

interpreted as being derived from a small number of cells within the replicating 

population that spuriously entered the meiotic developmental program, or transiently 

experienced a “para-meiotic” state, but reverted back to mitotic growth (Hurst and Fogel 

1964; Minet, Grossenbacher, and Thuriaux 1980). A recent study specifically 

characterized this type of return-to-growth (RTG) event and the genome-wide 

recombination outcomes associated with it (Laureau et al. 2016). The authors often 

detected a large number of LOH tracts per clone (minimum of 5, average of ~30, and up 

to 87), indicating that the RTG induction leads to abundant and widespread 

recombination. Another notable finding was that while interstitial LOH (gene conversion-

like; GC) tracts were frequent, their sizes were relatively constrained (2.3 Kb on 

average). This measurement is notable because it is consistent with GC tract sizes 

measured in haploids derived from complete meiotic divisions; ~2 Kb median size 

(Mancera et al. 2008). In contrast, GC tracts associated with mitotic recombination tend 

to be significantly longer, approximately 5-6 Kb median size (St Charles and Petes 

2013). This variation in typical GC tract sizes is likely a reflection of subtle mechanistic 

differences in the processing of HR intermediates between meiotic and mitotic cells. 

 Despite the possibility discussed above, there are several reports of high 

coincident recombination in proliferating cells in which the induction of a full meiotic 

cycle, RTG or para-meiosis were either unlikely or could be ruled out entirely. One study 

in S. cerevisiae specifically measured the formation of spurious haploids from mitotic 

diploid cultures displaying high coincident intragenic recombination at unlinked pairs of 

heteroalleles (Freeman and Hoffmann 2007). The authors found that while haploids did 
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form in their cultures, the frequency was far below that needed to influence the 

formation of double recombinants, thus concluding that a low level of cryptic meiosis 

was not a likely contributor. In addition, one of the seminal studies (Forche et al. 2009) 

of LOH in C. albicans (a species devoid of a conventional sexual cycle (D’Enfert et al. 

2017)), reported data that closely parallel our own observations. First, the authors 

selected clones for the presence of a primary LOH event at the GAL1 locus on 

chromosome 1. Then, using a low resolution SNP-array platform, they detected frequent 

unselected secondary LOH tracts among clones carrying the primary event, but rarely in 

control clones still heterozygous at GAL1. In addition, selection for LOH at GAL1 was 

associated with the emergence of altered colony morphology phenotypes, presumably 

derived from rearrangements elsewhere in the genome. Accordingly, clones displaying 

altered morphology were enriched for the presence of unselected LOH tracts when 

compared to clones with normal morphology. 

 Another important pair of precedents of mitSGI observations comes from 

experiments conducted in mammalian systems. These used either human TK6 

lymphoblastoid cells in culture (C. Y. Li, Yandell, and Little 1994), or mouse kidney cells 

in vivo and in culture (Grygoryev et al. 2014). In both cases, the starting cells were 

heterozygous for mutations at the counter-selectable markers, TK and Aprt, 

respectively, enabling the selection of clones carrying a primary LOH event at those 

loci. Subsequently, the presence of secondary LOH tracts was assessed at roughly a 

dozen loci elsewhere in the human or mouse genomes. The two studies found that 

secondary LOH was more frequent in clones selected for carrying the primary LOH 

event than in controls clones that remained heterozygous. These studies demonstrated 
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that mitSGI also exists in metazoans, and can be detected in cells that are exclusively 

mitotic, thus ruling out a contribution from meiotic recombination, at least in these 

contexts. 

 The studies outlined above suggest that cryptic initiation of meiosis in a small 

number of cells can in some cases lead to systemic genomic instability, however, we 

favor the interpretation that the events analyzed in our study originated primarily from 

bona fide mitotic cells. The recent work by Laureau et al. clearly defined the features of 

systemic LOH caused by meiotic initiation followed by RTG. The pattern we detected in 

our study was different, and instead was consistent with mitotic patterns. The number of 

unselected interstitial LOH (GC) tracts per clone we detected was small (typically 1 or 2) 

and their sizes were long (median 5.0 Kb). This was reinforced by the observation that 

MATa/matD diploids, incapable of entering the meiotic developmental program, 

continued to display double LOH rates that were far higher than expected from 

independent events. 

 

mitSGI-like observations in human disease 

 In addition to the experimental examples above, our results also resemble recent 

reports of bursts of mitotic genomic instability in humans during cancer genome 

evolution and early development. Specifically, genome-wide copy number profiling of 

thousands of individual cells isolated from tumors in 12 patients with triple-negative 

breast cancer revealed that a large number of CNAs were acquired within a short period 

of time at the early stages of tumor development (Gao et al. 2016). Most of these CNAs 

were shared between several cells from a same tumor, suggesting the occurrence of a 
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burst of genomic instability in one or few initiating cells followed by a long period of 

stable clonal expansion. Although the study had power to detect gradual accumulation 

of mutations, no clones with intermediate CNA profiles were identified, suggesting a 

punctuated model of mutation accumulation.  

 Another pertinent parallel is the recent analysis of patients with genomic 

disorders that carry multiple de novo constitutional CNVs (MdnCNVs; (Liu et al. 2017)). 

Typically in those patients, only one of the structural variants was the primary event 

causing the symptoms associated with the disorder. The additional CNVs were 

secondary, occurred at unrelated regions, and apparently formed during a short burst of 

genomic instability at some point in the perizygotic time interval. The changes then 

propagated stably during development to be found in all cells in the patients. Taken 

together, these results suggest that mitSGI processes may be universal and may play 

an important role in human disease development. 

 

Possible mechanisms underlying mitSGI 

 Our results so far suggest that mitSGI is not likely associated with initiation of 

meiotic recombination and RTG. However, the specific causes for the existence of a 

small subset of recombination-prone cells within a normal mitotic population remain to 

be determined. This phenomenon could well have multiple and distinct origins, however, 

we favor two non-exclusive mechanisms, related to cellular ageing and stochastic gene 

expression. These two models are attractive because they are transient in nature, which 

would support stable transmission of rearranged genomic structures after the systemic 

vulnerability time window has passed.  
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 The first scenario is that clones carrying multiple unselected LOH events 

originated from replicatively old mother cells. This model stems from the observation of 

a marked increase in the rate of LOH in daughter yeast cells budded from mothers that 

had undergone ~25 cell divisions (McMurray and Gottschling 2003), relatively old within 

the context of a maximum S. cerevisiae replicative lifespan of ~40. Subsequent work 

from the same group showed that this increase in nuclear genomic instability was 

strongly correlated with the initial appearance of mitochondrial DNA loss and/or damage 

in the old mother cells (Veatch et al. 2009). In our study, however, all of the 

spontaneous rough colony isolates analyzed retained normal respiratory activity (all 

were non-petite; grew on non-fermentable carbon sources), so they must have had 

integral mitochondrial genomes. They also did not show signs of continual genomic 

instability. Therefore, if replicative aging were an underlying factor in mitSGI, it would be 

through a pathway that does not involve loss of mitochondrial function. 

 Another explanation for a subpopulation of hyper-recombinogenic cells involves 

heterogeneities that exist even within an isogenic population. Specifically, cell-to-cell 

variation (i.e. noise) in gene expression has been reported in organisms ranging from 

prokaryotes, to yeast, to humans (Raj and van Oudenaarden 2008). It is plausible that 

stochastic variation in the expression of a broad class of genes involved in genome 

stability could cause specific protein levels to drop below those required for optimal 

function. A recent comprehensive genome stability network analysis identified 182 

genes involved in suppression of gross chromosomal rearrangements (Putnam et al. 

2016), and an earlier genetic screen identified 61 genes specifically involved in 

suppressing LOH (Andersen et al. 2008). In this scenario, rare individual cells that fail to 
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adequately express any of these genes could effectively behave as null mutants for a 

short period. Some of these genes act cooperatively, therefore concomitant loss of 

activity causes extreme levels of genomic instability. For example, double knockouts for 

TEL1 and MEC1, encoding critically important DNA damage response proteins 

(orthologs of mammalian ATM and ATR, respectively), show marked increase in mitotic 

genomic instability (Craven et al. 2002), often accumulating multiple genome 

rearrangements (Serero et al. 2014). A similar extreme phenotype might be expected in 

a wild type cell that by chance simultaneously had a critically low level of transcription of 

two genome stability genes. Likewise, overexpression of single genes encoding a 

subunit of a genome stability multi-protein complex could lead to a dominant negative 

phenotype that temporarily impairs function. Importantly, the hyper-recombinogenic 

state of these individuals would be completely reversible once the descendant cells 

returned to the gene expression levels typical of most individuals in the population. This 

mechanism could explain the observed stable clonal expansion that followed mitSGI in 

our spontaneous rough colony clones, as well as in the recent in vivo human studies 

(Gao et al. 2016; Liu et al. 2017). 

 The analysis of spontaneous rough morphology clones provided unprecedented 

detailed information about the nature and frequency of secondary recombination events 

resulting from the mitSGI process. Our study also provides a unifying context for the 

interpretation of classic and recent reports of coincident recombination in yeasts, in 

mammalian experimental systems, and in human disease. The combination of whole 

genome analyses and the double LOH selection approach described here offer a 
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powerful experimental platform to further dissect the core mechanisms responsible for 

the mitSGI phenomenon. 

 

Materials and Methods 

Growth media 

Yeast cells were grown in YPD (20 g/L glucose, 20 g/L peptone, 10 g/L yeast 

extract, 20 g/L bacteriological agar for solid media) and synthetic media (20 g/L glucose, 

5 g/L ammonium sulfate, 1.7 g/L yeast nitrogen base without aminoacids, 1.4 g/L 

complete drop-out mix, 20 g/L bacteriological agar). Transformants carrying the natMX 

or hphMX cassettes were selected in YPD media supplemented with 200 mg/L of 

nourseothricin (Nat) or 300 mg/L of hygromicin, respectively. URA3 transformants were 

selected in uracil drop-out synthetic media. Counter-selection against URA3 and CAN1 

were performed in synthetic media supplemented with 1g/L of 5-Fluoroorotic Acid (5-

FOA) and 60 ml/L of canavanine in arginine drop-out, respectively.  

 

Yeast genetic backgrounds and procedures 

Saccharomyces cerevisiae strains used in this study descended from either the 

JAY270 or CG379 strain backgrounds (Table S2.1). JAY270 is a heterothallic diploid 

single colony isolate derived from the industrial bioethanol strain PE-2 (Argueso et al. 

2009). CG379 diploid is related to the S288c laboratory strain background (Morrison et 

al. 1991; Argueso et al. 2008). Standard procedures for yeast transformation, crossing 

and sporulation were followed (Ausubel et al. 2003).  
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Isolation of spontaneous rough colonies derived from JAY270 

The five spontaneous rough colony isolates described early in the study were 

identified while visually inspecting colonies growing on YPD agar derived from plating 

aliquots of liquid cultures of JAY270, or JAY270 isogenic diploids. In some cases, the 

liquid cultures had been passaged more than once, although the precise number of 

growth cycles is not known. 

The rough colonies obtained later in the study were derived from the following 

controlled procedure. JAY270 cells were refreshed from a frozen stock, streaked to 

single colonies in YPD plates and incubated for 48 hours at 30oC. 22 independent 

colonies were inoculated into 5 ml of liquid YPD cultures and grown for 24 hours, 

reaching saturation. At that point, a dilution was plated in YPD agar to screen for the 

presence of rough colonies, and a 50 µl aliquot (1% of cell population) was transferred 

to fresh 5 ml liquid medium to start the next growth cycle. Whenever a rough colony was 

identified on the YPD plates, the isolate was frozen for further analysis and its 

respective downstream liquid culture lineage was discarded. Information on the number 

of cycles necessary for the identification of spontaneous rough colony isolates for each 

culture is provided in Table S2.4. A similar procedure was used for the selection of 

control smooth isolates, but with a predetermined growth regimen. Liquid cultures were 

started from smooth single colonies and passaged for 5 consecutive liquid YPD growth 

cycles, at which point a dilution was plated in solid YPD media and one random smooth 

colony per culture was frozen for further analysis. 
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Allele replacement and complementation tests 

A two-step allele replacement plasmid was constructed by cloning a segment of 

the wild type ACE2 allele containing the 8-adenine homopolymer into the URA3 

pRS306 integrative vector (Sikorski and Hieter 1989). First, pRS306 was digested with 

BamHI and KpnI and ligated to a BglII- and KpnI-digested segment of the wild type 

ACE2 allele (PCR amplified from JAY289 genomic DNA using primers JAO904 and 

JAO905). The resulting plasmid, pAR1, was linearized with EcoRI and transformed into 

JAY291 and JAY292 haploids (both mutant ace2-A7). Pop-in Ura+ integration 

transformants were selected, and pop-out events were then selected for resistance to 5-

FOA. 5-FOA resistant candidates were screened by PCR and Sanger sequencing to 

verify the presence of the wild type ACE2 allele. This procedure resulted in the ACE2 

strains JAY1051 and JAY1039, isogenic to JAY291 and JAY292 respectively. 

Complementation tests using these strains were performed as shown in Fig. S2.2D. 

 

Construction of strains used in single and double LOH assays 

The JAY270 strains used in the LOH assays were constructed from a 

homozygous ura3/ura3 derivative of JAY270 (JAY585; gift from F. Galzerani). The 

CORE2 cassette containing the Kluveromyces lactis URA3 gene, the S. cerevisiae 

URA3 gene and the kanMX geneticin resistance marker (KlURA3-ScURA3-KanMX4 

CORE2) was amplified from pJA40 (Zhang et al. 2013) with primers targeting three 

different genomic regions (Table S2.2). Primers JAO1074 and JAO1075 were used for 

targeted integration proximal to the ACE2 locus in Chr12. Integration in the maternal or 

paternal homolog was checked by PCR and Sanger genotyping of linked HetSNPs. 
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Primers JAO506 and JAO507 were used for integration of CORE2 distal to SSF2 in 

Chr4, and JAO502 and JAO503 for integration proximal to ADH6 in Chr13. 

Transformation of JAY585 with each cassette resulted in JAY865 

(SSF2/SSF2::CORE2) and JAY868 (ADH6/ADH6::CORE2), which were used in the 

single 5-FOAR LOH assays. Subsequently, one native copy of the CAN1 gene was 

deleted from each of these strains using the natMX cassette. The cassette was 

amplified from pAG25 (Goldstein and McCusker 1999) using primers JAO271 and 

JAO272 and transformed into JAY865 and JAY868, resulting in JAY1804 and JAY1812, 

respectively. These strains were used for CanR single LOH assays and for CanR - 5-

FOAR double LOH assays. The same procedure was followed to build LOH assay 

strains in the CG379 background, resulting in strains JAY861 and JAY859 (5-FOAR 

single LOH assays), and strains JAY1567 and JAY1569 (CanR single LOH assays and 

CanR - 5-FOAR double LOH assays). We further manipulated JAY1567 and JAY1569 to 

create MATa/matD isogenic derivatives. The hphMX cassette was amplified from 

pAG32 (Goldstein and McCusker 1999) using the primers JAO1440 and JAO1441. This 

cassette was used to replace a segment of the MATa allele in JAY1567 and JAY1569, 

resulting in JAY1808 and JAY1809 respectively. 

 

Quantitative LOH rate assays 

Yeast cells were streaked to single colonies on solid YPD medium and incubated 

at 30°C for two days. Single colonies were inoculated into 5 ml liquid YPD, and 

incubated for 24 hours at 30o C in a rotating drum. The cultures were serially diluted and 

plated on YPD (permissive), and 5-FOA (selective) and/or YPD plus canavanine 
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(selective). Colonies were counted after 2 days of growth on permissive and 4 days on 

selective plates, and colony counts were used to calculate recombination rates and 95% 

confidence intervals using the Lea & Coulson method of the median within the FALCOR 

web application [http://www.keshavsingh.org/protocols/FALCOR.html] ] (Lea and 

Coulson 1949; Hall et al. 2009). Statistical analyses of pairwise comparisons between 

recombination rates were performed using a two-sided nonparametric Mann Whitney 

test in GraphPad Prism software. 

 

Genome Sequencing Analyses 

The genomes of the JAY270 parent strain and of 56 haploids derived from 14 

complete JAY270 tetrads were sequenced using the Illumina short read whole genome 

sequencing platform. We also sequenced the genomes of 25 rough colony isolates 

derived from JAY270. The sequencing reads were used in the four analyses described 

below. Genome sequencing data associated with this study is available in the Sequence 

Read Archive (SRA) database under study number SRP082524. 

 

JAY270 draft HetSNP map construction 

We developed a map of heterozygous SNPs in JAY270 using a high stringency 

approach that would identify only high confidence sites. This was a conservative 

approach that is therefore it is likely to be missing some loci, but it is unlike to contain 

any false calls. We took the reads from 44 haploid spores from 11 complete JAY270 

tetrads and applied two parallel analyses. These 11 tetrads had been sequenced at the 
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same time and had uniform coverage and read lengths. The data from the additional 3 

tetrads were not as homogeneous so they were not used for this aspect of the work. 

In the first analysis we combined all haploid reads to simulate an ultra deep 

coverage sequencing dataset from the JAY270 diploid. The data from each haploid was 

first processed to include only high quality reads (Q>30), and the ends were trimmed to 

obtain 90 nt reads. Next we determined the haploid with the lowest number of reads 

within each tetrad. All the reads from this haploid and an equal number of random reads 

from each of its three sibling haploids were selected for the next phase. This ensured an 

equal number of reads contributed by each haploid within each tetrad. Finally, we 

combined all processed and intra-tetrad number-adjusted reads from the 44 haploids to 

generate the simulated JAY270 sequencing dataset. This set was composed of ~129 

million reads for a mean depth coverage of ~800 reads per base. We aligned these 

reads to the S. cerevisiae S288c reference genome and independently called out SNPs 

using GATK (McKenna et al. 2010) and Samtools (H. Li et al. 2009), limiting the 

analysis to SNPs with coverage higher than 200 and allele frequency between 0.4 and 

0.6. We then obtained a list of 13,594 candidate HetSNPs found by both approaches, all 

had allele frequencies close to 0.5. 

 For the second analysis we aligned the reads from each individual haploid to the 

reference genome and called the SNPs using GATK (McKenna et al. 2010), identifying 

18,201 sites. Next we aligned the calls from each group of four haploids belonging to 

the same tetrad and determined the segregation ratio for each of the SNPs within each 

tetrad. 
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We then took the 13,075 sites that were discovered in both approaches and 

filtered to improve the confidence of the heterozygous calls. We retained only the sites 

that had a Mendelian 2:2 segregation in at least 9 of the 11 tetrads for sites located in 

central regions of chromosomes (defined by the first and last genes annotated as 

essential in SGD). We used a stricter filter of all 11 tetrads displaying 2:2 for sites 

located at distal regions to avoid confounding effects from sites present at subtelomeric 

repeated gene families. The segregation filtering resulted in 12,197 sites, which we then 

narrowed down manually (mostly by removing subtelomeric sites) to arrive at the final 

list of 12,023 high confidence HetSNPs shown in Fig S2.1. Note that this draft list is 

limited only to allelic sites that have one nucleotide that matches the S288c reference 

and the other that is a variant present in JAY270. It does not contain sites in which two 

nucleotide variants are present at the same site, nor short nucleotide insertion or 

deletions (with the exception of ace2-A7; Chr12_405,714), nor larger structural variants. 

A comprehensive genome assembly of the JAY270 diploid genome will be described 

elsewhere. 

 

HetSNP phasing. 

The availability of genome sequencing data from multiple complete tetrads 

allowed us to deduce the phasing association between the JAY270 HetSNPs. To do so, 

we initially arbitrarily assigned the S288c reference bases to one phased haplotype and 

all alternative bases to the other haplotype. Next we aligned the genotypes of 56 

haploids along the HetSNP list and determined the positions of crossover events 

between the two haplotypes within each of the respective 14 tetrads. Considering that 
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meiotic crossovers are very unlikely to occur at exactly the same position in different 

tetrads, we could make corrections to the arbitrary phasing to minimize the number of 

crossovers. In most cases, apparent 4-chromatid double crossovers were observed at 

the same interval in all tetrads, indicating an error in the arbitrary phasing. A simple 

correction at those sites resulted in the much more likely scenario of no crossovers at 

that interval in any of tetrads. In cases where actual crossovers occurred in one or a few 

of the tetrads, they typically were 2-chromatid single crossover events that we could 

also clearly identify and correct the arbitrary phasing accordingly to minimize the 

number of crossovers. We did the analysis and phasing corrections manually over three 

sequential iterations arriving at the phased HetSNP list. For most chromosomes where 

the physical distance between consecutive HetSNPs was short we were able to 

unambiguously deduce a single linkage group. In a few cases, either at long intervals 

delimited by distant consecutive HetSNPs, or sites of possible meiotic recombination 

hot spots, there was ambiguity in the phase calling, so we broke down the respective 

chromosome in multiple linkage groups. Overall for the 15 chromosomes with 

heterozygosity in them, 10 yielded a single linkage group, 4 had two groups, and 1 had 

three groups. No phasing could be done for Chr01 since it was fully homozygous. Once 

the phasing was completed and the haplotypes were defined, we arbitrarily named one 

of them maternal (M) and the other paternal (P) to facilitate the subsequent LOH tract 

analyses. 
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Detection of LOH tracts 

LOH tracts were detected using CLC genomics workbench software to map 

sequencing reads from the JAY270 parent strain and from 25 spontaneous rough 

colony isolates on to the S288c reference, and detecting SNPs across the whole 

genome. Low stringency detection parameters were set such that SNPs present at 

frequencies higher than 0.05 were identified. We then interrogated the 12,023 loci in the 

JAY270 HetSNP list, determining the nucleotides present at those positions and their 

relative frequency. When no SNPs were detected at those specific positions, the 

genotype was called as homozygous for the reference nucleotide. When the alternative 

nucleotide was detected at higher than 0.95 the genotype was called homozygous for 

the alternative nucleotide. Alternative nucleotides detected at frequencies between 0.1 

and 0.9 resulted in a heterozygous call for that locus. After the genotypes were called 

they were then converted to the respective haplotype designations as MAMA/MAMA 

and PAPA/PAPA homozygous, and MAMA/PAPA heterozygous. All 12,023 loci were 

called as heterozygous from the analysis of JAY270 reads. LOH tract sizes were 

estimated by calculating the positions of breakpoints to the right and to the left, and 

subtracting the left side position from the right side. Breakpoint positions were 

calculated as the average position between the two HetSNPs that defined the transition 

from heterozygosis to homozygosis. For terminal LOH tracts the coordinates of the left 

or right telomeres were used as the breakpoint positions. LOH tracts were called even if 

they included a homozygous at a single marker HetSNP. Six such cases were 

identified. They were all interstitial and had median tract size was estimated as 5.4 Kb, 

consistent with gene conversion events at regions of low marker density. A subset of 
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these single marker LOH calls were independently validated by PCR and Sanger 

sequencing. The median size of interstitial LOH tracts involving two or more markers 

was very similar: 4.8 Kb. 

 

Mapping of the ace2-A7 mutation 

The position of the mutation responsible for the rough colony phenotype was 

determined by aligning the genotype calls at the 12,023 HetSNP sites for the 12 

haploids used in the crosses in Fig. 2.1I. Haploids were grouped according to whether 

they were inferred from the crossing phenotypic outcomes to carry the wild type or 

mutant allele. We filtered the genotype calls to identify genomic segments where all 

members of the wild type group had the same genotype, and conversely all members of 

the mutant group had the other genotype. Only the regions on Chr11 and Chr12 shown 

in Fig. S2.2 satisfied this strict co-segregation criterion. The ACE2 gene was identified 

within the Chr12 region through analysis of its functional genomic annotation. 

 

Detection of de novo point mutations 

A list of de novo point mutations in the genome of the 25 rough colony isolates 

was obtained through multiple sample genotype calling of the JAY270 genome with the 

sequencing data of each clone using GATK (McKenna et al. 2010) haplotype caller. 

Reference and alternative allele counts were used for statistical analysis to determine 

the significance of the allelic variation for each position identified (Fisher test p<0.0001). 

All statistically significant mutations were further examined for strand bias using the 

Fisher Score and variants with FS>50 were filtered out of the list. We further refined the 
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list by excluding variants with total read count <200 for JAY270 and <30 for the rough 

colony derivatives. Mutations were further filtered based on gene start and end 

positions. Because the Fisher test has low accuracy when alternative allele frequency is 

low, we filtered the list for positions with alternate allele frequency >0.2. We compared 

these results to a list of mutations called using both Samtools (H. Li et al. 2009) and 

GATK (McKenna et al. 2010). Mutations shared across these lists were then manually 

validated by inspection of the read mappings  to the reference genome (using CLC 

Genomics Workbench) and resulted in the final list of de novo point mutations shown in 

Table S2.5. Because of the very stringent parameters used, this list is unlikely to contain 

false positives, but some true mutations could have been missed. 

 

Genotyping specific HetSNPs through PCR-RFLP and molecular 

karyotyping 

Genotyping was performed by PCR-amplification of regions containing the 

HetSNPs followed by restriction digestion and agarose gel analysis fragment length 

polymorphisms. In cases of markers where the HetSNPs were not associated with an 

RFPL, PCR products were Sanger-sequenced. A complete list of the HetSNPs 

coordinates, primers and restriction enzymes used is provided in Table S2.3. Pulsed-

Field Gel Electrophoresis (PFGE) was used to identify the chromosomal length 

polymorphisms in rough and smooth, and array-CGH was used to evaluate copy 

number variation in JAY664 relative to the JAY270 parent strain. PFGE and array-CGH 

analyses were performed as described previously (Zhang et al. 2013). 
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CHAPTER III2 
 
 
 

Characterization of phenotypic consequences of heterozygosity in yeast 

 

Summary 

 A positive correlation between genomic heterozygosity and phenotype has been 

described for many species, a phenomenon known as heterosis. In the budding yeast 

Saccharomyces cerevisiae, abundant genomic heterozygosity is frequently found in wild 

strains isolated from clinical and industrial environments. However, this genomic 

configuration can be quickly lost in yeast through mitotic recombination, raising the 

question of how heterozygosis is preserved over time. Here, we hypothesize that 

natural selection against the negative consequences of loss-of-heterozygosis may 

contribute to the long-term maintenance of this genome configuration in natural hybrid 

yeasts. We investigated this possibility in the bioethanol strain PE-2/JAY270, whose 

genome is characterized by abundant structural and nucleotide polymorphisms between 

most pairs of homologous chromosomes. This strain is widely adopted in distilleries for 

its ability to thrive under the harsh biotic and abiotic stresses. To explore how changes 

in genomic heterozygosity influence some of the desirable traits of PE-2/JAY270, we 

employed two approaches, inbreeding and uniparental disomy (UPD) to reduce the 
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abundance and distribution of heterozygous alleles in its genome. The new unique 

combinations of homozygous alleles in each inbred strain resulted in a wide phenotypic 

variation under at least two assays, heat stress tolerance and growth kinetics. Genome-

wide association analyses allowed the identification of broad genomic regions where 

genetic polymorphisms potentially impacted those two traits. Interestingly, there was 

little to no overlap between the loci associated with each trait. Secondly, we employed 

an approach to induce bidirectional UPD of three different pairs of chromosomes (Chr4, 

Chr14 or Chr15), while heterozygosity was conserved elsewhere in the genome. In 

each case UPD was associated to some level of phenotypic alteration. Our results 

suggest that heterozygosity underlies at least two traits in PE-2/JAY270 - heat tolerance 

and competitive growth and this relationship may have a significant contribution in 

supporting the maintenance of PE-2/JAY270’s complex genome architecture over time. 

In addition, the experimental pipeline employed here may contribute for the identification 

of alleles of interest for industrial and clinical applications in this and other wild yeast 

strains. 

 

Introduction  

 One of the positive impacts of genetic diversity is manifested in many species in 

the form of the heterosis phenomenon, in which highly heterozygous hybrids display 

increased vigor phenotype in comparison to their homozygous parents (Hochholdinger 

and Hoecker 2007; Chen 2013a). Accordingly, genetic breeding programs have 

traditionally taken advantage of heterosis to generate more robust and productive plant 

crops and livestock (Bittante, Gallo, and Montobbio 1993; Gama et al. 2013; 
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Schiermiester et al. 2015; Guo et al. 2014; Technow et al. 2014; Huang et al. 2015; 

Birchler, Yao, and Chudalayandi 2006; J.A. Birchler, H Yao, S. Chudalayandi, D. 

Vaiman 2010). In contrast, loss of genetic diversity, which results mainly from matings 

between related individuals, can often lead to negative effects. This phenomenon, 

known as inbreeding depression, is the conceptual opposite of heterosis and is usually 

associated with decreased vigor in plants and animals as well as recessive genetic 

disorders in humans (Charlesworth et al. 2009; Li et al. 2001; Hoffman et al. 2014; 

McQuillan et al. 2012; Fareed and Afzal 2014). 

 Three main non-mutually exclusive models have been proposed to explain how 

widespread genomic heterozygosity may lead to the superior traits seen in hybrids. The 

dominance model proposes that slightly deleterious recessive alleles present in each of 

the homozygous parents are complemented in the hybrid by favorable dominant alleles, 

thus cumulative complementation at multiple loci results in increased performance 

(Kaeppler 2012; Jones 1917; Xiao et al. 1995). The overdominance model suggests the 

existence of synergistic intra-locus inter-allele interactions that produce positive 

outcomes in the heterozygous state. Finally, the epistatic model explains heterosis by 

interactions between alleles of different loci, whose combined effects exceed the 

individual contributions of each locus (Kaeppler 2012; Wolf and Hallauer 1997; 

Melchinger et al. 2007; Minvielle 1987). The overdominance and epistatic models can 

accommodate cases where the hybrid performance is greater than the sum of the 

parents, a possibility not supported by the dominance model (Kaeppler 2012; Shull 

1911; Krieger, Lippman, and Zamir 2010). In addition, genome-wide effects of 

polyploidy, gene dosage and epigenetics have also been associated with manifestations 
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of heterosis (Schnable and Springer 2013; Chen 2013a; Groszmann et al. 2013; Ng, Lu, 

and Chen 2012). 

 Most specific examples of the models above, and our general understanding of 

how genomic heterozygosity influences phenotype, stem from studies conducted on 

complex eukaryotes, particularly crop plants. Despite steady progress, a refined 

analysis of the mechanisms underlying heterosis and inbreeding depression has proven 

to be quite challenging, in part due to the inherent genomic complexity of these subject 

organisms. It is therefore possible that analogous studies using simpler and genetically 

tractable model organisms, including yeasts, might offer a powerful alternative to help 

accelerate the pace of discovery in this field (Fry, Heinsohn, and Mackay 1998; Wang et 

al. 2015; Chen 2013b; R Shapira et al. 2014; Plech, de Visser, and Korona 2014; 

Rachel Shapira and David 2016). 

 In the budding yeast Saccharomyces cerevisiae, abundant heterozygosity 

appears to be prevalent in wild strains isolated, for example, from clinical and industrial 

settings (Magwene et al. 2011; Peter et al. 2018). One of the first heterozygous wild 

strains to have its genome characterized was PE-2/JAY270 (referred to here simply as 

JAY270) (Argueso et al. 2009). This strain was originally isolated as an aggressive wild 

contaminant of sugarcane-based batch-fed fermentations, but given its desirable growth 

and yield traits, it was selected for commercial propagation and distribution, and has 

been widely adopted by bioethanol distilleries as a primary inoculum for nearly two 

decades (Basso et al. 2008; Della-Bianca et al. 2013). The industrial environment where 

JAY270 thrives represents an interesting model for studying the dynamics of microbial 

populations. During each batch of fermentation, cells are exposed to significant and 
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variable abiotic and biotic stresses, including high osmotic pressure that transitions to 

ethanol toxicity, oxidative and heat stresses, and steady introduction of wild bacterial 

and fungal contaminants (Basso et al. 2008; Amorim et al. 2011). In addition, a peculiar 

feature of this system is that this complex microbial population is recycled twice daily 

from one batch to the next for up to eight consecutive months during the sugarcane 

harvest season. The combination of these factors creates a highly competitive 

environment, in which only the most adapted yeast strains can persist over time. 

JAY270’s defining characteristic is its extraordinary ability to out-compete external 

contaminants, dominating the microbial population in the distillery and thus ensuring 

stable and predictable operational conditions (Basso et al. 2008). 

 While its natural origins are unknown, JAY270 appears to be a wild hybrid that 

resulted from the mating of two diverged parent haploid strains. It is heterothallic (i.e., its 

meiotic spores are unable to self-mate), and has a complex diploid genomic 

architecture, marked by abundant structural and single nucleotide polymorphisms 

between most pairs of homologous chromosomes (Argueso et al. 2009). Notably, this 

heterozygous genomic architecture is also a feature of other bioethanol strains (e.g., 

CAT-1, BG-1) that, like JAY270, were isolated as robust contaminants at sugarcane 

distilleries (Babrzadeh et al. 2012; Carvalho-Netto et al. 2013; Della-Bianca et al. 2013; 

Coutouné et al. 2017). The maintenance of such genomic configuration during 

prolonged clonal propagation is particularly challenging in unicellular organisms like 

yeast because heterozygosity can be lost irreversibly through allelic mitotic 

recombination between homologous chromosomes (Symington, Rothstein, and Lisby 

2014). These mutational events can lead to loss-of-heterozygosity (LOH) tracts, ranging 
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from a few base pairs to hundreds of kilobases of homozygous segments for either 

parental haplotype, which become fixed in clonal descendants. 

 Our group recently mapped the distribution of heterozygous loci and also 

measured the specific rates of LOH at four regions of the JAY270 genome (Fig. 1.1; and 

(Rodrigues-Prause, Sampaio et al. 2018)). Notably, we found that dozens of LOH tracts 

are scattered throughout the genome, indicating the occurrence of mitotic LOH in 

JAY270’s clonal ancestors prior to isolation. We also determined that LOH occurs in this 

strain at a rate of approximately 1 event every 2000 cell divisions (5x10-4). While this 

rate is very high compared to other mitotic mutational mechanisms (i.e. nucleotide 

substitutions ~10-8), it is nonetheless similar to the LOH rates measured in conventional 

laboratory S. cerevisiae strains. Therefore, the JAY270 genome is not inherently 

unstable in relative terms. Given that LOH events occur at a high rate in yeast genomes 

and that JAY270 had been clonally propagated at industrial scale for more than 10 

years prior to isolation (and perhaps longer in wild environments), we reasoned that 

most of its genomic heterozygosis should have already been eroded away. The fact that 

a substantial portion (~60%) of the JAY270 genome still contains heteroalleles suggests 

that selective forces might have acted to disfavor cells carrying LOH spanning important 

loci. In contrast, loss of heteroalleles that do not confer a substantial adaptive 

advantage may have been tolerated relatively well. 

 If the scenario outlined above is correct, then the present distribution of 

heterozygosity observed in JAY270 should correspond to the genomic regions where 

beneficial heteroalleles reside. This possibility brings about several intriguing questions 

which we set out to explore in this study: Why is it that the JAY270 genome is still fairly 
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heterozygous when LOH had virtually unlimited opportunity to accumulate (high rate 

plus industrial scale propagation)? Are the regions that remain heterozygous important 

for JAY270’s desirable industrial traits? If so, what are the phenotypic consequences of 

reducing the overall level of heterozygosity and altering the distribution of heteroalleles 

in the JAY270 genome? To begin to answer these questions, we employed two different 

experimental approaches to reduce heterozygosity in the JAY270 genome. First, we 

used controlled inbreeding to generate a collection of experimental strains, each 

harboring a unique combination of homozygous alleles distributed genome-wide. In 

addition, we generated strains in which bidirectional LOH was confined to three different 

single chromosomes, while preserving heterozygosity elsewhere.  We compared the 

phenotypes of those strains to their fully heterozygous parent (JAY270) under different 

culture conditions and identified broad genomic regions where genetic polymorphisms 

significantly impacted competitive growth and heat stress tolerance.  Our results 

suggest that JAY270’s heterozygosity may have been maintained over time by the 

action of selective forces, and provide a new perspective on how the interplay between 

heterozygosity, phenotype, and mitotic recombination may have contributed to shape 

the genomic architecture of this and other wild hybrid S. cerevisiae strains. 

 

Results 

Controlled reduction of heterozygosity in the JAY270 genome through 

inbreeding 

 In order to investigate the interplay between JAY270 genomic heterozygosity and 

its phenotypes, we explored how changes in the abundance and distribution of 
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heterozygous alleles would affect the traits of the strain. Recently, we reported a draft 

phased map of ~12,000 heterozygous single nucleotide polymorphisms (HetSNPs) 

unevenly distributed across JAY270’s genome (Fig. 1.1 and (Rodrigues-Prause, 

Sampaio et al. 2018)). The phased haplotype information available for each 

chromosome pair was arbitrarily classified as either maternal (M; red in all figures) or 

paternal (P; blue in all figures) origin.  

 Our primary strategy to create JAY270 derivatives containing reduced 

heterozygosity was based on inbreeding. Our group has previously isolated and whole-

genome sequenced 52 haploid spore clones originated from thirteen sets of JAY270 

four-spored tetrads (Rodrigues-Prause, Sampaio et al. 2018). It has been estimated that 

each meiotic cell division in S. cerevisiae produces about 90 crossovers distributed 

across the whole genome (Mancera et al. 2008; Chakraborty et al. 2018). These events 

result in the formation of recombinant chromatids that are sorted into haploid spores, 

each containing approximately half maternal and half paternal alleles (Fig. 3.1A). In 

order to maximize the genotypic variation of the haploids used in our crossings, we 

selected for mating only one MATa and one MATa spores from each of the thirteen 

sequenced tetrad sets. This ensured that all inbred diploids were formed by joining 

recombinant haplotypes generated from independent meiotic crossover events. An 

additional criterion for selection of the parent spores was based on their genotype at the 

ACE2 locus. We recently showed that JAY270 is heterozygous for a frameshift mutation 

at ACE2 and diploid derivatives homozygous for the mutant allele display a cell-cell 

aggregation phenotype that could impair the analysis of inbred diploids (Rodrigues-

Prause, Sampaio et al. 2018). Thus, 13 MATα ACE2 and 13 MATa ace2-A7 spores 
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were crossed in inter-tetrad pairwise combinations as detailed in Table S3.1, resulting in 

a collection of 78 inbred diploid strains directly derived from JAY270 (Fig. 3.1B). 

Because only one generation of inbreeding was carried out, the genome of each inbred 

strain in the collection was predicted to be a quarter homozygous for paternal alleles, a 

quarter homozygous for maternal alleles, and half heterozygous. Importantly, since 

each haploid parent inherited a unique combination of maternal and paternal alleles, no 

two inbred diploids were heterozygous for the same half HetSNPs. Based on the whole-

genome sequence information of all parental haploids, we derived precise genotype 

maps for each inbred diploid. These maps list all loci that remained heterozygous (M/P), 

and the loci that became homozygous for either allele (M/M or P/P), and reveal the 

genetic variation present in our collection (Fig. 3.1C).  
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Figure 0.1. Panel of inbred diploids derived from JAY270. 
A) Extensive polymorphisms in JAY270’s genome are represented by a pair of 
homologous chromosomes colored in blue (paternal haplotype or P) or red (maternal 
haplotype or M). JAY270 cells were induced to undergo meiosis in sporulation media, 
resulting in the formation of tetrads containing four recombinant haploid spores. 52 
recombinant haploids isolated from thirteen four-spored tetrads were dissected and had 
their whole genomes sequenced. One spore from each mating type (MATa or MATa) 
was selected from each tetrad and used for pairwise crossings. This setup resulted in a 
collection of 78 inbred diploid strains derived from inter-tetrad matings. B) Chart 
showing a schematic representation of the matings between the recombinant haploids. 
Inter-Tetrad matings (•) resulted in diploids with approximately 50% of the original 
heteroalleles present in the parental genome, 25% of homozygous paternal alleles and 
25% of homozygous maternal alleles. Intra-Tetrad crossings (-) resulted in diploids with 
0% to 100% heterozygosis and were excluded from downstream analysis.  C) Genome-
wide representation of the genotypes of the 78 inbred diploids. The top blue and red line 
corresponds to the linear representation of the distribution of 12,023 HetSNPs in the 
JAY270 genome (Fig. S2.1). Each line below shows the genotype of one inbred strain 
at each one of the HetSNPs markers. Gray = heterozygous M/P. Blue = homozygous 
P/P. Red = homozygous M/M. Main results in this figure were generated by: NMVS. 
 

 We also analyzed the genotype maps to determine the overall level of hetero- 

and homozygosity in each of the inbred diploids (Fig. S3.1A). The average inbred was 

heterozygous M/P for 51% for the JAY270 HetSNPs, within a range of ~40% to ~62% 

for the least and most heterozygous inbreds (Fig. S3.1B). The average of M/M and P/P 

homozygosity was well balanced (~26% and ~22%, respectively) and consistent with 

the levels predicted for a single generation of inbreeding. 

 

Characterization of phenotypic variation in the inbred diploid collection 

 We next explored how the reduced heterozygosity in each inbred diploid affected 

different traits in comparison to their fully heterozygous parent (JAY270). A plate 

spotting assay format was used as an initial screen for growth phenotypes under a 

variety of individual stress conditions, some of which are known to be present in the 

sugarcane fermentation industrial environment (detailed information available in Table 
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S3.3). No significant changes in cell viability or growth characteristics were observed 

when cells were plated and grown in the presence of 7% or 11% v/v ethanol, 30 mM 

furfural (a byproduct of lignocellulose biomass fermentation), 0.75 mM of menadione 

(an inducer of oxidative stress), or 100 and 150 J/m2 ultraviolet light exposure and 

0.01% methyl methanesulfonate (DNA damage). The abilities to metabolize galactose 

and the non-fermentable carbon sources ethanol and glycerol were also uniform across 

all inbred strains. Mild phenotypic variation was observed when cells were grown on 

raffinose as the sole carbon source, or in the presence of 100 mM of hydroxyurea, an 

inducer of DNA replication stress (data not shown). Finally, a pronounced variation in 

tolerance to high temperature stress (39oC) was observed for many strains in the inbred 

collection (Fig. S3.2).  

 The wide range in the distribution of this phenotype during the screening phase 

made it suitable for a subsequent detailed phenotypic characterization and genotype 

association analysis. We categorized the inbred strains into five phenotypic groups 

using a colony-size scoring system (Fig. 3.2). JAY270 displayed an intermediate heat 

tolerance phenotype (score 3), characterized by a good viability, but substantial 

variation in colony diameter, ranging from small to medium sized colonies. Most inbred 

strains (36 of 78) displayed a similar phenotype. The remaining inbred strains displayed 

heat tolerance patterns that were either lower or higher than JAY270. At the extremes 

were nine that formed either micro-colonies or showed no growth at all when incubated 

at 39oC (score 1), and fifteen that formed uniformly large colonies and were classified 

as the most heat tolerant strains (score 5; Fig. 3.2). 
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Figure 0.2. Inbred strains show heterogeneous levels of tolerance to high 
temperature stress. 
A scoring system was used to assign different levels of tolerance to each inbred strain. 
The criteria for each score used and the strains chosen as representative examples for 
each phenotypic category are described in column 1. Representative growth of strains 
assigned to different scores after incubation at 39°C and 30oC is depicted, respectively, 
on the second and third columns of the image. Main results in this figure were 
generated by: NMVS. 
 

 In addition to the discrete phenotypes examined through the plating assays 

above, we also investigated a more subtle and continuous variation in mitotic growth 

kinetics. JAY270 is known to grow very robustly, and that is likely a key factor 

contributing to its ability to outcompete most wild yeast contaminants in the sugarcane 
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fermentation process. Thus, we also sought to explore the effects of heterozygosity on 

JAY270’s growth vigor phenotype. To do so, we quantified relative growth kinetics 

through a cumulative co-culture competition assay. Each inbred strain was co-cultured 

with a GFP-marked JAY270 derivative (JAY270-GFP) under ideal yeast growth 

conditions (YPD liquid rich medium at 30oC). The co-cultures were started with an 

approximately equal inoculum of the two competitors (~2.5 x 106 cells each) and were 

incubated for 24 hours, a little past nutrient depletion and population saturation (~15 

hours). At the end of each daily cycle, 1% volume of each co-culture was transferred to 

fresh liquid medium to allow continued growth. The ratio of GFP-negative (inbreds) to 

GFP-positive (JAY270) present in the co-cultures was measured periodically with a flow 

cytometer, and used as a parameter to estimate the growth kinetics of each of the 

inbred diploids relative to JAY270. Inbred strains with intact growth kinetics should have 

steady ~1:1 ratios over time, whereas ratio deviations up or down would indicate a 

phenotypic alteration (Fig. 3.3A-B). 
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Figure 0.3. Phenotypic assessment through growth competition assays. 
A) Co-cultures were started with an approximate 1:1 ratio between a GFP-marked 
JAY270 derivative and each inbred strain competitor. Every 24 hours (one cycle of 
competition), 1% volume of each culture was transferred to fresh media through 8 
consecutive days of co-cultures. The ratio of inbred to JAY270-GFP cells was monitored 
periodically using a flow cytometer. B) Schematic representation of inbred strains 
displaying a positive, neutral or negative growth kinetics profile in comparison to the 
parent JAY270. C) Competitive growth profiles of the 78 partial inbred diploids. Each 
line shows the growth profile of an individual inbred strain (average of three replicates) 
in co-culture with JAY270-GFP. The percentage of inbred cells in the culture at each 
cycle analyzed is shown in the y-axis. Black line represents a control competition 
between JAY270 and JAY270-GFP. Main results in this figure were generated by: 
NMVS. 
 

 Besides the genotype of the inbreds, another factor that may cause the GFP ratio 

to deviate is the emergence of beneficial de novo mutations within the culture. However, 

this effect should be delayed until the newly formed mutants become numerous enough 

to be detected. In order to determine the period of time during which the GFP ratio can 

be confidently attributed solely to the initial genotype of the inbreds, we performed 
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control co-culture competitions of each of four independently derived GFP-marked 

JAY270 clones versus the original unmarked JAY270 strain. We carried out a total of 

twelve co-cultures (four GFP-marked clones, three replicates each) with daily 1% 

volume transfer cycles to fresh media for 22 consecutive days, and the GFP ratio was 

measured at 7 day intervals. The GFP ratios in all 12 independent co-cultures remained 

steady at ~1:1 by the end of the first week (cycle 8). By the end of the second and third 

weeks, some of the ratios had diverged up or down, presumably through emergence of 

mutations in the GFP- or GFP+ strains (Fig. S3.3D). Therefore, we limited our 

experimental competitions of the inbred diploids versus JAY270-GFP to a maximum of 

8 daily transfer cycles, in order to insulate the measured GFP ratios from the effect of 

de novo mutations. These control experiments also showed that integration of the GFP 

cassette into the JAY270 genome did not by itself have an effect on growth kinetics. 

Additional JAY270-GFP versus JAY270 control co-culture competitions were included 

every time a new experimental evaluation of the inbred collection was performed (39 

replicates), and in no cases a significant deviation in the GFP ratio was observed before 

transfer cycle 8. 

 The results of the competitive growth profiles of the inbred collection were 

characterized collectively by a “fan out” shape, highlighting a wide range phenotypic 

variation between inbred strains (Fig. 3.3C). Approximately 20% of the inbred diploids 

displayed growth kinetics that were substantially different to JAY270, not only slower but 

also faster in many cases. Of this group at the extremes of the competitiveness range, 

16 displayed a strong reduction in growth kinetics and comprised less than 10% of the 

total cell population by the last cycle of co-culture; while 13 inbreds showed a 
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substantial improvement in growth, outcompeting JAY270 to reach more that 90% of the 

cells in the co-cultures. Importantly, all inbreds, regardless of the neutral, positive or 

negative relative growth kinetics profiles, followed a steady unidirectional trend from the 

early cycles until the end of co-culture. This result is consistent with their phenotype 

being a function of their initial genotype, and not due to the random appearance of de 

novo mutations during the experiment. In addition, there was very little variation 

between the independent replicates of each inbred co-culture, further disfavoring a 

potential role for de novo mutations on the observed phenotypes.  

 It is important to note that all 78 inbreds, even those with the poorest 

performance in the co-culture competition, grew apparently normally and 

indistinguishably from JAY270 on solid/agar rich medium at 30oC. This shows that the 

cumulative liquid co-culture competition assay was able to reliably and consistently 

uncover very subtle relative differences in growth kinetics that would most likely be 

missed by conventional methods, such as optical density measurements from 

exponentially growing pure cultures. Specifically, we estimate that the most extreme 

competition phenotypes among the inbreds, reaching <10% or >90% of the total co-

culture cell population by transfer cycle 8, should have a rate of cell division only ~3% 

longer or shorter than JAY270, respectively. Most inbreds that had intermediate 

phenotypes, should have changes in growth rate of only ~1% or less. Thus, the co-

culture competition assay offered an opportunity to reliably measure even minor 

phenotypic changes that were determined by the different genotype combinations 

represented in the inbred collection.  
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 Another noteworthy aspect of this analysis was that for both phenotypes 

measured (heat stress tolerance and relative growth kinetics), we identified multiple 

inbred strains that actually outperformed their fully heterozygous parent. This result may 

appear to be counter-intuitive at first glance, since inbreds are known to generally 

display negative phenotypic consequences. However, we believe our result is not 

unexpected, in light of the fact that the environment in these laboratory assays was 

quite different from the one where the JAY270 strain was isolated from. If it had been 

possible for us to exactly reproduce the biotic and abiotic challenges found in sugarcane 

bioethanol distilleries, then we would expect most inbreds in the collection to perform 

poorly, and some to be comparable to JAY270, but never superior.  

 We asked whether the superior phenotypes in the two specific assays were 

somehow related, perhaps as result of a general improvement in the vitality of the 

inbred strains. Instead, we found that there was no correlation between the inbreds that 

ranked at the top and the bottom of the distributions for each phenotype (Fig. S3.4). The 

most competitive strains had as much overlap with the most and the least heat tolerant 

strains, and vice versa. This result suggests that even though the heteroalleles present 

in the JAY270 genome have the potential to be re-assorted to improve performance for 

one trait, this will often result in a decrease in performance for a different trait. 

Therefore, the heterozygous genomic configuration present in JAY270 may actually 

represent a finely-tuned compromise that enables it to respond well to a variety of 

adverse conditions, resulting in its high overall fitness in the complex and dynamic 

bioethanol industrial environment. 
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Identification of genomic regions associated with phenotypic variation 

 We next performed a genome-wide association analysis to identify possible 

causal relationships between the specific genotypes at JAY270 HetSNPs and the 

phenotypic variation in heat stress tolerance and growth kinetics characterized among 

inbred strains. We used the genotype maps of all inbreds (Fig. 3.1C) to determine the 

frequencies of homozygous M/M and P/P, and heterozygous M/P genotypes for all 

HetSNP markers. Because the inbred diploids in the collection were necessarily 

heterozygous at the Chr3 MAT locus (MATa/MATa), and were designed to also be 

heterozygous at the Chr12 ACE2 locus (ACE2/ace2-A7), we excluded from the 

association analyses all markers located within ~50kb and ~75kb upstream and 

downstream of these loci, respectively. This resulted in a list of 11,774 HetSNPs that 

were included in the analyses. Then, for each marker we calculated the average 

phenotype observed among strains homozygous M/M, homozygous P/P and 

heterozygous. The statistical significance threshold for the identification of putative loci 

associated to each trait was established by randomized phenotype by genotype 

permutation tests (five independent runs of 10,000 iterations for each trait) at the p<0.05 

significance level. For heat tolerance, loci with LOD > 4.11 were considered to have a 

significant association (Fig. 3.4A), and for competitive growth the significant threshold 

was LOD > 4.13 (Fig. 3.4B).  
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Figure 0.4. Genome-wide association analyses to identify potential loci 
underlying heat stress tolerance. 
 (A) and relative growth kinetics (B). Genome-wide association plots of LOD scores for 
each HetSNPs. For heat tolerance, loci with LOD > 4.11 were considered to have a 
significant association, and for competitive growth the significant threshold was LOD > 
4.13. The color code depicted at the bottom of the figure indicates the quantitative 
inheritance model that best fit the loci showing significant association. Main results in 
this figure were generated by: RAW and NMVS. 
 

 Although our inbred diploid population size was limited, this analysis was 

sufficient to reveal some genomic segments that may have an important contribution to 

the traits analyzed. Additional regions that make modest contributions to these traits 
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likely also exist, but their reliable detection would require a substantial expansion of the 

size of the inbred collection, along with a higher throughput phenotyping platform. In 

total, thirteen regions from six different chromosomes showed association to heat 

tolerance (Chr5, Chr6, Chr7, Chr13, Chr14, Chr15), and four regions from four different 

chromosomes to competitive growth (Chr4, Chr10, Chr15 and Chr16). Importantly, none 

of the significant association regions overlapped between the two phenotypes. This 

suggested that loci present at different genomic regions are important for superior 

phenotypes in these two different traits, consistently with the observation that there was 

very little overlap between the inbred strains ranked in the upper or lower tiers of two 

phenotypes (Fig. S3.4). 

 For each region showing significant association, we then evaluated which 

quantitative inheritance model better fit the traits (Fig. 3.4A-B, Table S3.6). Most regions 

were consistent with an additive variance model in which the heterozygote has an 

intermediate phenotype. We also found regions with likely dominance, but cases of 

overdominance were not detected. A two-dimensional scan of the genome was also 

performed, but no significant pairwise epistatic interactions were detected (data not 

shown).  

 

Phenotypic consequences of chromosome-scale LOH 

 The analysis of inbred diploids described above allowed us to investigate the 

possible relationship between genome-wide heterozygosity and the phenotypes of 

JAY270. Overall hybrid vigor is likely the result of complex interactions between multiple 

genes. In the inbred collection approach we removed roughly half of the heterozygosis 
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present in the JAY270, thus a large fraction of the genome was affected in each strain. 

We next decided to take an independent and more conservative approach in which 

fewer heterozygous loci could be removed at a time, and asked if phenotypic 

consequences would still be observed. 

 To do so, we conducted a proof-of-concept experiment in which we adapted a 

procedure to induce uniparental disomy (UPD); i.e., homozygosis for individual whole 

chromosomes), while fully preserving heterozygosis in the remaining 15 chromosome 

pairs. Our strategy took advantage of previous demonstrations that driving transcription 

through centromeric regions leads to perturbation of the function of centromeres, and 

can be used to induce targeted chromosome loss, resulting in 2n – 1 monosomic diploid 

cells (Reid et al. 2008; Hill and Bloom 1987). Reid et al (2008) applied this strategy to 

map mutations to individual chromosomes in a ura3 auxotrophic diploid strain 

background by inducing transcription of a pGAL1-URA3 cassette integrated at near 

centromeric regions, and then applying selection for 5-FOA resistance to recover clones 

that had lost the targeted chromosome. A key part of the strategy is that monosomic 

diploid S. cerevisiae strains tend to rapidly endoduplicate the remaining homolog, which 

results in reestablishment of the normal 2n DNA through UPD. Here, we adapted this 

approach for use in diploid prototrophic strains by integrating into JAY270 a hemizygous 

copy of the heterologous forward and counter selectable marker AmdS (Solis-Escalante 

et al. 2013) immediately upstream of the centromeric regions of interest. We modified 

the AmdS cassette by removing the transcriptional terminator sequence, thus leading to 

constitutive transcription through the centromere. Insertion of the AmdS cassette 

adjacent to the M or P centromere was obtained and stably maintained through forward 
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selection for growth in media containing acetamide as the only nitrogen source. Then, 

fluoroacetamide resistance selection for loss of the cassette was used to isolate clones 

carrying chromosome loss followed by UPD (Fig. 3.5A). This approach allowed us to 

evaluate the phenotypic consequences of inducing homozygosity for each of the two 

haplotypes in one chromosome at a time. In addition, the use of the AmdS marker 

allowed us to do this work in prototrophic JAY270 cells, eliminating potential 

confounding effects that the introduction of uracil auxotrophy could have brought. 

 We focused the bidirectional UPD analysis on three pairs of chromosomes (Chr4, 

Chr14 and Chr15) chosen on the basis of their overall chromosome size, distribution 

and number of heterozygous loci, and genetic association to growth kinetics (Fig. 3.4B) 

detected with the inbred collection. Loss of long S. cerevisiae chromosomes typically 

results in a heavier phenotypic burden than loss of a small chromosome, thus the ability 

to recover UPD through endoduplication is higher. Chr4 was particularly attractive 

because it is a large chromosome and shows evidence of pre-existing LOH events in 

the terminal regions of both arms (Fig. 3.1C and Fig. S2.1). This configuration suggests 

that cells that underwent LOH spanning the relatively short central region (~ 418,440 

Kb; ~ 600 HetSNPs) might have had a fitness disadvantage in comparison to cells that 

remained heterozygous. We also chose to study Chr15, because it is a large 

chromosome with over 1,400 HetSNPs distributed throughout its whole length and we 

detected two different segments that showed association to competitive growth (Fig. 

3.4B). Finally, a third interesting case-study was Chr14, which is a mid-size 

chromosome, but still contains a relatively large number of HetSNPs (~700), yet none of 

them showed statistical significance in the inbred association analysis for competitive 
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growth (Fig. 3.4B). Accordingly, we interpreted that the HetSNPs in this chromosome 

may have minor or no effect on competitive growth individually, but making them all 

simultaneously homozygous might have a detectable phenotype. 

 Co-culture growth competition assays between Chr4-UPD M/M and Chr4-UPD 

P/P versus JAY270, supported a strong association of heteroalleles in this chromosome 

with phenotype (Fig. 3.5B). Homozygosis for the two Chr4 haplotypes influenced the 

growth kinetics significantly and in opposite directions. Chr4-UPD M/M strains showed a 

relatively faster growth, whereas Chr4-UDP P/P strains showed the opposite 

phenotype, consistently with the additive maternal inheritance of the HetSNPs in this 

chromosome identified through by the genome association analysis (Fig. 3.4B). 

Homozygosis for the two Chr15 haplotypes resulted in a less symmetrical change in 

growth kinetics, but still following a general trend predicted by our genome association 

analysis. Chr15-UPD M/M strains displayed a subtle but steady growth advantage, 

while Chr15-UPD P/P strains were outcompeted by the parent strain JAY270 at a faster 

pace (Fig. 3.5D). Finally, the changes in growth competition profiles of the Chr14-UPD 

strains were more subtle but reproducible, which corroborated the observations from 

our association analysis that did not point to a strong contribution of Chr14 HetSNPs for 

the growth phenotype (Fig. 3.4B and Fig. 3.5C). Taken together, even though each of 

the three UDP pairs the strains retained 90-95% of the overall HetSNPs of JAY270, 

these relatively small and localized erosions of heretozygosis were more than sufficient 

to create reproducible phenotypic alterations. This suggests that mitotic recombination 

events leading to LOH of comparable magnitude would most likely have phenotypic 

outcomes that could be acted upon by selective forces. 
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Figure 0.5. Construction and relative growth kinetics profiles of Chr-UPD strain 
pairs. 
A) A cassette containing the counter-selectable marker AmdS under the transcriptional 
control of the TEF1 constitutive promoter and lacking a terminator sequence was 
integrated immediately upstream to the centromeric regions of each homolog of Chr4, 
Chr14 and Chr15. The transcription of this gene perturbs centromere function and 
disrupts chromosome segregation during mitosis. Cells that have lost the AmdS marker 
were selected for in media containing fluoroacetamide. Spontaneous endoduplication of 
the remaining homolog results in strains containing UDP, in this case represented as 
the maternal (red) homolog. Confirmation of the loss of one haplotype was obtained by 
RFLP analysis at both chromosome arms and confirmation of endoduplication was 
obtained by tetrad dissection and spore viability analysis. B-D) Growth kinetics profiles 
of Chr-UPD strain pairs. Each line shows the relative growth profile of an individual Chr-
UPD strain in co-culture with JAY270-GFP. The percentage of Chr-UPD cells relative to 
JAY270-GFP cells at the 0, 2, 5 and 8th cycle of culture is shown in the y-axis. Red and 
blue lines represent strains containing two copies of the maternal (M/M) or paternal 
(P/P) haplotypes, respectively, of each chromosome pair analyzed (Chr4, Chr14 and 
Chr15). Black line represents a control competition between JAY270 wild type and 
JAY270 labeled with GFP. Main results in this figure were generated by: NMVS and 
RAW. 
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Discussion 

Heterozygosity and fitness in yeast hybrids 

 The genetic basis of heterosis in yeast has been investigated before in a few 

studies. For example, Plech et al. created a collection of 253 hybrid S. cerevisiae strains 

by self- and inter-mating haploid derivatives of isolates from different geographical and 

ecological settings. They compared the maximum growth rate under different growth 

conditions between self-diploid and inter-mating hybrids, they found that heterosis was 

prevalent, primarily in the hybrids derived from matings between domesticated yeast 

strains (e.g. clinical and industrial). Heterosis appeared to be less pronounced among 

hybrids generated from matings between haploids isolated from natural habitats (Plech, 

de Visser, and Korona 2014). Another study quantified heterosis in a similar collection 

of 120 S. cerevisiae artificial hybrids tested in five growth conditions. A combination of 

dominance, overdominance and epistatic models was found to drive heterosis in the 

strains analyzed (R Shapira et al. 2014). While these studies provided important 

insights about the influence that heterozygosity has on yeast fitness, the hybrid strains 

analyzed were artificially created by mating highly diverged haploid backgrounds 

isolated from different environments. As a result, the diploid strains formed through 

these extreme outcrossings are highly heterozygous (>60,000 SNPs), however, they 

are not actually observed outside of the laboratory setting, therefore their allelic 

combinations were never subjected to natural selection forces.  

 Here, we investigated how heterozygosity contributes to the traits of the natural 

hybrid yeast strain JAY270, a wild isolate initially identified as a highly adapted 

contaminant of bioethanol industrial fermentations. Another important distinction of our 
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approach is that the genetic variation in our strain panel was obtained through reduction 

(rather than creation) of heterozygosity through inbreeding and UPD. The choice of 

parent strain and genetic manipulation approaches allowed us to examine heteroalleles 

that were vulnerable to erosion through mitotic recombination (LOH) and prolonged 

propagation in ethanol distilleries, yet were maintained in the JAY270 genome, 

presumably due to the detrimental phenotypic consequences associated with their loss. 

Using a similar approach, Granek et al. successfully mapped 13 genes linked to biofilm 

formation by coupling inbred matings between spores derived from a highly 

heterozygous S. cerevisiae clinical isolate and bulk segregant analysis (Granek et al. 

2013). These combined results show that exploiting the cryptic genetic and phenotypic 

variation of naturally heterozygous strains can be a powerful tool for functional studies, 

including the genetic basis of traits important to fungal pathogenicity or biotechnology 

applications.  

 

Cryptic phenotypic variation in JAY270 

 Our results show that the JAY270 genome harbors alleles that can support a 

wide phenotypic plasticity for competitive growth and heat stress tolerance (and 

possibly additional traits) (Fig. 3.3C, Fig. 3.2). This plasticity may be accessible to 

JAY270 through meiotic recombination followed by inbreeding or mitotic recombination 

events (Magwene 2014), and the environmental selection pressures to which the cells 

are exposed to will determine the success or failure of the new unmasked allelic 

combinations. The adaptive contributions of these genomic changes have been nicely 

characterized in inter- and intra- species yeast hybrids grown in chemostats over 
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several generations under different growth conditions (Smukowski Heil et al. 2017). 

Mitotic recombination leading to LOH was shown to be a major driver of adaptation in 

those hybrids. Interestingly, when clones carrying an LOH event that conferred superior 

fitness in a specific growth condition were tested in an alternate condition, their fitness 

was reduced. This is consistent with our findings that reduction in heterozygosity, 

throughout the genome as a result of inbreeding or confined to individual chromosomes, 

can have very distinct effects for different traits.  

 Our genome association analyses pointed to broad genomic regions scattered 

throughout the genome that were associated with heat stress tolerance and relative 

growth kinetics, consistently with the quantitative nature of these traits and the 

cumulative effects of inter-allelic interactions. Additionally, we observed a prevalence of 

dominance inheritance in most regions associated with phenotype in both of our assays, 

which was also previously found to be the prevalent mode of inheritance in artificial 

hybrids displaying a heterotic phenotype (R Shapira et al. 2014). Interestingly, we also 

found that inbreeding was just as often associated with superior as it was with inferior 

performance in the two traits analyzed. While the existence of inbred strains that exceed 

the performance of their fully heterozygous parent may seem counter-intuitive, it is 

important to note that the phenotypic assays we used did not reproduce the conditions 

that shaped the JAY270 genetic background. The challenges posed by the complex and 

dynamic sugarcane fermentation environment might be better met by a heterozygous 

genomic configuration that allows JAY270 to be a well-rounded generalist. Our 

observations were consistent with a model in which the erosion of heterozygosity in the 

JAY270 genome is curtailed by natural selection forces. While homozygosis to a 
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specific chromosomal region can lead to faster growth, it may also decrease tolerance 

to elevated temperatures. We speculate that the net result of this genomic change 

would be disadvantageous in JAY270’s natural habitat, which would explain the 

persistence of cells with a heterozygous genotype. However, in cases where the 

beneficial effect of homozygosity can be narrowed down to specific loci, it may be 

possible to use targeted allele engineering approaches for strain improvement. This 

would minimize the negative effects of losing heterozygosity in the neighboring loci.  

 

UPD strategy for phenotypic testing of confined LOH 

 The phenotypic analysis of JAY270-derived strain pairs carrying bidirectional 

UPD engineered for specific chromosomes provided important clues about the extent to 

which heterozygosity influences phenotype in this wild strain. Chr4-UPD M/M displayed 

improved growth kinetics in comparison to the parent JAY270, while the Chr4-UPD P/P 

clones showed signs of inbreeding depression (Fig. 3.5B), in accordance to the additive 

maternal inheritance found for the significant HetSNPs in this chromosome. It is entirely 

possible, and likely, that other phenotypes could have diverged in opposite directions 

between M/M and P/P Chr4-UPD. This observation supports the hypothesis that the 

ancestral LOH events spanning the terminal segments of this chromosome likely did not 

impact or even provide a growth advantage to cells in the industrial fermentation 

environment. In contrast, cells that underwent LOH events spanning the central 

HetSNPs in Chr4 may have faced a selective disadvantage, falling behind cells that 

remained heterozygous at those segments. A similar profile was observed in the Chr15-

UPD strains, highlighting again that even localized reduction of heterozygosity levels 
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can significantly impact the JAY270’s phenotype (Fig. 3.5D). Importantly, these results 

also support the efficacy of our approach in facilitating the discovery of genomic 

segments associated with traits of interest, which was also corroborated by the 

phenotypic profiles of Chr14-UPD strains. Chr14 harbors more than 700 HetSNPs, 

however, none of these sites showed a significant association to competitive growth in 

our analysis (Fig. 3.4B). Accordingly, we interpreted that the HetSNPs in this 

chromosome should have a small effect on competitive growth, at least in the 

experimental conditions employed here (YPD 2%; 8 cycles of fermentation at 30oC). As 

expected, a modest, but symetric change in growth vigor was observed in the Chr14-

UPD strain pair, indicating that our analysis of the inbred collection was likely able to 

reveal the regions of the genome harboring the strongest heteroalleles contributing to 

this trait (Fig. 3.5C). Importantly, although the consequences of LOH on this 

chromosome were not as dramatic as observed for Chr4-UPD and Chr15-UPD strains, 

they were substantial by the end of 8 cycles of competition. This shows evidence that 

the cumulative effect of numerous small effect alleles may also contribute to the 

maintenance of genomic heterozygosity in the long term. 

 Overall, the approach we used for inducing targeted UPD provided new insights 

into the relationship between heterozygosity and phenotype in JAY270 and validated 

the results from our initial genomic association analyses. The use of the heterologous 

AmdS counter-selectable marker for induction of chromosome loss eliminated the need 

to introduce auxotrophic markers that could influence the phenotypic analyses and, 

therefore, represents a valuable resource for mapping of genetic traits to specific 

chromosomes in prototrophic industrial yeast strains. Combining this approach to 



 99 

recently developed methods for targeted recombination events to chromosomic regions 

of interest (Sadhu et al. 2016) could significantly accelerate genome association studies 

by reducing the number of individuals required for preliminary mapping of the most 

significant contributors to any trait of interest at the chromosome-scale resolution.  

 

Materials and Methods 

Growth media 

Yeast cells were grown in YPD (20 g/L glucose, 20 g/L peptone, 10 g/L yeast 

extract, 20 g/L bacteriological agar for solid media), unless otherwise noted. 

Transformants carrying the GFP-kanMX cassette were selected in YPD plates 

supplemented with 400 mg/L of geneticin. Selection of AmdS positive (Amds+) clones 

was performed in acetamide media (20 g/L glucose, 6.6 g/L potassium sulfate, 1.7 g/L 

YNB without aminoacids, 0.6 g/L acetamide, 20 g/L bacteriological agar). 

Fluoroaceramide media was used for AmdS counter-selection (20 g/L glucose, 5 g/L 

ammonium sulfate, 1.7 g/L YNB without aminoacids, 1.4 g/L complete drop-out mix, 2.3 

g/L fluoroacetamide, 20 g/L bacteriological agar). Spot assays for phenotypic screening 

of the inbred collection was performed in different types of media, including: 2% YPGE 

(20 g/L peptone, 10 g/L yeast extract, 30 ml/L glycerol; 30 ml/L 100% ethanol, 20 g/L 

bacteriological agar), 2% YP Galactose (20 g/L galactose, 20 g/L peptone, 10 g/L yeast 

extract, 20 g/L bacteriological agar), 2% YP Raffinose (20 g/L raffinose, 20 g/L peptone, 

10 g/L yeast extract, 20 g/L bacteriological agar). 
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Yeast genetic backgrounds and microbiology procedures 

All Saccharomyces cerevisiae strains used in this study descended from the 

JAY270 background (Table S3.1), a heterothallic diploid derived from the industrial 

bioethanol strain PE-2 (Argueso et al. 2009). Standard procedures for yeast culture, 

transformation, crossing and sporulation were followed (Ausubel, F. M.; Brent 1998). 

 

Construction of a collection of partial inbred diploids derived from JAY270 

As part of a previous published work from our group, JAY270 cells were induced 

to sporulate and 14 full tetrads were dissected, resulting in 56 recombinant spores 

(Table S3.1; (Rodrigues-Prause et al. 2018)). The genome of all 56 haploids isolated 

were sequenced using an Illumina short read whole genome sequencing platform. 

Genome sequencing data associated with this study is available in the Sequence Read 

Archive (SRA) database under study number SRP082524. The sequencing reads were 

used to build a draft phased map of heterozygous SNPs (HetSNPs) in JAY270 as 

described in (Rodrigues-Prause et al. 2018). The whole genome information from each 

haploid parent strain also allowed the generation of genotype maps for each partial 

inbred diploid that provided precise information of genomic positions that remained 

heterozygous and positions that became homozygous for either allele (Fig. 3.1C). Two 

spores were selected per each tetrad to generate the collection of partial inbred strains. 

We selected one MATa ace2-A7 and one MATa  ACE2 spore per tetrad. As described 

previously, JAY270 is heterozygous for a frameshift mutation in the ACE2 gene 

(ACE2/ace2-A7) and diploid derivatives homozygous for the mutation display an 

aggregated growth phenotype (Rodrigues-Prause et al. 2018) that could impair the 
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phenotypic evaluation ace2-A7/ace2-A7 inbreds through flow cytometry. For this 

reason, 13 MATα ACE2 and 13 MATa ace2-A7 spores were crossed in pairwise 

combinations as detailed in Table S3.1, resulting in 78 partial inbred diploid strains.  

 

Construction of a GFP-tagged JAY270 derivative  

A GFP-KanMX cassette with homology to a non-coding region located 365 bp 

upstream to the centromere 5 (CEN5, genomic coordinate = 151522) was built. A GFP 

cassette was amplified from pFA6a-TEF2P-GFP-ADH1-NATMX4, kindly provided by Dr. 

Maitreya Dunham’s laboratory, using the primers JAO1385 and JAO1386. The kanMX4 

cassette was amplified from pFA6-KanMX4 using primers JAO1387 and JAO466. Both 

cassettes were fused by double-joining PCR and transformed into JAY270. Four 

transformants were selected, purified and tested in 22-cycles of co-culture with the 

wildtype JAY270 strain, one of which (JAY2208) was used for the co-culture 

competitions against the inbred and UDP strains. 

 

Phenotypic assessment of the inbred collection 

Phenotypic screenings through plate spotting assay 

Three cultures of JAY270 and of each inbred strain were grown to saturation at 

30oC in 96-well plates containing 200 µl of YPD. Cultures were diluted by immersing a 

96-pin replicator in the ressuspended saturated cultures and subsequently in a 96-well 

plate containing 100 µL of distilled water. Diluted cells were pinned in different types of 

plates and allowed to grow under different conditions as detailed in Table S3.3. 
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High temperature stress assay 

Cells were refreshed from the - 80oC freezer and incubated at 30oC in YPD 

plates for 24 hours. Cells were inoculated into 5 ml liquid YPD, and incubated for 24 

hours at 30oC in a rotating drum. Saturated cultures were diluted 1000-fold and 40 µL 

were plated in 4 YPD plates, two of which were incubated for 48 hours at 30oC and two 

were incubated for 96 hours at 41oC. Variation in growth tolerance to high temperature 

between strains was assessed by a colony size scoring system. Growth of 

representative strains assigned to each category is shown Fig. 3.2. This experiment 

was repeated independently three times for the whole collection of partial inbred strains. 

 

Flow cytometry-based competitive growth fitness assay 

Yeast cells were refreshed from the -80C biofreezer and incubated at 30C in 

YPD plates for 24 hours. Cells were inoculated into 5 ml liquid YPD, and grown until 

saturation for 24 hours at 30oC in a rotating drum. Equal volumes of each inbred culture 

and the JAY270-GFP labeled culture were mixed and used to inoculate three assay 

tubes containing 5ml of fresh liquid YPD, establishing “Cycle 0” of the competition 

assay. An aliquot of each mixture was also run through the flow cytometer to determine 

the starting (pre-culture) ratio of inbred (GFP-) to JAY270 (GFP+) cells. Cultures were 

incubated at 30C in a rotating drum and every 24 hours (one cycle of competition) 1% of 

the co-culture volume (50 µl) was transferred to 50 ml of fresh YPD medium. Each 

experimental co-culture competition was performed in triplicate. The ratio of inbred to 

wild type cells was assessed at the beginning of cycle 0 and at the end of cycles 2, 5 

and 8 using a Cyan ADP7 color flow cytometer coupled to a HyperCyt Rapid Sampler 
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system for 96-well plate-based assays. 96 well-plates for flow cytometry readings were 

prepared by diluting 10 µl of each culture in 190 µl of 1% PBS buffer. A PBS-only well 

was placed after each triplicate and a triplicates of a control competition between 

unmarked JAY270 and JAY270-GFP were included every time a new experiment was 

initiated. Flow cytometry parameters were optimized by applying a series of gatings that 

excluded from the analysis cell debris (Fig. S3.3A) and cell agglomerates (Fig. S3.3B), 

resulting in a final cell count that was gated into FITC- and FITC+ populations based on 

their fluorescence signals (Fig. S3.3C). 

 

Identification of allele combinations enriched in high and low fitness 

strains 

Genotype calling of inbred diploids 

A previously described phased map of 12,023 heterozygous SNPs (HetSNPs) in 

JAY270’s genome (Rodrigues-Prause et al. 2018) was used for calling the genotype of 

the recombinant haploid strains that originated the collection of inbreds. The phased 

JAY270 HetSNP haplotypes were arbitrarily designated as maternal (M) or paternal (P) 

in order to facilitate genotyping analysis. 

 CLC genomics workbench software was used for mapping sequencing reads 

from each parental recombinant haploid on to the S288c reference and detecting SNPs 

across their whole genome. The nucleotides present at each of the 12,023 loci in the 

JAY270 HetSNP list were determined for each haploid. When no SNPs were detected 

at those positions, the reference nucleotide genotype was called, while the alternative 

nucleotide was called when the alternative SNP was detected at a frequency higher 
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than 0.95. After the genotypes were determined they were converted to the respective 

haplotype designations as M or P. 

 In order to deduce the diploid genotype of each partial inbred strain, we 

examined the genotype of their respective parents for each of the 12,023 HetSNPs. 

Heterozygous M/P loci were called whenever both haploid parents presented distinct 

nucleotides at a specific position. Whenever both parents presented the same 

nucleotide at a specific position, the locus was designated either homozygous M/M or 

homozygous P/P. 

 

Statistical analysis of genotype/phenotype association 

Analysis was done using R version 3.4.0 and the R/qtl package version 1.42-8 

(Broman et al. 2003; R Core Team 2017). As inputs for the QTL (quantitative trait loci) 

analysis, quantitative data from two independent assays (competitive growth and high 

temperature stress) were used as the phenotype data, and genotypes at 11,774 

HetSNPs across the genome were used as the genotype data from 78 partial inbred 

strains. Markers ~50kb and ~75kb upstream and downstream of the MAT and ACE2 

loci (respectively) were excluded from the data set since heterozygosity was forced in 

those regions by the haploid parent selection criteria described above. Each phenotype 

was analyzed separately using a one-dimensional scan of the genome. Standard 

interval mapping was used by applying the expectation maximum algorithm to the data 

set to determine the log10 likelihood ratio (LOD) scores for each marker position. Five 

independent 10,000 permutation tests were run (took median value of the 5 runs) to 

determine the null distribution of our data and the genome-wide LOD threshold value. 
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Using the 95th percentile of the distribution of maximum LOD scores generated from the 

permutation tests, this resulted in genome-wide LOD thresholds of LOD > 4.11 for heat 

stress tolerance and LOD > 4.13 for co-culture competition.   

 To determine the mode of action of the QTL (additive, dominant/recessive, or 

overdominance) two different methods were used, focusing on the significant regions in 

the genome and the marker with the highest LOD score for the region. First, each 

significant region of the genome was visually inspected using effect plots to show the 

mean phenotype values for each genotype at each locus of interest. Second, Tukey 

pairwise comparisons were used to determine which genotypes had significantly 

different mean phenotype values from each other at an alpha level of 0.05 at each locus 

of interest. Plots showing magnitude of LOD value vs. whole genome position were 

generated using the ggplot2 package version 2.2.1 (Wickham 2009).  

 A two-dimensional scan of the genome was also performed, but no evidence was 

found for interactions between QTL (data not shown). From this, conclusions were 

drawn from results of the 1-dimensional scan only.  

 

Construction of UPD strains 

 Destabilization of centromere function was achieved by the insertion of the 

counter-selectable gene AmdS (Solis-Escalante et al. 2013) at the consensus 

centromeric region of each chromosome analyzed. Cassettes targeting different 

integration sites (~100 bp or ~5 bp upstream to the targeted centromere), as well as 

including or excluding a terminator sequence, were tested. Clones showing uniparental 

disomy were more frequently achieved when cassettes that excluded the terminator 
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region of AmdS were integrated immediately upstream to the consensus centromere 

sequence (data not shown). All cassettes were amplified from pCfB2399 (Stovicek et al. 

2015) (gift from Irina Borodina; addgene plasmid # 67550) and targeted CEN4, CEN14 

and CEN15. Transformants were selected and purified in acetamide media. The 

integration of the cassettes was confirmed by PCR that amplified the left and right 

junctions between the AmdS cassette and the centromeric region. PCR products were 

designed to span at least one HetSNP that was used to determine in which homolog the 

integration occurred using Sanger sequencing. At least two independent clones 

containing the insertion in each homolog were selected. Cells were grown in YPD plates 

for 24 hours to allow for loss of the AmdS-marked homolog, diluted in 200 µl of water 

and plated in the counter-selection fluoroacetamide media. At least four types of cells 

should be able to grow in this selective media: (1) cell with inactivation of the AmdS 

gene through point mutation; (2) cells that acquired loss-of-heterozygosity (LOH) tracts 

spanning AmdS as a result of a DNA repair mechanism, such as gene conversion or 

mitotic recombination leading to LOH, (3) cells that lost the whole homolog containing 

AmdS and persisted as monosomics; and (4), our targeted UDP class, cells that lost the 

whole homolog containing AmdS, undergoing a transient monosomic state followed by 

endoduplication of the AmdS- homolog. Two sequential tests were performed to screen 

for true UDP clones. First, candidates were genotyped using restriction fragment length 

polymorphism (RFLP) analysis at three genomic positions along the chromosome 

(HetSNPs near the left and right ends of the chromosome arms, and near the 

centromeric region). Clones genotyped as homozygous at all three markers could be 

either monosomic or homozygous disomic for the chromosome of interest. To 
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distinguish between these cell types, candidates were sporulated and tetrads were 

dissected. Monosomic clones should generate tetrads with two viable and two inviable 

spores, whereas UDP clones should generate tetrads with four viable spores. 

Candidates that were homozygous for all three RFLP markers and produced tetrads 

with four viable spores were selected for phenotypic tests. 
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CHAPTER IV 
 
 
 

Conclusions and future directions 

 

My doctoral work consisted of two parallel tracks aimed at (1) characterizing a 

novel phenomenon of genome instability in yeast that can rapidly erode heterozygosis 

through mitotic recombination, and (2) determining how genomic heterozygosity plays a 

role in conferring traits of interest to the industrial yeast strain JAY270. Below, I 

summarize and discuss the main observations and conclusions of my studies, their 

limitations, and some of the prospective avenues of research that my work has opened. 

 

Systemic genomic instability and resulting rapid karyotype evolution 

It is now evident that mutations are not always acquired sequentially as a result 

of independent lesions to the genome. Recent whole-genome sequencing studies, 

particularly ones leveraging single-cell methods, have identified different classes of 

mutational phenomena in which multiple chromosomal alterations and point mutation 

“showers” appear to accumulate in an “all-at-once” fashion. The investigation of the 

molecular mechanisms underlying such mutational bursts and the reconstruction of cell 

lineages represent significant technical challenges in the field. Even though some of 

these challenges have started to be overcome with the development of spatially-

resolved single cell sequencing(Casasent et al. 2018), which allows the application of 

more robust phylogenetic inference methods to determine cell lineages, the 
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establishment of simpler, yet powerful, model systems would greatly facilitate research 

in the field.  

In Chapter II of this dissertation, we showed evidence that multiple events of 

LOH accumulate in short windows of time in the yeast S. cerevisiae, a phenomenon that 

we named “systemic genomic instability”. We demonstrated that selection of one LOH 

event helps to predict the existence of additional unselected LOH events distributed 

throughout the genome, which indicates a subset of cells in the population might have 

undergone episodes of genomic instability that resulted in multiple coincident LOH 

events. This observation was validated by quantification of double LOH events in three 

different yeast backgrounds, which revealed that two coincident LOH events occur at 

rates 30 to 100 times higher than would be expected if they had emerged independently 

of each other. We further demonstrated that this process is truly mitotic and not a result 

of initiation of meiotic recombination followed by return-to-growth. Our work provides 

evidence for the occurrence of short episodes of systemic genomic instability in yeast, 

which we believe could represent a powerful model system for the characterization of 

the underlying universal mechanisms of such mutational bursts. Together, our initial 

results and the development of this experimental platform have set the stage for exciting 

future investigations. What is the duration of the episodes of systemic genomic 

instability? Are mutational bursts associated to mutational signatures other than LOH, 

for example, point mutations, CNVs and aneuploidies? What are the mechanisms 

underlying mutational bursts? Is the instability transient or prolonged? Can these results 

be recapitulated in human cell lines? Although challenges related to single-cell analyses 

and pedigree and phylogenetic inference still remain, we envision our yeast model 
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system offers several opportunities to test hypotheses that can later be validated in 

human cell lines and tumor samples. Interesting areas to pursue include, for instance, 

the application of the Mother Enrichment Program (MEP)(Lindstrom and Gottschling 

2009) to test a potential relationship between ageing and mitSGI, application of recently 

released technologies (ex.: MiloTM Single-Cell Westerns) that allow protein quantification 

of thousands of single cells to test a potential effect of transient defects in gene 

expression in mitSGI and the development of assays that will allow the identification of 

potential bursts of point mutations, CNVs, chromosome losses and gains, etc. Another 

interesting area to explore is whether this phenomenon would also be observed in 

human cell lines. A suitable system for this analysis would be the TK6 human B-

lymphoblastoid cell line. This cell line is heterozygous on chromosome 17q at the 

counter-selectable thymidine kinase locus (Tk+/Tk- genotype), which allows for 

selection of one primary LOH events at that region (Revollo et al. 2016). Preliminary 

evidence in the literature suggests that clones carrying selected LOH spanning the TK 

locus also show unselected events distributed genome-wide at a frequency that is 

higher than expected for a model of gradual accumulation of mutations (Li, Yandell, and 

Little 1994). These observations were based on the interrogation of only in a few (~12) 

microsatellite markers distributed throughout the human genome and a much more 

comprehensive characterization of this phenomenon could be achieve with the latest 

genome sequencing technologies. The work described in this dissertation and future 

developments that will help answering the relevant questions described above will allow 

us to contribute discoveries that may have important implications for cancer dynamics 

and genome evolution in general.  
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Effects of heterozygosity on phenotype and its influence in genome configuration 

Although it has been known for decades that some species show a positive 

correlation between heterozygosity and phenotype, this relationship is still not well 

characterized in yeast. To our knowledge, the work presented in Chapter III of this 

dissertation, is one of the first to investigate the role that genomic heterozygosity plays 

on the phenotype of a wild and naturally heterozygous yeast strain. Two different 

approaches were used to reduce the levels of heterozygosity in the bioethanol strain 

JAY270. Initially, we used inbreeding to generate a collection of 78 partial inbred strains 

showing an approximate 50% reduction of the heterozygous alleles present in the 

parent strain JAY270. We observed a wide phenotypic variation in the competitive 

growth and heat tolerance of inbred strains, supporting a substantial role of 

heterozygosity in JAY270’s genome and in its industrial traits. To validate these results, 

we developed an approach that allowed the construction of strains containing blocks of 

homozygosity restricted to a single chromosome, specifically Chr4, Chr14 and Chr15. 

Again, the growth vigor and heat tolerance phenotypes of all strains with chromosome-

specific uniparental disomy differed significantly from the parent JAY270. Together, 

these results suggested that heterozygosity does contribute to JAY270’s desirable 

traits, which consequently may explain the long-term maintenance of this genome 

configuration in its natural niche. 

Although size of the inbred collection limited the resolution of our genome 

mapping analysis, the work presented here pointed to candidate genomic regions that 

are likely contain genes important for the phenotypes tested. Our results have laid the 

groundwork for next research projects aimed at further interrogating these candidate 
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regions and identifying the specific SNPs underlying the phenotypes observed. This 

could be achieved through reciprocal hemizygosity analysis(Steinmetz et al. 2002) or 

recently developed CRISPR-based techniques that allow genetic mapping refining to 

target regions(Sadhu et al. 2016). The specific genes identified could then be 

manipulated to improve microbial performance in industrial application. Beyond potential 

biotechnological applications, our results provide new insights into how the interplay 

between heterozygosity and fitness may contribute in shaping the genome of wild S. 

cerevisiae strains. 
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APPENDIX A: SUPPLEMENTAL FIGURES 
 
 
 

 
 

Figure S2.1. Draft map of heterozygosity in the JAY270 genome. 
The distribution of 12,023 phased heterozygous single nucleotide polymorphisms is 
depicted (HetSNPs; double colored markers, arbitrarily defined as paternal [blue] or 
maternal [red] haplotypes). Each horizontal line represents a S. cerevisiae 
chromosome. Black circles indicate the positions of the centromeres. The HetSNPs are 
unevenly distributed across the genome, with several regions showing evidence of 
ancestral LOH events that likely occurred in the JAY270 lineage. Plots were generated 
to scale in Python 2.7 using the matplotlib package and a custom script. For size 
reference, Chr1 is 230 Kb. 
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Figure S2.2. HetSNP co-segregation genetic mapping approach and ace2-A7 
complementation tests. 
A co-segregation analysis was performed to identify the mutation responsible for the 
rough colony phenotype. A The approach consisted of identifying HetSNP linkage 
regions in which one allele (M or P) co-segregated in all six haploids inferred to carry 
the rough mutant allele (red), while the other allele (P or M) co-segregated in all six 
haploids inferred to contain the smooth wild type allele (blue) (see Fig. 1C). B and C 
Genome Browser views of the two candidates regions that satisfied the strict co-
segregation criterion. The candidate region in Chr11 (B) spanned 30 Kb and contained 
13 genes (from MRPL20 to YKR096W).  The candidate region in Chr12 (C) spanned 13 
Kb and contained 9 genes (from YLR125W to CKI1). Review of the functional 
annotations of the genes in these regions identified the ACE2 locus (highlighted in 
yellow in C) as a likely candidate and further sequence review uncovered the ace2-A7 
mutation. D Allele replacements and complementation tests. The ace2-A7 allele from 
two haploid strains JAY291 (MATa) and JAY292 (MAT�) was replaced with the ACE2 
allele, generating JAY1051 and JAY1039, respectively. Mattings between the ace2-A7 
and ACE2 haploids confirmed the restoration of the smooth phenotype in diploid strains 
derived from least one haploid parent containing the ACE2 allele. 
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Figure S2.3. Sanger DNA sequencing analysis of ACE2 locus and genome-wide 
copy number in JAY664. 
Panel A shows segments of PCR-Sanger sequencing chromatograms for the ACE2 
locus from haploids with the wild type ACE2 (JAY290) and mutant ace2-A7 (JAY291) 
alleles. Note the difference in the A-homopolymer runs, with eight consecutive peaks in 
ACE2 and seven consecutive peaks in ace2-A7. Panel B shows PCR-Sanger 
chromatograms from diploids (primer extension was from left to right in all cases). The 
JAY270 chromatogram is a mixture of the two alleles (heterozygous), while the rough 
colony clones JAY663 and JAY664 only had the ace2-A7 pattern. The inferred DNA 
sequences in A and B are shown below the chromatograms. Panel C displays the 
array-CGH genome-wide plot of copy number for the JAY664 clone relative to its 
JAY270 parent strain, as described in Fig. 4 in the main text. Each of the 16 S. 
cerevisiae chromosomes has its own plot, shown vertically. Probe signals clustered 
near the center indicate neutral copy number (2x), while clustering to the right indicates 
amplifications and clustering to the left indicates deletions. Panes D and E show single 
chromosome plots for Chr12 and Chr6, respectively. No copy number alterations were 
detected for Chr12, including at the ACE2 locus (indicated). Chr6 had a deletion on the 
right arm (pink shading). The positions of two PCR markers shown in Fig. S4 are 
indicated. 
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Figure S2.4. PCR genotyping of LOH and CNV in JAY664. 
Panels A-I show agarose gel electrophoresis images of PCR-RFLP genotyping of 
HetSNP markers, and PCR detection of hemizygous regions of Chr6 (Fig. S3E), Chr11 
(Fig. 4B) and Chr7 (Fig. 4C). The lanes in all gels contain four sibling haploids from one 
JAY270 tetrad showing the segregation of each marker, the hetero- or hemizygous 
JAY270 diploid, the rough colony isolate JAY664, and a no DNA template negative 
control. The inferred genotypes are indicated for each haploid strain as M for maternal, 
P for paternal, or 0 for absence of a sequence that is hemizygous in the JAY270 diploid. 
For diploids, the genotypes are indicated as M/P for heterozygous, M/0 or P/0 for 
hemizygous specifying which homolog has the sequence detected by PCR (M or P) and 
which homolog does not (0). A 0/0 genotype indicates cases where JAY664 lost 
hemizygosity for the sequence detect by PCR. For the right arm of Chr6 (A-B) JAY664 
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is heterozygous at a region proximal to a gross deletion breakpoint detected by array 
CGH, and is hemizygous for the distal region. For the right arm of Chr11 (C-E) JAY664 
is heterozygous for a HetSNP proximal to an LOH breakpoint, homozygous for a 
HetSNP distal to the LOH breakpoint, and completely lost a DNA sequence further 
down the chromosome that is hemizygous in JAY270. An analogous event (proximal 
LOH and distal CNV) is shown for the right arm of Chr7 (G-I). Note that Chr7 in JAY664 
is heterozygous at the left arm near the left telomere (F), even though an amplification 
even was detected by array-CGH for the distal left tip of Chr7 (Fig. 4C). This 
amplification event is a reflection of the LOH event at the left end of Chr12 where the 
amplified probes are found as a hemizygous sequence in JAY270. 
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Figure S2.5. Analysis of Chr12 LOH in selected smooth and rough clones. 
Panels A and B show the patterns of LOH found in independent 5-FOA resistant clones 
derived from JAY270 with hemizygous insertions of the CORE2 cassette (KlURA3-

ScURA3-KanMX4) either adjacent to the ACE2 allele in the paternal Chr12 homolog (A) 
or adjacent to the ace2-A7 allele in the maternal Chr12 homolog (B). The clones 
selected in A were ace2-A7/ace2-A7 and had rough colonies, whereas the clones 
selected in B were ACE2/ACE2 and had smooth colonies. The genotypes at the nine 
HetSNP loci at the indicated positions were determined by PCR-RFLP (Table S3). The 
clones showing continuous LOH tracts were grouped according to the breakpoint 
interval between HetSNPs, and the number of clones in each class is indicated to the 
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left. Panel C shows a representation of the breakpoint distribution among rough colony 
clones analyzed by WGS (detailed in Fig. S6). These clones were arranged in classes 
according to the PCR-RFLP HetSNPs marker positions used in A and B. The table in 
panel D shows the analysis of absolute interval size, relative size compared to the 
CEN12 to CORE2 distance, and the number and frequency of rough colony ace2-
A7/ace2-A7 (combined from A and C) for each Chr12 interval. Note that only clones 
with continuous tracts are shown in A-C. Four clones with complex tracts were omitted 
from this analysis. One of the clones analyzed by PCR-RFLP was discontinuous, and 
three clones had a gene conversion pattern not associated with a crossover (one from 
PCR-RFLP, and two from WGS [JAY663 and JAY1143]). 
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Figure S2.6. Detailed maps of Chr12 LOH in the 25 sequenced spontaneous rough 
colony isolates. 
The top horizontal line is a depiction of Chr12 in JAY270 with HetSNPs represented as 
paternal (blue) and maternal (red) markers, and the position of the ACE2 locus is 
shown. Each horizontal line below corresponds to Chr12 in each of the 25 spontaneous 
rough colony isolates sequenced. Only the markers that were homozygous P/P or M/M 
are shown (heterozygous markers were omitted to emphasize visualization of LOH 
tracts). As expected from selection for the rough colony morphology, all clones were 
homozygous for the maternal ace2-A7 allele (red). In 3 cases, the tracts had complex 
discontinuities and some even showed limited LOH for the paternal allele near the 
breakpoint. Note the unselected LOH tract on the left arm in JAY664. A detailed view of 
the genotype for each HetSNP is available in Table S5. Plots were generated to scale in 
Python 2.7 using the matplotlib package and a custom script. For size reference, 
CEN12 is at position 151 Kb, and the right-most marker is at position 450 Kb. 
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Figure S2.7., page 1 of 2.  
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Figure S2.7. PFGE profiles of 29 independent smooth derivatives of JAY270. 
continued, page 2 of 2  
All clones were isolated after five transfer cycles in liquid culture without bottlenecks 
(~57 generations; Table S4; Methods). No gross chromosomal rearrangements were 
detected in any of the 29 smooth clones. Size polymorphisms in chromosomes 8 and 12 
were not taken into account, as they are frequent due to contractions and expansions of 
the CUP1 and rDNA repeats, respectively. 
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Figure S2.8. PFGE profiles of smooth clones obtained through two bottlenecking 
lineages of JAY270. 
The gel shows the karyotypes of clones obtained along two independently passaged 
lineages starting from JAY270 (Table S4; Methods). The passage at which the 
intermediate clones were frozen is indicated at the top of each lane. Bottleneck 0 is 
JAY270 itself, and bottleneck 10 is the final clone from each lineage, which grew from 
an estimated ~220 cell generations. All clones were smooth, and no visible 
chromosome size polymorphisms were identified. Size polymorphisms in chromosomes 
8 and 12 were not taken into account, as they are frequent due to contractions and 
expansions of the CUP1 and rDNA repeats, respectively. 
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Figure S2.9. page 1 of 3. 
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Figure S2.9. continued, page 2 of 3. 
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Figure S2.9. PFGE profile of 27 independent rough colony derivatives of JAY270. 
continued, page 3 of 3.  
Rough colony clones were isolated during cycles of liquid growth without bottlenecks 
(most clones isolated at ~57 or less cell generations; Table S4; Methods). Size 
polymorphisms in chromosomes 8 and 12 were not taken into account, as they are 
frequent due to contractions and expansions of the CUP1 and rDNA repeats, 
respectively. Clones with in which unselected chromosomal rearrangements were 
detected are highlighted in bold and their altered chromosomes are marked with an 
asterisk symbol (*). For consistency of the dataset, clones JAY1126, JAY1129 and 
JAY1133 were discarded from the overall analysis because their whole genome 
sequencing failed to yield usable data. 
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Figure S3.1. Genotype distribution in the inbred collection. 
A) The genotypes of the inbred collection from Figure 1C are plotted as cumulative 
frequencies of genotypes for all HetSNP markers. Gray = heterozygous M/P. Blue = 
homozygous P/P. Red = homozygous M/M. B) Maximum, minimum, median and 
average frequency of genotypes that are heterozygous (M/P) and homozygous (M/M 
and P/P) found in the inbred strains in the collection. 
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Figure S3.2. Inbred strains show uniform growth at 30oC and wide variation in 
tolerance to high temperature stress at 39oC. 
A plate spotting assay was used for rapid phenotypic screening of the strain collection. 
Column to the left shows uniform growth among strains incubated for 24 hours at 30oC 
and column to the right shows variable growth at 39oC after four days of incubation. 
Black circles highlight JAY270, which shows an intermediate level of heat tolerance. 
Rectangles highlight the growth of representative strains shown in Figure 3.2 with 
different levels of temperature tolerance. Red = JAY1664, orange = JAY1628, green = 
JAY1658, blue = JAY1610.  
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Figure S3.3. Flow cytometry data analysis. 
A) False events corresponding to cell debris or other material were eliminated by gating 
intact cells in a side scatter by forward scatter plot. B) Potential cell aggregates were 
subsequently eliminated from our event counting by gating single cells in a forward 
scatter by pulse width plot. C) Final counts of GFP+ (JAY270 parent strain) and GFP- 
cells (partial inbred diploid strains) in each culture were determine by gating the FITC+ 
and FITC- population in a count by FITC signal plot. D) Competition assay between four 
independent GFP-labeled JAY270 derivatives and the unlabeled JAY270 parent over 22 
cycles of co-culture. Each of the four GFP-tagged controls were co-cultured with the 
original JAY270 parent in triplicates shown in orange, blue, green and black curves. 
Phenotype of GFP-tagged strains was maintained until cycle 8 of competition. After that 
point the phenotypic variation between triplicates increased significantly likely due to the 
appearance of de novo mutations.  
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Figure S3.4. Venn Diagrams. 
Venn diagrams displaying pairwise overlapping comparisons of inbred strains that 
displayed the most significant changes in the heat tolerance and growth kinetics 
phenotypes. Circles represent the group of inbred strains that showed the greatest 
improvement in growth kinetics (top competitors, red) and in heat tolerance (top heat 
tolerants, yellow) and the group of inbred strains that displayed substantial decrease in 
growth kinetics (bottom competitors, blue) and heat tolerance (bottom heat tolerants, 
green). Venn diagrams were generated using the BioVenn web application (Hulsen, de 
Vlieg, and Alkema 2008). 
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Figure S3.5. Genotype confirmation of UPD strains. 
A) To determine whether the UPD strains contained one fully homozygous 
chromosome, the genotypes at two HetSNP loci located near the last HetSNP 
chromosome arm were determined by PCR-RFLP. In addition, loss of the AmdS marker 
at the centromere region indicated LOH at the central chromosomic region. The 
possibility of LOH due to whole chromosome loss was eliminated by tetrad analysis and 
confirmation of four viable spores for all strains. Panels B-G show agarose gel 
electrophoresis images of PCR-RFLP genotyping of HetSNP markers. Panels B, D and 
F show genotypes of RFLP markers located at the left arm of chromosomes 4, 14 and 
15, respectively. Panels C, E and G show genotypes of RFLP markers located at the 
right arm of chromosomes 4, 14 and 15, respectively. The approximate coordinates of 
each RFLP marker tested are indicated below each image. The corresponding 
genotype at each position is indicated for each UPD strain as P/P for homozygous 
paternal, M/M for homozygous maternal and P/M for heterozygous. 
 



 140 

APPENDIX B: SUPPLEMENTAL TABLES 
 
 
 
Table S2.1. Yeast strains used in this study. 

Strain Relevant genotype 1 
Genetic 

background 
Description Source 

Diploids:     

JAY270 MATa/MATa, ACE2/ace2-A7 JAY270 Representative single colony isolate from the PE-2 bioethanol production 

strain 

Argueso et al., 2009 

JAY663 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate This study 

JAY664 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate This study 

JAY665 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate This study 

JAY912 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate This study 

JAY913 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate This study 

JAY585 MATa/MATa, ACE2/ace2-A7, ura3D0/ura3D0 JAY270 Ura- derivative of JAY270, also known as FGY50 Our strain collection 

JAY1101, 1102, 
1103 

MATa/MATa, ACE2::CORE2/ace2-A7, 

ura3D0/ura3D0 

JAY270 Hemizygous CORE2 insertion at Chr12-P This study 

JAY1099, 1100, 

1104 
MATa/MATa, ACE2/ace2-A7::CORE2, 

ura3D0/ura3D0 

JAY270 Hemizygous CORE2 insertion at Chr12-M This study 

JAY865, 866 MATa/MATa, ACE2/ace2-A7, ura3D0/ura3D0, 
SSF2::CORE2/SSF2 

JAY270 Hemizygous CORE2 insertion at Chr4 This study 

JAY868 MATa/MATa, ACE2/ace2-A7, ura3D0/ura3D0, 
ADH6::CORE2/ADH6 

JAY270 Hemizygous CORE2 insertion at Chr13 This study 

JAY859, 860 MATa/MATa, ACE2/ACE2, ura3D0/ura3D0, 
ADH6::CORE2/ADH6 

CG379* Hemizygous CORE2 insertion at Chr13 This study 

JAY861, 862 MATa/MATa, ACE2/ACE2, ura3D0/ura3D0, 
SSF2::CORE2/SSF2 

CG379* Hemizygous CORE2 insertion at Chr4 This study 

JAY1105,1106 MATa/MATa, ACE2::CORE2/ACE2, 

ura3D0/ura3D0 

CG379* Hemizygous CORE2 insertion at Chr12 This study  

JAY1567, 1568 MATa/MATa, SSF2/SSF2::CORE2, 
CAN1/can1D::Nat 

CG379* Hemizygous CORE2 insertion at Chr4 and hemizygous CAN1 at Chr5 This study 

JAY1569, 1570 MATa/MATa, ADH6/ADH6::CORE2, 
CAN1/can1D::Nat 

CG379* Hemizygous CORE2 insertion at Chr13 and hemizygous CAN1 at Chr5 This study 

JAY1804, 1805 MATa/MATa, SSF2/SSF2::CORE2, 
CAN1/can1D::Nat 

JAY270 Hemizygous CORE2 insertion at Chr4 and hemizygous CAN1 at Chr5 in 

FGY50 strain 

This study 

JAY1812 MATa/MATa, ADH6/ADH6::CORE2, 
CAN1/can1D::Nat 

JAY270 Hemizygous CORE2 insertion at Chr13 and hemizygous CAN1 at Chr5 in 
FGY50 strain 

This study 

JAY1808 MATa/∆MATa, SSF2/SSF2::CORE2, 
CAN1/can1D::Nat 

CG379 JAY1567 with deletion of MATa allele. This study 

JAY1809 MATa/∆MATa, ADH6/ADH6::CORE2, 
CAN1/can1D::Nat 

CG379 JAY1569 with deletion of MATa allele. This study 
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Table S2.1. (continued). Yeast strains used in this study. 

Strain Relevant genotype 1 
Genetic 
background 

Description Source 

JAY1810, 1811 MATa/∆MATa, MAL13::CORE2/MAL13, 
CAN1/can1D::Nat 

CG379 JAY1571 with deletion of MATa allele. This study 

     

JAY1122 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1123 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1124 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1125 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1126 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1127 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1128 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1129 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1130 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1131 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1132 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1133 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1135 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1136 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1137 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1138 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1139 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1140 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1141 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1142 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1143 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1144 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY1145 MATa/MATa, ace2-A7/ace2-A7 JAY270 Spontaneous rough colony isolate from JAY270 This study 

JAY2055 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2056 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2057 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2058 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2059 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2060 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2061 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2062 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2063 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2064 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2065 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2066 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2067 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2068 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 
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Table S2.1. (continued). Yeast strains used in this study. 

Strain Relevant genotype 1 
Genetic 
background 

Description Source 

JAY2069 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2070 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2071 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2072 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2073 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2074 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2075 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2076 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2077 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2078 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2079 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2080 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2081 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2082 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY2083 MATa/MATa, WT JAY270 Smooth colony isolate from JAY270 This study 

JAY289 MATa, ACE2 JAY270 

Sibling spores from a JAY270 tetrad Argueso et al., 2009 
JAY290 MATa, ACE2 JAY270 

JAY291 MATa, ace2-A7 JAY270 

JAY292 MATa, ace2-A7 JAY270 

JAY293 MATa, ACE2 JAY270 

Sibling spores from a JAY270 tetrad Our strain collection 
JAY294 MATa, ACE2 JAY270 

JAY295 MATa, ace2-A7 JAY270 

JAY296 MATa, ace2-A7 JAY270 

JAY325 MATa, ace2-A7 JAY270 

Sibling spores from a JAY270 tetrad Our strain collection 
JAY326 MATa, ace2-A7 JAY270 

JAY327 MATa, ACE2 JAY270 

JAY328 MATa, ACE2 JAY270 

JAY2176 MATa, ace2-A7 JAY270 

Sibling spores from a JAY663 tetrad This study 
JAY2177 MATa, ace2-A7 JAY270 

JAY2178 MATa, ace2-A7 JAY270 

JAY2179 MATa, ace2-A7 JAY270 

JAY2180 MATa, ace2-A7 JAY270 

Sibling spores from a JAY663 tetrad This study 
JAY2181 MATa, ace2-A7 JAY270 

JAY2182 MATa, ace2-A7 JAY270 

JAY2183 MATa, ace2-A7 JAY270 

JAY2184 MATa, ace2-A7 JAY270 

Sibling spores from a JAY663 tetrad This study 
JAY2185 MATa, ace2-A7 JAY270 

JAY2186 MATa, ace2-A7 JAY270 

JAY2187 MATa, ace2-A7 JAY270 

JAY1039 MATa, ACE2, ura3-154, CEN5::HphMX4 JAY270 ACE2 allele replacement in JAY292 This study 

JAY1051 MATa, ACE2, ura3-W256G, CEN5::HphMX4 JAY270 ACE2 allele replacement in JAY291 This study 
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Table S2.2. Oligonucleotides used in this study. 

Name 5'-3' sequence 1 Description 

JAO904 ACACTCAAGATGAGGAGTAT ACE2 primer Fwd, pAR1 construction 

JAO905 TCGCATGAATACGGTCTATC ACE2 primer Rev, pAR1 construction 

JAO906 TACTTCAATAAATGGTTCAC ACE2 primer Fwd, sequencing of A8/A7 tract 

JAO907 TGATATTGTCGAGACCGTGG ACE2 primer Rev, sequencing of A8/A7 tract 

JAO912 TAGCACAAGATATGAACT Chr12 409,200 distal SNP sequencing Fwd 

JAO913 TATATCATCTACAATGAC Chr12 409,200 distal SNP sequencing Rev 

JAO944 ATACTGGAGAGTGTTGGG Chr12 400,451 proximal SNP sequencing Fwd 

JAO945 TCTAGCGACCAAATTGCC Chr12 400,451 proximal SNP sequencing Rev 

JAO1077 CCATTCTTTATCCGCATTC Chr12 14,795 SNP HhaI RFLP Fwd 

JAO1078 CACTTGCTACGCTCCTTA Chr12 14,795 SNP HhaI RFLP Rev 

JAO1079 GCCTCGTCACAGTTTTTT Chr12 85,625 SNP HhaI RFLP Fwd 

JAO1080 CGTTTGGATTTGCCCTTT Chr12 85,625 SNP HhaI RFLP Rev 

JAO1081 TCCTCGCTGTTTCGTTTT Chr12 148,252 SNP ApoI RFLP Fwd 

JAO1082 AGGGGTACTGGTATTGTC Chr12 148,252 SNP ApoI RFLP Rev 

JAO1083 CGGAATGAGACACTGTTA Chr12 227,328 SNP HinfI RFLP Fwd 

JAO1084 GTTGAAGTGAAGAAGGGA Chr12 227,328 SNP HinfI RFLP Rev 

JAO1085 CGACAAACCGTGGTACAA Chr12 292,284 SNP XbaI RFLP Fwd 

JAO1086 CGAACATTCTCACTCCAT Chr12 292,284 SNP XbaI RFLP Rev 

JAO1087 CACAGTCAAGAGAAAGAACA Chr12 364,388 SNP HhaI RFLP Fwd 

JAO1088 GCACACACAAAAGGAACTAA Chr12 364,388 SNP HhaI RFLP Rev 

JAO1089 CACTGAACACCAACATCT Chr12 392,257 SNP HhaI RFLP Fwd 

JAO1090 TCCTCAACAAGCAAGCAA Chr12 392,257 SNP HhaI RFLP Rev 

JAO1091 CCTACGTAAAAAGATGACC Chr12 419,261 SNP HhaI RFLP Fwd 

JAO1092 CATTACCGCAACAGATCC Chr12 419,261 SNP HhaI RFLP Rev 

JAO1093 CGTGTGGATGATCTGATT Chr12 450,044 SNP ApoI RFLP Fwd 

JAO1094 GAAAAGAAATGACTACGGTG Chr12 450,044 SNP ApoI RFLP Rev 

JAO14 AGGAGGGTATTCTGGGCCTCCATG Inside Mx4 region Fwd 

JAO15 ATGCGAAGTTAAGTGCGCAGAAAG Inside Mx4 region Rev 

JAO1073 GGGCAATGTACCCTAAAGGTTGTG Proximal of ACE2::CORE2 insertion Fwd 

JAO1074 
CTTTAGGGTTATGTCCCTATAAACGATGACTATTGCCTTTTTTGGCCCTTAAGACTACAGTGTACGTAAATC 

GCTCGTTTTCGACACTGG 
Insertion of CORE2 proximal of ACE2 Fwd 

JAO1075 
GAACATTTATCTATGCATGATATTAACATAATAAATAATAGTAACAATAATATAATACATTTATTTCTTTAC 

AGTTGATCCATTGTGTGC 
Insertion of CORE2 proximal of ACE2 Rev 

JAO957 AGCGTACCAAAAGAGAAT Inside KIURA3 Fwd 

JAO1076 GATCAACAAGAAACTTACATCTCCC Distal of ACE2::CORE2 insertion Rev 

JAO501 GTCCGATACCCTATGAACGTG Proximal of ADH6::CORE2 insertion Fwd 

JAO502 TTGTTAGTGTATTGATATGTGTTTCTTTTCACCTTAAAGGTGCTTAGCAAGGAG CCTTACCATTAAGTTGATC Insertion of CORE2 proximal of Chr13 ADH6 Fwd 

JAO503 TTTTTATGATTATAAGGTACTATTTAAATATTTACAACTCGTACAGTTCTC GAGCTCGTTTTCGACACTGG Insertion of CORE2 proximal of Chr13 ADH6 Rev 

JAO504 GGTCTGTATATAGGAGTGCTG Distal of ADH6::CORE2 insertion Rev 

JAO505 GTGACTTATTCAGTGAAGTAG Proximal of SSF2::CORE2 insertion Fwd 

JAO506 CCTCCGTACGTAACATCACTATCCATATAGTAGCCATGACTCCGATGGAC CCTTACCATTAAGTTGATC Insertion of CORE2 distal of Chr4 SSF2 Fwd 

JAO507 TTGAGGTGTTCCCTCACCTATGAATAAACAGACACTTCCTGGTTCTTTAA GAGCTCGTTTTCGACACTGG Insertion of CORE2 distal of Chr4 SSF2 Rev 

JAO508 TTTGTCCTTTCCATGATGCCG Distal of SSF2::CORE2 insertion Rev 

JAO611 AGGAGGCAAGATATTATTGTC Proximal of MAL13::CORE2 insertion Fwd 
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Table S2.2. (continued). Oligonucleotides used in this study. 

Name 5'-3' sequence 1 Description 

JAO612 AGTTACTAGATACGGACATATCTCTAGGAACTATGAAGGCTG GAGCTCGTTTTCGACACT Insertion of CORE2 distal of Chr7 MAL13 Fwd 

JAO613 TTAGGAAGGAAATGAATTAAGCTACGCAGAAAGGACATCTCTT CCTTACCATTAAGTTGA Insertion of CORE2 distal of Chr7 MAL13 Rev 

JAO614 CCTGCCCAAGGCGAGGTGCAG Distal of MAL13::CORE2 insertion Rev 

JAO1591 TGCCAAGATGCGAGTATGT Chr6 R 185,546 SNP KpnI RFLP marker Fwd 

JAO1592 TGTTGGGAAAATGCTTGCT Chr6 R 185,546 SNP KpnI RFLP marker Rev 

JAO1115 AGCAGATGCTCAAACGCGGCGCTGA Chr6 R 229,586 SNP NdeI RFLP marker Fwd 

JAO1116 GCGTTAGCCACTTCATTAGATCG Chr6 R 229,586 SNP NdeI RFLP marker Rev 

JAO1134 CAATGTTGGCCAAACCGGGTAACATG Chr11 571,243 SNP EcoRV RFLP marker Fwd 

JAO1135 GATGAAGGCAATGTCACTAAGTCTCG Chr11 571,243 SNP EcoRV RFLP marker Rev 

JAO1117 CTCTTACTCTGTGAGTAGTTG Chr11 639,322 SNP AseI RFLP marker Fwd 

JAO1118 TAAATACTATGTGCCAGCATACC Chr11 639,322 SNP AseI RFLP marker Rev 

JAO1119 TGTGCTAGGCGAGAATATATCGAG Chr11 653 Kb hemizygous marker Fwd 

JAO1120 CCACCGAAATGACTGGCTTGC Chr11 653 Kb hemizygous marker Fwd 

JAO1593 GTGGACGAGAAAACCGTGTGA Chr7 17,017 SNP BglII RFLP marker Fwd 

JAO1594 TGTGTCATTCACATGCGCATAT Chr7 17,017 SNP BglII RFLP marker Rev 

JAO1599 TCTCATCTTCTTTCCCGT Chr7 484,135 SNP HindIII RFLP marker Fwd 

JAO1600 GATTTTCATCCTAGCTGC Chr7 484,135 SNP HindIII RFLP marker Rev 

JAO1140 GAGCTTCGAAACTTCTGGCAGG Chr7 1,005,631 SNP NdeI RFLP marker Fwd 

JAO1141 CAACCGGATTGGGCCTTAGTAAC Chr7 1,005,631 SNP NdeI RFLP marker Rev 

JAO611 AGGAGGCAAGATATTATTGTC Chr7 1,072 Kb hemizygous marker Fwd 

JAO614 CCTGCCCAAGGCGAGGTGCAG Chr7 1,072 Kb hemizygous marker Rev 

JAO271 GCGAAATGGCGTGGAAATGTGATCAAAGGTAATAAAACGTCATAT AATTAAGGCGCGCCAGATCTG To replace CAN1 with NAT Fwd 

JAO272 ATCGAAAGTTTATTTCAGAGTTCTTCAGACTTCTTAACTCCTGTA GCATAGGCCACTAGTGGAT To replace CAN1 with NAT  Rev 

JAO1438 GATTATAGTAAGCTCATTGATCC Upstream to CAN1 Fwd 

JAO1439 GAACAGAGTAAACCGAATCAGG Downstream to CAN1 Rev 

JAO1440 GCGAGATAAACTGGTATTCTTCATTAGATTCTCTAGGCCCTTGGTATCTAGATATGGGTT TTCGTACGCTGCAGGTCGAC To replace MATα allele with Hyg Fwd 

JAO1441 TCCCATATTCCGTGCTGCATTTTGTCCGCGTGCCATTCTTCAGCGAGCAGAGAAGACAAG CGAGTCAGTGAGCGAGGAAG To replace MATα allele with Hyg Rev 

JAO1442 AAGAGGTCCGCTAATTCTGGAG MAT locus Fwd 

JAO1371 AGAACAAAGAAGGATGCTAAG MAT locus Rev 

 

1. In the case of long oligonucleotides used for PCR-based integrations, the nucleotides in the 5’ end (bold) are targeting tails with homology to the respective 
chromosomal insertion sites; the 3’ end nucleotides (italicized) correspond to primer sequences used to amplify the selectable marker sequence from the specific 
template plasmids. 
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Table S2.3. List of phased JAY270 HetSNPs and hemizygous sequences and respective detection methods. 

Marker SGD coordinates 
PCR primers 

Polymorphism 

detection method 

SGD Watson 

bases 1 

JAY270 Watson phased bases 

Chromosome Nucleotide Chr12-P Chr12-M 

Chr12 14,795 JAO1077 + JAO1078 HhaI C A C 

Chr12 85,625 JAO1079 + JAO1080 HhaI G A G 

Chr12 148,252 JAO1081 + JAO1082 ApoI A A G 

Chr12 227,328 JAO1083 + JAO1084 HinfI C T C 

Chr12 292,284 JAO1085 + JAO1086 XbaI T C T 

Chr12 364,388 JAO1087 + JAO1088 HhaI G A G 

Chr12 392,257 JAO1089 + JAO1090 HhaI G A G 

Chr12 400,451 JAO944 + JAO945 Sanger seq G A G 

Chr12 405,711 to 405,718 JAO906 + JAO907 Sanger seq 8x T 8x T 7x T 

Chr12 409,200 JAO912 + JAO913 Sanger seq C T C 

Chr12 419,261 JAO1091 + JAO1092 HhaI T T C 

Chr12 450,044 JAO1093 + JAO1094 ApoI C C T 

Chr06 185,546 JAO1591 + JAO1592 KpnI G G A 

Chr06 229,586 JAO1115 + JAO1116 NdeI C C G 

Chr07 17,017 JAO1593 + JAO1594 BglII C T C 

Chr07 484,135 JAO1599 + JAO1600 HindIII C C G 

Chr07 1,005,631 JAO1140 + JAO1141 NdeI A G A 

Chr07 1,072,000 JAO611 + JAO614 none present absent present 

Chr11 571.243 JAO1134 + JAO1135 EcoRV T A T 

Chr11 639,322 JAO1117 + JAO1118 AseI C A C 

Chr11 653,131 JAO1119 + JAO1120 none present present absent 

 
1. Nucleotides that are underlined indicate the sequences that are cut by the respective restriction endonucleases, whereas lack of underlining 
corresponds to no cut site. 
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Table S2.4. Smooth and rough clones isolation specifics and analysis of chromosome size polymorphisms by PFGE. 

Clone ID Colony phenotype Selected on cycle Estimated generations PFGE polymorphisms 

JAY2055 Smooth 5 57 0 

JAY2056 Smooth 5 57 0 

JAY2057 Smooth 5 57 0 

JAY2058 Smooth 5 57 0 

JAY2059 Smooth 5 57 0 

JAY2060 Smooth 5 57 0 

JAY2061 Smooth 5 57 0 

JAY2062 Smooth 5 57 0 

JAY2063 Smooth 5 57 0 

JAY2064 Smooth 5 57 0 

JAY2065 Smooth 5 57 0 

JAY2066 Smooth 5 57 0 

JAY2067 Smooth 5 57 0 

JAY2068 Smooth 5 57 0 

JAY2069 Smooth 5 57 0 

JAY2070 Smooth 5 57 0 

JAY2071 Smooth 5 57 0 

JAY2072 Smooth 5 57 0 

JAY2073 Smooth 5 57 0 

JAY2074 Smooth 5 57 0 

JAY2075 Smooth 5 57 0 

JAY2076 Smooth 5 57 0 

JAY2077 Smooth 5 57 0 

JAY2078 Smooth 5 57 0 

JAY2079 Smooth 5 57 0 

JAY2080 Smooth 5 57 0 

JAY2081 Smooth 5 57 0 

JAY2082 Smooth 5 57 0 
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Table S2.4. (continued). Smooth and rough clones isolation specifics and analysis of chromosome size polymorphisms 
by PFGE. 
 

Clone ID Colony phenotype Selected on cycle Estimated generations PFGE polymorphisms 

JAY2083 Smooth 5 57 0 

JAY2084 Smooth 5 57 0 

Bottlenecks 1 Smooth 10 220 0 

Bottlenecks 2 Smooth 10 220 0 

JAY663 Rough Unknown Unknown 0 

JAY664 Rough Unknown Unknown 2 

JAY665 Rough Unknown Unknown 1 

JAY912 Rough Unknown Unknown 0 

JAY913 Rough Unknown Unknown 0 

JAY1122 Rough 1 29 0 

JAY1123 Rough 3 43 0 

JAY1124 Rough 3 43 0 

JAY1125 Rough 5 57 1 

JAY1127 Rough 9 85 0 

JAY1128 Rough 2 36 0 

JAY1130 Rough 4 50 0 

JAY1131 Rough 4 50 1 

JAY1132 Rough 4 50 0 

JAY1135 Rough 4 50 1 

JAY1136 Rough 5 57 0 

JAY1137 Rough 5 57 0 

JAY1138 Rough 3 43 0 

JAY1139 Rough 3 43 0 

JAY1140 Rough 3 43 0 

JAY1141 Rough 3 43 0 
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Table S2.4. (continued). Smooth and rough clones isolation specifics and analysis of chromosome size polymorphisms 
by PFGE. 
 

Clone ID Colony phenotype Selected on cycle Estimated generations PFGE polymorphisms 

JAY1142 Rough 4 50 1 

JAY1143 Rough 1 29 0 

JAY1144 Rough 2 36 0 

JAY1145 Rough 2 36 0 

 

PFGE polymorphisms indicates the number of bands with altered size in each clone, excluding changes in Chr8 and Chr12. 
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Table S2.5. Summary of WGS analysis of rough colony isolates. 

Rough 
clone ID 

Generations at 
rough selection 

Number of 
Point 

mutations 

Primary selected and 
Secondary LOH tracts 

Tract size 
(Kb) 

Terminal or 
Interstitial? 

Continuous or 
Interrupted? 

Unidirectional or 
Bidirectional? 

JAY663 unknown 2 

Primary: Chr12 4.4 I C U 

Secondary: Chr04 1063.9 T I B 

Secondary: Chr13 272.7 T I B 

JAY664 unknown 4 

Primary: Chr12 859.9 + rDNA T C U 

Secondary: Chr02 20.0 I C U 

Secondary: Chr06 78.6 T C U 

Secondary: Chr07 310.1 T C U 

Secondary: Chr11 85.1 T C U 

Secondary: Chr12 21.8 T I B 

Secondary: Chr14 4.6 I C U 

Secondary: Chr15 5.8 I C U 

JAY665 unknown 0 

Primary: Chr12 845.6 + rDNA T I B 

Secondary: Chr03 20.8 I C U 

Secondary: Chr06 60.6 T C U 

JAY912 unknown 1 Primary: Chr12 818.9 + rDNA T C U 

JAY913 unknown 0 Primary: Chr12 706.6 + rDNA T C U 

JAY1122 29 0 
Primary: Chr12 777.7 + rDNA T C U 

Secondary: Chr15 5.8 I C U 

JAY1123 43 0 Primary: Chr12 912.3 + rDNA T C U 

JAY1124 43 3 Primary: Chr12 706.6 + rDNA T C U 

JAY1125 57 1 
Primary: Chr12 814.0 + rDNA T C U 

Secondary: Chr15 0.5 I C U 

JAY1127 85 0 
Primary: Chr12 873.4 + rDNA T I U 

Secondary: Chr13 3.4 I C U 

JAY1128 36 0 Primary: Chr12 681.2 + rDNA T C U 
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Table S2.5. (continued). Summary of WGS analysis of rough colony isolates. 

Rough 
clone ID 

Generations at 
rough selection 

Number of 
Point 

mutations 

Primary selected and 
Secondary LOH tracts 

Tract size 
(Kb) 

Terminal or 
Interstitial? 

Continuous or 
Interrupted? 

Unidirectional or 
Bidirectional? 

JAY1130 50 0 

Primary: Chr12 900.0 + rDNA T C U 

Secondary: Chr04 12.1 I I U 

Secondary: Chr10 373.5 T C U 

JAY1132 50 1 Primary: Chr12 777.7 + rDNA T C U 

JAY1131 50 0 
Primary: Chr12 814.0 + rDNA T C U 

Secondary: Chr16 308.8 T C U 

JAY1135 50 0 Primary: Chr12 873.4 + rDNA T C U 

JAY1136 57 0 Primary: Chr12 912.3 + rDNA T C U 

JAY1137 57 0 Primary: Chr12 838.8 + rDNA T C U 

JAY1138 43 0 Primary: Chr12 818.9 + rDNA T C U 

JAY1139 43 0 Primary: Chr12 747.2 + rDNA T C U 

JAY1140 43 0 
Primary: Chr12 777.7 + rDNA T C U 

Secondary: Chr16 10.4 I C U 

JAY1141 43 1 

Primary: Chr12 717.2 + rDNA T C U 

Secondary: Chr04 6.1 I C U 

Secondary: Chr06 5.0 I C U 

Secondary: Chr10 209.6 T C U 

JAY1142 50 0 
Primary: Chr12 870.9 + rDNA T C U 

Secondary: Chr15 26.7 T C U 

JAY1143 29 1 

Primary: Chr12 11.1 I C U 

Secondary: Chr04 0.9 I C U 

Secondary: Chr04 4.1 I C U 

Secondary: Chr14 1.6 I C U 

JAY1144 36 0 Primary: Chr12 912.3 + rDNA T C U 
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Table S2.5. (continued). Summary of WGS analysis of rough colony isolates. 

Rough 
clone ID 

Generations at 
rough selection 

Number of 
Point 

mutations 

Primary selected and 
Secondary LOH tracts 

Tract size 
(Kb) 

Terminal or 
Interstitial? 

Continuous or 
Interrupted? 

Unidirectional or 
Bidirectional? 

JAY1145 36 1 

Primary: Chr12 908.4 + rDNA T I B 

Secondary: Chr04 3.9 I C U 

Secondary: Chr15 254.7 T C U 

 

None of the LOH tracts above crosses the centromere of the respective chromosomes. 
The median size of the 15 interstitial secondary tracts was 5.0 Kb; The median size of the 12 terminal secondary tracts was 232.1 Kb. 
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Table6S3.1. Yeast strains used in this study. 

Strain Mating type Relevant genotype Description Source 

Haploids:     

JAY1520 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1521 MATa ace2-A7 

JAY1525 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1522 MATa ace2-A7 

JAY1526 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1529 MATa ace2-A7 

JAY1531 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1533 MATa ace2-A7 

JAY1536 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1535 MATa ace2-A7 

JAY1539 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1540 MATa ace2-A7 

JAY1545 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1543 MATa ace2-A7 

JAY1546 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1549 MATa ace2-A7 

JAY1553 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1552 MATa ace2-A7 

JAY1557 MATa ACE2 Sibling spores from a JAY270 tetrad (Rodrigues-Prause et al., 2018) 

JAY1554 MATa ace2-A7 

JAY290 MATa ACE2 Sibling spores from a JAY270 tetrad Our strain collection 

JAY291 MATa ace2-A7 

JAY293 MATa ACE2 Sibling spores from a JAY270 tetrad Our strain collection 

JAY295 MATa ace2-A7 

JAY328 MATa ACE2 Sibling spores from a JAY270 tetrad Our strain collection 

JAY326 MATa ace2-A7 

 

Diploids:     

JAY270 MATa/MATa ACE2/ace2-A7 Sugarcane bioethanol fermentation strain Argueso et al., 2009 

JAY2208 
(JAY270-GFP) 

MATa/MATa ACE2/ace2-A7; CEN5::GFP-
KanMX 

Hemizygous GFP-KanMX insertion near Chr5 This study 

JAY1598 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY1525 This study 

JAY1600 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY1526 This study 

JAY1602 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY1531 This study 

JAY1604 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY1536 This study 

JAY1606 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY1539 This study 

JAY1608 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY1545 This study 

JAY1610 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY1546 This study 

JAY1612 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY1553 This study 

JAY1614 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY1557 This study 

JAY1616 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY290 This study 

JAY1618 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY293 This study 
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Table S3.1. (continued). Yeast strains used in this study. 

Strain Mating type Relevant genotype Description Source 

JAY1620 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1521 x JAY328 This study 

JAY1622 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY1526 This study 

JAY1624 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY1531 This study 

JAY1626 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY1536 This study 

JAY1628 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY1539 This study 

JAY1630 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY1545 This study 

JAY1632 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY1546 This study 

JAY1634 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY1553 This study 

JAY1636 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY1557 This study 

JAY1638 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY290 This study 

JAY1640 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY293 This study 

JAY1642 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1522 x JAY328 This study 

JAY1644 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY1531 This study 

JAY1646 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY1536 This study 

JAY1648 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY1539 This study 

JAY1650 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY1545 This study 

JAY1652 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY1546 This study 

JAY1654 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY1553 This study 

JAY1656 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY1557 This study 

JAY1658 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY290 This study 

JAY1660 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY293 This study 

JAY1662 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1529 x JAY328 This study 

JAY1664 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1533 x JAY1536 This study 

JAY1666 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1533 x JAY1539 This study 

JAY1668 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1533 x JAY1545 This study 

JAY1670 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1533 x JAY1546 This study 

JAY1672 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1533 x JAY1553 This study 

JAY1674 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1533 x JAY1557 This study 

JAY1676 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1533 x JAY290 This study 

JAY1678 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1533 x JAY293 This study 

JAY1680 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1533 x JAY328 This study 

JAY1682 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1535 x JAY1539 This study 

JAY1684 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1535 x JAY1545 This study 

JAY1686 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1535 x JAY1546 This study 

JAY1688 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1535 x JAY1553 This study 

JAY1690 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1535 x JAY1557 This study 

JAY1692 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1535 x JAY290 This study 

JAY1694 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1535 x JAY293 This study 

JAY1696 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1535 x JAY328 This study 

JAY1698 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1540 x JAY1545 This study 

JAY1700 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1540 x JAY1546 This study 

JAY1702 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1540 x JAY1553 This study 

JAY1704 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1540 x JAY1557 This study 
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Table S3.1. (continued). Yeast strains used in this study. 

Strain Mating type Relevant genotype Description Source 

JAY1706 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1540 x JAY290 This study 

JAY1708 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1540 x JAY293 This study 

JAY1710 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1540 x JAY328 This study 

JAY1712 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1543 x JAY1546 This study 

JAY1714 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1543 x JAY1553 This study 

JAY1716 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1543 x JAY1557 This study 

JAY1718 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1543 x JAY290 This study 

JAY1720 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1543 x JAY293 This study 

JAY1722 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1543 x JAY328 This study 

JAY1724 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1549 x JAY1553 This study 

JAY1726 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1549 x JAY1557 This study 

JAY1728 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1549 x JAY290 This study 

JAY1730 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1549 x JAY293 This study 

JAY1732 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1549 x JAY328 This study 

JAY1734 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1552 x JAY1557 This study 

JAY1736 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1552 x JAY290 This study 

JAY1738 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1552 x JAY293 This study 

JAY1740 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1552 x JAY328 This study 

JAY1742 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1554 x JAY290 This study 

JAY1744 MATa/ MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1554 x JAY293 This study 

JAY1746 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY1554 x JAY328 This study 

JAY1748 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY291 x JAY293 This study 

JAY1750 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY291 x JAY328 This study 

JAY1752 MATa/MATa ACE2/ace2-A7 Inbred diploid resulting from crossing between JAY295 x JAY328 This study 

JAY2108 MATa/MATa ACE2/ace2-A7; Chr4-UPD P/P JAY270 derivative containing uniparental disomy for Chr4 (P/P) This study 

JAY2133 MATa/MATa ACE2/ace2-A7; Chr4-UPD P/P JAY270 derivative containing uniparental disomy for Chr4 (P/P) This study 

JAY2191 MATa/MATa ACE2/ace2-A7; Chr4-UPD P/P JAY270 derivative containing uniparental disomy for Chr4 (P/P) This study 

JAY2200 MATa/MATa ACE2/ace2-A7; Chr4-UPD P/P JAY270 derivative containing uniparental disomy for Chr4 (P/P) This study 

JAY2201 MATa/MATa ACE2/ace2-A7; Chr4-UPD M/M JAY270 derivative containing uniparental disomy for Chr4 (M/M) This study 

JAY2202 MATa/MATa ACE2/ace2-A7; Chr4-UPD M/M JAY270 derivative containing uniparental disomy for Chr4 (M/M) This study 

JAY2250 MATa/MATa ACE2/ace2-A7; Chr14-UPD P/P JAY270 derivative containing uniparental disomy for Chr14 (P/P) This study 

JAY2252 MATa/MATa ACE2/ace2-A7; Chr14-UPD P/P JAY270 derivative containing uniparental disomy for Chr14 (P/P) This study 

JAY2254 MATa/MATa ACE2/ace2-A7; Chr14-UPD P/P JAY270 derivative containing uniparental disomy for Chr14 (P/P) This study 

JAY2244 MATa/MATa ACE2/ace2-A7; Chr14-UPD M/M JAY270 derivative containing uniparental disomy for Chr14 (M/M) This study 

JAY2248 MATa/MATa ACE2/ace2-A7; Chr14-UPD M/M JAY270 derivative containing uniparental disomy for Chr14 (M/M) This study 

JAY2282 MATa/MATa ACE2/ace2-A7; Chr15-UPD P/P JAY270 derivative containing uniparental disomy for Chr15 (P/P) This study 

JAY2283 MATa/MATa ACE2/ace2-A7; Chr15-UPD P/P JAY270 derivative containing uniparental disomy for Chr15 (P/P) This study 

JAY2284 MATa/MATa ACE2/ace2-A7; Chr15-UPD P/P JAY270 derivative containing uniparental disomy for Chr15 (P/P) This study 

JAY2298 MATa/MATa ACE2/ace2-A7; Chr15-UPD M/M JAY270 derivative containing uniparental disomy for Chr15 (M/M) This study 

JAY2300 MATa/MATa ACE2/ace2-A7; Chr15-UPD M/M JAY270 derivative containing uniparental disomy for Chr15 (M/M) This study 
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Table7S3.2. Oligonucleotides used in this study. 

Name 5’ – 3’ sequence 1 Description 

JAO14 AGGAGGGTATTCTGGGCCTCCATG Inside Mx4 region. To confirm insertion of Mx4 cassettes; Rev.  

JAO15 ATGCGAAGTTAAGTGCGCAGAAAG Inside Mx4 region. To confirm insertion of Mx4 cassettes; Fwd. 

JAO1385 GATTACACCGTACTTCTTTTCAATGCGTAAACAACTAGAGTTGACAAA   CTGCTGTCGATTCGATAC To amplify GFP cassette; Fwd. Homology tail to CEN5 region. 

JAO1386 CACGTCAAGACTGTCAAGGAGGGTATTCTGGGCCTCCATGTC   GTCGATGAATTCGAGCTC To amplify GFP cassette; Rev. Homology tail to KanMx4 
cassette. 

JAO1387 GACATGGAGGCCCAGAATAC To amplify KanMx4 cassette; Fwd.  

JAO466 TACGAAGTGCTAGGAGGTATATTATTAATATGATAGTTTTTAGTTTATAATA   

GTGGATCTGATATCATCG 

To amplify KanMX4 cassette; Rev. Homology tail to CEN5 
region. 

JAO464 CATCGTGTAGTCAAGCAGCA To confirm integration of GFP-KanMx4 cassette; Fwd. CEN5 
region. 

JAO467 CATTTACAGATTCATAGTTC To confirm integration of GFP-KanMx4 cassette; Rev. CEN5 
region. 

JAO1563 ACAGTACTAGCTTTTAACTTGTATCCTAGGTTATCTATGCTGTCTCACCATAGGGAATATTACCTATTTCA

G   CTTGCCTCGTCCCCGCCG 

To amplify AmdS cassette; Fwd. Homology tail to CEN4 region. 

JAO1566 GTATTTTAAGTTTTTAAAAAAGTTGATTAAATAGCATGTGAC   CTCCAGTATAGCGACCAG To amplify AmdS cassette; Rev. Homology tail to region 
immediately upstream to CEN4. 

JAO1567 AAAAAGTATTTTAAGTTTTTAAAAAAGTTGATTAAATAGCAT   CTCCAGTATAGCGACCAG To amplify AmdS cassette; Rev. Integration results in 5bp 
deletion of CEN4 element 1. 

JAO1568 GTATTTTAAGTTTTTAAAAAAGTTGATTAAATAGCATGTGAC   AGTTATGGAGTAACAACG To amplify AmdS cassette excluding its terminator region; Rev. 
Homology tail to region immediately upstream to CEN4. 

JAO1569 CTGCAAAACAGTACTAGCTTTTAACTTG To confirm integration of AmdS at CEN4 region; Fwd. 

JAO1570 GGAATATATAGCAGTAGTCAATTTAGCAC To confirm integration of AmdS at CEN4 region; Rev. Used for 
Sanger sequencing. 

JAO1574 TCCAAGGTGGTTGCATCATA Chr4 710,025 SNP BglII RFLP marker Fwd 

JAO1575 TGGCTGGAGTTTCGTCTTCT Chr4 710,025 SNP BglII RFLP marker Rev 

JAO1576 GTATCTTAATGAAACTATGCAATGG Chr4 378,184 SNP BamHI RFLP marker Fwd 

JAO1577 CCTCATCGGCACATTAAAGCTG Chr4 378,184 SNP BamHI RFLP marker Rev 

JAO1659 AAAGAAAAAAATTACTGCAAAACAGTACTAGCTTTTAACTTGTATCCTAGGTTATCTATGCTGTCTCACCA

T    CTTGCCTCGTCCCCGCCG 

To amplify AmdS cassette; Fwd. Homology tail to CEN4 region 

JAO1681 TGGAGGAAAAGCATTGGTATTAAGTACTTTGCATTCTCTTGGAGAAGAACTTGATCAATTGACGGGTATAG

C   CTTGCCTCGTCCCCGCCG 

To amplify AmdS cassette; Fwd. Homology tail to CEN14 region 

JAO1682 AAAATGTTTTAAAATATTTTTAAAAAGCTGCACGTGACTAAC   AGTTATGGAGTAACAACG To amplify AmdS cassette excluding its terminator region; Rev. 

Homology tail to region immediately upstream to CEN14. 

JAO1683 GGACTACTGATGTACTGAAGTTTG To confirm integration of AmdS at CEN14 region; Fwd 

JAO1684 CCTGCTGTCTAATCCGTATTCATTC To confirm integration of AmdS at CEN14 region; Rev 

JAO1685 CTGAATTGGACGCTTTGGTTC Inside AmdS gene. To confirm insertion of AmdS cassettes; Fwd. 

JAO1686 TCATCACTGTTCTTTTCAGATACTAGTTTCAAAAATTCCTTGACAGAACCATTTCATGTTCAATAATGAAA

A   CTTGCCTCGTCCCCGCCG 

To amplify AmdS cassette; Fwd. Homology tail to CEN15 region 

JAO1687 AATGTTTAAATATTTAATGTATATGACTTCCGAAAAATATAT   AGTTATGGAGTAACAACG To amplify AmdS cassette excluding its terminator region; Rev. 
Homology tail to region immediately upstream to CEN15. 

JAO1688 GGTAGTATATAAGAGAATAACTTCCC To confirm integration of AmdS at CEN15 region; Fwd 

JAO1689 GCTCTCACCACATTTATCACC To confirm integration of AmdS at CEN15 region; Rev 

JAO1692 CACAAAATATGTTCGTACCCATCC Chr14 259,198 SNP MfeII RFLP marker Fwd 

JAO1693 GTGACGGAGTTTGATATACTTAAC Chr14 259,198 SNP MfeII RFLP marker Rev 
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Table S3.2. (continued). Oligonucleotides used in this study. 

Name 5’ – 3’ sequence 1 Description 

JAO1694 GTTGAAGCAATGAAGGAATCTTCG Chr14 758,547 SNP MseI RFLP marker Fwd 

JAO1695 CCTCAGTCATGCCAAGTGCATCAAC Chr14 758,547 SNP MseI RFLP marker Rev 

JAO1696 CGTCTCGTATTATACTTGTCCTG Chr15 16,733 SNP SalI RFLP marker Fwd 

JAO1697 CATCGAGGAACAACAGCATCTAG Chr15 16,733 SNP SalI RFLP marker Rev 

JAO1588 GAGTTATTGACAGGGAATAC Chr15 1,058,946 SNP NdeI RFLP marker Fwd 

JAO1589 GGAGCTTACTTCACTCATTTC Chr15 1,058,946 SNP NdeI RFLP marker Rev 

 
1.  Nucleotides in the 5’ end (bold) have homology to the respective chromosomal insertion sites. 3’ end nucleotides (not in bold) correspond to 

primer sequences to amplify the desired amplicons. 
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Table8S3.3. Growth conditions tested through plate spotting assay. 

Base Media Additional treatment/supplement Temperature of incubation Hours of incubation 

2% YPD - 30oC 48 

2% YPD - 39oC 96 

2% YPGE - 30oC 48 

2% YP Galactose - 30oC 48 

2% YP Raffinose - 30oC 48 

2% YPD 7 % EtOH 30oC 48 

2% YPD 11 % EtOH 30oC 48 

2% YPD 30 mM furfural 30oC 48 

2% YPD 0.75 mM menadione 30oC 48 

2% YPD 0.01% MMS 30oC 48 

2% YPD 100 mM hydroxyurea 30oC 96 

2% YPD 100 J/m2 UV light 30oC 48 

2% YPD 150 J/m2 UV light 30oC 48 
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Table9S3.4. Summary of phenotypic data measure in competition assays (CA) and tolerance to high temperature assays 
(HT) for each inbred strain. 

Strain 
Phenotype in CA 

Score in HT 
Cycle 0 Cycle 2 Cycle 5 Cycle 8 

JAY1598 50.50 33.72 19.15 13.32 3.3 

JAY1600 54.40 36.87 22.27 10.03 1.0 

JAY1602 50.65 18.00 5.72 2.39 3.5 

JAY1604 54.45 38.85 25.68 12.97 1.5 

JAY1606 54.00 59.88 74.95 78.28 1.3 

JAY1608 54.10 43.32 32.38 26.13 3.4 

JAY1610 54.20 39.92 37.22 25.55 5.0 

JAY1612 49.95 36.57 25.97 14.63 3.8 

JAY1614 47.15 11.48 1.27 0.81 3.5 

JAY1616 50.35 57.08 73.27 70.05 2.7 

JAY1618 53.55 57.93 73.47 76.57 0.8 

JAY1620 47.45 22.00 6.85 3.11 3.3 

JAY1622 49.75 52.28 62.38 59.13 0.3 

JAY1624 47.95 38.35 31.53 21.43 3.3 

JAY1626 48.25 53.23 69.08 76.03 1.3 

JAY1628 47.70 67.25 92.93 98.15 2.0 

JAY1630 47.60 50.40 64.62 71.98 3.3 

JAY1632 48.75 48.18 63.85 70.22 4.7 

JAY1634 45.95 46.48 51.25 51.07 2.6 

JAY1636 49.05 33.93 16.63 7.22 2.5 
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Table S3.4. Summary of phenotypic data measure in competition assays (CA) and tolerance to high temperature assays 
(HT) for each inbred strain. 
 

Strain 
Phenotype in CA 

Score in HT 
Cycle 0 Cycle 2 Cycle 5 Cycle 8 

JAY1638 46.60 58.07 83.22 93.55 2.4 

JAY1640 47.40 63.05 90.82 97.47 1.5 

JAY1642 40.25 28.00 24.68 15.60 3.7 

JAY1644 47.95 45.53 62.88 61.22 3.8 

JAY1646 49.20 55.67 79.45 88.7 3.4 

JAY1648 45.40 65.70 93.83 97.42 3.8 

JAY1650 49.45 46.10 68.23 70.28 4.3 

JAY1652 45.75 54.32 81.95 91.70 3.6 

JAY1654 39.90 61.55 88.72 96.30 4.2 

JAY1656 45.40 44.32 49.82 50.20 4.3 

JAY1658 45.35 65.97 90.13 96.32 4.0 

JAY1660 49.60 64.93 87.97 96.30 3.7 

JAY1662 40.60 30.02 20.12 12.95 4.3 

JAY1664 47.05 67.30 92.93 97.93 0.0 

JAY1666 51.83 41.30 28.87 18.93 0.0 

JAY1668 52.20 28.53 5.56 2.29 1.8 

JAY1670 52.02 63.97 71.73 74.48 2.9 

JAY1672 50.53 51.68 45.70 25.42 0.7 

JAY1674 49.07 37.38 18.28 9.05 2.8 

JAY1676 50.70 51.02 45.40 29.93 0.7 
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Table S3.4. Summary of phenotypic data measure in competition assays (CA) and tolerance to high temperature assays 
(HT) for each inbred strain. 
 

Strain 
Phenotype in CA 

Score in HT 
Cycle 0 Cycle 2 Cycle 5 Cycle 8 

JAY1678 49.55 41.27 50.87 46.52 0.8 

JAY1680 45.35 59.17 28.92 38.80 3.2 

JAY1682 50.23 45.62 47.33 34.42 2.7 

JAY1684 49.00 36.33 14.77 5.20 4.3 

JAY1686 52.93 31.18 28.03 17.82 4.3 

JAY1688 52.82 30.47 24.83 14.92 5.0 

JAY1690 49.32 28.15 8.07 2.89 4.8 

JAY1692 43.13 32.80 24.40 15.27 4.0 

JAY1694 48.32 30.17 27.12 14.50 3.0 

JAY1696 44.93 44.48 31.73 33.77 4.4 

JAY1698 52.42 48.17 31.33 16.68 3.0 

JAY1700 48.68 32.05 26.65 2.93 5.0 

JAY1702 50.48 30.12 17.13 2.96 2.5 

JAY1704 49.87 55.72 71.50 84.67 4.4 

JAY1706 50.80 64.72 86.90 96.1 3.7 

JAY1708 53.53 81.92 92.57 97.25 3.3 

JAY1710 46.03 25.37 25.25 24.93 4.8 

JAY1712 51.80 19.22 16.70 16.70 4.0 

JAY1714 52.30 24.70 22.67 23.55 2.5 

JAY1716 51.90 7.05 3.56 4.00 2.0 
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Table S3.4. Summary of phenotypic data measure in competition assays (CA) and tolerance to high temperature assays 
(HT) for each inbred strain. 
 

Strain 
Phenotype in CA 

Score in HT 
Cycle 0 Cycle 2 Cycle 5 Cycle 8 

JAY1718 51.47 46.05 57.65 75.33 1.9 

JAY1720 49.82 41.17 43.68 35.63 1.5 

JAY1722 46.68 7.64 5.25 4.94 3.0 

JAY1724 43.30 18.58 14.02 8.49 1.5 

JAY1726 43.73 8.52 4.18 5.11 3.8 

JAY1728 39.18 34.82 25.07 16.42 2.7 

JAY1730 40.37 33.60 23.30 17.52 1.3 

JAY1732 38.78 13.20 4.97 1.68 3.3 

JAY1734 51.42 36.17 12.00 3.91 4.2 

JAY1736 50.88 59.33 69.98 79.22 3.0 

JAY1738 51.72 55.88 58.42 61.85 2.7 

JAY1740 47.28 35.82 19.05 10.22 4.0 

JAY1742 53.95 69.72 90.65 97.78 1.5 

JAY1744 55.13 65.48 86.57 95.35 0.5 

JAY1746 48.22 42.45 41.25 38.33 2.8 

JAY1748 51.38 38.30 22.48 12.52 2.5 

JAY1750 48.55 15.60 4.05 1.83 4.2 

JAY1752 48.17 15.15 4.11 2.31 3.2 
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Table10S3.5. List of phased JAY270 HetSNPs interrogated for confirmation of UPD strains. 

Marker SGD coordinates 
PCR primers 

Polymorphism 
detection 
method 

SGD 
Watson 
bases 1 

JAY270 Watson phased 
bases 

Chromosome Nucleotide Chr-P Chr-M 

Chr4 378,184 JAO1576/JAO1577 BamHI C T C 

Chr4 710,025 JAO1574/JAO1575 BglII T G T 

Chr14 259,198 JAO1692/JAO1693 MfeI T T A 

Chr14 758,547 JAO1694/JAO1695 MseI A G A 

Chr15 16,733 JAO1696/JAO1697 SalI C T C 

Chr15 1,058,946 JAO1588/JAO1589 NdeI T T C 

 

1.  Nucleotides that are underlined indicate the sequences that are cut by the respective restriction endonucleases, whereas lack of underlining 

corresponds to no cut site. 
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Table11S3.6. Details on genomic regions showing significant association to the growth kinetics and heat tolerance 
phenotypes. 

Phenotype 
Assay 

Chromosome 
Number 

Genome Coordinates 
Number of 

Markers 

Number of 
Genes in 
Region 

Max 
LOD 
value 

Quantitative 
Inheritance Model 

GROWTH 4 Chr04_558889..572184  (15.2kb) 17 8 5.382 Additive Maternal 

GROWTH 10 
Chr10_467589..569699  

(102.1kb) 
48 52 6.280 Additive Paternal 

GROWTH 15 
Chr15_1024820..1069385  

(44.6kb) 
138 21 4.324 

Dominant Paternal 
Low 

GROWTH 16 Chr16_289873..361102  (71.2kb) 134 36 5.351 Dominant Maternal 

TEMPERATURE 5 Chr05_549677..565641  (16.0kb) 40 9 5.561 Dominant Paternal 

TEMPERATURE 6 Chr06_85688..97759  (12.1kb) 33 4 6.042 Additive Maternal 

TEMPERATURE 7 Chr07_82753..95670  (12.9kb) 30 7 5.230 Dominant Maternal 

TEMPERATURE 7 Chr07_673392..730469  (57.1kb) 9 27 7.574 Additive Paternal 

TEMPERATURE 7 Chr07_849524..887971  (38.4kb) 14 18 5.403 Dominant Paternal 

TEMPERATURE 13 Chr13_75040..92531  (17.5kb) 50 9 8.172 Additive Maternal 

TEMPERATURE 13 Chr13_715996..749967  (34.0kb) 17 19 9.800 Additive Paternal 

TEMPERATURE 13 Chr13_754723..818486  (63.8kb) 62 36 6.387 Additive Paternal 

TEMPERATURE 14 Chr14_528514..579106  (50.6kb) 37 29 10.638 Additive Maternal 

TEMPERATURE 14 Chr14_596319..605480  (9.2kb) 2 4 10.638 Additive Maternal 

TEMPERATURE 14 Chr14_662399..662537  (0.14kb) 6 0 4.311 Dominant Maternal 

TEMPERATURE 14 Chr14_691878..695118  (3.2kb) 6 3 5.072 Dominant Maternal 

TEMPERATURE 15 Chr15_764174..781222  (17.0kb) 13 9 5.787 Additive Maternal 

  

 

 


