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Abstract 

Here we seek to both improve and simplify the method by which upper frontoge-

nesis may be studied. Using a two-dimensional form of the geostrophic momentum 

approximation in geostrophic/isentropic coordinates, our dynamic model reduces 

to a predictive equation for the potential pseudo-density (inverse Rossby-Ertel po-

tential vorticity), with associated diagnost ic equation for the Bernoulli function 

from which the wind and mass fields can be calculated. Ageostrophic motions are 

implicit, and vertical motions retained for the adiabatic case employed, by this 

choice of coordinates. Initialization of the domain incorporates a realistic vertical 

distribution of the mass field along with upper / lower boundaries which are either 

isobaric/isentropic or constant potential vorticity surfaces. Vertical wind shears 

such as are commonly associated with baroclinic waves are idealized and act as the 

forcing mechanism for frontogenesis. 

Major model results include the formation of upper fronts with associated wind 

and thermal fields which, when viewed together, are well correlated with obser-

vations of these parameters in terms of magnitude and gradient as well as their 

proximity to one another. Well-defined folding of the dynamic tropopause occurs in 

geostrophic space; thus, unlike previous balanced models, the transformation back 

to physical space is not required in order to produce the desired results. However, 

we show that performing the coordinate transformation enhances the realism of the 

results. 

Our findings document the applicability of the geostrophic momentum approxi-

mation to non-curved flows containing high relative vorticity, and the simplicity of 

the dynamics when applied to these particular coordinates. Further, we find that 

generalizing the forcing mechanism can also produce noteworthy aspects of internal 

frontogenesis; this was accomplished by extracting an essential feature of baroclinic 
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waves-vertical wind shearing-and incorporating it first into the classical defor-

mation field and later applying it to the zonal flow directly. The results suggest 

more can be learned about frontogenesis by application of balanced two-dimensional 

t heory even when relatively extreme simplifications, such as adiabatic , fric t ionless 

flow, are made. 
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Chapter 1 

INTRODUCTION 

The study of internal ( upper-level) fronts has been an active field of research since 

the late 1920s, when upper-air instrumen s first became operational. Some of the salient 

structures of these fronts-features such as static stability in the frontal layer, t.rr1 11s-

verse horizontal temperature gradients , and the nearly isothermal layer in the region now 

referred to as the tropopause and lower stratosphere-were observed early on. The promi-

nent interpretation which grew out of these observations was that of the Bergen School-a 

continuous frontal theory-which evolved into a "deep" polar frontal model where fronts 

were thought to extend from the surface to the tropopause. Not surprisingly, both the 

avenues _and roadblocks to knowledge of upper-level fronts have paralleled the advance of 

the instrumentation necessary to measure their characteristics; for example, the Oergen 

School theory fell into disuse, at least initially, primarily due to the lack of supporting 

observational evidence. 

One important advance, advocated by Reed and Danielson (1959), was that fronts 

were no longer viewed as regions separating polar from tropical tropospheric air . In this 

model, upper fronts are perceived as a secondary phenomenon of a tropopause folding event 

through tilting effects, and that these fronts may be defined as separating tropospheric 

and stratospheric air instead of separating two distinct tropospheric air masses. Two im-

plications of this model are that we can specifically account for stratospheric-tropospheric 

mass exchange, a result which was later confirmed ( e.g. Briggs et al., 1963), and that 

upper fronts may form independently of surface fronts. Observational studies by Shapiro 

et al. ( 1987) indicate the upper low pressure vortex and jet stream associated with a 

folding tropopause occur in arctic weather systems as well as the more commonly referred 
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to mid-latitude a nd subtropical systems. This data led to their proposal of a new model 

for the meridional structure of the tropopause and primary wind systems-referred to as a 

three-fold model-wherein there exists stratospheric-tropospheric exchange through these 

folds accompanied by subtropical, polar, and arctic jetstreams, respectively. 

Tropopause folding as a mechanism for upper frontogenesis is not inconsistent with 

the modern view, which considers such frontogenesis to be related to the developmen t 

of baroclinic waves . Kinematically, however, baroclinic waves with t heir associated wind 

shear patterns result in a complex process wherein diffe rential advection of both the ther-

mal and wind fi elds tends to hinder attempts at understanding any si ngle as pect of the 

problem. One way to gain information about these processes is to make idealizations in 

such a way as to reproduce frontal characteristics which are consistent with those ob-

served as growing out of the baroclinic wave. For example, we can isolate frontogenesis 

by idealizing the wind and thermal fie lds in wa.ys kn ow n to lead to fro ntogenesis; s 11 ch 

an approach is use<l in the work of Hoskins ( 1971 ) an<l Hosk ins an<l Dretherton (1972) 

where a geostrophic deformation fi eld acts on a weak init ial temperature gradient. This 

procedure produces realistic scale contraction wherein the fluid concent rates into narrow 

zo nes, resulting in cross-frontal gradients which are about an order of magnitude greater 

than t hose along the front. Hoskins (1974) has shown that similar results are obtained for 

the steady state problem as well , and that frontogenesis increases fo r this case when the 

thermal wind opposes the basic flow. 

Alt hough the Primitive Equations ( PEs) have been the primary tool for integrations 

used in numerical weather prediction, they have the disadvantage of being so general as to 

preclude significant analytical manipulations . In particular, the lack of balance conditions 

implies the desired fields (e.g. wind and mass) cannot be obtained by a simple invertibility 

relat ionship . On the other hand, the relatively extreme simplification of the PEs resulting 

in the Quasi-geost rophic (QG) approximation cannot mathematically handle the dyn·amics 

which occur, among other areas , in and near a midlatitude front . Fortunately, the study of 

fronts benefits from the a pplication of another more modern tool described below which 

has been successfully applied to, for example, ageostrophic secondary frontal flows by 

Hoskins and Draghici (1977) and the balanced squall line model of Schubert et al. (1989) . 
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The Geostrophic Momentum Approximation (first alluded to by Eliassen, 1948, and 

hereafter referred to as GMA) represents a compromise between the complex accuracy of 

the PEs and the simplicity of QG theory. The GMA equations, a filtered set in that they 

cannot describe gravity wave propagation, are more general than the QG equations since 

fewer terms are dropped from the PEs. In fact, they bear more formal resemblance to 

the PEs than they do to those resulting from QG theory: advection is by the total wind 

and vertical advection is retained in the momentum equation. Perhaps most importantly, 

though, the essential properties of a three dimensional vorticity equation, conservation of 

potential vorticity, and the energy equation are all formally consistent with those derived 

from the PEs. Additionally, the GMA is valid for flows where the vertical component of 

relative vorticity is on the order of the coriolis parameter-an important consideration for 

the study of fronts, jets, and many other observable atmospheric phenomena. It should be 

noted here, however, that the GMA is not valid in regions where the flow is highly curved 

(defined as any region where the curvature vorticity is on the order of the shear vorticity) 

and it is not clear what if any effects are neglected due to this assumption. 

Ideally, we would like to retain the benefits of a general theory such as the GMA, while 

retaining as many analytical and numerical benefits as possible arising from the relat ive 

simplicity of QG theory. Hoskins ( 1975) and Hoskins and Draghici ( 1977) made progress 

toward such a theory by advocating a coordinate transformation which, when applied to 

the GMA, were termed the "Semigeostrophic" (SG) equations. With these new horizontal 

coordinates, the advecting velocities become geostrophic as in the QG equations. However, 

because the new equations are mathematically identical to the GMA, we conclude the 

ageostrophic advections are retained implicitly in the coordinate transformation . Similarly, 

newly defined ageostrophic components allow retention of both a continuity equation and 

vector momentum equation which are formally identical to QG theory, but with the latter 

equation retaining vertical motion which is again implicit in the change of coordinates . 

The thermodynamic equation becomes more general since its vertical motion is against 

the (geos trophic) potential vorticity, which varies in three dimensional space, instead of 

being against the static stability parameter , which varies only in the vertical. 
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Further development of SG theory was made by Schubert et al. (1987, 1989) with 

the simultaneous use of geostrophic and isentropic coordinates , which allows the system of 

equations to be reduced to a predictive equation for the potential pseudo-density (inverse 

Rossby-Ertel potential vorticity) and a diagnostic relationship for the Bernoulli function. 

With this choice of coordinates, the ageostrophic circulation becomes entirely implicit as 

well. Of course, for adiabatic motions the total 0-derivative disappears, and the potential 

density becomes a conservative quantity. The potential density equation has only one 

component with 0 as the vertical coordinate since, as noted by Haynes and ~11cintyre 

(1987) for the PEs and later applied to the GMA equations by Schubert et al. (1989), 

there is no net transport of potential vorticity across any isentrope; thus, potential vorticity 

can be neither created nor destroyed in a layer bounded by two isentropes. The application 

to the GMA equations of the impermeability of isentropes to potential vorticity is one of 

several indications of the cons istency of the GMA. 

There are other benefits gained by utilization of the SG equations. For example, be-

cause the Jacobian of the coordinate transformation is also the dimensionless vertical com-

ponent.of absolute vorticity, resolution of a numerical scheme is enhanced in geostrophic 

space in regions of a relative maximum of this quantity (in such regions, the shift obtained 

by transforming a field back to physical space is the greatest). Thus , for a given grid spac-

ing, features which may be unresolveable in physical space are captured in geostrophic 

space and shifted back to physical space. This procedure often produces realistic replica-

tions ( e.g. vorticity patterns near a cold front produced by Hoskins and West , 1979). 

So far we have considered from a historical perspective some of the conditions under 

which upper fronts may form, and discussed the relevance of certain tools and approaches 

to the study of the frontogenesis process. The approach of Hoskins mentioned earlier 

has aspects which preface the possibility of further research. Keyser and Pecnick (1985) 

allude to these possibilities by pointing out that the primary success of two-dimensional 

semigeostrciphic theory in the context of frontogenesis has thus far been with regard to 

surface fronts . They proceed to develop a PE model which simultaneously includes the 

effects of confluence (horizontal deformation) and horizontal shear, along with three- di-

mensional characteristics, resulting in the best representations of upper fronts to date in a 
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two-dimensional model; still, there is the lingering question of whether a balanced model 

can successfully model internal frontogenesis in two dimensions or, as stated by Buzzi et 

al. (1981) with regard to semigeostrophic theory, a three dimensional representation 1s 

required. 

Figure 1.1 shows a model-produced upper front which apparently is as realistic a 

result as has been achieved for two-dimensional balanced flows to date. Notice the front 

doesn't extend deep into the troposphere, and the slight folding of the dynamic tropopause 

is achieved only by the use of the geostrophic coordinate in the model. This should be 

compared with figure 1.2, which is representative of the growing base of observational data 

on tropopause folding events . As is frequently the case, the fronts in this figure formed 

within a developing mid-latitude cyclone, with a fold on either side of the upper trough in 

the height field. Here we see the formation of deep fronts with well-defined folds, strong 

jet streaks, and sharply sloping isentropes in the vicinity of the fronts. 

Thus we attempt to both simplify and improve on previous results regarding the 

frontogenesis process. Specifically, we address the following questions: ( 1) Can the model 

equations be simplified and generalized by using both geostrophic and isentropic coordi-

nates? (2) Will the simultaneous inclusion of (a) a continuous potential vortici ty field in 

the vertical and (b) ·a height-dependent deformation field, which has not been attempted 

within the context of semigeostrophic theory, result in a more realistic depiction of the 

upper-level frontogenesis process? 

In order to answer these questions, we use the /-plane system of equations with 

the GMA and proceed in Chapter 2 to develop the three dimensional potential density 

equation and associated invertibility relation in geostrophic coordinates. This system is 

closed by simply including the geostrophic and hydrostatic relations which, already, is a 

simplification of the system in its various "physical" coordinate forms. In Chapter 3, the 

reduction of this model to two dimensions in the transformed cross-frontal plane allows 

an analytic solution of the prediction equation and a de-coupling of the predictive and 

diagnostic equations from a numerical standpoint. Frontogenesis is idealized following the 

general approach of Hoskins et al. (1971, 1972) and Buzzi et al. (1981), but with the 
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Figure 1.1: A two-dimensional balanced model result showing formation of a folded 
tropopause or constant potential vorticity surface (shown as the heavy solid line) and asso-
ciated upper-front, using a deformation field as the forcing mechanism and the geostrophic 
horizontal coordinate. Thin solid lines are isentropes, and isotachs are dashed. Taken from 
Hoskins (1972). 



7 

p 
(mb) 

'-· 

250 )00 

300 

-
400 

llO-

500 
600 -
700 
800 
900 

1000 ,. ,cu,,.,.0 

Figure 1.2_: Cross-section through an Islandic Low as observed on 12 April 1983. The 
tropopause shown is a constant potential vorticity surface and is represented by the heavy 
solid line separating stratospheric air (clear) and tropospheric air (shaded). Thin solid 
lines and dashed lines are as in figure 1.1, also. Taken from Shapiro (1985). 



8 

aforementioned additions: a generalized height dependent deformation rate, and a more 

realistic initialization of the potential vorticity field. The upper and lower boundaries are 

chosen as isentropic as well as isobaric surfaces. The resulting equations are shown to 

take the same form as those for the specific case where the deformation rate is constant. 

The use of a two dimensional model has the historical advantage of producing realistic 

transverse secondary circulations and, in addition, with our choice of coordinates we show 

the simplicity with which these circulations can be recaptured. 

Results show the combination of allowing the rate of deformation to vary vertically 

and prescribing the initial field of potential vort icity as a continuous one do indeed produce 

realistic upper level fronts, perhaps most notably a true folding of the dynamic tropopause 

which in some cases extends deep into the troposphere. In these cases the tropopause is 

defined a.s a constant potential vo rti city su rface (see Danielsen, l9 0) . Although at this 

point it was unclear what aspect(s) of ou r model produced reali stic frontal parameters, 

we felt the key ingredient was the vertical wind shear characteristic of the deformation 

field. Thus an additional question was whether a generalization of the wind field, wherein 

assumed vertical shears are consistent with baroclinic wave development , would produce 

similar results. Further model runs in Chapter 4 verify this hypothesis with respect to 

formation of upp er fronts. In this case we also redefined the initial state in a manner 

known to isolate formation of internal fronts ; thus, results of Chapter 4 verify that realistic 

modeling of upper frontal parameters can be accomplished when disassociated from surface 

fronts. 

Chapter 2 reviews the three-dimensional theory from which our model is derived . 

Chapter 3 defines the two-dimensional model, describes results of selected model runs, and 

compares these results with previous work . In Chapter 4 further testing and comparison 

is done by redefining the initial field. A summary follows in Chapter 5. 



Chapter 2 

THEO.RY REVIEW 

2.1 Review of the Potential Density Equation 

We begin with the / -plane system of equations with the gcostrophic momentum 

ap proximation (Eliassen, 1948; Hoskins, 1975). Proceeding with an analysis similar to 

that of Schubert et al. (1989), we will arrive at a simple predictive equation for the 

potential pseudo-density (inverse Rossby-Ertel potential vort icity). Later, in our two 

dimensional model, this predictive equation will take on a n even si mpler form. Assuming 

the flow is frictionless, and using potential temperature as t he vertical coordinate, our 

system becomes 
Du9 aM Dt - f V + OX = 0, (2 .1) 

Dv9 DM 
-+Ju+- =0, Dt ay (2 .2) 

DM 
88 = IT, (2.3) 

-+O' -+-+- =0 DO' (au ov aiJ) 
Dt ax oy 80 

(2.4) 

where (u9 ,v9 ) = J- 1(-aM/ay, aM /ax) are t he components of geostrophic velocity, (u,v) 

the horizontal components of the total veloci ty, II = cp (p/p0 t the Exner fu nc tion, M = 

0II+4> the Montgomery potential, O' = -a. /88 t he pseudo-density, iJ = D0/Dt the vertical 

theta velocity, and 
D 8 8 8 -8 - = -+u-+v-+0-Dt at ox . 8y 80 

(2.5) 

the total derivative. The vertical component of the vorticity equation can be derived from 

(2.1) and (2.2) and takes the fo rm 

(2.6) 
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where the components of the absolute vorticity vector are given by 

_ /J(X, Y) 
- 8(y,0)' 

_ f8(X, Y) 
T/- 8(0,x)' 

( _ f8(X, Y) 
- 8(x, y) ' (2.7) 

and X and Y are defined below in (2.10). We can eliminate the divergence between (2.4) 

and (2.6) to obtain one form of the potential density equation: 

Da• a• ( 8 8 & ) · - + - ~- + ,,,,_ + (- 0 = 0, 
Dt ( &x fJy 80 (2.8) 

where 
• f 

O' = -0' 
( 

(2.9) 

is the potential pseudo-density, or potential density (PD) for short. With 0 as the vertical 

coordinate we can simplify our system of equations (hence , the vorticity and pseudo-

density equations also) signi ficantly for motions which are adiabatic. We will make the 

adiabatic assumption later in chapter 3 when we develop the ( dry) fronta.l model. 

2.2 Review of Semigeostrophic Theory 

2.2.1 Coordinate Transformation 

Since (2.8) involves advection by the total wind , this equation along with the invert-

ibility relation we formulate in section 2.2.2 will not form a closed system. Expressed in 

physical space, then, this system would not be appropriate for model ing purposes unless 

we were to solve an additional equation. With this as the initial motivation , we now intro-

duce the geostrophic coordinates, where in this case we simultaneously use the isentropic 

vertical coordinate approach following the arguments of Schubert et al. (1989). The hori-

zontal transformation has the affect of switching the function of physical and geostrophic 

coordinates, respectively, by making geostrophic variables independent variables and the 

physical variables dependent variables. We define geostrophic coordinates in the usual 

way: 

(X, Y, 0, T) = ( x + v9 / J, y - u9 / J, 0, t), (2. 10) 

where the term "geostrophic" is a result of the fact that, for the frictionless case described 

in our governing equations, DX/Dt = u9 and DY /Dt = v9 , as can be easily seen from 
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(2.1), (2.2), and (2.10). Thus, a particle following the motion in geostrophic space moves 

with the geostrophic wind. 

The relationships between derivatives in (x, y, 0) and (X, Y, 0) space are written as 

a ax a EJY 8 a 
= at ax + at aY + aT' at (2.11) 

a ax a 8Y 8 
ax --+--ox &X &x 8Y' (2. 12) 

a ax a &Y 8 
= --+--&y &y ax &y &Y' (2. 13) 

a ax a EJY 8 a 
80 a0 ax + ao ay + a0 · (2. 14) 

The transformations (2.11}--(2.14) imply the total derivative operator (2.5) can be written 

(2.15) 

Thus, (2.8) is still the fundamental predictive equation of the model but with the total 

derivative now given by (2.15). We can invert (2.12) and (2.13), which yields 

and 

c a 
JEJX 

av a av a =-----, &y Bx &x By 

c a ax a ax a 
f EJY = - &y Bx + EJx By. 

(2. 16) 

(2. 17) 

We can use (2 .16) and (2.17) in (2.14), along with the Jacobian relations (2 .7), to obtain 

(2.18) 

We see from (2.18) that the term "vortex coordinates" can reasonably be applied to the 

geostrophic coordinates, since the partial theta-derivative in tra~sformed space is along 

the three dimensional absolute vorticity vector in (x, y, 0) space. 

An important aspect of the geostroph.ic momentum approximation is that the essential 

conservation relations of the primitive equations are maintained in their original form. 
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For example, conservation of potential temperature is formally identical to the primitive 

equation form, but with the total derivative given by (2.15); a similar statement holds for 

the energy equation as well. 

It is easy to imagine from the form of the potential density equation that its inverse, 

the potential vorticity equation , will be formally identical to the primitive equation form 

of the potential vorticity equation. In fact, the potential vorticity equation is derived in 

the same manner as the potential density equation (2.8). Thus , combining (2.4) and (2.6) 

can also yield 

Dq 1 ( 8 8 8) · Dt - -;; 8x + TJ 8y + ( 80 8 = o, (2.19) 

where q = (/a is the Ross by-Ertel Potential Vorticity. Notice that in (x, y, 0) , only the 

vertical component of vorticity contributes to the potential vorticity1 equation or , in the 

case of (2.8), the potential density equation . The reason for this is related to the fact 

that (2.6) can be written in the form 

o(aq) 8(uaq-0~) 8(vaq-0ry) 
-- + ----- + ----- = 0, 8t 8x Dy 

so that intuitively we see that what Haynes and McIntyre (1987) proved for the isentropic 

form of the primitive equations holds as well when the geostrophic momentum approx-

imation is made; namely, isentropes are semi-impermeable to potential vorticity (hence , 

to potential density also) in the sense that there can be no net transport of q across any 

isentrope. Applying (2. 18) to (2. 19) yields 

(2.20) 

which is again considerably simpler than its counterpart in (x,y,0). Similarly, we can 

write (2.8) in the form 
Da• • 80 _ O 
Dt + a 80 - . (2.21) 

1This vorticity quantity is more properly referred to as the isentropic vorticity (o, to be distinguished 
from the vertical vorticity component in pressure or height coordi nates . However , we will keep the con-
vention of using the symbol ( when referring to the vertical vorticity component in all systems . 
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Already, important features of geostrophic coordinates are apparent. In addition to the 

simplicity of, for example, (2.20), the Jacobian of the transformat ion from physical co-

ordinates is simply the dimensionless ver ical component of absolute vorticity ( / J ( com-

pare (2.12) and (2.13) with (2.7)). Second, horizontal advecting velocities have become 

geostrophic, which eliminates the need to solve an additional equation to close the sys-

tem in the adiabatic case, yet the governing equations implicity retain the ageost rophic 

advections. In our two-dimensional frontogenesis model, a· will be the p redicted quantity. 

2.2.2 Invertibility Principle 

Because prediction of a• can now be performed in geost rophic coordinate space, in 

order to form a closed system we need to fol ow the procedure of Schubert et al. (1989) 

a nd formulate the invertibility relation alluded to above in transformed space also. It can 

be shown that the geostro phic and hydrostat ic relations in (X, Y, 0 ) take the form 

(2.22) 

which is identical to the form taken in (x,y,8) space with M replaced by M• , where 

M. = M + 1 (u2 + v2 ) 2 g g (2. 23) 

is the Dernoulli function. The potential density a• is a combination of the mass field a and 

the wind field (. However, a is related to IT , and using (2.7) ( can be ex pressed in te rms 

of u9 and v9 • By (2 .22), then , the wind and mass fields can be obtained from a· if we 

can somehow invert it to obtain M• . This second order partial differential equation, along 

with appropriate boundary conditions, is usually referred to as the invertibility principle. 

A relation between M• and a• can be derived as follows . From the definition of a• we 

have 

where r = dIT/dp = K.IT/p. This last equat ion can be written 

o(x, y, II ) + ra• = O. 
B(X,Y,0) 

( 2. 24) 

(2.25) 
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Expressing x and yin terms of ug and Vg by (2.10), and then using (2 .22) , we can write 

(2.25) as 

(2.26a) 

If the upper boundary is an isentropic and isobaric surface with potential temperature 0T 

and Exner function ITT, the upper boundary condition for (2.26a) is sim ply 

at (2.26b) 

If we neglect the effects of topography and assume that the lower boundary is both the 

constant isobaric height surface <I>= 0 and the isentropic surface 0 = 0 8 , then M = 0fl 

at 0 = 0s. Written in terms of M•, this lower boundary cond ition becomes 

aM· 1 [ (aM•) 2 (aM•) 2
] G 80 - M. + 2f2 ax + BY = O at 0 = 0s . (2.26c) 

The lateral boundary conditions depend on the particular application and will be discussed 

later in the context of the two dimensional model. It should be noted here that defining the 

lower boundary as both isobaric and isentropic does not necessarily exclude formation of a 

surface front; however, in Chapter 4 we prescribe these boundaries to be constant surfaces 

of potential density; in this case, as noted by Keyser et al. (1986), the possible coupling 

effects between surface and upper-level fronts ( through vertical motions) are excluded. 

Equations (2.8), (2.22) and (2.26) form a closed system. The computational scheme 

is as follows: knowing a•, solve (2.26) for M•; use (2.22) to compute ug and vg; use these 

geostrophic winds in (2.8) to predict a new a• . 



Chapter 3 

FRONTOGENESIS BY HEIGHT DEPENDENT DEFORMATION 

3.1 Two Dimensional Model 

3.1.1 Theory 

So far, using both the geostrophic momentum approximation and a useful coordi-

nate transfor:n, we have reviewed the necessary three dimensional theory to study a wide 

range of fluid phenomena which are too general to be studied with quasigeostrophic the-

ory; however . we have at the same time retained its major benefits, such as the balance 

relationships in the resulting equations which are necessary to recover the fields of inter-

_est. We now apply a simplified version of this theory to study upper level (i.e. internal) 

frontogenesis . In particular, we assume the motions to be adiabatic, and we simplify to 

two dimensions both the potential density equation and the invertibility re lat ion arrived 

at in Chapter 2 in order to study the frontogenesis process in the transverse (X,0) plane. 

The assumption that no variations in the fields of interest occur along the front follows 

a frequently held a.x.iom that the relationship between such variations and the frontogen-

esis process itself is not clear, but that such an assumption is acceptable for along-front 

geostrophic flows (i.e. transverse geostrophy) where the front is assumed to be straight 

and variatioI'-s of the along-front fields are small . 

Let us now generalize the two-dimensional frontogenesis problem of Hoskins ( 1971, 

1972) and Hoskins and Bretherton (1972). In this case, fronts oriented in they-direction 

are assumed to be forced by a pure, height dependent deformation field so that 

u9 (x, 0) = -a(0)x, (3.1) 

v9 (x,y,0,t) a: (0) y + v~ (x, 0, t), ( 3.2) 
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where a = a( 0) is the vertically varying deformation rate, the first terms on the right 

hand side represent the fixed ( or "slowly" varying) deformation field, and the v; term 

represents the rotational flow generated during frontogenesis so that v~(x,0, O) = O. 

Since we assume that motions along the front are geostrophic, the entire secondary 

circulation is in the transverse plane and is given by u0 • vVe can easily recover this 

circulation; from the definition u = Dx/Dt, equations (2.10), the geostrophic relation 

(2.22), the assumption (3.1), and the fact that u0 = u - u9 , we have 

(3.3) 

3.1.2 Governing Equations 

Now we formulate the two dimensional invertibility principle in a manner consistent 

with the requirements of the numerical solver which is discussed later. First, however, we 

reduce our fundam ental predictive equation (2.8) to two dimensions in geostrophic and 

isentropic space. Setting 

.£_ = ax y_ + av y_ = 0 
By Dy ax Dy f)Y 

with respect to the field variables, using the definitions (2.10) and the assum ptions (3.1) 

and (3 .2), we obtain 
a 
-=-
BY 

(3.4) 

Using the adiabatic assumption iJ = 0 and substituting (3.4) into (2.15) transforms our 

total derivative operator into 
o a a 
Dt = BT - aX BX' (3.5) 

so that equation (2.8) becomes 

(3.6) 

which has as its solution 

(3. 7) 
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Substituting (3.4) into (2.26a), we obtain the corresponding two-dimensional invertibility 

relation 

Since a is coupled to T in the prediction of <f", only the product of these quantities is 

important; in particular, we can make a as small as is convenient for our purposes. If we 

choose a so that a 2 / J2 « 1, then we can approximate the above as 

(3.8a) 

which, interestingly, is identical to the form obtained for both the specific case where a is 

considered constant, and for the case study of the atmospheric response to a moving squall 

line (Schube rt et al. 1989) where both the zonal geostrophic and meridional ageostrophic 

components of the wind are assumed to be ze ro . The upper bound a ry condition is un-

changed: 
DM· 
80 = ITT at 0 = 0T , (3.8b) 

and from (2.26c) and (3.4) the lower boundary condition becomes 

at 0 = 0s, (3 .8c) 

where we again use the constraint a 2 / J2 « 1. For the lateral boundary condition we 

make use of the fact that the geostrophic deformation field (3 .1 ) and (3.2) implies v9 -+ 

0 as X -+ ±oo. In the model, this last expression will be approximated by 

M• (0, T) = M. (0, 0) at (3.8d) 

where we use the definition (2.22) and define XL as a (variable) scale width of the domain 

of interest (see the numerical procedures section). 

From a practical standp oint, we can see that already our two dimensional model is 

much simpler to solve and requires less computer time due to the analytic form of the 

solution (3.7). The advecting velocity in (3.6) is simply the product of the independent 

variable X and the deformation rate a, which is prescribed as varying only in the vertical; 
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therefore, we need not diagnose M* in order to determine this advection quantity as we did 

for the three dimensional case. Thus, in two dimensional (X, 0) space our computational 

scheme is as follows: knowing a·, use (3.8) to diagnose M* only for those time steps 

for which we wish to determine the wind and mass fields. To recover the transverse 

ageostrophic circulation requires diagnosing M* for three successive time steps in order to 

make use of a discretized version of (3.3). 

We should point out that an important limitation of our two-dimensional model 

results by neglecting along-front temperature gradients. Keyser and Pecnick ( 1985) have 

shown these gradients to be significant in the formation of some upper fronts. From this 

point of view, then , our resu lts sho uld be taken within the constraints of the assumptions 

ma.de when formulating the simplified model presented here. 

3 .2 Procedure for the Invertibility Solver 

Our two dimensional model has been reduced to (3 .6) and (3 .8), the form er having an 

analytical solution given by (3.7). The numerical solution to the nondimensional form of 

(3.8) developed below will be given by the Full Multigrid (FMG) solver of Fulton ( 19 9), 

an efficient program utilizing nonlinear Gauss-Seidel relaxation for smoothing. The FMG 

program requires that 1\tt (X, 0 ) = r (X, 0 ) - N( (0 ) be a specified value on each lateral 

boundary; that is, the model requires Dirichlet lateral boundary conditions 1. For a more 

in-depth discussion of the invertibility solver the reader is referred to Fulton (1989) . 

To rewrite our diagnostic equation (3.8) in the nondirnensional form needed , we in-

troduce the nondimensional coordinates (it should be noted that these are quite different 

from the physical coordinates x and z) 

J 
X = -X, 

C 

0 - 0s z= ----
0T - 0s' 

(3.9) 

1 Here, M • is a. horizontally averaged value of M" and M is a deviation . value . To determine an 
appropriate value for M 0

, note that by integrating (3. 13) we can write a basic state form of the initial 
pressure fieli Integration of the hydrostatic relation (2.22) and the definition of IT, then , will defi ne a 
value of M

0 

for any point. 
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with c = (aR(0T - 0B)]112, a = (PB - PT )/PB, and R the gas constant for dry air. 

Derivatives between these nondirnensional quantities and those in geostrophic space are 

then related by 
a 1 a 

80 = (0T - 0B) 8z . (3.10) 

Now we write (3 .8) in its nondirnensional form: nondirnensionalizing M by c2 , a* by a0 

(defined in the next section), r by f 0 = R/PB, II by cp, and p by PB, and retaining the 

original notation for these quantities yields 

( 1 _ cJ2 M) (ra _ a2 M) _ ( a2 
1\.tt) 

2 

8x2 8z2 azax 

81\.tt = 0 
az at z = 1 , 

;\-1-b a.M - ! (a.,1,,,1) 2 = o 
az 2 ax 

a t 

a t z = 0, 

(3. lla) 

(3. llb) 

(3. llc) 

(3. ll<l) 

where b = 0B/(0T - 0B)- Second-order centered finite differencing is used for both 

(3.lla) (the domain interior),_and for (3 . llb) and (3.llc) (the upper and lower boundary 

conditions) where ghost points satisfy the requirements of the finit e difference scheme. 

Applying the homogeneous characteristics of the atmosphere outside the domain allows 

use of Dirichlet lateral conditions ( discussed below) for the four ghost points on those 

boundaries. Once the M-field has been diagnosed, M* may be easily found and, using 

(2 .22), the wind and pressure fields calculated. Representation of the fields of interest 

in physical space can be made by using (2.10) once the geostrophic wind field has been 

calculated. 

If there are n z vertical grid intervals, the vertical resolution is 60 = (0T - 08 )/nz 

K. To determine the horizontal grid spacing, we first must examine t he horizonta l extent 

necessary to avoid contamination of the results by the lateral boundary conditions, defined 

as one Rossby length >., where 

l ). = 0T - 0s [( R/ ps)(ps - PT)] 2 

/ 0T - 0B 
(3.12) 
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From this information we define XL = 2,\, so that the domain is eight Rossby lengths 

wide. Although this domain size is somewhat cumbersome from a numerical standpoint, 

the realism of our results here demand that warm air border the cold trough on both sides. 

The asymmetry of the domain definition allows for a shifted deformation axis as described 

below. With our values for pressure and potential temperature given in the next section 

and f taken as 10-4 s- 1 , ,\:1595 km; the relatively large value for ,\ is a result of the 

depth of the domain. The horizontal resolution is given by ~X = ,\[~0/(0T - 0s)] . A 

typical value for nz is 64, which corresponds to ~0=1.56 Kand ~X=25 km. 

3.3 Description of the Initial Domain 

Equations (3.6) and (3 .8) together with the geostrophic/hydrostatic relations (2.22) 

form a closed system; However , diagnosis of the wind and mass fields by (3.8) req11ires 

that the initial potential density field be prescribed in (X,0) space. To gain some insight 

as to the observed vertical variation of potential density, we derived the a• field using data 

from the U.S. Standard Atmosphere tables (1966) for the months of January and July. 

Based on this data, we define the initial pressure field as 

{ 

( :;_-:8 ) (ps - PT)+ (808a) In A} 
PI (X, 0) =PT+ PB - PT+ (808a) In B (rs - PT) ' 

for which the initial potential density field 2 is 

a0 - ( 8a) tanh ( 6 6061 ) 
ar(X,0) = -------'----'--

1 + ( 600t1 ) In B Pe-PT 

(3.13) 

(3 .14) 

2 The relationship between the initial fields of pseudo-density and potential pseudo-density is found as 
follows : with the geostrophic components as defined above in (3.1) and (3 .2), we know initially that 

and 

so that using (2.7) we can write ( 1 = f - a 2 / f == f . Thus, from the definition u• = (f /()u we can say 
with a high degree of accuracy that initially the potential density field and the density field are equivalent 
in the domain, and the two quantities are essentially interchangeable. In addition, the condition (3 .Sd) 
implies that in the far field and for all time M" I= F(X), so we have exactly ( = f and u• = u outside the 
domain. 
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_ [ cosh (Y) l 
A - ( . ) ' h 0T-0t cos 80 
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_ [cosh (¥)] 
B - ( . ' cos h 0T-0i) 

80 

0B = 280 K, 0T = 380 K, PB = 101575 Pa, PT= 11575 Pa, ao = (PB - PT )/(0T - 0B) = 

900 Pa/K, oa = 800 Pa/K, and 

. { 0 - (6.0) [1 - cos (,r(~~:tcl)] 
0r= 

0 
(3.15) 

or X > 3XL, 

is the variation of potential temperature along the tropopause in the (X, 0) plane. The 

([Hantity 0 = 340 K is a global average value of the tropopause potential temperature3 . As 

can be seen in figures 3.1 and 3.2, with the above definitions the initial potential density 

field 0-1 closely follows the observed an nual verage ( an average of the January and July 

values) of a. Although a more exact fitting to observations can be obtained, the values 

chosen here display the characteristic sharp decline of a observed in regions favorable for 

frontogenesis-fea.tures which are smoothed out in the climatological averages depicted by 

the observations. 

Thus, unlike the two layer model of Hoskins ( 1971), we prescribe a continuous poten-

tial vorticity (PV) field with a sharp vertical gradient in the vicinity of the tropopa.use. 

Notice that at the upper and lower boundaries (0T and 0B), equation (3.13) reduces to 

the constant pressure surfaces PT and PB which satisfy our original boundary assumptions 

in equations (2.26b) and (2.26c) . These lower boundary values were chosen as an annual 

average from the climatological data, and upper boundary values were chosen in such a 

way as to satisfy our desired value of ao . T he parameter 6.0 in e([uation (3.15) controls 

the initial horizontal temperature gradient :n the vicinity of the tropopause. In general 

terms, its numerical value is small in keeping with the approach of Hoskins that the as-

sumed geostrophic deformation field is acting on a thermal gradient which is initially weak. 

3 Referring to figures 3.1 and 3.2, our assumed value com pares acceptably well with observed tropopause 
temperatures. ThusJ"or the purposes of our model we consider the tropopause to have a globally averaged 
value equivalent to 0, and within the domain of interest the tropopause lowers in conjunction with the 
initial horizontal thermal gradient in the interior. 
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Figure 3.1: Potential density vs. potential temperature. Observed values are for the 
month of January as derived from the U.S . Standard Atmosphere tables. The dashed 
curve is the representation of equation (3.1-1) for a typical tropopause temperature. Units 
on the horizontal ax.is are Pa/ K. 
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Figure 3.2: Same as figure 3.1, except for the month of July. 



24 

Thus, the tropopause has a trough representing colder air in the center of the domain in 

a manner similar to that of Hoskins et al. (1985). 

Figures 3.3- 3.6 show the initial state of the entire domain. In figure 3.3 the er• field 

is greatest at the surface and in the center of the domain below the upper trough. The 

associated potential vorticity field q is depicted in figure 3.4. From the definitions in 

Chapter 2, we have the relationship q = f /er•; since these two quantities are inversely 

proportional within the constant f , emphasis will be placed on the more familiar q-field. 

Figure 3.5 confirms our earlier result with regard to the initial vorticity field; the 

initial meridional geostrophic wind field displayed in the figure indicates a very weak 

horizontal gradient so that, as stated earlier, the earth's vorticity is nearly equal to the 

absolute vorticity. Finally, figure 3.6 gives the temperature profile . 

3.4 Results of the Model 

3.4.1 Initial Results 

Preliminary experiments conducted using a deformation rate which linearly decreased 

with height were unsuccessful at producing upper fronts. Desired major characteristics, 

most importantly a folding event, were not reproduced. Also, neither a linear nor Gaussian 

definition of a were successfu l when the zero zonal wind line ( center of the deformation 

field) was placed in the center of the trough. As noted below, however, there was a marked 

improvement when the zero line was moved off to either ~he left or right midway between 

the cold and warm air. Observed features of baroclinic waves are consistent with this shift 

and serve as sufficient motivation ; the existence of confluence in the entrance region of jet 

streaks is well documented both upstream and downstream of the associated upper trough, 

corresponding to a model shift left and right, respectively. It is in such regions that the 

bulk of observational data has been taken verifying upper frontogenesis and associated 

folding events. 

3.4.2 Gaussian Deformation 

Here the deformation field is shifted off the center of the domain to a point halfway 

between the coldest and warmest air. There are two such points : one corresponds to 
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Figure 3.3: Initial potential densi ty field in (X, 0) space as derived from the FMG solver 
at t = 0. !salines are every 200 Pa/K, with the top contour (smallest value) 200 and the 
bottom (largest) 2600. Distance is given in km on the horizontal axis. 
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Figure 3.4: Initial potential vorticity field associated with figure 3.3. Units are 10-
8 

K/(Pa·s) with isolines every 15 • 10-8 and bottom contour (smallest value) of 12 · 10-
8

. 

Distance is given in km on the horizontal ax.is. 
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Figure 3.5: Initial meridional geostrophic wind field in (X, 0) space as derived from the 
FMG solver. Dashed lines indicate winds from the north, solid lines from the south (m/s). 
Distance is given in km on the horizontal axis. 
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Figure 3.6: Ini tial potential temperatu re field in (x,p) space. Isentropes are every 5 K, 
ranging from t he lower boundary value of 280 K to 380 Kon the upper boun dary. Distance 
is given in km on the horizontal ax.is. 
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X = 0, and the other to X = 2XL, The shift provided by far the most realistic results of 

a folded dynamic tropopause. 

In this experiment we set a= 10-5exp{-(1/2)[(0 - 0)/80]2}, where 0 is the level 

of maximum deformation and 80 is the e-folcling half-depth of the a field. Typical values 

for these quantities were 330 K and 20 K, respectively. The coefficient 10-5 was chosen 

so that our assumption (a/ !)2 « 1, which was used to arrive at the two-dimensional 

diagnostic equation, would be satisfied. T he only consequence of such a procedure is more 

time must elapse to achieve the same resu lt s than would have been the ca.se for a larger 

valne of a. Although references to time can t erefore only be made in a relative sense, we· 

never theless prefer it to references to the prod"JCt aT, which is somewhat more ambiguous 

since a varies with height. 

Figu re 3.7 shows that the folding process has already begun in the PV fi eld at the 

21I hour point. A jet alo ng the front has r;:qidly developed, as shown in fig. 3.8 with 

maximum winds of abou t 44 m/s in the core near the tropopause. At th e 36 hour point 

the folding process has intensified with a deeper region of anomalously high PV values 

contained in the developing upper front. The associated jet streak has increased slightly 

in magnitude (figs. 3.9, 3.10). After 48 hours a well developed folding of the PV fi eld 

has occurred; figs. 3.11 and 3.12 show the PV field in geostrophic and physical space, 

res pectively, at this time . There are several noteworthy features in comparing the two 

figures . First, the region above the fold and in the vicinity of the tropopause is shown 

to have a tighter gradient in physical space, which more closely matches observations of 

a near discontinuity of the PV field near the tropopause. Below , the fold itself displays 

the same characterisitic, and is also more narrow. In addition, the shift back to physica l 

space has increased the horizontal extent of the fold by moving points near the jet farther 

west than corresponding points lower in the troposphere. All of these features are a result 

of the horizontal and vertical wind shear which, of course, is greatest near the je t. Figs. 

3.13 and 3.14 show the wind field at 48 hours, also in geostrophic and physical space. A 

more realistic (stronger) wind shear pattern results from the shift. In general, the entire 

region of frontogenesis has been tightened due to its cyclonic nature. The characteristic of 
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Figure 3.7 : Potential vorticity field (10-8 K/(Pa·s)) at 2-1 hours in (X, 0 ) spa.cc wi t h 
isolines every 15·10-8 and bottom (smallest) value of 12· 10-8 . Distance on the horizonta l 
axis is in km. 
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Figure 3.8: Meridional geostrophic wind field at 24 hours in (X, 0 ) space. Strongest 
northerly wi n_ds are 12 m/s, with a southerly jet core of 44 m/s (isotachs every 4 m/s). 
Distance on the horizontal ax.is is in km. 
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Figure 3.9: Potential vorticity field (10-8 K/(Pa-s)) at 36 hours in (X, 0 ) space with 
isolines as in fig . 3. 7. Distance is in km on the horizontal ax.is . 
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Figure 3.10: Meridional geostrop hic wind field at 36 hours in (X,0) space. Isotachs are 
every 4 m/s. Strongest northerly winds (dashed) a re 12 m/s, with a southerly jet core of 
48 m/s. Distance is in km on the horizontal axis. 
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Figure 3.11: Potential vorticity field (10- 8 K/(Pa·s)) at 48 hours in geostrophic space. 
Distance is in km on the horizontal ax.is, and isolines are as in figure 3.7. 
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Figure 3.12: Potential vorticity field (lo-s K/(Pa·s)) at 48 hours in physical space. Dis-
tance is in km on the horizontal axis, and isolines are as in figure 3. 7. 
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shrinking low pressure regions and broadening high pressure (anticyclonic) regions has, as 

stated previously, been well documented by numerous authors of semigeostrophic theory. 

Figs. 3.15-3.17 and 3.18-3.20 are time sequences of the folding event; the first se-

quence shows the relationship between the tropopause fold and thermal field, and the 

second the relationship between the fold and associated jet. Perhaps the most important 

feature of these time series is their general agreement with the growing base of observa-

tional data ( e.g. Shapiro, 1987). In these diagrams we see clearly the evolution from the 

initial trough of cold air shown in figs . 3.3-3.6, to a lowering of the tropopause, and fi-

nally to a narrow, deepening front with a statically stable layer, significant vertical motion 

a long isentropic surfaces through the fold, and wind shearing in the vici ni ty of the front 

;incl jct st reak. At the 48 hour point es pecially there is a characte ri stically thin laye r of 

stratosp heric air within the fold bounded both above and below by t ro posph eri c a ir . 

Our reproduction of uppe r frontogenesis processes in the absence of a n initial s11rface 

temperature gradient confirms previous results of, for example, Duzzi el al. ( 1981) . Fig . 

3. 21 shows perhaps more clearly than previous diagrams the extent of upper frontogcnesis 

obtainable when the deformation field varies vertically. Among the most notable features 

of the model is the folded tropopause associated with the interna l front. The reali sm of 

the folding process, as well as the horizontal wind shears developed near the jct co re, arc 

enhanced by the use of the geostrophic horizontal coordinate. Such increased resolution 

of field parameters has been documented before by Hoskins and Wes t ( 1979), for example, 

but not as applied in the current results. Other recurrent features include the adiabatic 

exchange between troposphere and stratosphere through the fold, and a realistic jet stream 

in terms of both proximity to the front and intensity. These features taken together are 

remarkably similar to observations of, for example, Shapiro ( 1985 ), where a n upp er front 

containing primarily stratospheric air is bounded both above and below by tropospheric 

air . The fact that nearly adiabatic motion occurs through the model-produced fold re-

inforces the notion that anomalous lamina of ozone can be injected to the troposphere 

through such a tropopause folding event (Danielsen, 1980). 
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Figure 3.13: Meridional geostrophic wind field at 48 hours in geostrophic space. Strongest 
winds are 8 m/s from the north ( dashed) and 44 m/s from the south, with isotachs every 
4 m/s. Distance is in km on the horizontal axis. 
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Figure 3.14: Meridional geostrophic wind field at 48 hours in physical space. Strongest 
winds are 8 m/s from the north (dashed) and 44 m/s from the south , with isotachs every 
4 m/s. Distance is in km on the horizontal ax.is. 
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Figure 3.15: Thermal field at 24 hours in physical space with pressure (mb ) as t he vertical 
coordinate. The lowest isotherm is 285 K wit h increments of 5 K. Dashed line is the 
constant PV line 2 • 10-7 K/(Pa·s), representing the dynamic tropopause. Distance is in 
km on the horizontal axis. 
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Figure 3.16: Same as fig. 3. 15, except fo r 36 hours. 
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Figure 3.17: Same as fig . 3.15, except for 48 hours. 
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Figure 3.18: Along-front geostrophic winds at 24 hours in physical space with pressure as 
the vertical coordinate. Dashed line is the same as in fig. 3.15. Isotachs , drawn eve ry 4 
m/s, show the jet core above the developing fo ld . 
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Figure 3.19: Same as fig. 3.18, except for 36 hours. 
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Figure 3.20: Same as fi g. 3.18, except for 48 hours. 
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Figure 3.21: a• field (Pa/K) at 48 hours in physical space with pressure (mb) as the 
vertical coordinate. Isoline values range from 200 to 2600 as in Fig. 3.3. 



Chapter 4 

FRONTOGENESIS BY GENERALIZED VERTICAL WIND SHEARING 

4.1 Comments 

In Chapter 3 we retraced the classical frontogenesis procedure of Hoskins et al .. Using 

a genera.lized geostrophic deformation field w ich varied vertically, as well as an im proved 

initialization of the potential vorticity field, we were able to create a realistic tropopause 

folding event which bears resemblance to the aforementioned observed frontal parameters . 

An essential feature in the success of our model is the effective shearing nature of the 

assumed wind field. Such an assumption ·snot unreasonable since significant vertical wind 

sh~aring is known to exist in baroclinic waves. Thus we can think of our deformation field 

as simply one example of a typical shearing environment where fron ts form, and generalize 

our results by eliminating the deformation cons traint. In its pl ace the wind will now be 

specified as a function of the vertical coordinate. 

Our initialization of the a· field in Chapter 3 allowed for the formation of surface 

fronts even though the lower boundary was defined as an isentropic surface. Here we 

examine another prescription of the initial a• field, with emphasis on the elimination of 

surface fronts so as to isolate internal processes. 

4.2 Isolating Internal Processes 

As an example of a more general zonal flow we set u9 = u9 ( 0), and v9 = v; ( x, 0, t) 

where u9 is any function of 0 and is as defined in (3. 2). As before we assume a 

straight front oriented north-south with 8/fJy = 0, and using the definitions (2.10) and 

our generalized geostrophic wind field , we have {) / fJY = 0 also. Equation (2.8) reduces to 

( 4. 1) 
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which has as its solution 

a• (X,0, T) = a1 (X- u9 T,0), ( 4.2) 

with a1 now given by 

ar ( X, 0 ) = aT + ----:-"--:-'------=~-=----=-----=----~ ( as - aT ) 
{ 

tan h [ a ( 0T - e)] - tanh [ a ( 0 - e)] } 
tanh [a (0T -e)] - tanh [a (es -e)] 

" ( 4( 0 - 0s )( 0T- 0 ))" I ({3X) +ua 2 tan 1 1 , 

(0T - 0s) 
(-L3) 

and with 0s and 0T a.s given in Chapter 3, as = 1700 Pa/K , GT = 100 Pa/ K, 6.a 

ha.If the horizontal variation of potential de nsity in the domain , a = 1/80 , {3 = 1/8X, 

n 2: 1, and 0 again a constant global average potential temperature of the tropopr1.use . 

Notice that at the upper and lower boundari es (0T and 0s ), equation (4.3) reduces to 

the constant su rfaces GT and as. In add itio n, the fun ction (4.3) has been chosen so th a.t, 

when integrated, the upper and lower boundaries are also the constant pressure surfaces 

PT and PB respectively, which satisfies our original boundary assumptions in equations 

(2.26b) and (2.26c). The associated diagnostic equations for the interior and boundaries 

a.re unchanged from Chapter 3: 

a2r-. r· ( 2 - D2M.) ( a2M. )2 2 . -
802 f ax2 + o0aX + f r a - 0, (-1. -1 a.) 

aM· 
80 = Ih at 0 = 0T, 

at 0 = 0s , ( 4.4c) 

and 

at (4.4d) 

As can be seen from ( 4.4d), in these experiments it was possible to narrow the domain 

width somewhat to a more manageable size (here we typically have XL = 3,\) . Once 

the zonal geostrophic winds are known or prescribed, our computational scheme is also 

unchanged: compute a• at time T; use this field to evaluate M•; use these values in 

equation (2.22) to produce the wind and m ass fields. 
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4.3 Results and Comparative Discussion 

There are noteworthy differences between the experiments here and those in Chapter 

3. By excludi::ig the formation of surface front s we isolate internal processes, but simul-

taneously remove possible interactions between the two through vertical motion. Several 

functions were considered as defining the u1 field. Examples of model runs which met with 

somewhat less success included a westerly jet core in the upper troposphere with wind 

speed decreasing both above (where they become easterly in t he stratosphere) and below 

in a. sym metric Gaussian fashion ; specifically, retaining our notation from Cha pter 3 we 

se t 
. 0 - 0 l 8-IJ 

ug = ug exp - 2 ( 80 ) . ( -::: ) [ - 2] 

In these model runs no upper front was produced , but the tropopause did fold 1n a.n 

unrealistic fashion. 

Perhaps a more reali stic vert ical wind distribution is give n if the easterl ies abo \·e the 

front a.re sig nificantly weaker than the westerlies in the vicinity of the jet core: 

. [tanh(~)ln 
Ug = Ug J_ , 

8-SIJ 

with 0o = fJe /3, v.g a specified constant, and n any positive odd integer. Higher values of 

n result in a larger difference between the maximum wind speeds in the troposphere a nd 

stratosphere, respectively. 

We can imagine an initial state where there is a weak horizontal gradient of a· cor-

responding to a low-amplitude upper trough. After a period of time during which the 

geostrophic wind field (equation 4.5) is allowed to act, a front will form due to differential 

advection by ug with respect to 0-surfaces. Results using (4.5) in (4.1) are shown in figs. 

4.1-4.6: 4. -4.3 are a time sequence of the potential density field , and 4.4-4 .6 are the 

same sequence for the thermal field wi t h a representative tropopause value of potenti al 

vo rt icity. 

As can be seen from these figures, t he pper front as given by the a· field is in lesser 

agreement with observations than results in Chapter 3 since each individual isoline has 
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Figure 4.1: Potential density field in physical (x,p) space after u9 , as· given in equation 
( 4.5), has been allowed to act for a period of time. Isolines are every 200 Pa/K, ranging 
from 200 to 1600. Distance is in km on the horizontal axis. 
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Figure 4.2: Same as fig . 4. 1, except at a later time. 



120 
150 

200 

300 

400 
500 

700 
850 

1000 
-2000 

51 

0 2000 4000 

Figure 4.3: Same as fig. 4.2, except at a later time. 
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Figure 4.4: 0-field (K) and tropopause (q = 7 • 10-8 K/(Pa•s)) for the same time as fig . 
4.1. Coordinate system is as in Fig. 4.1, and isentropes are every 5 K beginning with 285 
K. 
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Figure 4.5: Same as fig. 4.4 but for the same time as fig . 4.2. 
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Figure 4.6: Same as fig. 4.4 but for the same time as fig. 4.3. 
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a relatively shallow vertical extent; that is, there is no single value of q defining a deep 

upper-front. Taken as a whole, however, the folding process extends deeper into the tro-

posphere than our earlier results. The thermal field here is again in rough agreement with 

observations, especially with respect to its relationship with the PV field. Although the 

meridional wind contained realistic magnitude and shears, its proximity to the front was 

not well correlated. Also, the initial winds were quite strong and the jet did not develop 

with the developing front-these factors are attributable to the implicit relationship be-

tween our assumed a1 field and the associated M• field. As stated earlier equation ( 4.3) 

has the advantage of producing a flat PV field on the upper and lower boundaries. A 

drawback, however, is that this particular function would not allow a sharp vertical gra-

dient near the tropopause while still allowing for realism in other respects, such a defining 

a monotonically decreasing function of(). 



Chapter 5 

SUMMARY AND CONCLUSIONS 

We have sought to bridge a gap in understanding the formation of internal fronts 

within a framework which considers them as a byproduct of baroclinic waves . Building 

on the accomplishments of Hoskins et al. by using geostrophic/isentropic coordinates 

with a geostrophic deformation field as a forcing mechanism, the objective of simulating 

tropopause folding in a balanced model much as Keyser et al. have done in a primitive 

equation model has largely been successful. We also departed from Keyser 's work in that 

horizontal shear is neglected for our two-dimensional case; instead we considered the effects 

of vertical wind shears growing out of the baroclinic wave accompanied by a continuous 

potential vorticity field. The choice of coordinates simplifies the dynamics by implicitly 

including both ageostrophic and vertical motions in a system of equations which are as 

simple as the quasigeostrophic equations, yet are applicable in a broad and important class 

of motions (high relative vorticity but not highly curved flow) where quasi-geostrophic 

theory breaks down. 

Taken as a whole our results show that internal fronts can form in a balanced two-

dimensional model for two distinct cases-in the absence of a surface temperature gradient, 

where both surface and upper fronts can form, and when surface fronts are eliminated 

as a possibility-when the working definit' on of the tropopause is a surface of constant 

potential vorticity. The first case, which is covered in Chapter 3, provides the best results. 

With a horizontal temperature gradient of 25 K across the upper trough, the model 

produced a fold extending down to approximately the 500 mb level. A jet of nearly 

100 kt developed along the front and above the fold with realistic wind shears when the 

domain was shifted from geostrophic back to physical space. Isentropic surfaces pass 
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through the front, showing that nearly adiabatic motions of dry stratospheric air can 

be advected into the mid troposphere. Thus, there is a correlation between the thermal , 

wind and mass fields which strongly resembles previously observed features of upper fronts. 

These observations used various combinations of aircraft, dropwindsonde, and rawindsonde 

data. The second case (Chapter 4) reinforces some results of Chapter 3: a fold/upper 

front results from the model, and its relationship to the potential temperature field shows 

similarities as well. Parameters near the front were more highly resolved, also, again due 

to the coordinate shift. 

Based on our results there seems to be sufficient evidence to continue the study 

frontogenesis using a simple, two-dimensional, balanced model approach. Here we were 

able to simplify the dynamics of the system to essentially two equations-one predictive 

and one diagnostic. Due to the geostrophic momentum approximation, these equations 

have a more general applicability than quasigeostrophic theory. By allowing vertical wind 

shear to be part of the initialization process, a trough of cold air aloft bordered by warmer 

air on either side formed a rather deep upper front which was a result of a tropopause 

folding event. Unlike previous results using balanced models, reproduction of the true fold 

was not dependent upon the shift back to physical space-use of geostrophic coordinates 

simply enhanced the realism of the final product. 

The introduction of more generalizations into the model leaves more areas which 

would benefit from further study. First it would be useful to allow isentropic surfaces to 

intersect the lower boundary, possibly by utilizing the positive definite scheme of Arakawa. 

Results would be more general and realistic of observed surface features for most cases 

of upper frontogenesis. Accomplishing this alone would be noteworthy by virtue of its 

application to other areas since the major drawback of how to handle the lower boundary 

condition would be solved. At the same time, the benefits of the isentropic vertical co-

ordinate which have made it an increasingly popular choice, such as retention of vertical 

motion for the adiabatic case, would be retained. Second, more can be done to correlate 

observational data with our results. For example, vertical temperature profiles through 

a model produced fold may be similar to observations of Danielson (1980). Introducing 
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moisture and ozone as advected quantities should reveal a dry tropospheric layer with 

both anomalously high ozone values and low liquid water content at the level of the fold, 

indicative of the aforementioned exchange process between stratosphere and troposphere. 

Again, this would correlate well with observations. Third, although we included the 

method for calculating the secondary circulation across the front, recovering these fields 

from the model would provide insight to the tilting and subsidence·effects they produce. 

Finally, more work can be done defining the initial fields for the Chapter 4 case ( where the 

upper /lower boundaries are constant potential vorticity surfaces) so that there is initially 

a weaker geostrophic flow along the front, and the resulting jet which develops over time 

is better correlated with· the formation of the front. 

In retrospect it seems likely that the major results contained herein could also be 

achieved for a two-layer model. Such an application would, by virtue of its link to both 

previous work and current results, help in advancing the idea that much remains to be 

learned about the subject by employing the twe>-dimensional balanced approach. 
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