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ABSTRACT 
 

DEVELOPING A MURINE MODEL FOR Q FEVER 
 

Coxiella burnetii is a gram-negative, intracellular bacterium that causes 

disease in humans and animals. The bacterium is commonly found in nature and 

humans and animals develop infections by inhaling infectious aerosols. Animal 

infections are generally asymptomatic, but the organism can induce abortion in 

pregnant sheep, goats, and cattle. Human infections, called Q fever, can induce 

mild to moderate disease, and lifelong infections may develop. Research to 

characterize this bacterium has been difficult due to its intracellular nature, and 

studying experimental infections in animal models has provided important 

information about the bacterial lifecycle and pathogenesis of the disease. The 

studies described here focused on evaluating a number of facets of C. burnetii 

infection in C57BL/6 inbred mice. Infections were determined through 

immunofluorescence detection, quantitative PCR assays, and histopathologic 

analysis. Mice developed similar histopathologic lesions as humans, specifically 

hepatitis, interstitial pneumonia, and myocarditis when infected by intranasal 

inoculation with the Nine Mile phase I strain of the bacterium. Detection of 

bacterial DNA in tissues and frequency of histopathologic lesions were highest 

two weeks after infection, with a significant decrease observed 42 and 59 days
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after infection. Mouse age and chemically induced immunosuppression with 

dexamethasone or cyclophosphamide were evaluated in C. burnetii infected mice 

to determine if these factors exacerbated disease. These studies revealed that 

neither age, (nine-weeks versus nine-months), or chemically induced 

immunosuppression (dexamethasone versus cyclophosphamide) significantly 

enhanced disease manifestations in infected mice. Additionally, antimicrobial 

treatment with doxycycline was evaluated in treating C. burnetii infections in 

mice. Such treatment reduced splenic pathology but did not significantly reduce 

the frequency of other histopathologic lesions or the amount of bacterial DNA 

detected in tissues. Overall, C57BL/6 mice infected by intranasal inoculation 

develop histopathologic lesions similar in many respects to what is observed in 

infected humans. However, disease manifestations were not exacerbated by host 

age or the immunosuppressive treatments investigated. Additionally, the dose of 

doxycycline received by mice was only marginally effective in treating bacterial 

infection in mice.
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CHAPTER 1: LITERATURE REVIEW 

History of Coxiella burnetii 

Coxiella burnetii was discovered during a public health review of an illness 

plaguing slaughterhouse workers in Brisbane, Australia from 1933 to 1935 [1]. 

The most common symptom was fever, which lasted from seven to 24 days. Dr. 

Edward Derrick was the first person to determine that the febrile illness was 

caused by a novel infectious organism and gave the disease the name Q fever. 

Subsequently, he was able to illicit a febrile response in guinea pigs when he 

inoculated them with blood and urine from infected patients; however he was 

unable to isolate or identify the infectious organism [1]. He sent infected guinea 

pig liver samples to virologist Dr. Francis Macfarlane Burnet who was able to 

reproduce the febrile illness in mice and observed rickettsia-like particles in 

infected mouse spleens [2]. Dr. Burnet along with Dr. Mavis Freeman infected 

several animal species to determine the pathogenesis and virulence of the 

organism in different hosts. They determined that the guinea pig liver emulsion 

was infective for mice and monkeys, the organism was filterable, and the 

pathogen survived in the chorio-allantois of developing eggs without inducing 

lesions [2].  
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In 1938, Dr. Herald Cox isolated a similar small, pleomorphic; gram-negative 

pathogen from Dermacentor andersoni ticks near Nine Mile Creek, Montana and 

named it Rickettsia diaporica [3-5]. The Australian and D. andersoni isolates 

were compared for virulence and infectivity and determined to be the same 

species. Cox re-named the pathogen Rickettsia burnetii after discoveries made 

by Dr. Burnet. Dr. Cornelius Philip solicited that the pathogen be placed in a new 

genus, Coxiella, to honor Dr. Cox’s discovery [6]. Coxiella burnetii was classified 

into the Proteobacteria phylum, alpha-1 class, Rickettsiales order, Rickettsiaceae 

family, in the Rickettsia tribe [7]. The pathogen was evaluated in a variety of 

comparison studies to other rickettsial organisms, specifically Rickettsia 

prowazeki, and did not have the same characteristics. Based on the comparison 

of 16S ribosomal RNA gene sequences, Coxiella burnetii was reclassified and 

remained in the Proteobacteria phylum, but was placed in the 

Gammaproteobacteria class, Legionellales order, in the Coxiellaceae family [8]. 

Coxiella burnetii’s closest phylogenetic neighbors are Legionella and Francisella 

[8]. Legionella pneumophila is the closest related pathogen due to its genetic and 

phenotypic characteristics, specifically the fact that the bacterium undergoes 

intracellular growth within a membrane bound vacuole [8].  

Bacteriology 
 

C. burnetii is a small, pleomorphic, intracellular bacterium measuring 0.2 

by 0.7 micrometers [9]. Much variability has been observed when the organism 

undergoes Gram-staining; however, electron microscopy has shown that the 
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outer membrane of the bacterium has characteristics typical of gram-negative 

bacteria [9, 10].  

The complete genome of C. burnetii Nine Mile strain was sequenced by 

Seshadri et al. in 2003 [11]. C. burnetii has a single, circular chromosome two 

mega base pairs in length [12]. The Nine Mile strain is 1,995, 275 base pairs long 

and has a molecular G+C content of 42.6% [11, 13]. This strain harbors one 34.7 

kilo base plasmid, QpH1, while other plasmids have been identified in other 

strains including, QpDG, QpDV, and QpRS, which allows for genetic typing 

between strains [13-16]. Plasmid type has been proposed to be related to 

virulence and disease severity in humans [14]. Insertion elements (IS) were 

commonly observed in the Nine Mile genome, with approximately 20 copies of 

the IS1111 gene; the IS is not located in the QpH1 plasmid [11]. Additionally, the 

C. burnetii genome has components of type I, II, and IV secretion systems; the 

type IV secretion system is similar to the one observed in the Legionella genome 

[17, 18]. 

Davis and Cox were the first researchers to observe that the bacterium 

was distinctly pleomorphic [3]. In 1959, Dr. Nonna Kordova discovered that there 

was antigenic variability among the bacterium [19]. These findings led to 

additional studies evaluating the differences in the two bacterial life forms and the 

idea of a biphasic developmental cycle [20, 21]. In 1981, researchers McCaul 

and Williams proposed that C. burnetii had a biphasic developmental life cycle, 

which included a small, metabolically inert small cell variant (SCV) and a large, 

metabolically active large cell variant (LCV) [3, 10, 22]. The researchers 
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observed another cell variant in electron microscopy studies and identified it as a 

spore-like particle (SLP) [8, 23].  

Small cell variants are rod shaped, have electron-dense condensed 

chromatin, and are 0.2 to 0.5 um long. LCVs are pleomorphic with dispersed 

chromatin, measuring greater than 1 um in length, and are metabolically active in 

vitro [10, 22]. The cell variants have contrasting structural components and 

resistance mechanisms [13, 23]. Unlike the fragile LCV, the SCV is resistant to 

lysis by pressure and other physical disruptions while retaining its morphologic 

features [23, 24]. During infection, SCVs are phagocytosed by eukaryotic cells, 

pulmonary macrophages and Kupffer cells, and sequestered in phagolysosomes. 

The acidic environment of the phagolysosome activates the transition from SCVs 

to metabolically active LCVs. The LCVs are able to transition back prior to lysis of 

the phagolysosome, resulting in the release of SCVs [22, 23]. McCaul and 

Williams proposed that the spore-like form is induced by eukaryotic cell changes 

during LCV replication, which leads to the development and release of spore-like 

particles [10]. The SLP form of the bacterium has not been fully elucidated since 

its discovery in 1981. Recently, it was theorized that SLPs differentiate to SCVs 

[13, 25]. However, these particles have not been isolated or purified to prove 

such hypotheses. Additionally, the endospore form is only occasionally observed 

and the C. burnetii genome lacks known sporulation genes [10, 11, 22]. The SCV 

has shown resistance to biochemical and physical agents, suggesting this variant 

replaces the need for a SLP [24, 26]. Definitive information is not available about 

the existence of a SLP C. burnetii variant in the developmental lifecycle. 
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However, research has proven that a biphasic developmental cycle exists for C. 

burnetii and the different resistance mechanisms and metabolic activities of the 

variants are essential for bacterial survival in the host.  

Bacteria enter into host cells through the process of microfilament 

endocytosis in which the host cell, upon binding the bacterium, induces 

reorganization of the actin cytoskeleton leading to membrane protrusions at the 

site of bacterial attachment [27-30]. C. burnetii entry into host cells ends in the 

pathogen residing in a parasitophorous vacuole (PV) resembling a secondary 

lysosome [8, 13]. The PV is acidic, pH 4.7- 4.8, and the acidic nature of this 

vacuole activates C. burnetii SCVs to transform to LCVs [13, 31]. The C. burnetii 

growth cycle has been defined in cell culture and includes lag, log, and stationary 

phases [18]. In Vero cell culture, Coleman et al., observed a lag phase beginning 

two days post infection, with no increase in bacterial replication, characterized by 

SCVs transitioning to LCVs. This was followed by exponential growth in the PV 

dominated by LCVs four days after infection. Finally, the LCV transitions back to 

a SCV during a stationary phase that starts six days after infection just before cell 

lysis, which allows SCVs to infect other cells [18]. A similar system is believed to 

occur in the mammalian host, with SCVs infecting alveolar macrophages during 

inhalation of infectious organisms [24, 32].  

In addition to the biphasic developmental cycle, C. burnetii has two phase 

variations, phase I and II, based on the lipopolysaccharide (LPS) structure [33]. 

These forms are indistinguishable under a microscope but have distinct virulence 

attributes [13]. Phase I is characterized by a full-length, smooth-type LPS and is 
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the more virulent form, while the phase II form has a truncated, rough-type LPS 

and is the avirulent form [33]. Phase II LPS lacks sugar groups virenose and 

dihydrodroxystreptose observed in phase I [34]. The antigenic change from the 

virulent to the avirulent form is often the result of a chromosomal deletion, 

affecting the biosynthetic genes in the O-antigen cluster of the LPS and genes 

involved in virenose synthesis [35, 36]. The LPS is theorized to be antigenic for 

C. burnetii and has been found to induce production of inflammatory cytokines in 

human and murine macrophages and stimulates antibody production [37, 38]. 

Phase I cells are not as readily ingested by host cells as phase II forms. Phase I 

requires αvβ3 integrin on host cells whereas phase II cells require αvβ3 integrin 

and CR3 on the host cell for entry [39]. Phase I cells can be isolated from 

infected hosts but phase II cells cannot [13]; the only time phase II cells can be 

obtained is following serial passages in tissue culture or eggs [40]. Phase I cells 

have several ways to evade identification by the host innate immune system, 

leading to phagocytosis of the organism. Virulent phase I organisms stimulate the 

activation of two src-related protein tyrosine kinases, Lyn and Hck, resulting in 

actin cytoskeletal rearrangement and impairment of phagocytosis by the host cell 

[27, 30]. Antibodies to surface proteins on C. burnetii are sterically inhibited to 

bind phase I organisms [41]. Phase I LPS masks Toll-like receptor (TLR) ligands 

to prevent host dendritic cells from binding, and inhibits CR3 interaction with host 

cells to prevent efficient binding, evading phagocytosis by the host cell [42]. 

Additionally, membrane ruffling induced by endocytosis blocks binding of phase I 

cells to CR3 on the host cell, decreasing efficiency of internalization [27]. 
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Contrastingly, avirulent phase II organisms cannot prevent phagosome-lysosome 

fusion resulting in phagocytosis of the organism [43]. Phase II organisms have a 

lower carbohydrate content due to the truncation in their LPS, making the cell 

highly hydrophobic, which increases interactions with the receptors on the host 

cell plasma membrane [32]. The phase I cells are more virulent in the host due to 

their ability to evade identification and subsequent phagocytosis by host cells.   

Epidemiology  
 
 C. burnetii  is a ubiquitous environmental pathogen that has been reported 

throughout the U.S. [44] and in nearly every country except for New Zealand and 

the Antarctic [13, 45]. The bacterium is able to infect a wide range of reservoirs 

including, domestic and wild mammals, birds, and arthropods [13, 46]. Cattle, 

sheep, and goats are the primary reservoir hosts and are responsible for the 

majority of human infections [47]. The primary mode of transmission for humans 

and animals is inhalation of infectious organisms; the infectious dose for humans 

has been found to be fewer than 10 bacteria [48, 49]. Ingestion of infectious 

organisms and the bite of infected ticks are also routes of infection [32, 46, 50]. 

Several studies have determined arthropod reservoirs, particularly tick species, 

to be important in the spread of the bacteria but not essential in the bacterial 

lifecycle [47, 51]. The bacterium targets the reproductive organs of reservoir 

hosts, specifically the placenta, uterus, and mammary glands; infected placentas 

harboring greater than 109 microorganisms per gram of tissue have been 

documented [52-54]. Bacterial transmission primarily occurs during parturition 

when infected placental tissue and birthing contents become aerosolized [48, 55-
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57]. Bacteria are also excreted in small amounts in the urine, feces, and milk of 

infected parturient reservoir hosts, and have been found in vaginal mucus of non-

pregnant and pregnant ewes, representing additional modes of bacterial 

transmission [58, 59]. The bacterium can survive in the environment for long 

periods of time and infectious aerosols have been found two weeks after 

parturition [47]. Also, previous studies by Welsh et al. indicated that C. burnetii 

could survive in the soil for up to 150 days [57]. Research by Kersh et al. 

evaluated the presence of C. burnetii in environmental samples throughout the 

United States between 2006 and 2008 [44]. Kersh found that C. burnetii was 

found in a broad variety of environments, especially public locations (banks, 

schools, post offices) with no surrounding farms, ranches, or livestock [44]. The 

ability of the bacterium to survive in the environment for long periods of time, 

infect several reservoir hosts, and become aerosolized allows C. burnetii to 

contaminate or infect a wide range of habitats and species, which makes it a 

successful pathogen.  

Human Disease 
  

Humans primarily become infected through the inhalation of infectious 

aerosols [48]. Several studies have attempted to determine the risks associated 

with C. burnetii contaminated dairy products. However, results to these studies 

are contradictory and the risk of infection by that route for humans remains 

inconclusive [25, 46, 60]. While infected ticks are important in the natural 

transmission cycle, they apparently do not transmit C. burnetii to humans [25, 

50]. Human to human transmission is rare, but has been observed in cases of 
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sexual transmission [61, 62] and perinatal infections [63]. Human disease can be 

classified as either acute or chronic. Approximately 60% of infected people 

develop asymptomatic infection [25, 64]. Flu-like symptoms, fever, and severe 

headaches are clinical symptoms associated with acute disease, and pneumonia 

and hepatitis are common histopathologic lesions associated with acute infection 

[1, 65, 66]. Chronic disease develops in approximately 1-2% of acutely infected 

cases; symptoms may not develop until years after infection [64]. Chronic 

disease is often associated with culture-negative endocarditis, and rarely, 

osteomyelitis, osteoarthritis and Q fever fatigue syndrome [64, 67, 68]. 

Development of certain disease manifestations associated with C. burnetii 

infection have been linked to the phase and strain of the pathogen, the 

inoculation route, the dose received [14, 69], and host factors [70, 71]. 

Observational research by Dr. Thomas Marrie demonstrated that inhalation of 

infectious organisms induced pneumonia while intraperitoneal inoculation and 

ingestion of infectious organisms resulted in hepatitis [69]. Pathologies 

associated with C. burnetii infection have also been geographically linked. Q 

fever pneumonia is frequently observed in Canada and Spain while Q fever 

hepatitis is commonly observed in France and Australia [72]. Hepatitis is 

currently the most common presentation of acute Q fever worldwide [25], and 

can present as clinically asymptomatic and granulomatous hepatitis [25]. Atypical 

pneumonia is the second most frequently observed lesion associated with C. 

burnetii infection [25]. Pulmonary lesions are usually mild; however, the duration 

of symptoms can last from 10 to 90 days [66]. The most commonly observed 
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chronic disease manifestation associated with chronic Q fever is endocarditis, 

which may appear with pericardial effusion and/or pericarditis [25, 73, 74]. This 

lesion is almost exclusively seen in patients with pre-existing valvulopathies [46, 

68, 74].  

The limited understanding of the disease pathogenesis in humans is due 

in part to the difficulties associated with characterizing an intracellular pathogen 

and lack of available animal models developing similar disease to humans. 

Although little information is available on disease pathogenesis in humans, 

previous research has uncovered immune components necessary in preventing 

and clearing bacterial infection. Cell mediated immunity is essential in controlling 

Q fever, and deficiencies in this function result in chronic disease [13, 25, 75]. 

Previous research has determined that chronically infected people lack sufficient 

T-cell responses, preventing bacterial clearance [76, 77]. Additionally, people 

with chronic disease produce greater amounts of prostaglandin E2 and high 

levels of tumor necrosis factor, which cause immunosuppression in the host [76, 

78, 79]. Chronic Q fever patients also have increased IL-10 secretion, which is 

believed to control the inflammatory response and limit the pathogenic effects 

induced by C. burnetii allowing for prolonged infection [75]. Dysregulation of 

immune components clearly modulates the severity of Q fever disease; however, 

the role of host immune function in controlling bacterial infection requires further 

exploration and research.    

 The antimicrobial therapies prescribed to treat Q fever are based on the 

disease state. Standard treatment for acute disease is 100 milligrams per 
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kilogram (mg/kg) of doxycycline for 14 days. The primary alternative to 

doxycycline is fluoroquinolone therapy [46]. Suggested treatment for acutely 

infected pregnant women is cotrimoxazole 800 mg/kg until delivery [80]. Obstetric 

complications were observed in 81% of women who did not receive 

cotrimoxazole therapy during pregnancy [81]. Treatment of chronic disease is 

complicated and is often dependent on the observed disease manifestation. 

Synergistic therapy with hydroxychloroquine is often used to prevent resistance. 

The current recommendation is 200 mg doxycycline along with 600 mg of 

hydroxychloroquine daily for a minimum of 18 months [25, 81]. 

 Development of a human vaccine against C. burnetii has been 

investigated since the discovery of the bacterium. A live-attenuated vaccine 

produced and tested in Russia in the 1960’s [82, 83] was later abandoned over 

concerns of long-term persistence and potential development of endocarditis in 

vaccinated individuals [84]. A chloroform-methanol residue extracted vaccine 

was developed in the U.S. in the 1990s but was very reactogenic in animals and 

was never tested in humans [85]. A whole-cell formalin-inactivated Q fever 

vaccine (Q-vax) was developed and licensed for use in Australia and is currently 

given to high-risk individuals. This vaccine was prepared from the phase I 

Henzerling strain [13] and has been shown to be 100% effective in 

slaughterhouse workers years after vaccination [86, 87]. There are still concerns 

over the side effects of this vaccine in that it can cause severe reactions at the 

inoculation site [13, 88, 89]. It has also been associated with complications in 
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sero-positive patients, such that a pre-vaccination skin test is required for all 

vaccine recipients.   

Animal Disease 
  

Coxiella burnetii is able to infect a wide variety of both domestic and wild 

animal species. However, little is known about bacterial infection and 

pathogenesis in animals. The primary modes of transmission in animals are 

thought to be inhalation of infectious organisms and ingestion of contaminated 

feed and bedding [90]. Infection typically occurs during lambing and calving 

season, as contaminated aerosols are produced [54, 57, 91]. Additionally, C. 

burnetii-infected ticks are thought to be important in bacterial transmission 

among animals [90, 92]. C. burnetii infections in animals are generally 

asymptomatic but can cause reproductive complications, specifically stillbirths 

and abortions. Bacterial infection may also result in the birth of weak lambs, kids, 

or calves [93]. In most cases, abortion occurs at the end of gestation, with no 

previous clinical signs [53]. Aborted fetuses appear normal; however, the infected 

placenta typically has intercotyledonary thickening and discoloration [53].  Post-

parturient mammals can shed bacteria into the environment for long periods of 

time, while infected, non-pregnant animals do not regularly shed bacteria into the 

environment [52, 91]. C. burnetii is shed from the vaginal mucus, feces, and milk 

of infected goats, ewes, and cattle [58]. Shedding rates differ between species 

and route. C. burnetii has been detected in the vaginal mucus of infected ewes 

up to 71 days after parturition and cattle have been reported to shed 
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bacteria into milk up to 13 months after parturition [94, 95]. Additionally, cattle 

can shed the organism in their birth secretions for successive years and sheep 

have been documented shedding the bacterium in successive pregnancies  [94, 

96]. Infection appears to be persistent in pregnant animals and 

immunosuppression caused by pregnancy has been known to enhance 

multiplication of the organism [97]. Overall, C. burnetii infection can induce 

abortion in pregnant animals and cause prolonged shedding rates. In previously 

infected animals, the bacterium becomes dormant until pregnancy, at which time, 

a recrudescence of bacterial infection is observed. Information about bacterial 

infection in the reservoir host is necessary for the prevention of zoonotic disease.  

Diagnostics 
  

Diagnosing C. burnetii infection in cattle, sheep, and goats is essential in 

controlling the spread of infection to other animals and humans. As with other 

diseases, diagnosis of C. burnetii infection relies both on detecting the agent and 

host immune responses to the agent. Bacterial cultures are important diagnostic 

methods in determining presence of bacteria from environmental and host 

samples, but historically, C. burnetii has been impossible to culture in vitro due to 

the strict metabolic requirements and intracellular nature of the bacterium [1]. 

Recently, Omsland et al. developed a cell-free laboratory medium that meets the 

strict growth requirements necessary for C. burnetii growth [98]. Although this 

method is novel and interesting, it has not yet been adapted for real world 

diagnostic settings.  
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Infected animals are generally asymptomatic, but the presence of 

abortions may indicate C. burnetii infection within a flock or herd. Placental 

tissues from aborted animals can be stained for bacterial detection using the 

Gimenez or Machiavello staining methods [25, 53, 99]. Recent PCR and qPCR 

assays have been developed to determine the presence of bacteria in excreta, 

milk, and tissues. These assays amplify repetitive gene sequences found in the 

C. burnetii genome such as the IS1111 insertion gene [59, 100]. PCR assays 

have higher sensitivity and specificity to bacterial detection in animal samples 

(excluding serum) than other diagnostic methods, and may be the reason for the 

increase in the number of identified cases since the last decade [53]. Limitations 

of these PCR assays include their cost and inability to process at site of 

collection. However, it is essential to detect bacterial infection in herds early to 

prevent further spread and environmental contamination leading to future 

problems. In conclusion, diagnosing infections in animals is difficult due to the 

lack of specific clinical signs and the high frequency of subclinical infections. 

Therefore, a combination of serological testing and PCR assays are necessary to 

determine animal infection.   

Serological assays are the primary diagnostics used for detecting bacterial 

infection in humans. The OIE reference assay for detecting infection in animals is 

the complement fixation (CF) test. However, the CF test has low sensitivity and 

the antigen used often gives false-negative results [25, 53]. An alternative 

reference test used widely for serodiagnosis of Q fever is indirect 

immunofluorescence (IFA) [53, 72]. The IFA assay allows for the distinction 
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between acute and chronic disease by evaluating binding of patient antibodies to 

both C. burnetii phase I and II [101]. Cases in which the phase II antibody titer is 

higher than phase I are considered acutely infected, whereas high antibody titers 

to the phase I antigen signifies chronic disease [53]. Additional serodiagnostics 

include microagglutination, radioimmunoassay, and ELISA [47, 90, 101]. One 

constraint of all serodiagnostic assays is they cannot detect bacterial infection 

until seroconversion has occurred [53]. There is a considerable lag time where 

the host is infected but has not seroconverted, and serodiagnostic testing within 

that time will result in a false-negative diagnosis [53]. PCR assays are able to 

detect bacterial infection much earlier than serodiagnostic assays. However, 

serum cannot be used as a sample because it contains too few intracellular 

organisms [101]. Concurrent use of serodiagnostics, IFA and PCR, is necessary 

to determine infection in humans to ensure that bacteria can be detected at any 

stage of the infection. 

Treatment and Control 
 

Q fever is primarily spread to humans and animals by inhalation of 

infectious organisms. Therefore, specific measures must be taken to protect 

humans in contact with reservoir hosts, cattle, sheep, and goats. Suspect 

infected herds should be monitored with serodiagnostics and a variety of control 

measures have been advocated to minimize risk of infection. To prevent bacteria 

from contaminating the environment, contaminated birth products should ideally 

be incinerated [25]. Manure should not be spread during windy periods to prevent 

widespread contamination, and suspect infected manure should be treated with 
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lime or a 4% calcium cyanide solution [25, 53]. Tetracycline’s are often used to 

reduce the amount of bacterial shedding during parturition [53, 102]. Routine 

monitoring after infection is important in evaluating the progression of infection in 

the herd. However, negative results do not correlate with complete clearance of 

the bacterium as it is known to survive and remain infectious in the environment 

for long periods of time. Therefore, the only way to completely ensure prevention 

is through herd vaccination. 

Implementing herd vaccination protocols dramatically reduces 

environmental contamination and the incidence of human disease [25, 53]. The 

most effective vaccines for animals are made from inactivated phase I form of the 

bacterium [53, 103]. Souriau et al. evaluated the efficacy of vaccinating pregnant 

goats with phase I and II vaccines and challenging them with C. burnetii. In this 

study it was found that phase II vaccine was not protective against abortions and 

could not prevent bacterial shedding in the milk, feces, or vaginal secretions 

whereas the phase I vaccine reduced bacterial shedding from the placental 

tissue and excreted milk, but could not prevent shedding in the milk [104]. The 

authors determined that phase I vaccines were only protective for uninfected 

animals and failed to prevent shedding from previously infected animals [53, 

104]. Another downfall of the phase I vaccine is that vaccinated animals are 

indistinguishable from infected animals, which makes it difficult to determine 

which animals to vaccinate [53]. In conclusion, prevention of environmental 

contamination is essential for decreasing infection rates of humans and animals. 

Since the bacterium can survive in the environment for long periods of time, 
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infection cycles within herds will not be eradicated with antibiotic treatment alone. 

Herd vaccination programs are effective in decreasing bacterial shedding from 

animals and environmental contamination.      

Animal Models 
 
 The need for animal models for C. burnetii is two-fold; to elucidate 

bacterial pathogenesis in human and animal hosts, and to develop vaccines and 

drug therapies. Few studies have explored developing an animal model for 

animal disease. Experimental infection studies have been performed in cattle, 

sheep, and goats [32, 56, 58, 104-106]. These studies were essential in 

uncovering bacterial shedding rates and routes from post-parturient animals. 

Such studies also demonstrated the low incidence of bacterial shedding from 

non-pregnant animals. Infected, non-pregnant animals do not display clinical 

symptoms, but typically develop antibody titers after infection [32]. Additionally, 

histopathologic disease is minor to non-existent. Information about potential 

bacterial recrudescence in infected non-pregnant animals reveals that 

immunosuppression, as seen in pregnancy, can often lead to development of 

clinical disease [58, 103, 104]. These findings have also been shown in guinea 

pig and mouse experimental infections, where animals were immunosuppressed 

after inoculation, inducing bacterial infection [107]. Experimental infection studies 

in pregnant goats revealed bacterial shedding after multiple pregnancies, with 

bacterial latency occurring between pregnancies [58]. Similar findings have also 

been shown in experimental mouse infection studies where mice shed bacteria 

after successive pregnancies [108]. Bacteria appear to become latent in the 
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animal host, becoming reactivated during pregnancy-associated 

immunosuppression. The duration of this latency period has not been elucidated 

in the reservoir host. However, it is essential in understanding bacterial 

pathogenesis in small ruminants. Further experimental studies need to be 

conducted in pregnant and non-pregnant animal models to determine if bacterial 

latency occurs and where bacteria lay dormant until activation leading to clinical 

disease. Developing an animal model for animal disease is essential in 

understanding bacterial life cycle in the animal host in order to control infection 

and prevent transmission to other animals and humans. Additionally, animal 

models are necessary for developing vaccine and drug therapies that could be 

used to treat and prevent this latency period as well as shedding associated with 

immunosuppression. 

 Several rodent models have been developed for human Q fever; guinea 

pigs and mice are the most common models [73, 109-111]. Many rodent models 

mimic clinical and histopathologic disease associated with human acute Q fever 

when infected with the phase I form of C. burnetii; common symptoms include, 

fever, splenomegaly, and interstitial pneumonia [112]. Establishing rodent models 

for human chronic disease proves to be challenging. The primary hallmark of 

human disease is endocarditis, which is rarely observed in experimental 

infections in rodents, but has been observed in mice infected with large doses of 

phase I C. burnetii [111]. Recently, a mouse model that mimics human chronic Q 

fever was developed in transgenic-mice constitutively expressing IL-10 in 

macrophages [113]. Infection of these mice led to a persistent bacterial infection 



 
 

19 

in which macrophages were unable to kill C. burnetii, which is believed to be the 

situation in cases of chronic Q fever [113]. Development of this model was 

important in understanding bacterial persistence in the host. However, chronic 

histopathology (endocarditis) observed in human infection was not seen in 

infected transgenic mice. While no animal model truly mimics human acute and 

chronic disease, development of a mouse model for chronic disease revealed 

important information about bacterial persistence in the mouse host, which can 

be translated to human disease. In conclusion, continual efforts to develop an 

animal model for human infection are essential in understanding bacterial 

pathogenesis and developing effective vaccines for public health benefit.  

Future Directions for Coxiella Research 
 
 Forgoing review of C. burnetii shines on two areas of research that are in 

desperate need of resolution, vaccine development and diagnostics. Uncovering 

information about bacterial pathogenesis and development of chronic infections 

in reservoir hosts is essential in vaccine developmental research. Developing 

animal models for C. burnetii infections provides insight about the elusive nature 

of this bacterium filling the missing gaps in current knowledge
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CHAPTER 2: EFFECT OF INOCULATION ROUTE ON BACTERIAL  

INFECTION OF TISSUES AND DEVELOPMENT OF HISTOPATHOL OGIC 

LESIONS IN MICE INFECTED WITH COXIELLA BURNETII  

Introduction 

Coxiella burnetii is a gram-negative, intracellular bacterium that is 

commonly found in the environment and causes a disease termed Q fever in 

humans and coxiellosis in animals. Approximately 60% of human cases are 

asymptomatic, but Q fever pneumonia and hepatitis are common pathologies 

observed in symptomatic cases [64, 114]. Infection can occur in several ways 

with inhalation being the most common, followed by ingestion, and the bite of 

infected vectors, primarily ticks [115]. 

Regardless of the many routes of natural exposure, the majority of 

experimental mouse infection studies have used an intraperitoneal (IP) route of 

infection. The IP inoculation route is able to reproduce lesions commonly induced 

by the bacterium (pneumonia and hepatitis) but is not a natural route of infection 

and has questionable significance in the study of disease. Aerosol exposure 

would best model natural exposure; however, this method increases biohazard 

risks due to the production of infectious fine particle aerosols.
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Previous studies have evaluated C. burnetii infection in naturally 

susceptible as well as immunodeficient mouse strains including; A/J, SCID, and 

BALB/c strains. A study conducted in 1986 by George Scott et al., found that the 

A/J inbred mouse strain was most susceptible to C. burnetii infection, followed by 

the BALB/C strain; the most resistant mouse strain was C57BL/6 [112]. Infection, 

morbidity, and mortality rates in the susceptible mouse strains was much higher 

than the rates observed in the C57BL/6 mice [112].  

This project was initiated in order to establish a mouse model of 

coxiellosis that could be used in subsequent vaccine and pathogenesis trials.  

The specific objectives of this study were to determine if C57BL/6 mice develop 

similar infection and pathological lesions observed in infected humans and to 

compare two routes of inoculation, intraperitoneal (IP) and intranasal (IN), to 

observe differences in the pathogenesis and pathology of infected mice. This 

information will be used to develop an easy and efficient inoculation route in mice 

that replicates the common pathological lesions observed in natural infections.  

Two experiments were performed to assess disease and course of 

infection induced by C. burnetii in C57CL/6 mice. In Experiment 1, we evaluated 

route of inoculation, comparing intranasal versus intraperitoneal exposures, with 

the mindset that intranasal was a more natural route of exposure.  For 

experiment 2, we infected a larger group of mice by the intranasal route and 

maintained them for two months in order to evaluate long-term effects of 
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infection; these mice were also used as controls for the studies described in 

Chapters 3 and 4.  

Materials and Methods 

Animals  
 

Ten A/J (5 week-old female) and 50 C57BL/6 mice (30 five week-old 

females and 20 eight week-old females) were purchased from Charles River 

Laboratories (Wilmington, MA, USA). Mice were housed at the Colorado State 

University Infectious Disease Research Center in ventilated cages under HEPA-

filtered barrier conditions. Water and food were provided ad libitum. Animal care 

and use procedures were carried out in accordance with university policies [116]. 

Microorganism 
 

The Nine Mile Phase I strain (RSA493) of Coxiella burnetii, was obtained 

from the American Type Culture Collection (Manassas VA, USA). To prepare a 

working stock of the organism, 10 A/J mice were infected by IP inoculation (50 

uL) of the organism [2, 117]. Five mice were euthanized at seven days post 

inoculation (DPI) and five mice were euthanized at 11 DPI. Necropsies were 

performed, spleens were collected and pooled by mouse euthanasia date (7 or 

11 DPI) and stored at -80 degrees Celsius (°C). Spleens from five mice 

euthanized 7 DPI were thawed and homogenized with a Ten Broeck grinder, 

diluted to a final volume of 40 ml in phosphate buffered saline (PBS) without 

additives, and was stored in 1 ml aliquots at -80°C.  
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Mouse Infection Experiments   

Mice were infected with 3000 C57BL/6 infectious dose 50% (ID50) splenic 

stock homogenate. Briefly, C57BL/6 mice were intranasally inoculated with serial 

tenfold dilutions of splenic stock homogenate 10E0 to 10E-6, five mice in each 

dilution group. Seven days after infection, mice were euthanized and splenic 

tissue was collected for conventional PCR analysis. The number of PCR positive 

splenic samples in each dilution group determined subsequent ID50.  

Thirty C57BL/6 mice were randomly allocated into two inoculation route 

groups (15 per group). Mice inoculated IN were anesthetized prior to challenge 

with an IP inoculation of ketamine and xylazine (100 and 10 mg/kg respectively). 

Three mice from each inoculation group were euthanized and characterized on 

days 7, 14, 21, 28, and 35 post-inoculation. In a second trial, 20 C57BL/6 mice 

received the same inoculation dose and route as listed above. Five mice were 

euthanized at 14 and 28 DPI; the remaining 10 mice were euthanized at 59 DPI. 

All mice were checked daily for mortality and morbidity. 

Necropsies were performed at each time point and sections of the spleen, 

liver, lungs, heart, and kidney were collected in 10% neutral-buffered formalin. 

The size of the spleen was reviewed and recorded on a graded scale of 1 to 4, 

with 1 indicating a normal sized spleen and 4 being grossly enlarged 

(approximately ≥ four times the size of normal). Tissues were embedded in 

paraffin, and 5-micrometer sections were stained with hematoxylin and eosin for 

microscopic review, Dr. Colleen Duncan conducted all histopathologic 

evaluations. One half of the spleen from each mouse was aseptically collected 
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and stored at -80°C for DNA extraction. Bone marrow samples were collected for 

the 20 intranasally inoculated mice in Experiment 2, by flushing the femoral 

cavity with 0.5 ml of PBS and storing those samples at -80°C for quantitative 

PCR analysis.  

Infection was characterized by conventional and quantitative polymerase 

chain reaction (PCR) and indirect immunofluorescence assays (IFA). Details of 

PCR assays are listed in Table 2. For quantitative PCR, a threshold cycle (Ct) 

less than 38 indicated bacterial DNA presence in the spleen.  

Microbiological Assays  

Immunofluorescence detection of bacteria. Approximately 10 mg of spleen 

was squashed between two microscope slides and fixed in 70% acetone for at 

least 12 hours. These splenic squash mounts were stained with a rabbit 

antiserum against the C. burnetii Nine Mile Phase I antigen (Critical Reagents 

Program, Frederick, MD, USA). This primary antibody was prepared as a dilution 

of 1:2500 with 1% equine serum. Slides were placed in a 37°C humidity chamber 

for 30 minutes (min) washed in PBS for 10 min, and rinsed in distilled water 

(dH20) for 30 seconds (sec). Slides were air dried and then stained with DyLight 

488-labeled goat anti-rabbit secondary antibody (Jackson ImmunoResearch 

Laboratories, West Grove, PA, USA) diluted 1:800 with PBS. Slides were again 

placed in the humidity chamber for 30 min, followed by washing as stated above. 

The slides were air-dried and mounted with Dako mounting media (Carpinteria, 

CA, USA). Slides were randomly labeled, and reviewed in a blinded manner 

under a total magnification of 400X (Olympus FSX-100, Center Valley, PA, USA). 
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The strength of the fluorescence signal was subjectively graded on a scale from 

0-3, with 0 designated as negative fluorescence and 3 as a strong signal of 

fluorescence examples of graded images are shown in Figure 1.  

 

  

Figure 1. Examples of the IFA Grading Scheme.  

A score of 3 indicates a strongly positive fluorescent signal 2, a moderate 

positive fluorescent signal, and 1 a very mild signal. Negative samples were 

given a score of zero. 

3 2 

1 0 
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PCR assays.  Bacterial DNA extraction was performed on mouse splenic 

samples using a QIAGEN QIAamp DNA mini kit (Valencia, CA, USA). Ten 

milligrams of splenic tissue from each mouse was weighed and used in the 

extraction protocol according to manufacturer’s instructions. Extracted DNA was 

precipitated in ethanol (EtOH). The precipitate was centrifuged at 14,000 x g for 

15 min the pellet was washed in 1 ml of 70% EtOH then allowed to air dry.  The 

DNA pellet was resuspended in 50 uL of TE (10 mM Tris, 1 mM EDTA, pH 8.0) 

and DNA concentration analyzed using a Thermo Scientific NanoDrop 1000 

spectrophotometer (Rockford, IL, USA); OD 260/280 were evaluated to assess 

purity. All samples were diluted to a final concentration of 100 ng in 5 uL with TE.   

Primers were designed using the primer-basic local alignment search tool 

(Primer-BLAST) software (National Center for Biotechnology Information, 

Bethesda, MD, USA) to amplify an 861 base-pair fragment of the insertion 

sequence gene IS1111 found in approximately 20 copies in the Nine Mile phase I 

genome [11]. Conventional PCR was performed on the splenic DNA samples. 

Primer sequences and cycling conditions are listed in Table 1. 

The PCR amplicon was separated by electrophoresis on a 1% agarose 

gel prepared with ethidium bromide, and was purified using a QIAquick PCR 

purification kit for band extraction and analysis (QIAGEN Inc., Valencia, CA, 

USA). The extracted amplicon was sent to the University of California Davis 

proteomics laboratory for nucleotide sequencing. 

Quantitative PCR (qPCR) assays were conducted using primers and 

probe based on previously published assays to amplify the Nine Mile IS1111 
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sequence [51, 118]. Primers, fluorescent probes, and cycling conditions, are 

listed in Table 1. Serial ten-fold dilutions of the amplicon obtained by 

conventional PCR were prepared with TE and used as a standard curve for each 

qPCR assay. In order to compare variability between assays, the threshold for 

each run was set at 1000. 

Table 1.  

PCR Primers and Amplification Conditions. 

Primer Name  
Sequence of 

 Primer or Probe (5’- 3’) 

Concentration 
nM 

Cycling 
Conditions 

Amplicon 
Size 
(bp) 

Standard PCR   95°C (20 sec), 
60°C (60 sec), 

72°C 
(2 min) x  
40 cycles 

 

IS1111F3 
GCGAGCGAAGCGGTGGGATT 

500   861 

IS1111R22 
AGCCCGTATGCAGCGAAGCG 

500    

Quantitative PCR   95°C (10 min) x 
1 cycle 

95°C (15 sec), 
60°C (60 sec) x 

40 cycles 

 

IS1111F 
CCGATCATTTGGGCGCT 

1600   63 

IS1111R 
CGGCGGTGTTTAGGC 

800    

IS1111P* 
TTAACACGCCAAGAAACGTATC

-GCTGTG 

200    

*Fluorescent oligonucleotide probe labeled with 5’ FAM and 3’ fluorescence 
quencher (BHQ). 
BP: base pair length of amplicon.
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Statistical Analyses 
 

Mean splenic genome equivalent (GE) values for IP and IN inoculation 

routes and euthanasia groups “early” and “late” were compared using analysis of 

variance (ANOVA) test. For the IN control inoculated mice in experiment 2, mean 

splenic and bone marrow GE values were compared between mice euthanized 

“early” days 14 and 28 post inoculation and “late” mice euthanized 59 DPI using 

ANOVA.  A GE value less than 5 was converted to a value of 1 for statistical 

analysis. Categorical variables including IFA score, DPI, and inoculation route for 

IP and IN inoculation groups were compared using the Pearson’s Chi-square test 

and odds ratios (where applicable). The Fischer’s exact test (FET) was used to 

evaluate groups with categorical frequencies less than five. IFA scores were 

dichotomously grouped; negative to weakly positive spleen samples (IFA scores 

0 and 1) were considered negative, while mild to moderately positive samples 

(IFA scores 2 and 3) were considered positive. Mice in the inoculation route 

study were dichotomously grouped by their euthanasia date; “early,” days seven, 

14, and 21 after infection, and “late,” days 28 and 35 post inoculation. The 

frequency of splenomegaly, histopathologic lesions, and IFA scores were 

evaluated between “early” and “late” mouse groups. Infected control mice were 

also dichotomously grouped by their euthanasia dates. Infected control mice in 

the “early” group were euthanized on days 14 and 28 post inoculation; while mice 

in the “late” group were euthanized 59 DPI. Statistics were performed using 

SPSS software (IBM, version 19, Somers, NY), p-values ≤0.05 were considered 

significant for all tests.   



 
 

37 

Results 

Experiment 1: Evaluation of IP versus IN Inoculatio n Route 
 
There were no observable clinical signs of disease or mortality in any 

mouse throughout the 35-day time course of infection. Splenic enlargement 

evident at necropsy was observed in 3 of 15 IN and 6 of 15 IP inoculated mice 

(pooled across euthanasia time points), a difference that was not statistically 

significant (p=0.4, FET). Splenomegaly was observed in 6 of 18 mice euthanized 

7, 14, and 21 DPI and 3 of 12 mice euthanized 28 and 35 DPI this was not a 

statistically significant difference (p=0.5, FET). 

Hepatitis was characterized by aggregates of lymphocytes and histiocytic 

cells randomly distributed throughout the parenchyma (Figure 2A). Larger foci 

were associated with hepatocyte degeneration and loss. Hepatitis was observed 

in 10 of 15 IP and 8 of 15 IN inoculated mice, which was not a statistically 

significant difference (OR: 1.8, 95% CI: 0.4-7.7). Hepatitis was observed in 5 of 9 

mice euthanized at both the “early” (7, 14, and 21 DPI) and “late” (28, 35 DPI) 

time points, and was not a statistically significant difference (p=0.7 FET).  

Bronchopneumonia characterized by a focus of suppurative inflammation 

centered around large airways (Figure 2B) was observed in 4 of 9 IN inoculated 

mice at days 7 and 14 post infection, but was not observed in IP inoculated mice 

at any time point, this difference was not statistically significant  (p=0.1, FET). 

Mild interstitial pneumonia, characterized as a patchy expansion of interlobular 

septae by lymphocytes and plasma cells (Figure 2C) was observed in 9 of 15 IP 

and 10 of 15 IN inoculated mice, and was not a statistical difference between 
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inoculation routes (OR: 0.8, 95% CI: 0.17-3.3). Ten mice were from the “early” 

group (euthanized 7, 14, and 21 DPI), and 9 mice were from the “late” group 

(euthanized 28, 35 DPI). There was no statistically significant difference in the 

frequency of interstitial pneumonia observed between these mouse groups 

(p=1.0, FET).  

Histologic lesions were also observed in the heart and kidney of infected 

mice. Myocarditis, characterized as small aggregates of lymphocytes and plasma 

cells distributed throughout the myocardium (Figure 2D), was observed in 10 of 

30 mice, five from each inoculation group, a difference that was not statistically 

different between inoculation routes (OR: 1, 95% CI: 0.22-4.6). There was no 

difference in the frequency of myocarditis between “early” and “late” mouse 

groups (p=1.0, FET). Rare mononuclear interstitial nephritis was observed in 4 of 

15 IP and 2 of 15 IN inoculated mice. There was no difference in the frequency of 

nephritis between inoculation routes or between “early” and “late” mouse groups 

(p=0.7, FET). Splenic lymphoid hyperplasia was observed in 1 IN inoculated 

mouse euthanized at 14 DPI, but was not seen in any other mouse throughout 

the infection time course.  
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Figure 2. A-D)  Histopathologic lesions associated with C. burnetii infection. 

 A) Hepatitis, B) bronchopneumonia, C) interstitial pneumonia, D) myocarditis. 
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Table 2.  

Comparison of C. burnetii Infection in Mice Inoculated by the Intraperitoneal and 

Intranasal Routes. 

Inoculation 
Route 

DPI of 
Necropsy 

Number of 
Mice 

Splenic PCR  
GE* value (mean +  SD) 

IP 7 3 79.8 + 136.5 
IN 7 3 8.5+ 7.5 
IP 14 3 82.2 + 19.4 
IN 14 3 113.7 + 132.7 
IP 21 3 3.5 + 4.4 
IN 21 3 7.7 + 6.8 
IP 28 3 3.4 + 4.0 
IN 28 3 1.0 + 0.0 
IP 35 3 3.4 + 4.2 
IN 35 3 11.9  + 18.9 
IP All 15 34.5 + 65.4 
IN All 15 28.6 + 65.3 

*GE: genome equivalent, values <5 were converted to a value of 1 for statistical 
analysis.  
IP: intraperitoneal inoculation 
IN: intranasal inoculation 
DPI: days post inoculation. 
SD: standard deviation. 
IFA: indirect immunofluorescence assay. 
 

The mean GE values for mouse splenic tissue, inoculation route, and 

euthanasia DPI are listed in Table 2. Comparison of mean GE values revealed 

no significant difference in the amount of bacteria in the spleen between IP and 

IN infected mice or between mice in “early” and “late” groups (F: 1.2, DF: 3, 

p=0.3). The IFA scores assigned to splenic squash mounts ranged from negative 

to moderately positive. There was no statistically significant difference in the 

frequency of positive IFA scores between inoculation routes (OR: 1, 95% CI: 

0.22-4.6).   
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Experiment 2: Long-term Infection Following Intrana sal Inoculation of C.  

burnetii. 
 

There were no observable clinical signs in any of the 20 IN inoculated 

control mice throughout the 59-day infection time course. One mouse did not 

recover from anesthesia after the inoculation, blood was collected and a 

necropsy was performed. Splenomegaly was observed in 15 mice from 

experiment 2; 5 from the “early” group (mice euthanized 14 and 28 DPI) and 10 

from the “late” group (mice euthanized 42 and 59 DPI). Mice in the “late” group 

were two times more likely to have splenomegaly than mice in the “early” group 

(95% CI; 0.27-0.93).  

The same histopathologic lesions described for inoculated mice in 

Experiment 1 were also observed in the mice in this experiment. Hepatitis was 

observed in 9 of 10 mice from the “early” group and 8 of 10 mice from the “late” 

group, and was not statistically significant between mouse groups (p=0.5, FET). 

Interstitial pneumonia was observed in 8 of 10 mice from the “early” group and 1 

of 10 mice from the “late” group, and was a statistically significant difference 

between mouse groups (p=0.001, FET). Mild myocarditis was observed in 4 of 10 

mice from the “early” group and 1 of 10 from the “late” group, a difference that 

was not statistically significantly (p=0.3, FET). Interstitial nephritis was observed 

in 3 of 10 mice from the “early” mouse group, and 0 of 10 mice from the “late” 

group; the difference between mouse groups was not statistically significant 

(p=0.9, FET). Mild splenic lymphoid hyperplasia was observed in 8 of 10 from the 
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“early” and 10 of 10 from the “late” group; the difference between mouse groups 

was not statistically significant (p=0.5, FET).   

 Mean GE values, including standard deviations, for splenic and bone 

marrow samples are listed in Table 3. There was no statistically significant 

difference in the amount of bacterial DNA detected in the splenic tissue of mice 

from “early” and “late” groups (F: 1.4, DF: 1, p=0.3), or in the amount of bacterial 

DNA detected in the bone marrow (F: 3.3, DF: 1, p=0.1). IFA results were 

significantly different between “early” and “late” mouse groups; 4 of 9 “early” mice 

had IFA positive samples compared to 0 of 10 samples from the “late” group 

(p=0.02).  

Table 3.   

Comparison of the Amount of Bacterial DNA Detected in C. burnetii Infected  

Tissues and the Duration of Infection. 

Mouse 
Group 

Necropsy 
DPI 

Number 
of Mice 

Splenic  
qPCR GE* 

(Mean ± SD) 

Bone Marrow 
qPCR GE*  

(Mean ± SD) 
“Early” 14, 28 4,5 13.5 ± 4.5 10.4 ± 6.0 
“Late” 59 10 0.2 ± 0.1 1.0  ± 0.0 
Total 14, 28, 59 19 8.3 ± 12.3 2.6 ± 5.4 

*GE: genome equivalent, values <5 were converted to 1 for statistical analysis.  
DPI: days post inoculation.  
SD: standard deviation. 

Discussion 
 

This study demonstrated that the C57BL/6 mouse strain is readily infected 

with the Nine Mile phase I strain of Coxiella burnetii and failed to develop clinical 

disease, but did manifest a number of the lesions associated with coxiellosis in 

humans and other animals. Hepatitis was the most common pathology, seen in 
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84% of all infected mice. Hepatic lesions were not observed in any IN inoculated 

mice until 14 days after infection, but were observed in all IP inoculated mice 

throughout the infection time course. These results suggested that the IP 

inoculation route may have induced a faster systemic immune response and 

hepatitis was seen in IP mice earlier than IN inoculated mice, or that the IP route 

provided a more direct access for the bacteria to infect mouse liver tissue. The 

similar frequency of hepatic lesions observed between IP and IN inoculated mice 

at later time points suggested that the inoculation route was a factor at early time 

points but is not a confounding factor at later time points.  

Slight variations in pulmonary lesions were evident between inoculation 

routes. Four IN infected mice developed bronchopneumonia after inoculation, 

which was not observed in any IP infected mice. Bronchopneumonia, 

inflammation of the lung originating from the major airways and is most 

commonly caused by inhalation of an airborne pathogen or foreign material.  As 

such, the pattern of inflammation in the lung of the IN inoculated mice euthanized 

at early infection time points was interpreted as secondary to the inoculation 

procedure and not necessarily the agent. Further, the lesion was not seen in 

mice after 14 days post inoculation suggesting that bronchopneumonia resolved 

over time. Mild interstitial inflammation was seen with equal frequency in both 

inoculation groups and is consistent with hematogenous dissemination, which 

has been previously described [119]. In the IN inoculated control mice, interstitial 

pneumonia was seen at a higher frequency in mice euthanized at the early 
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infection time points than mice euthanized at 59 DPI; suggested resolution of 

bacterial infection from the lung tissues over time.   

Myocarditis is a severe manifestation associated with C. burnetii infection. 

This lesion developed independent of inoculation route and was observed in the 

same frequency in both IN and IP infected mice. In the IN inoculated control 

mice, myocarditis was observed in only one mouse 59 DPI, indicating bacterial 

resolution over time. Myocarditis has not been previously described in any inbred 

mouse strain following intranasal inoculation with the Nine Mile Phase I strain of 

C. burnetii. However, previous studies have observed myocarditis in mice and 

guinea pigs infected with C. burnetii by the intraperitoneal and aerosol routes [73, 

93].  

Lymphoid hyperplasia, described as a non-specific inflammatory lesion 

associated with the spleen was observed in the majority of infected mice. 

Development of this lesion was most likely induced by up-regulation of the 

immune system in relation to bacterial infection, and has been described in 

previous mouse infection studies [1, 2, 4]. A second non-specific inflammation 

was observed in the kidneys of infected mice. Rare interstitial nephritis was 

observed in mice from each inoculation group, but was not observed in any 

mouse 59 DPI. This lesion appeared to be inflammatory in nature, which 

suggested that the tissue was reacting to the bacterial infection by stimulating 

production of immune cells. Observations of histopathologic lesions induced by 

C. burnetii infection in the IN inoculated control mice revealed that lesions 

associated with the lungs, kidneys, and heart were less common approximately 



 
 

45 

two months after infection. However, lesions associated with the liver were still 

observed at high frequencies 59 days after infection. This information 

demonstrated that the bacterium might have induced a long-term infection in the 

liver tissue of infected mice. 

Bacterial infection of mouse tissues was similar between IP and IN 

infected mice, demonstrating that dissemination and infection are independent of 

inoculation route. In the IN inoculated control mice, a high frequency of bacterial 

DNA was detected in the splenic tissue of infected mice 28 days after infection, 

which decreased significantly at 59 DPI. In both studies, the highest frequency of 

IFA positive samples was observed between 14 and 21 DPI, and no positive 

samples were observed from the splenic tissue of mice euthanized at 59 DPI. 

Together, these results demonstrated that bacterial DNA detection in the spleen 

was highest early during the infection and declined approximately one month 

after infection. Conversely, bacterial DNA detection in the bone marrow of IN 

inoculated control mice euthanized at 59 DPI was higher than mice euthanized at 

14 and 28 DPI. Collectively, these data support the concept that persistence of 

C. burnetii varies among tissues, which may have important implications for 

chronic and recrudescent disease. An increase in bacteria in the bone marrow 

demonstrated a potential bacterial sequestering and possible development of 

chronic infection, as has been described in human cases of Q fever [120, 121].   

The most common pathology associated with human acute Q fever 

includes hepatitis and pneumonia [122]. In contrast, chronic disease in humans is 

typically seen as endocarditis, and less common, osteomyelitis [120]. In humans, 
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splenomegaly associated with non-culturable endocarditis, is clinically suggestive 

of Q fever [73, 74]. This study found that the most common lesions observed in 

infected mice were hepatitis and interstitial pneumonia, followed by, myocarditis, 

nephritis, and splenic lymphoid hyperplasia. Development of these lesions was 

independent of the route of infection. The lesions associated with the heart, lung, 

and kidneys observed in infected mice were less common two-months after 

infection. Pathologies related to the spleen and liver, were still observed 59 days 

after infection, which demonstrated that intranasal infection with C .burnetii 

induces pathologic lesions and bacterial infection in mouse tissues that remain 

two months after initial infection. Also, that the C57BL/6 inbred mouse strain 

develops similar pathology to humans when infected with C. burnetii, and the 

route of exposure did not confound this finding.  

 Given the frequency of inhalation as a means of exposure in naturally 

acquired Coxiella burnetii human infections [76], it is important to replicate this 

exposure route and pathology development in an animal model. By being able to 

study infection in an animal model, pathogenesis of the organism can be 

elucidated. The present study demonstrated that the IP and IN inoculation routes 

do not differ in their ability to infect or induce pathologic lesions in the mouse; 

however, there are subtle differences in the pathology present at early time 

points that researchers should be aware of. In this study, the C57BL/6 inbred 

mouse strain developed similar histopathology observed in naturally infected 

humans. The retention of pathologies of the liver two months after initial infection 

provides insight about long-term infection after natural exposure. These results 
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suggest that the intranasal route is an acceptable route of inoculation for future 

studies as it mimics natural pathogenesis of infection, results in similar 

quantitative microbiological findings as both IP and aerosol inoculation studies, 

and is a safer and more efficient than other inoculation methods.   
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CHAPTER 3: EFFECT OF AGE AND CHEMICALLY INDUCED 

IMMUNOSUPPRESSION IN MICE 

Introduction 

The intracellular bacterium Coxiella burnetii is the causative agent of the 

human disease Q fever. Based on serum antibody titers to C. burnetii phase I or 

II antigens and the development of histopathologic lesions, disease is classified 

as either acute or chronic.  Acute Q fever is generally asymptomatic but clinical 

signs may include flu-like symptoms, pneumonia, hepatitis, and 

menigoencephalitis [70]. Chronic Q fever occurs in approximately 1-2% of 

acutely infected cases [64]. Chronic disease commonly manifests as 

endocarditis, typically observed in patients with previous valvulopathies [70, 123], 

and less often as osteomyelitis and glomerulonephritis [70, 124].  

There are many theories regarding why certain disease manifestations 

develop in C. burnetii infections, and studies have shown trends in specific 

pathologies related to genotype and geography and the route of exposure. Cases 

of Q fever pneumonia are more common in Spain and Canada, while cases of 

hepatitis are more commonly observed in France and Australia [70]. Q fever 

pneumonia has been more frequently described in cases of inhalation, while 

hepatitis has been more frequently described in cases of infection by ingestion 

[70]. Additional factors that may determine severity of C. burnetii infection include
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inoculation dose, bacterial molecular characteristics (phase and strain), and the 

relationship between the bacterium and the host [32, 69, 125]. 

Host factors are also important in disease development and may 

determine the severity of pathological lesions associated with C. burnetii 

infection. Age appears to be an important host attribute, with the majority of Q 

fever cases observed in humans over the age of 15 years [71]. Q fever is often 

associated with occupation and most often infects people in close contact with 

reservoir hosts including, ranchers, abattoir workers, and veterinarians [126]. 

Immune status also appears to be an important factor during C. burnetii infection. 

Disease manifestations are typically seen in patients with immune disorders in 

which the cell mediated immune response is insufficient [32]. Chronic Q fever 

has been described in patients with acquired immunodeficiency syndrome, 

cancer, and leukemia [70], suggesting that host immune status may have an 

association in the severity of disease.  

The following experiments were designed to evaluate the effects of age 

and immunosuppression on the development of clinical and pathological disease 

in mice infected with C. burnetii. This information is important for the 

development of a mouse model that will mimic disease manifestations observed 

in humans for the future goal of drug and vaccine development.   

To evaluate the effect of age, two different age groups of mice were 

attained, 9 months and 9 weeks. In order to evaluate immunosuppression, mice 

were treated with either dexamethasone or cyclophosphamide with doses that 

have been previously described [127, 128]. Dexamethasone is a glucocorticoid 
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that suppresses the cell mediated immune response of the host by inhibiting 

genes that encode for production of cytokines, which reduces T cell proliferation 

essential in resolving C. burnetii infection [129]. Dexamethasone also affects the 

humoral immune response of the host by inducing B cells to produce smaller 

amounts of IL-2 receptors and cytokine important in the proliferation of B and T 

lymphocytes [130]. In addition to its effects on cell mediated and humoral 

immune responses of the host, dexamethasone down-regulates Fc receptors on 

macrophages which causes less efficient phagocytosis of opsonized cells [131]. 

Overall, this study is attempting to induce prolonged C. burnetii infection in mice 

with exacerbated pathologic disease observed in chronic Q fever cases by 

treating mice with dexamethasone.  

 Cyclophosphamide is a cytostatic alkylating agent that can induce 

immunosuppression when given at high doses [132]. The following study evaluated 

cyclophosphamide-induced immunosuppression in mice infected with C. burnetii. 

Cyclophosphamide suppresses proliferation of T lymphocytes via a nitric oxide (NO) 

pathway, which works by priming immunosuppressive myeloid progenitors for iNOS 

protein synthesis [133]. Additionally, cyclophosphamide reduces the number and the 

suppressive ability of regulatory T cells (TREGs), which are essential in regulating the 

host immune response [132]. Cyclophosphamide can induce immunosuppression by 

modulating and promoting changes in the host immune cells. This experimental 

mouse study will reveal if treatment with cyclophosphamide will exacerbate C. burnetii 

disease.  
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 Overall, the following mouse experimental infection studies will determine 

if mouse age or treatment with dexamethasone or cyclophosphamide results in 

prolonged coxiellosis and exacerbated clinical and histopathologic lesions 

associated with infection. The first study examines age and dexamethasone-

treatment while the second study determines if cyclophosphamide treatment 

before or after infection alters disease progression in mice.  

Materials and Methods  
 
Animals   

Ten A/J (5 week-old female), and 62 C57BL/6 (39 nine-week-old and 24 

nine-month-old female) mice were purchased from Charles River Laboratories 

(Wilmington, MA, USA). Mice were housed at the Colorado State University 

Infectious Disease Research Center in ventilated cages under HEPA-filtered 

barrier conditions. Water and food were provided ad libitum. Animal care and use 

procedures were carried out in accordance with university policies [116].    

Microorganism   

The Nine Mile Phase I strain (RSA493) of C. burnetii was obtained from 

the American Type Culture Collection (Manassas VA, USA). Stocks were 

prepared as homogenates of pooled spleens from A/J mice inoculated 

intraperitoneally 7 days previously (see Chapter 2) and stored in aliquots at 80oC 

[2, 117].  

Mouse experimental infections   

Sixty-two C57BL/6 mice were separated into groups (A-G) based on the 

planned euthanasia day and treatment received, as summarized in Table 1. All 
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mice were inoculated IN with 3000 C57BL/6 ID50 splenic stock homogenate 

diluted with phosphate buffered saline (PBS) described in Chapter 2. Mice were 

anesthetized prior to inoculation with a mixture of ketamine and xylazine (100 

and 10 mg/kg respectively) injected intraperitoneally.  

In addition to the two mouse ages examined, two immunosuppressive 

protocols were evaluated.  First, dexamethasone sodium phosphate (SP) 

(Bimeda-MTC Animal Health Inc., Ontario, Canada) was added to drinking water 

at a concentration of 8 ug/ml, a modified dose from a previous study [127]. The 

water was changed and fresh solution of drug was provided every other day for 

the duration of the study. Second, 15 mice were immunosuppressed by IP 

treatments with cyclophosphamide (Mead Johnson, Evansville, IN, USA) at a 

dose of 150 mg/kg, as previously described [128].  Cyclophosphamide treatment 

was initiated prior to infection for some mice and after infection for others. Mice in 

groups G and H were described in Experiment 2, Chapter 2. Four mice were 

euthanized 14 DPI and five mice were euthanized 28 DPI, from group G. All mice 

from group H were euthanized at 59 DPI.  

On the scheduled day of euthanasia, mice were anesthetized with 

ketamine-xylazine and a terminal blood sample was collected by cardiac 

puncture. The mice were then euthanized and samples of spleen, liver, lung, 

heart, and kidney were collected into 10% neutral-buffered formalin. Those tissue 

sections were paraffin embedded, cut in 5-micrometer sections, and stained with 

hematoxylin and eosin for microscopic review; Dr. Colleen Duncan conducted all 

histopathologic evaluations. Splenic enlargement was graded on a scale from 0-
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5; with 0 indicating a smaller than average spleen size, 1 an average sized 

spleen, and 5 a grossly enlarged spleen (approximately ≥ 5 times larger than 

average). Half of each spleen was stored at -80°C for D NA extraction. Bone 

marrow samples were collected by washing femur cavities with 0.5 ml of PBS 

and stored frozen at -80°C until assay.  

Table 1.  

Age and Immunosuppression Study Experimental Design. 

Group 
9 Week 
Mice (n) 

9 Month 
Mice (n) 

Immunosuppression 
Treatment 

Day of Euthanasia 
(DPI) 

A 7 8 None 14 
B 8 8 DEX, DPI 28 to 42 42 
C 8 8 None 42 
D 5 0 CY initiated on -3 

DPI 
14 

E 5 0 CY initiated on -3 
DPI 

28 

F 5 0 CY initiated on DPI 
28 

42 

G** 10 0 None 14, 28 
H** 10 0 None 59 

** Mice in groups G and H were part of the studies described in Chapter 2, 
Experiment 2. 
DEX: dexamethasone in drinking water. 
CY:  cyclophosphamide delivered by IP injection. 

Assays for Detection of C. burnetii 
 
Indirect Immunofluorescence Assay (IFA).  Approximately 10 milligrams of 

spleen were used to prepare splenic squash mounts.  Slides were fixed in 70% 

acetone for at least 12 hours, then immunostained and evaluated as described in 

Chapter 2.  Fluorescence signal was subjectively graded on a scale from 0-3, 

with 0 designated as negative fluorescence, and 3 designated as a strong signal 

of fluorescence.   
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Polymerase Chain Reaction (PCR).  Bacterial DNA extraction was performed 

on mouse splenic and bone marrow tissue samples and both conventional and 

quantitative PCR assays were conducted to detect the C. burnetii insertion 

sequence IS1111 gene as described in Chapter 2.   

Statistical Analyses 
 
Histopathology scores and tissue bacterial DNA infection (qPCR) results 

for group B (dexamethasone-treated) mice were compared to groups A and C 

(infected control mice). Histopathology and bacterial infection for groups D, E, 

and F (cyclophosphamide-treated) were compared to control mice in groups G 

and H (from previous experiment 2 in Chapter 2). Mean splenic and bone marrow 

bacterial genome equivalent (GE) values between mouse groups were compared 

using analysis of variance (ANOVA). GE values less than 5 were converted to a 

value of 1 for analysis. Mouse samples that fell below the detectable qPCR 

threshold value of 1000 were converted to missing values in SPSS to ensure 

accuracy when statistically evaluating quantitative data. The Pearson’s Chi-

square test and odds ratio (OR), when appropriate, were used to compare 

frequencies of categorical data. Fischer’s exact test (FET) was reported for 

categorical variables in which the frequency was less than five. The presence of 

splenomegaly and IFA scores were dichotomously categorized into positive and 

negative for analysis. Spleens graded 2-5, and IFA scores 2-3 were considered 

positive. When interaction between variables was identified, stratum specific 

measures of effect were reported. The Mantel-Haenszel test was used to assess 

confounding among categorical variables. A p-value ≤ 0.05 was considered 
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significant for all tests. All statistical analyses were performed using SPSS 

software (IBM, version 19, Somers, NY).  

Results 

Clinical Signs and Gross Pathology 
 

Morbidity was not observed in any mice throughout the 42-day time 

course of infection. One 9-week-old mouse from group A and one mouse from 

group G died following anesthesia and inoculation; necropsies were not 

performed. 

Splenomegaly was observed in 16 of 42 mice from groups A and C, but 

was not observed in any dexamethasone treated mouse from group B. This 

difference was statistically significant (p=0.02, FET). There was no difference in 

incidence of splenomegaly between mice euthanized at different time points; 

enlarged spleens were observed in 12 of 15 mice from group A, euthanized 14 

DPI, compared to 4 of 32 mice from groups B and C, euthanized 42 DPI (p=0.4, 

FET). Splenomegaly was seen in 15 of 20 mice from control mice in groups G 

and H, and 4 of 15 mice from cyclophosphamide-treated groups D, E, and F.  

Mice in groups G and H were 10.3 times more likely to have splenomegaly than 

cyclophosphamide mice in groups D, E, and F (95% CI: 2.2-47.3). Splenomegaly 

was seen in 3 mice from groups D, E, and G (euthanized 14 and 28 DPI) 

compared to 1 mouse from group F (euthanized 42 DPI) and was not a 

statistically significant difference (p=0.8, FET). However, duration of infection was 

a significant interaction term in the comparison of splenomegaly and 

cyclophosphamide treatment. There was no significant difference in 
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splenomegaly between groups D, E, and G, euthanized 14 and 28 DPI 

respectively, (p=0.4, FET), but there was a significant difference in incidence of 

splenomegaly between mouse groups F and H, euthanized 42 and 59 DPI 

(p=0.004, FET). Also, there was no statistically significant difference in 

splenomegaly between mice that began cyclophosphamide-treatment three days 

before infection (groups D and E) and mice that began cyclophosphamide 

treatment 28 DPI (group F; p=0.08, FET).  

Histopathology 

Hepatic lesions were seen in 47 of 62 infected mice and characterized as 

either inflammatory or degenerative. Inflammatory changes were 

lymphohistiocytic in nature with many small microgranulomas randomly 

distributed throughout the hepatic parenchyma (Figure 1A). In two mice, central 

coagulative necrosis with inflammatory foci and a rim of peripheral lymphocytes 

was observed. The second histologic pattern of liver disease was vacuolar 

degeneration of hepatocyte cytoplasm. This lesion was observed in all 16 

dexamethasone-treated mice from group B (Figure 1B) and was not seen in any 

mice from groups A and C, ascribing to the drug treatment rather than infection. 

Hepatic lesions were observed in 12 of 23 young and 21 of 24 aged mice from 

mouse groups A, B, and C. There was a significant difference in the incidence of 

hepatitis associated with mouse age; aged mice were 6.4 times more likely to 

develop hepatitis compared to young mice (95% CI: 1.6-25.8). Duration of 

infection (14 versus 42 DPI) was a significant interaction term when evaluating 

frequency of hepatic lesions between young and aged mice. Hepatitis was seen 
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in 14 of 16 mice from group A (p=0.5, FET) and 19 of 32 mice from groups B and 

C (p=0.03, FET). Hepatic lesions were seen in 8 of 16 dexamethasone-treated 

mice from group B and 25 of 31 mice from groups A and C. Mice in groups A and 

C were 4.2 times more likely to have hepatic lesions than mice in group B (95% 

CI: 1.1-15.7). Seven of 20 mice from mouse groups D, E, and G (euthanized 14 

and 28 DPI) had hepatic lesions compared to 5 of 15 mice from groups F and H 

(euthanized 42 and 59 DPI), and was not a statistically significant difference 

(p=0.6, FET). There was no statistically significant difference in hepatitis 

observed in mice treated with cyclophosphamide starting three days before 

infection (groups D and E) compared to mice that started treatment 28 DPI 

(group F). Hepatitis was seen in 9 of 10 mice from groups D and E and all 5 mice 

from group F (p=0.34, FET).    

Mild interstitial pneumonia (Figure 1C), characterized by increased 

numbers of lymphocytes, plasma cells and rare neutrophils expanding the 

pulmonary interstitium, was the most common lung lesion and was observed in 

18 of 23 young and 18 of 24 aged mice, from mice in groups A, B, and C. There 

was no statistically significant difference in the frequency of interstitial pneumonia 

between young and aged mice from groups A, B, and C (OR: 1.2, 95% CI: 0.3-

4.6). Interstitial pneumonia was observed in 13 of 16 dexamethasone-treated 

mice from group B compared to 23 of 32 mice from groups A and C this 

difference was not statistically significant (p=0.7, FET). Mouse age was an 

interaction term in the comparison of the frequency of interstitial pneumonia 

between dexamethasone-treated mice in group B. Interstitial pneumonia was 
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observed in all 8 young mice from group A (p=0.12) and 5 of 8 aged mice from 

group B (p=0.36). Interstitial pneumonia was seen in 9 of 15 mice from 

cyclophosphamide-treated mice in groups D, E, and F and nine mice from control 

mice in groups G and H, and was not a statistically significant difference between 

mouse groups (OR: 1.7, 95% CI: 0.4-6.6). Duration of infection was an 

interaction variable when comparing interstitial pneumonia between 

cyclophosphamide-treated groups D, E, and F. Six of 20 mice from groups D, E, 

and G (euthanized 14 and 28 DPI) had interstitial pneumonia (p=0.3, FET) 

compared to 3 of 15 mice from groups F and H (euthanized 42 and 59 DPI) 

(p=0.07, FET). Interstitial pneumonia was seen in 4 of 10 mice that received 

cyclophosphamide treatment three days before infection (groups D and E) and all 

5 mice from group F that received cyclophosphamide treatment 28 DPI, and this 

difference was not statistically significant difference (p=0.6, FET).  

Small foci of lymphocytic inflammation within the heart (Figure 1D), were 

observed in 2 young and 3 aged mice from groups A, B, and C. Myocarditis was 

not seen in any dexamethasone-treated mice from group B, which was not a 

significant difference in comparison to myocarditis in groups A and C (p=0.15, 

FET). Myocarditis was seen in 7 of 15 cyclophosphamide treated mice from 

groups D, E, and F and 5 of 20 control mice from groups G and H, a difference 

that was not statistically significant (OR: 2.3, 95% CI: 0.53-9.7). Duration of 

infection was an interaction variable when comparing myocarditis between 

groups D, E, F, G, and H. Seven of 20 mice from groups D, E, and G (euthanized 

14 and 28 DPI) had myocardial lesions (p=0.6, FET). However, myocarditis was 
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not seen in any mice from groups F and H (euthanized 42 and 59 DPI). 

Myocardial lesions were observed in 4 of 10 mice that began cyclophosphamide 

treatment three days before infection (groups D and E) compared to 3 of 5 mice 

from group F (euthanized 59 DPI), this difference was not statistically significant 

(p=0.1, FET).  

Lymphoid hyperplasia was the most commonly observed splenic lesion 

and was observed in 6 of 23 young and 6 of 24 aged mice from mouse groups A, 

B, and C. There was no statistically significant difference in splenic hyperplasia 

between mouse ages (OR: 0.94, 95% CI: 0.25-3.6). Splenic lymphoid 

hyperplasia was not observed in any dexamethasone-treated mice from group B, 

this was a statistically significant different compared to hyperplasia observed in 

mice from groups A and C (p=0.02, FET). Splenic lymphoid hyperplasia was 

seen in all 15 mice from cyclophosphamide treated groups D, E, and F and 18 of 

20 control mice from groups G and H. 

Interstitial nephritis, aggregates of lymphocytes and plasma cells 

expanding the interstitium. Nephritis was seen in 4 of 23 young and 8 of 24 aged 

mice from groups A and C and was a statistically significant difference between 

these groups (p=0.02, FET). Nephritis was not observed in any dexamethasone-

treated mouse from group B, which was a statistically significant difference 

compared to groups A and C (p=0.004). Nephritis was observed in 3 of 20 control 

mice from groups G and H, and was not seen in any mouse from 

cyclophosphamide-treated groups D, E, and F, this difference was not 

statistically significant (p=0.2, FET).  
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Figure 1: A-D) Histopathologic Lesions Associated with C. burnetii. 

A) Hepatitis, B) steroid hepatopathy, C) interstitial pneumonia, and D) 

myocarditis. 
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Bacterial Infection in Mouse Tissues   

Mean splenic and bone marrow bacterial GE values derived from the 

qPCR IS1111 assay for each mouse group are listed in Table 2. 

Table 2.  

Effect of Age and Chemically Induced Immunosuppression on C. burnetii  

Infection in Mouse Tissues. 

Mouse 

Group 

N 9 wks,  

N 9 mos 

Treatment  Euthanasia 

DPI 

Spleen  

GE* ± SD 

Bone 

Marrow  

GE* ± SD 

A 7, 8 None 14 25.6 ± 22.7 10.7 ± 30.4 

B 8, 8 DEX 42 1.3 ± 1.1 1.1 ± 0.25 

C 8, 8 None 42 1.0 ± 0.0 1.0 ± 0.0 

D 5, 0 CY -3 14 18.5 ± 21.7 1.4 ± 0.6 

E 5, 0 CY -3 28 1.1 ± 0.1 1.0 ± 0.0 

F 5, 0 CY 28 DPI 42 1.0 ± 0.0 1.0 ± 0.0 

G 10, 0 None 14, 28 13.5 ± 4.5 10.4 ± 6.0 

H 10, 0 None 59 0.2 ± 0.1 1.0  ± 0.0 

* GE: genome equivalents, values <5 were converted to a value of 1 for data 
analysis. 
N: number of mice in each group. 
CY: cyclophosphamide beginning three days before infection or 28 days after 
infection.  
DEX: dexamethasone 
DPI: days post inoculation. 
SD: standard deviation. 
 

There was no statistically significant difference in the mean bacterial GE 

values between young and aged mice from groups A, B, and C (F: 1.3, DF: 1, 
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p=0.3). There was a statistically significant difference in the mean splenic 

bacterial GE values between dexamethasone-treated mice from group B 

compared to groups A and C (F: 9.1, DF: 1, p=0.006). There was no statistically 

significant difference in the mean splenic bacterial GE value from 

cyclophosphamide-treated groups D, E, and F compared to control mice in 

groups G and H (F: 0.15, DF: 1, p=0.7). There was no statistically significant 

difference in mean splenic bacterial GE values from mice that started 

cyclophosphamide treatment three days before infection (groups D and E) 

compared to mice that started cyclophosphamide treatment 28 DPI group F (F: 

0.6, DF: 3, p=0.7). 

There was no statistical difference in the frequency of IFA positive splenic 

samples between mouse ages, mouse groups A, B, and C, (OR: 1.5, 95% CI: 

0.4-5.6). Additionally, no difference was observed in the frequency of positive IFA 

scores between dexamethasone-treated mice, in group B and mice in groups A 

and C (p=0.2, FET). Lastly, there was no difference in the frequency of IFA 

positive spleen samples between cyclophosphamide-treated mice in groups D, E, 

and F, and control mice in groups G and H (p=0.7, FET). 

 Mouse age had no effect on the amount of bacterial DNA detected in the 

tissues from mice in groups A, B, and C. There was no significant difference in 

the mean bone marrow bacterial GE values between young and aged mice from 

groups A, B, and C (F: 0.3, DF: 1, p=0.6). Treatment with dexamethasone had no 

significant effect on the amount of bacteria detected in the bone marrow of mice 

from group B. There was no statistically significant difference in mean bone 
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marrow GE values from mice in group B compared to groups A and C (F: 0.3, 

DF: 1, p=0.6). Cyclophosphamide treatment had no effect on the amount of 

bacterial DNA detected in the bone marrow of infected mice. There was no 

statistically significant difference in the mean GE value of the bone marrow from 

cyclophosphamide mice in groups D, E, and F compared to control mice in 

groups G and H (F: 2.2, DF: 1, p=0.2). Also, there was no statistically significant 

difference in mean bone marrow GE values from mice in groups D, E, and G 

(euthanized 14 and 28 DPI) compared to groups F and H (euthanized 42 and 59 

DPI) (F; 2.2, DF: 3, p=0.1). Mean bone marrow bacterial GE values from mice 

that started cyclophosphamide treatment three days before infection (groups D 

and E) were not significantly different from mice that began cyclophosphamide 

treatment 28 DPI (group F) (F: 2.5, DF: 1, p=0.1).    

Discussion 
 
There are several disease manifestations that have been observed in 

human Q fever including, flu-like symptoms, pneumonia, hepatitis, and 

endocarditis [25, 114]. It is unclear why certain pathologies develop after 

infection, but disease variability has been linked to host factors [69, 70]. Age and 

host immune status were examined in mice to determine if these factors 

influence C. burnetii infection.  

This study found that there was no exacerbation of histopathologic lesions 

or increase in the amount of bacterial DNA detected in mouse tissues between 9-

week-old and 9-month-old C57BL/6 mice after C. burnetii infection. A previous 

mouse study by Leone et al. determined a significant difference in C. burnetii 



 
 

66 

bacterial burden of the spleen of 14-month old mice compared to 1-month-old 

mice disease, and the authors suggested that disease was exacerbated in the 

aged mice [134]. It is possible that our study did not observe a significant 

difference in C. burnetii infection between 9-week and 9-month-old mice because 

a more extreme age difference was necessary. Additionally, due to the 

constraints of pilot studies it is possible that low power prevented a significant 

difference from being observed.  

 Treatment with dexamethasone did not exacerbate C. burnetii disease in 

mice. Further, there was no interaction between age and dexamethasone 

treatment and disease development. As stated previously, dexamethasone can 

decrease the functionality of Fc receptors on macrophages [131]. In this study 

dexamethasone treatment may have induced changes in the macrophage 

receptors disrupting the infectious process of the bacterium. Fewer infected cells 

ascribes to fewer histopathologic lesions observed in infected mice. Steroid 

hepatopathy was observed in all dexamethasone treated mice. This hepatic 

pathology was caused by the dexamethasone treatment as similar pathologies 

have been observed in animals receiving long-term steroid therapy [135]. 

Treatment with dexamethasone did not exacerbate bacterial infection of mouse 

tissues or histopathologic lesions in mice infected with C. burnetii. Although the 

dosage of dexamethasone was derived from a previous study, the dose received 

by the mice may not have down-regulated the cell - mediated immune response, 

as anticipated and chronic disease did not develop. No information is available 

about the interaction of dexamethasone and C. burnetii. Overall, more studies 
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are necessary to evaluate the effect of dexamethasone-induced 

immunosuppression on C. burnetii infection in mice.  

Cyclophosphamide did not significantly exacerbate C. burnetii disease in 

mice. However, grossly cyclophosphamide-treated mice had significantly less 

splenomegaly than untreated mice. Previous studies have determined that 

cyclophosphamide treatment preferentially depletes lymphocytes from lymphoid 

organs in mice [136]. Therefore, less incidence of splenomegaly could have been 

the result of cyclophosphamide induced lymphocytic depletion. As with the 

dexamethasone treatment, cyclophosphamide did not exacerbate C. burnetii 

disease in mice. While this dose has been used to induce lymphocyte depletion 

in mice, the interaction of C. burnetii and cyclophosphamide has not been 

previously evaluated. Therefore, studies need to be conducted on the efficacy of 

cyclophosphamide inducing immunosuppression in C. burnetii infected mice to 

determine if this treatment affects disease development. 

The duration of infection was an interaction term in the evaluation of 

splenomegaly and interstitial pneumonia among cyclophosphamide-treated and 

untreated mice. In both comparisons, there was significantly less splenomegaly 

and interstitial pneumonia seen in mice euthanized late in the infection (42 and 

59 DPI). However, there was no difference in the incidence of splenomegaly and 

interstitial pneumonia in mice euthanized early in the infection (14 and 28 DPI). 

Additionally, more bacterial DNA was detected in the spleen and bone marrow of 

infected mice early in the infection compared to mice that were euthanized later. 

Bacterial infection in mouse tissues was highest approximately two weeks after 
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infection after which point, the amount of bacterial DNA detected in the tissues 

and frequency of histopathologic lesions significantly decreased. These results 

demonstrated that bacterial dissemination induced tissue infection early in the 

infectious process leading to the development of histopathologic lesions. 

Significantly fewer bacteria were detected in infected tissues and fewer 

histopathologic lesions six weeks after infection due in part to resolution by the 

host immune response.  

  Histopathologic lesions observed in infected mice mimic lesions observed 

in human cases of Q fever specifically, interstitial pneumonia, hepatitis, and 

myocarditis [66]. Interstitial pneumonia and myocarditis were observed in all 

mouse groups and development of these lesions was unaffected by host age or 

chemical treatment. Therefore, age may not be an important factor in 

development of cardiac and lung pathologies in human Q fever.  

This study demonstrated that mouse age did not have a significant impact 

on C. burnetii infection. Additionally, treatment with dexamethasone and 

cyclophosphamide did not significantly exacerbate C. burnetii disease in mice. 

Overall, this study determined that these attributes are not risk factors for 

enhanced C. burnetii disease in mice as they are determined to be for humans.  
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CHAPTER 4: EVALUATION OF DOXYCYCLINE THERAPY IN TRE ATING 

 C. BURNETII  INFECTION IN MICE 

Introduction 

The intracellular bacterium Coxiella burnetii induces a spectrum of 

disorders in infected humans, ranging from subclinical to severe disease. In 

some untreated patients, infections can persist throughout life. Examples of 

chronic infections include cases of C. burnetii begin maintained for over 20 years 

in the bone marrow of infected humans and sequela such as endocarditis 

associated with long-term infections [120, 137]. The primary treatment for acute 

Q fever is a two-week course of doxycycline therapy [64]. In the majority of 

cases, this treatment clears infection; however, latent and chronic infections have 

been reported after doxycycline-treatment [120]. Chronic infections require long- 

term therapies to ensure the host maintains immunity and eventually clears the 

infection. Cases of chronic Q fever endocarditis require extensive antimicrobial 

therapy, with multi-drug therapies given for the life of the host [138]. Additionally, 

several cases of endocarditis have required valvular graft replacement [139]. 

There are many theories about why acute disease becomes chronic in 1-2% 

infected cases [64]. In order to prevent the conversion from acute to chronic 

disease, effective antimicrobial therapies must be given shortly after infection to 
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control and clear bacterial infection in the host. The objective of this study was to 

evaluate the effectiveness of doxycycline treatment on C. burnetii infected mice 

to provide a baseline assessment to which future antimicrobial trials could be 

compared.  

Doxycycline is a tetracycline derivative that is effective in treating gram-

positive and gram-negative aerobic and anaerobic pathogens and has been 

determined to be the best antimicrobial to treat C. burnetii infections [140, 141]. 

Doxycycline is bacteriostatic and works by penetrating the bacterial cell wall 

interfering with protein biosynthesis, primarily on the 70S ribosome [140]. 

Doxycycline also binds to the 30S ribosomal subunit preventing the binding of 

bacterial mRNA to tRNA and doxycycline inhibits mitochondrial protein synthesis 

[140]. Chronic Q fever is much more difficult to treat and adjunctive therapy with 

hydroxychloroquine is used as an alkalizing agent to disrupt the acidic 

environment of the parasitophorous vacuole [141]. The following experimental 

mouse infection study evaluates the effectiveness of doxycycline, administered in 

mouse drinking water, in preventing C. burnetii protein synthesis and subsequent 

infection.  

Materials and Methods 

Animals 
 

Thirty-five C57BL/6 (8 week-old female) mice were purchased from 

Charles River Laboratories (Wilmington, MA, USA). Mice were housed at the 

Colorado State University Infectious Disease Research Center in ventilated 

cages under HEPA-filtered barrier conditions. Water and food were provided ad 
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libitum. Animal care and use procedures were carried out in accordance with 

university policies [116]. Clinical signs and water consumption were recorded 

daily, and mouse body weights were recorded twice weekly. 

Microorganism 
 

The Nine Mile Phase I strain (RSA493) of C. burnetii was originally 

obtained from the American Type Culture Collection (Manassas VA, USA).  

Laboratory stocks of the bacteria were prepared from the spleens of infected A/J 

mice, stored in aliquots at -80oC and titrated by intranasal inoculation in C57BL/6 

mice (see Chapter 2).  

Mouse Experimental Infections 
 

Mice were anesthetized prior to inoculation using an IP injection of a 

mixture of ketamine and xylazine (100 and 10 mg/kg respectively). Mice were 

inoculated IN with 3000 ID50 of C. burnetii diluted with phosphate buffered saline 

(PBS) described in Chapter 2. Mouse treatment groups are listed in Table 1; 

Groups A and B were treated with doxycycline seven days after infection; Group 

C began doxycycline-treatment 28 days post infection (DPI). Mice in groups D, E, 

and F (previously described in Experiment 2, Chapter 2) served as infected, non-

treated controls, five mice from group D were euthanized 14 DPI and five were 

euthanized 28 DPI. 

Doxycycline hyclate powder (CSU Veterinary Teaching Hospital 

pharmacy) was added to mouse drinking water at a final dose of 200 ug/ml as 
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previously described [142]. Medicated drinking water was changed every other 

day until the mice were euthanized   

Table 1.  

Doxycycline and C. burnetii Infection Study Design. 

Group Number of Mice Days of Doxycycline 
Treatment Day of Euthanasia 

A 5 7 – 14 14 DPI 
B 5 7 – 28 28 DPI 
C 5 28 – 42 42 DPI 
D 5 None 14 DPI 
E 5 None 28 DPI 
F 10 None 59 DPI 

DPI: days post inoculation. 

Blood samples were obtained under ketamine-xylazine anesthesia by 

intracardiac puncture, immediately prior to euthanasia. Necropsies were 

performed and samples of the spleen, liver, lungs, heart, and kidney were 

collected in 10% neutral-buffered formalin. Tissue sections were embedded in 

paraffin, and sections stained with hematoxylin and eosin for microscopic review, 

Dr. Colleen Duncan conducted all histopathologic evaluations. Splenic 

enlargement was graded on a scale from 0-5; with 0 indicating a smaller than 

average spleen size, 1 an average sized spleen, and 5 a grossly enlarged spleen 

(approximately ≥ 5 times larger than average). One half of each spleen was 

stored frozen at -80°C for DNA extraction. Bone marro w washes were performed 

by injecting 0.5 ml of PBS into the broken femur cavity, and stored at -80°C.  

Assays for Detection of C. burnetii 
 
Indirect Immunofluorescence Assay (IFA).  Approximately 10 milligrams of 

spleen were used to prepare splenic squash mounts.  Slides were fixed in 70% 
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acetone for at least 12 hours, then immunostained and evaluated as described in 

Chapter 2.  Fluorescence signal was subjectively graded on a scale from 0-3, 

with 0 designated as negative fluorescence, and 3 designated as a strong signal 

of fluorescence.   

Polymerase Chain Reaction (PCR).  Bacterial DNA extraction was performed 

on mouse splenic and bone marrow tissue samples, quantitative PCR assays 

were conducted to detect the C. burnetii insertion sequence IS1111 gene as 

described in Chapter 2.   

Statistical Analyses 
 
 Mean genome equivalent (GE) values from qPCR assays of spleen and 

bone marrow were compared between doxycycline-treated and non-treated, 

infected control mice using analysis of variance (ANOVA). GE values less than 5 

were converted to a value of 1 for analysis. Mouse samples that fell below the 

detectable qPCR threshold value of 1000 were converted to missing values in 

SPSS to ensure accuracy when statistically evaluating quantitative data. 

Differences between doxycycline treatment groups were determined using the 

Tukey’s post-hoc test. The Pearson’s Chi-square test and odds ratios, when 

appropriate, were used to compare frequencies of categorical data. The Fischer’s 

exact test (FET) was used for categorical frequencies less than five. For all 

statistical tests, a p-value ≤0.05 was considered statistically significant. All 

statistical analyses were performed using SPSS software (IBM, version 19, 

Somers, NY). 
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Results 

Clinical Disease and Gross Pathology 
 
 Morbidity was not observed in any of the mice over the 42-day infection 

time course. One infected control mouse died shortly after inoculation; a 

necropsy was not performed. Splenomegaly was the only significant gross lesion 

observed during necropsy; this was seen in two doxycycline-treated mice from 

mouse groups A and B and in 15 of 20 mice in groups D, E, and F. Mice that 

were not treated with doxycycline were 24 times more likely to have enlarged 

spleens than mice in groups A, B, and C (95% CI: 4.6, 129.8). There was not a 

significant difference in splenomegaly between mice that started doxycycline 

treatment seven days after infection (groups A and B) compared to those that 

started treatment 28 DPI (group C) (p=0.5, FET). 

Histopathology 
 
 Hepatic lesions were seen in 30 of 34 infected mice and were 

characterized as mild to moderate inflammation, lymphohistiocytic in nature with 

many small microgranulomas randomly distributed throughout the hepatic 

parenchyma. Hepatitis was seen in 13 of 15 doxycycline treated mice from the 

mice groups A, B, and C, and 17 of 20 control mice from groups D, E, and F, 

which was not a significant difference (p=1.0, FET). Additionally, hepatitis was 

observed in 8 of 10 mice from groups A and B (euthanized 14 and 28 DPI) 

compared to 5 mice from group C (euthanized 42 DPI), this difference also was 

not significant (p=0.5, FET).  
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 Mild, lymphoplasmacytic, interstitial pneumonia was the most commonly 

observed lung lesion. Interstitial pneumonia was observed in 4 of 15 doxycycline-

treated from groups A, B, and C and 9 of 20 control mice from groups D, E, and 

F, which was not a significant difference (OR: 2.5, 95% CI: 0.6-10.7). Duration of 

infection was evaluated as an interaction term in the comparison of interstitial 

pneumonia and doxycycline treatment. Four mice from groups A, B, D, and E 

(euthanized 14 and 28 DPI) had pulmonary lesions (p=0.06, FET), and 

pneumonia was not observed in any mice from groups C and F (euthanized 42 

and 59 DPI) (p=1.0, FET). There was no significant difference in the incidence of 

interstitial pneumonia between mice that received doxycycline-treatment seven 

DPI (groups A and B) compared to group C mice that started treatment 28 DPI 

(p=0.2, FET). 

 In addition to the major histopathologic lesions observed in the liver and 

lungs, lesions were seen in the spleen, heart, and kidney of infected mice. 

Splenic lymphoid hyperplasia was seen in 5 doxycycline-treated mice from group 

C, and 18 control mice from groups D, E, and F; this was a statistically significant 

difference between mouse groups (p=0.00, FET). Mild lymphocytic myocarditis 

was observed in one doxycycline treated mouse from group A and 5 control mice 

from groups E and F; this difference was not significant (p=0.2, FET). 

Lymphoplasmacytic interstitial nephritis was seen in four doxycycline-treated 

mice from groups A and B, and three control mice from groups D, E, and F, this 

difference was not statistically significant (p=0.7, FET). Interstitial nephritis was 

not seen in any dexamethasone mice that began treatment 28 DPI (group C) 
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compared to four mice that began doxycycline treatment 7 DPI (groups A and B) 

this difference was not statistically significant (p=0.2, FET).  

Bacterial Burden in Tissues 

Mean splenic and bone marrow bacterial GE values derived from the 

qPCR IS1111 assay for each mouse group are listed in Table 2.   

Table 2 . 

Detection of C. burnetii DNA in Tissues after Treatment with Doxycycline. 

Group  Number 
of Mice 

Treatment, 
Start Day 

Day of 
Euthanasia  

Spleen  
GE* ± SD 

Bone 
Marrow 

GE* ± SD 
A 5 Doxy, 7 14 7.7 ± 4.1 3.1 ± 4.2 
B 5 Doxy, 7 28 1.0 ± 0.0 1.0 ± 0.0 
C 5 Doxy, 28 42 0 ± 0 1.0 ± 0.0 
D 5 None 14 21.2 ± 14.4  10.5 ± 12.2  
E 5 None 28 2.3 ± 2.9 1.0 ± 0.0 
F 10 None 59 1.1 ± 0.2 1.0 ± 0.0 

* GE: genome equivalent, values <5 were changed to a value of 1 for statistical 
analysis.  
Doxy: doxycycline treatment added to mouse drinking water. 
SD: standard deviation. 
 

Doxycycline-treated mice from groups A, B, and C and untreated mice 

from groups D, E, and F had similar quantities of bacterial DNA in their splenic 

tissue as determined by qPCR (F: 2.2, DF: 1, p=0.1). There was no statistically 

significant difference in the mean splenic GE values for mice in groups A, B, D, 

and E (euthanized 14 and 28 DPI) compared to mice in groups C and F 

(euthanized 42 and 59 DPI) (F: 1.1, DF: 1, p=0.3).  

The amount of bacterial DNA detected in the bone marrow of doxycycline-

treated mice in groups A, B, and C compared to control mice in groups D, E, and 

F was similar (F: 1.8, DF: 1, p=0.2). There was no difference in the amount of 
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bacterial DNA detected in the bone marrow of mice from euthanized 14 and 28 

DPI (groups A, B, D, and E) compared to mice euthanized 42 and 59 DPI 

(groups C and F) (F: 2.3, DF: 1, p=0.1). Also, there was no difference in mean 

bone marrow GE values between doxycycline treated mice in groups A and B 

compared to group C (F: 0.4, DF: 1, p=0.5).  

There was a significant difference in the quantity of splenic bacteria as 

determined by IFA analysis between doxycycline-treated mice in groups A, B, 

and C and non-treated groups D, E, and F. Eight mice from doxycycline treated 

mice in groups A, B, and C had IFA positive splenic samples compared to 3 

control mice from groups D and F (p=0.03, FET). Seven mice from group A and 

B had positive IFA samples compared to one mouse from group C; this 

difference was not significant (p=0.1, FET). 
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Discussion 
 
 Doxycycline therapy is the most commonly prescribed antibiotic to treat 

human Q fever [64]. Results of this study suggested that doxycycline treatment 

did not significantly affect C. burnetii disease development in mice. Mice received 

doxycycline treatment beginning seven or 28 days after infection and there was 

no difference in the ability of doxycycline to resolve bacterial infection at either 

treatment start day. The incidence of splenomegaly and splenic hyperplasia were 

significantly decreased in doxycycline treated mice compared to infected control 

mice. These results suggested that doxycycline was effective in preventing C. 

burnetii from inducing an inflammatory reaction in the spleen.  

 As was observed in the previous chapters, detection of bacterial DNA in 

mouse tissues and incidence of histopathologic lesions were highest early in the 

course of infection and significantly decreased 14 days after infection. Duration of 

infection was an interaction variable in the evaluation of histopathologic lesions 

and doxycycline treatment. Splenomegaly was not seen in doxycycline-treated 

mice later in the infection (42 DPI) compared to mice euthanized early in the 

infection (14 and 28 DPI). In doxycycline-treated mice, cardiac and pulmonary 

lesions were more severe early in the course of infection, and these lesions were 

not seen in mice euthanized 42 days after infection. We did not have a group of 

untreated mice euthanized at day 42, but the untreated mice euthanized at day 

59 showed a similar resolution of lesions, making it difficult to ascertain the 

efficacy of doxycycline treatment.   
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 The frequency of hepatitis and nephritis were similar between doxycycline-

treated mice and infected controls. Similar frequencies of nephritis were seen in 

both doxycycline and infected control mice early in the infection with complete 

resolution of by 42 and 59 DPI. These results suggest that this non-specific, 

inflammatory lesion completely resolves late in the infection with or without 

doxycycline treatment. Hepatitis was still evident in doxycycline-treated and 

infected controls late in the infection. These findings suggest that the liver 

becomes chronically infected in mice, and doxycycline treatment as dosed in this 

study was not sufficient to clear infection by 42 DPI.  

These findings indicate that at the dosage of doxycycline utilized in this 

experiment was effective in mitigating splenomegaly and splenic histopathology, 

but did not appear to have high efficacy in accelerating resolution of 

histopathologic lesions induced by C. burnetii infection in mice
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Chapter 5: CONCLUSIONS FROM C. BURNETII MOUSE INFECTION 

STUDIES 

 
Results from these mouse experimental inoculation studies demonstrate 

that the C57BL/6 mouse strain develops infection when intranasally inoculated 

with the Coxiella burnetii Nine Mile phase I strain. Previous studies have 

concluded that C57BL/6 mice are resistant to C. burnetii infection [112]. 

However, the mouse infection studies prove that C57BL/6 mice develop similar 

histopathologic disease observed in human Q fever. Humans develop disease 

through inhalation of infectious aerosols; our experiments mimic the natural route 

of exposure by infecting mice intranasally. Hepatitis and interstitial pneumonia 

were the most commonly observed histopathologic lesions in infected mice, and 

are the two primary disease manifestations observed in acute human disease 

[64]. Chronic Q fever is commonly associated with cardiac lesions, similarly, 

myocarditis was observed in intranasally infected mice, and has not been 

previously described with this inoculation route. Additionally, splenic lymphoid 

hyperplasia, interstitial nephritis, and myocarditis were also observed in infected 

mice. Hepatic lesions and splenic lymphoid hyperplasia were observed two 

months after infection and demonstrate that these tissues may develop chronic 

infection. 
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Development of human disease has been ascribed to many factors 

including host age and immune competency. Human disease is almost 

exclusively described in people over 15 years of age, and is most commonly 

seen in people over 50 years [70, 71]. However, these mouse experiments 

demonstrate that age did not exacerbate C. burnetii disease in mice.  

 Dexamethasone and cyclophosphamide drugs were given to mice to 

induce immunosuppression. The doses received by infected mice [128, 143, 144] 

did not induce exacerbate disease in mice, and more information is needed to 

understand the relationship of dexamethasone and cyclophosphamide with C. 

burnetii. Doxycycline treatment was evaluated in resolution of C. burnetii infection 

in infected mice. Treatment with doxycycline was effective in decreasing the 

incidence of splenic infection in mice. However, it was not effective in significantly 

decreasing the amount of bacterial DNA in infected tissues or development of 

histopathologic lesions. Our results demonstrated that the dose of doxycycline 

used was marginally effective in treating C. burnetii infection in mice and further 

studies need to evaluate the efficacy of higher doses.  

 Due to the intracellular nature of this bacterium, animal models are 

essential in the development of vaccine and drug therapies and uncovering 

pathogenic mechanisms of C. burnetii. These experimental infection studies 

found that intranasal infection induces histopathologic disease and tissue 

infections in C57BL/6 mice, and more severe disease is seen in aged mice. The 

liver and bone marrow of infected mice becomes chronically infected with 

bacterial detection and histopathologic lesions evident two months after infection, 
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and cannot be effectively treated with doxycycline. In conclusion, these studies 

reveal important findings about C. burnetii essential for understanding bacterial 

pathogenesis in the mouse host. 

Experimental Research Constraints 
 
 Determining the number of animals in an infection study is surrounded 

with ethical concerns and costs. These experimental infection studies were 

conducted as pilot studies in an attempt to understand C. burnetii infection in 

mice. Therefore, low numbers of mice were maintained for each study. 

Unfortunately, the low power of these treatment groups may have prevented the 

observation of significant effects.  

Smaller pilot immunosuppression and treatment studies should have been 

performed before infection studies in order to determine the appropriate dose for 

C57BL/6 mice. This may have helped solidify results about the effect of 

immunosuppression and doxycycline treatment on C. burnetii infections in mice.   

Future Directions 
 
 The effect of chemically induced immunosuppression in C. burnetii 

infection in mice needs to be assessed. Experimental inoculation studies 

evaluating immunosuppression before infection will reveal differences in disease 

development compared to infected control mice. Also, immunosuppression after 

infection should be evaluated to determine if infection would recrudesce in 

tissues where lesions have resolved.    
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