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Abstract

An Option Value Analysis of Hydraulic Fracturing

Many uncertain public policy decisions with sunk costs can be optimally timed leading

policymakers to delay implementing a policy despite positive expected net present value.

One salient example of this is hydraulic fracturing (fracking), a recently developed oil and

gas extraction technology, that has increased fossil fuel reserves in the US. However, many

municipalities have seen fit to ban its use despite seemingly positive expected net benefits.

We hypothesize that an option value framework that values the ability to delay and learn

about an uncertain project may explain fracking bans in practice where the neoclassical

net present value rule does not. We test this by developing a stochastic dynamic learning

model parameterized with a computable general equilibrium (CGE) model that calculates the

value of learning about uncertainty over damages and uncertainty over benefits. Applying

the model to a representative Colorado municipality, we quantify the quasi-option values

(QOV), which create an additional incentive to ban fracking temporarily in order to learn.

To our knowledge, this is the first attempt to quantify an economy-wide QOV associated

with a local environmental policy decision.

In Chapter 1 we argue that a numerical, option value approach is the appropriate way

to examine uncertain public policy issues involving sunk costs. This method allows for an

optimal timing of the public project rather than the ’now or never’ approach of the ubiquitous

net present value rule. We present local fracking policy as an excellent application for an

option value approach as has positive expected net benefits but has been subject to local

bans seemingly despite the net present value rule. We also defend our use of a CGE model

to estimate the local economic benefits of fracking.
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Chapter 2 presents the option value model associated with epistmelogical uncertainty

over environmental damages. Also, this chapter presents damage values parameterized to

the City of Fort Collins for application in this and the subsequent chapter. With this in

hand, we solve the model and demonstrate the results.

Chapter 3 has a similar structure to Chapter 2. First, it discusses the literature on

stochastic oil movements, then it presents the option value model associated with stochastic

uncertainty over local benefits. Then, assuming the same parameterized expected damage

as in Chapter 2, we solve the model and display the results.
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CHAPTER 1

Option Values in Public Policy

1.1. Introduction

Uncertain public projects are typically evaluated by comparing the present value of the

expected costs and benefits. If the expected benefits exceed the expected costs – i.e. the

expected net present value is positive – then it is optimal to do the project. This process

treats the decision as one that must be made now or never. It places no value on the ability,

if it exists, to revisit the decision at a later date, possibly with a better understanding of the

risks. When a project is uncertain, has upfront sunk costs, and can be delayed it is optimally

made by comparing the expected net present value of doing it now to the expected value of

forgoing the project today and revisiting it at a later date – i.e. the option value.

To illustrate the intuition of this option value, briefly consider a two-period example. Suppose

doing a project that involves sunk costs will give profit π in period one. There are two

possible (present) values for period two profit: φ or ψ, and there is no cost to forgoing the

project. Further suppose the policymaker initially thinks that the probability of φ is p1 and

the probability of ψ is 1 − p1. However, she also expects information to arrive before the

decision is revisited. So, she expects the period two probability, p2, to be different from the

period one probability. We can now write the expected net present value of doing the project

in period one, and the period one value of delaying the project and revisiting it with the

updated probabilities. The expected net present value is NPV = π + [p1φ+ (1− p1)ψ] and

the value of delaying the project is Vd ≡ 0+[p2 max{φ, 0}+ (1− p2)max{ψ, 0}] ≥ 0. In both

the net present value and the value of delay expressions, the last two terms are bracketed to
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emphasize that they are expectations. This highlights the intuition that the value of delay

comes from the expectation of maximizing with updated information where as the net present

value assumes the policymaker cannot revisit the decision. As to policy, the net present value

rule would have the project go forward if max{NPV, 0} > 0. However, since this project

can be delayed and has sunk costs, it is optimally done if max{NPV, Vd} = NPV , i.e. if the

net present value exceeds the value of delay.

Generalizing the process to a public project has large obstacles not present in this simple

example. In reality, there are likely many possible states of profit, not just two. Moreover,

they are likely to be time-dependent responding to ever-changing economic conditions. Thus,

incorporating option values into a public policy decision requires calculating the potential

costs and benefits for many states of uncertainty and for many policy paths. As there is

no generally agreed upon functional form for a the time-dependent impacts of a policy that

affects many sectors, we turn to numerical methods.

The next section of this chapter discusses the literature on option values, their development

and applications, and the appropriate numerical methodology for valuing a public project.

The following section introduces a salient policy issue to which an option value model is

applicable and provides valuable insight: hydraulic fracturing. The subsequent section dis-

cusses numerical models of the economic impacts of hydraulic fracturing and the final section

concludes.
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1.2. Option Values

Two approaches to option values developed independently but are related. The quasi-option

value approach matured in the environmental and resource literatures and has been widely

applied, perhaps most notably by the climate change literature for its ability to value learning

about uncertain parameters. The contingent claims approach was brought to the economics

literature from the finance literature and shown to be equivalent to a dynamic programming

approach. This has come to be known as the real options approach. These two approaches

differ in their inception and uses but are fundamentally related.

1.2.1. Development. While pointing out that some private goods have public good

characteristics, Weisbrod (1964) informally initiated the quasi-option value. The literature

spent the next 25 years pinpointing its source and defining its features (see Hanemann (1989)

for a summary). Importantly, Arrow and Fisher (1974) and Henry (1974) develop its use

in the environmental and resource economics literature and Hanemann (1989) formalizes it

into what is now commonly called the Arrow-Fisher-Hanemann-Henry Quasi-Option Value

(QOV).

In contrast to the development of the quasi-option approach, the real options approach

borrowed a well-defined concept (the call option) from the finance literature to explain

observed phenomena. Pindyck (1991) suggested that firms may not be using the net present

value rule in decision making, which might explain why “econometric models have had limited

success in explaining and predicting changes in investment spending.” Dixit and Pindyck

(1994) broadcast the approach to a wide audience, including the mainstream environmental
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and resource literature, demonstrating how to include Wiener process price movements in a

dynamic programming framework.

The Dixit and Pindyck option value (DPOV) and the QOV are not necessarily equivalent,

as pointed out by Mensink and Requate (2005), and Traeger (2014) provides a general

relationship between the QOV and DPOV. The QOV is the value of learning conditional on

the ability to postpone a decision and the DPOV is the net value of postponing a decision

conditional on the ability to learn about the uncertain element. The difference between the

QOV and DPOV is due to their origins. Resource decisions, like instituting a carbon tax, can

be delayed but investment decisions, like purchasing a competitors company may not arise

again. Moreover, epistemological uncertainty can resolve (e.g. honing in on the ‘true value’

of climate sensitivity), which makes learning valuable, but stochastic uncertainty (e.g. what

will be the price of widgets in the future?) may be constant (like in the case of a Markov

process) and learning – observing the uncertain element prior to making the decision – is

likely less valuable.

1.2.2. QOV Applications. This QOV models are routinely applied to climate policy.

Chichilnisky and Heal (1993) argue that the failure of global warming models to account for

irreversibility has led to an understated need for immediate action, though Ulph and Ulph

(1997) show that Epstein’s (1980) irreversibility conditions are not met for even a simple,

two-period model of global warming. Kolstad (1996a) jointly examines capital investment in

abatement (sunk-cost irreversibility) and environmental damages from the stock of carbon

(emissions irreversibility) and argues that either sufficiently fast learning or sufficiently slow

carbon decay makes either decision irreversible. Kolstad (1996b) concludes that capital

investment irreversibility increases initial optimal emissions levels (lowers abatement). Fisher
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and Narain (2003) support this result, finding that the negative effect of capital irreversibility

on optimal abatement outweighs the opposing impact of irreversible environmental damages.

Lemoine and Traeger (2014) model irreversible changes in climate sensitivity as crossing an

unknown threshold, but learning is strictly ex post in their model. They find that the

existence of ‘tipping points’ raises the optimal first-period carbon tax.

1.2.3. Calculating Option Values. Realistic calculations of the DPOV and the

QOV require valuing the project over the all the states of the stochastic variable. This

is readily done at the firm level when costs are known but price (Pindyck 1991) or demand

(Dixit 1991) are uncertain. DPOV approaches typically value the project by assuming a

functional form for the stochastic element (e.g. price follows geometric Brownian motion)

and using Itô calculus to analytically solve the resulting differential equation. On the other

hand, applied QOV approaches typically use numerical methods (e.g. recursive dynamic

programming versions of DICE) to calculate optimal policy under a limited number of states

(e.g. two climate “tipping points”). With no generally agreed upon functional form that

describes the long run effect of changes in one part of a complex economy on its total, we

turn to numerical methods.

There are several possible numerical methods for estimating policy impacts. Obviously,

econometric methods should be preferred whenever the data is available. This may not be

the case, though, if the project has not yet been done in an economically similar location.

Of the remaining methods input-output (IO) and computable general equilibrium (CGE)

modeling have become the most popular.
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IO models fix input coefficients rendering them static models. This results in two problems.

First, the IO construction process can take some time which could result in a considerable

difference between the analysis period and the base year. Second, the model is unable to

handle relative price changes over time, technological advances, or changing returns to scale.

These issues are best addressed by a dynamic framework (West 1995).

The assumption of linearity in production is prevalent in IO models. This implies a strictly

proportional relationship between input coefficients and output (West 1995). Moreover,

household income is an average propensity, employment is determined by average produc-

tivity, and consumption depends on average expenditures. This fails to capture any non-

linearities which are well-handled by CGEs (West 1995).

IO models are Keynesian in nature, assuming fixed prices and perfectly elastic supply. In-

puts are perfectly elastically supplied in production because IO models have no supply-side

constraints (Partridge and Rickman 1998). This eliminates the role of price disconnecting

the value added of primary factors and final demand. Because of this, IO models almost

always predict that economic impact will be proportionate to the exogenous change.

On the other hand, CGE models are Walrasian allowing for imperfectly elastic labor supply

and prices to flex so that markets clear. They typically use nested constant elasticity of

supply functional forms for value added in production and intermediate goods. This allows

for the specification of differing elasticities of substitution between good types and region of

production. Then, in CGE models the value added factor usage responds to factor costs and

imports of intermediate goods respond to price (Partridge and Rickman 1998). Consequently,

the various elasticities of supply and demand determine the economic response to a shock,
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which is not inevitably proportionate (Partridge and Rickman 1998). Because of this, CGE

models are commonly used to empirically analyze the welfare impacts of policies whose effects

may be transferred through multiple markets (Wing 2004).

1.3. Application of Methodology

We contend that hydraulic fracturing is a good application for an option value approach

to public policy. It is a relatively new technology for extracting oil and gas from shale

deposits and there is wide public (Kohut et al. 2012) and scientific (Shonkoff et al. 2014;

Jackson et al. 2014) uncertainty as to is costs. On the other hand, it has greatly increased

fossil fuel reserves across the United States and beyond often times bringing substantial

economic benefits (Hausman and Kellogg 2015). Since 2010, though, there have been more

than 50 bans related to fracking enacted or adopted in the US and abroad (e.g., Longmont,

CO; New York State; Germany) (see Figures 1.1 and 1.2). This is despite, in some cases,

seemingly positive expected net local benefits (Wobbekind and Lewandowski 2014; Feyrer

et al. 2017). Some of these bans, like the ones in Delaware River Basin and Quebec, were

explicitly temporary citing the need for further study.

Like Pindyck (1991) we hypothesize that an option value framework may explain the seeming

failure of the net present value rule to explain observed phenomena. First, we provide a brief

history of the technology, the opposition to its uses, and the adoption of bans and moratoria1.

Then, we survey the economic literature the benefits and damages.

1A list of fracking bans in practice can be found at Food and Water Watch
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Figure 1.1: US Bans, Restrictions, and Hostile Resolutions
Source: Energy In Depth; July, 2015

Figure 1.2: Fracking in Europe
Source: Deutsche Welle; July, 2015

1.3.1. The History of Fracking, Opposition, and Bans. During 1862 Battle of

Fredericksburg, Union officer Colonel Edward A. L. Roberts witnessed Confederate artillery

shells plunging into a canal that obstructed the bloody battlefield. This experience planted

the seed for an idea that he would later call “superincumbent fluid tamping”. In 1866, he was
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awarded a U.S. Patent (No. 59,936) for the Roberts Torpedo (AOGHS 2015). The torpedo

was lowered into a borehole filled with water and detonated to more efficiently fracture the

surrounding strata. The technique was quickly and widely adopted. Some wells reported

flow increases 1,200% within a week of being ‘torpedoed’ (Manfreda 2015). Despite safety

concerns, the nitroglycerin torpedo remained in use for oil and gas development until the

20th century.

In 1947, Stanolind Oil and Gas began to study the amount of pressurized treatment used

in their wells. This led to experimentation in Grant county, Kansas which saw a thousand

gallons of gelled gasoline injected some 2,400 feet down into limestone followed shortly by a

gel breaker Manfreda (2015). Halliburton later conducted two more successful experiments

and fracking became commercialized

In the mid-1970s, amidst a petroleum shortage, the US Department of Energy launched the

Eastern Gas Shales Project whose goal was developing techniques to extract ‘unconventional’

natural gas reserves. Shale development is particularly challenging due to the relatively low

permeability of the rock. This project saw the development of many techniques in use today:

horizontal drilling, multi-stage fracturing, and ‘slick’ water fracturing which dramatically

increased the pressures delivered to rock formations.

Fracking, as it is practiced today, began in the Barnett shale in the mid 1990s. Nick Steins-

berger, a newly promoted executive at Mitchell Energy, had just figured out that his area

– roughly 200 wells in central Texas – was to be shut-down (Smith 2016). In the face of

necessity, he decided to make the field more cost effective by watering down the explosive

gel. Despite the predictions (and objections) from the gel’s manufacturers, it worked. The
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conventional wisdom at the time was that excessive over-watering would make the formation

swell and the wells wouldn’t produce (Smith 2016). The conventional wisdom was shown

to be wrong and the modern ‘slickwater’ fracture job was born. Mitchell Energy combined

fracking and sideways drilling throughout the Barnett shale demonstrating economic feasi-

bility at a level not seen before. The merger of Mitchell’s company with Devon Energy in

2002 ignited the modern shale gas boom.

In Tuscaloosa County, Alabama, a family living near the River Gas coalbed methane (CBM)

development enlisted the help of the Legal Environmental Assistance Foundation (LEAF)

to fight nearby fracking operations believing it to be the cause of their contaminated well. A

1990 task force, with participation by state, federal, and industry entities had acknowledged

that contamination was possible and recommended guidelines for underwater injection con-

trol (UIC). However, Alabama’s Oil and Gas Board did not meaningfully incorporate these

guidelines into its fracking rules (although, as Drilling Contractor (2000) points out, there

was widespread compliance among development agencies according to the industry). Be-

cause of this, LEAF petitioned the EPA to remove Alabamans ‘primacy’ in the oversight of

underwater injection control. The EPA denied the petition claiming there was no evidence

that hydraulic fracturing endangered underground water and should not be regulated by its

UIC program. LEAF then filed with the 11th Circuit Court of Appeals. In 1997, the court

ruled in favor of LEAF deciding underwater injection did apply to all hydraulic fracturing,

not just CBM fracking, the issue of the initial complaint. The EPA began a study on CBM

in 1999 and released the results in 2004. They concluded that CBM operations posed no risk

to underwater drinking supplies. This led to the 2005 Energy Policy Act, which amended the

1974 Safe Drinking Water Act to exclude fracking injection fluids other than diesel fuels and
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also exempted extraction companies from disclosing the chemicals involved in their fracking

operations. This Act has since been criticized as being unduly influenced by oil and gas

concerns through the Energy Task Force led by then vice president and former Halliburton

CEO Dick Cheney.

Josh Fox’s 2010 documentary Gasland, ignited widespread public opposition to fracking. It

received a Primetime Emmy as well as awards from the Sundance Film Festival and the

Sarasota Film Festival and was nominated for both an Academy Award and a Writer’s

Guild Award. The film follows Fox as he speaks with citizens of Colorado, Utah, Wyoming,

and Texas about their chronic health problems alleged to come from air, ground water, and

surface water contamination. The film was criticized as factually incorrect and the Energy in

Depth organization produced an associated film, Truthland, as a rebuttal. Journalist Phelim

McAleer directed FrackNation, which attempts a more balanced portrayal of fracking. It is

more factually oriented than Gasland and attempts to depict both the economic benefits to

impoverished rural Americans as well as the issue of contamination.

The Gasland ignition was literal. Its depiction of a homeowner setting tap water on fire,

indicating high levels of methane alleged to have come from a fracking operation, has over

170,000 youtube views and a related video, Light Your Water on Fire from Gas Drilling,

Fracking attributed to the Gas Drilling Awareness Coalition has over 1.6 million views.

The anti-fracking organization Food & Water Watch, maintains an up to date list of fracking

bans and resolutions (Grant 2017). Opposition to fracking has occurred at the city/municipality,

county, state, and country levels; however, one of the earliest bans came under the author-

ity of the Delaware River Basin Commission (DRBC). The Delaware basin contains about

11
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13,539 square miles, about one third of which sits atop the Marcellus shale (the second shale

play in the US after the Barnett) in Pennsylvania, New Jersey, and New York. Over 15

million people rely on the Delaware for drinking water including the populous New York

City. In 2010 the five commissioners unanimously voted to delay any drilling decisions until

new regulations could be implemented (Collier 2009).

In November 2010, Pittsburg became the first US city to ban fracking. Buffalo, NY quickly

followed with a ban in February 2011, but it was largely symbolic as there was no interest in

drilling. Dryden, NY enacted a ban in August 2011 and quickly became a center of contention

although several courts have found in favor of the small town. Emboldened by Dryden’s

success, several New York towns enacted or adopted bans: Syracuse, Albany, Woodstock,

Rochester, Wawarsing, Kirkland, and Canandaigua culminating with a statewide ban issued

by Governor Cuomo in December of 2014. The New York ban was not the first statewide

ban, only the most significant. Vermont, which had no oil and gas development, had banned

fracking in March of 2012 and Connecticut enacted a three-year ban on storage and handling

of fracking waste in August 2014. Other notable US city bans include Los Angeles, Beverly

Hills, Philadelphia, and Denton, TX. The Denton ban is particularly interesting as Denton,

located on top of the Barnett shale, is considered the birthplace of fracking. However, on

May 18th, 2015, in the wake of an Ohio ruling maintaining state superiority, Governor Greg

Abott signed a bill that made local bans illegal in Texas. Denton overturned their ban the

following month.

A similar battle occurred on the Colorado Front Range, which sits atop the Niobrara shale

formation. The town of Longmont changed its charter to prohibit fracking in November

2012 and was sued by the Colorado Oil and Gas Association – a large industry group –
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alongside the principal development interest, TOP Operating, and the Colorado Oil and

Gas Conservation Commission, the state agency in charge of regulation. Seemingly unfazed

by this litigation, the cities of Fort Collins2, Lafayette, Boulder3, and Broomfield passed

similar measures in November 2013. The case is situated between Voss, in which the court

found that cities (Greeley in this case) could not ban fracking due to “statewide interest in the

efficient development and production of oil and gas resources.”4, and Bowen/Edwards where

the court found counties (La Plata) could add regulations (permits) if they did not conflict

with the state’s interest. Compounding the legal difficulties of the issue, both rulings were

handed down the same day eliminating reliance on precedence. On May 2, 2016, however,

the Colorado Supreme Court ruled in favor of the State’s rights, overturning the Longmont

ban and the Fort Collins moratorium, though the Court maintained local rights to unspecific

regulation5.

Mora County, NM became the first US County to have a ban in May 2013, but a federal judge

overturned it in January 2015. Hawaii County enacted a ban in October of 2013 and was

followed by three California counties: Santa Cruz County in May 2014 and then Mendocino

and San Benito Counties in November elections that year. Internationally, France became

the first country with a moratorium in June 20116. Since then, Bulgaria, Luxembourg,

Germany, Scotland, and Wales have banned fracking. In addition, due to concerns about

2There were only eight wells in Fort Collins

3With no oil and gas interests, this ban was largely symbolic.

4Justice Joseph Quinn said in the opinion.

5NY Times

6It was upheld in 2013.
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local environmental impacts, the Cantabria Region of Spain, Nova Scotia, Quebec, and Five

City Breaks municipality of Argentina have implemented fracking bans.

1.3.2. The Literature on Fracking. For the most part, the existing economics

literature on fracking focuses on either costs or benefits, though there are a few notable

exceptions: Jackson et al. (2014) discuss the environmental benefits and costs, Walsh et al.

(2015) uses a spatial econometric approach to examine the political, socioeconomic, and

social factors influencing local bans in New York State, and Loomis and Haefele (2017)

perform a benefit cost analysis at the national level. In contrast, we build on the prior

literatures on fracking benefits and costs, while embedding local fracking policy within an

explicit decision-theoretic framework. To our knowledge, this analysis is the first to quantify

the value of learning about the full costs of fracking in practice, and the first to carefully

assess both the costs and benefits underlying observed policies.

1.3.2.1. Environmental Damages. Despite a consensus that risks exist, there remain sig-

nificant gaps in the literature connecting risk pathways to economic impacts (Jackson et al.

2014; Shonkoff et al. 2014). Krupnick and Gordon (2015) prescribe important pathways

through which routine fracking activities may impact humans and the environment (see Fig-

ure 1.3). Their survey of 215 experts from industry, academia, government, and NGOs finds

a high degree of consensus concerning the most important pathways that arise during nor-

mal fracking activities. Hedonic property valuation studies have attempted to quantify the

cost of these local impacts (Boxall et al. 2005; Gopalakrishnan and Klaiber 2014; James and

James 2014). Typically, these studies find negative impacts on housing values from nearby

oil and gas development, especially if the home depends on groundwater (Muehlenbachs

et al. 2015). Bennett and Loomis (2015) estimate that each well drilled within a half-mile of
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a house in Weld County, Colorado decreases the home value by $1,805 in urban areas. Many

human health studies have focused on benzene pollution outside the fracking context (Chen

et al. 2000; Aguilera et al. 2009; Slama et al. 2009; Zahran et al. 2012) and have highlighted

significant health damages, including low birth weight. Hill (2013) shows that fracking in

Pennsylvania increased the occurrence of low birth weight (by 25%) and term birth weight

(by 18%). She estimates a lower bound of the public cost to be $4.1 million due to low infant

birth weights caused by benzene air pollution from fracking in Pennsylvania in 2010. Crime

is another potential burden of fracking. James and Smith (2017) find a positive effect on

various property and violent crimes around active fracking plays inducing an estimated ∼

$2 million dollar cost at the county level.

Boudet et al. (2014) argue that fracking bans accompany a high degree of public uncertainty

about local damages. A 2012 Pew Center poll found that 26% of Americans had heard a lot

about fracking, 37% had heard a little, and 37% had heard nothing. Regardless of the level

of information, it is perceptions about risk (informed or otherwise) that drive local policy.

Schenk et al. (2014) find that the public is most concerned about water quality and seismic

activity, despite a general scientific consensus that best practices manage these particular

risks well.

1.3.2.2. Economic Benefits. While it is obvious that exploiting valuable fossil fuel re-

serves will confer gross economic value, it is less clear how much of the created value will

accrue to the local economy where fracking occurs. Also, it is unclear if short run employment

gains will result in long run welfare gains.
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Figure 1.3: Routine Risk Pathways
Source: Krupnick and Gordon (2015)

Hausman and Kellogg (2015) use an econometric approach and find economy-wide total sur-

plus gains of a third of a percent in the US. Regionally focused work has estimated significant

employment gains – ex post – to Pennsylvania (Considine et al. 2010), Colorado (Wobbekind

and Lewandowski 2014), and Arkansas (CBER 2008). However, some of these studies use

input-output models whose results are sensitive to assumptions (i.e. household spending

and savings behavior, labor supply elasticity, mineral rights ownership) and the benefits are

likely to be significantly overstated (for a review of several studies see Kinnaman 2011).

More recent ex post analyses find much smaller employment impacts than predictions (We-

ber 2012). Maniloff and Mastromonaco (2014) find that ex post job growth fell ‘well short’
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of predictions. Furthermore, natural resource development could reduce economic growth

through a “resource curse” (Corden and Neary 1982; Sachs and Warner 1995). Allcott and

Keniston’s (2014) national analysis and Weber’s (2014) analysis of the Arkansas, Louisiana,

Oklahoma, and Texas find no evidence of Dutch Disease, contrary to work by Jacobsen and

Parker (2016). Maniloff and Mastromonaco (2014) reconcile this by looking at so-called

‘boom counties’. They find that counties with tight labor markets and little prior industry

presence saw growth in tradable sector wages, a precursor to Dutch Disease. Using a com-

prehensive data set of oil and gas production alongside LBS and IRS data spanning seven

years, Feyrer et al. (2017) find that each million dollars of new oil and gas production is as-

sociated with $80,000 increase in wage income and 0.85 new jobs within the county. Further,

roughly 40 percent of the income increases are occurring in tangentially related industries

like construction, hospitality, and local government. Additionally, they find $132,000 in roy-

alty payments and increased business income. These impacts are relatively persistent over

a two year time period and spill over into the rest of the economy.

This leaves the question, what are the general equilibrium impacts of beyond this time

frame? As discussed in above, CGE models are an excellent tool for a data-driven analysis

of aggregate welfare for policies that affect many sectors of a Walrasian economy (West 1995;

Partridge and Rickman 1998; Weber 2014). In the next section, we reassert the necessity

of using a CGE model, rather than an IO model, to estimate the impacts of fracking on a

jurisdiction.
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1.4. Predicting Economic Impacts of Fracking

In order to use an option value framework to analyze fracking policy, we must calculate

the economic benefits of the possible policies, allowing fracking and maintaining, a ban

across decision periods, and the results must be empirically-grounded to explain observed

phenomena. One way to do this would be to assume that local economic benefits are a

constant fraction of private benefits measurable by the value of unconventional reserves only

economically accessible by fracking. Another way would be a different numerical approach.

We assert that CGEmodels are the best way to do this and argue against the two alternatives.

This section first reviews previous attempts at predicting the economic impacts using IO

models and discusses their shortcomings. Then, it presents our CGE model and demonstrates

how our CGE model aligns with current econometric findings where assuming local benefits

are a fraction of private benefits does not. Finally, we demonstrate that a CGE is capable of

calculating a ’multiplier’ effect in line with current econometric findings, and that sensitivity

of policy results to its specification.

1.4.1. Superiority of CGE Models for Fracking Policy. There have been sev-

eral attempts at numerically predicting the economic impacts of fracking using IO models (

CBER 2008; Considine et al. 2009; Considine et al. 2010; Scott and Huang 2009; Weinstein

and Clower 2009), though they were generally either conducted or solicited by industry.

Kinnaman’s (2011) review of these studies includes the critiques mentioned in Section 1.2.3

summarized in Figure 1.1.
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Instead we use a CGE model (discussed in the subsequent section) to estimate the impact

of fracking that includes, among 17 other sectors, oil and gas production. Although there

may be uncertainty as to the size of local benefits, we assume they are deterministic and

the portion that accrue locally follows from assumptions about nonlocal resource ownership.

CGE models are commonly used to empirically analyze the welfare impacts of policies whose

effects may be transferred through multiple markets (Wing 2004) in Walrasian economies

(Partridge and Rickman 1998), like allowing fracking in a municipality. Recent econometric

analyses of direct effects indicate that there are employment spillovers in retail, construction,

and transportation (Maniloff and Mastromonaco 2017), and Feyrer et al. (2017) estimates

that 40 percent of local income increases occur in industries unrelated to fracking like con-

struction, hospitality, and local government. These income shocks can lead many consumers

to increase consumption (Brown et al. 2017). Basic economic theory implies consumption

shocks can affect an entire economy and can have a multiplier effect. Our simulated general

equilibria agree (Figure 1.5). We find that a million dollar increase in the economically

recoverable reserves increase the present value of household consumption by $1.84 million.

Although a functional form might result in an analytically tractable model, slight misspecifi-

cations of this multiplier would dramatically alter the calculated optimal policy and misstate

the importance of learning (Table 1.2). Rather than this, we directly combine the CGE and

the dynamic program. CGE models have already been used to understand the impacts of

environmental regulation (Bovenberg and Goulder 1996; Weyant 1999; Goulder 2002) and

begun to include environmental amenities as a sector (Carbone and Smith 2013). However,

to our knowledge, there has yet to be a municipal-level CGE analyzing the impact of fracking.
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Table 1.1: A Comparison of IO Studies and Assumptions
Source: Kinnaman (2011)

1.4.2. The CGE Model. The model is an adaptation of Cutler and Davies (2007) who

built a model for Fort Collins, CO. Here, we parameterize the model to represent an oil-and-

gas-producing Colorado municipality with 50,000 residents whose policymaker is considering

the removal of a fracking ban. These changes to the Fort Collins model were made in order

to isolate the determinants of a ban, looking across economic parameters that vary across

regions where bans have been implemented. The land, labor, and capital employment in

each of seventeen production sectors is parameterized using census and county assessor’s

data from Fort Collins, CO. Data to calculate input-output coefficients for intermediate

inputs come from IMPLAN. Fort Collins is large relative to the Colorado average, so the

economy is scaled down to 50,000 people7, holding constant: production technologies, labor

supply per household, and per capita demand.

All production sectors of the CGE model include intermediate inputs, land, capital, and

labor. Output and factor prices are endogenous, with perfectly mobile labor in five household

7The average size of Colorado cities above 10,000 people is 55,000, excluding the capital city of Denver
(United States Census Bureau / American FactFinder. “Annual Estimates of the Resident Population: April
1, 2010 to July 1, 2014” and United States Census Bureau. “B01001 Sex by Age. 2010 - 2014 American
Community Survey. U.S. Census Bureau’s American Community Survey Office).
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groups. Land and capital are quasi-fixed but respond over time to differences in rental

rates. Importantly, this implies that returns to land and capital are sector-specific in any

time period. Local differences between demand and supply are met by imports (or exports

when production exceeds demand). The CGE model also contains local, state, and federal

government sectors.

In addition to the standard factors of production, output in the oil and gas sector depends on

a natural capital factor that captures the remaining, economically-accessible natural resource

stock in the ground. The size of this factor depends on whether or not a fracking ban is in

place. Since reserves depend on allowable technology, a ban means the oil and gas sector has

access to a smaller stock than if fracking were allowed. Thus, there is some (conventional)

production even with a ban. Fitzgerald and Rucker (2016) estimate average annual royalty

rates for oil (13.3%-13.8%) and gas (10.5% - 12.7%). Based on this, we assume that 12.5%

of oil and gas production value is paid to the owners of those rights8.

The simulations computed are inspired by the 2013 Fort Collins moratoria, which was enacted

to be five years. We calibrate the CGE model using annual data but in the QOV model,

we use 5-year periods by summing the output of the CGE model over 5 years. In addition,

we assume that policymakers revisit the ban/frack decision every (five year) period for five

model periods (25 years), after which oil and gas companies lose interest in developing the

municipality’s unconventional reserves and the option to allow fracking vanishes. Regardless

of when fracking is allowed, benefits and damages accrue for ten periods. In the base scenario,

the policymaker is risk averse with a constant relative risk aversion coefficient of 2, though

we also consider the implications of risk neutrality. The base oil and gas prices are assumed

8See Appendix for a complete description of the data.
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to be $40 per barrel and $2.50 per thousand cubic feet respectively. Finally, the annual

discount rate is set to 5 percent.

The simulations are constructed in the following way. To generate the no-fracking baseline,

we simulate normal growth where total factor productivity and export demand are assumed

to increase by one percent separately in the first period. The model then moves to a new

steady state after a 50-year time horizon. The second simulation assumes that fracking

occurs in the first period, along with normal growth, and stimulates a threefold increase in

oil and gas development. This is based on EIA estimates of oil reserves in Colorado, which

climbed from 386 million barrels in 2010 to 1200 million barrels as of 2014. This observed

increase in oil reserves occurred almost exclusively because of the introduction of fracking,

and natural gas reserves experienced a similar increase (Colorado Oil & Gas Conservation

Commission). When the unconventional reserves are exhausted, the excess extraction capital

immediately exits the local economy. In the simulation, this occurs in the period after next

(i.e. ten years later in year 11). Separate simulations are computed for policy scenarios when

fracking is allowed in years 6, 11, 16 and 21 (periods 2, 3, 4, and 5) to reflect the decision

to allow fracking in each of these periods. This generates levels of household consumption

associated with all policy scenarios used in the QOV model.

The recursive CGE model is solved with an annual time step and a 50-year time horizon.

Consumption across years is aggregated to obtain 5-year consumption values, used as an

input into the dynamic programming model. Figure 1.4 illustrates the consumption paths

with spikes occurring at the time of fracking. After the initial shock, fracking stops as reserves

are depleted and consumption falls, reaching a new steady state. To test for sensitivity to

the price of oil and gas, the CGE model is used to evaluate the impact of fracking bans over
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Figure 1.4: Consumption Paths From CGE Model
The x-axis is the policy period, which are five-year increments. The y-axis is consumption
in billions of dollars. All simulations include normal growth shocks in year 1.

a range of prices. Oil and gas prices are assumed to move together, increasing and decreasing

from base values in equal proportions. Given our base specification, the annuitized value

of the consumption benefits of fracking in the initial period is equal to ∼$113.6 million per

(5-year) period.

1.4.3. Sensitivity of Results. We use the CGE to compute the present value of the

change in household consumption from land, labor, capital, and mineral rights payments if

fracking is allowed in the first period for different rental values of the unconventional reserves.

The results are presented in Figure 1.5.
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Figure 1.5: The Simulated General Equilibrium Impacts of
Fracking on the Local Economy

The x-axis is the value of the unconventional reserves, which require fracking for economic
development, measured in millions of USD. The left hand y-axis is the percentage of the
present value of the total change in consumption benefits attributed to Labor, Land,
Capital, and Royalties. Capital and Royalty payments account for less than 15%. The
right hand y-axis is the present value of the total change in household consumption.

The bar graphs shows that roughly 95% of the change in consumption is attributable to labor

and land payments. Assuming that local benefits are a constant fraction of private benefits

– the returns to capital and mineral rights – would dramatically underestimate the benefits.

We also compute the present value of the total change in household consumption and plot

it with the right side axis. It is roughly linear (OLS R2 = .995) with a slope of 1.8372. This

can be interpreted to mean that fracking an unconventional reserve whose rental value is one

million dollars will generate $1.84 million of local consumption.
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Table 1.2: The Simulated General Equilibrium Impacts of
Local Fracking

The no uncertainty mean where policy switches µ̂ and maximum QOV are reported for
different multipliers all in units of millions of USD. The estimated multiplier is highlighted.

Multiplier µ̂ Maximum QOV

1.5 103.95 293.70
1.7 117.61 267.20

1.8372 126.98 251.29
1.9 131.27 237.95
2.1 144.93 178.51

Policy and QOV calculations are sensitive to misspecifications of this multiplier. We calculate

the present value of the total change in household consumption for different multipliers and

use it to construct an annuity and solve the finite horizon dynamic program for the no

uncertainty policy switchpoint (µ̂) and maximal QOV. We do this under risk-neutrality for

two reasons. First, it makes the QOV interpretable as dollar amounts (in fact, millions of

dollars). Second, a CRRA decision maker would view an annuity differently than a lumpier,

but equivalent in terms of present value, stream preferring whichever brings larger payments

quicker. Using alternative multipliers leads to policy and maximum QOV estimates that

have wide ranges in comparison to the highlighted estimate. The policy range is 32% of the

highlighted base value and the maximum QOV range is of 46% of the base value.

1.5. Conclusion

The ability to delay an uncertain public project and revisit it is an important part of optimal

decision making. Doing this requires valuing the project across time and policy permutations.

Computable general equilibrium models are the appropriate tool for doing this for projects

that affect many sectors in a Walrasian economy.
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The recent multitude of bans on fracking,which seem to be at odds with the expectation of

net economic gains, is an excellent place to apply a numerical option value approach. We hy-

pothesize, like Pindyck (1991), that an this approach may explain these fracking bans where

the net present value rule does not. To test this empirically, we have developed a data-driven

methodology that links a computable general equilibrium model with a dynamic program

to calculate a realistic quasi-option value. The use of the CGE is necessary since results are

heavily dependent on parametric specifications and other numerical models are not suitable

for Walrasian economies. The next two chapters describe two related implementations of

this methodology. Chapter 2 treats benefits as deterministic and damages as uncertain. In

this model, learning occurs via Bayesian updating as the policymaker observes a noisy signal

during a ban. In Chapter 3, damages are deterministic, but benefits are stochastic depending

on price of oil and gas, which follows a geometric Brownian motion. This work contributes

a methodology that uses an empirically-oriented, option value framework to asses local pol-

icy. This methodology can be widely applied to policies that have uncertainty over costs or

benefits, sunk costs, and can be delayed. It also contributes to the discussion on fracking

policy by presenting it as an application for public option value analysis and demonstrating

a methodology capable of understanding bans in practice. Finally, we contribute a CGE

model to the literature on ex ante estimations of the economic impacts of fracking.
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CHAPTER 2

The Value of Learning about Hydraulic Fracturing

Damages

2.1. Introduction

While hydraulic fracturing has the potential to bring substantial economic benefits (Section

1.3.2.2), there is tremendous uncertainty as to their potential to incur environmental and hu-

man costs (Section 1.3.2.1). In this chapter, we hypothesize that the ability to learn about

these costs during a moratorium may explain why so any jurisdictions have temporarily

banned fracking (Section 1.3.1), despite, in some cases, seemingly positive expected net local

benefits. To empirically assess the influence of the QOV associated with uncertain cost on

fracking bans, we develop a data-driven, finite horizon, dynamic program that incorporates

Bayesian learning. We calibrate plausible beliefs about environmental damages and demon-

strate the rationality of a ban in the face of positive expected net benefits. Specifically,

we find that a policymaker anticipating ∼$113 million in benefits per period but expecting

$100 million in damages per period – with a standard error of $60 million – will optimally

implement a ban if she expects to revisit the decision with a standard error of $ 57.8 million.

The next two sections of the chapter presents the model (Section 2.2) and results (Section

2.3). Section 2.4 discusses the results and concludes.
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2.2. Model

To examine the role of uncertainty and learning in local fracking policy, we develop a dy-

namic information model that incorporates data-driven, economy-wide fracking benefits and

uncertain damages that can become better understood over time. Economic benefits are

calculated with a CGE model, a standard tool for empirical welfare analysis of policies that

impact many sectors of an economy Wing (2004).

2.2.1. Dynamic Learning Framework. The policymaker faces a decision in discrete

time periods . In each period, a local policymaker chooses to ban or allow fracking. Specif-

ically, she chooses χt ∈ {0, 1} where “0” denotes BAN and “1” denotes FRACK. The

policymaker in t observes a (1 × t) vector of the full history of past decisions: Ht−1 =

(χ0, χ1, ..., χt−1). For example, a ban followed by two periods without a ban would be rep-

resented as H3 = (0, 1, 1). Ht evolves according to Ht = Ht−1
⌢χt where

⌢ indicates vector

concatenation. The model requires carrying the history of decisions since the current period

consumption depends on it.

Locality-wide consumption is represented as a series {Ct+j}T−t
j=0 where Ct+j is the determinis-

tic local consumption in period t. Ct+j depends on the prior fracking history – in particular,

if and when fracking began. Baseline consumption is defined as the case in which frack-

ing is always banned. If fracking is allowed, there is a surge in economy-wide consumption

stemming from royalties on extracted resources. Economy-wide consumption in time t is a

function of the history, Ht−1 , and the present choice, χt: C(Ht−1, χt) . Since the transition

equation for history is, Ht = Ht−1
⌢χt, it is written as C(Ht).
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Let eta be the environmental damages of fracking, expressed in dollars. If fracking has not

occurred, η is unknown to the policymaker and is modeled as a stochastic variable with a nor-

mal distribution. If, and when, fracking occurs the true value is revealed to the policymaker

and is denoted η∗. Going forward, this distinction is important for interpreting equations

and results. The parameters of the normal distribution are not known with certainty but

decision-makers have a belief in each time period about the values of the mean and variance

of the distribution. Learning from the noisy signal causes beliefs about to evolve so that in

time t, η ∼ N (µt, σ
2
t ). We use a constant relative risk-aversion (CRRA) utility function over

net consumption, C(Ht)− η and denote the coefficient of relative risk aversion as ρ.

2.2.1.1. Current Net Benefit Flow. As discussed above, consumption depends on if and

when fracking begins, which is summed up in the history vector, Ht. Therefore, the con-

sumption function maps elements from the set of feasible (i.e. monotonic) history vectors,

denoted H, into locality-wide consumption values: C(Ht) → Ct ∀Ht ∈ H. If fracking is

allowed (χt = 1), then the expected current flow of net benefits is the expected utility of the

higher consumption level less damages, expressed as: Eη

[

(C(Ht)−η)1−ρ

1−ρ
| µt, σ

2
t

]

, where Eη is

the expectation over damages, η. If fracking is banned (χt = 0), the current flow of net bene-

fits is the utility of baseline consumption: (C(Ht)−0)1−ρ

1−ρ
. For succinctness, we write the utility

function as U(C(Ht), ηχt) =
(C(Ht)−ηχt)1−ρ

1−ρ
where the choice variable controls whether or not

there are damages. This implies that the expected current flow is Eη

[

U(C(Ht), ηχt) | µt, σ
2
t

]

.

Note the expectation over damages is trivial if the fracking ban is maintained – and there

is no damages – or if fracking occurred in a previous period revealing the true damages and

collapsing uncertainty: (µt, σ
2
t ) = (η∗, 0).
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2.2.1.2. Information. Once allowed, fracking results in a constant flow of health and

environmental damages. Damages persist for ten 5-year periods including the period when

fracking begins9 requiring the computation of 14 periods of consumption benefits. Learning

brings better information about the distribution of η . In the initial period, the policymaker

has prior beliefs about the mean, µ0, and variance σ2
0, of η ∼ N (µ0, σ

2
0).

The flow of information is modeled as an observed, time-dependent, noisy signal (s) on the

true (but unknown) value of damages, η∗. From the perspective of the policymaker, η∗ has

not been realized so the signal is expressed as 10

(1) st = η + ǫt

where ǫt is a normally distributed i.i.d. random variable with mean µǫ = 0 and variance σ2
ǫ .

As the sum of two normally distributed i.i.d. random variables, st is normally distributed

st ∼ N (µt, σ
2
t + σ2

ǫ ). Therefore, posterior beliefs are

µt+1 =
σ2
ǫµt + σ2

t s

σ2
ǫ + σ2

t

, σt+1 =
σ2
ǫσ

2
t

σ2
ǫ + σ2

t

(2)

9We could alternatively model fracking damages as a one-time event. The crucial assumption is that
conditional on fracking, future damages are exogenous from the perspective of the current decision-maker.

10Note that the signal is produced by a draw around the true damages so that the process generating the
signal is st = η∗ + ǫt.
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Note that limt→∞(µt, σ
2
t ) → ∞ provided σǫ < ∞.The rate of learning depends on the

precision of future information, i.e. the variance of the signal noise. If σ2
ǫ is large, the signal

is relatively uninformative and learning is slow. As σ2
ǫ shrinks, the signal becomes more

informative and uncertainty is resolved faster.

2.2.1.3. Bellman Equation. The decision is posed as a recursive problem with three state

variables. The first is the history of past decisions:Ht−1 = (χ0, χ1, . . . , χt−1). The other states

characterize beliefs about the normally distributed damages: the mean (µt) and variance

(σ2
t ). Irreversibility is modeled by a restricted choice set χt ∈ {χt−1, 1}, and we assume

fracking has not yet occurred, H0 = ~0. Since the value function depends only on the state

variables, and not explicitly on time, it can be written as a Bellman equation in time t as

follows:

Vt(Ht−1, µt, σ
2
t ) = max

χt∈{χt−1,1}

{

Eη

[

U (C(Ht), ηχt) | µt, σ
2
t

]

+ (1− χt)βEs

[

Vt+1

(

(Ht−1, 0)
︸ ︷︷ ︸

Ht

,
σ2
ǫµt + σ2

t s

σ2
ǫ + σ2

t
︸ ︷︷ ︸

µt+1

,
σ2
ǫσ

2
t

σ2
ǫσ

2
t

︸ ︷︷ ︸

σ2
t+1

)

| µt, σ
2
t

]

+ χtβEη

[

Vt+1

(

(Ht−1, 1)
︸ ︷︷ ︸

Ht

, η
︸︷︷︸

µt+1

, 0
︸︷︷︸

σ2
t+1

)

| µt, σ
2
t

]}

(3)

The first term on the right-hand side of Equation 3 is the expected current flow of utility,

conditional on beliefs, µt and σ
2
t . The second and third terms describe the continuation value

if fracking is banned or allowed, respectively. Although we are mainly interested in situations

for which the option to ban remains (i.e. fracking has not occurred), the equation also depicts
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the value in time t if fracking has already occurred. In this case, the choice set is χt ∈

{1, 1} ⇒ χt = 1. Moreover, the true value of damages, η∗, is realized in the period in which

fracking occurred implying µt = η∗ and σ2
t ) = 0. Then, if fracking has already occurred, the

value function as of time t collapses to Vt(Ht−1, η
∗, 0) =

(
Ct(Ht)−η∗

)1−ρ

1−ρ
+ βVt+1(Ht, η

∗, 0)

2.2.2. Option Values. Traeger (2014)11 suggests a convenient way to summarize the

determinants of optimal policy. For the current setting, this so-called Quasi-Option Value

Rule can be summarized as follows:

FRACK if NPVt > QOVt + SOVt = V soph
t

BAN if NPVt ≤ QOVt + SOVt = V soph
t

(4)

V soph
t is the full value of sophistication, QOVt is the quasi-option value, SOVt is the simple

option value, and NPVt is the present value of the expected net gain from fracking. All values

are expressed in utility units and functional arguments are suppressed. V soph
t captures the

presumption that a fully sophisticated decision-maker would value both the ability to simply

delay a project (SOVt) and the ability to learn about the project (QOVt) conditional on and

during the delay.

Traeger (2014) shows that can be constructed from three present values: learning, postpone-

ment, and now or never. These can be defined in the context of our model as follows:

• V l
t (·|χt = 0): the present value of a ban by a policymaker who anticipates learning ;

11Building on Arrow and Fisher (1974), Henry (1974), and Hanneman (1989).
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• V p
t (·|χt = 0): the present value of a ban by a policymaker who anticipates the ability

to revisit the decision – to postpone it – but does not anticipate the ability to learn;

• V n
t (·|χt = 0): the present value of a ban to a policymaker who does not anticipate the

decision will be revisited — a now or never perspective.

The respective value functions become

V l
t (Ht−1, µt, σ

2
t |χt = 0) = U

(

C(Ht), 0
)

+ βEs

[

Vt+1

(

Ht, µt+1, σ
2
t+1

)

| µt, σ
2
t

]

V p
t (Ht−1, µt, σ

2
t |χt = 0) = U

(

C(Ht), 0
)

+ βEη

[

Vt+1

(

Ht, µ, σ
2
)

| µ, σ2

]

V n
t (Ht−1, µt, σ

2
t |χt = 0) = U

(

C(Ht), 0
)

+ βVt+1

(

Ht, 0, 0
)

(5)

The value of fracking is, Eη

[

U
(

C(Ht), η
)

+ βVt+1

(

Ht, η, 0
)

| µt, σ
2
t

]

and is the same in

each case: V l
t (·|1) = V p

t (·|1) = V n
t (·|1). The first and second equations in Equation 5 differ

in the stochastic variable over which the expected continuation values are calculated. The

first equation takes the expectation of s, the signal, and anticipates updated beliefs about

the damage distribution. In the second equation, no signal is anticipated, so beliefs do not

change over time and there is only uncertainty over the damage parameter,η. Consequently,

the state variables in this case are not time-dependent and the expectation is taken with

respect to η rather than s. The right hand side of the equations need no superscripts

since the arguments of the expectation and value functions indicate whether the decision

maker: anticipates learning and the expectation is conditional on updated believes, does not

anticipate learning and the expectation is conditional on static beliefs, or does not anticipate

revisiting the decision.
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Following Traeger (2014) we calculateNPVt = V n
t (·|1)−V n

t (·|0) and V soph
t = V l

t (·|0)−V n
t (·|0)

and decompose the full value of sophistication into the option values:

(6) V l
t (·|0)− V n

t (·|0)
︸ ︷︷ ︸

full value of sophistication

= V l
t (·|0)− V p

t (·|0)
︸ ︷︷ ︸

QOVt

−V p
t (·|0)− V n

t (·|0)
︸ ︷︷ ︸

SOVt

Using the Arrow-Fisher-Henry-Hanneman Quasi-option Value Rule (Equation 4) we can ex-

press our current period value function (Equation 3) as Vt(·) = max {NPVt, QOVt + SOVt}

and see the impact of learning, captured by the QOV, on welfare. Since QOVt is non-

negative (Traeger 2014) and increasing with more precise information, the ability to learn

weakly increases the value function in Equation 3.

2.2.3. Parameterization of Damages. In order to solve the model, we also param-

eterize the initial beliefs about the distribution of the monetary value of fracking damages,

η. Given additive separability, this can occur independently from the parameterization of

economic benefits described above. Recall that η is normally distributed with initial beliefs

about the mean and standard error equal to and µ0 , σ0 respectively. The magnitude of

these damages must be weighed against the consumption benefits of fracking, calculated in

Section 1.4.2.

To parameterize current beliefs about this distribution, we define a plausible range within

which the monetary value of damages is likely to fall. First, we assume a 5% chance of

negative damages (i.e. benefits) from fracking. This could occur if, for example, fracking

allows natural gas to displace coal in local energy production, leading to cleaner air. At
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the other extreme, we assume that damages could exceed a high-damage scenario with a

probability of 5%.

To define the high-damage scenario, we calculate the monetary cost of purchasing water

rights to permanently replace the current surface water supply. We assume the municipality

would obtain shares in the Colorado-Big Thompson (C-BT) System, where water rights have

sold for $50,000 per acre-foot. To calculate the number of shares that the municipality would

need to purchase, we use the Colorado City of Fort Collins’s water use as an example. If Fort

Collins Utilities had to purchase C-BT shares to cover 100% of its population of 150,000,

it would need to purchase 51,805 acre-feet12. Assuming the representative municipality of

50,000 people would use the same initial mix of C-BT and non-C-BT water sources and

consumption per capita as Fort Collins, it would need to purchase 17,268 acre-feet from

C-BT (valued at $50,000 per acre-foot) for a total one-time cost of $863 million. Amortized

over 10 (5-year) periods with a discount rate of 5%, this high-damage estimate becomes

approximately $200 million per period.

The 5% upper ($200 million) and lower ($0) tails of fracking damages allow us to calculate

the mean and standard error of the distribution. Figure 2.1 displays the distribution of

fracking damages given the specified two tails. From Figure 2.1, we can see that the mean

of the per-period fracking damages is ∼$100 million per period. The standard deviation

of this distribution is $60 million. Therefore, our initial beliefs are µ0 = $100 million and

σ0 = $60 million.

12Fort Collins Utilities (FTCU) delivers water to 130,200 people out of the approximately residents 152,061
(2013 estimate). Approximately 19% of FTCU’s average raw water supply comes from the C-BT. The rest
comes from the Poudre River, assumed polluted beyond use. If FTCU were to obtain the remaining 81%
while scaling supplies to the entire Fort Collins population, this would require the purchase of 51,805 acre-feet
of water from the C-BT.
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Figure 2.1: Distribution of Environmental Damages Given
Calibrated Initial Beliefs

The x-axis is the value of the damage parameter, in millions of dollars. The y-axis is the
probability. The 5% tails are shaded.

A policymaker who holds these calibrated initial beliefs thinks allowing fracking will incur a

cost that is drawn from this distribution. If, on the other hand, fracking is banned, the pol-

icymaker anticipates receiving a signal that will provide information about the distribution

of fracking damages.

Recall that the annuitized present value of the consumption benefits of fracking today is

approximately $113.6 million per period. This suggests that, in expectation, the net benefits

of fracking are positive. Under a naive net-present value rule, a risk neutral policymaker

would allow fracking because the expected benefits exceed the expected costs. Nevertheless,

a policymaker that anticipates learning about the distribution of damages will wait before
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allowing fracking if the QOV is sufficiently valuable. To find the conditions under which

a policymaker would continue to ban fracking we solve the parameterized dynamic option

value model using the rule described in Equation 4.

2.3. Results

We first solve the model for a range of initial beliefs about damages and a range of assump-

tions about the rate of learning and examine if the ability to learn influences the optimal

policy decisions. Then, we compare the role of learning to other factors such as the value of

oil and gas reserves. Next, we quantify a monetary value of the QOV and use Monte Carlo

simulations to show that faster learning leads to better decision-making over time. We finish

with tests for the robustness of the results.

2.3.1. Optimal Policy. To explore the impact of learning on the optimal policy de-

cision, we solve the model for a range of values for the standard error of the signal noise,

presented in Equation 1. Specifically, we are interested in estimating Equation 4 which com-

pares the NPVt (the present value of the expected net increase in utility units from fracking)

with estimates of QOVt (quasi-option value) and (simple option value). If the NPV is greater

(less) than the sum of QOV and SOV, then it is optimal to FRACK (BAN).

Using the results from the CGE model discussed above and the estimates for QOV and SOV,

Figure 3 presents the optimal initial-period policy for fast (σǫ = $1), medium (σǫ = $200

million) ,and slow (σǫ = $500 million) rates of learning as a function of initial beliefs about

environmental damages. We also display the no-learning case. These curves mark the

initial belief combinations where the policymaker is indifferent between allowing fracking and
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maintaining the ban. Intuitively, as learning becomes faster, there are fewer combinations of

initial beliefs (less area under the curve) for which fracking is optimal. The parameterized

initial beliefs are labeled and it becomes clear that the optimal policy in the calibrated

model is sensitive to the rate of learning. When learning is slow, the optimal policy is to

allow fracking since new information is relatively uninformative and unlikely to change next

period’s policy. In this case, the expected gains from fracking dominate the value of learning

in influencing the optimal policy. Under the parameterized beliefs, it is optimal to maintain a

ban, receive precise information about fracking damages, and revisit the decision next period

if learning is fast. The ban occurs despite positive expected net benefits from fracking, so

a simplistic benefit-cost framework that does not anticipate learning — a now or never

approach — would allow fracking. When σǫ = $211 million, the risk averse policymaker is

indifferent between fracking and banning given the parameterized initial beliefs. This implies

that the policymaker should implement a ban if she anticipates at least a 7.5% reduction in

σ2
t over the first 5 years (1 model period).

Notice that all three policy boundary curves converge to the same mean, µ0 = $111.8 million

as σ0 → 0 . This occurs because information is only valuable under uncertainty. We denote

this mean belief where policy switches under no uncertainty as µ̂ so that µ̂ = $111.8 million.

Beliefs that µ0 < µ̂ with low initial uncertainty (southwest corner) will result in a FRACK

policy. Similarly, beliefs that µ0 > µ̂ and the initial uncertainty is high (northeast corner)

will result in a BAN policy. Increasing uncertainty while holding µ0 = µ̂ makes a ban more

likely, due to the ability to learn about the true distribution. Even with no learning, risk

aversion means that higher uncertainty can push towards a BAN.
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Two other interesting features are visible. First, the annualized consumption benefits are

$113.6 million, which is larger than 1µ̂ = $111.8 million. This difference arises because the

intertemporal elasticity of substitution is constant and equal to 1
ρ
. As fracking today gives a

larger increase in period 2 consumption than in period 1 consumption (See Figure 1.4), there

is a greater than one percent change in the marginal rate of substitution. Consequently, the

percentage change in the ratio of consumption c1
c2
is larger than one. Therefore, the risk-averse

policymaker needs higher first period consumption benefits than the risk-neutral policymaker

thus banning fracking at lower damages. Second, there is little effect on the optimal decision

as the uncertainty increases enormously. This is because the baseline consumption of the

community is approximately $1.159 billion. The marginal utility at this point is 7.4445e-19,

which is quite flat and roughly risk-neutral.

2.3.2. Learning and the Value of Energy Resources. Figure 2.2 reveals that

learning can play a pivotal role in the policy decision holding other economic factors constant.

Now, we compare the impact of improved learning to changes in the resource value. We use

the CGE model to compute the benefits of fracking for four oil and gas prices. Then, we

fit a benefit function, b(t, f, p), that maps current time period (t), when fracking began (f ),

and price of oil (p) into a dollar value of consumption benefits, (C ): b : (t, f, p) → C . With

this, we populate a consumption benefit matrix for a range of oil prices from $30 to $90 per

barrel in $5 intervals and solve for both the value of learning and the value of fracking using

Equation 5. The results are presented in Figure 2.3. The speed of learning is expressed as the

number of signals required to reduce the standard error by half of its initial level. The figure

highlights the policymaker’s willingness to trade off faster learning for decreased economic
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Figure 2.2: First Period Optimal Policy
The x-axis is the initial mean damage belief. The y-axis is the initial standard error belief.
Each curve demarks where policy switches. Fast learning is σǫ = $1, medium learning is
σǫ = $200 million, and slow learning is σǫ = $500 million; and the initial beliefs used in the
calibration exercise are (µ0, σ0) = (100, 60) million dollars. The slope of the line is the
willingness to pay for lower uncertainty with decreased net benefits.

benefits through a lower reserve value. We display the policy boundary curve with calibrated

beliefs as well as for higher and lower initial standard errors for the damages distribution.

Figure 2.3 shows that improvements in the rate of learning can tilt the decision towards

a temporary ban, but that the price of oil – and the value of reserves – has a substantial

influence on the decision. Improving the rate of learning only affects the first period decision

in a small range of prices. This is true even in the high-initial variance case (dotted line

Figure 2.3). On the other hand, a price change from $45 to $55 per barrel likely changes

optimal policy in this context. In our parameterized scenario (solid black line with dot

markers in Figure 2.3), a five period reduction in the number of periods required for the
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Figure 2.3: First Period Optimal Policies for 3 Different
Initial Beliefs

The x-axis represents the speed of learning as the number of signals for σt = .5σ0 where a
time period is 5 years. The y-axis is the price of oil in dollars per barrel. The 3 curves are
a mean-preserving spread. The slopes are the willingness to avoid a slower rate of learning
in terms of reduced net benefits.

variance belief to reduce by half is equivalent to an increase in oil price from $41.92 to

$47.88 per barrel – around a $6 change. For comparison, between August 2015 and August

2016, oil prices ranged from ∼$30 per barrel to nearly $55. This suggests that changes

in price expectations consistent with existing oil price volatility could have a much larger

impact on decision-making than improvements in the speed of learning. More generally, this

suggests that the decision to frack or ban hinges on the local value of reserves, which, in

turn, is influenced by the size of the reserve, the price of oil and gas, and local mineral rights
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ownership. Our calibrated example shows that the ability to learn can play a pivotal role,

provided the value of reserves falls within a relatively narrow range13 .

2.3.3. Quantifying the Option Value. Despite the relative importance of the value

of reserves, the calibrated locality-wide QOV remains large, even in comparison to the con-

sumption benefits of fracking. In order to calculate a monetary value of the QOV, we solve

the model under risk neutrality. This enables us to express all value functions and option

values in monetary units. The more common approach is to solve the model under risk-

aversion and transform welfare into dollars by dividing by the marginal utility. However,

this approach is typically applied to scalar values and would distort the behavior of the

value functions. To be specific, CRRA utility gives negative values and, of course, marginal

utility is positive. This technique would yield negative dollar values. Obviously, we could

get positive dollar values by -1 multiplication, but this would flip the curves and the focus

of this paper is the behavior of the QOV under different rates of learning in relation to pol-

icy. Moreover, the monetary value of the QOV increases with risk aversion so these results

represent a lower bound.

Figure 2.4 shows how the numerical value of the first-period QOV depends on the standard

error of the signal (σǫ). Recall that the QOV is the difference between V soph and V p (Equation

6). All three reflect present values denominated in initial-period monetary units. The QOV

is largest ($101.5 million - $40.4 million = $61.1 million) when σǫ is smallest (learning is

fast) and decreases, as learning slows. With risk neutrality, policy switches in our calibrated

setting when σǫ = $177 million (labeled in Figure 2.4). At this learning rate, the initial

13This also suggests that the option value associated with learning about the price of oil may be quite
large compared to learning about damages. This should be explored in future work.
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Figure 2.4: Value Functions and QOV under Risk Neutrality
The x-axis is the standard error of the noisy signal. The y-axis is the monetary value in
millions of dollars. As learning becomes slower, the QOV decreases pulling the full value of
sophistication, which approaches the SOV asymptotically. The maximum value of the
QOV occurs where σǫ → 0 and is 61.1 million dollars.

variance drops 10% after the first signal. Recall that the cutoff under risk aversion (ρ = 2)

in Figure 2.2 was σǫ = $211 million, showing that a risk neutral policymaker requires faster

learning (all else equal) to justify a fracking ban.

These QOV represents the value of information acquired during a temporary ban and its

numerical value indicates that it is an economically important social value. When learning

is fast, the QOV represents 12.76% of the $478.99 million in gross consumption benefits

that fracking brings (in present value terms). To our knowledge, this is the first attempt to

quantify a numerical, locality-wide QOV associated with an environmental policy decision.
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2.3.4. Policy Simulation. Thus far, our results indicate that faster learning increases

the QOV, incentivizing a moratorium on fracking, in the initial period. However, this does

not show that policymakers interested in supporting economic development activities should

prefer slow learning. To illustrate this, we simulate policy decisions that occur after a first-

period ban over a range of η∗ that contains both instances where benefits exceed damages

(fracking is optimal ex post) and instances where benefits are less than damages (banning

is optimal ex post). This allows us to demonstrate that, as is intuitive, faster learning leads

to better decision-making over time, both increasing fracking instances when it is beneficial

and decreasing instances when it is not.

We use the base model (ρ = 2) and let the range of η∗ go from $60 million to $180 million.

This spans the calibrated µ̂ so that when η∗ is greater (less) than µ̂ banning (fracking) is

optimal ex post. The signals (described in Equation 1.2) depend on η∗ even when initial

beliefs are held constant. We consider the fast and medium learning rates defined in section

2.3.1 and presented in Figure 2.2. This means that the first period decision is always BAN

(H1 = 0) For each learning rate, σǫ, and then for each η∗, we draw 1000, four-element,

signal sequences,{st}t=4
t=1, from the distribution (η∗, σ2

0 + σ2
ǫ ) . The calibrated beliefs (100,

60), in millions of dollars, are the initial damage beliefs (µ0, σ
2
0), which evolve over time

according to Equations 2, depending on the random signal sequence. We evaluate and

compare V soph(Ht−1, µt), σ
2
t ) and NPVt(Ht−1, µt), σ

2
t ) for t = 2, 3, 4, 5 to find the optimal

policy in accordance with Equation 4.

The results of the simulations are presented in Figure 2.5. Results are displayed as the

probability of making the correct (or incorrect) decision by the end of the 5-period decision

horizon. In the left panel, damages are less than the benefits so fracking is beneficial. Under
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fast learning, fracking occurs 94% of the time by period 2 while with medium learning, it

takes all 5 periods before at least 79% of simulations result in beneficial fracking. Note that

97% of the fast learning simulations frack by period 5, the terminal decision period. Recall

that the policy switches at µ̂ = $111.8 million but the annualized consumption benefits

are $113.6 million. The reason that 3% of the fast-learning simulations do not frack when

it is beneficial is risk aversion. That is, regardless of the level of certainty, a risk averse

policymaker with mean beliefs µt ∈ ($111.8, $113.6) will ban fracking under uncertainty

even though it would bring an increase in net welfare ex post. The right panel presents the

result of simulations in which damages exceed the benefits, so a fracking ban optimizes ex

post welfare. In this case, under fast learning an initial ban results in the optimal decision

in every instance (i.e., the probability of fracking is always zero). On the other hand, under

medium learning, there is a 45% chance fracking will eventually be allowed, even though it

would reduce ex post welfare.

Figure 2.5 illustrates that, despite incentivizing a moratorium in the first period, faster

learning results in more fracking when it is beneficial and less when it is not. Therefore, a

policymaker whose sole interest is economic development might optimally enact a morato-

rium.

2.3.5. Sensitivity Analysis. In Figure 7, we explore the sensitivity of our conclusions

to assumptions about initial damage distributions and risk aversion. First, we test robustness

of the results to changes in initial beliefs. The results in Figure 4 present the policy boundary

curves under a mean-preserving spread of the initial damage distribution. Here, we hold fixed

the standard error and let the mean change. The left panel of Figure 7 shows that the main

conclusions are robust to these changes. Conditional on the initial beliefs, increasing the
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Figure 2.5: Simulation Results: Probability of Fracking In or
Before each Period

The x-axis is the time period in which fracking begins. Each time period represents 5 years.
The y-axis is the percentage of simulations in which fracking occurs in time, t. The left
panel is the simulations for which η∗ is less than the present value of consumption benefits.
The right panel is the simulations for which η∗ exceeds the present value of consumption
benefits In comparison to medium learning (σǫ = $200 million), faster learning (σǫ = $1)
results in more fracking and sooner when it’s beneficial and no fracking when it is not.

rate of learning has a relatively small impact on the policy decision. Initial beliefs about the

mean do have a notable impact on the (still narrow) price range within which increasing the

rate of learning plays a pivotal role in determining optimal policy.

In the right panel of Figure 7, we assess the impact of changing the coefficient of relative risk

aversion. The panel replicates the base curve in Figure 4 using a range of values for ρ. As

expected, increasing ρ raises the oil prices for which a ban is optimal. It also increases the

importance of the rate of learning in influencing the policy decision, indicated by the steeper

slope of the high risk aversion boundary curve in Figure 7. Despite this, even at high levels

of risk aversion, the range of prices where learning is influential remains narrow.
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Figure 2.6: Model Sensitivity
The x-axis is imputed number of signals until initial beliefs about standard error is
reduced by half, a transformation of signal variance. The y-axis is the price of oil in dollars
per barrel. The overall results hold under a variety of initial beliefs and risk aversion
specifications.

2.4. Discussion and Conclusion

Uncertainty about fracking damages and the ability to learn create a QOV that can impact

the economic rationale for imposing a temporary ban on fracking activities. In our calibrated

setting, we show that a moratorium can be justified if beliefs about environmental damage

variance are expected to drop at least 7.5% before the decision is revisited (or 10% for a

risk neutral policymaker). Faster learning also leads to better decision-making over time.

Though learning can influence optimal policy, we find that its role is relatively unimportant

when compared to plausible (indeed historical) fluctuations in the price of oil.
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Although we emphasize a model of fracking policy, the developed methodology expands the

class of problems that can be quantitatively approached with an option value framework.

Juxtaposing a detailed CGE model with a dynamic learning framework makes it possible

to quantify the impact of uncertainty and learning within an empirically grounded general

equilibrium setting. The approach could be useful in other policy contexts, including public

infrastructure investment or public safety measures.

In addition to the policy-relevant observations above, several other policy implications can

be drawn from the analysis. First, uncertainty may push local policymakers to temporarily

ban fracking until better information about associated damages becomes available. Consider

the 2005 Energy Policy Act, which amended the 1974 Safe Drinking Water Act to exclude

fracking injection fluids (other than diesel fuels) from the EPA’s oversight, while exempting

extraction companies from disclosing the chemicals involved in fracking operations. This

change could create public uncertainty about the safety of drinking water near fracking fluid

storage sites and make dangers of fracking which makes adopting a ban more attractive

ceteris paribus.

Next, the rate of learning influences local policy decisions in a context of uncertain fracking

damages. A high rate of learning makes a first period ban more appealing but makes fracking,

if beneficial, more likely in subsequent periods. The value function when the decision remains

(Equation 3) is weakly increasing in the rate of learning, implying that faster learning cannot

decrease welfare. Consequently, the public has an interest in reducing the noisiness around

fracking information through, for example, research and improved industry transparency.

Although the potential for learning could push a community to implement a temporary ban,

it also creates the incentive to remove the ban if this is in their interest. Many policy options
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exist to support the opportunity for learning. These include funding for scientific research

on impacts, information provision that enables homeowners to better negotiate with oil and

gas companies (see Timmins and Vissing 2014), encouraging municipalities to fund their own

studies , and providing assistance with local impact studies.

Our quantification of the QOV highlights an intriguing dimension of local fracking policy.

The information-revealing signal about fracking damages is a public good. The ability to

ban fracking and learn from others’ experiences in similar, perhaps nearby, regions implies

a free-rider problem where local jurisdictions obtain the benefits of information without

contributing to its production. The full value of sophistication represents the local jurisdic-

tion’s willingness to pay for the ability to ban fracking and learn but there are currently no

institutions that allow for its capitalization.

While useful, the model presented here has some important limitations. First, we assume

that fracking policy is a binary (yes/no) decision. Feasibly, policymakers could choose both

when to frack and at what intensity. When decisions are adaptable over time, the ability

to learn tends to increase the level of development in early periods (Karp and Zhang 2006).

Allowing a small amount of fracking in certain areas of a given jurisdiction could result

in very precise information about the true value of damages. Then, policymakers could

adjust the amount of fracking to ensure optimality. This is similar to the result in Karp and

Zhang (2006) that the ability to learn about climate sensitivity can increase early emissions

levels. Despite this, binary policies such as local bans are common in practice and likely

reflect political or legal constraints that prevent policymakers from employing more delicate

instruments. Indeed, many bans have arisen through the blunt instrument of local referenda.
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Second, we ignore the stochastic nature of energy prices leaving it for future work. In reality,

policymakers also learn about the value of the reserves they control. If prices have an upward

drift, for example, this would create a further incentive to wait before fracking is allowed

and oil and gas reserves are exploited. Future work should consider the interaction between

stochastic energy prices and uncertain environmental damages.

Another limitation is that consumption benefits do not capture distributional effects. It could

be that the economic benefits accrue to a small fraction of the local population. Routine

burdens, including noise and light pollution or increased traffic, tend to affect those most

closely located to fracking operations (Gopalakrishnan and Klaiber 2014), but as Hill (2013)

points out these are often socio-economically disadvantaged groups that may not receive the

benefits from fracking. A mismatch between those that benefit and those that incur the

costs from fracking is not considered here but future work should investigate how this could

affect the local political economy of fracking policy decisions.
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CHAPTER 3

The Value of Learning about Hydraulic Fracturing

Benefits

3.1. Introduction

Previously, we assumed that the stream of local consumption benefits was deterministic. In

reality, the royalties driving these benefits are a percentage of revenues (Brown et al. 2016)

and dependent on oil and gas prices, which follow random processes. Though the damages

of fracking constitute environmental externalities, royalties accrue privately to the owners of

mineral rights. The prospect of a future ban, technological improvements that make oil and

gas an obsolete energy source, or the discovery of more economically accessible reservoirs

elsewhere may drive the owners of mineral rights to view the development decision with a

now or never framework. Because of this, they will not internalize the positive externality

of timing development to coincide with a higher oil and gas prices, and consequently higher

royalties. This constitutes a market failure and justifies a moratorium until prices rise.

Therefore, this chapter introduces uncertainty to economic benefits by allowing oil and gas

prices to follow a geometric Brownian motion process. This creates an option value associ-

ated with banning fracking until prices are sufficiently high. Using a model parallel to the

one in Chapter 2, we calculate an empirically-based, social QOV which can be compared to

the QOV calculated in Chapter 2. We find that the QOV associated with the epistemological
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uncertainty surrounding environmental damages, calculate in Chapter 2, and the QOV asso-

ciated with stochastic uncertainty calculated in this chapter are remarkably similar, differing

only by 6.1%.

Finally, basic economic principles indicate that extraction firms will ‘cap’ fracked wells if

prices fall below average variable cost. This can severely impact local economic benefits but

would not affect damages. This arguably more realistic model, which allows for stoppage of

economic benefits, increases the QOV by 29.2%.

The next section (Section 3.2) reviews the literature on oil price dynamics. Section 3.3

presents the dynamic model, Section 3.4 discusses the results, and Section 3.5 concludes.

3.2. Oil Price Dynamics

The lion’s share of local economic benefits stem from royalty payments (Brown et al. 2017)

which, in turn, depend on the price of oil. The appropriate way to model oil price fluctuations

(see Figure 3.1) has been discussed at length. This discussion focuses on models that use

pricing theory and continuous time processes.

3.2.1. Continuous Time Processes. Early real options approaches utilized geometric

Brownian motion (GBM) in stochastic optimal control problems with applications to: de-

velopment, management, and abandonment of exhaustible natural resources (Brennan and

Schwartz 1985); firm shut-down conditions with stochastic price fluctuations (McDonald

and Siegel 1985); and valuing claims on offshore petroleum leases (Paddock et al. 1988).

GBM is a continuous-time, but nowhere differentiable, stochastic process that satisfies

dP = αPdt+σPdZ. It is a specific form of Brownian motion, observed by Robert Brown in
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1827 (Brown 1828) and developed mathematically by Einstein (1905). It has since become

ubiquitous in stock pricing (Black and Scholes 1976) because under GBM: (1) the expected

returns are independent of the stock prices, as is realistic (Hull 2006); (2) prices are strictly

positive; (3) movements are discontinuous ‘jumps’; (4) calculations are relatively easy and

solutions are often analytic and tractable. A possible drawback, though, is that the instan-

taneous standard deviation, σ, is constant, which embeds high volatility in predicted prices

and implies (arguably unreasonably) high uncertainty.

Other works (Laughton and Jacoby 1995; Schwartz 1997), though, argue that a mean re-

verting process (MRP) is more appropriate. An Ornstein-Uhlenbeck process, developed to

explain the motion of massive Brownian particles (Uhlenbeck and Ornstein 1930), is a com-

mon specification of an MRP: dP = η(P̄ − P )dt + σdZ. In MRPs, there is a long-run

equilibrium level (P̄ ), or perhaps a historical trend, to which the stochastic element revert

with speed η. This specification allows for negative prices and Dixit and Pindyck (1994)

modify it into what is commonly called a Geometric Ornstein-Uhlenbeck (GOU) process

dP = P
[
η(P̄ − P )dt+ σdZ

]
. GOU allows price to oscillate around P̄ which, unlike GBM,

leads to bounded expectations and lower uncertainty. This model’s usefulness stems from

observations that supply and demand need time to adjust to price shocks. Also, from an

econometric standpoint, adopting a GOU rather than GBM process means estimating one

less parameter.

GBM and GOU are extremes in terms of uncertainty and prediction. GBM has unbounded

expectation and very high uncertainty whereas GOU has a finite expectation (P̄ ) and very

low uncertainty. Other, less extreme, processes have been proposed for the stylized facts

of the Oil market. Gibson and Schwartz’s (1990) two-factor model, inspired by the Oil
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Figure 3.1: Spot Price of West Texas Intermediate Crude in
Cushing, OK

Source: U.S. Energy Information Administration

Derivatives Market, has price following GBM (dp = µPdt + σ1PdZ1) and its convenience

yield14 following a MRP (dδ = k(α − δ)dt + σ2dZ2)
15. Pilipovic’s (2007) models long run

uncertainty by embedding a stochastic, long run equilibrium level (E where dE = µEEdt+

σEEdZE) into a GBM process for price (dP = η(E − P )dt+σpdZP ). Dias and Rocha (1999)

explain price trends toward the mean with unexpected changes by developing a one-factor

mean reversion with jumps model. Here, price evolves as an MRP but can ’jump’ abruptly

with given probability (dP
P

= η(P̄ − P )dt + σPdZP + (θ − 1)dq).16 Hilliard and Reis (1998)

extend Schwartz’s (1997) three-factor model by including jumps in the asset price and Miller

and Zhang (1996) model the influence of global factors (i.e. the Gulf War) with a GBM

model that includes positive Poisson jumps in peacetime and negative Poisson jumps in

wartime.

14The futures price, F0, of a commodity is given by F0 = S0e
(c−y)T where S0 is the spot price, c is cost

of carry (the interest rate less the income earned plus the storage costs), y is the convenience yield, and
T is time until the delivery date.

15where Z1 and Z2 are correlated Wiener process.

16where dq = 1 with probability λdt and dq = 0 with probability 1− λdt.
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3.2.2. Econometric Approaches. Postali and Picchetti (2006) econometrically eval-

uate the accuracy of these processes for describing oil price movements. They conclude that

GBM is a good approximation as the average half-life of oil (between four to eight years) is

long enough. But, Kaffel and Abid (2009) present a methodology for determining the best

continuous-time stochastic process and conclude that GBM with jumps is the best for oil

prices and GOU is appropriate for the convenience yield, the implied return on holding a

commodity rather than a derivative product that arises through a no-arbitrage condition.

Hahn et al. (2014) examine crude oil prices from 1990 to 2013. As they are unable to statis-

tically determine if historic prices are mean-reverting or not, they support the rationale for

a two-factor model. However, they also find that including data since 2005 (where previous

work – i.e. Askari and Krichene 2008; Meade 2010 – undermining continuous-time models

did not) supports a simple, one-factor GBM process. They conclude that long-term forecast-

ing may be well done with one-factor GBM. Moreover, they estimate the drift and volatility

parameters for the full data set to be µ = −0.0582 and σ = 0.2563.

3.3. Model

This section develops the framework for incorporating oil and gas price volatility into the

dynamic learning framework. We first discuss the incorporation of yearly price fluctuations

into the five-year decision framework. Then, we review the mathematics of geometric Brow-

nian motion (discussed in Section 3.2). Next, we demonstrate our strategy for imputing

consumption benefits as a function of time-dependent oil prices. Finally, we develop the

Bellman equation and present the associated option values.

64



3.3.1. Policy Choices and Histories. Parallel to the problem studied in Chapter 2,

the policymaker faces irreversible decisions (Frack orBan) every five years. We again use the

results generated by the CGE that was described in Section 1.4.2. However, the CGE model

generates yearly consumption flows and much of the work on oil and gas prices movements

estimates yearly drift (α) and volatility (σ) parameters. So, the model is constructed so that

t can be interpreted as a year.

The model again requires carrying the history of decisions, which is a (1 × t) vector, since

the current period consumption depends on it. As the decision to allow fracking will incur

sunk costs, it is assumed to be irreversible. This permits only monotonic history vectors like

(0, 0, 1) but not (0, 1, 0). We denote the set of monotonic vectors as H so that Ht ∈ H ∀t =

1, 2, ..., T .

History will again be a state variable and again evolve by vector concatenation. However,

defining this evolution is subtly different than before as we wish to define the model in yearly

terms. A choice made in a decision period cannot be revisited until the next decision period

and can be thought of as being repeated throughout the intervening five years. Supposing

year t is a decision year, we make the definition χt ∗~1(1×5) ≡ ~χt, where ~1 represents a vector

of ones. Then, history evolves as Ht = Ht−1
⌢ ~χt provided t is a decision period. Also, we

assume that H0 = 0 so that the option to ban fracking is initially in place.

3.3.2. Prices. Recall that the consumption benefits in Section 1.4.2 depend on the value

of local unconventional reserves which is set by an average of oil and gas prices, henceforth

denoted as P . The literature on oil prices, discussed in Section 3.2, suggests that geometric

Brownian motion (GBM) is an appropriate way to model the stochasticity of oil prices (Hahn
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et al. 2014). Below, we make use of Itô calculus to solve the stochastic differential equation

(SDE) associated with GBM for the one-year probability density function. With this, we

are able to numerically estimate a discrete time Markov chain according to Tauchen (1986).

More information on SDEs and Itô calculus can be found in Okesendal (2000).

P is stochastic and follows geometric Brownian motion (GBM). The equation of motion is

dPt = µPtdt+σPtdzt where z is an increment of the Wiener process meaning: 1) any change

in z, ∆z, that occurs during ∆t satisfies ∆z = ǫ
√
∆t where ǫt ∼ N(0, 1), and 2) E [ǫtǫs] = 0

for t 6= s (i.e. ǫt are serially uncorrelated). We can rewrite the stochastic differential equation

as dPt

Pt
= µdt+σdzt and then as an Itô integral:

∫ t

0
dPt

Pt
=

∫ t

0
µdt+

∫ t

0
σdzt = µt+σzt assuming

z0 = 0. Since Pt is an Itô process, we use Itô’s formula d(lnPt) =
dPt

Pt
− σ2

2
dt. The Itô integral

is then
∫ t

0
d(lnPt) = µdt+ σzt − σ2

2
dt = (µ− σ2

2
)dt+ σzt. Therefore, lnPt − lnP0 = ln(Pt

P0
) =

(µ − σ2

2
)dt + σzt and (Pt

P0
) = e(µ−

σ2

2
)dt+σzt . Finally, we have Pt = P0e

(µ−σ2

2
)dt+σzt . This

means that for any t, Pt is log-normally distributed with expected value E [Pt] = P0e
µt and

variance V [Pt] = P 2
0 e

2µt(eσ
2t−1)(Geometric Brownian Motion 2017). The parameters µ and

σ are commonly referred to as the drift and volatility, respectively. Also, the probability

distribution of Pt for any given initial price is given by

(7) f(Pt;P0, µ, σ, t) =
1

Pσ
√
2πt

e−
lnP−lnP0−(µ−

σ2

2 )t2

2σ2t

To solve the model numerically, we discretize prices into an m-element Markov chain P ∈

P 1, P 2, ..., Pm, and the pdf described by equation 7 into a right-stochastic (m x m) matrix

T according to Tauchen (1986).
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3.3.3. Consumption. As in Section 2.2, locality-wide consumption is computed in the

general equilibrium model as a yearly time series,{Ct+j}T−t
j=0 where Ct+j is the deterministic

local consumption in year t + j. For each possible policy path, we use the CGE model to

compute local consumption as a function of the initial rental value of oil and gas reserves,

denoted P̂ . That is, the CGE model generates consumption values, Ct+j(P̂ ), that depends

on the prior policy history – in particular, if and when fracking began – as well as the initial

price P̂ . If fracking is allowed, there is a surge in economy-wide consumption stemming from

royalties on extracted resources. If fracking is not allowed, the economy experiences normal

growth. Therefore, economy-wide consumption in time t is a function of average oil and

gas price, P̂ , and the history vector in time t and is written as C(Ht, P̂ ). Regardless of the

policy, it is economically sensible that the value of consumption at any time t depends on

the sequences of consumption, and hence the path of price, prior to time t. Therefore, we

approximate consumption in time t by assuming that the growth rate depends only on the

previous period’s price rather than the full history of price movements. For example, if the

policymaker were to expect a price drop from P̄ to P
¯
immediately after period one, then

she would expect her period two growth rate to be the same as if the price did not drop (ḡ),

but applied to the second period consumption value associated with P
¯
(See Figure 3.2).

In general and for any policy path, the consumption in period tk+1 for price movement

Pk → Pk+1 is approximated as

(8) C(tk+1, Pk+1) = C(tk, Pk+1) +

[
C(tk, P1)− C(tk+1, Pk)

C(tk, Pk)

]

C(tk, Pk+1) ∀Ht ∈ H

The effect of this approximation is to increase consumption in tk+1 if prices were previously

higher (Pk+1 < Pk) and decrease consumption if prices were previously lower (Pk+1 > Pk).
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Recalling that time and policy path are summed by the history in time t, Ht, consumption

is a function the history in time t, Ht, and the price variable, P : C(Ht, P ) .

Figure 3.2: How Consumption is Approximated
The x-axis is time and the y-axis is the dollar value of consumption. The figure shows
consumption as a function of time for two different prices P̄ and P

¯
. The policymaker

expects that prices will move immediately after period one with some probability. Then,
consumption in period three depends on the growth rate under the higher price, ḡ, and the
consumption value under the lower price in period two. The effect is that the consumption
is higher in period three than it would have been on the low price trajectory.

We discretize prices into an m-element Markov chain P ∈ P 1, P 2, ..., Pm, and the pdf de-

scribed by equation 7 into a right-stochastic (m×m) matrix T according to Tauchen (1986)

where element tij of matrix T is the probability of that price will transition from state i to

state j. Stochastic matrices have two properties that make them a powerful tool in stochastic

dynamic programming. First, for any integer k and right-stochastic matrix T, Tk is also

right-stochastic. Second, the probability of the random element transition from state i to

state j in k -steps is the ij -th element of Tk.
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Consumption is approximated using Equation 8 and we generate an m×m matrix, C, where

element [cij] is the period t+1 consumption for jth price pjt+1 ∈ P 1, P 2, ...Pm conditional on

the ith t-period price. The construction of T and C mean that only elements on the diagonal

of the product are true expectations. To understand this, consider a simple 2-price situation.

Then T = [ p11 p12
p21 p22 ] where p12 is the probability that prices will move from state 1 to state

2 in one year. As well, U(C) = [ u11 u21
u12 u22 ] where u12 is the utility of the consumption that is

generated when the price move from state 2 to state 1. Matrix multiplication gives

T · U(C) =
[
p11u11+p12c12 p11u21+p12c22
p21u11+p22c12 p21u21+p22c22

]
. Obviously, only the diagonal elements are expecta-

tions. So for the general case, the approximate expected utility is computed as EPt+j
[U(C)] =

diag(Tj · U(C)) for j = 0, 1, 2, 3, 4.

3.3.4. Current Net Benefit Flow. Typically, the current flow occurs between the

current decision and the next. However, decisions occur every five years whereas the CGE

model generates yearly consumption flows and much of the work on oil prices estimates yearly

drift (µ) and volatility (σ) parameters. So, working with years rather than periods, the

current flow is the expected present value of five years of consumption benefits. To calculate

this, we use a constant relative risk-aversion (CRRA) utility function over net consumption,

C(Ht, P ) − η̄ with deterministic damages, annual discount factor β, and transition matrix

T as described above.

If fracking is allowed (χt = 1), then the expected current flow of net benefits is the ex-

pected utility of the higher consumption level less deterministic damages, expressed as

∑4
j=0 β

jTj (C(Ht,P )−η̄)1−ρ

1−ρ
. If the ban remains in place (χt = 0), the current flow is the

expected utility of the baseline consumption,
∑4

j=0 β
jTj (C(Ht,P )−0)1−ρ

1−ρ
.
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Using the current choice χt to control whether or not there are damages, the utility function

is succinctly written as U(C(Ht, P ), χtη̄) =
∑4

j=0 β
jTj (C(Ht,P )−χtη̄)1−ρ

1−ρ
the current flow is

∑4
j=0 β

jTjU(C(Ht+j, P ), χtη̄).

3.3.5. The Bellman Equation. The problem is recursively posed over two state vari-

ables. The first is the prior history of decisions, Ht−1, as in Section 2.2. The second is the

average price of oil and gas, P , which follows GBM as described above in Section 3.3.2.

Irreversibility is, again, modeled by the restricted choice set, χt ∈ {χt−1, 1} assuming a ban

is initially in place (H0 = ~1). Since the value function depends only on state variable, and

not on time, it is stationary and can be written as a Bellman equation in time t as

(9) Vt(Ht−1, P ) = max
χt∈{χt−1,1}

[
4∑

j=0

βjTjU(C(Ht+j, P ), χtη̄) + β5T5Vt+5(Ht+5, P )

]

The first term on the right hand side is captures the present value of the expected utility

stream generated by the decision today χt, which is concatenated into H. If the ban remains

in place, χt = 0, then the second term on the right hand side captures the expected value

of being able to revisit the decision in year t +5 after observing the average price of oil and

gas Pt+5.

3.3.6. Option Values. Equation 4 gives Traeger’s (2014)17 so-called Quasi-Option Value

Rule. We now follow Section 2.2.2 and construct present three present values: learning, post-

ponement, and now or never, which we will subsequently use to calculate the QOV. There

17Building on Arrow and Fisher (1974); Henry (1974); Hanemann (1989)
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are subtle differences between the present values of this chapter and the present values pre-

sented in Section 2.2.2. These differences arise because the model in Chapter 2 concerns

epistemological uncertainty whereas the model in here addresses stochastic uncertainty. In

the context of this chapter, the present values are:

• V l
t (·|χt = 0): the present value of a ban by a policymaker who anticipates observing

P prior to the subsequent decision;

• V p
t (·|χt = 0): the present value of a ban by a policymaker who anticipates the

ability to revisit the decision but does not anticipate observing P first;

• V n
t (·|χt = 0): the present value of a ban to a policymaker who does not anticipate

the decision will be revisited.

The respective value functions become

(10)

V l
t (·|0) =

4∑

j=0

βjTjU(C(Ht+j, P ), 0) + β5T5Vt+5(Ht+5, P )

V p
t (·|0) =

4∑

j=0

βjTjU(C(Ht+j, P ), 0) + β5max







T5
T−t∑

j=0

βjTjU(C(Ht+j, P ), η̄),

T5V p
t+5(Ht+5, P )







V n
t (·|0) =

T−t∑

j=0

βjTjU(C(Ht+j, P ), 0)
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The value of fracking is: Vt(·|χt = 1) =
∑T−t

j=0 β
jTjU(C(Ht+j, P ), η̄) and is the same in

each case: V l
t (·|1) = V p

t (·1) = V n
t (·|1). Notably, the second equation, the value of post-

ponement, is non-stationary since the expectation is inside the max operator. To address

this, we solve for V p
t from the perspective of all the time periods prior to t. To under-

stand this, consider the final period decision max{TV F, TV B} where TVF and TVB are

the terminal values of fracking and banning, respectively. In the penultimate decision pe-

riod, a policymaker who does not anticipate learning views the value of postponement as

V l
t (·|χt = 0) =

∑4
j=0 β

jTjU(C(Ht+j, P ), 0) + β5max{T5TV F,T5TV B}. So, we calculate

the value of fifth period postponement from the perspective of period 4 and make the def-

inition: max{T5TV F,T5TV B} ≡ V p
5,4. Similarly, V p

5,3 ≡ max{T10TV F,T10TV B} and

V p
5,2 ≡ max{T15TV F,T15TV B}.

As in Section 2.2.2, we calculate NPVt = V n
t (·|1)−V n

t (·|0) and V soph
t (·|0) = V l

t (·|0)−V n
t (·|0)

and decompose the full value of sophistication into the option values with Equation 6 and

calculate the QOV.

3.4. Results

We solve the model over a range of drift and volatility parameters with an initial price of oil

of P = 45 $/bblṄext, we use the drift and volatility specifications for GBM estimated by Hahn

et al. (2014) and the one year value of our damage calibration from Section 2.2.3, η̄ ≅ $21

million, to solve for the present values described by Equation 10, the price point at which

policy switches, and the maximal QOV. Then, with same drift, and volatility specifications,

we solve the model over a range of η̄s for the price at which policy switches. This allows us to

estimate a willingness to trade higher economic benefits (via higher P) for higher damages.
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As basic economics indicates that firms will temporarily shut-down operations if the sale

price falls below the average variable cost, we repeat these exercises for the case in which

firms stop extraction (after fracking the well) in response to a low price of oil. This behavior

is supported, anecdotally, from experience in the Bakken play in North Dakota and Devonian

Shale play in Oklahoma. In early 2016, several development companies – including the giants

Chesapeake Energy, Continental Resources (commonly called the “King of the Bakken” by

insiders) and Whiting Petroleum – ceased operations (and hence royalty payments) when oil

prices fell below 30 $/bbl. During this stoppage, North Dakota and Oklahoma both projected

shortfalls of a billion USD18.

3.4.1. QOV and Policy. We first solve the model over a range of drift, µ ∈ [1, 1], and

volatility, σ ∈ (0, 1], parameters for P = 45 $/bbl. We solve for the first period present values

of Equation 10 and the optimal policy using Equation 4 and present the results in Figure 3.3.

Recall that drift is the expectation of the rate of increase (east side) or decrease (west side)

and that high volatility (north side) means high risk. Therefore, a policymaker who is not

risk-loving will wish to ban fracking when there is high risk and the expectation is that prices

will decrease (northwest) and allow fracking when there is little risk and the expectation is

that prices will increase (southeast). Also, the shaded area is where fracking is optimal and

the QOV contour lines are in millions of USD. The maximal QOV occurs in the area where

banning is optimal, as in the Chapter 2 model, and where the drift is µ = −0.0047 and

volatility is σ = 0.3444. For future purposes, we have also indicated Hahn et al.’s (2014)

parametric estimates of the drift and volatility parameters for the GBM of oil prices.

18DESMOG
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Figure 3.3 has several interesting implications. First, we can see the policymaker’s willing-

ness to trade higher expected returns for more risk in the slope of the outer line demarking

where the optimal policy switches. We should also note that the policymaker finds it optimal

to frack even for negative drift values, provides there is low volatility. In fact, these expec-

tations incentive fracking immediately in order to garner the most benefits. This brings us

to another interesting feature – the ’bubble’ in the ’Frack Zone’. Here, the low-risk expecta-

tion that prices will rise incentivizes delaying fracking in order to maximize the value of the

reservoir and, consequently, the economic benefits (see Figures 1.4 and 1.5). However, fur-

ther increasing the drift parameter while holding volatility constant increases the expected

benefits enough to offset the patience of policymaker. Next, comparing Figure 3.3 to Figure

2.3 reveals the impact of including price movements. Figure 2.3 indicates that policymaker

would allow fracking if P =50 $/bbland damages are expected to be $100 million for even the

fastest rate of learning. However, Figure 3.3 shows that if P =50 $/bbl, damages are expected

to be $100 million, and the policymaker is only slightly more optimistic than Hahn et al.

(2014) (i.e. a drift of µ = −.050 instead of µ = −.058), she will choose to allow fracking.

Finally, perhaps the most powerful outcome of our methodology is the ability to quantify

the QOV. The maximal value here is $78.3 million, 27% higher than the $61.1 million from

the fastest rate of learning in Figure 2.4.

3.4.2. Present Values and Policy. To present policy results in the state space, we

select Hahn et al.’s (2014) parameterization and solve the model over a range of prices and

display the results in Figure 10. We can immediately see the impact of using the Quasi-

Option Value Rule (Equation 4) rather than the Net Present Value Rule. The NPV rule
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Figure 3.3: QOV contour lines and Policy for P = 50 $/bbl
The x-axis is the drift parameter, the expected rate of change of P , and the y-axis is the
volatility of the diffusion process. Price is set to be 50 $/bbl. The QOV contour lines are in
millions of USD and the shaded are is where the optimal policy is to allow fracking. We
also indicate Hahn et al.’s (2014) estimated GBM drift and volatility parameters for oil
price movements.

would suggest fracking whenever P ≥ 10 $/bbl since the expected present value of frack-

ing, V0(·|1), is positive in this range. On the other hand, the QOV rule suggests banning

fracking unless P ≥ P̃ since the present value of learning, V l
0 (·|0), exceeds V0(·|1) when

P ∈ [10, 50.77) $/bbl. The value function (Equation 9) can also be written using option val-

ues as Vt(·) = max {NPVt, QOVt + SOVt} and is displayed as the upper envelope of V0(·|1)

and V l
0 (·|0). The figure also indicates the maximal QOV of ∼ 64 million USD, 4.7% higher

than the ∼ 61.1 million USD (see Figure 2.4). This figure highlights that uncertainty over

economic benefits could sway a policymaker to ban fracking despite expected positive net

economic benefits. However, in contrast to the results of Figure 2.4, the QOV is highest

when the policy is to allow fracking.
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Figure 3.4: Present Values, Value Function, and QOV
The x-axis is the price of oil in USD per barrel and the y-axis is millions of USD. The QOV
is the shaded area between V soph and V p and reaches a maximal value of ∼ $64M USD.
The policy is to ban fracking for oil prices below 50.77 $/bbl and allow fracking otherwise.

3.4.3. Learning and the Costs of Environmental Damages. To understand the

trade off between economic benefits and damages, we solve the model for a range of damages

η̄ ∈ (0, 50] million USD per year and find the price at which first period policy switches.

We display the results in Figure 3.5. When damages are relatively low and the price is

high (northwest) the policymaker will wish to allow fracking. Conversely, when damages

are high and prices are low (southeast) banning fracking is optimal. The figure displays

the policy switch prices as a scatter plot. To understand the trade off, we first fit a linear

model (displayed as a dashed line )to the data. This model suggests that the policymaker

is willing to accept $1 million more in damages per year if the initial price of oil is 2.88 $/bbl

higher; or perhaps more intuitively, an increase in initial price of 1 $/bbl is roughly equivalent

to $347,200. However, the linear model is disconcerting in that it implies some amount of
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Figure 3.5: Policy Switch Curve
The x-axis is the cost of damages in millions of USD and the y-axis is the initial price of
oil in $/bbl. The data is fit with two models: linear and exponential.

positive damages is acceptable if the price of oil is 0 $/bbl. Moreover, a visual inspection of

the data reveals convexity in the tail. So, we also fit an exponential model (displayed as a

dotted curve). Visually, this seems a much better match to the convexity of the tail and has

higher adjusted R-squared. The coefficient on η̄ is .0449 meaning that the policymaker is

willing to accept $1 million more in damages per year if the initial price is ∼45% higher or

that a 1% increase in the price of oil is roughly equivalent to $22.2 million more in damages

per year.

3.4.4. Well Shut-down. We next solve the model with a well shut-down condition.

Basic economics indicates that firms will temporarily shut-down operations if the sale price

falls below the average variable cost. As the operational costs of a well vary by company,

fracking play, and individual location, we assume an average shut-down price of 40 $/bbl.
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Figure 3.6: Policy Switch Curve with Well Shut-down
The x-axis is the price of oil in USD per barrel and the y-axis is millions of USD. The QOV
is the shaded area between V soph and V p and reaches a maximal value of ∼ $83M USD.
The policy is to ban fracking for oil prices below 67.87 $/bbl and allow fracking otherwise.

When the price of oil falls below this, the economy returns to its normal growth path (see

Figure 1.4). If the price rises, fracking begins again. The results are presented in Figure

3.6. Now, the policymaker wishes to ban fracking for any price at or below P̃ = 67.87 $/bbl,

a 33.7% increase with respect to the solution without the well shut-down condition. For

reference, the price of oil has not been that high since November 2014. Furthermore, the

maximal QOV has increased to ∼ $83 million, 35.8% higher than in Figure 2.4.

As before, we also solve the model over a range of damage parameters in order to estimate

a willingness to trade economic benefits for damages. We present the results as a scatter

plot in Figure 3.7 and compare to Figure 3.7. The linear model coefficient of 2.88 indicates

that policymaker is willing to accept $1 million more dollars of damages in exchange for P
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Figure 3.7: Policy Switch Curve
The x-axis is the cost of damages in millions of USD and the y-axis is the initial price of
oil in $/bbl. The data is fit with two models: linear and exponential.

to be 2.37 $/bbl initially higher. This means that an initial increase in P of 1 $/bblis worth

$421,940 more in costs. In comparison to the solution without the shut-down condition, this

is $74,740 higher, or 21.5%. The linear model presents similar issues here as well, so we also

fit an exponential model. The fitted coefficient, .03325 means a ∼ 3.3% increase in the initial

P is worth and extra $ 1 million in damages or that 1% increase in the initial P is worth

$30.07 million, 35% higher than without the shut-down condition.

3.5. Conclusion

The prospect of a future ban, technological improvements that make oil and gas an obsolete

energy source, or the discovery of more economically accessible reservoirs elsewhere may

drive the owners of mineral rights to view the development decision with a now or never
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framework. Our calculations show that, under Hahn et al.’s (2014) specification, the optimal

policy using the NPV decision rule is to allow development when P ∈ (10, 150) $/bbl. However,

we have also shown that the QOV rule indicates that fracking should be delayed if P ≤

50.77 $/bbl. Therefore, mineral rights owners using a NPV rule would not internalize the

positive externality of optimally timing development as captured by the QOV, valued at

$83 million at its maximum. This constitutes a market failure and justifies government

intervention in the form of a temporary ban on fracking.

Using feasible calibrations of fracking costs and realistic price moments for oil and gas, the

results of this chapter seem to support the Chapter 2 assertion that the value of local reserves

is likely more influential in decision making than the ability to learn about environmental

damages. The QOV related to stochastic uncertainty over oil prices is larger than the QOV

related to epistemological uncertainty over prices and, intuitively, more so when the policy-

maker accounts for the developers willingness and ability to cap an active well ceasing the

royalty payments that drive the local economic boom.

We should also note that a risk-neutral policymaker concerned with epistemological uncer-

tainty over environmental damages would allow fracking at 50 $/bbl, whatever the rate of

learning for the preferred specification. That is, the results of Figure 2.4 were generated

assuming P = 40 $/bbl. Using P = 50 $/bbl would find that the NPV exceeds Vl for any pre-

cision of future information (V0(·|1) > V l
0 (·|0) ∀ σ2

ǫ > 0)19. Here, though, the policymaker

concerned with stochastic uncertainty over local economic benefits would ban fracking under

the preferred specification at this price only allowing it if P > 50.77 $/bbl. Moreover, if this

policymaker anticipates that local firms will cap fracked wells if P falls below 40 $/bbl then

19That the policy outcome is not dependent on the rate of learning is why those results were not presented.
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she will only allow fracking if P > 67.87 $/bbl. This conclusion is so surprising that it bears

reiterating concisely: a policymaker concerned with environmental uncertainty is more likely

to allow fracking than a policymaker concerned with uncertainty over local benefits.

This work also sets the stage for further inquiry. Future research should incorporate both

types of option values into a single framework. It is possible to assume a functional form

for benefits derived from the ’multiplier’ effect as shown in Table 1.2. Further assuming

GBM for P and Bayesian updating for a normally distributed η, a closed-form solution

may be feasible. This model would allow for a direct, apples-to-apples, comparison of the

epistemological and stochastic QOVs in order to conclude which is more influential.
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