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ABSTRACT 
 
 
 

IMPLICATIONS OF MOVEMENT BEHAVIOR RESPONSES OF BOTH ASIAN AND 

AFRICAN ELEPHANTS IN CHANGING LANDSCAPES OF THE 21ST CENTURY 

 
 
 

 An organism moves to fulfil its most fundamental survival and reproductive needs. 

Studying movement behavior can provide insights into both inter- and intra-specific interactions, 

how a species interacts with its environment and accesses resources, species distribution, etc. 

Given human presence affects mammalian movement across the globe, animal movement studies 

are increasingly important to assess and understand the impacts of humans on wildlife. 

Movement behavior response to human presence is particularly relevant and important to 

understand in the 21st century since global human population is projected to reach 9.7 billion by 

the year 2050. The unprecedented level of human presence and associated land use changes will 

impact all living organisms on the planet, particularly megaherbivores such as Asian and African 

elephants which have some of the largest space use requirements among terrestrial mammals. 

My dissertation research focuses on studying and understanding the movement behavior 

responses of Asian and African elephants to human-related landscape changes. 

 The Asian elephant (Elephas maximus) which is currently listed as endangered under the 

IUCN red list of threatened species. The population status of the species is unclear but declining. 

The species is facing habitat loss and fragmentation due to agricultural expansion, heightened 

human-elephant conflicts related to human encroachment in previous wilderness areas, and 

illegal killings, including but not limited to, poaching for skin, ivory, and meat. The largest 

remaining tracts of wildland (i.e., habitat suitable for wild elephant to exist) among the current 
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extant range countries/states occurs in the country of Myanmar. However, the struggling 

economy and unstable political climate put unusual amount of stress on the remaining elephant 

populations across the country. Asian elephant numbers are declining across much of their range 

in Myanmar, driven largely by serious threats from land use change resulting in habitat loss and 

fragmentation. To effectively manage and conserve the remaining populations of endangered 

elephants in the country, it is crucial to understand their movement behavior across the country’s 

agricultural gradient. 

 Chapter 1 provided baseline information on elephant spatial requirements and the factors 

affecting them in Myanmar. This information is important for advancing future land-use planning 

that considers space-use requirements for elephants. Failing to do so may further endanger 

already declining elephant populations in Myanmar and across the species’ range. We used 

autocorrelated kernel density estimator (AKDE) based on a continuous-time movement modeling 

(ctmm) framework to estimate dry season (26 ranges from 22 different individuals), wet season 

(12 ranges from 10 different individuals), and annual range sizes (8 individuals), and reported the 

95%, 50% AKDE, and 95% Minimum Convex Polygon (MCP) range sizes. We assessed how 

landscape characteristics influenced range size based on a broad array of 48 landscape metrics 

characterizing aspects of vegetation, water, and human features and their juxtaposition in the 

study areas. To identify the most relevant landscape metrics and simplify our candidate set of 

informative metrics, we relied on exploratory factor analysis and Spearman’s rank correlation 

coefficients. Based on this analysis we adopted a final set of metrics into our regression analysis. 

In a multiple regression framework, we developed candidate models to explain the variation in 

AKDE dry season range sizes based on the previously identified, salient metrics of landscape 

composition. Our objectives were to (1) estimate the sizes of dry, wet, and annual ranges of wild 
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elephants in Myanmar; and quantify the relationship between dry season (the period when 

human-elephant interactions are the most likely to occur) range size and configurations of 

agriculture and natural vegetation within the range, and (2) evaluate how percentage of 

agriculture within dry core range (50% AKDE range) of elephants relates to their daily distance 

traveled. Elephant dry season ranges were highly variable, averaging 792.0 km2 and 184.2 km2 

for the 95% and 50% AKDE home ranges, respectively. We found both the shape and spatial 

configuration of agriculture and natural vegetation patches within an individual elephant’s range 

play a significant role in determining the size of its range. We also found that elephants are 

moving more (larger energy expenditure) in ranges with higher percentages of agricultural area. 

Chapter 2 reveals how elephants interact with agriculture and other important 

environmental variables such as natural vegetation, roads, and water, etc. Habitat loss and 

fragmentation due to accelerated agriculture expansion is a major threat to existing wildlife 

populations across Asia. Although it had been shown that Asian elephant space use was 

correlated with the level of fragmentation on the landscape in Chapter 1, the mechanism 

underlying this process is not well documented and can serve to help focus conservation efforts. 

We analyzed selection behavior of wild elephants across three study sites with different levels of 

agriculture use patterns in Myanmar, assessing the impact of structure in the agriculture-

wildlands interface on habitat selection by elephants. Given elephants exhibit heterogeneous 

spatial behavior, we fitted two types of selection models to gain insight into the diversity of 

strategies employed at the local- and home-range scale. We used variance partitioning analysis to 

quantify the explanatory contribution of individual, study site, and sex. We found that the 

variation in the resource selection behavior was mainly due to individual differences, and the 

level of agriculture present in an individual’s range was the most influential to its selection 
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behavior. Gaining a deeper understanding of habitat selection behavior by elephants across the 

changing landscapes of Asia can help inform management decisions and conservation actions. 

As the military coup in 2021 in Myanmar affected my ability to continue working in 

Myanmar, we decided to transition into assessing the connectivity between Etosha National Park 

and an adjacent Kunene multi-use conservancies area in Namibia for African elephant 

(Loxodonta africana) as Chapter 3. This region is of particular importance in African elephant 

conservation since the population is doing relatively well in the area and could serve as one of 

the remaining strongholds for the species. The loss of habitat and fragmentation of landscapes 

could lead to declines in wildlife populations, highlighting the need to identify and preserve 

critical habitats. Connectivity between populations plays a crucial role in mitigating the risks 

faced by small populations and ensuring their long-term persistence. As a result, the 

identification of corridors has become a key objective in wildlife conservation. Various methods 

have been developed to identify high connectivity locations, including resistance surface 

modeling and empirical-based approaches using GPS tracking data. We used GPS telemetry data 

from 66 elephants to empirically quantify connectivity using a graph-theoretic approach and 

assessed landscape features influencing connectivity. We applied the 'movescape' approach to 

define and locate different types of corridors and examined how landscape features differed 

across these corridors. Our results revealed strong variation in connectivity across the landscape, 

with paths of high connectivity near water sources between the study areas. We found that factors 

related to water sources and human presence primarily influenced connectivity. The findings of 

this study provide valuable insights into the connectivity patterns and landscape features 

influencing connectivity for African elephants in northwestern Namibia. We discussed this 

findings in the context of future conservation management scenarios. 
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Finally, Chapter 4 assessed the current knowledge on population status of Asian elephants 

across all 13 range countries or states. We conducted a literature search on Google Scholar using 

keywords, “Asian elephants”, “Population size”, “Abundance”, and “Density”. We found 26 

articles and 9 governmental and non-governmental reports from 2000 to 2022 to evaluate the 

extent of population assessments using statistically robust methods. Our findings indicate that 

only 4.39% of the current known distribution of Asian elephants had been assessed using robust 

sampling and statistical approaches. Out of the 13 range states, only 7 had conducted 

assessments, with only 3 countries performing robust population assessments in the last 5 years. 

We highlight the urgent need for more comprehensive and up-to-date studies to accurately 

estimate the population size of Asian elephants. We recommend investing in spatial capture-

recapture approaches using fecal-DNA and photographic capture-recapture methods where 

feasible to improve abundance estimation. The results of this review emphasize the critical role 

of accurate population knowledge for effective conservation and management actions for 

endangered species like the Asian elephant. 

This dissertation provides critical pieces of information regarding movement ecology and 

conservation of both Asian elephant and African elephant. We present analyses on space use 

requirements, resource selection behavior and the quantification of sources of variation in the 

movement behavior for Asian elephant in Myanmar. Chapter 1 and chapter 2 were the first two 

studies to assess movement behavior in Myanmar using empirical data. Since identifying and 

conserving corridors is one of the key objectives for African elephant’s conservation, chapter 3 

provides crucial information for managers on the ground in Etosha National Park and 

surrounding areas. Finally, we highlighted the research gap in Asian elephant conservation by 

reviewing studies and reports on population status across the species’ range.  
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CHAPTER 1: Landscape characteristics influence ranging behavior of Asian elephants at 

the human-wildlands interface in Myanmar1 

 
 
 

Introduction  

The ability to understand how range size and movement patterns of a species vary in 

changing landscapes is important for informing decision processes and landscape planning 

efforts by resource managers and conservation agencies (Morato et al., 2016; Wadey et al., 

2018). Information on space requirements across different levels of human presence on a 

landscape can guide planning efforts and ensure success of management objectives. The advent 

of GPS technology in wildlife telemetry has revolutionized how movement data are collected in 

the field of wildlife science (Wall et al., 2014; Kays et al., 2015). The ability to collect large 

volumes of location data with high temporal resolution allows robust inference on spatial 

requirements, including home range size, range shifts by season, and movement patterns within 

the home range. When paired with a powerful open-source technology, such as Google Earth 

Engine and R, understanding of the spatial context of the movement and space use patterns can 

be determined with relative ease. Such information allows scientists to address key conservation 

challenges, advancing ecological knowledge of a species and serving to answer applied questions 

(Gorelick et al., 2017; Seidel et al., 2018; Wittemyer et al., 2019).  

To understand the drivers of an animal’s movements, it is critical to appropriately understand 

the landscape context influencing its movement decisions (Nathan et al., 2008). Traditionally, 

 
1 Adapted from Chan, A.N., Wittemyer, G., McEvoy, J., Williams, A.C., Cox, N., Soe, P., Grindley, M., Shwe, N.M., 

Chit, A.M., Oo, Z.M., and Leimgruber, P. 2022. Landscape characteristics influence ranging behavior of Asian 

elephants at the human-wildlands interface in Myanmar. Movement Ecology (2022) 10:6. 

https://doi.org/10.1186/s40462-022-00304-x 
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ecologists have used software, such as FRAGSTATS, to quantify landscape metrics (Lamine et 

al., 2018) and address related ecological questions of interest (Midha and Mathur, 2010). 

However, new analytical approaches are providing ecologists with more flexibility and unified 

workflow within one programming environment such as R (Hesselbarth et al., 2019). Easy 

extraction and quantification of landscape conditions using such platforms allow ecologists to 

carry out further analysis, such as data visualization, exploratory factor analysis, and generalized 

linear regression, to make inference on the ecological influence of landscape variables (Seidel et 

al., 2018) with greater ease. Coupling such information with data on animal space use can allow 

deeper insight to how landscape characteristics shape space-use relationships, such as home 

range behavior.  

The endangered Asian elephant (Elephas maximus) is particularly susceptible to habitat loss 

being the largest terrestrial mammal with large and heterogeneous habitat requirements (Owen-

Smith, 1988; Sukumar, 1989; Fernando et al., 2008). The species is facing serious anthropogenic 

pressure across its geographic range (Santiapillai and Jackson, 1990; Leimgruber et al., 2003; 

Choudhury et al., 2008; Calabrese et al., 2017). Agricultural expansion is driving habitat 

fragmentation and loss and is resulting in significant increase in human-elephant conflicts (often 

the killings of people and elephants). The combined effects of habitat loss and increased conflict 

represent a major threat to remaining elephant populations across Asia. This is exacerbated by 

the persistent threat of poaching to the survival of remaining elephant populations (Leimgruber 

et al., 2003; Calabrese et al., 2017; Sampson et al., 2018).  

Myanmar, home to approximately 1,400 wild elephants (Leimgruber and Wemmer, 2004), 

has the largest amount of remaining wildlands among the species’ range countries (37.86 %) 

although the landscape is changing rapidly (Leimgruber et al., 2003, 2011). The status of 
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Myanmar’s elephants is unclear, but likely elephants are declining as they continue to face 

threats in the wild (Leimgruber et al., 2011; Songer et al., 2016). Recent evidence of increased 

poaching is a serious concern (Sampson et al., 2018). At the same time, range loss, driven by 

rapid development across the country due to recent changes in the political system and an 

increased development focus (Prescott et al., 2017), is thought to be the primary driver of 

elephant decline in the country. One study suggested that the geographic distribution of elephants 

in Myanmar declined by 5% (~15,000 km2) between 1992 and 2006 (Songer et al., 2016). Even 

within a proposed national park in Myanmar, forest cover is declining (Connette et al., 2017). 

There are only a few studies that have assessed the space use of wild Asian elephants (Fernando 

et al., 2008; Kumar et al., 2010; Alfred et al., 2012; Moßbrucker et al., 2016), and only one study 

assessing ranging behavior of wild elephants in Myanmar in relation to seed dispersal (Campos-

Arceiz et al., 2008) to our knowledge. Therefore, it is crucial to obtain information relating space 

use and ranging behavior of elephants to their landscape context in the country. 

Developing tools for assessing elephant space use and ranging requirements becomes even 

more critical with continued habitat loss. As human populations continue to increase, human 

encroachment into the remaining “wildlands” within the elephant’s range countries is likely to 

accelerate. This encroachment will inevitably lead to increased human-elephant encounters and 

conflicts. Additionally, increased fragmentation due to habitat loss could result in increased range 

size as elephants are forced to move further to meet the resource requirements (Fernando et al., 

2005; Alfred et al., 2012). Elephants are likely to change their ranging pattern (area used and 

movement rates) in response to fragmentation and resource availability, and this is particularly 

relevant in the dry season in Southeast Asia when the configuration of resources varies across the 
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landscape and availability of high-value food items (and resulting conflict) increases during the 

harvesting period (Sukumar, 1989; Campos-Arceiz et al., 2008).   

We looked at the relationship between animal space use and landscape context, by deriving 

metrics describing shape and configuration of land cover types (agriculture, water, and natural 

vegetation) within individual ranges. Our two main objectives of this study were to (1) quantify 

dry season range sizes in Myanmar and assess how ranging behavior during the dry season varies 

based on different configurations of available agriculture and natural vegetation (including 

testing for range size thresholds relative to percentage of agriculture); and (2) evaluate how 

percentage of agriculture within dry core range (50% AKDE range) of elephants relates to their 

daily distance traveled. In addition, we examined wet season ranging and annual ranging 

behaviors where data allowed.  

Methods 

Study areas 

Our study was conducted in three areas of conservation interest in central, western, and 

southern Myanmar (Figure. 1.1). Site 1 (Latitude: 17.1013 – 18.1960, Longitude: 95.7043 – 

96.4787) is in the central part of Myanmar in the foothills of Bago Yoma mountain ranges. 

Historical unsustainable teak extraction in this site created a highly disturbed forest mosaic that 

is increasingly being invaded by other human land uses, including the construction of 

hydroelectric reservoirs, settlements, as well as commercial teak, sugarcane, rice, and rubber 

plantations. Site 2 (Latitude: 16.0554 – 17.0842, Longitude: 94.1860 – 94.6838) is a 

mountainous area along the west coast of the Ayeyarwaddy state that stretches from north to 

south creating an elongated forest with hard boundaries on east and west. Rice plantations 

dominate the matrix between forest patches in this site, where rubber and peppercorn agricultural 



 5 

use is also prevalent. Site 3 (Latitude: 10.7141 – 12.0981, Longitude: 98.3356 – 99.4626) is part 

of the larger Dawna Tanintharyi Landscape which extends from mountain ridges along the 

border with Thailand to the coastal plain. Land use at site 3 is primarily composed of oil palm 

and betel nut plantations, surrounded by lowland deciduous forests. Threats of human 

encroachment, road development, and agricultural expansion into the remaining forest are rising 

in the area.  

The study areas are strongly seasonal, with rainfall records demonstrating the extended dry 

season occurs between early December and late March, and the wet season between early June 

and mid-September (Biswas et al., 2015). During the dry season, human-elephant conflicts 

(HECs) peak in relation to the harvest of rice, sugarcane, and other agricultural products 

(Sukumar, 2003; Fernando et al., 2005). Rainfall is significantly higher at site 3, resulting in 

markedly different forest composition. Forests at site 3 are predominantly lowland evergreen 

forests, while at site 1 and 2, they are mostly mixed deciduous forests with strong seasonal leaf-

fall patterns. 

Elephant capture for GPS collaring 

All capture and animal sedation were performed by veterinarians from Myanmar Timber 

Enterprise (MTE). MTE is the Myanmar government agency responsible for the management of 

logging elephants, and their staff have extensive experience in veterinary care of captive and 

wild Asian elephants, including sedation. Individuals were independently captured during the 

collaring period, and no collared elephants were found in the same social unit. All capture and 

handling procedures followed or exceeded the guidelines provided by the American Society of 

Mammalogists (Sikes, 2016). Elephants were immobilized using Etrophine and Xylaxine for 

sedation and Naltrexone for reversal. The immobilization and collaring process took 
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approximately 30 minutes per individual on average and was carried out early in the morning or 

late in the afternoon when air temperature was relatively lower (<35° C). All the collars are set to 

record a GPS fix every hour. Due to high collar failure and poaching soon after collar 

deployments (Sampson et al., 2018), telemetry datasets were often patchy and covered relatively 

short periods. Consequently, we only included individuals with 1) > 60 days of tracking data 

and/or 2) that had an established range (based on a semi-variogram analysis of range stability 

described below). To assess whether animals established ranges during the tracking periods, we 

used methods described by (Calabrese et al., 2016) in their continuous-time movement modeling 

package (ctmm) in R. When the semi-variogram function for the relocation data of an elephant 

approached an asymptote, we classified that dataset as capturing an established range (Calabrese 

et al., 2016), which occurred within 60 days each season for the elephants in this study. 

 For dry season range analysis, we analyzed data from eight individuals from site 1 (4 

females: 4 males), six from the site 2 (1 female: 5 males), and eight from site 3 (2 females: 6 

males) – totaling 22 different individuals. We performed data analysis on data collected from 

December 2016 through March 2020. Therefore, our analysis covers four dry seasons. There 

were four individuals whose tracking periods covered two dry seasons. To avoid problems with 

pseudo-replication when developing our regression model set, we excluded the year with fewer 

data points for each of these four individuals such that each only supplied one season to the 

analysis. 

 For the wet season ranges estimation, we utilized data from five individuals from site 1 (1 

female: 4 males), three from the site 2 (3 males), and two from site 3 (2 males). There were two 

individuals who had data spanning two wet seasons, allowing estimation of 12 wet-season 
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ranges. Because of the relatively small sample size, we did not run a regression analysis on wet 

season data. 

 For annual home range estimation, we included individuals with > 365 days tracked, 

which amounted to 8 individuals: five individuals from site 1 (1 female: 4 males), one from the 

site 2 (1 male), and two from site 3 (2 males). 

Range estimation 

We employed a ctmm framework (Calabrese et al., 2016) to estimate seasonal (dry and 

wet) and annual range sizes among individuals. We compared the fit to our data of independent 

and identically distributed (IID), Ornstein-Uhlenbeck (OU), and Ornstein-Uhlenbeck Foraging 

(OUF) movement models using an autocorrelation estimation method. We picked the best fitting 

model and applied it to fit the autocorrelated density estimator (AKDE) function to estimate 

range size. We calculated 95% and 50% AKDE percentile level ranges for all individuals. We 

assumed 50% AKDE level as core areas within the respective ranges where animals spent 50 

percent of their time. To enable comparison with other studies, we calculated and presented 95 

percentile Minimum Convex Polygon (MCP) ranges.  

Predictor variables and candidate models 

To assess which landscape conditions were related to dry season range size, we applied 

gamma regression models with estimated AKDE range sizes as a response variable based on the 

assumption that our response variable can only be a non-zero positive number. Our covariate 

dataset of landscape properties was developed by classifying Landsat 8 imageries to develop 

land cover maps for each of our study areas (Chan et al. unpublished data). We used the 

‘landscapemetrics’ package in R to derive different measures for characterizing landscape 

metrics from our land cover map (Hesselbarth et al., 2019). To describe the landscape of each 
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individual range, we calculated several different shape, area, edge, and aggregation metrics for 

water, agriculture, and natural vegetation classes (Table 1.1). In addition, we quantified 

landscape-level metrics, including Shannon’s diversity index, relative patch richness, and relative 

patch density (Table 1.1). We computed 48 landscape metrics in total. 

 To simplify these 48 metrics for our regression analysis, we relied on exploratory factor 

analysis with oblique minimal rotation of principal factor axes to reduce the data dimensionality. 

This approach relaxes the assumption of normality (Costello and Osborne, 2005) and allowed us 

to identify the variables that best characterized variations in our landscapes (Table 1.1). 

Specifically, we included the highest positive and negative loading variables from the first five 

principal factor axes to reduce the metrics to the primary explanatory variables while explaining 

sufficient variance in the data. Afterwards, we compared single variable models among metrics 

belonging to the same land cover class. We kept the variables if the AIC corrected for small 

sample size (AICc) score was within 8 of the top model and excluded variables that did not meet 

the criteria in our candidate model set. AICc is the metric used to rank the models in your 

candidate model set in such a way that the most parsimonious model will have the lowest AICc 

value among the model set. This allowed us to eliminate variables with relatively low 

explanatory power. We also assessed the Spearman’s rank correlation coefficients between all the 

variables before including them in the final candidate model sets (all the variables included in the 

model set were less than 0.6).  

 From the retained variables (Table 1.1), we then developed different biologically 

meaningful combinations of agriculture and natural vegetation indices in the model set for both 

the 95% and 50% AKDE level for dry season ranges. We included a model with a quadratic term 

for percentage of agriculture to determine whether we could assess the threshold relationship 
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between agriculture and range size. We also assessed the effect of sex, site, and year by adding 

these covariates to our best performing model and ranked the models using AICc for both 95% 

and 50% AKDE top models. We investigated these effects further in 50% AKDE range sizes 

analysis by dropping uninformative parameters in our model sets based on model weights and 

parameter estimates and presented the most parsimonious and biologically meaningful model 

since the effect of site/region came out stronger in our model set (Arnold, 2010).  

In addition to our range size models, we developed a candidate model set to assess the 

correlation between landscape metrics and average daily distance moved by the elephants. We 

calculated average daily distance moved by calculating the sum of hourly distance moved 

(straight-line distance between the two consecutive points) and dividing by the total number of 

days tracked for each individual. We did not include days where fix success rate was below 80% 

in our daily distance traveled calculation. For this candidate model set, we tested several 

hypotheses using the most informative variables from the 50% AKDE dry season analysis. We 

tested whether sex, site/region, and/or two agriculture metrics (percentage of agriculture 

presence and perimeter-area ratio of agriculture patches within the range) influenced average 

daily distance moved by elephants by fitting gamma regression model as described above. We set 

female and study site 2 as a reference category for sex and region categorical predictor variables, 

respectively, in the model. 

 We used AICc to rank models in the candidate model set (Burnham and Anderson, 2002). 

We selected the model with the lowest AICc as the best/top model in respective candidate model 

set. To account for variation in range sizes driven by sampling differences, we included the 

number of days tracked as an additional variable in the top model. We retained the number of 

days tracked variable if it was included in a model within 2 AICc scores of the top model. All 
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variables were standardized to a mean of 0 and a standard deviation of 1 before fitting the model 

for easier interpretation of the results and standardize the effect size of all covariates. All 

analyses were conducted in R version 3.6.3 using ‘ggplot2’ (version 3.3.0), ‘dplyr’ (version 

0.8.5), ‘ctmm’ (version 0.5.9), ‘landscapemetrics’ (version 1.4.3), and ‘AICcmodavg’ (version 

2.2.2) (Wickham, 2016; Mazerolle, 2019; Fleming and Calabrese, 2020; R Core Team, 2020; 

Wickham et al., 2020). 

Results 

Determinants of seasonal home range size 

Home range size estimates varied across seasons and individuals (Table 1.2). Elephant dry 

season ranges were highly variable averaging 792 km2 (+/- 867.6 km2; range from 38.4 km2 to 

3,166.4 km2) for the 95% AKDE ranges while the 50% AKDE range sizes averaging 184.2 km2 

(+/- 201.5 km2; range: 7.4 km2 to 728.5 km2). Despite more limited sample sizes (nwet = 12, 

nannual = 8), analysis of wet season range indicated the average 95% AKDE ranges was 1,520 km2 

(range: 43.5 – 5,362.2 km2), and the average AKDE 50% ranges was 356.1 km2 (range: 12.8 – 

1,277.5 km2). Considering only full annual ranges, the average range covered 1,093.1 km2 

(range: 89.6 – 3,057.4 km2) and 252.9 km2 (range: 20.3 - 777.2 km2) for 95 % and 50% AKDE 

home ranges respectively. We did not find differences in range sizes between males and females, 

probably because of the overall large variation in range size (average and standard deviation of 

female 50% AKDE = 153 km2 +/- 221 km2; average and standard deviation of male 50% range: 

196 km2 +/- 199 km2). The variation between the sites was greater for the 50% AKDE range size 

(including site as a covariate improved the explanatory power), but the effect of the site did not 

add much to the explanatory power of the best performing model of our 95% AKDE range 
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analysis (Site 1: x̄ = 750.3 +/- 892.5 km2; Site 2: x̄ = 947.4 +/- 945.6 km2; Site 3: x̄ = 713.3 +/- 

865.9 km2).   

The variation in 95% AKDE level dry season ranges was best explained by metrics 

characterizing agricultural land use rather than those of natural areas (Table 1.3); whereas 

metrics describing landscape configuration of natural vegetation classes explained the difference 

in 50% AKDE range sizes (core range area) (Table 1.4.1). The top models contained four 

statistically significant variables with three agriculture and one natural vegetation metrics in the 

top model for 95% AKDE ranges; and one metric for each agriculture and natural vegetation and 

site variable for 50% AKDE ranges (Figure 1.2 and 1.3). To assess the effects of sex, site, year 

on ranging behavior, we ran a secondary model including these variables in the top model of 

95% AKDE range sizes. These variables did not add any significant explanatory power to our top 

model (δAICc is greater than 4).  

The top model for 95% AKDE range included significant coefficient estimates for 

percentage of agriculture on the landscape, fractal dimension mean and edge density of 

agriculture, and the coefficient of variation of patch area for natural vegetation (Figure 1.2 and 

Table 1.3). In general, elephants tend to have larger 95% AKDE range when the shape of 

agriculture patches were irregular (higher mean fractal dimension) and agriculture land use 

percentage on a landscape increased (Figure 1.2). On the other hand, more patchy agriculture on 

a landscape (higher edge density) corresponded to smaller 95 % AKDE range (Figure 1.4). On 

average, one unit increase in the metric describing variation in natural vegetation patches (1 

standard deviation from the mean) resulted in a 3.17 km2 increase in potential range size while 

holding the rest of the variables in the model at their mean value (Figure 1.4). The likelihood 

ratio-based r-squared for our top model was 0.9533. 
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 The top model for 50% AKDE of the estimated dry season range included significant 

coefficient estimates for disjunct natural vegetation area density, landscape shape index of 

agriculture, and the site variable as a factor (reference site: site 2) (Fig. 3, Table 4.2). Smaller 

core range areas corresponded to more complex natural vegetation patches (i.e., increase in 

perimeter-area ratio, Figure 1.5). In contrast, larger core range sizes corresponded with less 

compact patches of agriculture (i.e., higher landscape shape index, Figure 1.5). On average, an 

increase in 1 unit of landscape shape index score of agriculture (1 standard deviation from the 

mean) corresponded to an increase of 3.13 km2 in core range area. Estimated 50% AKDE ranges 

were smaller in Tanintharyi (Site 3) than in the reference site Ayeyarwaddy delta (Site 2) (Figure 

1.3). The likelihood ratio-based R-squared for our top model was 0.929. 

Daily travel distance 

The average daily distance traveled by the elephants in the dry season was 3.9 km (range: 

1.3 – 7.3 km), with males moving 3.8 km (+/- 1.6 km; n = 19) and females 4.1 km (+/- 1.6 km; n 

= 7) per day. According to our top model, the average daily distance moved was 3.8 km at 13.9 

percent agriculture within their home range (Table 1.5). Percentage of agriculture on a landscape 

(pland_ag) was the only covariate in our most parsimonious model (top model) to explain 

variation in average daily travel distance by elephants. An approximate increase of 15 percent in 

agriculture on the landscape resulted in an increase of 1.2 km in the daily distance traveled by the 

elephants. Study sites and sex of the individual were not included in the top model in our sample 

(Table 1.5).  
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Discussion 

This is the first study to report different seasonal ranges (primarily dry season) of Asian 

elephants in Myanmar. The results show high variation in ranges sizes and demonstrated that 

some of this variation can be explained by differences in landscape metrics describing the 

relationship between natural vegetation and agriculture. We note there was greater variation in 

95% AKDE range size within relative to between the three study sites across the country, 

suggesting strong variability between individual space use strategies. We also showed that 

elephants in Site 3 (Tanintharyi) had smaller core ranges. This could be the result of a high 

presence of palm oil plantations and the higher degree of fragmentation in natural vegetation 

throughout the southern landscape of Myanmar. Percentage of agriculture within the range 

positively correlated with average daily distance traveled by the elephants (i.e., elephants 

traveled further and faster in areas with higher percentage of agriculture). These findings 

demonstrate that elephants’ ranging behavior in Myanmar is influenced by different 

configurations of agriculture and natural vegetation on the landscape.  

We identified percentage of agriculture, mean fractal dimension and edge density of 

agriculture (i.e., patchiness), and coefficient of variation in natural vegetation patches (i.e., 

differentiation between patch sizes) within an elephant’s range as the variables of importance in 

quantifying the level of fragmentation within an individual’s potential range (i.e., 95% AKDE 

range). Within the elephant’s core range (i.e., 50% AKDE range), we showed that landscape 

shape index for agriculture (i.e., the patch becomes less compact as the index increases) is the 

most important variable in explaining the variation in range sizes. We also showed that increase 

in agriculture resulting in loss of natural vegetation within elephants’ ranges corresponded to an 

increase in range sizes. We did not detect a relationship between range size thresholds relative to 
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percentage of agriculture (our top model did not include the quadratic variable allowing such 

inference). However, further investigation on a larger data set would be valuable to determine the 

nature of this relationship. Sampling across a broader gradient of human agricultural use could 

provide more specific inference on this relationship, though it may be difficult to determine such 

thresholds if it is a gradual process and the number of elephants living near this theoretical 

threshold are small. 

It is inevitable that Asian elephants will face increasing fragmentation and habitat loss 

due to agricultural expansion and urbanization across the range countries (Leimgruber et al., 

2003; Sodhi et al., 2004; Songer et al., 2016). The level of human footprint on a landscape can 

affect movement of animals (Tucker et al., 2018). Therefore, it is crucial to quantify the structure 

and magnitude of fragmentation within the species’ core range and understand the impact on 

animal movement behavior as a first step in any science-based management and conservation 

program. Previous research indicated that Asian elephants benefit from a mixture of natural 

vegetation and agriculture on a landscape (Fernando and Leimgruber, 2011; Songer et al., 2016; 

Calabrese et al., 2017). Our results agree with the existing literature on Asian elephant’s 

movement behavior in fragmented landscape, where elephants in more fragmented habitat are 

likely to move further (increased energy expenditure) to meet their survival and fitness 

requirements (Fernando et al., 2005; Campos-Arceiz et al., 2008; Alfred et al., 2012). Increased 

movement may chiefly be a strategy whereby elephants reduce the inherent risk of being near 

humans. For example, Asian elephants on the island of Borneo moved faster in landscapes with 

increased human modification, presumably to avoid encounters with humans (Evans et al., 

2020). However, elevated movement rates across human-modified landscapes may also be 

important to reduce poaching risks (Sukumar, 1990; Webber et al., 2011). This may be 
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particularly true in Myanmar, where poaching for elephant skin has recently increased sharply 

across the agriculture-wildland interface (Sampson et al., 2018).  

Asian elephant range sizes are thought to be strongly determined by availability of water 

on a given landscape (Sukumar, 1989; Fernando et al., 2008); however, the variables capturing 

water land cover class were not included in top models of neither 95% AKDE range nor core 

range sizes of elephants in our analysis for the dry season. This may indicate that water is not a 

limiting factor within these landscapes, possibly because elephants have already adjusted their 

range to meet their water requirement for the dry season, or because water is relatively widely 

available. Alternatively, it is possible that the land cover map used in this study did not 

adequately capture all aspects of water availability on the landscape, or that the grain of our 

satellite imageries used to produce our land cover maps (30 x 30 meters) was too coarse to 

capture the seasonal variation of smaller water sources within our study sites. 

To facilitate direct comparison between the results from this study and that of others, we 

reported MCP range sizes as well as AKDE. We found that dry season 95% AKDE range sizes 

ranged from 38.4 km2 to 3,166.4 km2 in Myanmar, which is similar to ranges reported in 

Sumatra, Indonesia using the same estimator (ranges from 275 – 5,179 km2) (Moßbrucker et al., 

2016).  We estimated MCP annual ranges in Myanmar at 65.8 to 1,152 km2 which shows more 

variation in range sizes than other studies using the same range estimation method – Sri Lanka: 

51.2 – 179.2 km2 (Fernando et al., 2008), Malaysia: 122 –114 km2 (Kumar et al., 2010), and 

India: 105 – 320 km2 (Sukumar, 1989). All the compared studies were conducted either within 

protected areas or surrounded by protected areas, whereas our study sites were primarily outside 

of the protected areas. In general, our study reported a lot more variations in range sizes since we 

included individuals from three different study sites across the country with different landscape 
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configurations. This highlights further that ranging behavior of elephants are affected by land use 

types and their spatial configurations.  

Our relatively small sample size of individuals and variable fix success across collars 

influenced our results to some extent. We relied on AKDE range estimates given they are 

relatively robust to differential sampling and fix success issues (average fix success rate ~75% 

during the wet season in this study). Notably, our AKDE analysis yielded larger range sizes for 

wet season than annual ranges, despite the annual range estimates including all data used to 

estimate the wet season range (in addition to data from the dry season) for some individuals. The 

larger AKDE wet season estimate was likely a result of the small sample size and temporally 

dispersed relocation points in the dataset that may result from dispersal behavior or a function of 

poor collar performance during the wet season causing more uncertainty in the estimates 

(Fleming and Calabrese, 2017). We calculated 95% minimum convex polygon and found annual 

ranges were larger than wet season ranges (Table 1.2). This is not intended as a comparison 

between the two estimators, but an exploration of the seasonal and total differences. We also 

estimated large ranges in the dry season for some individuals (particularly individual 1997) that 

had relatively lower fix success (~70 percent fix success rate during the dry season). While it is 

probable that fix success played a role in the estimates, these large ranges are likely biologically 

driven. For instance, individual 19971 was a young male (15-25 estimated age) navigating the 

human-dominated landscape of Bago Yoma, and the large range size may be driven by 

physiological demands and reproductive strategies in the highly fragmented landscape (Taylor et 

al., 2020). 

Elephants continue to face habitat loss and fragmentation across their range due to 

development (Leimgruber et al., 2003; Calabrese et al., 2017). This will in turn increase human-
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elephant encounters (Fernando et al., 2005). Although there are several ways to mitigate human-

elephant conflicts particularly at the agriculture-wildland interface, such as electric fencing, bee 

fencing, and chili fencing, it is important to identify if we are mitigating the problem or simply 

moving it elsewhere (Barua et al., 2013; Shaffer et al., 2019). When deploying temporary or 

permanent fencing on a landscape, we are fragmenting the landscape, which can drive behavioral 

responses from the elephants. For instance, increased fragmentation in the study system is related 

to larger ranges. Mitigation approaches could cause the elephants to move more broadly, 

potentially spreading conflict areas across a broader area. Therefore, it is important to consider 

the impact of mitigation methods on elephants’ ranging behavior in a larger landscape scale 

although these mitigation methods could prove to be useful for given locations or when 

implemented strategically as part of a broader landscape planning effort. Our study provides a 

useful model to predict the degree to which ranging behavior of elephant in Myanmar could 

change based on changes in fragmentation on the landscape. For example, in Site 2 

(Ayeyarwaddy Delta), an increase in 1 unit of landscape shape index score of agriculture (1 

standard deviation from the mean, i.e., patchier) corresponded to an increase of 3.13 km2 of core 

dry-range area. Elephants may be able to persist in these heterogeneous agriculture-natural-

vegetation landscape mosaics for the long term if human-elephant conflicts can be managed 

appropriately by targeting actions that keep human and elephant casualties low and reduce 

economic impacts on local farmers. To reach this goal, managers and policy makers must pay 

attention to changes in elephant space use in relation to land-use development and human-

elephant conflict mitigation actions to help ensure ecologically sustainable policy and decisions 

by mangers and conservationists. It is also important to ensure the remaining wildlands for 

elephants are protected, which will provide refuge habitat and could reduce the overall area use 
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by elephants – range use increased with less natural area (Figure 1.5). The degradation of 

remaining natural areas should be prevented at all costs to reduce negative interaction between 

human and elephants in the country. 

Our models were evaluated for three study sites in Myanmar. We encourage managers 

and policy makers to re-evaluate the parameters and their effect sizes by following the same 

approach when making management decisions in respective study/management areas. Increasing 

human footprint as a result of land use changes on a landscape will impact ranging and other 

movement behavior of the elephants (Tucker et al., 2018; Evans et al., 2020). Therefore, if 

information regarding the potential effect size of change on those behaviors is taken into account 

during the decision-making process, it should help to ensure elephants continue to exist in the 

area of concern.  

This study provides foundational information on the movement ecology and ranging 

behavior of the Asian elephant in Myanmar. Although Myanmar has lower elephant numbers 

than countries such as Sri Lanka and India, it has large tracts of suitable habitat for Asian 

elephants, making it a key range country for the species (Leimgruber et al., 2003). Determining 

habitat requirements through studies of habitat selection and space use, can serve the country by 

providing managers and policy makers with concrete information on habitat requirements of this 

endangered species. This study provides such baseline information, while also providing insight 

to how landscape structures influence elephant space use. It also highlights the importance of 

assessing elephant use of areas outside of protected areas, which have been traditionally 

overlooked. Since it was predicted that 41.8 % of the 256,518 km
2

 of the available habitat for 

Asian elephants will be lost by the end of century (Kanagaraj et al., 2019), we expect more 

fragmentation and land-use changes within elephant’s core ranges which could potentially lead to 
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larger ranging behavior increasing both the number of and distribution of human-elephant 

conflicts. We showed that increasing agriculture will lead to detrimental consequences on 

elephants, but determining the threshold will be difficult and could be the point of no return once 

a population gets there. Therefore, monitoring with the help of GPS tracking and high-resolution 

satellite imageries, we can provide empirically sound information on how elephants are 

navigating in human-dominated landscapes and effectiveness of potential mitigation methods for 

HEC. We believe the species could benefit from us applying science-based management 

decisions for future land-use planning.   
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Tables and Figures 

Figure 1.1: The location of the three study areas in Myanmar: Site 1 located in the foothills of 
Bago Yoma Mountain Range, site 2 located within the Ayeyarwaddy Delta region, and site 3 
which is part of Dawna Tanintharyi Mountain Range. The insert shows the land cover map for 
site 1 from which various landscape metrics were derived for analysis of range conditions.  
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Figure 1.2: Estimated coefficient values from the model explaining the relationship between dry 
season 95% AKDE range of Asian elephant and landscape metrics describing the patterns of 
agriculture and variability in natural vegetation cover were the important independent variables 
in explaining variation in range size.   
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 Figure 1.3: Estimated coefficient values from the model explaining the relationship between dry 
season 50% AKDE range of Asian elephant and landscape shape index for agriculture and 
several metrics representing natural vegetative constitution were the covariates explaining 
variation in range size. Site 2 (Ayeyarwaddy Delta region) is set as the reference site when fitting 
the model.   
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Figure 1.4: Functional relationship between the estimated regression coefficients of the top 
predictive landscape metrics and the dry season 95% AKDE range size of Asian elephant. 
Predicted range size for elephants during the dry season increased as the landscape becomes 
more irregular and dominated with agriculture. 
  



 24 

 

Figure 1.5: Functional relationship between the estimated regression coefficients of the top 
predictive landscape metrics of the dry season 50% AKDE range size. Predicted 50% AKDE 
range size for elephants during the dry season increased as the index of agriculture shape (i.e., 
agricultural boundary length) increased and decreased where more intact natural vegetation was 
found.  
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Table 1.1: Description of landscape metrics used in this study (Hesselbarth et al., 2019).  
 

Abbreviations Full name Metric Type Description 

frac_mn_* mean fractal 
dimension index 

Shape Fractal dimension based on the patch 
perimeter and patch area: value (x) approaches 
1 if all patches are squared and 2 if all patches 
are irregular 

frac_sd_* standard deviation 
of fractal 
dimension index 

Shape Standard deviation of the fractal dimension 
index, where x = 0 if the fractal dimension 
index is identical for all patches and increases 
without limit as the variation of the fractal 
dimension indices increases. 

para_mn_* mean perimeter to 
area ratio 

Shape A patch complexity metric that approaches 0 if 
the perimeter-to-area ratio for each patch 
approaches 0 (i.e., the form approaches a 
rather small square) and increases without 
limit, as perimeter-to-area ratio increases 
(patches become more complex).  

para_cv_* coefficient of 
variation of 
perimeter to area 
ratio 

Shape Coefficient of variation of perimeter-area ratio 
where x = 0 if the perimeter-area ratio is 
identical for all patches and increases without 
limit as the variation of the perimeter-area 
ratio increases. 

para_sd_* standard deviation 
of perimeter to 
area ratio 

Shape  Standard deviation of perimeter-area ratio 
where x=0 if perimeter-to-area ratio is 
identical for all patches and increases without 
limit as the variation of the perimeter-area 
ratio increases. This is scale dependent.  

area_cv_* coefficient of 
variation of patch 
area 

Area and 
Edge 

Summarizes variation in patch area where x = 
0 if all the patches are identical in size and 
increases without limit as the variation of 
patch area increases in the landscape.  

area_mn_* mean patch area Area and 
Edge 

This is the simplest metrics – mean patch area 
of a given class. If all patches are small, x = 0 
and increases without limit as the patch areas 
increases.  

pland_* percentage of 
landscape 

Area and 
Edge 

Characterizes the composition of the landscape 
as percentage of class *. When the 
proportional class area is decreasing, the value 
approaches 0. The metric is equal to 100 when 
only one patch is present on the landscape.  

pd_* patch density Aggregation Describes the fragmentation of the class as 
patch density where x approaches 0 as the 
proportional class area decreases. It is equal to 
100 when only one patch is present. It is 
standardized to 100 hectares area.  
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dcore_mn_* mean number of 
disjunct core area 

Core area This counts the disjunct core areas, whereby a 
core area is a patch within the patch containing 
only core cells. If ncore = 0 for all patches, x = 
0 and increases without limit as the number of 
disjunct core area increases.  

dcad_* disjunct core area 
density 

Core area This is the number of disjunct core areas per 
ha relative to the total area. When no patch of 
class * contains a disjunct core area, x = 0, and 
increases without limit as disjunct core areas 
become more present (i.e. patches becoming 
larger and less complex). 

ed_* edge density Area and 
Edge 

Describes the configuration of the landscape as 
the sum of all edges of class * in relation to the 
landscape area. If only one patch is present, x 
= 0, and increases without limit as the 
landscape becomes more patchy.  

lsi_* landscape shape 
index 

Aggregation Metric based on actual edges and minimum 
hypothetical edges. When only one squared 
patch is present or all patches are maximally 
aggregated, x =1, and increases without limit 
as the length of the actual edges increases (i.e. 
the patches become less compact). 
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Table 1.2: Estimated 95 and 50 percentile AKDE ranges, and 95 percentile minimum convex 
polygon area in squared kilometers for dry season, wet season and annual range.  
 

ID Year Site Dry 

MCP 

95% 

Wet 

MCP 

95% 

Annual 

MCP 

95% 

Dry 

AKDE 

95 % 

Dry 

AKDE 

50% 

Wet 

AKDE 

95% 

Wet 

AKDE 

50% 

Annual 

AKDE 

95% 

Annual 

AKDE 

50% 

17104 2017 Site 3 244.8 243.1 302.7 703.6 185.2 697.1 175.0 513.9 142.1 
17104 2018 Site 3 NA 164.7 NA NA NA 795.5 166.4 NA NA 
17105 2017 Site 3 109.3 100.9 284.1 975.5 213.1 454.5 92.6 600.0 152.5 
19970 2016 Site 1 105.9 200.2 340.2 248.3 63.5 412.0 86.8 529.3 98.5 
19971 2016 Site 1 201.7 240.9 1153.0 1509 355.7 3662.2 875.2 2780.4 635.8 
22912 2016 Site 1 229.2 113.4 575.1 223.8 51.8 3977.2 914.0 775.6 121.5 
22912 2017 Site 1 91.3 128.7 NA 502.2 89.6 230.9 56.9 NA NA 

IRI2016-
3121 

2019 Site 3 57.3 NA NA 65.7 11.7 NA NA NA NA 

IRI2016-
3122 

2019 Site 3 50.8 NA NA 72.7 17.1 NA NA NA NA 

IRI2016-
3123 

2019 Site 3 184.3 NA NA 2543.7 584.6 NA NA NA NA 

IRI2016-
3124 

2019 Site 3 292.1 NA NA 1170.5 257.9 NA NA NA NA 

IRI2016-
3125 

2019 Site 3 89.2 NA NA 146.5 35.7 NA NA NA NA 

ST2010-
2594 

2017 Site 3 14.3 NA NA 28.4 7.4 NA NA NA NA 

ST2010-
2707 

2017 Site 2 132.4 141.1 NA 1545.4 381.6 2059.2 
 

477.7 NA NA 

ST2010-
2710 

2017 Site 2 191.2 NA NA 2790.9 644.7 NA NA NA NA 

ST2010-
2710-

REDEPLOY 

2018 Site 1 150.6 NA NA 591.9 143.8 NA NA NA NA 

ST2010-
2711 

2017 Site 3 139.9 NA NA 530.6 132.0 NA NA NA NA 

ST2010-
2713 

2017 Site 1 61.7 NA NA 388.5 87.2 NA NA NA NA 

ST2010-
2714-

REDEPLOY 

2018 Site 1 180.9 NA NA 433.7 85.6 NA NA NA NA 

ST2010-
2716 

2018 Site 1 74.1 27.9 65.8 171.3 40.7 43.5 
 

12.8 
 

89.6 20.3 

ST2010-
2716 

2019 Site 1 77.4 NA NA 151.6 29.5 43.5 
 

NA NA NA 

ST2010-
2853 

2018 Site 2 82.3 NA NA 638.6 148 NA NA NA NA 
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ST2010-
2854 

2018 Site 2 31.3 26.8 NA 64 15.9 54.9 14.3 NA NA 

ST2010-
2855 

2018 Site 2 113.6 160.3 262.4 857.6 214.4 486.1 124.2 398.3 74.9 

ST2010-
2855 

2019 Site 2 78.9 NA NA 204.6 42.4 NA NA NA NA 

ST2010-
2856 

2018 Site 1 188.4 239.6 678.8 867 222.2 5362.2 1277.5 3057.4 777.2 

ST2010-
2856 

2019 Site 1 184.8 NA NA 3166 728.5 NA NA NA NA 

 Average  129.14 170.27 492.97 791.9 
 

184.2 1519.5 356.1 1093.1 252.8 
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Table 1.3: Candidate model set for 95% AKDE dry season range showing the performance of the 
top model relative to others in the model set. The top model is composed of three landscape 
metrics describing configuration and composition of agriculture and one regarding natural 
vegetation composition within the range. 
 

Model Variables AICc K dAICc AICc 

Weights 
M_Ag_Nv_1 (Intercept) + pland_ag + 

frac_mn_ag + ed_ag + 
area_cv_natveg 

284.93 5 0.00 0.89 

M_Ag_Nv_2 (Intercept) + pland_ag + 
I(pland_ag^2) + frac_mn_ag + 
ed_ag + area_cv_natveg 

289.18 6 4.26 0.11 

M_Global (Intercept) + area_cv_natveg + 
ed_ag + pland_ag + 
I(pland_ag^2) + dcore_mn_water 
+ frac_mn_ag + para_mn_natveg 
+ para_mn_water 

299.78 9 14.85 0.00 

M_Ag_Nv_3 (Intercept) + ed_ag + pland_ag + 
area_cv_natveg 

306.08 4 21.16 0.00 

M_Nv_W_2 (Intercept) + area_cv_natveg + 
para_mn_water 

312.09 3 27.17 0.00 

M_Nv_W_1 (Intercept) + area_cv_natveg + 
para_mn_water + 
dcore_mn_water 

315.38 4 30.45 0.00 

M_Ag_W_1 (Intercept) + pland_ag + 
frac_mn_ag + ed_ag + 
para_mn_water + 
dcore_mn_water 

322.88 6 37.96 0.00 

M_Water (Intercept) + para_mn_water + 
dcore_mn_water 

338.71 3 53.79 0.00 

M_Null (Intercept) 339.37 1 54.44 0.00 
M_Ag_W_2 (Intercept) + pland_ag + 

frac_mn_ag + ed_ag + 
para_mn_water 

343.15 5 58.23 0.00 

M_Ag_1 (Intercept) + pland_ag + 
frac_mn_ag + ed_ag 

346.12 4 61.20 0.00 

M_Ag_2 (Intercept) + pland_ag + 
I(pland_ag^2) + frac_mn_ag + 
ed_ag 

347.80 5 62.87 0.00 
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Table 1.4.1: Candidate model set for 50% AKDE dry season showing the top model carrying the 
majority of the model set weight (85.28%) composed of one metric describing the shape of the 
agriculture patches and three metrics describing shape and configuration of natural vegetation 
patches within the range.  
 

Model Variables AICc K dAICc AICc 

weights 

M_Ag_Nv_2 (Intercept) + lsi_ag + dcad_natveg + 
dcore_mn_natveg + para_mn_natveg 

238.98 5 0 0.88 

M_Global (Intercept) + dcad_natveg + 
dcore_mn_natveg + para_mn_natveg 
+ area_mn_natveg + lsi_ag 

243.38 6 4.4 0.10 

M_Ag_Nv_3 (Intercept) + lsi_ag + 
dcore_mn_natveg + dcad_natveg 

247.04 4 8.06 0.02 

M_Ag_Nv_1 (Intercept) + lsi_ag + 
dcore_mn_natveg 

251.5 3 12.52 0.00 

M_Ag (Intercept) + lsi_ag 253.47 2 14.48 0 
M_Nv_4 (Intercept) + dcad_natveg 273.91 2 34.92 0 
M_Null (Intercept) 275.17 1 36.19 0 
M_Nv_3 (Intercept) + dcad_natveg + 

dcore_mn_natveg 
276.32 3 37.33 0 

M_Nv_2 (Intercept) + dcad_natveg + 
dcore_mn_natveg + para_mn_natveg 

278.97 4 39.98 0 

M_Nv_1 (Intercept) + dcad_natveg + 
dcore_mn_natveg + para_mn_natveg 
+ area_mn_natveg 

281.11 5 42.13 0 
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Table 1.4.2: Evaluating the effect of sex, site, and year on the differences in core range sizes on 
the best performing model of Table 1.3.  

 

Model Variables AICc K dAICc AICc 

Weights 

M_Site_1 (Intercept) + lsi_ag + dcad_natveg 
+ regionBago + regionTanintharyi 

229.98 5 0.00 0.85 

M_Sex_Site (Intercept) + lsi_ag + dcad_natveg 
+ Sexmale + regionBago + 
regionTanintharyi 

234.16 6 4.18 0.11 

M_Site_2 (Intercept) + lsi_ag + dcad_natveg 
+ dcore_mn_natveg + 
para_mn_natveg + regionBago + 
regionTanintharyi 

237.14 7 7.16 0.02 

M_Sex (Intercept) + lsi_ag + dcad_natveg 
+ dcore_mn_natveg + 
para_mn_natveg + Sexmale 

238.53 6 8.54 0.01 

M_Ag_Nv_2 (Intercept) + lsi_ag + dcad_natveg 
+ dcore_mn_natveg + 
para_mn_natveg 

238.98 5 9.00 0.01 

M_year (Intercept) + lsi_ag + dcad_natveg 
+ dcore_mn_natveg + 
para_mn_natveg + 
season2017_2018 + 
season2018_2019 + 
season2019_2020 

251.77 8 21.79 0 
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Table 1.5: Candidate model set for average daily distance moved showing percentage of 
agriculture present within the 50% AKDE dry season range was the best variable examined at 
explaining the variation in mean average daily distance moved by the elephants during the dry 
season. 
  

Model Variables AICc K dAICc AICc 

Weights 

M_3 (Intercept) + pland_ag 93.6200 
 

2 0.00 0.48 

M_Null (Intercept) 96.07 1 2.45 0.19 
M_4 (Intercept) + pland_ag + Sexmale 96.20 3 2.58 0.16 
M_1 (Intercept) + pland_ag + para_mn_ag 96.43 3 2.81 0.14 
M_2 (Intercept) + pland_ag + site1 + site3 98.31 4 4.69 0.02 
M_Global (Intercept) + pland_ag + site1 + site3 + 

para_mn_ag 
98.88 5 5.26 0.01 
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CHAPTER 2: Can Asian elephants persist just by eating crops?2 

 
 
 

Introduction 

 Global cropland is projected to rise by 26 percent with the majority of the increase 

occurring throughout Africa and Southeast Asia by 2050 (Williams et al., 2021). As human-

driven landscape alterations expand, it is likely that human-wildlife interactions will 

concomitantly increase (Calabrese et al., 2017; Leimgruber et al., 2003; Liu et al., 2017). A surge 

in human-wildlife interactions, as a result of such landscape change, is emerging as a major 

threat to mega-herbivores, such as the Asian elephant, whose habitat preferences often overlap 

with arable lands (Branco et al., 2019; Songer et al., 2016). The available range for these large 

mammals is being constricted rapidly, significantly increasing the threats to elephants. 

Understanding this process and its longer-term implications requires the study of how these 

animals respond to growing human pressure, and how we might alleviate such effects.  

The ecological niche is one of the most fundamental concepts in ecology which can 

provide us with a theoretical underpinning to study how species interact with their biotic and 

abiotic environment to maximize their survival and reproductive fitness (Hutchinson, 1957). 

Although niche theory primarily applies at the population- or species- level, it can also serve as a 

foundational theory for studying variation in individual behavior. The term behavioral 

hypervolume (Bastille-Rousseau and Wittemyer, 2019) was coined as an adaption of 

Hutchinson’s n-dimensional hypervolume theory (originally used to describe a niche space of a 

species) to the study of individual behavior ecology. This is particularly relevant for management 

 
2 Adapted from: Chan, A.N., Leimgruber, P., Williams, A.C., Shwe, N.M., Aung, S.S., Lwin, N., Oo, Z.M., Chit, 

A.M., Wittemyer, G. 2023. Can Asian elephants persist just by eating crops? Biological Conservation. In Review. 
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and policy decisions for an endangered species, such as the Asian elephant, where there is wide 

variation in individual behavior (Evans et al., 2020). The behavioral hypervolume (Bastille-

Rousseau and Wittemyer, 2019) can be defined by assessing resource selection behavior – the 

quantification of a species' interaction with its environment (Northrup et al., 2022) across 

multiple scales of interest; i.e., within a home range (Boyce, 2006) and at an individual step-level 

(Thurfjell et al., 2014). Studying individual heterogeneity in resource selection behavior can shed 

light on the magnitude of individual variation present in the population of interest across a 

heterogeneous landscape, with implications for management. 

Myanmar is one of the last remaining strongholds for biodiversity in the region but is 

under immense pressure (Reddy et al., 2019). Conservation in Myanmar is critical because of its 

biodiversity status (Prescott et al., 2017), but can be challenging given the current political and 

military situation, as well as the fact that different parts of the country are disputed by different 

ethnic groups and the military junta. Recent civil unrest in response to the Coup in 2021 has 

severely limited the technical and institutional capacity for wildlife management and 

conservation in these areas by the Ministry of Natural Resources and Environmental 

Conservation and conservation-focused non-governmental organizations due to an increase in 

arm-conflicts and political tension between the Burmese military and armed ethnic groups. 

Consequently, the degree of wildlife management capacity is highly variable across the country. 

Additionally, most of the rural populations are being displaced into the remaining wildlands of 

Myanmar where the last strongholds of diverse and unique biodiversity (such as Elephas 

maximus, Panthera tigris, Manis spp., Buceros bicornis, and Ophiophagus hannah) remain. 

Among these, Asian elephants are considered to have some of the largest space-use requirements 

(Chan et al., 2022) and, as such, are at high risk given the changes occurring throughout the 
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country. Moreover, poaching, human encroachment, agriculture expansion, and human-elephant 

conflicts act as stressors on the already at-risk remaining elephant population (Leimgruber et al., 

2003; Sampson et al., 2019; Songer et al., 2016). Understanding how the species is adapting to 

the rapidly changing landscapes of Myanmar can provide needed information to effectively 

manage the remaining populations in Myanmar. The lessons learned could also apply or provide 

an analytical framework in tackling this challenging issue to other parts of the species’ 

geographic range that face rapid landscape conversions and often are also politically unstable 

(e.g., Cambodia, Laos, Vietnam, Sumatra).  

Understanding how conflict-prone species, such as Asian elephants interact with 

landscape features, such as agriculture, is key to effectively managing conflict (Fernando et al., 

2005). This is especially true in countries and regions where most of the livelihood is based 

around farming, as is the case for much of the Asian elephant geographic range. Determining 

whether a specific behavior, such as crop raiding is fluid (i.e., every individual in the population 

will crop raid given a specific landscape configuration and pattern within its range) or not can 

greatly benefit consequent management decisions (Darlington et al., 2022; Haus et al., 2020; 

Lewis et al., 2015). Previously, we have shown that elephants tend to have larger range sizes 

when the landscape is more fragmented with agriculture (Chan et al., 2022). However, the 

underlying mechanism was not clear. The relationship between resource selection behavior and 

the level of human disturbance (i.e., fragmentation) within the home range has not been assessed. 

In addition, human-elephant conflict is emerging as a serious threat to elephants across Asia 

(Fernando et al., 2008) and in Myanmar (Sampson et al., 2019, 2018; Williams et al., 2020). As 

such, it is critical to understand how agricultural fragmentation influences resource selection 
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behavior and movement which will in turn inform us in developing science-based holistic 

management plans for the species across its range. 

In this study, we assessed how elephants interact with agriculture and other habitat 

features during the dry season when human-elephant conflict is the most common (Sukumar, 

2003, 1990). We used relocation data from GPS collars across three study sites with varying 

degrees and patterns of fragmentation. Our objectives were (1) to evaluate resource selection of 

elephants across fine and broad scales, (2) to develop and apply a framework to quantify if 

variation in selection behavior is driven by individual, regional, and/or sex differences, and (3) to 

evaluate whether the pattern and percentage coverage of agriculture (i.e., fragmentation) within 

an individual’s dry season range affects the selection of agriculture by the elephants. We discuss 

our results in relation to the conservation challenges facing elephants in Myanmar and across the 

species range. 

Method 

Study Sites 

 Our study was conducted in three human-elephant conflict areas – central (site 1), 

western (site 2), and southern Myanmar (site 3) (Chan et al 2022). Site 1, located at the edge of 

the Bago Yoma (Latitude: 17.1013 – 18.1960, Longitude: 95.7043 – 96.4787), consists of a 

mosaic of agriculture and natural vegetation, primarily bamboo thickets. Decades of legal and 

illegal timber extraction in this site created a highly disturbed forest mosaic that is increasingly 

being invaded by other human land uses, including the construction of hydroelectric reservoirs, 

settlements, sugarcane, paddy, and rubber plantations. The site also has a hard edge between 

natural vegetation in the east and human-dominated landscape features in the west. Site 2 is a 

mountainous area along the west coast of the Ayeyarwaddy delta region (Latitude: 16.0554 – 
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17.0842, Longitude: 94.1860 – 94.6838) and stretches approximately 100 km from north to 

south, creating an elongated forest with hard boundaries on both its east and west side. Rice 

plantations dominate the matrix between forest patches in this site, where rubber and peppercorn 

agricultural use is also prevalent primarily in NgaPu Taw Township. Site 3 is part of the larger 

Dawna Tanintharyi Landscape (Latitude: 10.7141 – 12.0981, Longitude: 98.3356 – 99.4626) 

which extends from mountain ridges along the border with Thailand to the coastal plain. Land 

use at site 3 is primarily composed of large-scale oil palm and betel nut plantations, surrounded 

by lowland evergreen forests. The region is experiencing increased threats from human 

encroachment, road development, and agricultural expansion. Our analyses focused on the dry 

season — the time of year when the majority of the crop raiding by elephants occurred 

(Sukumar, 1990; Webber et al., 2011). Therefore, we focused on understanding the selection 

behavior of the elephants during this season while dissecting the variation in this behavior to 

inform land use planning and management decisions.  

Elephant capture and relocation data  

  We used hourly GPS tracking data from Asian elephants (as described in Chan et al. 

2022) but excluded individuals with less than an 80% fix-success over the individual tracking 

period within the dry season (December – March). There were four dry season ranges derived 

from three individuals in site 1; seven dry season ranges from six different individuals in site 2; 

and five dry season ranges from five individuals in site 3 – totaling sixteen dry season ranges 

from fourteen individual elephants. There was only one female in our sample at each study site 

with a total of 3 females in the study. The average number of relocations was 2138 (SD = 516) 

points per individual. 



 42 

Environmental layers 

 We derived agriculture, surface water, road, village, and natural vegetation raster layers 

from land cover maps (as described in Chan et al. 2022). Distance to nearest land use features 

was calculated using the proximity function in QGIS (GDAL 2022). For integrating 

topographical information into our analysis, we obtained a digital elevation layer from SRTM in 

Google Earth Engine and calculated a roughness index in QGIS (Wilson et al., 2007). For 

assessing how the landscape-level prevalence of agriculture v. natural elevation influenced 

elephant habitat selection, we computed the percentage of agriculture and natural vegetation 

within a 175-m x 175-m moving window in R using the focal function (Hijmans, 2017). The size 

of the window (i.e., 175 meters) is roughly equivalent to the average hourly distance moved by 

elephants in our study. 

Selection Analysis 

 Resource selection behavior occurs at different scales (Boyce, 2006) – understanding 

how certain landscape features influence this behavior at a particular scale is key to 

understanding the movement ecology of the species. We assessed wild elephant habitat selection 

at two different scales. We conducted both integrated step selection analysis (Avgar et al., 2016) 

and third-order resource selection analysis (i.e., within-home-range resource selection functions; 

Johnson, 1980). We fit both model types at the individual elephant level allowing assessment at 

the individual (e.g., sex-specific) and aggregated study area scale (Bastille-Rousseau et al., 2018; 

Murtaugh, 2007). Given strong diurnality in movement, we set daytime (sunrise–sunset) as a 

reference category in contrast to corpuscular and night-time movement in all models. We also set 

non-agriculture and non-natural vegetation as reference layers in models where agriculture or 

natural vegetation were included as categorical variables. All continuous variables were 
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standardized to a mean of 0 and a standard deviation of 1 for easier interpretation and model 

convergence before model fitting.  

For integrated step selection analysis, we generated availability samples by randomly 

drawing 15 points for every used point (1:15 use-available ratio) from Gamma (for step length) 

and Von Mises (for turning angles) distributions fitted to empirical data. Every point from the 

realized trajectory was defined as used (1) and compared to the corresponding 15 randomly 

generated, available points (0) from the simulated trajectory. We fitted 6 conditional logistic 

candidate models to data for each of the 16 dry season GPS datasets from 14 individual elephants 

and estimated the step selection function. We then used the Akaike Information Criterion, 

corrected for small sample sizes (Burnham and Anderson, 2002) to evaluate the best-fitting 

model. In all these models, our model structure was aimed to capture two primary processes—

the movement and the selection process—and their interactions. To account for the movement 

process, we included step length and cosine of the turning angle as covariates in all 6 candidate 

models. To investigate factors influencing the selection process, we included distance to village, 

distance to surface water, and terrain roughness index. Additionally, we evaluated the 

explanatory power of percent agriculture, distance to native vegetation, and agriculture (as a 

categorical variable) using AICc. Finally, we examined interactions between step length and day- 

and nighttime, step length and percent agriculture, step length and agriculture, or step length and 

distance to village to provide a better understanding of the interaction between movement and 

selection of these features. We selected the model with the lowest AICc as the most parsimonious 

model for each individual dry period and presented estimated beta coefficients and model 

explanatory power (R2) from the best-performing model.  
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 For third-order resource selection analysis, we generated 30 random, available points for 

each used point (1:30 use-available ratio) within the 95 percentile Minimum Convex Polygon 

(Northrup et al. 2013). As with the step selection function models, we fitted 16 dry ranges 

separately. We hypothesized agriculture, natural vegetation, terrain roughness, and distance to the 

nearest village would influence resource selection of elephants at the range (3rd order) scale. We 

defined all the observed relocation data as used points (1) and randomly generated points as 

available points (0) under a use-available framework using logistic regression. We fitted different 

combinations of agriculture, natural vegetation, terrain roughness, and distance to the nearest 

village and conducted a model comparison using AICc as described above. We also included a 

model with no covariate (null model) in the candidate model set to represent the hypothesis that 

the resource selection process is random at the range scale. 

Variance Partitioning of Selection Coefficients 

We used variance partitioning analysis (Oksanen et al., 2022) to quantify the explanatory 

contribution of individual, study site, and sex in both step selection and resource selection 

functions. In addition, we evaluated the overlap of explanatory variables (i.e., ID, region, and 

sex). For each selection coefficient, we drew 1000 random samples from a normal distribution 

defined by the coefficient mean and standard deviation estimated from the most parsimonious 

model (the lowest AICc score) out of the candidate model set for each elephant. We then 

regressed our bootstrapped selection coefficients with individual ID, region, and sex using a 

linear regression framework and calculated the adjusted r-squared to evaluate the variables 

explaining the most variance (i.e., highest adjusted r-squared value).  
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Functional Response 

 Using RSF outputs, we assessed the functional response (Mysterud and Ims, 1998) of 

agriculture selection to percent agriculture, edge density, mean fractal dimension of agriculture, 

and coefficient of variation of natural vegetation within the range – metrics identified to affect 

the dry season range size (Chan et al., 2022). To assess which landscape metrics were most 

strongly related to agricultural selection, we used AICc model selection (Burnham and Anderson 

2002) to identify the best-performing model (i.e., lowest AICc score). We also reported the 

adjusted r-squared of the models. 

All the selection and functional response analyses were carried out in R version 4.1.3. 

using packages ‘amt’, ‘AICcmodavg’, ‘ggplot2’, ‘dplyr’, ‘lubridate’, ‘raster’, and ‘vegan’ 

(Wickham, 2016; Hijmans, 2017; Mazerolle, 2019; Signer et al., 2019; R Core Team, 2020; 

Wickham et al., 2020; Oksanen et al., 2022). 

Results 

Crepuscular and night movements (defined as happening between sunset – sunrise) were 

greater than those in the day (positive selection coefficient estimates for step length and 

day/night interaction term in the best model) across all three study sites (Figure 2.1). For 

elephants at sites 2 and 3, night movements were significantly linked to movement in agriculture 

(+ selection coefficient estimates for step length and agriculture interaction term in the model; 

Figure 2.2), suggesting elephants avoided humans by reducing activity during the day while 

exploiting agriculture for food during the night.  

In our integrated step selection analysis, the most parsimonious model (i.e., the lowest 

AICc score) for all individuals included agriculture, step length, cosine of the turning angle, 

distance to native vegetation, distance to village, distance to road, distance to surface water, and 
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roughness. Interaction terms between agriculture and step length, distance to village and step 

length, and day/night and step length were also retained as covariates in the best model. 

Individual elephants exhibited marked differentiation in the degree of selection for agriculture 

and distance from villages but generally tended to select areas closer to natural vegetation at the 

step scale (Appendix 1: Figure S1.1-1.2). Most of the study elephants (all except one) preferred 

areas with less rugged terrain (negative selection coefficient for roughness index) (Appendix 1: 

Figure S1.3). Distance to road and distance to surface water were not in the top models 

(Appendix 1: Figure S1.4-1.5).  

The most parsimonious model for third-order resource selection analysis (RSF) included 

agriculture and native vegetation as categorical variables, terrain roughness index, and distance 

to village. Selection for agriculture and distance to village demonstrated marked variability 

across individuals (Figure 2.1; Appendix 1: Figure S1.6). As found with step selection analysis, 

all elephants in sites 1 and 3 avoided rugged areas within their respective dry season ranges 

(Appendix 1: Figure S1.7). However, selection for terrain ruggedness in site 2 demonstrated high 

inter-individual variability (i.e., individual elephants selected, avoided, or showed no preference 

for ruggedness). 

Variance partitioning analysis, structured to determine if individual, site, or sex-specific 

differences explained the variability in selection coefficient estimates, indicating the selection 

responses can primarily be attributed to individual differences, although the degree to which 

individual explains variation in estimates differed among different environmental features (Table 

2.1). Although differences in sex and study sites explained a small amount of variation in the 

selection process, they did not add additional explanatory power during the variance partitioning 
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analysis when fitted to the same model with individual IDs as covariates. Study sites explained 

more variation in the selection process than sex when comparing them individually.  

Selection for agriculture by an elephant was positively correlated to the edge density of 

agriculture patches in its dry season range (i.e., the measure of fragmentation of agriculture 

within a given range; Figure 2.3). The more patches of agriculture within the individual range, 

the more likely an elephant was to select for agriculture regardless of sex and study site. The 

adjusted r-squared for the model was 0.4991. 

Discussion 

The selection behavior of the study elephants, at both the range-level (RSF) and step-

level scale (iSSF), was influenced primarily by the juxtaposition of agriculture, natural 

vegetation, and human features (e.g., villages; Appendix 1). This implies that as land is converted 

from natural vegetation to agriculture, elephant selection behavior and use of agricultural areas in 

the landscape will change. In general, we found a strong positive correlation between dry season 

range fragmentation and agriculture selection (Figure 2.3), indicating landscape conversion is a 

key driver of agricultural use by elephants. Despite the dominance of this key driver, we found a 

large degree of variation in the selection behavior of individual elephants at both steps- and dry-

season range-level scales. Most of the variation was driven by individual differences as opposed 

to study site- or sex-specific patterns (Table 2.1). A previous range-wide analysis of the African 

elephant movement also revealed large individual variations in the elephant’s response to a key 

environmental factor, with water access being the limiting factor for the elephant movement in 

the dry land study system (Bastille‐Rousseau et al., 2020). We did not find water to be a limiting 

factor in our study, likely given the general wide water availability in the study.  
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At the population level, we found that elephants display neither a strong preference nor 

avoidance of agriculture in sites 1 and 2; whereas we found a positive selection in site 3 (Figure 

2.1). Elephants appear to be highly adaptable to a broad range of habitat characteristics, 

including landscapes dominated by human land use such as agriculture. However, the long-term 

effect of this adaption, particularly on survival and fitness, to rapidly changing local conditions is 

unclear and could potentially harm the remaining population in the country. Some elephants 

across our three study sites were actively selecting for agricultural patches in increasingly 

fragmented mosaics of agriculture and forest, leading to increased human-elephant conflicts 

(Figure 2.3). Current strategies for reducing human-elephant conflict in Myanmar, such as 

managing specific demographic groups (i.e., relocating bulls) may not be effective since the 

resource selection behavior is primarily driven by individual preferences rather than sex, age, or 

region (Table 2.1; i.e., not all males are exhibiting crop-raiding behavior). This is also the case 

for other species with frequent contact with humans and heterogeneity in individual behavioral 

responses, such as white-tailed deer (Haus et al., 2020) and American black bear (Duquette et al., 

2017). Funds used for active management targeted at the population level, such as culling and 

translocation, might be better spent on alternative programs focusing on subsidizing non-

palatable crop production, crop compensation, education, and seasonal fencing.  

Human-elephant conflict (HEC) is one of the main threats to the remaining elephant 

population in the country in addition to poaching for illegal trade (Sampson et al., 2019, 2018). 

HEC disproportionately impacts lower-income communities (Barua et al. 2013). Increased 

agriculture selection by elephants can facilitate human-elephant conflicts, and this study 

demonstrates landscape configuration is a key driver of this selection behavior (Figure 2.3). 

Although common HEC mitigation methods such as electric fencing could address the symptoms 
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of HEC (Shaffer et al., 2019), consideration of ecological aspects at larger scales that relate to 

conflict can better address the fundamental drivers of this problem. Our study highlights the 

importance of agricultural fragmentation in driving conflict, indicating attempts to reduce 

conflict must consider the composition and juxtaposition of the wildland-agricultural interface.  

This is the first movement-based report of elephants’ selection behavior in a subsistence 

agricultural landscape in Myanmar. Therefore, this lays the foundational work for studying 

elephants’ selection responses to the different configurations of land use and cover types in 

similar landscapes across Asia. Although the relationship presented here between the selection 

behavior of elephants and landscape features is from Myanmar, the correlations we found 

occurred across 3 strongly differentiated study sites which represent common scenarios Asian 

elephants are facing throughout their range – particularly in areas outside of formal government 

protections. For example, results from site 3 might be particularly relevant to areas where large-

scale oil palm plantations are present, such as in Indonesia and Malaysia (Aini et al., 2015; Suba 

et al., 2017). We are likely to see different selection responses to varying levels of fragmentation 

across the Asian elephant distribution range. Therefore, testing if elephants demonstrate stronger 

selection for agriculture in more agriculturally fragmented landscapes across the species’ 

geographic range is important for understanding how the species responds to the changing 

landscape. It is likely there is differentiation in conflict relative to different degrees of 

fragmentation, and it may be that a threshold level of fragmentation is predictive of the presence 

or absence of conflict, given forest cover positively affects the presence of elephants (Songer et 

al., 2016). Therefore, managers should be cognizant of the fact that the correlation between the 

probability of agriculture selection and increasing fragmentation suggests elephants may not be 

able to adapt and coexist in highly modified landscapes.  
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Another key component in determining the cost of this adaptive behavior in the changing 

landscape is to quantify fitness in terms of mortality risk and/or reproductive success. It is 

documented that other conflict-prone species, such as the American black bear, show stronger 

selection for human-related food sources in areas with relatively lower human density (Duquette 

et al., 2017). Additionally, black bears in Colorado were found foraging extensively on urban 

food sources when natural forage quality is low (Lewis et al., 2015). This could be the case in 

Myanmar where elephants face the continuation of major threats, such as poaching and range 

loss, habitat degradation, and fragmentation due to agriculture expansion (Kanagaraj et al., 2019; 

Kumar et al., 2018; Sampson et al., 2018; Songer et al., 2016), which may encourage the use of 

anthropogenic resources when comp. Consequently, elephants presented with more fragmented 

ranges selected for agriculture in Myanmar. This work provides additional evidence that reducing 

human-elephant conflict requires carefully managing land-use in areas where humans and 

elephants coexist. 
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Tables and Figures 

Figure 2.1: Individual selection coefficients for agriculture from the 3rd order RSF analysis 
indicated strong heterogeneity in agricultural selection within individuals at a site and between 
sites. At this scale, some elephants in site 3 (Tanintharyi) select strongly for agriculture. 
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Figure 2.2: Individual selection coefficients for the interaction between step length and day/night 
from the integrated step selection analysis indicating more movement occurred at night for the 
majority of individual elephants.  
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Figure 2.3: Functional response in habitat selection for agriculture (estimated from RSF model) 
by Asian elephants across Myanmar relative to the edge density of agriculture within each 
individual dry season range   
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Table 2.1: Showing the result from variance partitioning analysis of selection coefficients from 
the best performing model of iSSF analysis. The variation in the selection coefficients of all 
covariates examined was predominantly explained by differences in individuals, rather than 
study site or sex. 
 

Selection Coefficients Variable explaining the most 

variance 

Variance explained (Adjusted 

R2) 

Agriculture Individual 0.6656 

Distance to natural vegetation Individual 0.6395 

Distance to village Individual 0.9325 

Distance to road Individual 0.6799 

Distance to surface water Individual 0.6764 

Roughness Individual 0.8497 

Agriculture x Step Length Individual 0.7289 

Distance to village x Step Length Individual 0.9852 

Step Length x Day Night Individual 0.9489 
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CHAPTER 3: Landscape features structuring connectivity of desert elephants 

 
 
 

Introduction 

Human modification of landscapes is a primary threat to wildlife (Kennedy et al., 2019). 

Given global human population is projected to reach 9.7 billion by 2050, with more than half of 

population growth expected to occur in Africa (United Nations, 2022), landscape modification is 

expected to increase across Africa. For instance, global cropland will increase by 26%, mainly in 

Africa and Asia (Williams et al., 2021a). The associated land conversion and habitat loss are 

likely to exacerbate ongoing declines in wildlife populations and will be detrimental to the long-

term persistence of species (Brook et al., 2008). Thus, identifying and preserving critical wildlife 

habitats is crucial for ensuring the persistence of species, particularly in the face of rapid 

landscape changes (Fahrig, 2003; Hanski, 1999).  

Small populations are especially at risk of extinction due to being more vulnerable to 

inbreeding depression, demographic stochasticity, environmental catastrophes, and genetic drift 

(Caughley, 1994). Connectivity between populations has been identified as the critical 

mechanism to alleviate such demographic stressors and reduce the risk of extirpation (Caughley, 

1994; Hanski, 1999). Ensuring connectivity is an important mechanism for the long-term 

persistence of populations as it enables demographic rescue, genetic exchange between different 

populations, and mobility across landscapes to avoid or minimize negative consequences in the 

face of climate dynamics. In recognition of the importance of connectivity, the identification of 

corridors has become a core objective in wildlife conservation and management globally 

(Jennings et al., 2020; Kaszta et al., 2020; Osipova et al., 2019). 
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Numerous methods have been developed to identify and predict high-connectivity 

locations. Among the most widely used approaches are resistance surface modeling based on 

circuit theory or least-cost path analysis (Etherington, 2016; McRae et al., 2008). In the case of 

least-cost paths, model misspecification or the animal not knowing the least-cost path in the 

environment can result in inaccurate prediction (Kumar et al., 2022). Some researchers advocate 

for an alternative but related approaches, such as instituting correlated random walks on a 

resistance surface with the inclusion of mortality layers (Fletcher et al., 2019). However, 

obtaining mortality risk information may be challenging and misspecification issues remain. 

More recently, empirical-based approaches have been developed to identify and quantify 

connectivity from GPS tracking data without modeling (Bastille-Rousseau and Wittemyer, 

2021). Namely, the application of graph theoretic approaches allows straightforward calculation 

of the importance of a given GPS position or path to the broader landscape connectivity 

(Bastille-Rousseau et al., 2018). Since these methods rely on empirical data, such graph-theoretic 

approaches need large sample sizes to appropriately capture and characterize connectivity across 

the landscape. Nonetheless, due to their empirical basis, these approaches provide an accurate 

representation of the observed elephant movement on the landscape (Bastille-Rousseau et al., 

2018; Bastille-Rousseau and Wittemyer, 2021).  

The African elephant (Loxodonta africana) is the largest extant terrestrial mammalian 

species and is listed as endangered by the IUCN (Gobush et al., 2022). The remaining 

populations of African elephants face several primary threats, including illegal killing, human-

elephant conflict, and changes in land use that result in habitat loss and fragmentation (Gobush et 

al., 2022; Tucker et al., 2018; Wittemyer et al., 2014). Due to its significant body size, this 

species requires more space compared to other species on the landscape (Peters, 1986). As a 
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result of increased human encroachment, elephant range is increasingly restricted, with many 

historically viable areas no longer able to support elephants (Wall et al., 2021). Land conversion 

for agriculture (Williams et al., 2021) and accelerated human population growth around 

protected area edges (Wittemyer et al., 2008) combine to threaten both core populations and their 

connectivity. To address these common challenges, major efforts have been undertaken to track 

African elephants across their range to better understand the spatial needs of the species (Wall et 

al., 2021). 

The arid lands of northwestern Namibia harbor important elephant habitat that contains 

both nationally protected areas and community lands that support elephant populations (Leggett, 

2006). A key objective for elephant management in this area is to maintain connectivity between 

Etosha National Park and the surrounding community conservation areas in the Kunene region. 

To fulfill this goal, it is important to identify key connectivity areas and the factors predictive of 

connectivity. We used GPS telemetry data from elephants in the region to address the following 

objectives: 1) empirically quantify connectivity across the landscape using a graph theoretic 

approach (namely the betweenness metric) applied to the tracking data, 2) assess the landscape 

features (i.e., geologic, biotic and human-made) influencing connectivity in the study area, 3) 

apply the ‘movescape’ approach (Bastille-Rousseau and Wittemyer 2021) to define and locate 

different types of corridors, and (4) assess how/if landscape features (i.e., geologic, biotic and 

human-made) differ across these corridor types. We discuss these results in light of the 

conservation challenges facing elephants. 
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Methods 

Study Area 

 The study area lies in northwestern Namibia, encompassing both the Kunene community-

owned lands and Etosha National Park (ETS; Figure 3.1). This semi-arid region exhibits a strong 

rainfall gradient receiving up to 500 mm in the eastern section of Etosha to less than 150 mm in 

the western portion of Kunene (Funk et al., 2015). Etosha National Park is a 22,270 km2 largely 

fenced protected area (with porous sections in the northwest near Kunene), estimated to support 

an elephant population of approximately 2,900 animals (Kilian, 2015). The Kunene area consists 

of a patchwork of community conservancies and hunting concessions that support approximately 

1,100 elephants (Craig and Gibson, 2016), with low human population density. The elephant 

populations are known to be dispersing between the two areas (Kilian, 2015). Land cover types 

in the area include semi-arid savannah and arid desert. 

Data Collection 

 We analyzed GPS relocation data collected from 66 African elephants (37 females, 29 

males) across our study site (37 from ETS; 29 from Kunene) collected between 2008 and 2015. 

All capture and collaring procedures were performed by veterinarians from the Namibian 

Ministry of Environment and Tourism, following South African National Standards for animal 

welfare and care (SABS, 2000). The fix-interval for the collars varied – there were 41 individuals 

with 30-minute collars, 15 individuals with 20-minute collars, and 10 individuals with 15-minute 

collars. To remove spatial errors in the dataset, we applied a filter excluding any consecutive 

relocation points greater than or equal to 10km/hour. We used ‘adehabitatLT’ to create the type II 

trajectory objects from relocation data and used the cleaned trajectory objects when calculating 

movement metrics in the next section (Calenge, 2015). 
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Movement Metrics and Types 

 To empirically quantify connectivity across the landscape derived from the tracking data 

(Objective 1), we employed graph theoretic approaches to calculate attributes of connectivity 

defined by elephant movements across the ecosystem (Bastille-Rousseau and Wittemyer, 2021). 

Graph metrics were calculated on a 150-m x 150-m grid overlaying the study area, where the 150 

meters spatial resolution was chosen because it was the average 30-minute inter-step distance 

traveled by the study elephants. Connectivity was defined using betweenness – the measure of 

the number of shortest paths connecting all nodes on a graph that pass through a given node 

(Objective 1). We used the 'movescape' framework to delineate spatial structuring in areas with 

high connectivity that can serve to define the type of corridor (objective 3; Bastille-Rousseau and 

Wittemyer, 2021). To do this, we analyzed the relationships between three metrics from network 

theory, namely degree, betweenness, and weight, and two metrics from the animal trajectory (i.e., 

speed and the dot product of the turning angle). We performed two-step Gaussian mixture 

modeling to cluster movement types at both the individual and population levels, by setting the 

maximum number of clusters to be 8. The latter is the greatest number of biologically 

meaningful clusters (2 movement speeds and 3 levels of intensity of use) likely to exist (Bastille-

Rousseau and Wittemyer, 2021). We then evaluated the optimal number of clusters using the 

Bayesian Information Criterion (BIC) to achieve a more conservative evaluation given the large 

dataset (number of relocations = 2,437,675; (Aho et al., 2014). 

Environmental Variables and Modeling Approach 

 To address our second objective to characterize landscape features associated with 

connectivity, we built candidate models to evaluate factors influencing the global centrality 

measure (betweenness) of any given pixel in our study area. We log-transformed the response 
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variable (betweenness) and applied random-effects linear regression to quantify factors 

influencing the connectivity of a given pixel on the landscape. Our model included an auto-

covariate term based on an inverse weighting scheme, a symmetric neighborhood metric, and a 

search radius that was defined dynamically for each elephant to select the lowest value at which 

all points have neighbors to account for spatial autocorrelation (Bardos et al., 2015). 

Environmental covariates explored were elevation, slope, roughness index, global human 

modification index, distance from waterholes, distance from perennial rivers, distance from 

seasonal rivers, distance from roads, distance from towns and settlements, distance from 

wetlands, and normalized difference vegetation index (Table 3.2). Elevation and global human 

modification index were directly downloaded from Google Earth Engine (Gorelick et al., 2017; 

Jarvis et al., 2008; Kennedy et al., 2019). The roughness index was calculated in QGIS (QGIS 

Development Team, 2019; Wilson et al., 2007). We computed the yearly maximum and 

coefficient of variation (i.e., standard deviation/mean) of the normalized difference vegetation 

index (NDVI) for every pixel in our study area across our study period (2008 – 2015) using 

Landsat 7 and 8 imageries on Google Earth Engine. We developed five candidate models, to 

assess the influence of geologic, environmental, anthropogenic, and combined landscape features 

on betweenness values. Our candidate model set includes the geologic model (slope, distance 

from waterholes, distance from perennial rivers, distance from wetlands), anthropogenic model 

(global human modification index, distance from roads, distance from settlements), 

environmental model (maxNDVI, cvNDVI, distance from waterholes, distance from perennial 

rivers, and distance from wetlands), water model (distance from waterholes, distance from 

perennial rivers, distance from wetlands), and global model (combination of all the variables in 

the models above) (Appendix 2: Table S2.1). 
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To address our fourth objective of determining landscape conditions related to different 

types of corridors, we used a similar spatial regression structure, including the incorporation of 

an auto-covariate term and contrasting different covariate sets in each model. We used 

generalized linear models with a logit-link function to assess landscape features associated with 

the different movement clusters related to high connectivity areas. Additional covariates explored 

included percent settlement within an average step (150 meters) moving window and cattle 

abundance in addition to all the environmental covariates described above. Both variables were 

included in the human model and global model while the rest of the models remain the same in 

the candidate model set. We applied this spatial logistic regression to quantify landscape 

differences between high connectivity areas with fast and slow speeds (fast and slow corridors) 

according to mean speed values of a particular cluster (Table 3.1) and differences between the 

corridor and non-corridor pixels, and separately for males and females. We only included pixels 

with greater than or equal to 95% confidence assigned to a particular movement cluster for this 

analysis. 

Before including variables in the models, we checked for multicollinearity by examining 

the variance inflation factor (VIF). VIF values for all the variables were less than 2 which is well 

below the recommended criteria to be included in the same model (Dormann et al., 2013). We 

evaluated the models in the candidate model sets using BIC and made inferences from the best-

performing model (i.e., the model with the lowest BIC score). To visualize the connectivity of 

our study area, we applied linear interpolation of the max betweenness values onto the steps in 

between (Bastille-Rousseau and Wittemyer, 2021; Figure 3.1). All covariates were centered to 

their mean and scaled by dividing by their standard deviation (Gelman and Hill, 2006). All 

analyses were conducted in R using ‘car’, ‘dplyr’, ‘ggplot2’, ‘lubridate’, ‘lme4’, ‘moveNT’, 
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‘ROCR’, and ‘spdep’ (Bastille-Rousseau, 2023; Fox et al., 2016; Grolemund and Wickham, 

2011; Roger Bivand, 2022; Sing et al., 2005; Wickham, 2016; Wickham et al., 2020; Zwitser et 

al., 2011). Model selection tables for every regression analysis can be found in the accompanied 

Appendix 2. Additionally, we included a comparison between different intensities of use in the 

Appendix 2: supplementary materials for Chapter 3. 

Results 

 We found connectivity (measured as betweenness values) varied strongly across the 

landscape, with well-defined paths of high connectivity near natural water sources and in the 

area between Kunene region and Etosha National Park (Objective 1; Figure 3.1). We also found 

that all the covariates assessed contributed to the explanatory power of the most parsimonious 

model of betweenness values (i.e., connectivity) (Objective 2). Maximum and coefficient of 

variation of NDVI (productivity) values of a given year, distance from waterholes, and distance 

from roads and settlements were positively correlated with betweenness (i.e., higher values, 

higher connectivity). On the other hand, natural water sources, such as distance from perennial 

rivers and distance from wetlands, as well as slope were negatively correlated with betweenness 

(i.e., closer to water and less slope had higher connectivity; Figure 3.2).  

We identified 7 unique population-level movement types (clusters) with different levels 

of use intensity, directionality, betweenness, and movement speed following the ‘movescape’ 

analytical approach (Objective 3; Table 3.1). No individual was found to have more than 7 

clusters indicating that the chosen maximum number of clusters (8) was sufficient for this 

dataset. Four of these clusters were related to areas of high connectivity (i.e., clusters 1, 3, 6, and 

7). However, clusters 1 and 6 were associated with low and medium speed (extended use), 

whereas clusters 3 and 7 were associated with faster speed (Table 3.1). 
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To address objective 4, we contrasted the environmental covariates associated with 

corridor (clusters 1, 3, 6, and 7) and non-corridor (clusters 2 and 4) pixels. We found that the 

global model was the most parsimonious model for both males and females with AUC values of 

0.781 and 0.683, respectively. For both males and females, cattle abundance, distance from 

wetlands, distance from perennial rivers, and slope were negatively correlated with corridor 

pixels, indicating corridors were near water, in flatter areas, and away from livestock. Distance 

from towns and global human modification index were positively correlated with corridor pixels, 

indicating corridors were further from towns but in areas of higher human modification. 

Interestingly, corridor pixels are positively correlated with distance from waterholes for males 

while they are negatively correlated for females. Our measure of productivity had a positive 

effect on corridors for females only (Figure 3.3). 

The top model of differences between highly directional, fast-corridor (cluster 3), and 

slow-corridor (cluster 6) was the global (AUC = 0.8954) and water (AUC = 0.8667) models for 

males and females, respectively. However, it was clear that water proximity was key for 

structuring the location of these two types of corridors for both sexes (Table 3.1). For females, 

fast corridors tended to be away from water resources, while males displayed the opposite (Table 

3.1). Both males and females were using locations on the landscape near waterholes with much 

slower speeds and higher weight (Table 3.1; Figure 3.4). 

Discussion 

 As human population and landscape modification accelerate, proactive conservation of 

key areas for landscape connectivity are critical to the long-term protection of wildlife 

populations. This study provides insight into important corridors and associated environmental 

features within and between two regions of conservation importance for African elephant 
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conservation in Namibia using 8 years of GPS tracking data. We found areas of high connectivity 

were relatively ubiquitous, highlighting that the landscape remains open to elephant movements 

within each region (Figure 3.1). Connectivity within our study site was primarily influenced by 

proximity to natural water sources and anthropogenic features, similar to many other African 

elephant populations and large ungulates across the continent (Bastille-Rousseau et al., 2018; 

Crego et al., 2021; Osipova et al., 2019). 

We identified 4 different corridor types in the ecosystem, whereby each was identified by 

differing levels of use intensity, speed, and directionality. Although the majority of individuals 

(at least 75%) contributed to the classification of 3 corridor types (high-use slow, low-use fast, 

and medium-use slow corridors), only 13.6 % of individuals in our sample exhibited the highest-

use fastest corridor movement (Table 3.1). This illustrates that individuals differed in their 

movement behaviors and responses to landscape features as documented in other elephant 

movement studies (Bastille-Rousseau and Wittemyer, 2019; Chan et al., 2022). Such diversity in 

movement and space use strategies is important to take into consideration when making 

management decisions. 

Water structured the landscape connectivity in our study system (Figure 3.2), similar to 

what has been found in Samburu, Kenya (Bastille-Rousseau and Wittemyer, 2021), another 

water-limited system. In this semi-arid environment, where water limitation is extreme, perhaps 

it was not surprising elephant connectivity was strongly structured with respect to this resource. 

When we mapped the resulting 7 different movement clusters spatially (Figure 3.5), we found 

that elephants in Etosha National Park use high-speed, directed walks when approaching 

waterholes. This aligned with the results from Polansky et al. 2015, which identified such 

behavior using behavioral change point analysis (Polansky et al., 2015). This high-speed directed 



 69 

movement corresponded to cluster 7 in this analysis (Table 3.1; Figure 3.5). Furthermore, 

Polansky et al. documented a switch in movement types near waterholes (Polansky et al., 2015). 

Similarly, the movescape approach identified a shift to slower more stationary use at water holes, 

identified as clusters 1 and 6 (slow, high/medium intensity of use). With a reduction in 

precipitation projected in the region due to climate change (Bucchignani et al., 2018), the 

importance of access to water for meeting the survival and reproductive needs of these elephants 

will only increase. These model outputs could be invaluable in identifying and conserving 

critical areas and corridors to help meet those needs. 

Notably, we found that elephants avoided using areas with high cattle abundance that 

were close to human settlements and towns, passing through such areas using higher-speed 

corridors as defined by the movescape technique. Other studies have also reported that covariates 

related to human presence affect the connectivity of African elephants (Bastille-Rousseau and 

Wittemyer, 2021; Epps et al., 2011; Osipova et al., 2019; Songhurst et al., 2016). Furthermore, 

the movements of other large herbivores, such as reticulated giraffes and plains zebra, were 

impeded by cattle ranching on the landscape (Crego et al., 2021). Balancing the livelihood needs 

of local people with connectivity required by large wild herbivores remains challenging 

(Donaldson et al., 2017; Rudnick et al., 2012).  

Across several representations of connectivity, we found that human-related features 

were highly influential, as documented across numerous mammalian species (Morrison and 

Bolger, 2014; Stabach et al., 2016; Tucker et al., 2018). Because the mobility of the remaining 

populations of African elephants is threatened by human presence (Bastille-Rousseau and 

Wittemyer, 2021; Lohay et al., 2022), the projected population growth and associated economic 

development (United Nations, 2022; Williams et al., 2021a) are a threat to the integrity of 
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African elephant populations and other highly mobile species across Africa. With the reported 

disproportionate growth around the protected areas where the majority of elephant populations 

find refuge (Wittemyer et al., 2008), carefully managing incoming infrastructure development 

will be one of the key components to ensure remaining corridors are protected in the region.  

Differences in movement behaviors and factors structuring the locations of different 

corridors were found between males and females, which also has been documented in other 

populations (Beirne et al., 2021; Roever et al., 2013; Vogel et al., 2020). When evaluating 

environmental features associated with different corridor types (i.e., fast v. slow) between the 

sexes, covariates related to water sources primarily structured the different corridor usage types 

for females while both water and human-related covariates determined different corridor types 

for males (Appendix 2: Table S2.2.1-2.2.2; Figure 3.4). Similarly, in Samburu, Kenya, water 

sources were one of the important variables in explaining corridor type, but also human presence 

and productivity-related variables played an important role for both sexes (Bastille-Rousseau and 

Wittemyer, 2021).  

Connective movements between the Kunene community-managed area and Etosha 

National Park were relatively rare. About 4 individuals in our sample of 66 used the corridors 

between the western part of Etosha National Park and an adjacent Kunene multi-use community 

area (Figure 3.1). The relatively low connectivity may be due to our sample (lack of individuals 

using both areas); alternatively, it may reflect the historic separation of the area using electric 

fences. Ensuring the connectivity between the two can benefit both elephant populations 

(Bulman et al., 2007; Caughley, 1994; Hanski, 1999). The bottleneck in this connective 

movement could have negative impacts similar to those documented for wildebeest (Morrison 

and Bolger, 2014) and other large mammals with similar space requirements (Crego et al., 2021; 
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Lohay et al., 2022). Areas with higher wildlife protection efforts and lower anthropogenic 

impacts, such as Etosha National Park, could act as a source population on the landscape (Lee 

and Bolger, 2017). Finally, identifying wildlife corridors and infrastructure crossings (Bastille-

Rousseau et al., 2018) can facilitate protection and land use planning efforts to promote 

connectivity and ensure long-term population persistence (Lohay et al., 2022; Morrison and 

Bolger, 2014). 

This study highlights how the structure of the landscape can influence connectivity 

adding valuable pieces of information to understanding the movement behavior of this species 

(Wittemyer et al., 2019). Given the reproductive biology and relatively low population size, 

ensuring the connectivity between protected areas, such as Etosha National Park, and 

surrounding, buffer areas (Kunene region) could be key in ensuring long-term population 

persistence for the elephant populations in the region and could be a case study for other areas 

across Africa amidst the threats facing the species over the next century (Bucchignani et al., 

2018; Gobush et al., 2022; Williams et al., 2021b). 
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Tables and Figures 

Table 3.1: Summary of the unsupervised classification applied to 5 movement metrics of 66 African elephants inhabiting Etosha 
National Park and the Kunene multi-use conservancies area in Northwestern Namibia. 
 

Metrics Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

Weight 1.9658 1.1028 -0.2394 -0.2762 -0.374 0.0761 19.3168 
Degree 2.0242 0.9491 -0.2309 -0.2301 -0.5927 0.3681 2.4292 
Betweenness 1.304 -0.1948 1.9268 -0.1969 -0.0745 1.2165 5.7943 
Speed -0.3027 -0.4018 2.3684 -0.0986 0.6917 0.0987 1.9898 
DotP -0.2971 -0.3189 0.0424 -0.0274 0.5599 0.1499 0.0069 
Proportion of pixels 0.1529 0.1804 0.1345 0.1886 0.0705 0.256 0.0172 
Proportion of 
Individuals 

0.8636 0.9697 0.7576 0.9848 0.5455 1 0.1364 

Intensity of Use high-use high-use low-use low-use low-use medium-
use 

highest-
use 

Corridor Type slow NC fast NC NC slow fast 
        
 NC Non-corridor pixels with average negative Betweenness values  
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Table 3.2: Covariate layers used in the modeling framework and associated data sources. 
 

Layer Names Source 

Elevation and slope SRTM image collection in Google Earth Engine (Jarvis et 
al., 2008) 

Roughness index Calculated using roughness algorithm in QGIS using 
elevation layer as an input  

Global Human Modification 
Index 

gHM layer in Google Earth Engine (Kennedy et al., 2019) 

Percent settlement Derived from (Sirko et al., 2021) 
Distance from water holes Etosha Ecological Institute 
Distance from perennial 
rivers 

Etosha Ecological Institute 

Distance from roads Etosha Ecological Institute 
Distance from towns and 
settlements 

Etosha Ecological Institute 

Distance from wetlands Etosha Ecological Institute 
Normalized difference 
vegetation index 

Landsat 7 and 8 image collection from Google Earth Engine 

Cattle abundance Etosha Ecological Institute 
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Figure 3.1: The study area including Etosha National Park (red outline) and Kunene multi-use 
conservancies area (black outline). Elephant paths from GPS tracking data of 66 wild African 
elephants are color scaled by their betweenness values. High betweenness values (yellow) 
indicate areas with strong connectivity (corridors). The expanded panel shows the area of 
connective movements between Etosha and Kunene. The background is satellite imagery 
provided by Google Satellites. 
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Figure 3.2: Coefficient estimates from the most parsimonious model explaining the variation in 
betweenness (connectivity) on the landscape. The covariates with the highest coefficient values 
tended to be related to water on the landscape.  
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Figure 3.3: The subset of coefficient estimates and associated confidence intervals included in 
the most parsimonious model for males (red) and females (females) evaluating differences 
between the corridor and non-corridor. Landscape features related to water distribution and 
human modification were the strongest predictors of differentiation between the corridor and 
non-corridor areas for both sexes. 
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Figure 3.4: Coefficient estimates and associated confidence intervals included in the most 
parsimonious model for both males and females evaluating differences between fast and slow 
corridors.  
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Figure 3.5: Fastest corridors (red, cluster 7) were unique routes used by elephants with high 
intensity between the waterholes inside Etosha National Park. Once the elephants reached the 
waterholes, movement types switched from fast to slow (green, cluster 1). The background 
imagery is from the Stamen terrain map.  
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Chapter 4: Uncertainty of Asian elephant populations across the range states 

 
 
 

Introduction 

Understanding the state and trend of individual populations is crucial for effective species 

management and conservation efforts for any species of conservation concern (Caughley, 1994; 

Colyvan et al., 2009). The status of Asian elephant populations across their range has been a 

topic of concern and interest for years given the general lack of information on the species. 

Currently, the Asian elephant is classified as an endangered species due to various anthropogenic 

issues that have led to population declines across its range (Williams et al., 2020). It is estimated 

that the global population of wild Asian elephants has plummeted over the past few decades with 

48,323–51,680 individuals speculated to remain in the wild across 13 different range 

countries/states (Menon and Tiwari, 2019). However, the number of extant individuals of Asian 

elephants is highly uncertain, as survey effort, coverage and approaches vary broadly across 

range states, and estimated numbers were not obtained from a robust sampling design and 

statistical framework in many cases.  

Several statistical and design considerations are critical to deriving robust estimates of 

population size/abundance. First, the approach should account for uncertainty in detection (i.e., 

detection probability) to be considered an unbiased estimator (White, 2005). In addition, the 

statistical framework used should account for various sources of uncertainty in 

density/abundance (Jathanna et al., 2015), resulting in estimates with a quantified standard error. 

Furthermore, the survey approach should consider spatial and temporal variability in population 

dynamics, as these factors can significantly impact population estimates. These could be 

addressed using a design-based and/or model-based sampling approach. In a design-based 
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approach, random, systematic, or stratified random sampling can be used to account for variation 

in abundance as necessary (Thomas et al., 2001). In a model-based sampling approach, 

incorporating covariates, such as habitat characteristics and/or environmental variables, can 

enhance the ability of a model to capture these variations and improve the accuracy of the 

abundance estimates (Royle et al., 2005). Ultimately, a comprehensive and rigorous approach 

that addresses both detection uncertainty and ecological factors is essential for obtaining reliable 

population size/abundance estimates. 

The causes of Asian elephant population decline include, but are not limited to, habitat 

degradation resulting in fragmentation and loss, human-elephant conflict, and illegal killings for 

ivory, skin, and meat (Leimgruber et al., 2003; Sampson et al., 2018; Songer et al., 2016; 

Williams et al., 2020). Although the threats facing Asian elephants are clear, population status, 

abundance, and uncertainty around estimates across the species’ range are not. While the cost of 

a monitoring program using abundance as the state variable is relatively higher, having accurate 

estimates/knowledge of population trends and abundance is key to endangered species 

management (Noon et al., 2012; Noon and Mckelvey, 1996). Here we highlight the gaps in the 

current knowledge of population biology for Asian elephants range wide. Our objectives in this 

review are to 1) summarize the state of knowledge on Asian elephant population abundance, 2) 

categorize methods used in survey reports, and 3) estimate the percentage of the extant range of 

Asian elephants with robust population assessments. Finally, we discuss the need and best 

approaches for conducting robust assessments to fill in current knowledge gaps regarding Asian 

elephant distribution and abundance. 
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Method 

We conducted a literature search on Google Scholar using the keywords, “Asian 

elephants”, “Population size”, “Abundance”, and “Density”, focusing on studies published 

between 2000 and 2022. Our literature search identified 880 articles fulfilling these criteria. We 

went through the titles and abstracts of the resulting articles to filter out any studies that did not 

provide original estimates of abundance and/or density and that lacked a description of the 

methodological approach used. In addition, we contacted our partner-network to ask about any 

governmental and non-governmental reports reporting abundance estimates and detailing 

methods used in surveys to ensure the review is as comprehensive as possible, given not all 

reports are available on Google Scholar.  

Following the internal guidelines of the IUCN Asian elephant specialist group for 

categorizing the robustness of surveys (Williams et al., 2020), we categorized the identified 

reports/articles into three tiers: robust, probable, and guest estimates based on sampling and 

analysis methods. To calculate the area covered by the identified survey reports/articles, we 

obtained publicly available shapefiles of the study areas when available or georeferenced and 

digitized from the original articles/reports in QGIS (QGIS Development Team, 2019) when they 

were not. We extracted the year each assessment was conducted and summarized the time since 

the last assessment in years for each area. In each article/report, we determined the effective 

study area in square kilometers (km²). We summarized the area surveyed and the time since the 

last survey for each range state and calculated the percentage of the current estimated distribution 

of Asian elephants (Williams et al., 2020) per range state that had been assessed using a 

statistically robust sampling design and analytical framework. Summary statistics and figures in 
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this review were made in R using packages named ‘ggplot2’ and ‘dplyr’ (R Core Team, 2020; 

Wickham, 2016; Wickham et al., 2020). 

Results  

After assessing the titles and abstract of the literature search for Asian elephant’s 

abundance and density and addition of gray literature, we found 26 articles and 9 governmental 

and non-governmental reports from 2000 to 2022 (Table 4.1) that provided estimates of elephant 

abundance or density, reported the methods used, and provided an area surveyed. Out of the 13 

range states, only 7 had estimated population sizes of their Asian elephant populations using 

robust methods (Table 4.2), with the remainder lacking any quantitative and repeatable survey 

effort. Among the range states that had implemented robust surveys, only China had covered the 

entire range of their Asian elephant population. Furthermore, only 3 countries had conducted 

surveys using a robust sampling and statistical approach in the last 5 years (i.e., since 2018). In 

aggregate, we found that only 4.4 % of the estimated extant range of the Asian elephant had an 

assessment done using a statistically robust approach (Figure 4.1). 

Discussion 

Knowledge of population status (i.e., abundance or density) is fundamental for 

conservation and making management decisions, particularly for endangered species like Asian 

elephants (Williams et al., 2002). However, estimating the abundance of Asian elephant 

populations is costly compared to other state variables such as occupancy because of their 

fragmented distribution, relatively smaller population sizes (Goswami et al., 2007), and large-

ranging behavior resulting in strong differentiation in areas of use over time (Chan et al., 2022; 

Moßbrucker et al., 2016; Noon et al., 2012). Regardless, the current state of knowledge on the 

abundance of Asian elephants is limited, and this review highlights the dire need for population 
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assessments of the species across the range. The population estimates from some of the range 

states with unstable political environments, such as Myanmar, were not based on robust 

approaches and, likely were overestimates to avoid political and public pressure. Furthermore, 

estimates across most of the predicted species’ range were informed guesses. Without clear 

knowledge of the population numbers, we cannot determine the trend in the species' population 

size and distribution, which means managers, policymakers, and other stakeholders cannot take 

informed management actions.  

Information quality and availability of population status and trends varied across the 

range countries. Countries, such as Bangladesh, Myanmar, Nepal, Sri Lanka, Thailand, and 

Vietnam, have not assessed their elephant population using any robust approach. For example, in 

Myanmar, the widely used population abundance information was obtained from an expert 

workshop (Leimgruber and Wemmer, 2004). There had been a call for more robust abundance 

estimation methods in 2004 (Blake and Hedges, 2004), but only a few studies had lived up to this 

call (Goswami et al., 2007; Gray et al., 2014; Hedges et al., 2013; Zhang et al., 2015). This lack 

of action is likely due to difficulties posed by costs for surveys, lack of resources and/or technical 

capabilities and very small population sizes in some areas that make survey challenging (as in 

the case of Vietnam).  

Currently, 7 of 13 range state countries have assessed their Asian elephant populations 

using a robust estimator, but only 3 have conducted such surveys within the last five years. The 

need to expand the number of populations and range countries/states undertaking robust surveys 

is critical. Asian elephants pose a unique challenge to study given the habitat they are primarily 

found in (i.e., disturbed forest with thick understory such as bamboo). Coupled with low density, 

such challenges can result in extremely low detection probability estimates for direct survey 
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methods (e.g., camera traps), leading to the risk of underestimation of population size. Similarly, 

distance sampling with direct counts likely violates the assumption that objects are detected at 

their initial locations (Buckland et al., 2015) given avoidance by elephants related to the habitat 

conditions and heightened sense of smell and hearing of the species. As such, appropriate 

techniques for robust surveys are relatively few. However, spatial mark and recapture approaches 

using fecal DNA (Hedges et al., 2013) and photographic capture-recapture methods where 

feasible (Goswami et al., 2007) have shown promising results in estimating abundance for Asian 

elephants. Methods using non-invasive SNP genotyping had been successfully used in 

nationwide efforts of estimating the abundance and density of African forest elephants in Gabon 

(Laguardia et al., 2021) and such protocols are recommended by CITES (Thomas et al., 2001). 

With the declining cost of processing DNA samples and the technology being more readily 

accessible across the world, we encourage researchers and governments across Asian elephant 

range states to explore this approach to estimate population sizes with more accuracy. 



 90 

Tables and Figures 

Table 4.1: List of articles and reports (both governmental and non-governmental) reviewed in this study, ordered by year of 
publication.  
 

Author Title Country 
Sampling 

Method 

Type of 

Study 

Estimation 

Class 

Hedges et al_2005 

Distribution, status, and 
conservation needs of 
Asian elephants (Elephas 
maximus) in Lampung 
Province, Sumatra, 
Indonesia  Indonesia 

Distance 
Sampling 

Peer-
reviewed Robust 

Goswami et al_2007 

Application of 
photographic capture-
recapture modeling to 
estimate demographic 
parameters for male Asian 
elephants  India 

photographic 
capture-
recapture 

Peer-
reviewed Robust 

Varma et al_2008 

The status and conservation 
of the Asian 
elephant (Elephas 
maximus) in Cat Tien 
National Park, Vietnam Vietnam block survey 

Peer-
reviewed Probable 

DNPWC/MoFSC/GoN_2009  

Elephant Conservation 
Action Plan for Nepal - 
2009  Nepal 

expert surveys 
and count report Guestimate 

Alfred et al_2010 

Density and population 
estimation of the Bornean 
elephant (Elephas maximus 
borneensis) in Sabah.  

Sabah 
Malaysia 

Distance 
Sampling 

Peer-
reviewed Robust 
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Kumarguru et al_2010 

Estimating Asian Elephant 
Population in Dindugul, 
Kodaikanal India Dung transects 

Peer-
reviewed Probable 

Alfred et al_2011 
Current Status of Asian 
Elephants in Borneo 

Sabah 
Malaysia 

referenced 
Alfred et al 2010 

Peer-
reviewed Robust 

Azmi and Gunaryadi_2011 
Current Status of Asian 
elephants in Indonesia Indonesia 

no estimation 
method provided 

Peer-
reviewed Guestimate 

Baskara et al._2011 
Current Status of Asian 
elephants in India India 

count and 
synchronized 
elephant census 

Peer-
reviewed Probable 

Cao Thi Ly_2011 
Current Status of Asian 
elephants in Vietnam Vietnam 

no estimation 
method provided 

Peer-
reviewed Guestimate 

Fernando et al_2011 
Current Status of Asian 
elephants in Sri Lanka Sri Lanka waterhole count  

Peer-
reviewed Guestimate 

Islam et al_2011 
Current Status of Asian 
Elephants in Bangladesh Bangladesh 

dung counts, 
interviews, 
sightings 

Peer-
reviewed Probable 

Jigme and Williams_2011 
Current Status of Asian 
Elephants in Bhutan Bhutan 

dung counts and 
line transact 

Peer-
reviewed Robust 

Khounboline_2011 
Current Status of Asian 
Elephants in Laos Laos 

no estimation 
method provided 

Peer-
reviewed Guestimate 

Leimgruber et al_2011 
Current Status of Asian 
Elephants in Myanmar Myanmar 

expert surveys 
and count 

Peer-
reviewed Guestimate 

Maltby and Bourchier_2011 
Current Status of Asian 
Elephants in Cambodia Cambodia 

no estimation 
method provided 

Peer-
reviewed Guestimate 

Pradhan et al_2011 
Current Status of Asian 
Elephants in Nepal Nepal 

no estimation 
method provided 

Peer-
reviewed Guestimate 

Saaban et al_2011 

Current Status of Asian 
Elephants in Peninsular 
Malaysia 

Peninsular 
Malaysia 

dung counts and 
line transact 

Peer-
reviewed Guestimate 

Zhang 2011 
Current Status of Asian 
Elephants in China China 

dung counts and 
line transact 

Peer-
reviewed Robust 
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Hedges et al_2013 

Accuracy, precision, and 
cost-effectiveness of 
conventional dung density 
and fecal DNA-based 
survey methods to estimate 
Asian elephant (Elephas 
maximus) population size 
and structure  Laos 

fecal-DNA based 
survey 

Peer-
reviewed Robust 

MNREGM/DWNPM_2013 

National Elephant 
Conservation Action Plan: 
Blueprint to Save 
Malaysian Elephants 

Peninsular 
Malaysia 

Distance 
Sampling and 
dung count report Robust 

Gray et al_2014 

Population size estimation 
of an Asian elephant 
population in eastern 
Cambodia through non-
invasive mark-recapture 
sampling  Cambodia 

non-invasive 
mark-recapture 

Peer-
reviewed Robust 

Jathannat et al_2015 

Reliable monitoring of 
elephant populations in the 
forests of India: Analytical 
and practical considerations  India 

Distance 
Sampling 

Peer-
reviewed Robust 

Madhusudan et al_2015 

Distribution, relative 
abundance, and 
conservation status of 
Asian elephants in 
Karnataka, southern India  India 

line transects, 
HEC records, 
media reports, 
sightings, signs, 
and interviews 

Peer-
reviewed Probable 

Zhang et al_2015 

Asian Elephants in China: 
Estimating Population Size 
and Evaluating Habitat 
Suitability China 

DNA spatial 
capture-
recapture 

Peer-
reviewed Robust 

AsERSN_2017 
Asian elephants range 
states meeting final report 13 range countries report Varied 
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Sukumar_2017 
Synchronized Elephant 
Population Estimation India India 

direct count 
method report Probable 

FD_2018 

Myanmar Elephant 
Conservation Action Plan 
(MECAP): 2018-2027 Myanmar expert interviews report Guestimate 

MOEF_2018 

Bangladesh Elephant 
Conservation Action Plan 
(2018-2027)  Bangladesh varied report Probable 

NCD_2018 
National Elephant Survey 
Report Bhutan 

photographic 
capture-
recapture report Robust 

Fernando et al_2019 

First country-wide survey 
of the Endangered Asian 
elephant: towards better 
conservation and 
management in Sri Lanka  Sri Lanka 

interview 
surveys 

Peer-
reviewed Probable 

Goswami et al_2019 

Towards a reliable 
assessment of Asian 
elephant population 
parameters: the application 
of photographic spatial 
capture-recapture sampling 
in a priority floodplain 
ecosystem  India 

photographic 
capture-
recapture 

Peer-
reviewed Robust 

Menon and Tiwari_2019 

Population Status of Asian 
Elephants Elephas 
maximus and key threats 

13 range 
countries 

dung counts, 
interviews, 
sightings 

Peer-
reviewed Guestimate 

GDANCP_2020 

Asian elephant 
conservation action plan for 
Cambodia Cambodia  report Robust 

Sabah WD_2020 
Bornean Elephant Action 
Plan for Sabah 2020-2029  

Sabah 
Malaysia 

expert 
knowledge report Guestimate 
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Table 4.2: A breakdown of the sampled area using robust methods by country with respect to the 
current distribution range (Williams et al. 2020). The percentage of the distribution range 
sampled using robust methods is 4.4%.  
 

Country Distribution Range 

(km2) 

Robust Sampling 

Covered (km2) 

Percent 

Sampled 

Bangladesh 14340 0 0.0% 

Bhutan 2342 800 34.2% 

Cambodia 19485 2225 11.4% 

China 4548 5580 122.7% 

India 250005 3080 1.2% 

Indonesia 45515 4802 10.6% 

Laos 27433 1988 7.2% 

Malaysia 25529 6555 25.7% 

Myanmar 78571 0 0.0% 

Nepal 12646 0 0.0% 

Sri Lanka 36432 0 0.0% 

Thailand 52916 0 0.0% 

Vietnam 629 0 0.0% 
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Figure 4.1: Showing only 4.4% of the elephant distribution range were assessed for population 
status using statistically robust methods since 2000.   



 96 

References 

Blake, S., Hedges, S., 2004. Sinking the Flagship: The Case of Forest Elephants in Asia and 
Africa, Biology. 

Buckland, S.T., Rexstad, E.A., Marques, T.A., Oedekoven, C.S., others, 2015. Distance 
sampling: methods and applications. Springer. 

Caughley, G., 1994. Directions in Conservation Biology Author ( s ): Graeme Caughley Source : 
Journal of Animal Ecology , Vol . 63 , No . 2 ( Apr ., 1994 ), pp . 215-244 Published by : 
British Ecological Society Stable URL : https://www.jstor.org/stable/5542 REFERENCES 
Linke. Journal of Animal Ecology 63, 215–244. 

Chan, A.N., Wittemyer, G., McEvoy, J., Williams, A.C., Cox, N., Soe, P., Grindley, M., Shwe, 
N.M., Chit, A.M., Oo, Z.M., Leimgruber, P., 2022. Landscape characteristics influence 
ranging behavior of Asian elephants at the human-wildlands interface in Myanmar. Mov 
Ecol 10, 1–15. https://doi.org/10.1186/s40462-022-00304-x 

Colyvan, M., Linquist, S., Grey, W., Griffiths, P.E., Odenbaugh, J., Possingham, H.P., 2009. 
Philosophical Issues in Ecology: Recent Trends and Future Directions. 

Goswami, V.R., Madhusudan, M.D., Karanth, K.U., 2007. Application of photographic capture-
recapture modelling to estimate demographic parameters for male Asian elephants. Anim 
Conserv 10, 391–399. https://doi.org/10.1111/j.1469-1795.2007.00124.x 

Gray, T.N.E., Vidya, T.N.C., Potdar, S., Bharti, D.K., Sovanna, P., 2014. Population size 
estimation of an Asian elephant population in eastern Cambodia through non-invasive 
mark-recapture sampling. CONSERVATION GENETICS 15, 803–810. 
https://doi.org/10.1007/s10592-014-0579-y 

Hedges, S., Johnson, A., Ahlering, M., Tyson, M., Eggert, L.S., 2013. Accuracy, precision, and 
cost-effectiveness of conventional dung density and fecal DNA based survey methods to 
estimate Asian elephant (Elephas maximus) population size and structure. Biol Conserv 
159, 101–108. https://doi.org/10.1016/j.biocon.2012.12.010 

Jathanna, D., Karanth, K.U., Kumar, N.S., Goswami, V.R., Vasudev, D., Karanth, K.K., 2015. 
Reliable monitoring of elephant populations in the forests of India: Analytical and practical 
considerations. Biol Conserv 187, 212–220. https://doi.org/10.1016/j.biocon.2015.04.030 

Laguardia, A., Bourgeois, S., Strindberg, S., Gobush, K.S., Abitsi, G., Bikang Bi Ateme, H.G., 
Ebouta, F., Fay, J.M., Gopalaswamy, A.M., Maisels, F., Simira Banga Daouda, E.L.F., 
White, L.J.T., Stokes, E.J., 2021. Nationwide abundance and distribution of African forest 
elephants across Gabon using non-invasive SNP genotyping. Glob Ecol Conserv 32. 
https://doi.org/10.1016/j.gecco.2021.e01894 

Leimgruber, P., Gagnon, J.B., Wemmer, C., Kelly, D.S., Songer, M.A., Selig, E.R., 2003. 
Fragmentation of Asia’s remaining wildlands: implications for Asian elephant conservation. 
Anim Conserv 6, 347–359. https://doi.org/10.1017/S1367943003003421 

Leimgruber, P., Wemmer, C., 2004. National Elephant Symposium and Workshop. Report to the 
USFWS and the Myanmar Forest Department. 

Menon, V., Tiwari, S.K.R., 2019. Population status of Asian elephants Elephas maximus and key 
threats. International Zoo Yearbook 53, 17–30. https://doi.org/10.1111/izy.12247 

Moßbrucker, A.M., Fleming, C.H., Imron, M.A., Pudyatmoko, S., Sumardi, 2016. AKDEC home 
range size and habitat selection of Sumatran elephants. Wildlife Research 43, 566–575. 
https://doi.org/10.1071/WR16069 



 97 

Noon, B.R., Bailey, L.L., Sisk, T.D., Mckelvey, K.S., 2012. Efficient Species-Level Monitoring 
at the Landscape Scale. Conservation Biology 26, 432–441. https://doi.org/10.1111/j.1523-
1739.2012.01855.x 

Noon, B.R., Mckelvey, K.S., 1996. MANAGEMENT OF THE SPOTTED OWL: A Case History 
in Conservation Biology, Annu. Rev. Ecol. Syst. 

QGIS Development Team, 2019. QGIS Geographic Information System. 
R Core Team, 2020. R: A Language and Environment for Statistical Computing. 
Royle, J.A., Nichols, J.D., Kéry, M., 2005. Modelling occurrence and abundance of species when 

detection is imperfect. Oikos 110, 353–359. https://doi.org/10.1111/j.0030-
1299.2005.13534.x 

Sampson, C., McEvoy, J., Oo, Z.M., Chit, A.M., Chan, A.N., Tonkyn, D., Soe, P., Songer, M., 
Williams, A.C., Reisinger, K., Wittemyer, G., Leimgruber, P., 2018. New elephant crisis in 
Asia - Early warning signs from Myanmar. PLoS One 13, 1–13. 
https://doi.org/10.1371/journal.pone.0194113 

Songer, M., Aung, M., Allendorf, T.D., Calabrese, J.M., Leimgruber, P., 2016. Drivers of change 
in Myanmar’s wild elephant distribution. Trop Conserv Sci 9. 
https://doi.org/10.1177/1940082916673749 

Thomas, L., Beyers, R., Hart, J., Buckland, S., 2001. Recommendations for a survey design for 
the central African forest region [WWW Document]. CITES. 

White, G.C., 2005. Correcting wildlife counts using detection probabilities. Wildlife Research 
32, 211–216. 

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. 
Wickham, H., François, R., Henry, L., Müller, K., 2020. dplyr: A Grammar of Data 

Manipulation. Cran. 
Williams, B.K., Nichols, J.D., Conroy, M.J., 2002. Analysis and management of animal 

populations. Academic press. 
Williams, C., Tiwari, S.K., Goswami, V.R., de Silva, S., Kumar, A., Baskaran, N., Yoganand, K., 

Menon, V., 2020. Elephas maximus. The IUCN Red List of Threatened Species 2020. 
Zhang, L., Dong, L., Lin, L., Feng, L., Yan, F., Wang, L., Guo, X., Luo, A., 2015. Asian 

Elephants in China: Estimating Population Size and Evaluating Habitat Suitability. PLoS 
One 10. https://doi.org/10.1371/journal.pone.0124834 

 



 98 

APPENDIX 1: Supplementary materials for Chapter 2 

 
 
 

Selection Coefficients at the individual step scale  

 

 
Figure S1.1: Beta selection coefficient for distance to natural vegetation estimated from 
integrated step selection analysis.  
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Figure S1.2: Beta selection coefficient for distance to village estimated from integrated step 
selection analysis.  
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Figure S1.3: Beta selection coefficient for terrain roughness estimated from integrated step 
selection analysis.  
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Figure S1.4: Beta selection coefficient for distance to road estimated from integrated step 
selection analysis.  
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Figure S1.5: Beta selection coefficient for distance to surface water estimated from integrated 
step selection analysis.  
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Selection coefficients estimated at range scale 

 

Figure S1.6: Beta selection coefficient for distance to village estimated from third-order resource 
selection analysis. 
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Figure S1.7: Beta selection coefficient for terrain roughness estimated from third-order resource 
selection analysis. 



 105 

APPENDIX 2: Supplementary materials for Chapter 3 

 
 
 
Table S2.1: Model selection table evaluating environmental features explaining the most 
variation in the connectivity of a pixel (betweenness value). All the models have spatial auto-
covariate term to account for unexplained spatial autocorrelations in the residual.  
 

Model 

names 
K BIC 

Delta 

BIC 

Model 

Lik. 

BIC 

Wt. 
LL 

Cum. 

Weight 

Global 13.00 4456679.04 0.00 1.00 1.00 -2228250.76 1.00 

Geographic 8.00 4458008.57 1329.53 0.00 0.00 -2228949.66 1.00 

Human 7.00 4459771.76 3092.72 0.00 0.00 -2229838.09 1.00 

Water 7.00 4459869.15 3190.11 0.00 0.00 -2229886.78 1.00 
Environmen
t 

9.00 4459896.17 3217.13 0.00 0.00 -2229886.64 1.00 
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Table S2.2.1: Model selection table of the candidate model set evaluating the most parsimonious 
model to explain the difference between corridor v. non corridor pixels for male elephants in the 
study.  
 

Model 

names 

K BIC Delta 

BIC 

Model 

Lik. 

BIC 

Wt. 

LL Cum. 

Weight 

Global 14 77953.92 0.00 1.00 0.99 -38897.34 0.99 

Water 6 77964.50 10.57 0.01 0.01 -38948.12 1.00 

Environment 8 77987.14 33.22 0.00 0.00 -38948.07 1.00 

Human 8 78013.55 59.62 0.00 0.00 -38961.27 1.00 

Geographic 7 78039.63 85.71 0.00 0.00 -38980.00 1.00 

 
Table S2.2.2: Model selection table of the candidate model set evaluating the most parsimonious 
model to explain the difference between corridor v. non corridor pixels for female elephants in 
the study. 
 

Model names K BIC Delta 

BIC 

Model 

Lik. 

BIC Wt. LL Cum. 

Weight 

Global 14.00 144716.68 0.00 1.00 1.00 -72274.30 1.00 

Geographic 7.00 144835.29 118.61 0.00 0.00 -72375.62 1.00 

Environment 8.00 144972.26 255.58 0.00 0.00 -72438.10 1.00 

Human 8.00 144980.38 263.70 0.00 0.00 -72442.16 1.00 

Water 6.00 145013.74 297.06 0.00 0.00 -72470.85 1.00 

  



 107 

Table S2.3.1: Model selection table of the candidate model set evaluating the most parsimonious 
model to explain the difference between fast and slow corridor types for male elephants in the 
study. 
 

Model 

names 

K BIC Delta 

BIC 

Model 

Lik. 

BIC Wt. LL Cum. 

Weight 

Global 14.00 11590.17 0.00 1.00 1.00 -5727.12 1.00 

Water 6.00 11609.23 19.06 0.00 0.00 -5775.49 1.00 

Environment 8.00 11622.35 32.18 0.00 0.00 -5772.34 1.00 

Human 8.00 11786.23 196.06 0.00 0.00 -5854.28 1.00 

Geographic 7.00 11862.67 272.50 0.00 0.00 -5897.36 1.00 

 
Table S2.3.2: Model selection table of the candidate model set evaluating the most parsimonious 
model to explain the difference between fast and slow corridor types for female elephants in the 
study. 
 

Model 

names 

K BIC Delta 

BIC 

Model 

Lik. 

BIC Wt. LL Cum. 

Weight 

Water 6.00 18022.90 0.00 1.00 0.92 -8981.34 0.92 

Environment 8.00 18027.67 4.77 0.09 0.08 -8973.69 1.00 

Geographic 7.00 18046.80 23.90 0.00 0.00 -8988.27 1.00 

Human 8.00 18049.81 26.92 0.00 0.00 -8984.76 1.00 

Global 14.00 18064.34 41.45 0.00 0.00 -8961.92 1.00 
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Figure S2.1: Subset of coefficient estimates, and associated confidence intervals from the best-
performing model evaluating differences between high-use and low-use pixels for both males 
and females. The area under the curve (AUC) was 0.7378 and 0.6704 for males and females, 
respectively. Model structure was similar. High-use pixels on the landscape were negatively 
correlated with distance from waterholes, distance from towns and settlements, and cattle 
abundance for both male and female elephants, while slope and max NDVI values are positively 
associated with high-use pixels. Additionally, variation in productivity negatively impacts the use 
intensity of female elephants (i.e., the use intensity of a given pixel was low when it experienced 
high variability in productivity). 
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Figure S2.2: Subset of coefficient estimates, and associated confidence intervals included in the 
best-performing model for both males and females evaluating differences between hubs and 
corridors pixels. For male elephants the global model was the most parsimonious model with an 
AUC of 0.7891, while the environment model, containing variables describing distance from 
water sources and productivity metrics, had the lowest BIC value and AUC value of 0.7336 for 
females. All the covariates for both males and females behave similarly. Distance from wetlands, 
distance from perennial rivers, and max NDVI were positively correlated with hub pixels, while 
the distance from waterholes and coefficient of variation of NDVI are correlated with corridor 
pixels. In general, pixels with high productivity closer to waterholes are likely to be hubs for 
elephants.  
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Figure S2.3: Coefficient estimates, and associated confidence intervals included in the best-
performing model (the water model) for both males and females evaluating differences between 
the highest-use and the second highest-use clusters. The water model was the best-performing 
model for both male and female datasets with AUC values of 0.999 and 0.995, respectively. 
Distance from waterholes and distance from perennial rivers were positively correlated with the 
highest-use clusters for females, while the distance from wetlands was negatively correlated. 
Both cluster types were similar for males. 


