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FOREWORD

This report is No. 6 of a series written for the Diffusion
Project presently being conducted by the Colorado Agricultural
and Mechanical College for the Office of Naval Research, The
experimental phase of this project is being carried out in a wind-
tunnel at the Fluid Mechanics Laboratory of the College. The
project is under the general supervision of Dr, M. Lo Albertsony
Head of Fluid Mechanics Research of the Civil Engineering Department,
To Dr. Mc¢ L, Albertson, and to Dr. D, F. Peterson, Head of
the Civil Engineering Department and Chief of the Civil Engineering
Section of the Experiment Station, as well as to Professor T. H,
Evans, Dean of the Engineering School and Chairman of the Engineering
Division of the Experiment Station, the writer wants to express
his appreciation for their kind interest in the present work.
The writer also wishes to thank the Multigraph Office of the

College for the able service it has rendered.



Atmospheric Diffusion from a Line or Point Somrce
of Mass Above the Ground
by
Chia=-Shun Yih
Abstract
Under the assumption that the wind velocity and the
diffusivities vary as certain power functions of height, the
mass distribution in the atmosphere resulting from a line or
point source above the ground is calculated It is obvious that
the result obtained has a direct bearing on the problem of smog
control.
1. Atmospheric Diffusion from a Line Source of llass
Above the Ground
Supposing that a horizontal line source of mass with strength G
(mass per length per unit time) is situated at a height. h above the ground,
and that a wind is blowing horizontally in a direction normal to the length
of the line source, it is proposed to calculate the mass distribution in the
atmosphere under the assumption that the wind velocity and the vertical
diffusivity vary as power functions of height.
One chooses for convenience the wind velocity u(h) at the height h

as the reference velocity. The wind velocity at any height y can be

m
u = ulh)(¥)
Similarly, using D to denote the vertical diffusivity, one has
D =D(h)H"

where D(h) is the value of D at the height h,
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With the origin chosen on the ground directly under the source, the

diffusion equation is

G~
u %" = (D 9—)
% dy\" dy
where ¢ is the concentration and x 1is measured in the downwind
direction. Denoting the ambient concentration by c¢,, one can form

the dimensionless parameter

and use © instead of ¢ in (1),

The quantity
b w(h)

D(h)

can be considered as the Reynolds number at h and will be denoted by

R(h)e Choosing the new variables

EF?(h)h‘ h =%

(1) can be written as

q"ﬂ g% 7 aq(n drl)

One now proneeds to solve this equation with the boundary conditions
(a) e 3 0 as n - 0
(b) é._Q =0 for n = 0 (impermeable ground)
n
(e) Q@ —=» 0 as E O
()e—ch f‘)q)fo §=0
where 6'(;\) is the Dirac measure defined as follows
©,(n)=0for n#1
20
J.o&Mmdn =1

The condition (d) is obtained by considering the following equation of
continuity in integral form:

j:ou(c “Co)dy = (5

which in terms of the new variables assumes the form

AN gl - N
Jo N"ean = ghath)

@)

(2)
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Since at €=O, 6 = 0 everywhere except at n= 1, the last
equation shows that © is indeed a multiple of 6, (n)at € = 0, as

required by (d)e

Assuming
e = X(§)Y(n)
and using primes to denote differentiation, one has, upon substitution
into (2)’ ! . 1 I
BT AT R
X ATY
which gives —A2
T
: (3)
i 2 i
"Y') + AR =0 )
where A 1is real because of (c)e It is (&) that will be investigated in
detail.
Substituting

i P\ ™
f=ntY @¢=n" (5)
in (L), one finds that if
p=(-1)/2 q=(m-n+2)/2
(L) assumes the following form
o 2 #
+ 4 + (0"~ f=0 (6)
f'4 & +(e*- )
where
o =1 aig| |9]= I(h=1) /(m-n +2.)!
and where the primes denote differentiation with respect to ¢
The solutions of (6) are Bessel functions of the 4 -th order:

J.h)l (BQ') ) \L‘); ( %‘)

For easy refecrence one will neme
/ B —P Q. -— ‘P E.
\h N WI‘/\ a- ) \/2 1 J—IJI(O‘ )
respectively the first and the second solution,

The boundary conditions will now be investigated. Since asymptotically



i

the Bessel functions are of the order of

|

of =N
both solutions will be of the order of

T (p+ =
for large W + Since

P+ 5 =z(m+n)

is always positive ( m and n being always positive), the condition
at Q = @ is always satisfied. For the boundary condition at r\ =0

one notes that for small T] and a non-entire 1) 5

3 i q’ > I'\} "' ’
Jﬂl('oii') ”\]IW ("?-'“ S ﬂq ‘ n’l Jh}i g

With only positive values of Q con31dered (In practice s always

positive), - .-
gl ==z{-n

and one sees that in order that & and its derivative with respect to
[} are bounded at 1"‘: Oy the first or the second solution should be
used depending on whether p 1s positive or negative. Take for instance
the case when p 1is positive, the first term in the first solution is a

constant,; and the second term is of the order of qzq-rp

» Since Z2q+p-)
:( 2m—n+1 ) /2 is always positive in practice, one will consider only
positive values of this quantity. For such values (b) is then satisfied.
The second solution is excluded because it is not bounded at n= O .
Similarly if p is negative it can be easily shown that the second
solution should be used. The first solution is excluded because its
derivative becomes infinite at n =( + For convenience of exposition,

one will simply denote the solution to be used by Y = !‘]-PJ ) (g-) >
where -\) is positive or negative depending on whether p is positive or

negative.

It remains to satisfy (d)« The expansion formula to be used is



s
due to MacRobert (1931)

f) = crda’j f(p) J\y T @) Jm (T¢)pdp (8)

Vhere the value of «x (real) must be greater than -1, This condition
is satisfied by  or -4, since in all practical cases -) is less
than 1.

In the present investigation one seeks a density function g ( )
such that

() —f (Tg((T PJ_J(q’rIQ.)dcr (9)

~ EA5T i
Fan) =), og() Jo (0N de (9)
Since the argument of the Bessel function is not G 1y but & , it

or

is necessary to transform & (n) to & .@) . For this purpose one
notes that

S Sman =759 T5mde =/ 8¢ =]
a1 =9 &,(9)

Then from (9) and (8)

Q59 =[F gy d)de =[Fdr[ 5(0) ] d) Jylp) p e

and by comparison = J:’q,o‘ J(@) Jy(@ o) da

9(0) =qJu(a)

The solution is therefore

&= fqe”‘ *Jutd) \”)(G"Y)Jdo' (10)

It should be remarked that although the integral in (9) is not

so that

convergent, the limit of the integral in (10) as § - 0 4> conver-
ges everywhere to zero for l] 4E 1, and it is as the limit of the in-
tegral in (10) that the one in (9) should be considered. The proof

is rather lengthy. Suffice it here to cite the much simpler and

analogous case of the Fourier integral. The integral
&A\
J[ Cos ¢ PdT (11)

is obviously not convergent for any value of }3 s but }he integral

l' _—— (12)
f e’ coad(sdcr 5 43; =~ o



B
converges everywhere to zero as t > 0 except at 0 = O It can be
easily shown that the limit is actually the Dirac measure S i {7) °
When the integral in (11) is used, it should always be understood to
mean the limit of that in (12).

v

2, #Atmospheric Diffusion from a Point Source

of Mass Above the Ground

Supposing that a point source of mass with strength G (mass
per unit time) is situated at a height h above the ground, and
that a wind is blowing horizontally, it is proposed to calculate
the mass distribution in the atmosphere on the assumption that the
wind velocity and the diffusivities vary as power functions of height,
the power for the wind velocity and the lateral diffusivity being the
same. Concerning the equality of the power of u and that of the
lateral diffusivity E , reference is made to the works of De R. Davies,
See, for instance, Davies (1950).

One chooses the projection of the point source on the ground as the
origin, and measures x, ¥y, and z respectively in the downwind,

vertical, and the cross-wind direction. The expressions for u and
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for D being the same as before, one has in addition
T = E (h) ™
E =EMiL)

where E(h) is the value of E at the height h. Retaining the

meanings of O, gg » | » and R(h), and writing
h 2 ; -
gﬁ =0 :B‘?)
\ \ VN 1)
the diffusion equation is :
m O@ &> I ni_o _(_:5
! “"‘Fi(l rr Bl ey (13)

The boundary conditions are

(a) @ > 0 as by =% .40
d e

(b) ‘a‘*;:t =0 for N = 0

(¢) & —> 0 as g -»@®

(d) é@« O for § = 0
o5

(e) © = 0 as B —>@
%u ('\0
(£) O 3ot & =
where 6"0( ;7 §) is the Dirac measure defined as follows

$10(18) =0 for (R 8)# (10)

xR 0
S o hSidnas = 1
It should%e obvliLous from the definition that I 6,.0( K ‘3) = 6,0 w 5‘). The

explanation for (f) is the same as for (d) in the previous section.

Assuming
g = X{8) Y.(n) 209
one finds that the fundamental solution to be used is

(_? /\ o )gq ]\)(U n‘?,) coS e

whare all symbols already employed have their meanings as before ( in
particular -\) is positive or negative depending on whether P is positive
or negative), and where M is real in view of (e)e The conditions (a), (b),
(d), and (e) being satisfied ( For the satisfaction of (a) and (b), the
arguments are the same as in the previous section ), one proceeds to demand

tha satisfaction of (¢) and (f).
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- -
Remembering (p =111, one has, as before
i

A 1
o in, g5) = q 0. 0(¢)v)
The Fourier-Bessel integral formula to be used is

{00.9) =+ \fos,usd/xj J-‘)(d do- )ct):pb’adfp ) T (TP) PP (ak)
To satisfy (f), one seeks a weight function F (g, M) such that

8, o(.q,g-) :j’o cos,u.sd,ufacr F(o',/a) rZ-PJV(UQQ) do
or

QT76,0(0.9) =q 6,,(08) =/cosusauf T F (e 4 J, (cp)de s

But this is equal to
"J C°°“3d//-f<rjv(0¢ dﬂ j q Ol P.¥) cos,uéfJg(o*p)Pdde

--L- coaﬂsdﬁfgq’\]—vcr)\]_}vd))do*
Bycomparison,

Faou) = & 390 )
and the solution is i
6= ,T Qf f = e M)gJ‘J\;(O") J,, (T®)cos Sdg-du (a7)
As before, the integral in (15) should be considered as the limit of
that in (17), as % —» 0.
The solution given in (17) can be writtien, in virtue of (12):

6=wg) qf, L e " Hedymdyonde a8
from which it is obvious that (c) is satisfied.

3, General Remark
It is hoped that the results given in this paper will play a role

in specifying the location of smog~causing factories; urban or suburban,
and the height of their chimneys. They should be so specified that the smog
concentration at any part of the city calculated by the formulas given in this

paper is below a certain harmless amount.
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