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f 'OREWORD 

This report is No. 6 of a series written for the Diffusion 

Project presently being conducted by the Colorado Agricultural 

and 1-'echanical College for the Office of Naval Researcho The 

experimental phase of this project is being carried out in a Hind-

tunnel at the Fluid Mechanics Laboratory of the Collegeo The 

project is under the general supervision of Dro M,, Lo Albertson, 

Head of Fluid Mechanics Research of the Civil Engineering Departmento 

To Dr~ M, L~ Albertson, and to DrQ Do Fo Peterson, Head of 

the Civil Engineering Department and Chief of the Civil Engineering 

Section of the Experiment station, as well as to Professor T. Hi 

Evans, Dean of the Engineering School and Chairman of the Engineering 

Division of the Experiment Station, the writer wants to express 

his appreciation for their kind interest in the present worko 

The writer also wishes to thank the Multigraph Office of the 

College for the able service it has renderedo 



Atmospheri c Diffusion from a Line or Point Sam.rce 

of Mass Above the Ground 
by 

Chia-Shun Yih 

Abstract 

Under the assumption that the wind velocity and the 

diffusivities vary as certain power functions of height, the 

mass distribution in the atmosphere resulting from a line or 

point source above the ground is calculatede It is obvious that 

the result obtained has a direct bearing on the problem of smog 

control .. 

l. Atmospheric Di ffusion from a Line Source of Mass 

Above the Ground 

Supposing that a horizontal line source ot mass with strength G 

(mass per length per unit time) is situated at a height .. h above the ground, 

and that a wind is blowing horizontally in a direction normal to the length 

of the line source, it is proposed to calculate the mass distribution in the 

atmosphere under the assumption that the wind velocity and the vertical 

diffusivity vary as power functions of height. 

One chooses for convenience the wind velocity u(h) at the height h 

as t he reference velocityg The wind velocity at any height y can be 

written as 
u 

Similarly, using D to denote the vertical diffusivity, one has 

where D(h) i s the value of D at t he he i ght h. 

~~AssocT"a-E'eProfessor , Department of Civil En~ineering, Colorado Agr icultural 
and Me chanical Coll ege . At present on l eave at the University of Nancy, 
Nancy, Fr ance . 
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With the origin chosen on the ground directly under the source, the 

diffusion equation is 

where c is the concentration and x is measured in the downwind 

directionn Denoting the ambient concentration by c0 , one can form 

the dimensionless parameter 

and use e instead of 

The quantity 

e = 
c in (l)o 

h u(h) 
D(h) 

c-Ca 
Co 

can be considered as the Reynolds number at h and wil.l be denoted by 

R (h).. Choosing the new variables 

' -= ~{h) * 
(1) can be written as 

One now pro~eeds to solve this equation ,;·d.th the boundary conditions 

where 

as 

for t"\ ::: 0 (impermeable ground) 

(a) 9 ~ 0 

(b) a~ _ o 
a t"1 

(c) e ~ 0 as 

( d) e = hG I )cS,t~)f or cc> u \-. 
8, ( ") is the Dirac measure defined as follows 

S 1 (f1) =O for ~ f- l 

]
0

00 

b J ~) d 't = 1 
The condition ( d) is obt ained by considering the folloFing equation of 

continuity in integral form: 

}
0

00
v.(c-co)dy = G 

which in terms of the neu variables assumes the form 

G 
- c:oh l-l(h) 

(1) 

(2) 
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Since I at f == o, 0 -== 0 everywhere except at ~ =- 1., the lm.st 

equation shows that e is indeed a multiple of 61 ,ri) at 5 = o, as 

required by (d)o 

Assuming 
e = X(~)Y(f1) 

and using primes to denote differentiation, one has, upon substitution 

into (2), 

which gives 

X' 
)( 

X 
( t) 1, y I)' + A 21'\ ty} y : 0 

(3) 

(4) 

where ;\ is real because of (c)c It is (4 ) that will be investigated in 

detailo 

Substituting 

(S) 

in (4), one finds that if 

p = (n -- 1) /2 q = ( rn - h + 2) / 2 
(4) assumes the following form 

f I I f I 2 ,)2. 
+¢- +(a- - T>f=.o (6) 

where 

a- == \ A/'t. I I .JI =- l(n-1) /(111 -h +2-) I 
and rhere the primes denote diff er entiation with respect to <P • 
The solutions of (6) are Bessel functions of the -v- th order: 

J" ~) tvl ( a~ , J,i>l ( -ffe-) 
For easy reference one trill name 

\/ - -PJ (~-) y· :: -PJ (~) 
I 1 - fl I .) / (J- l 2 'l -, v I <r 

respectively the first and t he second solution. 

The boundary conditions will now be investigated. Since asymptotically 
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the Bessel functions are of the order of 

cp-f ~ ~-t 
both solutions will be of the order of 

~ -(p +} 
for large 11 Since 

p + -}- ~ ¼(tn +h) 
is always positive ( m and n being always positive) 9 the condition 

at ~ == oo is always satisfied9 For the boundary condition at t'\ =· O 

one notes that for small ~ and a non-entire -y j 

J-JI ( ~-) ::: Jy/ ( ~ q,) ~ ~ q_j~/ I J_l\l) (-t ) ::: J~l,)I(~):: q- '7, /V/ 
With only positive values of <( considered (In practice q, is alwa;ys 

positive), , I . q hJI == 2 , 1 ·- n I 
and one sees that in order that e and its derivative with respect to 

~ are bounded at t):: O , the first or the second solution should be 

used depending on whether p is positive or negative. Take for instance 

the case when p is positive, the first term in the first solution is a 

constant, and the second term is of the order of rt 2 't + f' • Since 2 q, + p- 1 

=(2 rn -11 + 1)/2 is always positive in practice, one will consider only 

positive values of t his quantity. For such values (b) is then satisfied. 

The second solution is excluded because it i s not bounded at 'l = 0 • 

Similarly if p is negative it can be easily shown that the second 

solution should be used . The first solution is excluded because its 

derivative becomes infinite at 'l == 0 • For convenience of exposition, 

one will simply denote the solution to be used by Y = r, - F> J -V ( 9) , 
where ,) is positive or negative depending on whether p is positive or 

negative. 

It remains to satisfy (d). The expansion formula to be used is 
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due to MacRobert (1931): 

f (¢ ) =J:~ da- }
0

00f (p) JO( (er cp ) J°' (cr¢) pdp (8) 
Vlhere the value of (X (real) must be greater than -1. '!his condition 
is satisfi ed by -v or -~ , since in all practical cases ·J is less 

than l ? 

In the present investigation one seeks a density function g ( ) 

such that 

or 
5, ( 11) -icr9(~) ri- p J"y (er ~'t) d (J'. 

q P S, ( 11) = J;Yja- 8 ( a-J J v ( er 11 q) d er 
Since the argument of the Bessel function is not ([ 'l but u q) , it 

is necessary to transform S, ( 'l ) to 5)¢) " For this purpose one 

notes thay& (n )d n -=J °:~ q> 'q~S<~) dq> ...:Jo."{ [,( fl) d~ ~1 
so that o ' . I . I o u ' o 

S, ( 17) =- q &, ( <Pl 
Then from (9) and (8) 

Cl 6/~) = l c;8(cr)J.v(<Tq>) dcr· :::~ ~d J" 1; bJf) J.~ (a-·¢) J~ (err) f de 
and by comparison = )

0
a\ U- J -.J (er) J J ( er cp ) d a-

9 ( o ·) ~. 't Ju (er) 
The solution is therefore 2 

8 = laa,q_ B-cr
2

q, ; J v(u) J ,J (CT ~ <t. ) CT d cr 
It should be remar·ked that al though the integral in (9) is not 

convergent , the limit of the integral in (10) as ~ -+ 0 \..:) conver-
ges everywhere to zero for 11 :f=- 1, and it is as the limit of the in-
tegral in (10) that the one in (9) should be considered~ The proof 

is rather lengthy. Suffice i t here to cite the much simpler and 

analogous case of the Fourier integral ~ The integral 

(9) 

(9) 

(10) 

1 0.) 

C OS (t P d 0- ( 11) 
Q I 

is obviously not convergent for any value of j~ , but the integral 
p2 

J·o:> - 0 · 2t I~ - - (12) 
0 

e co~ o·pdcr = v 4 £ e 4t 
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conve rges every~,,here t o zero as t --.. 0 except at p = Oo It can be 

easily sho1-m that t he limit is actually the Dirac measure t) 0 (f) o · 

When t he integral in (11) is used., it should always be understood to 

mean the limit of that in (l2)o 

2 • Atmospheric Diffusion from a Point Source 

of Mass Above the Ground 

Supposing that a point source of mass ~,Tith strength G (mass 

per unit time) is situated at a hei ght h above the ground., and 

that a wind is blo~Ting horizontally, it is proposed to calculate 

the mass distribution in the atmosphere on the assumption that the 

wind velocity and the d:i.ffusivities vary as power functions of height, 

the power for the wind velocity and the lateral diff usivity being the 

same. Concerning the equality of the power of u and that of the 

lateral diffusivity E , reference is made to the works of De. RQ Davies~. 

See, for instance., Davies (19SO)c 

One choos es the projection of the point source on the ground as the 

origin) and measures x, y, and z respectively in the downwind~ 

ve;rti cal, and the cross-wind directionQ The expressions for u and 
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f or D being the same as before, one has in addition 

where E(h) is the value of E at the height h. Retaining the 
)0 

meanings of e , ~ , q ' and R(h), and writing 
0 (J21 == P. 2. 
E(ri ) \' l 

the diffusion equation is 
'5 ~-6('1 ) '. h 

h rn o e __ ~ ( h ,, o e ) + r1 m _i{ ~ 
'\ o ~ - a-~ . I ·ah '1· a ~ 2 

The boundary conditions are ' 

(a) 0 - + 0 as 

(b) o e. ::: O for 
0 1 

(c) 0 -;.- 0 as 

0 

(d) .CJ e O for os '$ = 0 

( e) 8 = 0 as i -- CO 

e -\~ cl s· <I"\ s' (f) -Conr'.-{(h) ,.u at ~ = 0 

where 6 ( h ~ ) is the Dirac measure defined as follows 
I .() I { 

b 1. 0 ( f] ~) = 0 for ( q $) 7* (Io) 

(13) 

1= i"°J.l) ( fj ~) d "1 d §' == 1 
It should°be obvious from the definition that r( 111 O, .o ( r; ~) ::: S,.~) ('l ~~ The 

explanation for ·(f) i s the same as for (d) in the previous section. 

Assuming 

one finds that the fundamental solution to be used is 
-(/·+,u.') ~ -pJ· e ~ v (er t1 <?,) c os ,,u. ~ 

whare all symbols al r eady employed have t heir meanings as before ( in 

particular -J i s positive or negative depending on whether p is positive 

or negative), and where JJ- is real in view of ( e). The conditions (a), (b), 

(d), and (e) being satisfied ( For the s atisfaction of (a) and (b), the 

arguments are the same as in the pr evious section ) , one proceeds to demand 

tha satisfaction of (c) and (f). 
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Remembering cp == 11 ~ i one has, as before 

5 /.() ( '7, ~) = q_ £, I . 0 ( Q> , ~) 
The Fourier-Bessel integral formula to be used is 

f (qi,~) :: I~ r;~Sfl ~ dµJ ;JJ,J(Cr ¢) da-i'1~o sµ if d (J f (pl a) ~T.,) ( crp) f df (14) .t O O- o 

To satisfy (f), one seeks a weight function F ( CT, µ ) such that 

S t.o ( q , ~) = J~x~os fl- · s dµ f
0 

~ - F ( (J,jJ-) tf P Jv (a·~ q_) do-

or 

q~-rs, .0 (¢,?) ==-q E1_0 (CJ> ~) 1.;os _ _µ~dpj~~~ F(u,µ) Jv <cnp)da- (lS) 

But this is equal to 

~ i~osµ!' dµ lo~ ] 1) (a- cf>) d<r j'
0
°' 1; b,.o ( f), o) Co Sj)- ~ J 1' (0-f') pdpcJ 0 

= ·7r f
0
cncos JJ: s dµ foc;t)q a- J-vl er) J_)CT cP) d o-

By comparison, 

(16) 

and the solution is ·oorao (a-•,ql+_µ~ ~ e :::: ¼it t e - ' (j,j,J (U) J,)(cr(j)) C. uSµ '$ do--d)L (17) 

As before, the integral in (15) should be considered as the limit of 

that in (17), as ! -~ Oc 

The solution given in (17) can be wri~\en: in virtue of (12): 
e = (1; s) ½'q {~J-:>SOO)e-· cr 'q i f - 4 0f er JV (er) ,J·v (er¢) dv (18) 

from which it is obvious that ( c) is satisfied,~ 

3~ Genetal Remark 

It is hoped that the results given in this paper uill play a role 

in specifying the location of smog-causing factories, urban or suburban, 

and the hei~ht of their chimneys. They should be so specified that the smog 

concentration at any part of the city calculated by the formulas given in this 

paper is below a certain harmless amounto 
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