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ABSTRACT

CLIMATE AND HEALTH IMPACTS OF PARTICULATE MATTER FROM RESIDENTIAL

COMBUSTION SOURCES IN DEVELOPING COUNTRIES

Globally, close to 2.8 billion people lack access to clean cooking technology, while 1.8 billion

people lack access to electricity altogether. As a means to generate energy for residential tasks,

it is common in many developing countries to rely on combustion of solid fuels (wood, dung,

charcoal, trash, etc.). Solid fuel use (SFU) can emit substantial amounts of fine particulate matter

(PM2.5), often in or in close proximity to residences, creating concerns for human health and climate;

however, large uncertainties exist in indoor and outdoor concentrations and properties, limiting our

ability to estimate these climate and health impacts. This work explores the uncertainty space in

estimates of premature mortality attributed to exposure to PM2.5 from residential SFU (e.g., cooking,

heating, lighting) and makes the first estimates of health and radiative effects from combustion

of domestic waste (i.e., trash burning). Next, we investigate key uncertain parameters (emission

size distribution, black carbon mixing state, and size-resolved respiratory deposition) that drive

uncertainties in health and radiative impacts from SFU, in order to improve model estimates of

aerosol impacts from all sources.

In many developing regions, combustion of solid fuels for cooking and heating is not the only

aerosol source impacting air quality and climate. While uncontrolled combustion of domestic waste

has been observed in many countries, this aerosol source is not generally included in many global

emissions inventories. Using a global chemical-transport model, we estimate exposure to ambient

PM2.5 from domestic-waste combustion to cause 270,000 (5th-95th percentile: 213,000 to 328,000)

adult mortalities per year, most of which occur in developing countries. Regarding aerosol radiative

effects, we estimate the globally averaged direct radiative effect (DRE) to range from -40 mW m-2

to +4 mW m-2 and the aerosol indirect effect (AIE) to range from -4 mW m-2 to -49 mW m-2. In
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some regions with significant waste combustion, such as India and China, the aerosol radiative

effects exceed -0.4 W m-2. The sign and magnitude of the global-mean DRE is strongly sensitive to

assumptions on how black carbon (BC) is mixed with scattering particles, while the AIE is strongly

sensitive to the emission size distribution.

To determine what factors dominate the uncertainty space in mortality estimates from SFU, we

perform a variance-based sensitivity analysis on premature mortality attributed to the combined

exposure to ambient and household PM2.5 from SFU. We find that uncertainty in the percent of the

population using solid fuels for energy contributes the most to the uncertainty in mortality (53-56%

of uncertainty across Asia and South America) with the concentration-response function the next

largest contributor (40-50%).

In the second half of this dissertation, we explore several key uncertainties in climate and health

estimates of aerosol from residential sources in order to reduce overall model uncertainty of aerosol

impacts from any source. To test the sensitivity of the AIE to treatment of aerosol size distributions

in global models, we estimate the AIE due to anthropogenic emissions with prognostic sectional

aerosol microphysics and compare this to the AIE calculated when the simulated aerosol mass

of each species is remapped onto a prescribed size distribution. Simulations using the prognostic

scheme yield a global mean anthropogenic AIE of -0.87 W m-2, while the simulations with the

prescribed scheme predict -0.66 W m-2. These differences suggest that simulations with prescribed

size-distribution mapping are unable to capture regional and temporal variability in size-resolved

aerosol number and thus may lead to biases in estimates of the AIE.
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Chapter 1

Introduction

1.1 Motivation
Airborne particulate matter (PM), or aerosols, can significantly degrade air quality and alter

global and regional climate. One of the largest sources of anthropogenic PM is carbonaceous aerosol

emitted during combustion processes (Bond et al., 2013). Combustion as a source of energy is

prevalent in every part of the world, ranging from diesel engines in trucks to biomass cookstoves in

homes. While anthropogenic combustion emissions in developed countries are generally declining

due to regulations and constantly improving technologies (e.g., McDonald et al., 2018), aerosol

emissions from residential combustion sources in developing countries have increased over the past

century due to a rapidly expanding population (Fernandes et al., 2007). Today, close to 2.8 billion

people lack access to clean cooking technology, while 1.8 billion people lack access to electricity

altogether (International Energy Agency, 2017).

Residential solid fuel use (SFU) most commonly refers to combustion of solid fuels (such as

wood, dung, agricultural waste, coal, or charcoal) as a source of energy for domestic tasks such as

cooking, heating, or lighting. In addition to this common definition, other emission sources, such

as combustion of household trash as a means of waste management, are also prevalent in many of

the same communities (e.g., Wiedinmyer et al., 2014). The reliance on residential SFU as a source

of energy makes understanding the health and climate impacts essential; however, uncertainties in

combustion aerosol emissions and their properties make the net health and climate impacts uncertain.

A number of recent studies have suggested targeting residential SFU as a means of simultaneously

improving public health and mitigating climate change caused by greenhouse gases (e.g., Grieshop

et al., 2009, 2011; Shindell et al., 2012). Additionally, increasing access to electricity or clean

energy alternatives has been suggested as a means of achieving various United Nations Millennium

Development Goals such as overcoming poverty, child malnutrition, and gender inequality in
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developing countries (Detchon and Leeuwen, 2011). While reducing combustion emissions through

increasing access to cleaner technologies will likely have some positive health and social benefits,

the magnitude of these health improvements and the overall sign of climate impacts is largely

uncertain due to present-day uncertainties. Rapid changes to combustion technologies, populations,

and demographics introduce substantial uncertainty as to the net effect of aerosols on climate and

health in the near future. The lack of quantification of uncertainties limits our ability to assess air

quality and climate change mitigation strategies.

Emissions from residential SFU can affect climate in a variety of ways. Greenhouse gas

emissions from combustion processes, such as carbon dioxide and methane, are well mixed in

the atmosphere due to long lifetimes (decades to centuries) and their first-order forcings are well

understood (always positive) (Boucher et al., 2013). Conversely, aerosol emissions from residential

SFU, mostly in the form of black carbon (BC) and organic aerosol (OA), have short lifetimes

(days to weeks) and can lead to both positive and negative radiative effects (Bauer et al., 2010).

Carbonaceous aerosol emissions from combustion sources can impact climate in a variety of ways.

In this work, we focus on the direct radiative effect (scattering and absorption of incoming radiation)

(Charlson et al., 1992) and the cloud-albedo aerosol indirect effect (altering cloud reflectivity)

(Twomey, 1974). In our previous study (Kodros et al., 2015), we quantified the sensitivity of the

direct radiative effect (DRE) and cloud-albedo aerosol indirect effect (AIE) from residential biofuel

combustion to uncertainties in emissions and model processes. The sign and magnitude of the

global-mean DRE (-20 to +60 mW m-2) is strongly sensitive to the black carbon to organic aerosol

emission ratio, the absorptive properties of OA (termed “brown carbon”), and assumptions on how

BC is mixed with scattering particles, while the AIE (+10 to -20 mW m-2) is strongly sensitive to

the emission size distribution. This dissertation builds and expands upon our initial findings.

Exposure to PM with aerodynamic diameters less than 2.5 µm (PM2.5) has been linked to an

increased risk of mortality from cardiovascular and respiratory diseases (Dockery et al., 1993;

Krewski et al., 2009; Pope et al., 2002). Research over the past several decades consistently

suggests that the health burden from exposure to air pollutants from residential SFU is likely to be
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substantial (e.g., Forouzanfar et al., 2016; Smith et al., 2014; World Health Organization, 2014).

The Global Burden of Disease 2015 report (GBD2015) estimates that 2.85 (95% confidence interval:

2.18-3.59) million deaths in the year 2015 were due to exposure to household air pollution (i.e.,

emissions from cooking and heating), ranking it among the leading risk factors contributing to

premature mortality (Forouzanfar et al., 2016). In addition, household air pollution from SFU has

the potential to degrade ambient (i.e., outdoor) air quality (Butt et al., 2016; Chafe et al., 2014;

Conibear et al., 2018; Lacey and Henze, 2015). However, to our knowledge, no work has yet tried

to estimate premature mortality associated with SFU by an approach that jointly considers ambient

and household exposures. Moreover, health impact assessments of “household air pollution” neglect

similar emission sources of solid fuel use (such as combustion of household trash). Finally, estimates

of mortality from exposure to PM2.5 from SFU (including exposure to household and/or ambient air

pollution from this source) rely on input data sources including country-level baseline mortality

rates, PM2.5 exposure levels, the magnitude and shape of concentration-response functions, and the

number of people exposed to a specific concentration; however, no studies, to our knowledge, have

investigated the sensitivity of mortality estimates to these input parameters.

Given the large uncertainty space surrounding the sign of aerosol radiative effects (potentially

spanning both positive and negative forcings) and magnitude of aerosol health effects, targeted

reductions of residential SFU may not yield climate and health “co-benefits”. Rather, research may

instead need to focus on reducing overall model uncertainty to better communicate the potential

benefits of improvement scenarios to policy makers. This dissertation is focused on improving

the understanding of uncertainties in aerosol climate and health impacts from residential SFU and

constraining key model parameters to improve estimates of health and climate impacts from all

aerosol sources.

1.2 Scope of dissertation
This dissertation contains 6 chapters of research, all of which have either been published or

submitted to relevant journals. The first 3 chapters focus on quantifying and probing the uncertainty
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space of aerosol climate and health impacts from residential SFU. The last 3 chapters focus on

constraining model uncertainties for aerosol from all emission sources (but regarding aerosol

properties that are important for SFU climate and health effects).

In Chapter 2, we make first estimates of the aerosol radiative effects from uncontrolled com-

bustion of domestic waste. This emission source has not been included in past global modeling

studies. In addition to estimating the direct and indirect aerosol effects, we evaluate simulated

aerosol optical depth with AERONET measurements.

Similarly, In Chapter 3, we make first estimates of premature adult mortality from chronic

exposure to ambient PM2.5 from uncontrolled combustion of domestic waste. We explore the

sensitivity of estimates of mortality to different model resolutions.

In Chapter 4, we develop a new estimate of mortality attributable to exposure from household

SFU and ambient PM2.5 pollution from all sources. We then perform a variance-based sensitivity

analysis on mortality attributed to the combined exposure to ambient and household PM2.5 from

SFU to determine what factors lead to uncertainties in mortality estimates.

Next, in Chapter 5, we explore the sensitivity of treatments of aerosol size distributions (a key

parameter affecting estimates of aerosol indirect effect from residential SFU) to the cloud-albedo

indirect effect from all anthropogenic aerosol emissions.

In Chapter 6, we combine airborne observations of the mixing state of black carbon (a key

parameter affecting estimates of the direct radiative effect from residential SFU) with simulated

aerosol number and mass concentrations to estimate the direct radiative impact in the springtime

Arctic.

In Chapter 7, we explore size-resolved particle deposition in the lung, a possible source of

variability in health response due to exposure to PM2.5. We combine a size-resolved respiratory

particle deposition model with a global size-resolved aerosol model to estimate the variability in

particle deposition along the respiratory tract due to variability in ambient PM size distributions.

Finally, in Chapter 8, we present a summary of conclusions and implications of this dissertation.

We also discuss future areas of research.
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Chapter 2

The aerosol radiative effects of uncontrolled

combustion of domestic waste1

Open, uncontrolled combustion of domestic waste is a potentially significant source of aerosol;

however, this aerosol source is not generally included in many global emissions inventories. To

provide a first estimate of the aerosol radiative impacts from domestic-waste combustion, we

incorporate the Wiedinmyer et al. (2014) emissions inventory into GEOS-Chem-TOMAS, a global

chemical-transport model with online aerosol microphysics. We find domestic-waste combustion

increases global-mean black carbon and organic aerosol concentrations by 8 and 6 %, respectively,

and by greater than 40 % in some regions. Due to uncertainties regarding aerosol optical properties,

we estimate the globally averaged aerosol direct radiative effect to range from −5 to −20 mW m−2;

however, this range increases from −40 to +4 mW m−2 when we consider uncertainties in emission

mass and size distribution. In some regions with significant waste combustion, such as India

and China, the aerosol direct radiative effect may exceed −0.4 W m−2. Similarly, we estimate a

cloud-albedo aerosol indirect effect of −13 mW m−2, with a range of −4 to −49 mW m−2 due to

emission uncertainties. In the regions with significant waste combustion, the cloud-albedo aerosol

indirect effect may exceed −0.4 W m−2.

2.1 Introduction
Open, uncontrolled combustion of domestic waste occurs on a global scale, potentially emitting

significant amounts of black carbon (BC) and organic aerosol (OA); however, this source is not

commonly considered in modeling studies estimating aerosol radiative impacts (Christian et al.,

2010; Mohr et al., 2009; Wiedinmyer et al., 2014). Uncontrolled combustion of domestic waste

1This Chapter published as: Kodros, J. K., Cucinotta, R., Ridley, D. A., Wiedinmyer, C. and Pierce, J. R.: The
aerosol radiative effects of uncontrolled combustion of domestic waste, Atmos. Chem. Phys., 16(11), 6771-6784,
doi:10.5194/acp-16-6771-2016, 2016.
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refers to the intentional disposal of trash in an open fire either at home or at a dump (Wiedinmyer

et al., 2014). This practice is common in developing countries in both rural and urban areas where

municipal waste collection is insufficient; however, open combustion of domestic waste also occurs

in rural developed countries (Christian et al., 2010; Wiedinmyer et al., 2014). The proximity of

waste-combustion emissions to residences has created concerns for both air quality and climate. In

a separate study, we estimate the global burden of mortalities due to chronic exposure of waste-

combustion PM2.5 (Kodros et al., 2016b). Here we provide a first estimate of the aerosol radiative

impacts of domestic-waste combustion.

Carbonaceous aerosol from combustion sources can impact climate in several ways; the best

understood of these being the direct radiative effect (DRE) and cloud-albedo aerosol indirect effect

(AIE) (Boucher et al., 2013). The DRE refers to scattering and absorption of incoming solar

radiation by aerosols (Charlson et al., 1992). The magnitude and relative amount of scattering

and absorption is dependent on particle composition and size, as well as the manner of mixing

of different species within a single particle (Bond et al., 2006, 2013). BC has a strong absorbing

component, while OA is either considered as completely scattering or having some absorbing

component in the shorter visible and ultraviolet wavelengths (i.e., brown carbon) (Andreae and

Gelencsér, 2006; Hammer et al., 2016; X. Wang et al., 2014), although these optical properties of

organic aerosol are an open area of research. Additionally, scattering and absorption efficiencies

of carbonaceous particles depend on the ratio of particle diameter to wavelength of radiation. For

solar radiation, atmospheric aerosol typically have peak efficiencies between diameters of 100 nm

to 1 µm, though this will vary with composition (Seinfeld and Pandis, 2012). Finally, absorption

tends to increase in an internally mixed population (all particles in a size range contain an identical

mixture of all chemical species) compared to an externally mixed population (different chemical

species exist in separate particles) (Chung and Seinfeld, 2005; Jacobson, 2001). In this study, we

assume spherical particles, which is not realistic for fresh combustion aerosol. Details of particle

shape may alter optical properties.
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The cloud-albedo AIE refers to altering the reflectivity of clouds by changing the cloud droplet

number concentration (CDNC) (Twomey, 1974). The ability for OA and BC cloud condensation nu-

clei (CCN) to activate into cloud droplets is a strong function of particle size. In typical atmospheric

conditions, OA and BC (when mixed with hydrophilic species) typically act as CCN when they have

diameters larger than 40–100 nm (Petters and Kreidenweis, 2007). The number of particles in this

size range is dependent on primary emissions as well as nucleation, condensation, and coagulation

(Pierce and Adams, 2009). As these microphysical processes are often interconnected, the AIE

response to an emission source may be nonlinear (e.g., additional primary emissions may reduce

nucleation and condensation growth while increasing coagulation) (Bauer et al., 2010; Butt et al.,

2016; D’Andrea et al., 2015). The AIE is also dependent on particle hygroscopicity (Petters and

Kreidenweis, 2007). Particle hygroscopicity can be described with the hygroscopicity parameter,

κ, which is the ratio of the number of moles of solute per dry volume to the moles of water per

volume of pure water (Petters and Kreidenweis, 2007). While combustion aerosol tend to have

lower hygroscopicity (κ for OA=∼ 0.1 and BC= 0.0), mixing with inorganic species, such as

sulfate and sea salt, and chemical aging of the organics to more-hygroscopic species allows for

activation at smaller diameters.

Waste combustion is an often-overlooked emission source, especially in developing countries

(Christian et al., 2010). Wiedinmyer et al. (2014) provided a new global inventory for the un-

controlled combustion of domestic waste, estimating global BC and OC emissions of 0.6 and

5.1 Tg year−1, respectively. This estimate is an order of magnitude greater than earlier estimates of

emissions from uncontrolled waste combustion in Bond et al. (2004) (which focused on combustion-

aerosol emissions in general, not just from waste combustion). Amount of annual waste burned

was the largest difference between the inventories, where Bond et al. (2004) estimated a total of

33 Tg and Wiedinmyer et al. (2014) predicted 970 Tg. Further, Wiedinmyer et al. (2014) considered

waste combustion in both rural and urban areas in developing and rural areas in developed coun-

tries. Many global inventories, including Emissions Database for Global Atmospheric Research

(EDGAR), do not include estimates of uncontrolled waste-combustion emissions. In addition
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to carbonaceous emissions, Wiedinmyer et al. (2014) estimated 0.5 Tg year−1 of sulfur dioxide

(SO2) and 1.1 Tg year−1 of ammonia (NH3). These gas-phase species may increase nucleation and

condensation rates, thereby increasing particle number and mass concentration through secondary

aerosol formation.

There are several uncertainties related to emissions in the Wiedinmyer et al. (2014) inventory.

First, the reported uncertainty in the Akagi et al. (2011) emission factors for BC and OC are 42

and 93 %, respectively. This is in addition to uncertainties in the mass of waste generated (i.e.,

estimates of fuel use). Second, the Wiedinmyer et al. (2014) inventory does not include information

on emission size distribution. The emitted particle size distribution varies with fuel type and flaming

condition and goes through rapid aging in the first few hours after emission on spatial scales not

resolved in global models (Janhäll et al., 2010; Sakamoto et al., 2015). Finally, this inventory does

not include information on the optical properties of organic aerosol. Absorptive OA (or brown

carbon, BrC) has been observed in some wood and agricultural waste fuels, under certain flaming

conditions (Chen and Bond, 2010; McMeeking et al., 2014; Saleh et al., 2013); however, we are not

aware of studies determining these aerosol properties for domestic-waste combustion. In this paper,

we explore uncertainties in total emission mass and size distribution (affecting both DRE and AIE)

as well as optical properties (affecting just DRE).

To our knowledge, this is the first paper to quantify the global aerosol radiative impacts from

uncontrolled combustion of domestic waste. In Sect. 2, we discuss the model set-up (Sect. 2.1),

methods for model evaluation (Sect. 2.2), and calculation of radiative effects (Sects. 2.3–2.4). In

Sect. 3, we show comparisons to ground observations of model simulations with and without

waste-combustion emissions. In Sect. 4, we discuss changes in modeled aerosol mass (Sect. 4.1),

size-resolved aerosol number concentration (Sect. 4.2), direct radiative effect (Sect. 4.3), and

cloud-albedo aerosol indirect effect (Sect. 4.4). In Sect. 5, we share our conclusions.
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Table 2.1: Description of simulations.

Simulation GMD Mass scale Species
factor

BASE 100 nm 1.0 primary and secondary
SIZE200 200 nm 1.0 primary and secondary
SIZE30 30 nm 1.0 primary and secondary
PRIMARY 100 nm 1.0 primary BC and OA only
HIGHMASS 100 nm 2.0 primary and secondary
LOWMASS 100 nm 0.5 primary and secondary
WASTE_OFF N/A 0.0 none

2.2 Methods

2.2.1 Model overview

To calculate aerosol number, mass, and size distributions from domestic-waste combustion, we

use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) version

10.01 coupled with TwO Moment Aerosol Sectional (TOMAS) microphysics scheme (Adams and

Seinfeld, 2002). We use GEOS-Chem with 47 vertical layers and a 4◦×5◦ horizontal resolution.

This version of TOMAS uses 15 size sections ranging from 3 nm to 10 µm with tracers for sulfate,

sea salt, OA, BC, and dust (Lee and Adams, 2012; Y. H. Lee et al., 2013). GEOS-Chem is driven

using reanalysis meteorology fields from GEOS5 (http://gmao.gsfc.nasa.gov). Since meteorology is

prescribed, the addition of waste-combustion emissions does not feedback into weather patterns.

All simulations are for the year 2010, with 1 month of model spinup that is not included in analysis.

We use a ternary nucleation scheme involving water, sulfuric acid, and ammonia following the

parameterization of Napari et al. (2002), scaled with a global tuning factor of 10−5 (Jung et al.,

2010; Westervelt et al., 2013). In addition, we use a binary nucleation scheme (sulfuric acid and

water) when ammonia mixing ratios are less than 1 pptv (Vehkamäki, 2002). Secondary organic

aerosol (SOA) sources include a biogenic monoterpene component of 19 Tg year−1 as well as an

anthropogenically enhanced component of 100 Tg year−1 (we do not know if the anthropogenically

enhanced SOA is due to anthropogenic volatile organic compounds or an enhancement of biogenic

SOA due to anthropogenic influences on chemistry) (D’Andrea et al., 2013; Spracklen et al., 2011).
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SOA is condensed irreversibly onto existing aerosol at the time of emission of the parent compounds

using 10 % of monoterpene emissions for the biogenic component and 0.2 Tg SOA per Tg-CO

for the anthropogenic component (CO emissions are used as a proxy for the spatial and temporal

distribution of anthropogenically enhanced SOA).

In all simulations we use the following emission inputs. We use fossil-fuel combustion an-

thropogenic emissions from the Emissions Database for Global Atmospheric Research (EDGAR)

version 4 (Janssens-Maenhout et al., 2011). EDGAR emissions are overwritten in the United

States by the Environmental Protection Agency 2011 National Emissions Inventory (NEI2011;

http://www3.epa.gov/ttn/chief/), in Canada by Criteria Air Contaminants (CAC; http://www.ec.gc.

ca/inrp-npri/), in Mexico by Big Bend Regional Aerosol and Visibility Study (BRAVO) (Kuhns

et al., 2005), in Europe by the Cooperative Programme for Monitoring and Evaluation of the

Long-Range Transmission of Air Pollutants in Europe (EMEP) (Vestreng et al., 2009), and in Asia

by the Streets inventory (Streets et al., 2003). Black and organic carbon (OC) emissions from

biofuel and fossil-fuel combustion are from Bond et al. (2007) and biomass burning from Global

Fire Emissions Database version 3 (GFED3) (Van Der Werf et al., 2010) with 3-hourly scale factors.

Sea salt aerosol emissions follow the scheme of Jaeglé et al. (2011), while dust emissions are based

on the DEAD scheme (Zender, 2003).

To estimate the impact of waste-combustion emissions, we include the Wiedinmyer et al. (2014)

inventory to the above emissions set-up. Table 2.1 describes all simulations used in this study. Our

BASE simulation uses total BC, OC, SO2, and NH3 mass as in Wiedinmyer et al. (2014). We emit

1 % of SO2 as aerosol-phase sulfate (SO4) and use a fixed OA to OC ratio of 1.8. We scale bulk BC

and OA mass into size sections assuming a single lognormal mode with a geometric number-mean

diameter (GMD) of 100 nm and a standard deviation of 2. We note that Wiedinmyer et al. (2014)

do not include information on the emission size distribution, and this is a significant source of

uncertainty (L. Lee et al., 2013). The spatial distribution of emissions is shown in Figure 2.1 for

OA, BC, and NH3. The emissions of SO2 show a similar spatial pattern but with a factor of 2

lower in magnitude than NH3. The regions with the largest particle emissions are eastern China,
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Figure 2.1: Emission fluxes from the open combustion of domestic waste for (a) organic aerosol, (b) black
carbon, and (c) NH3 from Wiedinmyer et al. (2014).

northern India, eastern Europe, and Mexico. To test the sensitivity of aerosol radiative effects to

waste-combustion emission size distribution, we include two sensitivity simulations, SIZE200 and

SIZE30. Here, we conserve total emission mass but increase the GMD from 100 to 200 nm and

decrease the GMD from 100 to 30 nm, respectively. These distributions are chosen to reflect the

range of reported values from fresh and aged fossil fuel and biomass burning (Ban-Weiss et al.,

2010; Carrico et al., 2010; Janhäll et al., 2004; Sakamoto et al., 2015). In Kodros et al. (2015),

we also tested the sensitivity of aerosol radiative effects to uncertainty in the standard deviation

of the emission size distribution and found the results are qualitatively similar to uncertainties in

the GMD (a narrowing of the emission size distribution has a similar effect as to decreasing the
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value of the GMD, and visa versa), and so we do not include that here. In PRIMARY, we emit

only aerosol-phase BC and OA waste combustion, and remove emissions of gas-phase SO2 and

NH3, from this source. This simulation will test the contribution of nucleation and condensation

from gas-phase species emitted from waste combustion. Finally, we test the sensitivity of aerosol

effects to a factor of 2 uncertainty in total waste-combustion emission mass (HIGHMASS and

LOWMASS). The factor of 2 uncertainty is similar to uncertainties listed in emission factors in

Akagi et al. (2011). We compare these simulations to a control simulation with no waste-combustion

emissions (WASTE_OFF).

2.2.2 Aerosol optical depth (AOD) comparison

We compare model aerosol optical depth with measurements made with the Aerosol Robotic

Network (AERONET). AERONET is a network of ground-based remote sensing instruments

aimed at providing global, long-term measurements of aerosol properties. AERONET uses a sun

photometer to measure AOD at several wavelengths in 15 min intervals when the sun is not obscured

by clouds (Holben et al., 1998).

To compare to AERONET measurements, we output GEOS-Chem-TOMAS size-resolved mass

and number concentrations at 3 h intervals for the BASE and WASTE_OFF simulations. We

calculate model AOD using refractive indices from the Global Aerosol Database and published Mie

code (Bohren and Huffman, 1983). In this calculation, we only consider an external mixing-state

assumption, though we note the extinction optical depth (what we are referring to as AOD) of an

internal mixture is very similar (though the individual scattering and absorption optical depths are

different). We average AERONET AOD into 3 h intervals and match measured time and locations

with model AOD. We restrict observed AOD to contain greater than six measurements within

each 3 h time period, thus removing intervals where measurements were limited due to clouds or

instrument error. We also restrict our comparison to only include time periods when the observed

AOD is greater than 0.01 to avoid detection-limit issues, as this is the uncertainty limit of AERONET
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measurements (Holben et al., 1998). We then compare the time average of the co-sampled sites that

match these criteria.

2.2.3 Direct radiative effect calculation

We calculate the all-sky DRE using GEOS-Chem-TOMAS monthly averaged aerosol mass and

number concentrations and refractive indices from GADS. We calculate AOD, single scatter albedo,

and asymmetry parameter using Mie code published in Bohren and Huffman (1983). We use these

aerosol optical properties and monthly mean albedo and cloud fraction from GEOS5 as inputs

to the offline version of the rapid radiative transfer model for global climate models (RRTMG)

(Iacono et al., 2008), implemented in GEOS-Chem (Heald et al., 2014), that considers longwave

and shortwave and treats clouds with the Monte Carlo independent column approximation (McICA)

(Pincus et al., 2003).

We estimate the DRE for six different optical assumptions: a core–shell morphology with and

without absorptive OA, an external mixture with a constant absorption enhancement factor of 1.5

(ext∗1.5) with and without absorptive OA, a homogeneous internal mixture, and an external mixture.

These optical assumptions are discussed in detail in Kodros et al. (2015) (see Table 1 in Kodros et al.,

2015, and Table 2.3 in this paper) and are applied to all particles, regardless of emission source. In

all cases, we assume the particles are spherical. Briefly, the homogeneous internal mixture assumes

all particles in a size bin have the same composition and the refractive index of the particle is a

volume-weighted average of the individual species. The core–shell mixture assumes black carbon

forms a spherical core and the other hydrophilic species form a homogeneously mixed shell around

the core. The external mixture assumes black carbon exists as a separate population from the other

homogeneously mixed species. Finally, in ext∗1.5 we simply multiply the absorption predicted

in the external mixture by a constant enhancement factor of 1.5. This is done in some models to

estimate the enhanced absorption observed in core–shell mixtures (such as X. Wang et al., 2014). In

the BrC calculations, we estimate absorptive OA (or brown carbon) using the modeled OA to BC
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ratio and the parameterization in Saleh et al. (2014). In all other calculations, we assume that OA is

near-purely scattering throughout the visible spectrum.

We note several important limitations in our treatment of aerosol optics. First, mixing state

may vary regionally and temporally, yet here we apply each mixing state globally and at all times.

Second, it has been suggested that the optical properties of OA may change with photolysis, yet

here our optical properties are held fixed (Lee et al., 2014; Zhao et al., 2015). Therefore, these

mixing states should be considered as ideal cases. Finally, we use monthly mean concentrations and

properties as well as monthly mean cloud properties. Despite these limitations, we feel this method

is sufficient for a first estimate of the DRE from waste-combustion emissions.

2.2.4 Cloud-albedo aerosol indirect effect calculation

We use monthly mean GEOS-Chem-TOMAS mass and number concentrations and the activation

parameterization of Abdul-Razzak and Ghan (2002) to calculate CDNCs. We assume a constant

updraft velocity of 0.5 m s−1. For the AIE, we assume aerosol species are mixed internally within

each size bin and calculate κ, the hygroscopicity parameter, as a volume-weighted average of the

individual species (Petters and Kreidenweis, 2007). As a control, we assume an effective cloud

drop radii of 10 µm and then perturb this value by taking the ratio of CDNC with and without

waste-combustion emissions to the one-third power (as in Rap et al., 2013; Scott et al., 2014). To

simulate the change in the top-of-the-atmosphere radiative flux due to changes in effective cloud

drop radii, we use RRTMG with monthly mean cloud fraction, temperature, pressure, and liquid

water content from GEOS5. Again, we note that the use of monthly mean aerosol and meteorology

fields is a limitation in this method, yet we feel it is sufficient for a first estimate.

2.3 Model results

2.3.1 Comparison to observations

Figure 2.2 shows comparisons of time-averaged model AOD with AERONET measured AOD at

all available sites for the BASE (a–c) and WASTE_OFF (d–f) simulations at 380, 500, and 1020 nm
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Figure 2.2: One-to-one plots of time-averaged AOD for BASE (a, c, e) and WASTE_OFF (b, d, f) compared
to AERONET observations at 380 nm (a, b), 500 nm (c, d), and 1020 nm (e, f). The values in the box give
the slope of the linear regression (m), the correlation (r2), and the log-mean bias (LMB), while the black
dashed line represents the 1 : 1 line and the red line is the result of the linear regression.

wavelengths (one dot for each site). After we apply the criteria described in Sect. 2.2, we have 173

sites at 380 nm, 193 sites at 500 nm, and 211 sites at 1020 nm. The model is generally capable of

capturing the variability in measured AOD (in WASTE_OFF at 500 nm slope= 0.94 and log-mean

bias= −0.18). Given the coarse spatial resolution of the model, the large variability is expected

(r2 = 0.59), as more- and less-polluted areas may exist within the same model grid box (∼ 400 km

length scale). Including waste-combustion emissions slightly improves the model comparison

in all three metrics and at all wavelengths (with the exception of the slope at 1020 nm). While

these changes are not statistically significant, we note that GEOS-Chem-TOMAS has some skill

at reproducing observed aerosol optical properties, and including this inventory does not degrade

model comparison.
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Table 2.2: Percent change in global, annual-mean N10, N40, N80, N150, BC mass, and OA mass from
domestic-waste combustion (i.e., relative to WASTE_OFF simulation).

Simulation N10 (%) N40 (%) N80 (%) N150 (%) BC (%) OA (%)

BASE 0.86 0.90 1.04 1.16 8.46 5.60
SIZE200 0.86 0.55 0.46 0.36 8.36 5.53
SIZE30 4.02 5.43 5.42 4.40 8.07 5.14
PRIMARY −0.17 0.232 0.52 0.89 8.47 5.61
HIGHMASS 1.68 1.77 2.06 2.31 16.9 11.2
LOWMASS 0.44 0.45 0.53 0.59 4.23 2.80

Table 2.3: Global-mean all-sky direct radiative effect and cloud-albedo aerosol indirect effect relative to the
WASTE_OFF simulation for all sensitivity simulations and mixing-state assumptions.

Simulation Direct radiative effect (mW m−2) AIE (mW m−2)
Core–shell, Ext∗1.5, Homog. Core–shell Ext∗1.5 Ext.

BrC BrC

BASE −5.0 −8.7 −11 −13 −17 −20 −13
SIZE200 +3.2 −6.0 −3.7 −8.7 −16 −18 −8.3
SIZE30 +4.1 +3.7 −1.5 −1.6 −2.3 −5.8 −49
PRIMARY −5.7 −9.3 −12 −14 −17 −20 −4.0
HIGHMASS −10 −17 −22 −26 −34 −40 −24
LOWMASS −2.5 −4.3 −5.6 −6.5 −8.7 −10 −6.7

2.3.2 Changes in mass concentrations from domestic-waste combustion

Figure 2.3 shows the annual-mean percent change in boundary-layer OA, BC, NH3, and PM2.5

in the BASE-WASTE_OFF simulations, and global-mean OA and BC changes are in Table 2.2.

Combustion of domestic waste under the BASE emission assumptions increases BC and OA

concentrations in the global mean by 8.5 and 5.6 %, respectively. Regionally, domestic-waste

combustion increases surface BC concentrations by 10–20 % throughout much of Asia, northern

Africa, and South and Central America. The largest increases in BC (greater than 40 %) occur

in central Mexico (i.e., Mexico City), Turkey, northern Egypt (i.e., Cairo), Sri Lanka, and Papua

New Guinea, as well as increases of 30–40 % in Pakistan, Morocco, and Central America. Despite

greater OA emissions, the relative change of OA from domestic-waste combustion is generally

less than BC due to large OA sources from biofuel combustion and secondary organic aerosol in

waste-combustion regions. Waste combustion does increase OA concentrations by more than 40 %
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Figure 2.3: Percent changes in annually averaged boundary-layer (a) OA, (b) BC, (c) NH3, and (d) PM2.5

mass due to domestic-waste combustion (BASE-WASTE_OFF).

in Morocco, Turkey, Egypt, and the eastern portions of the Middle East. Increases in BC and OA

lead to increases in surface PM2.5 concentrations of 1–5 % over most land masses outside of North

America and Australia and 5–10 % in source regions.

Figure 2.3 also shows the percent change in gas-phase NH3. Waste combustion contributes

increases in NH3 of 1–10 % in Mexico, Central and South America, and Africa. These are regions

of significantly lower NH3 concentrations compared to Asia and Europe in our simulations, which

have negligible relative changes to NH3. In our model, NH3 may contribute to particle nucleation

and growth, which may alter particle size distributions (but have little effect on PM2.5 mass). These

changes are discussed in the next section. Relative changes in SO4 mass generally follow the spatial

pattern of OA; however, these changes are less than 1 % and so are not shown.

Table 2.2 shows the global, annual-mean percent change in boundary-layer BC and OA mass

for BASE and the sensitivity simulations compared to WASTE_OFF (thus isolating the contribution
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Figure 2.4: Annual-mean percent change in boundary-layer (a) N10, (b) N40, (c) N80, and (d) N150 for
domestic-waste combustion (BASE-WASTE_OFF).

of domestic-waste combustion to BC and OA). The largest changes to modeled BC and OA mass

come when emission BC and OA mass is doubled (HIGHMASS) and halved (LOWMASS). In

these simulations, the model response to changes in emission mass is close to linear. In simulations

PRIMARY, SIZE30, and SIZE200, total BC and OA emission mass is held constant. The BC and

OA mass distributions in SIZE30 and SIZE200 are shifted to smaller and larger sizes, respectively,

which may lead to changes in deposition rates; however, these changes prove to be minor (Table

2.2). The global-mean relative change in BC and OA mass from domestic-waste combustion ranges

from 4.23 to 16.9 and 2.80 to 11.2 %, respectively, given the factor of 4 uncertainty in emission

mass tested here.

2.3.3 Changes to size-resolved number concentrations

Modeled percent changes to annual-mean size-resolved number concentrations for the BASE-

WASTE_OFF comparison are shown in Figure 2.4 and the global averages in Table 2.2. Here we
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consider the following size classes: all particles with a diameter greater than 10 nm (N10), 40 nm

(N40), 80 nm (N80), and 150 nm (N150). N40, N80, and N150 are proxies for climate-relevant

particles. In the global mean for our BASE assumptions, waste combustion leads to a larger

increase in N80 (1.04 %) and N150 (1.16 %) than in N10 (0.86 %) and N40 (0.90 %). This is due

to particle emissions represented as a single lognormal mode centered around 100 nm as well as a

microphysical feedback (discussed below).

Regionally, the sign and magnitude of changes to particle number concentration vary with

size class. Waste combustion tends to increase particle number concentration in each size class

in Mexico, Central and South America, and the Pacific Islands. Conversely, waste combustion

decreases N10 and N40 in much of Europe and Asia. This discrepancy is caused by a feedback in

aerosol microphysics (discussed in detail in Westervelt et al., 2014; Pierce and Adams et al., 2009;

Kodros et al., 2015). Briefly, emitted primary accumulation-mode particles (in BASE this is centered

around 100 nm) increase particle surface area, thus increasing the sink for condensation vapors

(e.g., H2SO4, NH3, organics). This increased condensation sink reduces nucleation rates, reduces

growth rates, and increases coagulational scavenging of nucleation mode particles. This effect is

predominant in Europe and Asia and for smaller size cutoffs (N10 and N40) with a significant

contribution of nucleation mode particles (such that waste combustion emissions cannot compensate

for the reduced nucleation and growth). The regions of Central and South America and Africa

have lower concentrations of condensable vapor than Europe and Asia in WASTE_OFF, and so this

feedback is less dominant. In addition, the Americas and Africa have a larger fractional increase in

NH3 concentrations, which aid in nucleation and growth (Figure 2.3).

Figure 2.5a shows the change in global-mean particle number distribution for each of the

sensitivity simulations relative to WASTE_OFF. In the BASE-WASTE_OFF comparison, particle

number concentration decreases for sizes less than 80 nm (due to the feedback described above) and

increases for sizes greater than 80 nm (due to primary emissions) (see Table 2.2 for integrated values).

The emission mass scale factor tends to scale the total waste combustion number distribution up or

down, while maintaining the general shape of the distribution. The HIGHMASS simulation has a
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Figure 2.5: The change in global-mean (a) number distribution and (b) volume distribution for the different
sensitivity studies relative to the WASTE-OFF simulation.

larger increase in accumulation-mode particles as well as a stronger suppression of nucleation/growth

and thus a larger decrease in nucleation-mode particles relative to BASE. Meanwhile, LOWMASS

scales in the opposite direction. In the PRIMARY simulation, we remove gas-phase NH3 and SO2

emissions from waste combustion, which contributes to particle nucleation and condensational

growth. The removal of these condensable vapors results in a larger suppression of nucleation and

growth relative to BASE, causing a larger decrease in sub-80 nm particles as well as fewer particles

in the 80–200 nm range. When only primary BC and OA from waste combustion are emitted, the

global-mean N10 decreases (−0.17 %, Table 2.2). Nucleation and condensational growth is a less

significant contributor to particles greater than 200 nm, and so PRIMARY and BASE have the same

distribution at these larger sizes.

Altering the GMD of the emissions size distribution leads to the largest changes in modeled

distributions. In SIZE200, we increase emission GMD while keeping total mass constant. As-
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suming a constant density, this necessitates a smaller number flux of emitted particles (as larger

particles have more mass). The reduced particle number concentration relative to BASE allows for

nucleation through emitted NH3 and SO2 to increase the number of sub-80 nm particles; however,

increases in global-mean particle number concentration are less than 1 % in all size classes (Table

2.2). Conversely, global-mean particle number concentration increases by greater than 4 % in all

size classes in the SIZE30 simulation. The increased particle number concentration does lead to

a stronger suppression of nucleation; however, as emission GMD is now 30 nm, particle number

concentration changes become positive at 20 nm (compared to 80 nm for BASE). Across all simula-

tions, our particle number concentration is most sensitive to decreasing the value of the GMD of

the assumed size distribution. Thus, understanding near-source, sub-grid-scale aging, which takes

primary combustion particles from diameters around 30 nm to larger sizes (e.g., Sakamoto et al.,

2016), is very important in determining the size-distribution effects of waste combustion. Across all

sensitivity simulations, we find a range in the global-mean particle number concentration changes

due to waste combustion of −0.2 to 4.0 % for N10, 0.2 to 1.8 % in N40, 0.5 to 5.4 % in N80, and

0.4 to 4.4 % in N150.

2.3.4 Aerosol direct radiative effect

Table 2.3 and Figure 2.6 show the global-mean all-sky DRE from waste combustion for the

six different mixing-state assumptions for the BASE-WASTE_OFF comparison as well as other

sensitivity simulations. Under the BASE assumptions, the global-mean DRE is negative for all

mixing states, ranging from −5 to −20 mW m−2. Globally, the OA to BC ratio from waste-

combustion emissions is around 14 to 1, leading to increased scattering and a predominantly

negative or cooling DRE. The relative emission mass of OA and BC is a source of uncertainty in

Wiedinmyer et al. (2014). In Kodros et al. (2015), we found that the sign of the DRE is sensitive

to the OA to BC ratio, where increasing the relative amount of BC leads to more positive (less

negative) DRE. As in previous studies, the DRE becomes more positive when BC is assumed to
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Figure 2.6: Global-mean all-sky direct radiative effect (DRE) and cloud-albedo aerosol indirect effect (AIE)
for the baseline (BASE), aerosol-phase emissions only (PRIMARY), larger (SIZE200) and smaller (SIZE30)
geometric mean diameter, and doubled (HIGHMASS) and halved (LOWMASS) emission mass relative to
the WASTE_OFF simulation. The gold bars represent the DRE for the core–shell mixing state, while the
error bars show the range due to the other optical assumptions.

be mixed internally (represented as core–shell, homogenous, and ext∗1.5) as opposed to externally

mixed and when OA is assumed to absorb as brown carbon.

Figure 2.7 shows maps of annual-mean all-sky DRE from waste combustion for all mixing

states for BASE-WASTE_OFF. Waste combustion causes a largely negative DRE in much of Asia,

Eastern Europe, and the Americas. In regions with bright surfaces (high albedo), such as the Sahara

or Greenland ice sheet, the aerosol mixture has a high-enough absorbing component to decrease

planetary albedo and cause a positive or warming DRE. The largest-magnitude DRE from waste

combustion occurs in eastern China (ranging from −0.4 to −0.1 W m−2), as well as northern India

and Eastern Europe (−0.3 to −0.05 W m−2).

Across all simulations and mixing-state combinations, the global-mean DRE from waste com-

bustion ranges from −40 to +4 mW m−2 (Table 2.3). In simulations HIGHMASS and LOWMASS,

the factor-of-2 uncertainty in emission mass leads to approximately a factor-of-2 scale in DRE. In

PRIMARY, the removal of the emission gas-phase condensable vapors results in a reduction of
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Figure 2.7: The all-sky direct radiative effect for domestic-waste combustion (BASE-WASTE_OFF) assum-
ing a (a) core–shell with brown carbon, (b) homogenous internal, (c) core–shell, (d) external with brown
carbon and an absorption enhancement factor of 1.5, (e) external with an absorption enhancement factor of
1.5, and (f) external mixing state.

sub-200 nm particles, which does not greatly affect the volume distribution (Figure 2.5b). As a result,

the global-mean DRE in PRIMARY is similar to that in BASE. The slightly more negative DRE in

the internal mixtures (core–shell and homogenous) may be a result of smaller shell diameters due to

reduced condensation. Both SIZE200 and SIZE30 result in less negative DRE. In SIZE200, the

mass distribution is moved to larger sizes, resulting in decreases in mass scattering and absorption

efficiencies (the size distribution in the BASE simulation has nearly optimal mass scattering and
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Figure 2.8: The cloud-albedo aerosol indirect effect difference between BASE-WASTE_OFF.

absorption efficiencies). However, the fractional decrease in scattering efficiency is greater than that

for absorption, resulting in a lower single-scattering albedo and an overall decrease in the magnitude

of cooling. In SIZE30, the mass distribution is shifted to smaller sizes, which again lowers mass

scattering and absorption efficiencies with a greater decrease in scattering relative to absorption.

Again, this lowers the single-scattering albedo and decreases the magnitude of cooling.

2.3.5 Cloud-albedo aerosol indirect effect

Figure 2.8 shows the cloud-albedo AIE from domestic-waste combustion in the BASE-WASTE_OFF

simulation. Waste-combustion emissions increase CDNC, and thus cloud reflectivity leading to

a negative AIE in Central and South America, Africa, and the Pacific Islands. These are regions

where the microphysical feedback suppressing nucleation and growth is less dominant, and waste

combustion leads to increases in N40 (Figure 2.4). Conversely, despite increases in aerosol mass

from waste combustion in Asia and Europe, the AIE is 0 or slightly positive. This is caused by

feedbacks in aerosol and cloud microphysics. The “suppression of nucleation and growth” feedback

(described earlier) leads to decreases in N40 and thus CDNC. In addition, heavy anthropogenic
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pollution in India and China results in a strong competition for water vapor. Increases in N80

and N150 (Figure 2.4) decrease the maximum supersaturation achieved in updrafts, which further

limits droplet activation. As a result of the competing regional effects, the global-mean AIE for

BASE-WASTE_OFF is −13 mW m−2 (Table 2.3).

The global, annual-mean AIE for all simulations is listed in Table 2.3 and plotted in Figure 2.6.

In the global mean, the AIE ranges from −4 to −49 mW m−2 based on all emission uncertainties.

In general, AIE is stronger in simulations with greater particle-number increases from waste

combustion (SIZE30, HIGHMASS) and weakest in simulations with smaller particle-number

increases (SIZE200, PRIMARY, LOWMASS). The largest-magnitude AIE occurs in the SIZE30

simulation (−49 mW m−2) due to the large increase in particle number concentration (Table 2.2 and

Figure 2.5). The lowest magnitude AIE occurs in the PRIMARY simulation, where condensable

vapors from waste-combustion emissions are removed, leading to fewer particles in the 40–200 nm

size range relative to BASE (Figure 2.5). This implies a non-trivial contribution of nucleation and

growth to CCN concentrations from the NH3 and SO2 emissions from trash combustion.

2.4 Conclusions
In this paper, we use a global chemical-transport model to provide a first estimate of aerosol

concentrations and radiative impacts from open, uncontrolled combustion of domestic waste. Using

emissions from Wiedinmyer et al. (2014), we find increases in global-mean boundary-layer BC

and OA mass of 8.5 and 5.6 %, with regional increases exceeding 40 %, relative to simulations

without waste-combustion emissions. In our base simulations, we estimate that domestic-waste

combustion emissions lead to a global-mean DRE ranging from −5 to −20 mW m−2 (range due to

optical assumptions) and an AIE of −13 mW m−2. In areas where open waste combustion occurs,

the resulting aerosol radiative impacts can range from −0.1 to −0.4 W m−2. On a global scale, we

find minor improvements of model AOD compared to observed AERONET AOD when including

waste-combustion emissions.
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We include several sensitivity simulations to explore uncertainties in waste-combustion emission

size distribution, gas-phase species (leading to secondary aerosol), and emitted particulate mass. In

the global, annual mean, we estimate a range in the DRE of +4 to −40 mW m−2 and in the AIE

of −4 to −49 mW m−2. We find altering the waste-combustion emission size distribution while

keeping total mass constant (SIZE200 and SIZE30) leads to substantial changes in the modeled

size distribution, thus affecting the AIE (−8 to −49 mW m−2) and to a lesser extent the DRE

(+4 to −18 mW m−2). In PRIMARY, we emit only primary BC and OA particles from waste

combustion (and not particle-precursor gases). In this simulation, waste combustion leads to a

stronger suppression of nucleation and growth, smaller increases in particle number concentration,

and a lower magnitude AIE (−4 mW m−2). Thus, the particle-precursor gases emitted from waste

combustion are important contributors to new-particle formation and growth, and they contribute

to the negative AIE from waste-combustion emissions. We introduce a factor of 2 uncertainty

in emission mass in HIGHMASS and LOWMASS. We find this leads to a near-linear increase

in BC and OA mass and DRE (−2.5 to −40 mW m−2). Scaling emission mass up/down also

increases/decreases emitted particle number concentration, leading to a range of AIE of −7 to

−24 mW m−2. There is little information on emission size distribution and optical properties

from waste combustion. Better knowledge of these parameters along with continued validation of

emission mass fluxes will reduce model uncertainty.

Our estimates for the aerosol radiative effects from waste combustion are relatively small

compared to the total aerosol burden; however, they are of similar magnitude to recent estimates

of radiative impacts from biofuel combustion (−0.06 to +0.08 W m−2 for the DRE and −0.05 to

+0.01 W m−2 for the AIE), another emission source associated with developing countries (Bond

et al., 2013; Butt et al., 2016; Kodros et al., 2015; Lacey et al., 2015). Based on our estimates,

it appears that the aerosol radiative effects from waste combustion likely have an overall cooling

effect.

In a separate study (Kodros et al., 2016), we estimated that this waste-combustion aerosol leads

to 284 000 (95 % CI: 188 000–404 000) premature deaths globally each year. If waste-combustion
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aerosol were reduced to protect human health, this may also lead to a positive radiative forcing

(warming tendency) due to a reduction of the waste-combustion-aerosol cooling. A reduction in

waste combustion would also lead to a change in greenhouse gases, although these greenhouse-

gas estimates are out of the scope of this paper due to the complex nature of greenhouse-gas

emissions from waste decomposition and/or recycling. The greenhouse-gas changes due to choice

of waste-removal method are an important topic to be studied in the future.
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Chapter 3

Global burden of mortalities due to chronic exposure

to ambient PM2.5 from open combustion of domestic

waste2

Uncontrolled combustion of domestic waste has been observed in many countries, creating

concerns for air quality; however, emissions from these waste fires are not included in many

inventories, and the health implications have not yet been quantified. In this study, we incorporate

the Wiedinmyer et al. (2014) emissions inventory into the standard emission setup of the global

chemical-transport model, GEOS-Chem, and provide a first estimate of premature adult mortalities

from chronic exposure to ambient PM2.5 from open, uncontrolled combustion of domestic waste.

Using the concentration-response functions (CRFs) of Burnett et al. (2014), we estimate that waste

combustion emissions result in 270,000 (5th-95th: 213,000-328,000) premature adult mortalities

per year, with a high spatial density of mortalities in urban centers in developing countries. The

confidence interval results from the uncertainty in the CRFs. We acknowledge that this result is

likely sensitive to the choice of chemical-transport model, CRFs, and emission inventories. Our

central estimate equates to approximately 9% of adult mortalities from exposure to ambient PM2.5

reported in the Global Burden of Disease Study 2010. Exposure to PM2.5 from waste combustion

increases the risk of premature mortality by more than 0.5% for greater than 50% of the population.

Complete removal of waste combustion would only avoid 191,000 (5th-95th: 151,000-224,000)

mortalities per year (smaller than the total contributed premature mortalities due to nonlinear

CRFs). In addition to the statistical uncertainty in the CRFs, we consider sensitivity simulations to

waste-combustion emission mass as well as model resolution. A factor-of-2 uncertainty in waste-

2This Chapter published as: Kodros, J. K., Wiedinmyer, C., Ford, B., Cucinotta, R., Gan, R., Magzamen, S. and
Pierce, J. R.: Global burden of mortalities due to chronic exposure to ambient PM2.5 from open combustion of domestic
waste, Environ. Res. Lett., 11(12), 124022, doi:10.1088/1748-9326/11/12/124022, 2016.
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combustion PM leads to a sub-linear mortality response (ranging from 138,000 to 518,000 mortalities

per year for factors-of-2 reductions and increases, respectively, using the central estimates of the

CRFs). In general, mortality rates decrease with decreasing model resolution. Decreasing model

resolution from 2◦x2.5◦ to 4◦x5◦ results in 16% fewer mortalities attributed to waste-combustion

PM2.5, and similarly, over Asia, decreasing resolution from 0.5◦x0.667◦ to 2◦x2.5◦ results in 21%

fewer mortalities attributed to waste-combustion PM2.5. Owing to coarse model resolution, our

global estimates of premature mortality from waste-combustion PM2.5 are likely a lower bound.

Furthermore, combustion of domestic waste may emit additional toxic gas- and particle-phase

species that are not explicitly considered in this analysis.

3.1 Introduction
Open, uncontrolled combustion of domestic waste (i.e. trash burning) occurs on a global

scale, emitting particulate matter (PM) and toxic gaseous and particulate compounds (Christian

et al., 2010; Wiedinmyer et al., 2014). Domestic waste can include food and agricultural products,

containers and packaging, and other sources of residential trash. Combustion occurs both in homes

and at community waste sites (i.e. dumps), and both in developing and developed countries, though

waste combustion is more widespread in developing countries (Wiedinmyer et al., 2014). While

combustion of waste is ubiquitous in rural areas, there are also significant emissions in urban areas,

potentially leading to pollution exposure of dense populations (Wiedinmyer et al., 2014).

Until recently, inventories of pollutant emissions from combustion processes either did not

include emissions from uncontrolled domestic-waste combustion (e.g., Bond et al., 2007; Janssens-

Maenhout et al., 2011), or the domestic-waste-combustion emissions were assumed to be low

relative to other sources in all locations (Bond et al., 2004). However, Wiedinmyer et al. (2014)

recently created an emissions inventory focused specifically on the emissions from the uncontrolled

open combustion of domestic-waste products. The total estimated PM2.5 emissions were 10 Tg

yr-1, globally, an order of magnitude higher than a previous estimate in Bond et al. (2004), and

similar to the emissions from biofuel combustion in Bond et al. (2004). The more-recent estimates
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were higher due to newer assumptions in waste production, fraction burned, and emission factors.

The largest driver of the difference in emissions was the estimated amount of annual waste burned:

Bond et al. (2004) estimated a total of 33 Tg, while Wiedinmyer et al. (2014) predict 970 Tg. This

discrepancy is in part due to the assumption in Bond et al. (2004) that no waste combustion occurs

in rural developing countries. Thus, ambient air quality particularly in developing countries may be

substantially impacted by domestic-waste combustion.

PM air pollution is a major contributor to the global burden of disease, and the most important

environmental contributor to morbidity and mortality in the world (Lim et al., 2012). Thus,

exposure to ambient pollution from uncontrolled domestic-waste combustion may have serious

health implications, yet these health effects have not been quantified. A number of past studies have

linked exposure to ambient PM with aerodynamic diameters less than 2.5 µm (PM2.5) to increased

risk of mortality for adults from ischaemic heart disease (IHD), cerebrovascular disease (CeVD, or

stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC) (Burnett et al., 2014;

Krewski et al., 2009; Laden et al., 2006; Pope et al., 2002). Using a combination of satellite and

ground observations, and chemical-transport models to estimate PM2.5 exposure from all sources,

the Global Burden of Disease (GBD) Study 2010 estimated 3.1 million premature mortalities,

globally, in 2010 (Lim et al., 2012).

For global/regional scale studies, chemical-transport models have been used to estimate surface-

level ambient PM2.5 exposure for use in health-impact assessments (e.g., Anenberg et al., 2010;

Butt et al., 2016; Lelieveld et al., 2013, 2015). Despite uncertainties in emissions and atmospheric

processes, models have an advantage over ground-based measurements in that they provide exposure

estimates in regions where few surface measurements are available. In addition, models can provide

source-specific PM2.5 estimates, thereby allowing for policy-relevant mortality estimates from

specific emission sectors (e.g., Butt et al., 2016; Corbett et al., 2007). Recently, Lelieveld et al.

(2015) used the ECHAM model to estimate source-specific mortalities, finding dominant sources in

Asia are from residential solid-fuel combustion and biomass burning; however, this study does not

include emissions from open waste combustion.
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One potential drawback of using chemical-transport models on a global scale is that compu-

tational efficiency often limits model spatial resolution. Lower-resolution global models average

PM2.5 concentrations over larger areas, limiting the ability to predict very-polluted regions and

sharp gradients outside these regions. As emissions are often co-located with population, this

may lead to a dependence of mortality estimates on model resolution. Punger and West (2013)

estimated ambient PM2.5 mortalities in the United States using different model resolutions, and find

substantially (~30%) lower estimates when scaling PM2.5 to spatial scales representative of global

models (>250 km) relative to 12 km. One method to correct for sub-grid scale gradients involves

using satellite aerosol optical depth (AOD) at resolutions higher than the model (e.g. ~10 km vs.

~200 km) to interpolate PM2.5 exposure fields at the resolution of the satellite AOD. However,

this method relies on the ratio of modeled AOD to surface PM2.5 (van Donkelaar et al., 2015).

Ford and Heald (2016) estimated 20% uncertainty in mortality due to methodology in estimating

surface PM2.5 concentrations from satellite AOD. Additionally, while this method was used in

several studies to estimate all-source PM2.5 mortality (Evans et al., 2013; Lim et al., 2012), satellite

observations cannot be used to isolate individual sources of PM2.5; one would need to assume that

spatial distribution of AOD from each individual source follows the spatial distribution of the total

AOD.

In this study, we provide the first estimates of mortality due to chronic exposure to PM2.5 from

domestic-waste combustion. We include the recent Wiedinmyer et al. (2014) waste-combustion

inventory into the global/regional chemical-transport model, GEOS-Chem. In Section 2, we discuss

the model setup and methodology for estimating mortality. In Section 3.1, we present model results

for waste-combustion PM2.5 and in Section 3.2 we present the global and country-level attributed

mortality. In Section 3.3, we estimate the deaths averted due to complete removal of emissions. In

Section 3.4, we test the sensitivity of mortality rates to uncertainties in emission mass and model

resolution. We share our conclusions in Section 4. In a separate study, Kodros et al. (2016a), we

estimate the aerosol radiative impacts from domestic-waste combustion.

31



3.2 Methods

3.2.1 Chemical-transport model overview

To estimate PM2.5 concentrations, we use the Goddard Earth Observing System chemical-

transport model (GEOS-Chem) version 10.01. GEOS-Chem is driven by GEOS-5 assimilated

meteorology fields (http://gmao.gsfc.nasa.gov), and includes PM tracers for black carbon, organic

aerosol, dust, sea salt, sulfate, nitrate, and ammonium in addition to 52 gas-phase species. Globally,

we use the EDGAR emissions inventory with regional overwrites as described in the Supplemental

Material (Appendix A). Waste-combustion emissions are not included in these base GEOS-Chem

emissions inventories. We incorporate to GEOS-Chem the waste-combustion inventory of Wiedin-

myer et al. (2014), which estimates the mass of waste burned in urban and rural areas for developing

countries, and rural areas for developed countries. The inventory primarily uses emission factors

compiled in Akagi et al. (2011). Estimated waste-combustion emissions include 0.6 Tg yr-1 of

black carbon and 5.1 Tg yr-1 of primary organic carbon, as well as more-minor contributions from

gas-phase species including sulphur dioxide, ammonia, and nitrous oxides, which contribute to

additional PM2.5 (<10% of the total addition) through chemical reactions. Evaluation of the modeled

aerosol burden with and without waste-combustion emissions is included in the Supplemental

Material (Appendix A).

We perform GEOS-Chem simulations for year 2010 with a pair of simulations: one with emis-

sions from all sources (including waste burning; ‘WASTE_ON’), and another, otherwise-identical

simulation but without waste-combustion emissions (‘WASTE_OFF’). Comparison of these pairs of

simulations allows us to isolate the impacts of waste combustion on PM2.5 concentrations and mor-

tality. In order to test the sensitivity of mortality rates to uncertainties in waste-combustion emission

mass, we assume waste-combustion PM2.5 scales linearly with PM emission mass and simply double

(‘HIGHMASS’) and half (‘LOWMASS’) modeled waste-combustion PM2.5 concentrations. The

factor-of-2 uncertainty in emission mass is similar to uncertainties in waste-combustion emission

factors reported in Akagi et al. (2011). In order to test the sensitivity of mortality rates to model

resolution we repeat the WASTE_ON and WASTE_OFF simulations at three resolutions: 2◦x2.5◦
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(~200 km) and 4◦x5◦ (~400 km) resolution globally, and a 0.5◦x0.666◦ (~50 km) resolution over

Asia.

3.2.2 Calculation of premature mortality

Our methodology to estimate mortalities from waste-combustion PM2.5 is based on the methods

used in the GBD 2010 to estimate ambient PM2.5 mortalities. We discuss a number of uncertainties

and limitations of this method in Section 4. We use year 2010 gridded population (from the NASA

Socioeconomic Data and Application Center (SEDAC, http://sedac.ciesin.columbia.edu/) and base-

line mortality rates compiled for the GBD 2013 for ischemic heart disease (IHD), cerebrovascular

disease (CeVD), cardiopulmonary disease (COPD), and lung cancer (LC) for adults (ages greater

than 25) (Naghavi et al., 2015). Baseline mortalities are reported at the country level, and we

aggregate them to the model resolution assuming no sub-national gradients. Data on baseline

mortality variability at a sub-national scale were not available.

The fraction of all premature mortalities due only to PM2.5 is based on concentration-response

functions (CRFs) that relate exposure to ambient PM2.5 to increased risk of premature mortality

from specific diseases. We calculate the relative risk (RR) from all PM2.5 sources (RRtotal) using

the integrated CRFs of Burnett et al. (2014). We choose the Burnett et al. (2014) study as it uses

smoking and household air pollution to constrain the risk at high PM2.5 concentrations (such as

ambient PM2.5 found in India and China). The Burnett et al. (2014) study makes several assumptions

relevant to this study: the toxicity of PM2.5 is not dependent on composition, increased mortality

risk is a result of long-term exposure, CRFs apply globally, there exists a minimum PM2.5 threshold

(modeled as a uniform distribution ranging from 5.8-8.8 µg m-3) below which no further negative

health impacts are assumed to occur, and the relationship between relative risk of mortality and

PM2.5 exposure is nonlinear. We note that CRFs are an active area of research, and our results are

likely sensitive to our choice of CRF. Burnett et al. (2014) fits coefficients using a Monte Carlo

approach, reporting 1,000 sets of coefficients for each cause (and each age group for CeVD and

IHD). We use these sets of coefficients to determine median, 5th, and 95th percentiles of mortality.
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The attributable fraction of premature mortalities by PM2.5 is then calculated from the RR by:

(RRtotal-1)/RRtotal.

We estimate total premature adult mortality from PM2.5 as the product of population, cause

and age specific baseline mortality rates, and attributable fraction from all PM2.5 sources in each

model gridcell. We estimate 2.7 million premature adult mortalities from ambient PM2.5 in the

2◦x2.5◦-resolution simulation (Figure A.1). This number is lower than estimates of 3.1 million from

Lelieveld et al. (2015) and Lim et al. (2012); however, it is within the reported uncertainty ranges

(2.5 to 3.7 million for Lim et al., 2012 and 1.5 to 4.6 million for Lelieveld et al., 2015). The coarser

resolution of our global model likely contributes to the lower estimate.

To attribute the number of mortalities owing to waste-combustion emissions, we scale total

mortalities from all PM2.5 by the fraction of PM2.5 from waste combustion (attribution method).

This is represented by Equation 3.1:

Mwaste =
PM2.5,WASTE_ON − PM2.5,WASTE_OFF

PM2.5,WASTE_ON
×Mall(WASTE_ON) (3.1)

where Mwaste is the premature mortalities due to waste combustion, Mall (WASTE_ON) is the pre-

mature mortalities due to all sources in the WASTE_ON simulation, and PM2.5, WASTE_ON and

PM2.5,WASTE_OFF are the modeled PM2.5 concentrations in the WASTE_ON and WASTE_OFF simu-

lations, respectively. Additionally, we estimate the number of mortalities averted due to removal of

waste-combustion emissions by subtracting the total mortalities in the WASTE_OFF simulation

from the total mortalities in the WASTE_ON simulation (subtraction method). This is represented

by Equation 3.2:

Mwaste =Mall(WASTE_ON) −Mall(WASTE_OFF ) (3.2)

where Mall (WASTE_OFF) is the premature mortalities from all sources in the WASTE_OFF simula-

tion. The subtraction method yields different results than the attribution method as the concentration-

response function has strong nonlinearities (discussed below).
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Figure 3.1: The (a) absolute difference and (b) percent difference in modeled boundary layer PM2.5 from
including emissions from combustion of domestic waste in our simulations at 2◦x2.5◦ resolution.

3.3 Results

3.3.1 Model increases in PM2.5 due to waste-combustion emissions

Figure 3.1 shows the absolute increase (panel a) and percent increase (panel b) in PM2.5 from

waste-combustion emissions at 2◦x2.5◦ model resolution. Waste-combustion emissions lead to

over 10% increases in ambient PM2.5 concentrations in South and South-East Asia, Eastern Europe,

Central America and Coastal South America. Notably, PM2.5 increases by more than 40% in Sri

Lanka and central Mexico (e.g. Mexico City). The absolute increases in PM2.5 are greatest in

eastern China and northern India, but there are anomalously large fractional increases in grid cells

corresponding to large urban areas such as Johannesburg, Cairo, Moscow, and Mexico City.

3.3.2 Global and country-level mortality rates due to waste-combustion PM2.5

The mortality rates per area associated with waste-combustion PM2.5 calculated through the

attribution method are shown in Figure 3.2a, and global annual mortalities listed by cause of

death are in Table 3.1. We attribute waste-combustion PM2.5 to 270,000 (5th-95th:213,000-328,000)

adult mortalities per year (calculated as the sum of IHD, CeVD, COPD, and LC). The majority

of these mortalities are caused by IHD (120,000, 5th-95th:106,000-136,000) and CeVD (108,000,

5th-95th:86,000-130,000). Spatially, the highest concentration of deaths occurs in eastern China
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Figure 3.2: Annual mortalities from chronic exposure to ambient PM2.5 from waste combustion per 104 km2

in the (a) 2◦x2.5◦ global domain and (b) in the 0.5◦x0.666◦ Asian domain as well as per 106 people in the (c)
2◦x2.5◦ global domain and (d) in the 0.5◦x0.666◦ Asian domain.

and northern India where mortality exceeds 900 deaths per 104 km2 (a 100x100 km box) per year.

There is also a substantial number of mortalities in Eastern Europe. Significant increases in PM2.5

co-located with dense populations lead to greater than 300 deaths per 104 km2 in densely populated

cities. Figure 3.2c shows the waste combustion mortality rate per 106 people (in each grid cell). A

combination of large relative PM2.5 increases and high baseline mortality rates in Eastern Europe

and Russia lead to a similar mortality rate as in Asia. Figure 3.2c also shows more widespread health

impacts in Africa and the Middle East, where lower population densities limit the total number of

annual mortalities.

At the country level, the estimated premature mortality rates due to waste-burning PM2.5

(normalized either by population or area) varies by several orders of magnitude between regions and

economic level. This mortality range is due to (1) differing amounts of waste generation (and hence
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Table 3.1: Annual mortalities (thousands) by cause and model resolution for the global and Asian domains
due to exposure to PM2.5 from combustion of domestic waste. The first number is the median estimate, and
the 5th and 95th percentile confidence intervals are in parentheses. Abbreviations: IHD, ischaemic heart
disease; CeVD, cerebrovascular disease; COPD, cardiopulmonary disease; LC, lung cancer.

Resolution IHD CeVD COPD LC Sum

Global 4◦x5◦ 103 89 23 12 227
Domain (91-116) (71-107) (12-34) (6-34) (180-275)

2°x2.5° 120 108 27 15 270
(106-136) (86-130) (14-40) (7-21) (213-328)

2°x2.5°- 229 208 52 30 518
HIGHMASS (203-258) (165-249) (28-77) (14-41) (180-275)
2°x2.5°- 62 55 13 7 138
LOWMASS (55-70) (44-66) (7-20) (3-11) (109-167)
2°x2.5°- 70 84 23 13 191
SUBTRACT (63-80) (67-98) (14-30) (8-17) (151-224)

Asia 4°x5° 76 76 21 11 184
Domain (68-84) (61-91) (11-31) (6-15) (146-222)

2°x2.5° 90 93 24 13 221
(81-101) (74-110) (13-36) (6-19) (174-266)

0.5°x0.667° 113 120 29 16 279
(102-126) (96-143) (15-44) (8-23) (221-336)

emissions) and pollution transport leading to differing PM2.5 concentrations, (2) large variations

in total number and density of the exposed population, and (3) differences in baseline mortality

rates. In addition, non-waste-combustion PM2.5 plays an important role. In both WASTE_ON and

WASTE_OFF, some countries are uniformly below the minimum concentration threshold set as

the counterfactual in Burnett et al. (2014) for PM2.5 health effects (though, we note that the actual

minimum concentration threshold has not been clearly identified in the literature). By aggregating

mortalities to the country level, we find the countries with the largest total mortalities due to waste

combustion are China, India, Pakistan, and Russia. These four countries amount to 78% of the

global mortality. The countries with the highest mortalities per capita are Montenegro, Bulgaria,

Moldova, and Ukraine. Normalizing by mass of waste generated, we find that the countries with

the highest mortalities per mass of waste generated are Nepal, Montenegro, Uruguay, and Bulgaria.

Supplemental Figure A.4 shows box-and-whisker plots of country-level generated waste per capita

per year (a) (from Wiedinmyer et al. (2014), mortality rates per capita (b), and mortality per mass
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of waste generated (c) split between 4 economic strata: high income, upper-middle income, lower-

middle income, and low income. While on average high-income countries generate two times more

waste, only 10 people die for every Tg of waste generated compared to 82 deaths for every Tg of

waste generated in low- to upper-middle-income countries. This difference is driven by a higher

fraction of waste generated being burned in low- to upper-middle income countries compared to

high-income countries.

3.3.3 Deaths averted due to removal of waste-combustion emissions

We estimate 191,000 (5th-95th:51,000-224,000) premature mortalities per year may be saved by

eliminating waste combustion (subtraction method; see explanation in Section 2.2) (Table 3.1 and

Figure A.6). Thus, removing waste combustion would reduce premature mortality rates by a smaller

number than the mortality rate attributed to waste combustion. This is due to the nonlinear CRFs

where the mortality response to PM2.5 saturates with increasing PM2.5 concentrations. This saturation

effect is strongest in the heavily polluted regions of India and China (which lie on the sub-linear

portion of the CRF). This saturation effect is partly balanced out by a larger number of mortalities

avoided in cleaner regions where waste-combustion emissions elevates PM2.5 concentrations from

below to above minimum-PM2.5-threshold values.

3.3.4 Sensitivity of mortality rates to emission mass and model resolution

Wiedinmyer et al. (2014) acknowledge large uncertainties in PM2.5 emission mass. To test

the sensitivity of mortality rates to uncertainties in emission mass, we introduce a factor-of-2

uncertainty in waste-combustion PM2.5 mass. Halving waste-combustion PM2.5 (LOWMASS)

results in 138,000 (5th-95th:109,000-167,000) mortalities per year and doubling PM2.5 (HIGHMASS)

results in 518,000 (5th-95th:410,000-626,000) through the attribution method (Table 3.1 and Figure

A.5). The relationship between waste-combustion PM2.5 and mortality is sub-linear (additional

PM2.5 impacts health less when PM2.5 concentrations are already high) because many of the waste-

combustion source regions occur in already heavily polluted areas; thus, the waste-combustion

emissions in these regions lead to fewer mortalities than if PM2.5 concentrations were lower.
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In order to explore the dependence on estimated attributed mortality rates to model resolution,

we use a coarser 4◦x5◦ and finer 2◦x2.5◦ global simulation and a 0.5◦x0.666◦ simulation over Asia.

The total number of annual mortalities in the global 4◦x5◦ resolution simulation is 16% lower

than the 2◦x2.5◦ resolution simulation (Table 3.1 and Figure A.7). The decrease in mortality rates

with coarser resolution is caused by two main factors. First, as grid-box area increases, ambient

PM2.5 is averaged over a larger area and may reduce concentrations below the minimum threshold

for mortality (between 5.8-8.8 µg m-3) in some locations. Second, higher-resolution simulations

are better able to co-locate dense urban populations with PM2.5 increases from waste combustion.

Figure 3.2b shows the annual mortality per 104 km2 and Figure 3.2d shows annual mortality per

106 people over Asia at 0.5◦x0.666◦ resolution. In this domain, total mortalities increase from

184,000 (5th-95th:146,000-222,000) in the 4◦x5◦, to 221,000 (5th-95th:174,000-266,000) in the

2◦x2.5◦, to 279,000 (5th-95th:221,000-336,000) in the 0.5◦x0.666◦ resolution simulation. The

higher-resolution simulation predicts more mortalities just in the Asia domain than the 2◦x2.5◦

simulation predicts globally, which highlights the importance of model resolution when using

simulated PM2.5 concentrations to estimate mortality rates.

Figure 3.3 shows the fractions of the population impacted by waste-combustion PM2.5 and

mortality risk. Figure 3.3a shows the complementary cumulative distribution functions (CCDF)

of the percent of the global population exposed to different levels of PM2.5 from domestic-waste

combustion. In the global 2◦x2.5◦ domain, 50% of the total population is exposed to a greater than

1.3 µg m-3 increase in PM2.5 from waste combustion, while 10% is exposed to a greater than 5.3

µg m-3 increase. Increases in exposure due to waste-combustion PM2.5 are generally smaller in

the coarser 4◦x5◦ domain due to dilution of emissions into larger grid cells. Figure 3.3b shows the

corresponding CCDFs for the relative increase in PM2.5-mortality risk in the WASTE_ON compared

to the WASTE_OFF simulation (The all-cause relative risk is the mean value of the relative risk

of the four causes weighted by the proportion of each cause to the total baseline mortality). For

the two global resolutions, more than 50% of the population has greater than a 0.5% increased

risk of mortality by any cause due to waste-combustion emissions, while 10% of the population
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Figure 3.3: Complementary cumulative distribution functions weighted by percent of the population for (a)
the change in PM2.5 due to combustion of domestic waste for the global domain, (b) the increased risk for
mortality due to combustion of domestic waste for the global domain, (c) the change in PM2.5 for the Asia
domain, and (d) the increased risk of mortality for the Asia domain.

has a greater than 1.5% increased risk of mortality. While in Figure 3.3a 91% of the population

is exposed to at least a 0.1 µg m-3 increase in PM2.5, only 75% of the population has a greater

than 0.02% increased risk of mortality in Figure 3.3b (due to minimum PM2.5 thresholds in the

concentration-response function). Figures 3.3c and d show increased PM2.5 and increased risk of

mortality in the Asian domain for the three model resolutions. The majority of global mortalities

occur in Asia (Table 3.1), where a larger fraction of the population is exposed to waste-combustion

PM2,5 and thus increased risk of mortality. All three resolutions show that nearly 99% of the

population in Asia is exposed to at least a 0.1 µg m-3 increase in PM2.5 and nearly 83% of the

population have an greater than 0.02% increased risk of mortality from waste combustion. The

0.5x0.666◦ resolution simulation predicts that a higher fraction of the population is exposed to
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larger increases in PM2.5 and mortality risk than the coarser resolutions due to the reasons discussed

above.

3.4 Discussion and conclusions
As stated in the results, we estimate 270,000 (5th-95th:213,000-328,000) annual adult mortalities

from waste combustion. Our estimate of mortality attributed to waste combustion is similar to recent

estimates of mortalities due to PM2.5 from solid-fuel cookstoves (300,000-400,000 mortalities per

year), another emission source associated with the developing world (Butt et al., 2016; Chafe et al.,

2014). Waste-combustion emissions are approximately 10% of our total ambient PM2.5 mortalities

and 9% of the total ambient PM2.5 mortalities estimated in the GBD2010. We note that our estimate

of global mortalities from waste-combustion emissions are of a similar magnitude to the Lelieveld

et al. (2015) estimate of mortalities from PM2.5 from biomass burning (~165,000), land traffic

(~165,000), and industrial emissions (~231,000); however, we note that our total mortality estimate

is 10% lower than Lelieveld et al. (2015).

Waste combustion has high mortality rates due to proximity of emissions to population. In

developing countries, substantial amounts of waste combustion can occur in urban areas. We find

high mortality densities (>300 deaths per 104 km2 yr-1) in cities such as Mexico City, Moscow,

Johannesburg, and Rio de Janeiro. Four countries (China, India, Pakistan, and Russia) account for

slightly more than 2/3 of the global mortality burden due to waste combustion. Globally, more

than half of the world’s population is exposed to an additional 1.3 µg m-3 of PM2.5 due to waste

combustion leading to a 0.5% increased risk of mortality each year just from waste-combustion

emissions.

Due to a factor-of-2 uncertainty in PM2.5 emission mass, we estimate a range of mortalities per

year of 138,000 to 518,000. We note that even on the low end of this range, waste combustion

contributes to a substantial number (greater than 100,000) of mortalities per year. Additionally,

we estimate that a complete removal of waste-combustion would avoid 191,000 mortalities per

year (see explanation in Section 2.2). In these sensitivity simulations, the calculated decrease of
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premature mortality is less than the proportional decrease in PM2.5. The sub-linear nature of these

sensitivity tests demonstrates that most of the mortalities from waste combustion occur in heavily

polluted areas.

Our estimates of premature mortality from waste-combustion PM2.5 are likely a lower bound

due to the coarse resolution of the global model. Combustion of domestic waste often occurs near

where people live and work, sometimes in streets or in front of homes, and none of our model

simulations resolve this near-field pollution exposure. The 2◦x2.5◦ resolution is unable to capture

high PM2.5 gradients, which are often co-located with dense populations. We include an additional

simulation at 4◦x5◦ and calculate 227,000 mortalities (16% lower than the estimate at 2◦x2.5◦). This

suggests increasing mortalities at progressively finer model resolutions. Due to the high mortality

rates in Asia, we include a higher resolution 0.5◦x0.666◦ simulation in this domain. We estimate

279,000 mortalities in Asia at this model resolution. The sensitivity of health-response estimates to

model resolution has been explored in past studies (e.g., Punger and West, 2013; Thompson and

Selin, 2012).

The methods and data sources used here are similar to the GBD 2010 and several recent

health-impact studies (e.g., Apte et al., 2015; Lelieveld et al., 2015; Lim et al., 2012); however,

there are substantial uncertainties and limitations inherent in these methods. First, the Burnett

et al. (2014) concentration-response function is largely based on epidemiologic studies that occur

in the United States, and while there are age modification factors for CeVD and IHD, there are

no modifications for other sociodemographc factors. We assume here that this function applies

globally; however, as demographics and pollution sources vary regionally, this may not be a valid

assumption. Second, we consider all species of PM2.5 to be equally toxic; however, some studies

have suggested that combustion particles may be more toxic (Krzyżanowski et al., 2005). Third,

due to lack of data, baseline mortality rates used here are reported at the national or regional level;

however, demographics often vary sub-nationally, and national and regional level mortality rates

may introduce uncertainty. Chowdhury and Dey (2016) estimate 15% fewer premature mortalities

from ambient PM2.5 exposure in India when assuming a uniform country-level baseline mortality
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rate as opposed to varying baseline mortality at the state level using gross domestic product as a

proxy. The uncertainties listed here are in addition to uncertainties in emissions (Akagi et al., 2011;

Wiedinmyer et al., 2014) and model processes.

In this study, we focus on mortality from chronic exposure to ambient PM2.5, but we note that

waste combustion also emits a number of gas- and particulate-phase toxins that may have additional

significant health implications. While generally accepted that these toxins have negative health

impacts, the concentration-response functions are less well-developed making it difficult to estimate

a global health impact. Thus, because PM2.5 response functions exist, it is common to use PM2.5

estimates as a proxy for exposure to a broad array of toxic species. Therefore, the net health impacts

from waste combustion could be greater than estimates for only PM2.5.

Uncontrolled domestic-waste-combustion emissions are a potentially significant emission source

that has been largely overlooked in past studies. Waste combustion creates health-effect disparities

between high-income countries and lower-income countries, where high-income countries generate

more waste but combust less, resulting in a factor of 8 fewer deaths per mass waste of generated

than lower-income countries (Figure A.4). Due to the coarse model resolution and exclusion of

gaseous toxic species, our estimate of mortalities from waste-combustion emissions is likely a lower

bound. Despite this, we find a substantial burden of disease (9% of mortalities from all PM2.5) that

are on the same order of magnitude as modeling estimates of industry, land traffic, and biomass

burning. Waste combustion also affects aerosol number concentrations and radiative impacts, and

we explore this in a separate study (Kodros et al., 2016a).
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Chapter 4

Quantifying the contribution to uncertainty in

mortality attributed to household, ambient, and joint

exposure to PM2.5 from residential solid-fuel use3

While there have been substantial efforts to quantify the health burden of exposure to PM2.5

from solid-fuel use (SFU), the sensitivity of mortality estimates to uncertainties in input parameters

has not been quantified. Moreover, previous studies separate mortality from household and ambient

air pollution. In this study, we develop a new estimate of mortality attributable to SFU due to

the joint exposure from household and ambient PM2.5 pollution and perform a variance-based

sensitivity analysis on mortality attributable to SFU. In the joint-exposure calculation, we estimate

2.81 (95% CI: 2.48-3.28) million premature deaths in 2015 attributed to PM2.5 from SFU, which

is 580,000 (18%) fewer deaths than would be calculated by summing separate household and

ambient mortality calculations. Regarding the sources of uncertainties in these estimates, in China,

India, and Latin America, we find that 53-56% of the uncertainty in mortality attributable to

SFU is due to uncertainty in the percent of the population using solid fuels and 42-50% from the

concentration-response function. In sub-Saharan Africa, baseline mortality rate (72%) and the

concentration-response function (33%) dominate the uncertainty space. Conversely, the sum of the

variance contributed by ambient and household PM2.5 exposure ranges between 15-38% across all

regions (the percentages do not sum to 100% as some uncertainty is shared between parameters).

Our findings suggest that future studies should focus on more precise quantification of solid-fuel

use and the concentration-response relationship to PM2.5, as well as mortality rates in Africa.

3This Chapter published as: Kodros, J. K., Carter, E., Brauer, M., Volckens, J., Bilsback, K. R., L’Orange, C.,
Johnson, M. and Pierce, J. R.: Quantifying the Contribution to Uncertainty in Mortality Attributed to Household,
Ambient, and Joint Exposure to PM2.5 From Residential Solid Fuel Use, GeoHealth, doi:10.1002/2017GH000115,
2018.
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4.1 Introduction
Close to 40% of the world’s population relies on combustion of solid fuels for residential cooking

and heating (Bonjour et al., 2013). Incomplete combustion of these fuels emits substantial amounts

of particulate matter (PM) that are harmful to human health (Brook et al., 2010; Naeher et al., 2007).

While solid-fuel use (SFU) as a source of household energy is concentrated in developing regions

of the world, high-income countries also burn biomass as a heating fuel (Rogalsky et al., 2014).

Research over the past several decades consistently suggests the health burden from exposure to air

pollutants from SFU is likely to be substantial (e.g., Forouzanfar et al., 2016; Smith et al., 2014;

World Health Organization, 2014).

Exposure to PM with aerodynamic diameters less than 2.5 µm (PM2.5) has been linked to an

increased risk of mortality from cardiovascular and respiratory diseases. The Global Burden of

Disease 2015 report (GBD2015) estimates that 2.85 (95% CI: 2.18-3.59) million deaths in the year

2015 were due to exposure to household air pollution from SFU (Forouzanfar et al., 2016). The

GBD2015 ranks exposure to household air pollution from SFU among the leading risk factors

contributing to premature mortality, globally (Forouzanfar et al., 2016). Using similar methods

as GBD2015 but with different input data, the World Health Organization (WHO) estimates 4.3

million deaths from household air pollution from SFU in the year 2012 (World Health Organization,

2014). In addition, SFU has the potential to degrade ambient (i.e. outdoor) air quality. Estimates of

mortality due to exposure to ambient PM2.5 from SFU typically range from 0.3 to 0.5 million (Butt

et al., 2016; Chafe et al., 2014; Lacey et al., 2017). However, to our knowledge, no work has yet

tried to estimate premature mortality associated with SFU by an approach that jointly considers

ambient and household exposures. Rather, estimates rely on separate calculations for household

(indoor) air pollution and ambient air pollution (e.g., Anenberg et al., 2017; Forouzanfar et al., 2016;

Smith et al., 2014).

Estimates of mortality from exposure to PM2.5 from SFU (including exposure to household

and/or ambient air pollution from this source) rely on input data sources including: country-level

baseline mortality rates, PM2.5 exposure levels, the magnitude and shape of concentration-response
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functions, and the number of people exposed to a specific concentration. Each of these data sources

contains an uncertainty range reflecting the degree of confidence of the estimate in a given region.

As a result of the various sources of uncertainties in the input parameters, there is a large variance

in estimates of mortality attributable to exposure to PM2.5 from SFU. To reduce the variance

in estimated mortality, effort has focused on reducing uncertainty in the input parameters that

contribute the most to the uncertainty in mortality. However, no studies, to our knowledge, have

investigated the sensitivity of mortality estimates to these input parameters.

In this work, we perform a variance-based sensitivity analysis to quantify the contribution of

uncertainty in mortality attributable to SFU to each of the following input parameters: baseline

mortality rates, household and ambient PM2.5 exposure concentrations, concentration-response

functions, and population exposed to household and ambient PM2.5 from SFU. A variance-based

sensitivity analysis provides a framework to apportion uncertainty in model output (in this case

mortality) to sources of uncertainty from model input (Saltelli et al., 2007). This approach involves

calculating mortality tens of thousands of times based on random draws from the input parameter

distributions. The end result of this analysis is a percent contribution of each input term to the

overall variance (the quantified uncertainty) in the mortality estimate. This allows for selection

of parameters that can be prioritized to reduce uncertainty in mortality estimates. This approach

has been used for other environmental applications, recently for particulate matter in the context

of cloud condensation nuclei and radiative forcing (Carslaw et al., 2013; Y. H. Lee et al., 2013)

and simulated acetone budget (Brewer et al., 2017). A limitation of this approach is that we

do not test the sensitivity to the major assumptions and uncertainties from GBD2015 that are

not quantifiable (e.g., equal toxicity of PM2.5 regardless of source or composition, lack of direct

evidence of mortality caused by cardiovascular disease from household air pollution, application of

a single exposure-response function across diverse populations).

The objectives of this study are to evaluate the sensitivity of mortality estimates attributable to

SFU to the five aforementioned data input sources with quantified uncertainty bounds. In addition,

we present a new calculation to quantify the joint effect of exposure to household and ambient PM2.5
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pollution. In Section 2.1, we describe the input parameters used in mortality estimates. In Section

2.2, we describe the calculation of mortality from household, ambient, and the joint exposure to

PM2.5. In Section 2.3, we describe the variance-based sensitivity analysis. In Section 3.1, we

compare the mortality attributed to PM2.5 exposure from SFU in the joint exposure calculation to

the mortality attributed to PM2.5 exposure from SFU through separate calculations for household

and ambient exposures. We present the results of the sensitivity analysis in Section 3.2 and share

our conclusions in Section 4.

4.2 Methods

4.2.1 Uncertain parameters and data sources

We briefly describe the nomenclature, uncertain input parameters, and relevant citations here. In

Sections 2.2 and 2.3, we present how these data are used in estimating mortality from SFU and the

resulting sensitivity analysis.

Nomenclature:

• H-SFU refers to household PM2.5 pollution from solid-fuel use. The H-SFU mortality

calculation uses similar assumptions and methods as the GBD “household air pollution”

calculation.

• A-SFU refers to ambient PM2.5 pollution from solid-fuel use. The A-SFU mortality calculation

uses similar assumptions and methods as the GBD “ambient air pollution” calculation.

• J-SFU refers to the joint effect of ambient and household PM2.5 pollution from solid-fuel use.

The J-SFU mortality calculation is a new estimate of mortality described in this study.

Uncertain Factors

• Baseline mortality rates (BMR): Reported country-level and age-specific mortality rates for

ischemic heart disease (IHD), stroke, lower respiratory infections (LRI), chronic obstructive

pulmonary disease (COPD), and lung cancer (LC). Baseline mortality rates were compiled
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for GBD2015 and include published 95% confidence intervals (http://ghdx.healthdata.org/

gbd-results-tool).

• Concentration-response functions (CRF): Functions relating PM2.5 exposure to a relative risk

of mortality from IHD, stroke, LRI, COPD, and LC. Age-specific adjustments are included for

IHD and stroke. The concentration-response functions are based on the integrated exposure-

response function of Burnett et al. (2014) with updates as described in Cohen et al. (2017).

The integrated exposure-response function published in Cohen et al. (2017) includes 1,000

sets of coefficients fit to the health data.

• PMAmb: Ambient PM2.5 exposure concentration from all sources (available from: https:

//www.stateofglobalair.org/) presented as an annual, population-weighted mean at the country

level. Mean PM2.5 and 95% confidence levels (also country level) about the mean are included

in Cohen et al. (2017) and based on methods described in Shaddick et al. (2017). Following

the assumptions in Cohen et al. (2017), the ambient PM2.5 concentrations are assumed to

represent exposure.

• %PMA-SFU: Percent of the PMAmb originating from SFU emissions. Mean, country-level PM2.5

concentrations with and without residential emissions are simulated with the GEOS-Chem

chemical-transport model for this work (described in Appendix B). 95% confidence intervals

are estimated as a factor of 2 about the mean, following uncertainty estimates in the emission

inventory described in Bond et al. (2007).

• %SFU: The percent of a country’s population using solid fuels (coal, wood, charcoal, dung,

and agricultural residues). Estimates of household SFU (and 95% confidence levels) are

based on Bonjour et al. (2013) and updated in Forouzanfar et al. (2016). Upcoming iterations

of the GBD assume low (<5%) solid-fuel use in high-income countries.

• PMH-SFU: 24-hour average household exposure to PM2.5 originating from SFU. The household

PM2.5 exposure concentrations are taken from GBD2015. These exposure concentrations
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are based on the ratio of indoor PM2.5 concentrations and personal exposures measured in

India from Balakrishnan et al. (2013) with added exposure studies across several countries

and a mixed effect model to estimate region specific concentrations as described in World

Bank (2016) and Forouzanfar et al. (2016). Exposure concentrations are reported at the

regional level. Uncertainty intervals are taken from 95% confidence levels of indoor kitchen

concentrations from Balakrishnan et al. (2013), resulting in a factor of 1.4 in both directions

about the central estimate. In this study, we average exposure concentrations across reported

values for men, women, and children. Household exposure to PM2.5 from solid-fuel use is

assumed to be zero in high-income countries. Quantifying the variability in this parameter is

an open area of research and the sensitivity analysis results are likely sensitive to the assume

confidence bounds.

The input parameters listed here, with the exception of the concentration-response functions,

are published reporting mean or median values with 95% confidence intervals. We assume the

underlying uncertainty is lognormally distributed and discuss calculating the parameters that describe

the lognormal distribution in the Supplemental Information (SI; Appendix B). Also in the SI, we

present results assuming a uniform distribution, and we find that this assumption does not greatly

impact our conclusions. For the concentration-response functions, we interpolate between the 1,000

sets of coefficients to include a smooth distribution of relative risk at each PM2.5 concentration.

In addition, there are separate uncertainty distributions for each of the five disease outcomes for

baseline mortality rate and the concentration-response functions. We treat each disease outcome as

a separate uncertain parameter.

Counting five unique baseline mortality rate parameters, five unique concentration-response

function parameters, three measures of PM2.5 exposure, and the parameter estimating the percent of

a country’s population using solid fuels, we consider 14 uncertain parameters. In addition, there are

a number of major uncertainties and assumptions that are made in PM2.5-mortality calculations that

cannot be quantified. We follow the major assumptions inherent in the GBD concentration-response
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functions, including a globally applicable function and equal toxicity regardless of PM source. The

implications of these assumptions are discussed below.

4.2.2 Calculation of premature mortality from solid-fuel use

We estimate mortality from SFU under three different PM2.5 exposure scenarios. To help explain

the implications of the different assumptions, we include a schematic illustrating the differing

approaches to calculating PM2.5 exposure and associated health response (Figure 4.1). Figure

4.1 contains a representative concentration-response function (IHD age group 65-70) with PM2.5

exposure concentration on the x-axis and relative risk of disease on the y-axis. For this schematic,

we use relative risk as a proxy for health burden. The green bars represent PM2.5 or relative risk

associated with SFU, while the orange bars represent all other PM2.5 sources.

Mortality calculation for exposure to household PM2.5 pollution from SFU: We calculate deaths

attributable to exposure to household PM2.5 pollution from SFU (H-SFU) for the year 2015 following

the methods and assumptions in GBD2015 for the “household air pollution” calculation (Forouzanfar

et al., 2016; Smith et al., 2014). For a given country, health outcome, and age group, the number of

premature deaths from H-SFU can be described as:

MH−SFU = P × BMR × %SFU × RR (PMH−SFU)− 1

RR(PMH−SFU)

where MH-SFU is the premature mortality from household solid-fuel use, P is the country-

level population, RR is the relative risk, and the other parameters are as described in Section 2.1.

The relative risk quantifies the increased risk of mortality due to exposure to the given PM2.5

concentration. The relationship between relative risk and exposure is given by the concentration-

response function (or the CRF parameter defined in the previous section). The H-SFU calculation

assumes the total PM2.5 exposure for the SFU population originates from H-SFU (with negligible

impacts from other PM2.5 sources). This assumption is qualitatively described in Figure 4.1a. In this

example, the PM2.5 exposure is 250 µg m-3 (approximately the median value for India) resulting

in a relative risk of 1.5. Since the H-SFU calculation assumes all of the PM2.5 exposure is from
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Figure 4.1: Schematic showing the calculation of relative risk (RR) from SFU and ambient sources in (a)
the H-SFU calculation, (b) A-SFU calculation, and (c) the J-SFU calculation for a given disease (IHD)
and population group (65-70 year olds). To apportion mortality attributed to exposure to PM2.5 from a
specific source (in this case SFU), we assume the total health risk from exposure to PM2.5 from all sources
scales proportionally with the percent of exposure from only SFU (following the discussions in GBD MAPS
Working Group, 2016). The benefit of this method is that the apportionment of health risk does not depend
on the order of the source contribution to exposure. In the H-SFU calculation (a), the GBD Comparative Risk
Assessment assumes 100% of the PM2.5 exposure concentration (in this example 250 µg m-3) is from SFU,
and thus 100% of the health risk is apportioned to SFU. In the A-SFU calculation (b), the total PM2.5 exposure
concentration is composed of emissions from SFU and non-SFU sources. In this example, the total PM2.5
exposure concentration is 50 µg m-3, of which 10% (or 5 µg m-3) is from SFU. Using the proportionality
assumption, we thus assume 10% of the health risk is apportioned to SFU and the remaining 90% from
non-SFU sources. For the J-SFU calculation (c), we assume that the total PM2.5 exposure concentration (300
µg m3) is the sum of PM2.5 concentrations associated with household SFU (250 µg m-3), ambient SFU (5 µg
m-3), and all other ambient sources (45 µg m-3). As SFU sources account for 85% of the total PM2.5 exposure
in this example (255 µg m-3 divided by 300 µg m-3), we apportion 85% of the health risk to SFU. Panel (d)
compares the attributed relative risk (RR) using the three calculation approaches. In the J-SFU calculation,
the total PM2.5 exposure concentration is higher than in the H-SFU calculation; however, a lower percent of
the total exposure is associated with SFU. As this concentration-response function is sublinear in this range
and assuming PM2.5 source-specific mortality scales proportionally with exposure concentration, less of the
health risk is thus apportioned to SFU.
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H-SFU, all of the relative risk (or health burden) is attributed to SFU. Following the definitions

of GBD2015, the H-SFU calculation does not include household exposure to wood heating in

high-income countries (for instance, %SFU is assumed to be zero in Canada).

Mortality calculation for the contribution of SFU to exposure to ambient PM2.5 pollution: The

number of deaths from A-SFU, for a given country, health outcome, and age group, can be described

by:

MA−SFU = P × BMR × RR (PMAmb)− 1

RR(PMAmb)
× %PMA−SFU

In the calculation of mortality from A-SFU, we assume the total PM2.5 exposure for the entire

population is characterized by PMAmb; however, only a fraction of this exposure originates from SFU.

To estimate mortality associated with ambient exposure to PM2.5 from SFU emissions only (MA-SFU),

we assume the mortality attributed to exposure to PM2.5 from all sources scales proportionally with

the fraction of PM2.5 from SFU emissions to the total ambient PM2.5 concentration (following the

discussion in GBD MAPS Working Group, 2016). This proportionality assumption yields a different

estimate of mortality than subtracting the estimated number of deaths with and without PM2.5 from

SFU (e.g., Kodros et al., 2016b). The proportionality assumption is qualitatively described in Figure

4.1b. In this example, the total PM2.5 exposure is 50 µg m-3. Of this concentration, approximately

10% of the PM2.5 concentration (5 µg m-3) is apportioned to emissions of SFU, while the remaining

90% is apportioned to emissions of other sources. As a result, only 10% of the relative risk is

attributed to SFU. In this study, %PMA-SFU includes emissions of SFU from residential heating in

high-income countries in addition to residential cooking and heating emissions in all other countries.

Mortality calculation for joint exposure to household and ambient PM2.5 pollution from SFU: To

further investigate mortality from SFU, we present a new estimate of the joint effect of exposure to

household and ambient PM2.5 from SFU. This calculation is not included in GBD2015. We estimate

the number of deaths from J-SFU for a given country, health outcome, and age group by:

MJ−SFU = P × BMR × %SFU × RR (PMH−SFU + PMAmb)− 1

RR (PMH−SFU + PMAmb)
×
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PMH−SFU + PMAmb ×%PMA−SFU
PMH−SFU + PMAmb

+ P × BMR × (1−%SFU) ×

RR (PMAmb)− 1

RR (PMAmb)
× %PMA−SFU

In the J-SFU calculation, we assume that the population using solid fuels (P*%SFU) is exposed

to both PMH-SFU and PMAmb. This is a result of 2 assumptions. First, PMH-SFU is defined, following

the definition in Forouzanfar et al. (2016), as the exposure concentration only to PM2.5 originating

from household solid-fuel use. Second, we assume that ambient PM2.5 concentration also exists

indoors (for instance, in the absence of any local emissions from household solid-fuel the household

PM2.5 concentration would equal PMAmb). In contrast to the H-SFU calculation, we do not assume

that all of this exposure (and thus all of the health risk) originates from SFU. Similar to the A-SFU

calculation, we assume that the mortality attributed to exposure to PM2.5 from all sources scales

proportionally with the fraction of PM2.5 originating from just SFU emissions. This assumption is

depicted qualitatively in Figure 4.1c. In this figure, the total PM2.5 exposure for the population using

solid fuels is 300 µg m-3. This is a sum of PMH-SFU (assumed to be only from SFU) along with

PMAmb (of which only %PMA-SFU is from SFU and the rest from other sources). In this example,

PMH-SFU is 250 µg m-3, PMAmb is 50 µg m-3, and %PMA-SFU is 10% (or 5 µg m-3). This results in

85% of the total PM2.5 exposure apportioned to SFU (255 µg m-3 divided by 300 µg m-3). Using the

proportionality assumption for source-specific mortality, only 85% of the relative risk is assumed

to be from SFU. The remaining population not using solid fuels (described by 1-%SFU) is still

exposed to ambient PM2.5 as in the A-SFU calculation. We acknowledge that we follow the same

assumption as in Burnett et al. (2014), Smith et al. (2014), and Forouzanfar et al. (2016) that health

risk from exposure to ambient and household PM2.5 pollution is estimated using a single (integrated)

exposure-response curve.

4.2.3 Variance-based sensitivity analysis

We use the Fourier Amplitude Sensitivity Test (FAST) (Saltelli et al., 1999) to attribute the

fraction of total variance in mortality from SFU to each uncertain input parameter. The FAST
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algorithm selects sets of input parameters across the uncertainty space to develop the output

distribution. FAST then apportions the variance in the output distribution to the contribution by

each input parameter. The result of this analysis is to quantify the main effect index and total effect

index for each parameter. Following the descriptions in Saltelli et al. (2010), the main effect (or

first-order or additive effect) of a parameter describes the expected reduction in output variance

if that parameter alone were held fixed (e.g., what is the expected reduction of uncertainty in our

mortality calculation if the concentration-response function were perfectly known?). The total effect

index of a parameter includes the main effect index plus the variance contributed by interactions of

that parameter with all other parameters. The total effect thus describes the expected remaining

variance if all other parameters were held fixed (e.g. what is the expected amount of remaining

uncertainty in our mortality calculation if all parameters except the concentration-response function

were perfectly known?). In the absence of interactions between parameters, the main effect index

would equal the total effect index.

We perform a variance-based sensitivity analysis on the H-SFU, A-SFU, and J-SFU mortality

calculations separately. For each calculation, the number of random draws is set to be equal

to the number of uncertain parameters times 10,000. As discussed in Section 2.1, we assume

the underlying uncertainty follows a lognormal distribution for each parameter except for the

concentration-response function, where the uncertainty space follows the interpolation of the 1,000

parameter fits. In the SI, we test an underlying uniform distribution and find this does not greatly

impact our results. In the case of baseline mortality rate and concentration-response function,

each disease is treated as a separate uncertain parameter; however, age group is not treated as an

independent parameter. Instead, we assume a z-score to apply across all age groups. Mortality

calculations and the resulting sensitivity analysis are done at the country level.
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4.3 Results and discussion

4.3.1 Country-level mortality attributed to solid-fuel use

4.3.1.1 Premature mortality from H-SFU and A-SFU

We estimate 2.76 (95% CI: 2.37-3.31) million deaths from H-SFU and 0.66 million (95%

CI: 0.52-1.0 million) deaths from A-SFU in 2015. The deaths attributable to A-SFU represent

approximately 17% of the total mortality burden attributed to exposure to ambient PM2.5 from all

sources. The countries with the largest mortality from H-SFU are: India (0.86 million; 95% CI:

0.58-1.26 million), China (0.63 million; 95% CI: 0.43-0.92 million), Bangladesh (0.12 million;

95% CI: 0.09-0.15), and Pakistan (0.11 million; 95% CI: 0.08-0.16 million). The countries with the

largest mortality from A-SFU are: India (0.29 million; 95% CI: 0.14-0.60 million), China (0.14

million 95% CI: 0.07-0.30 million), Bangladesh (0.04 million; 95% CI: 0.02 - 0.08 million), and

Pakistan (0.02 million 95% CI: 0.01-0.04 million). The mortality attributable to A-SFU in these

countries represents 30%, 14%, 38%, and 18%, respectively, of mortality attributable to ambient

exposure to PM2.5 from all sources. Mortality estimates for each calculation and for all countries

are included in the SI.

Our estimate of mortality from H-SFU is slightly less than the estimate of 2.85 (95% CI: 2.18-

3.59) million from GBD2015 household air pollution (“HAP”) calculation for several possible

reasons. First, estimates of the percent of the population using solid-fuel have been updated slightly

since GBD2015 (to assume no household solid-fuel use exposure in high income countries). Second,

due to data limitations, we do not separate exposure by gender. Third, due to computational

limitations, we do all calculations at the country-level. Finally, in this calculation we assume

the uncertain parameters follow a lognormal distribution. A different assumption of underlying

mortality distribution may impact the uncertainty range. Despite this, we note that our calculation

of mortality from H-SFU are within 3% of the household air pollution calculation from GBD2015

and thus we do not plot them here. Similarly, our estimates of mortality in the A-SFU calculation

for India and China compare well with estimates made by the GBD Major Air Pollution Sources

working group (Group, 2016).
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Figure 4.2: Annual mortalities by country due to the joint effect from indoor and outdoor exposure to PM2.5
in 2015. Map colors represent the median of each country’s mortality distribution; the normalized probability
distributions of six representative countries are also shown. The mortality distributions are different for each
country, reflecting differences in model uncertainties for each country’s input data.

4.3.1.2 Premature mortality from J-SFU

Figure 4.2 presents a map of the median estimated mortality in 2015 from J-SFU along with

normalized probability distributions of 6 representative countries. The mortality distributions are

different for each country, reflecting differences in uncertainties in input data sources. Our sensitivity

analysis (Section 3.2) further investigates the factors contributing to variance in these mortality

distributions. We estimate 2.81 (95% CI: 2.48-3.28) million premature deaths from J-SFU, with
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the largest contributing countries similar to the ranking for H-SFU (India, China, Pakistan, and

Bangladesh).

Globally, we estimate 0.58 million fewer deaths in the J-SFU calculation than would result from

summing of our H-SFU and A-SFU calculations. When considering only the population using

solid fuels, the J-SFU calculation predicts 0.26 million fewer deaths than in the H-SFU calculation.

The reason for the fewer deaths in the population using solid fuels for the J-SFU calculation is

qualitatively depicted in Figure 4.1d. In the H-SFU calculation, we assume all of the PM2.5 exposure

(PMH-SFU), and thus all the increased health risk, is from SFU emissions. In the J-SFU calculation,

we assume the PM2.5 exposure for the same population (i.e. solid fuel users) is the sum of PMH-SFU

and PMAmb. This increases the exposure concentration (in the example in Figure 4.1d from 250 µg

m-3 to 300 µg m-3, which is roughly representative of India and China) and thus the relative risk;

however, as PMAmb includes non-SFU sources, we only attribute a fraction of the relative risk to

SFU (in this example approximately 85%). As the concentration-response function is sublinear

in this range for IHD and stroke, the increase in relative risk does not scale proportionately to the

increase in PM2.5 exposure, resulting in lower SFU-attributable health risk for the population using

solid fuels in the J-SFU approach than in the H-SFU approach. In the J-SFU calculation, we also

account for exposure to ambient PM2.5 from SFU (%PMA-SFU) in the population not using solid

fuels, calculated as (1 - %SFU).

Shown in Figure 4.3 are the percent difference in mortality calculated with the J-SFU and sum

of the H-SFU and A-SFU calculations. It is not recommended to add deaths from H-SFU and

A-SFU exposure, as this does not account for a nonlinear health response to exposure; however,

we show this difference to demonstrate the impact of considering joint exposure to ambient and

household PM2.5, as in the J-SFU calculation. Since the high-income countries only have mortality

attributed to A-SFU, the difference between mortality estimates using the J-SFU calculation and

the sum of independent mortality estimates from H-SFU and A-SFU is negligible (it is non-zero

due to the stochastic sampling of input parameters). For most countries, we estimate fewer deaths

using our J-SFU calculation than would be estimated by summing mortality estimates from the
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independent H-SFU and A-SFU calculations. This is because the J-SFU calculation no longer

attributes all of the household exposure to SFU. Countries in South Asia and sub-Saharan Africa

where a substantial (i.e. greater than ~50%) of the population uses solid fuels are more impacted

by the change in assumptions regarding exposure (Figure 4.1d), and thus show a larger reduction

in mortality attributed to SFU. In India and Pakistan, a large percent of the population using solid

fuels combined with a substantial concentration of PM2.5 from non-SFU sources results in a greater

than 20% reduction in mortality in the J-SFU calculation. In sub-Saharan Africa, smaller absolute

concentrations of ambient PM2.5 from non-SFU sources limits this reduction in mortality to between

7-15% despite greater than 90% of the population using solid fuels in many countries in this region.

Figure 4.3: Percent difference in estimated country-level mortalities in 2015 using J-SFU relative to
mortalities determined using the sum of the H-SFU and A-SFU calculations.

4.3.2 Sensitivity analysis

The results of the variance-based sensitivity analysis for (a) China, (b) India, (c) Latin America,

and (d) sub-Saharan Africa are presented in Figures 4.4-4.6 for the H-SFU, A-SFU, and J-SFU

mortality calculations, respectively. These representative regions are selected due to their high rates

of solid-fuel use (notably sub-Saharan Africa) and high estimated air pollution-related mortality

(notably India and China). The bar plots for Latin America and sub-Saharan Africa are averages
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over the sensitivity indices of each country in the region weighted by that country’s SFU mortality.

The y-axis quantifies the percent of the variance in the mortality distribution in each country/region

contributed by each input parameter outlined on the x-axis. As discussed in Section 2.3, we present

the main effect and total effect indices for each parameter. The total effect index is represented

by the total height of the bar with the interaction term represented in grey. The non-grey portion

of the bar represents the main effect index. The contributed variance for baseline mortality rate

and concentration-response function are separated by disease outcome (represented by the different

colors), while the remaining parameters are not dependent on disease. Sensitivity analysis results

for all countries are provided in the SI.

4.3.2.1 Sensitivity Analysis for the H-SFU calculation

Shown in Figure 4.4 are the H-SFU sensitivity analysis results. Considering only the main

effect index, the percent of the population using solid fuels (%SFU) dominates the uncertainty

in H-SFU mortality (contributing greater than 70%) in China, India, and Latin America. This

implies that learning this parameter precisely would reduce the variance in the H-SFU mortality

distribution in these regions by approximately 70%. In terms of absolute numbers, the variance in

mortality would be reduced by 0.44, 0.63, 0.03 million deaths in China, India, and Latin America,

respectively. Conversely, in sub-Saharan Africa, the percent of the population using solid fuels

contributes only 8% to the variance (or 0.04 million deaths). In sub-Saharan Africa, the percent

of the population using solid fuels in many countries is greater than 90% with a small relative

uncertainty. The small relative uncertainty in this parameter is reflected in the small contribution

to variance in the H-SFU mortality distribution in this region. Baseline mortality rate contributes

the most uncertainty in sub-Saharan Africa (close to 70%), specifically from lower respiratory

infections. The large contribution to overall variance from lower respiratory infections is caused by

the combined impact of their large contribution to H-SFU mortality and a large relative uncertainty

range on this contribution, as opposed to lung cancer, which also has a large uncertainty range but

contributes only a small number of deaths to H-SFU.
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Figure 4.4: Contribution to variance in mortality attributed to H-SFU by each parameter for China (a) and
India (b) as well as regional averages weighted by cookstove mortalities for countries in Latin America (c)
and Sub-Saharan Africa (d). Acronyms on the x-axis are as defined in Section 2.1 (BMR: baseline mortality
rate; CRF: concentration-response function; % SFU: percent of the population using solid fuel; PMH-SFU:
exposure to PM2.5 from household solid fuel use). Acronyms in the legend refer to: LRI: lower respiratory
infection; LC: lung cancer; COPD: chronic obstructive pulmonary disease; IHD: ischemic heart disease;
STROKE: ischemic and hemorrhagic stroke; N/A: not applicable (referring to input parameters that do not
depend on disease

The main effect index combined with the interaction term (represented by the grey bars in

Figure 4.4) yields the total effect index (the percent of the variance we would expect to remain

if all other parameters were known). The total effect for the four parameters sums to 125-154%

across these four regions, indicating a fair amount of interaction between terms. The high degree of

interaction shared between baseline mortality rate, concentration-response function, and PMH-SFU is

likely a result of the FAST sampling algorithm selecting extreme values (in the upper and lower

10th percentiles).

In all four regions, PMH-SFU contributes only a minor amount to the total variance. This is in part

due to the relatively flat response of the concentration-response function for IHD and stroke at high

PM2.5 concentrations. While there are large uncertainties in estimates of PMH-SFU, the relative risk

60



B
M

R

C
R

F

P
M
A
m
b

%
P
M
A
−S
F
U

0

20

40

60

80

100

%
of

va
ri

an
ce

(a) China

B
M

R

C
R

F

P
M
A
m
b

%
P
M
A
−S
F
U

0

20

40

60

80

100
(b) India

B
M

R

C
R

F

P
M
A
m
b

%
P
M
A
−S
F
U

0

20

40

60

80

100

%
of

va
ri

an
ce

(c) Latin America

B
M

R

C
R

F

P
M
A
m
b

%
P
M
A
−S
F
U

0

20

40

60

80

100
(d) Sub-Saharan Africa

N/A

LRI

LC

COPD

IHD

Stroke

Interaction

Figure 4.5: Contribution to overall variance in mortality attributable to A-SFU by each parameter for China
(a) and India (b) as well as regional averages weighted by cookstove mortalities for countries in Latin America
(c) and Sub-Saharan Africa (d). Acronyms are as defined in Section 2.1 (BMR: baseline mortality rate; CRF:
concentration-response function; PMAmb: Exposure to ambient PM2.5 from all sources; %PMA-SFU: exposure
to ambient PM2.5 from solid fuel use). Acronyms in the legend refer to: LRI: lower respiratory infection;
LC: lung cancer; COPD: chronic obstructive pulmonary disease; IHD: ischemic heart disease; STROKE:
ischemic and hemorrhagic stroke.

changes by a small amount relative to the large uncertainties present in the concentration-response

function. Thus, in the PM2.5 concentration range typical of household solid-fuel use, the uncertainty

in the concentration-response function dominates over uncertainty in PM2.5; however, we note that

some of the uncertainty in the concentration-response function is shared with PMH-SFU (indicated by

the grey portion of the PMH-SFU bar).

4.3.2.2 Sensitivity Analysis for the A-SFU calculation

Figure 4.5 presents the sensitivity analysis results for the A-SFU mortality calculation. In all

regions, the total effect index for %PMA-SFU dominates the variance in A-SFU mortality (approxi-

mately 80%), reflecting the large uncertainty bounds on this parameter (Section 2.1). This implies

that if all other parameters except %PMA-SFU were known, an uncertainty range of 0.13, 0.26, 0.01,
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0.03 million deaths would remain in China, India, Latin America, and Africa. A majority of the

uncertainty in %PMA-SFU comes from the main effect index. In contrast, PMAmb contributes less

than 9% of the variance, with most of this contribution resulting from the interaction term. The

difference in the contribution to variance from the two PM2.5 parameters can be attributed to two

main factors. First, the relative uncertainty ranges for PMAmb and %PMA-SFU are very different.

Satellite retrievals and surface observations provide constraints on the uncertainty range for PMAmb.

Conversely, the uncertainty range for %PMA-SFU (estimated here as a factor of 2 about the mean)

is a result of estimates of uncertainty from emission factors (e.g., Johnson et al., 2008, 2011) and

fuel use (e.g., Fernandes et al., 2007), and are much wider than for PMAmb. Second, PMAmb is the

exposure concentration included in the concentration-response function. The concentration-response

function for IHD and stroke is sublinear, so the changes in relative risk due to different selections

of PMAmb are dampened in regions with high PMAmb. Similar to the H-SFU calculation, there are

large interaction terms shared between baseline mortality rate, concentration-response function, and

PMAmb that are likely caused by sampling from extreme values in the uncertainty distribution.

4.3.2.3 Sensitivity Analysis for the J-SFU calculation

The sensitivity analysis results for the J-SFU calculation are presented in Figure 4.6. In the 4

representative regions, the relative order of parameters in the variance contributions in the J-SFU

calculation closely follow the H-SFU calculation. This is because most of the mortality in the

J-SFU calculation come from the population using solid fuels, and so the results are more similar to

the results for H-SFU. Conversely, in countries where a very low percent of the population uses

solid fuels and the mortality burden is primarily from A-SFU (such as in Canada or Algeria), the

variance contributions in the J-SFU calculation follow the A-SFU calculation. In China, India,

and Latin America, the largest contributions to the variance (in the total effect index) come from

the percent of the population using solid fuels (53-56% or 0.03-0.49 million deaths) followed by

concentration-response function (42-50% or 0.03-0.42 million deaths). In sub-Saharan Africa,

baseline mortality rate (72%) and concentration-response function (33%) dominate the uncertainty

space. While %PMA-SFU dominates the variance in all 4 regions in the A-SFU calculation, this term
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(d) Sub-Saharan Africa
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Figure 4.6: Contribution to overall variance by each parameter to the uncertainty in the joint-effect mortality
calculation in China (a) and India (b) as well as regional averages weighted by cookstove mortalities for
countries in Latin America (c) and Sub-Saharan Africa (d). Acronyms are as defined in Section 2.1 (BMR:
baseline mortality rate; CRF: concentration-response function; PMAmb: Exposure to ambient PM2.5 from
all sources; %PMA-SFU: exposure to ambient PM2.5 from solid fuel use; %SFU: percent of the population
using solid fuel; PMH-SFU: exposure to PM2.5 from household solid fuel use). Acronyms in the legend refer
to: LRI: lower respiratory infection; LC: lung cancer; COPD: chronic obstructive pulmonary disease; IHD:
ischemic heart disease; STROKE: ischemic and hemorrhagic stroke.

contributes only a small amount of variance in the J-SFU calculation (15-23% in China, India, and

Latin America, but less than 5% in sub-Saharan Africa). As A-SFU has only a minor contribution

to the total mortality in J-SFU calculation, this parameter contributes a much smaller amount of

the variance in the J-SFU calculation compared to the A-SFU calculation. In all four regions, the

three PM2.5 concentrations (PMAmb, %PMA-SFU, PMH-SFU) combined account for 15-38% of the

variance in the total effect index; however, some of the interaction term in concentration-response

function is shared between the PM2.5 terms. With the exception of sub-Saharan Africa, most of

the variance in mortality apportioned to the three PM2.5 parameters comes from the percent of

ambient PM2.5 originating from SFU rather than the total ambient and household concentrations

themselves. In sub-Saharan Africa, PMH-SFU is the most important PM2.5 factor due to the very high
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percent of the population using solid fuels. The low contribution of PM2.5 concentrations to the

mortality uncertainty suggests that much of the uncertainty in mortality estimates are from the health

inputs (baseline mortality rate and concentration-response function) and percent of the population

using solid fuels as opposed to the PM2.5 exposure. In the SI, we present results truncating the

uncertainty distributions at the 95% CI. This reduces the summed total effect to 118-130% across

all four regions. Sampling from a uniform distribution (which also truncates at the 95% CI), as

opposed to a lognormal distribution, reduces the interaction term to 108-110% (see Appendix B).

The nonlinear interactions between the various input terms increase when sampling from the tails of

the uncertainty distributions.

4.3.2.4 Limitations of this work

We acknowledge a number of limitations in the sensitivity analysis in this study. In addition to

the factors with quantifiable uncertainty ranges described above, there are several major assumptions

in which a specific quantified confidence range cannot be applied due to limitations in our current

knowledge. Mortality estimates from SFU have required applying and extrapolating epidemiological

evidence from studies of outdoor air pollution conducted in high-income countries (mainly the

United States and Europe) along with studies of secondhand smoke exposure and tobacco smoke

exposure to developing countries with typically higher exposure concentrations (Burnett et al.,

2014); whether this extrapolation holds between countries is unclear. In addition, we assume an

equal toxicity of different chemical composition of PM2.5 (Burnett et al., 2014). Further, while there

is limited emerging evidence of links between measures of cardiovascular health with household air

pollution (e.g., Agarwal et al., 2017; Mitter et al., 2016), direct evidence of exposure to household

air pollution contributing to increased risk of mortality through cardiovascular diseases was not

included in the Burnett et al. (2014) concentration-response function (though evidence of cigarette

smoking and of ambient air pollution contributing to this health outcome was included). The

sensitivity analysis presented here describes the apportioned uncertainty in mortality from input

parameters with quantified uncertainty ranges, and thus additional uncertainty in mortality should be

considered from the major assumptions of the concentration-response function in addition to what
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is considered here. For instance, IHD and stroke contribute substantially to uncertainty in mortality

due to exposure to household air pollution in all regions; however, there is additional uncertainty

beyond what we quantified here for parameters related to IHD and stroke because of the lack of

direct evidence relating exposure to household air pollution and cardiovascular disease outcomes

(i.e. events such as stroke). An additional limitation is that the sensitivity analysis used here is itself

sensitive to the uncertainty range provided for each data input source. For example, measurements

of personal PM2.5 exposure are limited, and several studies (e.g., Baumgartner et al., 2011; Ni et al.,

2016) report personal exposures with a different uncertainty distribution including portions of the

distribution outside the published range used in this study. To test this limitation, we increased

the 95% uncertainty levels for the PMH-SFU parameter from a factor of 1.4 to 2 in both directions

around the central estimate. In the H-SFU calculation, this increased the percent contribution in the

total effect index of the parameter from 6-10% to 15-20% (across the four regions). Despite these

limitations, the sensitivity analysis in this study provides valuable information on the sources of

uncertainty in mortality calculations attributed to SFU.

4.4 Conclusions
The large health burden attributed to SFU has motivated interventions aimed at replacing

traditional cookstoves with cleaner-burning fuels and combustion devices (e.g., M. Clark et al.,

2010, 2013; S. Clark et al., 2017; Mortimer et al., 2016; Piedrahita et al., 2016; Ruiz-Mercado et al.,

2011); however, there are large uncertainties in the number of deaths attributed to exposure to PM2.5

from SFU. These uncertainties originate from uncertain input parameters as well as the contribution

of health risk from other ambient PM2.5 sources. There is currently no framework to estimate

mortality from SFU while accounting for PM2.5 from other sources. In this study, we estimate 2.81

(95% CI: 2.48-3.28) million deaths in 2015 from the joint exposure to household and ambient PM2.5

from SFU using the J-SFU calculation. This estimate has 580,000 (18%) fewer deaths than the

sum of the H-SFU and A-SFU calculations, and 260,000 fewer deaths among the population using

solid fuel in the J-SFU calculation than in the H-SFU calculation alone. This indicates that treating
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household and ambient pollution as independent risk factors leads to overestimates of mortality

attributed to SFU, particularly in regions with high ambient PM2.5 concentrations. Health and

epidemiology studies taking place in areas (such as periurban areas) with high PM2.5 concentrations

from sources other than SFU may expect a smaller health response due to decreases in PM2.5 from

SFU.

We performed a variance-based sensitivity analysis on each mortality calculation to apportion the

variance in mortality attributed to SFU to each uncertain input parameter. In the H-SFU calculation,

the percent of the population using solid fuels and the concentration-response function contribute

the most uncertainty in SFU mortality except in regions where greater than 90% of the population

uses solid fuels and the uncertainty range is small. The PM2.5 exposure estimates contribute a

relatively small amount of uncertainty in mortality because the range of exposures associated with

household solid fuel use extends across a flatter part of the concentration-response function for

dominant causes of death (IHD and stroke). While the percent of the population using solid fuels

has a smaller relative uncertainty than the PM2.5 exposure, it contributes a much larger percent of

the uncertainty in mortality. We note that the results of this study do not rank input parameters by

their precision, but rather, by how the uncertainty in each input parameter affects the uncertainty in

model output.

In the A-SFU calculation, the contribution of SFU emissions to ambient PM2.5 concentration

dominates the uncertainty space. This is a result of large uncertainties in SFU emission inventories,

which are a result of the combination of uncertainties in emission factors and fuel use. This is also

a reflection of the difficulty of atmospheric models to attribute the fraction of ambient PM2.5 to a

specific source (even though the total ambient PM2.5 can be constrained with surface observations

and satellite retrievals).

The sensitivity analysis on our J-SFU calculation reflects a combination of the contributed

uncertainty in mortality from the H-SFU calculation and the A-SFU calculation. In the J-SFU

calculation, a majority of the total deaths occur in the population using solid fuels (and are thus

exposed to higher indoor concentrations). As a result, the sensitivity analysis results are more similar
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to the results from the H-SFU calculation. In China, India, and Latin America, the parameters

that contribute the most uncertainty to mortality attributed to PM2.5 exposure from SFU are the

percent of the population using solid fuels (53-56%) and the concentration-response function (42-

50%). The three PM2.5 exposure concentrations contribute between 15-38% of the variance in

mortality distributions. Our findings suggest that future research focused on constraining the health

response of exposure to PM2.5 and estimates of solid fuel use could measurably reduce uncertainty

in premature mortality estimates associated with solid fuel use. Improving solid fuel use estimates

would reduce uncertainty in both the H-SFU calculation (where the leading contribution to mortality

is from the population using solid fuels) and the A-SFU calculation (where the large uncertainties

in ambient PM2.5 from SFU emissions are linked to uncertainty in solid-fuel use). In sub-Saharan

Africa, where the percent of the population using solid fuels is relatively well constrained, our

results suggest that future work should focus on reducing the uncertainty in baseline mortality rates.

It is important to note that while our sensitivity analysis shows a relatively small contribution

from PM2.5 exposure to uncertainty in J-SFU mortality estimates, this by no means implies that PM2.5

exposure is unimportant for estimating premature mortality from SFU. Fundamentally, there must be

exposure to PM2.5 from SFU in order to have mortality from PM2.5 attributable to SFU. This analysis

only estimates the contribution to variance in SFU mortality. It is not meant to indicate which

factors contribute the most to the estimated magnitude of mortality from SFU. As such, our results

do not indicate that reducing exposure to PM2.5 from SFU would not have a health benefit; we mean

to suggest that the uncertainty in the magnitude of the health benefit is largely from uncertainties in

the population using solid fuels and the concentration-response function. Additionally, improving

concentration-response functions (one of the largest contributors to uncertainty identified here)

necessitates accurate measurements of PM2.5 exposure in the epidemiological studies used to

generate the concentration-response functions.

The estimated health burden attributed to SFU is substantial both in terms of mortality, disability

adjusted life years, years of life lost, and willingness to pay loses (Cohen et al., 2017; World

Bank, 2016; World Health Organization, 2014). Future studies may seek to quantify uncertainty

67



in mortality from SFU in different years or with different data inputs (such as those compiled

by the World Health Organization). To gain a better understanding of the expected benefits of

SFU interventions, future research should also focus on more accurate and precise estimates of

populations using solid fuels, exposure-response relationships, and mortality rates in sub-Saharan

Africa.
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Chapter 5

Important global and regional differences in aerosol

cloud-albedo effect estimates between simulations

with and without prognostic aerosol microphysics4

Aerosol-cloud interactions are among the most uncertain climate forcings, in part due to the

strong sensitivity of cloud droplet number concentration (CDNC) to changes in the size distribution

of potential cloud condensation nuclei (CCN). Despite this sensitivity of simulated aerosol-cloud

interactions to variations in size-resolved aerosol concentrations being well established, many

chemistry-climate and chemical-transport models do not include explicit treatment of the aerosol

size distribution. We use a global chemical- transport model to estimate the aerosol cloud-albedo

effect (CAE) due to anthropogenic emissions with prognostic sectional aerosol microphysics

and compare this to the CAE calculated when the simulated aerosol mass of each species is

re-mapped onto a prescribed size distribution. We find that, although both the prescribed and

prognostic methods compare similarly well with present-day size-distribution observations, there

are substantial differences in the relative CDNC and CAE due to anthropogenic emissions. When

using the prognostic size-distribution method, anthropogenic emissions yield a 25-75% larger

increase in CDNC over most land masses but a 50-75% smaller increase in some remote-marine

regions than in the prescribed size-distribution methods. Simulations using the prognostic scheme

yield a global-mean anthropogenic CAE of -0.87 W m−2, while the simulations with the prescribed

scheme predict -0.66 W m−2. In South America and South Asia, differences in the CAE exceed 3.0

W m−2. These differences suggest that simulations with prescribed size-distribution mapping are

4This Chapter published as: Kodros, J. K. and Pierce, J. R.: Important global and regional differences in aerosol
cloud-albedo effect estimates between simulations with and without prognostic aerosol microphysics, J. Geophys. Res.
Atmos., doi:10.1002/2016JD025886, 2017.
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unable to capture regional and temporal variability in size-resolved aerosol number, and thus may

lead to biases in estimates of the CAE.

5.1 Introduction
The radiative forcing due to the impact of anthropogenic changes in aerosol particles on clouds

is the most uncertain climate forcing of those quantified in the IPCC 5th assessment report (Boucher

et al., 2013). Estimates of the global-mean aerosol-cloud-interaction (ACI) effective radiative

forcing in the IPCC report range from -1.2 to 0.0 W m−2 , compared to the CO2 effective radiative

forcing of +1.33 to +2.03 W m−2. Given the opposing sign of the aerosol-cloud-interaction and

CO2 forcings, the ACI forcing may be masking a significant portion of the temperature increase

from CO2 (Andreae et al., 2005). There is therefore a strong motivation to reduce the uncertainty in

the ACI forcing in order to better constrain the climate response to future greenhouse-gas emissions.

The range in ACI forcing estimates includes uncertainties in rapid adjustments to cloud proper-

ties; however, a substantial portion includes uncertainties in the cloud-albedo, or 1st, aerosol indirect

effect (Boucher et al., 2013). The aerosol cloud-albedo effect (CAE) refers to altering the reflectivity

of clouds through changing the number of cloud drops while holding the liquid water content of the

cloud constant (Twomey, 1974). In the liquid-phase region of the cloud, increasing the cloud droplet

number concentration (CDNC) increases cloud albedo; however, the relationship between cloud

reflectivity and CDNC, know as "cloud susceptibility," is nonlinear (Twomey, 1991). In addition to

cloud susceptibility, particle activation to CDNC is also nonlinear, as high concentrations of cloud

condensation nuclei (CCN) limit in-cloud water supersaturation (Seinfeld and Pandis, 2012) and

lower the fraction of particles that activate to become cloud droplets. As a result of these nonlinear

relationships, Carslaw et al. (2013) found that the CAE is most sensitive to uncertainties in the

processes and emissions during the cleaner pre-industrial state with lower aerosol concentrations

than in the present day.

Particle activation into CDNC (at a given supersaturation) is a strong function of particle

size as well as chemical composition (Petters and Kreidenweis, 2007). The composition, as
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relevant to particle activation, is often quantified by the hygroscopicity parameter, κ (Petters

and Kreidenweis, 2007); however, (Dusek et al., 2006) finds that the primary factor determining

activation is particle diameter, with particle composition being a secondary effect. For typical

cloud conditions, particles with diameters larger than 40-100 nm will activate, the exact value

of this lower-diameter limit depends on the cloud updraft velocity, aerosol size distribution and

hygroscopicity (Abdul-Razzak and Ghan, 2002; Nenes and Seinfeld, 2003). It is therefore likely

important (in terms of predicted aerosol-cloud interactions) to not only know the particle number

concentration but the size distribution as well.

A common approach to modeling aerosol microphysics is to refer to the CCN concentration

at a particular supersaturation, thereby specifically referring to the subset of soluble particles that

would activate to cloud droplets (typically larger than 40 to 100 nm in diameter, depending on

the supersaturation). The number of particles in the CCN size range is determined by primary

aerosol emissions as well as secondary chemical and physical formation processes (L. Lee et al.,

2013). Some of these secondary processes are a source or sink for particle number (e.g. nucleation,

coagulation, deposition), while others shift the particle size distribution by adding mass while

conserving number (e.g., condensation). Thus, the aerosol size distribution varies in time and space

due to changes in species concentrations and the dominant chemical and physical processes.

Aerosol schemes range in complexity. Bulk schemes only track the total mass of each species

and do not predict an aerosol size distribution (Collins et al., 2011; Donner et al., 2011; Lamarque

et al., 2012, e.g.,). These bulk schemes thus do not consider how aerosol microphysics (nucleation,

condensation, coagulation) shape the size distribution. Aerosol microphysics schemes require more

computational complexity than bulk schemes and have several variants: fixed modal schemes where

the total mass of each species is tracked in modes of different size or populations (e.g., Bellouin

et al., 2011), two-moment modal or moment schemes that track number and the mass of each

species in sizes and/or populations (e.g., Bauer et al., 2008; Binkowski and Shankar, 1995; Ghan

et al., 2001; Mann et al., 2010; Whitby, 1978), and sectional schemes that track the number and/or

mass of each species within a large number of size sections and/or populations (e.g., Adams and
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Seinfeld, 2002; Gong, 2003; Spracklen et al., 2005). The modal, moment, and sectional schemes

track a dynamic size distribution and are commonly referred to as aerosol microphysics schemes,

which stand in contrast to the bulk schemes that do not predict dynamic size distributions. The

sectional approach does not assume an underlying size-distribution shape, and so tends to be more

flexible and realistic than the other schemes; however, computational limitations necessitate using a

relatively small number of bins or a degradation in spatial resolution.

Despite the number of independently developed microphysical models, computational resource

considerations have, until recently, tended to discourage their use in climate models. Of the 10

models in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

(Lamarque et al., 2013; Shindell et al., 2013b) that include aerosols (8 of these participated in

CMIP5), only 3 included online size-resolved aerosol microphysics (and only 2 of those participated

in CMIP5) (Liu et al., 2012; Szopa et al., 2013). The remaining models use a bulk aerosol scheme

and rely on prescribed mappings or correlations with satellite observations to obtain information

on size-resolved aerosol properties (such as CDNC) (Collins et al., 2011; Donner et al., 2011;

Lamarque et al., 2012; Rotstayn et al., 2012; Shindell et al., 2013a; Skeie et al., 2011; Watanabe

et al., 2011). A common prescribed mapping involves mapping the mass of each bulk aerosol

species into 1 to 3 lognormal modes (Collins et al., 2011; Croft et al., 2005; Donner et al., 2011; He

et al., 2016; Karydis et al., 2011, 2012; Lamarque et al., 2012; Watanabe et al., 2011). This method

relies on keeping size-distribution parameters (such as number median diameter and geometric

standard deviation) constant at typical values for the different types derived from measurements

of the particle size distribution. A substantial drawback of this method is that the parameters in

a prescribed mapping are held fixed spatially and temporally, in spite of observations that show

variations in aerosol size distributions from processes such as transport (Dentener et al., 2006;

Sakamoto et al., 2016; Westphal and Toon, 1991), in-cloud aqueous oxidation (Hoppel and Frick,

1990), new-particle formation events (Merikanto et al., 2009; Westervelt et al., 2014), and production

and evaporation of secondary aerosol (D’Andrea et al., 2013). As a result, aerosol size distributions

vary seasonally and regionally, leading to variations in CDNC (e.g., Pringle et al., 2009). It is
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therefore highly likely that size distributions of specific aerosol types (such as sulfate) will have

changed markedly since pre-industrial times.

The purpose of this study is to explore possible differences in size-resolved aerosol number

concentration and CAE when using a prognostic aerosol microphysics model as opposed to an

assumed size distribution for each aerosol species. Differences between various microphysical

schemes (modal, moment and sectional) have been investigated elsewhere (e.g., Bellouin et al.,

2013; Ghan et al., 2001; Liu, 2005; Mann et al., 2012; Y. Zhang et al., 2002). In this study, we

use a sectional scheme to represent aerosol microphysics schemes and take the total mass summed

across the sectional bins to represent the "bulk" scheme. We are therefore isolating the effect on the

CAE of the offline mass-to-number conversion using prescribed species-specific size distributions

as opposed to online representations of chemical and physical processes. While we focus on a

sectional scheme here, we expect modal and moment schemes to yield similar findings as to our

approach with the sectional scheme as these schemes also allow for size shifts in the aerosol size

distribution. In Section 2, we discuss the chemical-transport-model setup, the aerosol microphysics

scheme, and the assumed prescribed aerosol size distributions. In Section 3.1, we compare the

prognostic and prescribed modeled size distributions to observations. Differences in size-resolved

aerosol number concentrations are discussed in Sections 3.2. The resulting differences in CAE are

discussed in Section 3.3. In Section 4, we share our conclusions and recommendations.

5.2 Methods

5.2.1 GEOS-Chem model setup

To simulate the transport of gas- and aerosol-phase species, we use the Goddard Earth Observing

System chemical-transport model, GEOS-Chem, version 10.01. We simulate the year 2010, driving

the model with re-analysis meteorology from GEOS-5 (http://gmao.gsfc.nasa.gov). This version of

GEOS-Chem includes 47 vertical layers and a horizontal resolution of 4◦ latitude and 5◦ longitude.

GEOS-Chem includes tracers for 52 gas-phase species.
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Table 5.1: Description of size-distribution schemes.

Size Distribution Description
TOMAS Online 2-moment sectional aerosol microphysics model incorporated into

GEOS-Chem. TOMAS explicitly tracks total particle number and speciated
particle mass.

LOGNORMAL Particle-size re-mapping of total aerosol mass by species into lognormal
distributions. Mass is converted to particle number using an assumed density
and assuming spherical particles. Mapping parameters are reported in Table
5.2.

AVG-TOMAS Particle-size re-mapping of total aerosol mass using the normalized global-
and annual-mean TOMAS mass distribution for each species. Mass is con-
verted to particle number using the global-mean mass-to-number ratio from
TOMAS.

Standard emission setup is described in (Kodros et al., 2016a). To explore the dependence of

anthropogenic CAE on assumed aerosol size-distribution shape, we include two simulations: one

with all standard emissions (anth_on) and one with anthropogenic emissions turned off (anth_off ).

Comparing these simulations isolates the aerosol burden from anthropogenic emissions. We note

that our anth_off simulation is separate from a "pre-industrial" simulation in several ways: we do

not include land- use changes that may lead to an anthropogenic component to dust or biomass-

burning emissions, we do not alter the spatial distribution of biofuel emissions, and all natural

emissions are held constant for the year 2010. This comparison represents an illustrative change in

emissions rather than an exact representation of any pre-industrial period. Therefore, our radiative

calculations represent the total cloud-albedo radiative "effect" from select aerosol sources rather

than a cloud-albedo radiative "forcing" over a specified time period.

5.2.2 Aerosol size distributions

Table 5.1 describes the aerosol size-distribution methods used in this study. The first size

distribution method is an online, prognostic microphysics simulation using the microphysics

package, TwO Moment Aerosol Sectional (TOMAS) (Adams and Seinfeld, 2002), integrated into

GEOS-Chem (known as ’GEOS-Chem-TOMAS’). Detailed descriptions of TOMAS can be found

in (Adams and Seinfeld, 2002; Lee and Adams, 2012; Y. H. Lee et al., 2013). Briefly, TOMAS

74



discretizes the aerosol size distribution into sections ("bins") and tracks 2 moments within each

bin: total number and speciated particle mass. This version of TOMAS includes 40 size bins,

with equivalent particle diameters ranging from approximately 1 nm in the lowest bin to 10 µm

in the largest bin. The exact diameter is dependent on particle density. Aerosol species include:

sulfate, hydrophilic and hydrophobic organic aerosol, black carbon, sea salt, and dust. TOMAS

includes a prognostic 40-bin size distribution for each species. Primary sulfate is emitted into

the model assuming 2 lognormal modes: 15% of the mass in a first mode with a number median

diameter (NMD) of 10 nm and geometric standard deviation (GSD) of 1.6, and the remainder in

a second mode with a NMD of 70 nm and GSD of 2 (Adams and Seinfeld, 2003). Carbonaceous

particle emissions are separated by emission source: those produced by fossil fuel have an NMD

of 30 nm and GSD of 2, while biofuel and biomass-burning particles are emitted with an NMD

of 100 nm and a GSD of 2 (Pierce et al., 2007). TOMAS includes separate size distributions for

externally mixed black carbon and internally mixed species, including black carbon that has mixed

into this population. Black carbon converts from the "externally mixed" to "internally mixed"

population with a fixed conversion time scale of 1.15 days. Sea-salt aerosol emissions follow the

scheme of Jaeglé et al. (2011), while dust emissions are based on the DEAD scheme (Zender,

2003). Nucleation in TOMAS follows a ternary scheme involving water, sulfuric acid, and ammonia

following the parameterization of Napari et al. (2002), which has its nucleation rates scaled down

by 5 orders of magnitude to better match observations (Westervelt et al., 2013). When ammonia

mixing ratios are less than 1 pptv, TOMAS defaults to a binary nucleation scheme (sulfuric acid and

water) (Vehkamäki, 2002). In addition to nucleation, TOMAS explicitly simulates condensation,

coagulation, wet and dry deposition, and cloud processing. These processes have been evaluated

against observations (D’Andrea et al., 2013; Kodros et al., 2016a; Westervelt et al., 2013).

The second size-distribution method used in this study is a prescribed mapping of bulk species

mass to lognormal distributions (referred to as "LOGNORMAL", see Table 5.1). The purpose of

the LOGNORMAL method is to represent the method of estimating aerosol number concentrations

used in several mass-only (i.e. bulk) aerosol schemes. Here, the total particle mass for each species
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is converted to a size distribution offline assuming lognormal distributions with either one mode

(sulfate, OA, BC), two modes (sea salt), or three modes (dust). We assume an NMD, GSD, and

density for each aerosol species for each mode and spread the mass across a size distribution. We

calculate the total (bulk) aerosol mass for each species by summing over all TOMAS bins; thus, the

total aerosol mass is conserved between the prognostic and prescribed size distributions considered

here. Hence, the LOGNORMAL method described here is representative of bulk mass-only schemes

in the offline comparison of monthly-mean particle number concentration, CDNC, and CAE, but

does not represent bulk schemes in online microphysical processes. We take this approach to isolate

the effect on CAE of mapping total mass of each species into number size distributions as opposed

to the effect on microphysical processes in models. This size-distribution prescribed-mapping

method is used in a number of studies (e.g., Collins et al., 2011; Croft et al., 2005; Donner et al.,

2011; He et al., 2016; Karydis et al., 2011, 2012; Lamarque et al., 2012; Watanabe et al., 2011) to

obtain size-resolved particle information (though we note not all of these studies are estimating the

anthropogenic CAE). The specific parameters for the LOGNORMAL distribution method used in

this study are listed in Table 5.2. Each species is mapped into a separate lognormal distribution

and are then summed together to estimate total size- resolved particle number concentration. The

mapping parameters are held fixed globally and across all simulations; however, variations (either

spatially or across simulations) in the relative mass of each species allows for variations in the

summed size distribution. The parameters listed in Table 5.2 are based on parameters listed in

GEOS-Chem for photolysis calculations, which in turn are based on size distributions from the

Global Aerosol Dataset (GADS) (Koepke et al., 1997). GADS is a compilation of measurement and

modeling studies, providing average microphysical and optical parameters for 10 aerosol types.

The third size-distribution method is another prescribed-mapping method, but uses a fundamen-

tally different underlying distribution than a lognormal distribution. In the "AVG- TOMAS" method,

we use the normalized global- and annual-mean mass distributions from the TOMAS anth_on

simulation as the mapping parameters. Thus, in each gridcell the normalized mass distribution of

each species is identical to the normalized global and annual mean mass distribution from TOMAS
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Table 5.2: Size-distribution parameters applied to the total mass of each species to create lognormal
distributions.

Aerosol Species Density Number median Geometric standard Mode mass fraction (dust)
[g cm−3] diameter [µm] deviation or cutoff size (sea salt)

Sulfate 1.77 0.14 1.6 1.0
Organic Aerosol 1.40 0.14 1.6 1.0
Black Carbon 2.00 0.04 1.6 1.0
Sea Salt 2.00 0.18 1.5 0.001-0.5 µm

0.8 1.8 0.5 - 11 µm
Dust 1.50 0.16 2.1 0.035

1.4 1.9 0.958
10.0 1.6 0.005

for that species (but will be scaled up or down depending on the total aerosol mass of each species).

This approach is similar to that of LOGNORMAL in that the mapping parameters (in this case the

fractional mass-per-bin of the average TOMAS distribution) are held fixed globally and across simu-

lations for each species, though differences in relative mass of the species will allow in variations in

summed number distribution. The purpose of using the simulated global- and annual-mean TOMAS

size distribution as the mapping parameters is to explore the differences in the estimated CAE when

using a fundamentally different set mapping parameters that are more similar to TOMAS in the

global and annual mean (i.e. we take the global- and annual-mean distributions as "typical" size

distributions in the ambient atmosphere). This approach enables us to test how sensitive our results

are to the chosen LOGNORMAL mapping parameters.

In the LOGNORMAL and AVG-TOMAS methods, the aerosol mass of each species in anth_off

is mapped using the same distribution parameters as in anth_on, which is consistent with previous

studies that assumed prescribed size distributions. This assumes that the microphysical process

responsible for "aging" particles to the assumed average size have the same magnitude in the

anth_off simulation. We note, however, that perturbing the relative mass of each species will

weight the mapping parameters in the summed number distribution differently, thereby enabling

variations in the total size distribution for the prescribed methods. Conversely, in the prognostic

online TOMAS model, changing gas and aerosol concentrations feedback into changing strengths of
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microphysical processes leading to fundamentally different size distributions. This is an important

assumption motivating this paper.

5.2.3 Offline calculation of CDNC and aerosol cloud-albedo effect

We use monthly mean size-resolved aerosol mass and number concentrations as inputs to the

activation parameterization of Abdul-Razzak and Ghan (2002) to calculate CDNC. We assume a

constant updraft velocity of 0.5 m s−1 and calculate κ, the hygroscopicity parameter, in each bin

using a volume weighted average of the individual species (Petters and Kreidenweis, 2007). CDNC

and resulting CAE are sensitive to assumptions regarding updraft velocity (L. Lee et al., 2013). We

tested this sensitivity using updraft velocities of 0.1 m s−1 and 1.0 m s−1, but find no qualitative

differences in calculated CAE and do not include that analysis here. We assume a control liquid

cloud drop radii of 10 µm, and, for vertical levels below 600 hPa, perturb this value based on the ratio

of the calculated CDNC in anth_off to anth_on to the one-third power (following Rap et al., 2013;

Scott et al., 2014). We calculate the change in top-of-the-atmosphere flux from the perturbed and

control fields using an offline version of the Rapid Radiative Transfer Model for GCMs (RRTMG)

(Iacono et al., 2008), implemented in GEOS-Chem (Heald et al., 2014), that treats clouds with the

Monte Carlo independent column approximation (McICA) (Pincus et al., 2003). Cloud fraction,

temperature, pressure, and liquid water content are taken from monthly mean GEOS5 fields. While

the use of monthly mean aerosol and meteorology fields likely introduces some errors, our main

purpose here is in exploring the differences between assumed size distributions.

In this study, we explore changes to the aerosol cloud-albedo effect (also referred to as the

cloud-albedo aerosol indirect effect or 1st aerosol indirect effect). As GEOS-Chem uses fixed

re-analysis meteorology fields, changes in aerosol concentrations do not feedback into changes to

cloud properties or circulation. We assume fixed cloud liquid water and cloud fractions across all

simulations. We are therefore restricted to assessing the sensitivity of cloud albedo to size-resolved

aerosol number concentration in the absence of the "rapid adjustments" in composition, dynamics,

and clouds (Boucher et al., 2013; Myhre et al., 2013). In addition, we focus solely on changes
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to cloud albedo in the context of the addition/removal of anthropogenic emissions under fixed

meteorology. These simplifications are made to explore how sensitive simulated CDNC changes

and the CAE are to assumptions regarding the aerosol size distribution.

5.2.4 Description of observations of aerosol size distributions

We use observations of aerosol size distributions from 21 field sites in Europe and North America.

This dataset is described in detail in D’Andrea et al. (2013) (see map of site locations in Figure 1

in D’Andrea et al. (2013)) and used again in Pierce et al. (2015). Size distribution measurements

were made using either a Scanning Mobility Particle Sizer (SMPS) (Wang and Flagan, 1990) or a

Differential Mobility Particle Sizer (DMPS) (Aalto et al., 2001). All observations are long-term (1

year or longer) and located in rural continental regions to avoid sharp spatial gradients (such as in

urban areas) that the coarse model resolution cannot capture. While this dataset has limitations with

regard to number of datapoints and temporal and spatial scope, the purpose of this dataset is to test

whether the simulated size distributions predict realistic values.

5.3 Results

5.3.1 Comparison to observations

Figure 5.1 shows one-to-one comparisons of the simulated number of particles with dry diame-

ters greater than 10 nm (N10), 40 nm (N40), 80 nm (N80), and 150 nm (N150) at the 21 observation

sites for the TOMAS and LOGNORMAL size-distribution methods. The TOMAS distribution

is able to explain more of the variance (R2) in each size range compared to the LOGNORMAL

distribution method. The slope of the linear regression line is closer to unity for each size range

except N10 (m=0.9 for TOMAS and 0.91 for LOGNORMAL). Notably, the slope of the regression

line for TOMAS is 0.96 for N40, the size range representing "climate relevant" particle sizes. Both

the TOMAS and LOGNORMAL methods exhibit a low bias relative to observations in all size

ranges. Care should be taken in interpreting these results as observation sites are few in number

(N=21), and we consider only long-term averages at remote continental sites. The main objective
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Figure 5.1: One-to-one plots of the simulated N10, N40, N80, and N150 for the anth_on simulation using
the TOMAS (top) and LOGNORMAL (bottom) size-distributions schemes compared to 21 measurement
sites described in D’Andrea et al. (2013). The dashed black lines represent the 1:5 and 5:1 lines, while the
red line represents the results of the linear regression. The printed values give the slope (m), correlation (R2),
and log mean bias (LMB).

here is to demonstrate that both simulated number distributions produce reasonable comparisons

to observations, particularly in the CCN relevant size ranges (for N40 m=0.87 and m=0.96 for

LOGNORMAL and TOMAS, respectively).

Figure 5.2 shows the temporally averaged observed size distributions at each site along with

the TOMAS and LOGNORMAL distribution methods. Each size-distribution location plotted here

corresponds to a point in Figure 5.1. Again, both size distributions are able to produce reasonable

number concentrations at each site (see the quantitative regression metrics in Figure 5.1). In

some cases, such as Hyytiala and Pallas, the LOGNORMAL distribution method appears more

representative of the observed distribution, while in other locations, such as Puszta and Alert, the

TOMAS distribution is more representative. In general, the prognostic TOMAS microphysics

predicts a more diverse range of size distributions than is possible in the prescribed LOGNORMAL

distribution method.

Similar comparisons were made in D’Andrea et al. (2013) and Pierce et al. (2015). We attribute

differences in the GEOS-Chem-TOMAS comparisons between the studies to number of bins used
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Figure 5.2: Observed and simulated (TOMAS and LOGNORMAL) aerosol number distributions for the
sites described in D’Andrea et al. (2013) and Pierce et al. (2015).

(Pierce et al. (2015) uses a 15-bin versions), GEOS-Chem model updates (D’Andrea et al. (2013)

uses version 8.02), and recently updated emissions inventories.

5.3.2 Size-resolved particle number concentration and CDNC

Figure 5.3a shows the simulated global- and annual-mean number size distributions for the

anth_on and anth_off simulations using the three different size- distributions methods. The purpose

of including both LOGNORMAL and AVG-TOMAS is to test if the modeled aerosol size distri-

butions are more sensitive to the assumed mapping parameters or to the choice of the prognostic

versus prescribed size-distribution approach. The LOGNORMAL distribution method predicts
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Figure 5.3: Global-mean number and volume size distributions for the simulation with anthropogenic
emissions (solid lines) and without anthropogenic emissions (dashed line). The global- and annual-mean
AVG-TOMAS anth_on simulation is, by definition, identical to the TOMAS distribution, and so lies on top
of it.

the most accumulation- mode particles (diameters 20 nm - 150 nm) in both anth_on and anth_off.

By definition, the global- and annual-mean AVG-TOMAS distribution is identical to the TOMAS

distribution for anth_on; however, the anth_off distributions are quite different. In the anth_off

simulation, we turn off aerosol and gas-phase anthropogenic emissions. The resulting decrease in

aerosol sources from nucleation and carbonaceous fossil-fuel emissions (emitted at 30 nm com-

pared to 100 nm for biomass-burning emissions) leads to an increase in the median diameter for

accumulation-mode particles in TOMAS in anth_off compared to anth_on. The shift in median

diameter between anth_on and anth_off is not captured in LOGNORMAL or AVG-TOMAS. The

decreased nucleation-mode particle number concentration in TOMAS when anthropogenic emis-

sions are removed demonstrates a substantial contribution of aerosol precursors from anthropogenic

emissions; however, this result is likely sensitive to the representation of nucleation in the model
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(Section 2). Figure 5.3b shows the corresponding volume distributions for each distribution method.

While there are some differences between the magnitude of accumulation and coarse mode volume,

the total volume and mass across the size range for all distribution methods is conserved.

(a) TOMAS anth on

(c) TOMAS anth off

(b) LOGNORMAL anth on

(d) LOGNORMAL anth off

101.0 101.2 101.4 101.6 101.8 102.0 102.2 102.4 102.6 102.8 103.0 103.2 103.4 103.6 103.8 104.0

cm−3

Figure 5.4: Annual mean N40 from the (a) TOMAS anth_on, (b) LOGNORMAL anth_on, (c) TOMAS
anth_off, (d) LOGNORMAL anth_off simulations.

Maps of N40 concentration for the anth_on and anth_off simulations using the TOMAS and

LOGNORMAL distribution methods are plotted in Figure 5.4. In both size-distribution methods,

anthropogenic emissions increase N40 by 1-3 orders of magnitude over most continental regions.

The largest increase in N40 occurs in the Northeast United States, Europe, East Asia, and India where

anthropogenic emissions dominate particle number concentration. In general, the LOGNORMAL

distribution method predicts higher particle number concentrations in the anth_off simulation,

especially in biomass-burning regions of central South America and Africa, and the boreal regions

of Canada and Russia. The reason for this is the larger average particle size in the accumulation
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mode in the TOMAS anth_off simulation relative LOGNORMAL (see Figure 5.3a). For the same

total aerosol mass, the larger accumulation-mode median diameter results in fewer particles. We

note that the AVG-TOMAS method also predicts a smaller accumulation-mode median diameter in

anth_off in the global-mean compared to the TOMAS size distribution (Figure 5.3a).

−100 −75 −50 −25 −10 −5 5 10 25 50 75 100

%

Figure 5.5: The percent change in the relative increase of CDNC from anthropogenic emissions between
LOGNORMAL and TOMAS schemes. Red colors show locations where the CDNC increase due to
anthropogenic emissions was larger in LOGNORMAL than TOMAS.

The order-of-magnitude increase in N40 due to anthropogenic emissions, results in large CDNC

increases, notably over northern-hemisphere land masses where anthropogenic emissions dominate

particle number concentration. Figure 5.5 shows the percent difference in relative increase in CDNC

(anth_on - anth_off relative anth _off ) between LOGNORMAL and TOMAS distribution methods.

Put differently, this is the percent difference between LOGNORMAL and TOMAS in the relative

change in CDNC from anthropogenic sources. Despite generally higher accumulation-mode particle

concentrations (Figure 5.3) and N40 concentrations (Figure 5.4), the LOGNORMAL distribution

method tends to predict a smaller relative increase in CDNC from anthropogenic sources than

TOMAS over most land masses. This is a result of lower baseline (anth_off ) CDNC in TOMAS
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leading to a larger percent increase in CDNC when anthropogenic emissions are included. In

Europe, South and East Asia, and South America, the LOGNORMAL distribution method predicts

50 to 75% smaller relative changes in CDNC from anthropogenic aerosols than TOMAS. The

LOGNORMAL distribution method predicts relatively more CDNC in the Pacific ocean, equatorial

Atlantic ocean, Indian ocean, and Himalayan region. We discuss the cause of these differences in

the next section.

5.3.3 Aerosol cloud-albedo effect

−7.0 −5.0 −3.0 −1.0 −0.5 −0.1 0.1 0.5 1.0 3.0 5.0 7.0
[W m−2]

Figure 5.6: Annual mean aerosol cloud-albedo effect due to anthropogenic emissions in the TOMAS scheme.

Figure 5.6 shows the annual-mean CAE from anthropogenic emissions using the TOMAS

size-distribution method. We estimate the global-mean CAE from anthropogenic emissions to be

-0.87 W m−2. This estimate is within the range of estimates of the cloud-albedo radiative forcing

(relative to a pre-industrial time period) reported in the IPCC 4th assessment report (-0.4 to -1.8 W

m−2) (Forster et al., 2007). Though, we note again that we are estimating the radiative effect from

anthropogenic emissions not the radiative forcing relative to a specific time period, and so there
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are important differences between our estimates and those reported. In the heavily polluted regions

of East and South Asia, South America, and Northeast United States the CAE exceeds -7 W m−2.

Throughout much of Europe, Russia, and North America the anthropogenic CAE is between -1.0 to

-3.0 W m−2. The magnitude of the CAE is generally lower in the Southern Hemisphere due to a

lower magnitude of anthropogenic emissions (and relatively higher contribution of natural sources

to the total aerosol burden).

Table 5.3: Summary of the CAE from the three size-distribution schemes.

Simulation Global-mean CAE Absolute difference Root Mean Square Difference
[W m−2] (Simulation-TOMAS) [W m−2]

[W m−2]
TOMAS -0.87 – –
LOGNORMAL -0.66 +0.21 0.80
AVG-TOMAS -0.66 +0.21 0.69

The global-mean anthropogenic CAE from TOMAS (-0.87 W m−2), LOGNORMAL (-0.66 W

m−2), and AVG-TOMAS (-0.66 W m−2) are reported in Table 5.3 along with the absolute difference

and root-mean-square difference between the two prescribed-distribution schemes and TOMAS.

Both the LOGNORMAL and AVG-TOMAS size- distribution methods predict an anthropogenic

CAE 0.21 W m−2 more positive (less cooling tendency) in the global mean than the TOMAS size-

distribution method. Figure 5.7 shows maps of the absolute difference between the anthropogenic

CAE calculated with the (a) LOGNORMAL and (b) AVG-TOMAS size-distribution methods

relative the full TOMAS size-distribution method. While in the global mean the TOMAS CAE is

more negative than the prescribed-distribution methods, this difference is not consistent regionally.

However, the spatial differences between the two prescribed-distribution schemes and TOMAS

are very similar to each other even though the prescribed distributions were different between

these schemes. This is caused by microphysical processes in TOMAS altering the average size of

accumulation-mode particles, leading to large relative differences in CDNC (see Figure 5.5) that are

not represented in the LOGNORMAL and AVG-TOMAS methods (discussed in more detail below).

The root-mean- square (RMS) reflects the average difference accounting for both the positive and
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negative directions. The RMS is greater than the global arithmetic mean radiative effect in both

prescribed-distribution methods. The larger RMS for the LOGNORMAL distribution method (0.8

W m−2) demonstrates a larger deviation (accounting for both the positive and negative directions)

from TOMAS than the AVG-TOMAS distribution method (0.69 W m−2).

(a) (LOGNORMAL - TOMAS)

(b) (AVG-TOMAS - TOMAS)

−3.0 −2.0 −1.5 −1.0 −0.5 −0.1 0.1 0.5 1.0 1.5 2.0 3.0

∆ W m−2

Figure 5.7: Absolute difference in estimated CAE from anthropogenic emissions using the LOGNORMAL
scheme (top) and AVG-TOMAS scheme (bottom) relative the TOMAS scheme.

The CAE calculated using the prescribed size-distribution methods is greater than 2 W m−2 more

positive in South (50-75%) and East Asia (10-25%), South America (50-75%), and the Northeast

United States (10-25%) than the CAE calculated using the TOMAS method. The prescribed

size-distribution methods also predict a more positive CAE over much of Europe. Conversely, the

prescribed size-distribution methods predict a more negative CAE in the north Pacific, equatorial
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Atlantic, and over India. The sign of the differences in CAE generally follows the sign of the relative

difference in the CDNC changes (Figure 5.5).
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Figure 5.8: Regional size distributions for the anth_on (solid lines) and anth_off (dashed lines) from the
TOMAS, LOGNORMAL, and AVG-TOMAS simulations. Also plotted is a reproduction of the difference in
CAE between LOGNORMAL and TOMAS (Figure 5.7) with boxes indicating each respective region that is
averaged over to create the size distributions.

To explain the magnitude and sign of regional differences in CAE between the prognostic

and prescribed size-distribution methods (Figure 5.8), we plot regional number distributions for

anth_on (solid) and anth_off (dashed) lines for the (a) North Pacific, (b) South America, (c) Europe,

(d) India, and (e) Pacific Islands. We also re-plot the difference in LOGNORMAL and TOMAS

CAE, adding boxes that define these regions. In the following paragraphs, we discuss the size

distributions in each region to explain the simulated differences in CAE. The various emissions and

size-dependent processes that dominate in these various regions highlight how assuming prescribed

size-distribution shapes can miss potentially important regional changes in CAE.
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North Pacific: The TOMAS anth_on number distribution produces the "Hoppel gap," character-

ized by a larger accumulation mode centered around a median diameter of 250 nm, a minimum in

the 40-80 nm sizes, and a smaller aitken/nucleation mode (Hoppel et al., 1986). This minimum is a

result of in-cloud aqueous SO4 production shifting particle mass into larger sizes. In the TOMAS

scheme, the SO4 mass from aqueous oxidation results in a larger accumulation-mode median diam-

eter while conserving particle number. Thus, for the anth_on simulations, the accumulation mode

in the TOMAS simulation has a larger median diameter than the two prescribed size-distribution

simulations, LOGNORMAL and AVG-TOMAS.

There is an increase in aerosol mass between going from anth_off to anth_on, and this increase

in mass is the same regardless of size-distribution scheme. On the other hand, the fractional

change in aerosol number is not the same between the prognostic TOMAS scheme and the two

prescribed size-distribution schemes. For the two prescribed size-distribution simulations, the

fractional increase in aerosol number is identical to the fractional increase in aerosol mass as the size

of the particles do not change. This is because the change in aerosol composition between the two

simulations does not substantially alter its size distribution (the median diameter for each individual

species is still held constant). By contrast, for the TOMAS simulations, the increased SO2 emissions

from anthropogenic sources lead to a larger accumulation-mode median diameter in the anth_on

simulation than in the anth_off simulation. Because of this increase in accumulation-mode diameter,

the fractional increase in the number of CCN-sized particles between the anth_on and anth_off

simulations is smaller than the fractional increase in mass between anth_on and anth _off (see

Figure 5.5). Thus, the fractional increase in CCN number between anth_on and anth_off is smaller

for the TOMAS simulations than for the two sets of prescribed size-distribution simulations, and

this leads to a weaker CAE cooling effect when using the prognostic TOMAS microphysics relative

to the prescribed size distributions. The shift in the average size of the CCN-sized particles between

anth_on and anth_off is the key parameter driving the differences between the size- distribution

schemes: prescribed size distributions cannot capture this size shift.
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South America: Despite lower N40 concentrations in both anth_on and anth_off, the prognostic

TOMAS distribution method has a much larger magnitude (exceeding 3 W m−2) CAE response

resulting from a larger relative increase in CDNC than the prescribed size-distribution methods (see

Figure 5.4 and Figure 5.5). As in the case for the North Pacific region (above), the change in particle

number from anthropogenic emissions in LOGNORMAL and AVG-TOMAS is proportional to the

change in aerosol mass between anth_on and anth_off. However, in the size distributions simulated

by TOMAS, particle number increases not only from increased mass from anthropogenic emissions,

but also from a decrease in the average particle diameter (the opposite of the North Pacific case).

Anthropogenic SO2 emissions lead to enhanced new-particle formation in TOMAS (evidenced

by the mode at 2 nm) in this region, leading to smaller but more numerous particles. In addition,

fossil-fuel-combustion sources are emitted in GEOS-Chem-TOMAS at a smaller median diameter

(30 nm) than biomass-burning emissions (100 nm), further decreasing the accumulation-mode

median diameter simulated by TOMAS in anth_on compared to anth_off (where biomass burning is

an important source). The net result is a larger relative increase in CDNC and thus CAE in TOMAS

for the same increase in aerosol mass compared to LOGNORMAL and AVG-TOMAS. We note,

however, that this result may be sensitive to nucleation schemes involving organics (shown to be

important in equatorial South America in Tröstl et al. (2016)), which are not currently included in

GEOS-Chem- TOMAS.

Europe: Despite substantial differences in the nucleation mode, the TOMAS and LOGNORMAL

distribution methods predict a similar N40 concentration in the anth _on simulation; however, the

TOMAS method predicts fewer N40 in anth_off due to a reduced contribution of nucleation

and condensational growth (also see Figure 5.4). Similar to South America, in TOMAS, the

increased nucleation and fossil-fuel-combustion sources in anth_on decrease the accumulation-

mode median diameter compared to anth_off. The lower accumulation-mode median diameter due

to anthropogenic emissions in TOMAS leads to a larger relative increase in CDNC and CAE for the

same increase in aerosol mass compared to LOGNORMAL and AVG-TOMAS. This same effect

drives the difference in CAE in the outflow off the Northeast United States and East Asia.
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India: Conversely, over India, the relative increase in CDNC is greater in the LOGNORMAL

and AVG-TOMAS schemes (with the exception of central India in the LOGNORMAL scheme),

resulting in a stronger anthropogenic CAE. In TOMAS, anthropogenic emissions increase the

accumulation-mode median diameter. While anthropogenic emissions do increase new-particle

formation, the increase in average particle diameter is likely caused by a large contribution from

biofuel emissions, emitted at 100 nm (Kodros et al., 2015), as well as coagulational scavenging of

small particles by the large coagulation sink in anth_on in this region.

Pacific Islands: Similar to the cases in South America and Europe, the TOMAS distribution

method exhibits a smaller accumulation-mode median diameter in anth _on compared to anth_off,

resulting in a larger relative increase in CDNC for the TOMAS simulations than LOGNORMAL

and AVG-TOMAS (Figure 5.5). The TOMAS anth_off simulation has lower N40 concentrations

than LOGNORMAL (Figure 5.4) for the same aerosol mass due to the larger accumulation-mode

median diameter (likely caused by aqueous oxidation). As the CAE response to CDNC is nonlinear,

with a steeper slope in clean conditions, the low CCN concentration in the TOMAS anth_off leads

to a strong CAE response compared to the prescribed size distributions.

Each of the regions described differ in how the various size-dependent processes shape the

aerosol size distributions in the anth_off and anth_on simulations. While we are unable to determine

if the prognostic TOMAS simulations are predicting these size-dependent processes accurately,

especially in the anth_off cases, this work highlights that we expect size-dependent processes

to behave differently in various regions and under different emissions scenarios, thus leading to

diversity in size distributions. Simulations where the size-distribution shape is held fixed (even

when different species are allowed to have different size-distribution shapes) fail to capture this

diversity, resulting in possible biases in regional and global-mean CAE estimates.

5.4 Conclusions
We explore the sensitivity of the simulated aerosol cloud-albedo effect to different methods

of simulating the aerosol size distribution, including a prognostic, sectional aerosol-microphysics
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package, TOMAS, and two prescribed size-distribution methods: a mapping based on lognormal

modes (LOGNORMAL) and a mapping based on the global- and annual-mean TOMAS distribution

(AVG-TOMAS). The prescribed size-distribution methods are representative of methods used in

models that track only bulk aerosol mass (and so do not predict aerosol size). We compare the

prescribed size-distribution methods to the prognostic TOMAS scheme in order to explore the

differences in the CAE that arise in models that track only bulk aerosol mass and prescribe the shape

of the aerosol size distribution as opposed to a microphysical model where the median diameter

of aerosol species is not held fixed. While the LOGNORMAL method is used in several past

studies, we include the AVG-TOMAS method to explore how sensitive the CAE is to the shape of

the prescribed aerosol size distribution. We find that the prognostic TOMAS distribution method

predicts a larger increase in cloud albedo due to anthropogenic emissions than the prescribed

size-distribution methods. The global-mean absolute difference in CAE between the prognostic and

prescribed distribution methods is 0.2 W m−2; however, regional differences can exceed 3.0 W m−2,

notably in South Asia and South America.

The driver of these differences are changes in the average size of CCN-sized particles caused by

changes to emissions and microphysical processes between the anth_off and anth_on simulations.

The size-distribution changes are explicitly simulated in TOMAS, but cannot be captured in the

simulations with assumed size distributions (LOGNORMAL, AVG-TOMAS). While it is possible

for the average size of CCN particles to shift in the prescribed size-distribution methods due to

changes in simulated aerosol composition (because the mapping parameters differ for each species),

the change in composition between anth_on and anth_off did not result in a substantial shift in the

median diameter of the total number distribution. Over most land masses, the prognostic TOMAS

method predicts a decrease in the median diameter of accumulation-mode particles between anth_on

and anth_off as a result of increased anthropogenic combustion sources and increased nucleation

rates. This leads to a fractional increase in CCN-sized particles between anth_on and anth_off

that is greater than that in the prescribed size-distribution methods. As in Mann et al. (2012) and

Bellouin et al. (2013), discrepancies in representation of aqueous oxidation lead to substantial
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differences in aerosol number concentrations in oceanic regions. Over the Pacific Ocean, the

TOMAS method predicts an increase in particle size in anth_on compared to anth_off as a result of

aqueous oxidation, and thus the opposite effect. Altering accumulation-mode median diameter is

especially important in the anth_off simulations. As the response of cloud reflectivity to CDNC

(cloud susceptibility) is strongly nonlinear, the CAE is perhaps more sensitive to changes in the

baseline (anth_off ) simulation. This result generally agrees with past studies showing a strong

sensitivity of the cloud-aerosol forcing to pre-industrial aerosol concentrations (e.g., Carslaw et al.,

2013; Hoose et al., 2009).

While the prognostic TOMAS size-distribution method generally agrees better with present-day

aerosol size-distribution observations than the LOGNORMAL method, our comparison is limited

both spatially and temporally, and it should not be considered a full model evaluation. Our main

purpose in making this comparison is to demonstrate that both the prognostic and prescribed size-

distribution methods predict realistic present-day concentrations of CCN sized particles (N40 in

Figure 5.1); however, the shape of the aerosol size distributions may be different between anth_on

and anth_off simulations with prognostic microphysical processes, resulting in large discrepancies

in the change in CDNC and CAE. While present-day aerosol size-distribution parameters can be

tuned to generally match aerosol-number observations, fundamental changes to the size distribution

by processes such as nucleation, wet deposition, aqueous oxidation, condensation, and coagulation

in non-present-day simulations cannot be constrained by observations and therefore require a model

to simulate.

A common feature in the past several IPCC reports is the large uncertainty range in the aerosol

indirect forcing. While complex aerosol microphysics models increase computational burden and

add more uncertain parameters, they are necessary to capturing physical and chemical processes

that alter particle number concentration. Our work highlights that size-dependent aerosol processes

lead to regional variations in size distributions that simple, prescribed size-distribution assumptions

(even allowing for diversity in size distributions between species) do not capture. Furthermore,

size-dependent aerosol processes may change in time as aerosol-precursor and primary-aerosol
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emissions change, which leads to differences in cloud-albedo CAE estimates between simulations

with prognostic aerosol size distributions compared to simulations with prescribed size-distribution

shapes. Thus, while adding aerosol microphysics to climate models adds complexity, lack of aerosol

microphysics in climate models may lead to substantial errors and biases in estimating aerosol cloud

forcings.

In this study, we focus on regional differences between prognostic and globally prescribed

aerosol size distributions and the CAE from anthropogenic emissions. One possible area of future

study is to map aerosol mass onto regional GEOS-Chem-TOMAS size distributions (as opposed

to global-mean size distributions), thus further isolating the impacts of perturbed emissions and

microphysical processes from regional variations in the aerosol size distribution.
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Chapter 6

Size-resolved mixing state of black carbon in the

Canadian high Arctic and implications for simulated

direct radiative effect5

Transport of anthropogenic aerosol into the Arctic in the spring months has the potential to

affect regional climate; however, modeling estimates of the aerosol direct radiative effect (DRE)

are sensitive to uncertainties in the mixing state of black carbon (BC). A common approach

in previous modeling studies is to assume an entirely external mixture (all primarily scattering

species are in separate particles from BC) or internal mixture (all primarily scattering species are

mixed in the same particles as BC). To provide constraints on the size-resolved mixing state of

BC, we use airborne Single Particle Soot Photometer (SP2) and Ultra-High Sensitivity Aerosol

Spectrometer (UHSAS) measurements from the Alfred Wegener Institute (AWI) POLAR6 flights

from the NETCARE/PAMARCMIP2015 campaign to estimate coating thickness as a function

of refractory BC (rBC) core diameter as well as the fraction of particles containing rBC in the

springtime Canadian high Arctic. For rBC core diameters in the range of 140 to 220 nm, we find

average coating thicknesses of approximately 45 to 40 nm, respectively, resulting in ratios of total

particle diameter to rBC core diameters ranging from 1.6 to 1.4. For total particle diameters ranging

from 175 to 730 nm, rBC-containing particle number fractions range from 16 to 3%, respectively.

We combine the observed mixing-state constraints with simulated size-resolved aerosol mass and

number distributions from GEOS-Chem-TOMAS to estimate the DRE with observed bounds on

mixing state as opposed to assuming an entirely external or internal mixture. We find that the

pan-Arctic average springtime DRE ranges from -1.65 W m-2 to -1.34 W m-2 when assuming

5This Chapter is in review as: Kodros, J. K., Hanna, S., Bertram, A., Leaitch, W. R., Schulz, H., Herber, A.,
Zanatta, M., Burkart, J., Willis, M., Abbatt, J. P. D. and Pierce, J. R.: Size-resolved mixing state of black carbon in
the Canadian high Arctic and implications for simulated direct radiative effect, Atmos. Chem. Phys. Discuss., 1-32,
doi:10.5194/acp-2018-171, 2018.
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entirely externally or internally mixed BC. Using the observed mixing-state constraints, we find the

DRE is 0.05 W m-2 and 0.19 W m-2 less negative than the external mixing-state assumption when

constraining by coating thickness of the mixed particles and by BC-containing particle number

fraction, respectively. The difference between these methods is due to an underestimation of BC

mass fraction in the springtime Arctic in GEOS-Chem-TOMAS compared to POLAR6 observations.

Measurements of mixing state provide important constraints for model estimates of DRE.

6.1 Introduction
Over the last several decades, the Arctic has warmed at near twice the rate of the global mean

(Boucher et al., 2013). In addition to CO2, short-lived climate forcers (such as black carbon and

methane) may contribute to this increased rate of warming (Arctic Monitoring and Assessment

Programme, 2015). Black carbon (BC), in particular, may be an efficient warming agent in the

Arctic as its potential to decrease planetary albedo is magnified when BC is above a white surface,

such as snow (e.g., Bond et al., 2013). BC can affect climate through aerosol-radiation interactions

(e.g. the direct radiative effect, semi-direct radiative effect) or through aerosol-cloud interactions

(e.g. the cloud-albedo indirect effect) (Boucher et al., 2013). The magnitude to which BC warms

an atmospheric column through aerosol-radiation interactions is strongly sensitive to atmospheric

concentration, altitude, and chemical mixing state (Bond et al., 2013). In this work, we focus on the

mixing state of BC.

The population (or chemical) mixing state of BC refers to the degree in which BC particles are

mixed with other aerosol species. In global and regional models where population mixing state is

not explicitly tracked, BC is commonly represented as completely externally mixed (separate from

other aerosol species) or a completely internally mixed (mixed together with other aerosol species).

For BC mass in a given particle size range, the external mixture assumes the BC mass is divided

up into particles of the same size as the non-BC particles. Conversely, in the internal mixture, the

same BC mass is divided up into a relatively larger number of particles with smaller BC diameters

such that the total mixed particle has the representative diameter of the size range. In a full internal
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mixture, BC mass is spread among all particles. For a given BC mass, the internal mixing-state

assumption will produce more absorption as the BC mass is spread amongst more particles giving

rise to greater surface area and thicker coatings (Bond and Bergstrom, 2006; Seinfeld and Pandis,

2012). However, in the atmosphere, BC is often not mixed entirely as an internal or external mixture.

For instance, Massoli et al. (2015) found that 35% of the total non-refractory submicrometer mass

is associated with BC-containing particles in coastal California during the CALNEX campaign, and

recent studies of the Arctic aerosol suggest a smaller percentage of the aerosol particles contain BC

(e.g., Raatikainen et al., 2015; Sharma et al., 2017). Thus, the assumption in aerosol models of a

full internal or external mixture may lead to over- or under-estimates of BC absorption.

A second component of BC mixing state is the morphological mixing state. The morphological

mixing state refers to the distribution of chemical species within a particle, as well as the shape and

location of BC within the aerosol particle. A common assumption for the morphological mixing

state of BC is that the BC mass forms the core of a particle and the hydrophilic aerosol mass forms

a shell around the particle (Bond et al., 2006; Lack and Cappa, 2010). The scattering component

of the shell acts as a lens to focus more photons onto the core, thus increasing absorption (Bohren

and Huffman, 1983; Bond et al., 2006). However, the degree of absorption enhancement is a strong

function of the core diameter and shell thickness. Theoretical calculations (known as “core-shell

Mie theory”) and laboratory studies have estimated enhancements in absorption for a given BC mass

of a factor of 1.3 to 2 (Schnaiter et al., 2003, 2005; R. Zhang et al., 2008). Based on these findings,

Bond et al. (2006) recommends scaling BC absorption by a factor of 1.5 to account for the “lensing”

effect in models that do not assume internal aerosol mixtures. However, field campaigns have found

a wider variation of absorption enhancements. While finding that 20-30% of BC particles had

acquired a thick coating, McMeeking et al. (2011) and Subramanian et al. (2010) did not find a

dependence of mass absorption cross section with coating. Similarly, Cappa et al. (2012) found an

absorption enhancement of only 6%, and speculated that the BC may not be at the exact center of

the particle. Conversely, Q. Wang et al. (2014) found an absorption enhancement of 1.8 in China,

similar to laboratory findings. In addition, Sharma et al. (2017) found values of mass absorption
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cross section to increase with coating thickness with a steeper slope than theoretical calculations.

Thus, accurate model estimates of BC absorption must rely on an understanding of sources of BC

as well as all other aerosol components.

Aerosol number and mass concentrations in the Arctic have a strong seasonal cycle, with

contributions from anthropogenic sources leading to a peak in accumulation-mode aerosol mass

in the winter and spring (e.g., Croft et al., 2016b; Quinn et al., 2007). Efficient wet removal in

the summer results in conditions that favor new particle formation and nucleation-mode aerosol

(e.g., Browse et al., 2012; Croft et al., 2016a,b; Garrett et al., 2011; Leaitch et al., 2013; Tunved

et al., 2013; Willis et al., 2016). As there is little or no solar irradiance in the Arctic winter, it is

essential to accurately simulate aerosol optical properties in the spring. Sources of BC in the Arctic

include gas flaring and biomass burning; however, much of the atmospheric BC concentration is

transported from lower latitudes (Xu et al., 2017, Schulz et al., in prep). Using a combination of

observations and a chemical transport model, (Xu et al., 2017) found that in the Arctic spring much

of the BC concentrations at higher elevations arrived from South Asia, while at lower elevations BC

concentrations were transported from Asia and Eastern Europe. Sources of non-BC particles to the

Arctic include direct marine sources, new particle formation from natural or possibly anthropogenic

precursors, and transport from lower latitudes (e.g., Croft et al., 2016b; Wentworth et al., 2016;

Willis et al., 2016).

Despite the dependence of aerosol absorption on BC mixing state, measurements of mixing state

in the Arctic are limited. The Single Particle Soot Photometer (SP2) provides direct measurements of

size-resolved refractory BC (rBC) mass for particle diameters in the range of approximately 75-700

nm. In addition, by the leading-edge fit method (Gao et al., 2007), the SP2 can provide estimates

of coating thickness on rBC particles. Combining the size-resolved coated rBC measurements

with a total aerosol size distribution provides information on the fraction of total aerosol number

containing rBC, thus providing a constraint on the population mixing state of rBC. Raatikainen

et al. (2015) measured rBC mixing state properties with an SP2 in the Finnish Arctic winter, finding

24% of particles contain rBC with an average total particle to refractory rBC core diameter of 2.
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Similarly, Liu et al. (2015) found an average total particle to rBC core diameter of 2.25 (1.7 - 2.8)

during aircraft campaign in the European Arctic in March. For biomass burning plumes, Kondo

et al. (2011) measured a ratio of 1.3-1.6 during aircraft flights in the spring and summer in the

Canadian Arctic. Finally, Sharma et al. (2017) found a ratio of 1.4-1.25 at the Alert ground station

in spring of 2012.

In this study, we present measurements of BC mixing state aboard the Alfred Wegener Institute

(AWI) POLAR6 flights, as part of the Network on Climate and Aerosols: Addressing Key Uncertain-

ties in Remote Canadian Environments (NETCARE) and Polar Airborne Measurements and Arctic

Regional Climate Model Simulation Project (PAMARCMiP). We use these measurements as con-

straints on simulated aerosol mass and number concentrations to estimate the direct radiative effect

(DRE) in the springtime Arctic, and compare these estimates to the DRE calculated using bounding

cases of completely external or internal mixing state-assumptions. While this study focuses on

the DRE, we note that other aerosol-radiation interaction processes, such as the semi-direct effect,

may also depend on BC mixing state. In Sections 2.1-2.3, we present the POLAR6 flight paths

and size-resolved aerosol measurement setup. In Section 2.4, we discuss the chemical-transport

model and assumptions in the calculation of the DRE. In Section 3, we present observations of BC

mixing state and implications for simulated DRE. We share our conclusions and study limitations in

Section 4.

6.2 Methods

6.2.1 Flight overview and sample locations

As part of the Network on Climate and Aerosols: Addressing Key Uncertainties in Remote

Canadian Environments project (NETCARE, http://www.netcare-project.ca), and in collaboration

with the Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project

(PAMARCMiP) (Herber et al., 2012), measurements of aerosol, trace gases and meteorological

parameters were made in High Arctic spring aboard the Alfred Wegener Institute (AWI) Polar

6 aircraft, a DC-3 aircraft converted to a Basler BT-67 (Herber et al., 2008). Measurements on
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Figure 6.1: Map showing the location of Alert and Eureka as well as the flight paths for the six flights in the
Canadian High Arctic portion of the POLAR6 campaign. The flights were undertaken between the 7th and
13th of April 2015.

a total of 10 flights took place from 4 – 22 April 2015 based at four stations: Longyearbyen,

Svalbard (78.2°N,15.6°E); Alert, Nunavut, Canada (82.5°N, 62.3°W); Eureka, Nunavut, Canada

(80.0°N, 85.9°W); and Inuvik, Northwest Territories, Canada (68.4°N, 133.7°W). Polar 6 allowed

measurements from 60 – 6000 m, with a survey speed of ~75 m s-1 (~270 km h-1) with ascent and

descent rates of ~150 m min-1. This study uses observations from flights conducted at Alert and

Eureka, between 7 – 13 April 2015. Table 6.1 presents the date, departure location, and total flight

time for the six flights used here. Flight tracks are shown in the map in Figure 6.1.

Aerosol was sampled near-isokinetically through a stainless steel shrouded diffuser inlet, located

ahead of the engines. The inlet provided near unity transmission of particles 20 nm to ~1 µm in

diameter at typical survey airspeeds, corresponding to a total flow rate of ~55 L min-1. Bypass lines

off the main inlet, at angles less than 90°, carried aerosol to various instruments described in Section

2.2 and 2.3. Aerosol was not actively dried prior to sampling; however, the temperature in the inlet

line within the aircraft cabin was >15 °C warmer than the ambient temperature so that the relative

humidity decreased significantly.
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Table 6.1: Time, location, and duration of the portion of POLAR6 flights used in this study and shown in
Figure 6.1.

Period Flight Date Takeoff/Landing Takeoff Landing Flight
location (UTC) (UTC) Time

Spring, 2015 2 7.4.2015 Alert (82.5° N, 62.3° W) 16:31:57 20:48:12 4:16:15
3 8.4.2015 Alert (82.5° N, 62.3° W) 13:51:19 16:43:44 2:52:25
4 8.4.2015 Alert (82.5° N, 62.3° W) 17:53:04 21:22:43 3:29:39
5 9.4.2015 Alert (82.5° N, 62.3° W) 13:50:12 17:47:34 3:57:22
6 11.4.2015 Eureka (80.0° N, 85.9° W) 15:57:28 21:16:05 5:18:37
7 13.4.2015 Eureka (80.0° N, 85.9° W) 15:14:27 20:52:05 5:37:38

Periods when the aircraft was in-cloud were determined using data from a Forward Scattering

Spectrometer Cloud Probe (FSSP-100, Droplet Measurement Technologies, Inc). The FSSP is an

optical particle counter that detects droplets in the range of 2-50 µm in diameter. Any periods where

a signal above noise was registered by the FSSP were determined to be in-cloud times and were

removed from the dataset. In total the aircraft was in-cloud for ~0.3% of the flight time.

6.2.2 Measurement of refractory black carbon

6.2.2.1 rBC number vs rBC core diameter

Measurements of refractory black carbon (following the definition in Petzold et al., 2013) were

made with a single particle soot photometer (SP2, Droplet Measurement Technologies Inc). The SP2

detects individual particles using an intra-cavity Nd:YAG laser operating at 1064 nm. As particles

pass through the laser beam, those that contain a strongly absorbing component at 1064 nm (such as

black carbon) are heated to incandescence. Light emitted by the incandescing fraction of the particle

is detected by a pair of photomultiplier tubes. The peak amplitude of the thermal radiation emitted

by the incandescing particle is proportional to the mass of refractory material in the particle (Moteki

and Kondo, 2007; Slowik et al., 2007). In this work, size-selected Aquadag particles (Acheson

Industries) were used as an external standard for mass calibration of the SP2. Measured Aquadag

mobility diameters were converted to rBC (refractory black carbon) mass using the size-dependent

effective densities reported by Gysel et al. (2011). Recent studies have shown that the SP2 is more
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sensitive to Aquadag than it is to ambient rBC (Laborde et al., 2012; Moteki et al., 2010). In order

to account for this, we have scaled the slopes of the Aquadag-derived calibration curves by a factor

of 0.70 ± 0.05. This scaling factor was derived from Figure5 in Laborde et al. (2012) which shows

the response of the SP2 to Aquadag as well as the response of the SP2 to rBC from diesel exhaust,

wood smoke, and ambient particles.

Two single particles soot photometers (referred to as SP2#1 and SP2#2) were used in this study.

SP2#1 had a detection range of 0.40 - 323 fg rBC (equivalent to spherical diameters ranging from

75 to 700 nm at an rBC density of 1.8 g cm-3 Bond and Bergstrom (2006)), while SP2#2 had a

detection range of 0.40 - 9.37 fg rBC (equivalent to spherical diameters ranging from 75 to 220

nm at an rBC density of 1.8 g cm-3 Bond and Bergstrom (2006)). SP2# 1 was used to measure

rBC number, since it had a wider size detection range than SP2#2. SP2#2 was used to determine

coating thicknesses as a function of rBC core diameter due to a misalignment of an optical detector

needed for coating analysis in SP2#1.

6.2.2.2 rBC coating thickness vs rBC core diameter

As particles pass through the laser beam in the SP2 they elastically scatter light at 1064 nm. For

particles that contain rBC, the particle may be heated and begin to vaporize before the scattering

intensity reaches the peak value that an unperturbed particle would have reached. In this case,

the unperturbed scattering amplitude can be retrieved by fitting the leading edge of the particle’s

scattering signal as described by Gao et al. (2007). In the leading edge fit method, the center position

and width of a Gaussian (which reflects the laser beam profile) are fixed from the scattering profiles

of non-incandescing particles collected during the preceding and following hour. The unperturbed

peak scattering amplitude for an incandescing particle is then determined by fitting the measured

scattering profile up to 5% of the peak scattering intensity using the fixed width and center position

and allowing only the amplitude to vary. Fitting the profile only up to 5% of peak elastic scattering

intensity allows the unperturbed peak amplitude to be retrieved. For an individual particle the

uncertainty in reproducing the unperturbed amplitude is ~70% (~20% uncertainty in optical size)

but since this uncertainty is random it does not systematically impact our results.
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With the scattering amplitude determined by the leading-edge technique, and the measured

rBC core diameter, a core-shell Mie model can be used to determine the optical diameter of the

rBC-containing particles. In the Mie model we used a refractive index of 2.26–1.26i for rBC

(Moteki et al., 2010) and a refractive index of 1.5-0.0i for the coating species. The value of 1.5-0.0i

is appropriate for dry sulfate and sodium chloride (Schwarz et al., 2008a,b).

Although the SP2 can measure individual particle rBC mass down to 0.40 fg (~75 nm VED)

the elastic scattering optical detectors can only measure scattering from bare rBC particles with

volume-equivalent diameters of ~120 nm or greater. As a result, when rBC cores have a diameter

smaller than 120 nm only those cores with significant coatings will produce a measurable elastic

scattering signal. Additionally, in practice fewer than 90% of particles with a rBC core diameter of

less than 140 nm are successfully assigned a coating. This is because the leading edge fit method

uses two detectors to accurately determine the coating thickness. One of these is a two element

scattering detector used to determine the position of a particle in the laser beam. With this two

element detector, the scattering signal from a particle passing through the laser has a clear notch

when it passes the gap between detecting elements and this notch position is used to locate the

particle in the beam. In some cases, rBC containing particles may evaporate prior to crossing the

notch position and, and as a result, their coating thickness cannot be determined. This happens more

frequently for smaller particles. As a result of the two caveats discussed above, there is a bias toward

thicker coatings for rBC cores < 140 nm. To account for this bias, we calculate minimum, median,

and maximum bounding cases for coating thickness for rBC core diameters less than 140 nm. A

detailed discussion of the estimation of each case and the resulting impact on the DRE is included

in the Supplemental Information (SI, Appendix C). As we do not see a substantial difference in the

DRE across the three bounding cases, we focus on the median value for the remainder of this text.

The median estimate of coating thickness for rBC core diameters less than 140 nm is taken as the

overall median coating thickness across core diameters 140 to 220 nm.
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6.2.3 Measurement of total aerosol size distributions

Total aerosol size distributions for particles with diameters in the range of 85 - 1000 nm were

measured by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS, Droplet Measurement

Technology Inc). The UHSAS is a laser-based aerosol spectrometer in which particles intercept

the beam of a Solid-state Nd3+:Y LiF4 laser operating at ~1054 nm. Two sets of Mangin mirrors

focus light scattered by the particles onto two detectors; one a high gain avalanche photodiode

for detecting particles smaller than 250 nm and the other a low-gain PIN photodiode for detection

particles larger than 250 nm. Counting efficiency for the UHSAS is >95% for particle concentrations

< 3000 cm-3. Further details of the instrument operating principles can be found in Cai et al. (2008).

The UHSAS was calibrated in during operations using polystyrene latex spheres (PSLs). Details

of the calibration and comparison with other in-flight measurements can be found in Leaitch et al.

(2016) as well as Willis et al. (2016) and Burkart et al. (2017). One potential issue with using the

UHSAS aboard an aircraft is that, as the pressure changes during ascent and descent, the sample

flow at the inlet of the chamber can deviate from the measured and regulated flow at the outlet

of the chamber (Brock et al., 2011; Kupc et al., 2018) which can results in inaccurate particle

concentration measurements. Brock et al. (2011) saw particle number deviations from a reference

counter of ~10-15% on ascent and descent. In this study, comparison to counts of non-incandescent

particles from the SP2, which was on the same inlet line, suggest that particle counts deviated by

<5%.

6.2.4 Determination of the fraction of total aerosols containing rBC vs aerosol

diameter

To determine the fraction of total aerosol particles containing rBC as a function of size, we first

determined the size distribution of the rBC-containing particles, this time accounting for both the

rBC core diameter and the thickness of any coating material. This was done by taking the coating

thicknesses as a function of rBC core size for each flight and applying those coating thicknesses to

the measured rBC core sizes from SP2#1. Once the coating thickness were applied to the rBC cores
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measured by SP2#1, the particles were then binned according to their total size (core diameter plus

2 times the coating thickness) to give the number distribution for rBC containing particles. The bin

increments were set to match the increments from the UHSAS and the fraction of rBC containing

particles was calculated for each bin by dividing the number of rBC-containing particles by the

number of total aerosols. As with the coating analysis, this process was carried out separately for

each flight and the average of all flights were combined with GEOS-Chem-TOMAS simulations.

6.2.5 Model overview

6.2.6 GEOS-Chem-TOMAS

To simulate aerosol concentrations in the Arctic, we use the Goddard Earth Observing System

chemical-transport model, GEOS-Chem, version 10.01. We simulate April 2015 with 2 months of

spin-up not included in the analysis. Transport in GEOS-Chem is driven by MERRA re-analysis

meteorology fields. This version of GEOS-Chem uses a horizontal resolution of 4◦ latitude by 5◦

longitude with 47 vertical layers.

Aerosol microphysics is simulated using TwO Moment Aerosol Sectional (TOMAS) micro-

physics scheme (Adams and Seinfeld, 2002) coupled with GEOS-Chem (known as “GEOS-Chem-

TOMAS”). The version of TOMAS used in this study includes 40 size bins ranging from diameters

of approximately 1 nm to 10 µm (the exact diameter depends on the density of the aerosol). TOMAS

includes tracers for sulfate, BC, organic aerosol, sea salt, dust, and aerosol water. In this work, we

will use the term “BC” when referring to simulated mass concentration and “rBC” when referring

to measurements made with the SP2. Description of aerosol microphysics in TOMAS has been

included in Adams and Seinfeld (2002), Y. H. Lee et al. (2013), and Lee and Adams (2012). Croft

et al. (2016b) compares aerosol size distributions simulated by GEOS-Chem-TOMAS to observa-

tions at Alert, Nunavut and Mt. Zeppelin, Svalbard and includes a description of the settings used

here.

Global anthropogenic emissions are derived from The Emissions Database for Global Atmo-

spheric Research (EDGAR) Hemispheric Transport of Air Pollution (HTAP) version 2.2 (Janssens-
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Maenhout et al., 2015). Following the recommendation in Xu et al. (2017), we include BC and

organic carbon emissions from gas flaring derived from the Evaluating the Climate and Air Quality

Impacts of short Lived Pollutants (ECLIPSE) emission inventory (Klimont et al., 2017). Biomass

burning emissions are from the The Fire Inventory from NCAR (FINN) for the year 2015 (Wiedin-

myer et al., 2011). Dust aerosol emissions follow the DEAD scheme (Zender, 2003), while sea-salt

aerosol emissions are based on the scheme of Jaeglé et al. (2011).

6.2.6.1 Direct radiative effect calculation

The all-sky direct radiative effect is estimated using an offline version of the Rapid Radiative

Transfer Model for GCMs (RRTMG) (Iacono et al., 2008), following the online version implemented

in GEOS-Chem (Heald et al., 2014). RRTMG treats clouds using the Monte Carlo independent

column approximation (McICA) (Pincus et al., 2003). Aerosol optical properties are calculated

using monthly averaged aerosol mass and number concentrations with refractive indices from the

Global Aerosol Dataset (GADS). We use Mie code published in (Bohren and Huffman, 1983) to

calculate aerosol optical depth, single scattering albedo, and asymmetry parameter. Available code

includes Mie calculations for 2 concentric spheres (for use in core-shell morphologies). The use of

monthly mean aerosol and cloud properties is a limitation of this study; however, we feel this is

sufficient to explore the impacts of different BC mixing-state assumptions on the DRE.

6.2.6.2 Description of aerosol mixing states

We calculate the DRE with 5 BC mixing states, outlined in Table 6.2. Figure 6.2 is a schematic

of the mixing states. We discuss a numerical example at the end of this section that follows Figure

6.2. In the “external” mixing state, all BC exists as a separate particle from the other aerosol

species (Figure 6.2a). The “external*1.5” mixing state multiplies the BC absorption in the “external”

mixing state by a factor of 1.5 to simulate absorption when BC is mixed internally, following

the recommendation in Bond et al. (2006). As the “external*1.5” mixing state only modifies

the absorption from the “external” mixing state, we do not explicitly animate it in Figure 6.2.

Conversely to the “external” mixing state, the “allCoreShell” assumption treats all BC mass in

106



Table 6.2: Description of BC mixing states.

Mixing State Description

external All BC mass in a size range forms a separate
particle from the other aerosol species with the
same diameter. This mixing-state assumption
provides a lower bound on absorption due to
altering chemical mixing state.

rshell-constrained All BC mass in a size range forms the core of
a mixed particle with measured rBC volume-
equivalent diameter from the SP2. Hydrophilic
scattering mass forms a shell around the core
with measured shell thickness. Any remaining
scattering mass forms a separate particle.

external*1.5 Identical to the external mixing-state assump-
tion, but with BC absorption multiplied by a
constant factor of 1.5 to simulate enhanced ab-
sorption in an external mixture, following the
recommendation in Bond et al. (2006). This
mixing-state assumption serves as an approxi-
mate “mid” point.

fBC-constrained Simulated mass and number concentrations in
a size range are split into a BC-containing and
BC-free particle populations based on the mea-
sured rBC-containing particle fraction from
the SP2 and UHSAS instruments. In the BC-
containing population, core-shell morphologies
are formed with diameters calculated based on
the average BC mass or scattering mass per
particle (calculated from the mass-to-number
ratio).

allCoreShell All BC mass in a size range forms the core
of a particle with a concentric scattering shell.
The total particle diameter is the sum of the
core plus twice the shell thickness (and thus
the BC diameter is less than the total diameter).
This mixing-state assumption provides an upper
bound on absorption due to altering chemical
mixing state.
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Figure 6.2: Schematic presenting the different BC mixing states for the TOMAS size bin corresponding to
particle diameters of 250 nm. The bold text shows the parameter being constrained in each mixing state. In
this example, GEOS-Chem-TOMAS simulates 4% BC mass fraction and a particle number concentration
of 100 cm-3. In the external mixing-state assumption, all BC mass forms separate particles (rounded to 1
particle out of 10 for convenience), while in the allCoreShell mixing-state assumption, all BC mass is spread
among all particles. The rshell-constrained mixing state uses SP2 measurements of BC core diameter and
shell thickness to constrain BC mass. The fBC-constrained mixing state uses BC-containing particle fractions
from the SP2 and UHAS as the constraint on mixing state.

each size bin as the core with other hydrophilic species forming a shell around the BC core (Figure

6.2d). The external and allCoreShell mixing states are bounding cases, assuming that 0 and 100%,

respectively, of BC particles are mixed with the other aerosol components. The external*1.5 mixing

state is included as a reference point in between the two bounding cases.

We compare these assumed mixing states to two mixing states based on the measurements

described in Sections 2.2-2.3. The “rshell-constrained” mixing state uses measurements from the

SP2 of shell thickness as a function of core diameter to constrain BC mixing state (Figure 6.2b).

Across the SP2 size range, we take the total BC mass in a given size bin simulated by TOMAS, and

108



form BC cores with diameters given by the SP2 measurements. We then take the total scattering

mass simulated by TOMAS in the same size bin and form concentric surrounding shells based on

the thickness measured by the SP2. Any remaining scattering aerosol mass forms a separate particle

with no BC included. Outside of the SP2 size range, we retain the ratio of rBC core diameter to total

particle diameter at the lower/upper edge of the SP2 range and apply that to estimate core and shell

diameters for the remaining TOMAS size bins. Using the measured rBC core diameter and shell

thickness from the SP2, the resulting fraction of BC-containing particles for a given size range can

be described by Equation 6.1:

fBC =

(
MBC

Mtot

)
(

ρBC
4
3
πr3core

ρshell
4
3
πr3shell+ρBC

4
3
πr3core

) (6.1)

Where ρshell is the density of the shell, rshell is the shell thickness, ρBC is the density of the BC

core, rcore is the radius of the core, Mtot is the total aerosol mass, and MBC is the mass of BC. The

numerator in Equation 6.1 describes the BC mass fraction of the aerosol population for a given

size range, while the denominator describes the BC mass fraction for a single aerosol particle. The

resulting fraction of BC-containing particles is thus a function of the BC mass fraction as well as

the ratio of the BC radius to the total particle radius. In our approach, values for rshell and rcore are

taken from the SP2 measurements while MBC and Mtot are simulated by GEOS-Chem-TOMAS.

The rshell-constrained BC mixing state will not reproduce the measured fraction of rBC-containing

particles unless the ratio of BC and scattering mass is similar to observed with the SP2 and UHSAS.

The second measurement-constrained mixing state, “fBC-constrained”, uses the size-dependent

fraction of all particles containing rBC as the measurement constraint (Figure 6.2c). In a given

size range, we separate total aerosol mass and number (simulated by TOMAS) into a population

containing BC and a population not containing BC based on the measured fraction of particles

containing BC. We then form BC cores and scattering shells based on the simulated mass-to-number

ratio and assumed density for each species. Using the fraction of rBC containing particles measured
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with the SP2 and UHSAS, the resulting BC core diameter and shell thickness can be calculated by

Equation 6.2 and 6.3:

dcore =

[
MBC

fBC × N × ρBC × π
6

] 1
3

(6.2)

rshell =
dtot − dcore

2
(6.3)

Where dcore is the BC core diameter, fBC is the fraction of BC-containing particles measured

with the SP2 and UHSAS, N is the total particle number, and dtot is the total particle diameter in the

given TOMAS size bin. Similarly, this method will not produce the measured rBC core diameter

and shell thickness unless TOMAS simulates a similar ratio of BC to scattering mass as is observed.

For both rshell-constrained and fBC-constrained, we use the median measured values across all

flights (see Appendix C for explanation), and we compare results of the minimum, median, and

maximum cases based on the uncertainties in SP2 measurements in the 100-140 nm diameter size

range range in the Supplemental Information (Appendix C).

The different mixing states are depicted schematically in Figure 6.2 with the bold text highlight-

ing the parameter being constrained in each case. As an example, we depict the TOMAS size bin for

250 nm diameter particles where GEOS-Chem-TOMAS simulates a particle number concentration

of 100 cm-3 and a ratio of BC to total-aerosol mass of 4%. In the external mixing-state assumption

(Figure 6.2a), the 0.06 µg m-3 of BC mass is used to form pure BC particles with diameters of 250

nm (by definition, a shell thickness of 0 nm). This results in 4% of the particle number concentration

being pure BC particles, while the remaining particles are composed of non-BC species also with

diameters of 250 nm (for convenience, 1 out of 10 particles in the schematic depiction of external

is pure BC). In the rshell-constrained mixing state (Figure 6.2b), we use the observed rBC core

diameter and corresponding shell thickness from the SP2 measurements (in this example a core

of 150 nm and a shell thickness of 50 nm) to allocate the same 0.06 µg m-3 BC mass into mixed

particles with total diameter 250 nm. As the BC diameter is now only 150 nm, the resulting BC
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Figure 6.3: Coating thickness as a function of rBC core diameter. Grey markers are the median, dark shaded
area is the 25th-75 percentile, lighter shaded area is the 10-90th percentile of coating thicknesses for each bin.

containing particle number fraction is 20%. In the fBC-constrained mixing state (Figure 6.2c), we

instead constrain by the fraction of rBC-containing particles measured with the SP2 and UHSAS

(30% in this example). To allocate the same BC mass onto 30% of particles, the BC core diameter

has to equal 128 nm resulting in a shell thickness of 61 nm (to create a particle with total diameter

of 250 nm). Finally, to allocate the same BC mass onto all particles in the allCoreShell mixing-state

assumption (Figure 6.2d), the BC core diameter is further reduced to 86 nm and the shell thickness

increased to 82 nm.
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6.3 Results

6.3.1 Measurements of coating thickness as a function of rBC core size and

fraction of rBC-containing particles

Figure 6.3 shows measured coating thickness as a function of the volume-equivalent diameter

(VED) of the rBC cores (both the rBC cores and the coating are assumed to be spherical). The

alternate axis gives the fraction of detectable notch positions (see Section 2.2.4 for details). The

black dots represent the median and the shaded regions represent the interquartile range and 10th-

90th percentile range of measurements for all particles across the different flights and altitudes. For

rBC core diameters ranging from 140-220 nm (the region with greater than 90% successful fits), the

median measured coating thickness decreases slightly from 45 nm to 40 nm (with an interquartile

range of: 30-70 nm to 17-65 nm). This results in total particle to rBC core diameter ratios ranging

from 1.6 (IQR: 1.4-2.0) for rBC cores at 140 nm to 1.4 (IQR: 1.2-1.6) for rBC cores at 220 nm. This

range is similar to measurements in the Canadian Arctic by Kondo et al. (2011). When combining

with model results, we use only the measured core and shell thicknesses in the range with greater

than 90% detectable notch positions (i.e. core diameters larger than 140 nm), and use minimum

and maximum bounding assumptions in the region 70-140 nm. Figure C.1 shows the minimum and

maximum shell thickness across the range 70-700 nm. A detailed examination of vertical variability

in rBC measurements from this campaign is included in Schulz et al. (in prep).

Figure 6.4a shows the measured number distributions for uncoated rBC, coated rBC, and total

particle number, with sets of symbols representing the average across an individual flight. The

diameters of the coated rBC particles represent a sum of the rBC core diameter and twice the

shell thickness. The total aerosol size distribution has a mode centered at near 150 nm, similar to

measured accumulation-mode particles in the Arctic spring reported in Croft et al. (2016b). The

bare rBC size distribution peaks below the 70 nm size limit of the SP2. To estimate the size-resolved

fraction of particles containing rBC, we take the ratio of the SP2-coated rBC particles and the

UHSAS total particle size distribution (Figure 6.3b). In the median across all flights, we find that
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Figure 6.4: Number distributions for the bare rBC cores (black), the coated rBC-containing particles (green),
and the total aerosol as detected by the UHSAS (grey) for the median coating thickness scenario. Shown in
the bottom panel is the distribution of the fraction of the total aerosol containing rBC in the median coating
scenario.

16% of particles in the 175-330 nm diameter size range contain rBC, with values ranging from

10-29%. For particles with diameters ranging between 550-730 nm, this fraction decreases to 3%.

This result is similar in magnitude with surface measurements of rBC-containing particle fractions

from Sharma et al. (2017) from Alert, Canada. In general, we expect chemically aged plumes to

be more internally mixed (through condensation and coagulation). The relatively low fractions of

rBC-containing particles measured here may suggest local sources of non-BC accumulation-mode

particles, such as sea salt, which is common in April at Alert (e.g., Leaitch et al., 2017), or slow

coagulation timescales.
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Figure 6.5: The fraction of BC aerosol mass relative total aerosol mass at each size bin in GEOS-Chem-
TOMAS at three vertical levels along with the fraction determined from the SP2 and UHSAS observations.

6.3.2 Comparison to model simulations

Figure 6.5 shows the size-resolved fraction of BC mass relative to total aerosol mass based on

the ratio of the SP2 to USHAS compared to GEOS-Chem-TOMAS simulations. Due to instrument

constraints, the measured size range is restricted to diameters of 175-730 nm compared to the

TOMAS size range of 1 nm to 10 µm. Across the measurement size range, TOMAS predicts a

lower BC mass fraction relative to total aerosol mass except at higher altitudes (~720 hPa) for

diameters of 700 nm. The lower BC mass fraction is a result of both lower BC mass concentrations

(consistent with previous studies, e.g., Xu et al., 2017) and higher non-BC mass simulated in

GEOS-Chem-TOMAS than observed in the SP2 and UHSAS. In TOMAS, BC mass fraction is

greatest at the surface for sub-200 nm diameter particles with a second peak at higher altitudes for

particle diameters around 700 nm.

As the ratio of BC mass to total aerosol mass in TOMAS is lower than in measurements, the two

different mixing-state constraints (rshell-constrained and fBC-constrained) do not converge with the

measurements. The effect of this is shown in Figure 6.6. In Figure 6.6a (left panel), we constrain all

gridcells in the Arctic to have the measured fraction of BC-containing particles (shown in Figure
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Figure 6.6: The simulated pan-Arctic mean shell thickness as a function of BC core diameter when the
number fraction of BC is constrained by observations (left), and the simulated number fraction of BC when
shell thickness as a function of core diameter is constrained by observations (right).

6.4b and re-binned to the TOMAS size bins in the black line in Figure 6.6b), and calculate the

resulting BC core diameter and shell thickness. The black line in Figure 6.6a presents the measured

core diameter and shell thickness for comparison. As the relative BC mass to total aerosol mass in

TOMAS is less than observed (Figure 6.5), this results in smaller BC core diameters and larger shell

thicknesses. Similarly, in Figure 6.6b, we constrain TOMAS aerosol mass to have the measured BC

core diameters and shell thickness (shown in Figure 6.3 and re-binned to TOMAS sizes in the black

line in Figure 6.6a), and calculate the resulting fraction of BC-containing particles. The resulting

fraction of BC-containing particles for diameters of 200 nm using the rshell-constrained method is a

factor of 6 less than observed.

6.3.3 Implications for the direct radiative effect

To explore the impact of mixing state on DRE in the Arctic spring, we calculate the DRE due to

all aerosol with the bounding mixing-state assumptions and the measurement constraints on mixing

state. Figure 6.7 shows the net DRE over the Arctic for April assuming all BC is externally mixed.

The pan-Arctic average DRE is -1.65 W m-2, but locally there are regions of opposing sign. Regions
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Figure 6.7: The net direct radiative effect over the Arctic in April assuming externally mixed particles.

Table 6.3: The net direct radiative effect (DRE) calculated using each mixing state averaged over the Arctic
for April.

Mixing-state assumption Net DRE (W m-2)

external -1.65
rshell-constrained -1.59
external*1.5 -1.52
fBC-constrained -1.45
allCoreShell -1.34

with a slight positive DRE are over areas where the aerosol mixture is darker than the underlying

albedo. This occurs mostly over snow-covered land surfaces as opposed to oceans where the water

and sea-ice has a lower albedo and the aerosol mixture is more reflective than the surface. We

include a map of monthly mean albedo for the Arctic in April in the SI. We note that this result is

likely sensitive to monthly average albedo estimates.

Table 6.3 presents the April, pan-Arctic mean DRE from all aerosol for the 5 different mixing-

state assumptions. As expected, the DRE calculated with the external mixing-state assumption

produces the most negative DRE (-1.65 W m-2), while the allCoreShell assumption produces the
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more positive DRE (-1.34 W m-2). The external*1.5 assumption, included as a reference, is close to

halfway (-1.52 W m-2) between the two bounding assumptions. The fBC-constrained mixing state

is less negative (-1.45 W m-2) than the rshell-constrained mixing state (-1.59 W m-2). This is because

constraining by the fraction of BC-containing particles results in smaller BC cores with larger shell

thickness in TOMAS (Figure 6.6a) that leads to a larger amount of absorption.

(a) fBC-external (b) fBC-external*1.5 (c) fBC-allCoreShell

(d) rshell-external (e) rshell-external*1.5 (f) rshell-allCoreShell

−0.40 −0.30 −0.20 −0.10 −0.05 −0.01 0.01 0.05 0.10 0.20 0.30 0.40

W m−2

Figure 6.8: The difference in DRE between fBC-constrained (a,b,c) and rshell-constrained (d,e,f) compared
to the bounding mixing-state assumptions.

The difference in the DRE between the measurement-constrained mixing states (fBC-constrained

and rshell-constrained) and the bounding mixing states (external, external*1.5, and allCoreShell)

are plotted in Figure 6.8. Both the measurement-constrained mixing states are more positive than

completely externally mixed BC. While less than 15% of particles contain BC, the fBC-constrained

mixing state is 0.19 W m-2 more positive than the external mixing-state assumption (or 58% of the

difference between external and allCoreShell) and 0.05 W m-2 more positive than the external*1.5
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mixing-state assumption (but 0.11 W m-2 more negative that allCoreShell mixing-state assumption).

Conversely, the rshell-constrained mixing state is only 0.06 W m-2 more positive than the external

mixing-state assumption (or 20% of the difference between external and allCoreShell) and 0.07

W m-2 less negative than the external*1.5 mixing-state assumption (but 0.25 W m-2 more negative

than the allCoreShell mixing-state assumption). Regionally the areas with the largest differences

between mixing states are over the areas with a slight positive net DRE in Figure 6.8 (Greenland,

the Canadian high Arctic, and Russia). This further underscores the sensitivity to underlying

surface albedo. In these regions, the fBC-constrained DRE is 0.3-0.4 W m-2 more positive than the

external*1.5 mixing-state assumption, while the rshell-constrained mixing state is 0.3-0.4 W m-2

more negative.

Table C.1 presents the pan-Arctic mean DRE for the rshell-constrained and fBC-constrained

mixing states using the minimum and maximum estimates for coating thickness for rBC core

diameters less than 140 nm. In the pan-Arctic mean, the difference in DRE is less than 1% across

the minimum and maximum bounding assumptions. This is likely caused by an overall minor

contribution to optical extinction in particle sizes less than 140 nm.

6.3.4 Study limitations

We acknowledge several limitations in understanding the difference in DRE when using measure-

ment constraints (instrument limitations are discussed in Section 2). First, we assume a core-shell

morphology with BC at the exact center of the particle. Several studies have suggested this may

not always be representative of atmospheric aerosol (e.g., Cappa et al., 2012). We note that as we

assume BC is always at the center of a mixed particle, BC absorption in this work is therefore an

upper bound. Second, we assume all BC particles are coated (though sometimes with very thin coats

as in the minimum coating assumption, see Appendix C). Some studies show that plumes may have

a combination of coated and uncoated BC, with increasing in coated BC fraction increasing with

chemical age of the plume (e.g., Subramanian et al., 2010). Third, we use averages of measurements

across flights and altitudes for BC size distribution and coating information. A separate paper,
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Schulz et al. (in prep), will examine spatial and vertical variability of BC measurements made in

this campaign. Finally, the measurements used here are limited spatially and temporally. Future

work may expand on the measurements reported here for other months and a larger spatial domain.

6.4 Conclusions
In this study, we present measurements of BC mixing state in the springtime Canadian high

Arctic. Using an SP2 aboard the POLAR6 flights, we find that on average for rBC core diameters in

the range of 140-220 nm, median coating thickness decreases from 45-40 nm (with an interquartile

range of 30-70 nm to 17-65 nm). The ratio of total particle to rBC core diameter in this study

(1.6-1.4) is comparable to measurements in the springtime Canadian Arctic by Kondo et al. (2011)

and Sharma et al. (2017), as well as measurements in the European Arctic from Raatikainen et al.

(2015) and Liu et al. (2015). Combining the SP2 size-resolved rBC measurements with total aerosol

size distributions from the UHSAS instrument, we estimate approximately 16% of particles contain

rBC in the 175-330 nm diameter range, and 3% of particles contain rBC in the 550-730 nm diameter

range. We use these measurements separately as constraints on BC mixing state simulated in

TOMAS. When constraining TOMAS mass and number concentrations with the shell thickness as a

function of rBC core diameter (rshell-constrained), we calculate only 5% of 200 nm particles contain

BC (compared to 16% from the SP2 and UHSAS observations). Conversely, constraining by the

fraction of particles containing rBC (fBC-constrained), we find the ratio of total particle to core

diameter range from 2.6-2.7 across the SP2 size range (compared to 1.6 to 1.4). The reason these

constraints do not converge towards the measurements is that GEOS-Chem-TOMAS simulates a

lower BC mass concentration and higher non-BC mass concentration than measured by the SP2 and

UHSAS, resulting in smaller BC mass to total aerosol mass ratio.

We estimate the Arctic DRE in April 2015 using bounding mixing-state assumptions of en-

tirely externally mixed and internally mixed BC and compare this to the DRE estimate using the

measurement-constrained mixing states. We find that the fBC-constrained mixing state is 0.19 W

m-2 less negative than the completely external mixing-state assumption (and 0.11 more negative
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than the completely internal assumption), while the rshell-constrained mixing state is 0.06 W m-2 less

negative than the completely external mixing-state assumption (and 0.25 W m-2 more negative than

the completely internal assumption). As the BC mass fraction in TOMAS is lower than observed,

constraining by the fraction of BC-containing particles results in smaller BC cores with larger shell

thickness. Over regions of bright underlying surface albedo the differences can be greater than

0.4 W m-2. The difference in the calculated DRE between rshell-constrained and fBC-constrained

highlight the importance of accurately simulating all aerosol components in order to represent the

chemical mixing state. As the focus of this study was on the Arctic, we recommend future work to

focus on using this approach globally.
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Chapter 7

The role of inter-regional variability in aerosol size

distributions on respiratory deposition of particulate

matter air pollution6

Human exposure to airborne particulate matter (PM) increases the risk of negative health

outcomes; however, substantial uncertainty remains in quantifying these exposure-response re-

lationships. In particular, relating increased risk of premature mortality to exposure to PM with

diameters smaller than 2.5 µm (PM2.5) neglects variability in the underlying size distribution of

PM2.5 exposure. As particle deposition along the respiratory tract exhibits a strong size dependence,

the fraction of PM mass that deposits is a function of ambient particle size distributions. In this

study, we combine a size-resolved respiratory particle-deposition model with a global size-resolved

aerosol model to estimate the variability in particle deposition along the respiratory tract due to

variability in ambient PM size distributions. Globally, we find that the ratio of deposited PM mass

in the tracheobronchial and alveolar regions per unit ambient PM2.5 exposure (deposition ration,

DRTB+AV) varies by 20-30% between highly populated regions (e.g., Eastern US vs. India) due to

variability in ambient PM size distributions. Furthermore, DRTB+AV can vary by as high as a factor

of 5 between the minima in the fossil-fuel-dominated emissions regions of the Eastern US and

Europe and the maximum in the desert-dominated emissions region of North Africa. Some of this

variability in DRTB+AV is driven by coarse mode particles that are larger than 2.5 µm but still deposit

in the tracheobronchial and alveolar regions. When considering individual PM species, such as

sulfate or organic matter, we still find geographic variability in the DRTB+AV on the order of 30% due

to regional variability in the size distribution. Hence, even if the toxicity of PM can be attributed to

6 This Chapter submitted as: Kodros, J. K., Volckens, J., Jathar, S. H., Pierce, J. R.: The role of inter-regional
variability in aerosol size distributions on respiratory deposition of particulate matter air pollution, submitted to
GeoHealth, 2018
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specific species, one still may need to consider variability in the ambient size distribution. Finally,

the spatial distribution of DRTB+AV based on number or surface area are substantially different

than the deposition ratio based on mass, further motivating the need to understand the underlying

mechanisms controlling the dose from inhaled PM. The results of this study suggest that regional

variability in ambient aerosol size distributions drive variability in PM deposition in the body, which

may lead to variability in the health response from exposure to PM2.5 from one region to the next.

7.1 Introduction
Exposure to particulate matter (PM) air pollution increases the risk of cardiovascular and

respiratory disease. In particular, long-term exposure to the mass of PM with aerodynamic diameters

less than 2.5 µm (PM2.5) has been shown to have a causal association with an increased risk of

mortality from cardiovascular and respiratory diseases (Dockery et al., 1993; Krewski et al., 2009;

Pope and Dockery, 2006; Pope et al., 2002). Over 4 million deaths were estimated to be attributed

to chronic exposure to ambient PM2.5 pollution in 2015, making it one of the leading risk factors

contributing to premature mortality Cohen et al. (2017). In addition, a number of studies have

shown correlations between short-term exposure to PM2.5 and negative health consequences (Gan

et al., 2017; Ostro et al., 2006; Pope and Dockery, 2006). Despite numerous associations between

PM2.5 exposure and increased risks of negative health effects, substantial uncertainty remains in

quantifying the magnitude and shape of these exposure-response relationships.

As the exact mechanisms that relate exposure to PM2.5 to increased risk of negative health

outcomes (such as premature mortality) are unclear, health impact assessments (such as the widely

cited Global Burden of Disease Study) rely on integrated exposure-response functions to estimate

population-level health impacts for a given level of PM2.5 exposure (e.g., Burnett et al., 2014). These

integrated exposure-response functions are synthesized from available epidemiologic data. The 2.5

µm diameter cutoff is frequently used as a proxy for airborne PM that, upon inhalation, can penetrate

to and deposit within the lower respiratory region of the lung. In addition, as ambient particle mass

size distributions (when weighted according to PM mass) tend to feature a local minima around
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2.5 µm in diameter, this size cutoff separates fine particles (formed from combustion processes and

secondary aerosol formation) and coarse particles (emitted mostly from mechanical emissions; e.g.

dust and sea spray) (Seinfeld and Pandis, 2012). Long-term ambient PM2.5 measurement networks

have existed in recent decades in the United States, Europe, and Canada. As a result, most of the

epidemiology studies that relate exposure to ambient PM2.5 are based in the North America and

Europe (e.g., Beelen et al., 2008; Brauer et al., 2002; Carey et al., 2013; Cesaroni et al., 2013; Chen

et al., 2005; Crouse et al., 2012; Gan et al., 2013; Hertz-Picciotto et al., 2007; Hystad et al., 2013;

Karr et al., 2007, 2009; Lepeule et al., 2012; Lipsett et al., 2011; Miller et al., 2007; Pinault et al.,

2016; Puett et al., 2009; Thurston et al., 2016; Villeneuve et al., 2015). Very few studies used in

generating health-response functions have been done in low- and middle-income countries in Asia,

sub-Saharan Africa, or South America, yet these regions bear the majority of the health burden due

to air pollution exposure (Cohen et al., 2017).

The GBD 2015 study acknowledges that applying these exposure-response functions generated

in limited regions to all regions of the world is a major source of uncertainty (Burnett et al., 2014;

Cohen et al., 2017). Possible sources of variability in published exposure-response relationships

include demographic factors (a population in a certain region is more or less susceptible to exposure)

or differential toxicity of different chemical components present in PM2.5 (such as the sulfate

or organic aerosol mass fraction) (e.g., Bates et al., 2015; Bell et al., 2007; Fang et al., 2017;

Verma et al., 2015). Variability in the chemical composition of ambient PM2.5 may reflect differing

contributions from local emission sources, transport processes, or chemical and physical processes

in the atmosphere. In addition to variability in demographics and the chemical composition of

ambient PM2.5, this work motivates that variability in ambient PM size distributions may also lead

to variability in health responses following PM2.5 exposure.

Ambient particle size distributions exhibit strong regional variability, reflecting local/regional

differences in emission sources, transport, and ambient chemical/physical processes (e.g., Jaenicke,

1993). Different emission sources may emit particles at different sizes. For instance, combustion

processes tend to emit particle mass in the 100-300 nm diameter range (Ban-Weiss et al., 2010;
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Janhäll et al., 2010; Sakamoto et al., 2015; Winijkul et al., 2015) while dust and sea-spray emissions

tend to be greater than 1 µm (Jaeglé et al., 2011; Kok, 2011; Mahowald et al., 2014). This results

in urban regions having a strong contribution of accumulation-mode mass to PM2.5 concentration,

and desert regions having a substantial contribution to coarse-mode mass. In addition to local

emissions, observations show variability in particle size distributions and chemical composition due

to transport of PM (e.g., Dunlea et al., 2009; Xu et al., 2017). Finally, observations and modeling

studies show that microphysical processes such as new-particle formation events (e.g., Hodshire

et al., 2016; Merikanto et al., 2009; Westervelt et al., 2014), condensation to and evaporation of

particles (e.g., Bian et al., 2017; Bougiatioti et al., 2014; D’Andrea et al., 2013), in-cloud aqueous

oxidation (e.g., Hoppel and Frick, 1990), coagulation (e.g., Sakamoto et al., 2016; Westphal and

Toon, 1991), wet deposition (e.g., Croft et al., 2012; Dentener et al., 2006), and dry deposition (e.g.,

Sehmel, 1980; L. Zhang et al., 2001) substantially influence particle number and mass distributions

(Croft et al., 2016b; Kodros and Pierce, 2017).

Particle deposition along the respiratory tract exhibits a strong size and shape dependence

(Hussein et al., 2013; Löndahl et al., 2007; Löndahl et al., 2009), and thus, the extent of particle

deposition may depend on the inhaled particle size distribution. Mechanisms of deposition of

particles in specific regions of the respiratory tract (e.g. head/nose, tracheobronchial, or alveolar)

are complex. The fraction of particles deposited to different locations in the airways depends on

particle size, shape, and density as well as airway geometry and breathing pattern (affecting flow

rate and residence time). Briefly, Brownian diffusion, inertial impaction, and gravitational settling

are the dominant processes governing particle deposition in the body (Hinds, 1982). Ultrafine

particles (with diameters smaller than approximately 100 nm) deposit primarily through Brownian

diffusion, lacking enough inertia to deposit through impaction or gravitational settling at relevant

timescales. Coarse-mode particles (greater than 2.5 µm) primarily deposit through inertial impaction

or gravitational settling. There exists a minimum in deposition efficiency at diameters approximately

200-700 nm, where particles neither diffuse nor impact/settle with sufficient magnitude to deposit

efficiently. Thus, the mechanics governing particle deposition have many size-dependent features
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that are not accurately represented by a simple 2.5 µm cutoff measurement. Knowledge of the total

particle size distribution is necessary to translate an exposure measurement into an estimate of PM

mass deposited along the respiratory tract. A number of dosimetry models have been developed to

estimate the fraction of particles that deposit in specific regions in the body. Such models include the

empirical model of the International Commission on Radiological Protection (ICRP) (International

Commission on Radiological Protection, 1994) and the Multiple Path Particle Dosimetry (MPPD)

model (Miller et al., 2016).

In this study, we combine simulated ambient aerosol size distributions with size-resolved particle

deposition models to estimate the geographic variability in deposited particle mass. We use this to

motivate the idea that variability in PM2.5 exposure response may be partly explained by variability

in ambient particle size distributions affecting deposition mass of PM in the body. In Section 2, we

our methods of using particle deposition models and a chemical-transport model with online aerosol

microphysics. In Section 3.1-3.3, we present simulations of ambient PM2.5 mass concentration

along with deposited PM mass in the body. In Section 3.4, we explore geographic variability

in species-specific PM size distribution and deposition. In Section 3.5, we present geographic

variability in particle number and surface-area deposition. We share our conclusions in Section 4.

7.2 Methods

7.2.1 Modeling size-resolved particle deposition in the body

To estimate the mass of PM that deposits at region-specific sites in the body, we use the Interna-

tional Commision on Radiological Protection particle deposition model (International Commission

on Radiological Protection, 1994). We use equations fit to measured deposition fractions as a func-

tion of particle diameter from the ICRP model averaged for various breathing conditions by Hinds

(1982). Particle deposition fractions are shown in Figure 7.1 for all regions in the body, including

the head/nose region, tracheobronchial region, alveolar region, and the sum of the tracheobronchial

and alveolar regions. In later sections, we focus on the sum of deposition to the tracheobronchial

and alveolar regions. Newer particle deposition models generally agree with the results of the ICRP
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Figure 7.1: Deposition curves based on the ICRP model with fitted equations from Hinds (1982) for total
deposition in the body as well as regional deposition in the head/nose, tracheobronchial, alveolar, and sum
of the tracheobronchial and alveolar region. In later sections, we focus on the sum of deposition in the
tracheobronchial and alveolar region.

model. To test the sensitivity to deposition model, we also consider regional deposition curves from

the Multiple Path Particle Dosimetry (MPPD) model (Miller et al., 2016). In the Supplemental

Information (SI; Appendix D), deposition fractions from the MPPD model to the ICRP model are

compared Figures D.1-D.3.

We account for swelling of aerosol particles due to water uptake in the lung assuming that air

in the lung and associated airways has a relative humidity of 99.5% and a temperature of 37◦ C

(Anselm et al., 1990). The SI (Appendix D contains a detailed description of our treatment of

aerosol water uptake in the lung. Briefly, we approximate growth to equilibrium sizes based on the

total hygroscopicity of the particle in a given size range (assuming all particles in the size range are

internally mixed). We test the sensitivity of this treatment in Figure D.4 by assuming no particle

growth in the lung and growth based on lung relative humidities of 98% and 99.5%.
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7.2.2 Simulating ambient aerosol size distributions

To simulate the transport of gas- and particle-phase species, we use the chemical-transport model,

GEOS-Chem (Bey et al., 2001), version 10.01. GEOS-Chem is driven by reanalysis metrology

fields by GEOS-FP. We run simulations of GEOS-Chem with 47 vertical levels and horizontal

resolutions of 4x5◦ and 2x2.5◦ for the full global domain, and we perform nested simulations at

0.5x0.666◦ over North America and eastern Asia. The standard setup of GEOS-Chem includes

tracers for 52 gas-phase species. All simulations are for the year 2010 with a 1-month spin-up not

included in analysis.

To simulate size-resolved aerosol mass and number concentrations, GEOS-Chem is coupled

online to the TwO Moment Aerosol Sectional (TOMAS) microphysical model (Adams and Seinfeld,

2002). TOMAS includes tracers for size-resolved particle number along with size-resolved mass

for sulfate (SO4), sea salt, organic aerosol (OA), black carbon (BC), and dust. We use versions of

TOMAS with 15-bin and 40-bin size sections both simulating dry diameters from approximately

1 nm to 10 µm (Lee and Adams, 2012; Y. H. Lee et al., 2013). Due to computational limitations,

we use the 40-bin TOMAS only with the GEOS-Chem 4x5◦ horizontal resolution and the 15-

bin TOMAS with the GEOS-Chem 2x2.5◦ and 0.5x0.666◦ horizontal resolutions. We use the

40-bin version of TOMAS at the coarse spatial resolution to inform an interpolation of aerosol

size distributions with the 15-bin version at finer spatial resolution. This is done to optimize

computational expense. All results shown here use interpolated 40-bin aerosol size distributions at

2x2.5◦ or 0.5x0.666◦ resolution.

Detailed descriptions of microphysical processes in TOMAS have been described in detail

elsewhere (Adams and Seinfeld, 2002; Lee and Adams, 2012; Y. H. Lee et al., 2013). TOMAS

explicitly accounts for size-resolved aerosol emissions, coagulation, condensation, wet and dry

deposition, aqueous oxidation, and new-particle formation. Emissions of primary SO4 include

2 lognormal size modes: the first mode contains 15% of the mass with a mass median diameter

(MMD) of 19 nm and geometric standard deviation (GSD) of 1.6 and the remainder in a second

mode with a MMD of 296 nm and GSD of 2 (Adams and Seinfeld, 2003). BC and OA emissions
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are separated by emission source. Fossil fuel OA and BC is emitted into the model with an MMD of

126 nm and GSD of 2, while biofuel and biomass burning particles are emitted with an MMD of 422

nm and a GSD of 2 (Pierce et al., 2007). Dust emissions follow the DEAD scheme (Zender, 2003),

while sea salt emissions are based on the scheme of Jaeglé et al. (2011). TOMAS includes a ternary

nucleation scheme involving water, sulfuric acid, and ammonia following the parameterization of

Napari et al. (2002), with nucleation rates scaled down by 5 orders of magnitude to better match

observations (Westervelt et al., 2013, following). When ammonia mixing ratios are less than 1

parts per thousand by volume, TOMAS defaults to a binary nucleation scheme (sulfuric acid and

water) (Vehkamäki, 2002). In addition to nucleation, TOMAS explicitly simulates condensation,

coagulation, wet and dry deposition, and cloud processing.

Simulations using GEOS-Chem-TOMAS have been evaluated against observations of long-term

size-resolved number concentrations (Croft et al., 2016b; D’Andrea et al., 2013; Kodros and Pierce,

2017; Westervelt et al., 2013) and aerosol optical depth (Kodros et al., 2016a). While GEOS-Chem-

TOMAS has shown skill at reproducing variability in size-resolved aerosol concentrations, we

acknowledge measurements of aerosol size distributions (and thus model evaluations) are limited.

As such, we are unable to fully determine the accuracy of the simulated aerosol size distributions in

GEOS-Chem-TOMAS; however, as we know particle size distributions exhibit regional variability

(e.g., Jaenicke, 1993), TOMAS provides a reasonable option to explore how diversity in size

distributions may affect respiratory PM deposition.

7.3 Results

7.3.1 Simulated annual PM2.5 concentration

In this study, we define PM2.5 as the dry particle mass concentration contained in particles with

wet aerodynamic diameters smaller than 2.5 µm. We use this definition so that our simulated PM2.5

is directly comparable to PM2.5 networks that use a gravimetric cyclone to size-select particles with

a wet aerodynamic diameter smaller than 2.5 µm, where these particles are then dried at ~35%

RH, which removes most of the aerosol water. The annual-average PM2.5 mass simulated with
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Figure 7.2: Central figure: (a) Annually averaged dry surface PM2.5 mass simulated with GEOS-Chem-
TOMAS. Outside figures: Ambient dry mass distributions at wet aerodynamic diameters showing particle
composition for a gridcell in the (b) Eastern United States, (c) Algeria, (d) Indonesia, and (e) Northern India.

GEOS-Chem-TOMAS is plotted in Figure 7.2a. There is substantial geographic variability in PM2.5

concentrations, ranging from 10-20 µg m-3 in the Eastern US to 80-100 µg m-3 in Eastern China.

Regions with the highest concentration of PM2.5 include the Sahara, Eastern China, and Northern

India. Evaluation of simulated PM2.5 by GEOS-Chem has been done in several previous studies

(Park et al., 2006; van Donkelaar et al., 2010), and so we do not include this here.

In addition to geographic variability in total PM2.5 mass concentration, there is also substantial

variability in the underlying mass distributions and chemical composition by size. In Figure 7.2b-e,

we dry mass distributions at wet aerodynamic diameters showing particle composition for a gridcell

in the Eastern United States, Algeria, Indonesia, and Northern India. These four representative

regions were chosen to demonstrate the variability in size distribution and composition. We refer to

these regions throughout this section. The mass distributions in the Eastern US, Northern India,

and Indonesia have a substantial contribution of accumulation-mode particles to PM2.5 mass. The

accumulation-mode particles are primarily composed of OA (primary and secondary) along with

SO4 and trace amounts of BC. The Eastern US and India also have a contribution from coarse-mode
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particles to PM2.5 mass concentration; however, much of the coarse-mode mass is larger than a wet

ambient diameter of 2.5 µm, and hence would not be captured by a PM2.5 monitor. Conversely, the

PM2.5 mass concentration in Algeria is composed almost entirely of dust even though the PM2.5

dust is only a small fraction of the total dust in this location.

Differences in regional emissions sources explain much of the differences in particle size and

composition, while chemical and physical processing (coagulation, condensation, cloud processing)

in the atmosphere (discussed later) explains the rest. PM emissions in the Eastern US are largely

derived from fossil-fuel combustion (e.g. road transportation, industry, power generation), resulting

in PM composed mainly of SO4, OA, and BC. In GEOS-Chem-TOMAS, OA and BC from fossil fuel

are emitted with smaller mass median diameters (MMD of 126 nm) than OA and BC from biomass

burning emissions (MMD of 422 nm). The large contribution from fossil-fuel emissions in the

Eastern US (such as from road transport) results in an accumulation-mode MMD between 250-300

nm, indicating particle growth from emission of MMD of approximately 130 nm likely through

coagulation and condensation of sulfuric acid and organics. India and Indonesia have substantial PM

emissions from biomass combustion (including residential, agricultural, and wildfire). This results

in a relatively larger OA contribution to accumulation-mode PM mass than in the Eastern US. The

large contribution from biomass combustion in India and Indonesia results in accumulation-mode

MMD between 400-500 nm. Finally, local dust emissions in North Africa are predominantly emitted

into the coarse mode resulting in a mass median diameter of 6 µm in Algeria.

7.3.2 Respiratory deposited PM mass and deposition ratio

To estimate geographic variability in the respiratory deposition of PM mass, we multiply the

size-dependent ICRP deposition fraction to the simulated aerosol mass distributions from GEOS-

Chem-TOMAS. This product results in deposited PM mass per volume of inhaled air (units of µg

PM deposited in lung, written here as µgdep, per m3 of inhaled air, written here as minhaled
-3). In

Figure 7.3a, we show the geographic distribution of total deposited PM mass in the body. Similar

to the spatial distribution of PM2.5 mass concentrations, the desert regions (the Sahara, Middle
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Figure 7.3: Deposited PM mass (integrating from 1 nm to 10 µm) in (a) all regions, (b) head/nose region,
(c) tracheobronchial region, and (d) alveolar region.

East, and Gobi deserts) have the highest deposited PM mass concentration (larger than 50-100

µgdep minhaled
-3). India and Eastern China also have high concentrations of deposited PM mass

(35-50 µgdep minhaled
-3). In addition to geographic variability, there is also variability in magnitude

of deposition mass in each region of the body. We show maps of deposition in the (b) head/nose

region, (c) tracheobronchial region, and (d) alveolar region in Figure 7.3. Most of the deposited

PM mass deposits in the head/nose region; however, concentrations ranging from 0.5 to 30 µgdep

minhaled
-3 deposit in the tracheobronchial and alveolar regions.

Much of the geographic variability in deposited PM mass in Figure 7.3 arises from the magnitude

of ambient PM mass. To remove this influence and understand the role of ambient particle size

distributions in determining PM deposition in the tracheobronchial and alveolar regions (TB+AV),

we normalize TB+AV deposited PM mass concentration (PMTB+AV) by the ambient PM2.5 concen-

tration. We define the “deposition ratio” in the tracheobronchial and alveolar regions (DRTB+AV)

as the ratio of PMTB+AV per unit ambient PM2.5 mass concentration. This ratio is meant to demon-
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Figure 7.4: Central figure: (a) Map showing DRTB+AV. Outside figures: The dry mass distribution at
ambient wet aerodynamic diameters (light blue), the dry mass distribution at wet aerodynamic diameters for
the RH of the lung (solid black line), the deposited mass at each size (dot-dashed black line) in the gridcell
(denoted by the white circles) corresponding to (b) Eastern US, (c) Algeria, (d) Indonesia, and (d) India.

strate the variability of PM mass that deposits compared to what would be measured as ambient

PM2.5. Here, we focus on the lower-respiratory regions (the tracheobronchial and alveolar regions),

as cardiovascular and respiratory diseases may be most sensitive to particle deposition in these

respiratory regions; however, this is a simplifying assumption and the exact mechanisms relating

particle deposition to effective dose are unclear. DRTB+AV is plotted in Figure 7.4a (central map).

Globally, the DRTB+AV varies by 20-30% between the highly populated geographic regions (e.g.

eastern US vs. India), but can be as high as a factor of 5. Regions with the highest DRTB+AV are

desert regions (e.g. the Sahara, Middle East, Gobi, Southwest US), while continental regions with

the lowest DRTB+AV include fossil-fuel-dominated regions of the Eastern US and Western Europe

(and even lower in the Southern Ocean).

The cause of the variability in the DRTB+AV comes from the underlying PM mass size distribution.

In Figures 7.4b-e, we show the mass distribution at ambient conditions (light blue line), the mass

distribution accounting for hygroscopic growth due to the RH of the lung (black solid line), the

deposited mass concentration for each size (black dashed line), and the ICRP fractional deposition
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curve (red line, left axis) for comparison. In the Eastern US (Figure 7.4b), the ambient mass

distribution has a large contribution from accumulation-mode particles with mass median diameter

between 250-300 nm. These particles are, to some degree, hygroscopic, and grow in the high

RH of the lung to a median diameter of 1 µm. This growth increases PM deposition as it moves

more particles out of the deposition minimum (centered at 250 nm). The Eastern US has some

coarse-mode mass at sizes larger than 2.5 µm, which contributes to PMTB+AV but not the PM2.5

concentration. The net result is a DRTB+AV of 0.14. Conversely, in Algeria, most of the mass

at ambient conditions is coarse-mode dust (see Figure 7.2). Dust particles are modeled here as

hydrophobic (a kappa value of 0.01; see Appendix D), resulting in less growth in the lung. Even

though most coarse-mode mass is deposited in the head/nose region and not counted here (Figures

7.1 and 7.3), the ICRP model still estimates deposition fractions in tracheobronchial and alveolar

region of 10% at 2.5 µm decreasing to near 0% at 10 µm. Much of this (TB+AV)-deposited mass is

not included in the PM2.5 cutoff. The net result is a DRTB+AV of 0.55. The ambient mass distribution

in Indonesia is representative of a region with substantial emissions contribution from biomass

burning. The ambient mass concentration is dominated by accumulation-mode particles with a

mass median diameter between 400-500 nm. Similar to the Eastern US, these particles are partly

hygroscopic and grow in the lung to a mass median diameter between 1-1.5 µm. The ambient mass

distribution in Northern India contains both an accumulation mode (likely from residential solid fuel

use and fossil-fuel combustion) as well as a coarse-mode mass from dust. The accumulation-mode

particles are partly hygroscopic and grow to larger sizes, while the coarse mode is hydrophobic

with slower condensational growth timescales. The larger contribution of coarse-mode particles to

deposition mass results in a higher DRTB+AV in India (0.18) than Indonesia (0.15).

To further investigate the geographic variability of TB+AV particle deposition at continental

scales, we include nested simulations at finer horizontal resolutions of 0.5x0.666◦ degrees over

a domain centered on North American and a domain centered on Asia. In Figure 7.5, we show

predicted DRTB+AV for the North American and Asian domains. In the finer-resolution North

America domain the variability DRTB+AV increases to 50-60%, ranging from a maximum in the
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Figure 7.5: DRTB+AV using a high-resolution simulation for the North American (left) and Asian (right)
domains.

desert Southwest US to a minimum in areas more influenced by fossil-fuel combustion and secondary

aerosol formation. The higher-resolution simulation for North America shows increased spatial

variability compared to the global simulation with deposition minima in the populated areas of

California, Pacific Northwest, Salt Lake City„ Denver, Calgary and Mexico City. The primary

reason for the lower DRTB+AV in more populated areas relative rural areas is the higher hydrophobic

particle fraction (mainly hydrophobic OA) emitted in urban areas. Downwind of urban areas,

hydrophobic OA (and externally BC) undergoes atmospheric processing and converts to hydrophilic

OA (and internally-mixed BC). Meanwhile, sulfur dioxide is oxidized and may form sulfate aerosol

on a timescale of ~2 days. The net result is increased SO4 and hydrophilic OA outside of urban areas

(similar to results in Jimenez et al., 2009; Philip et al., 2014). The more hydrophilic particles are

able to grow to larger diameters in the high RH of the lung, thus moving further out of the minimum

in particle deposition (centered at 250 nm, see Figure 7.1). In the Asian domain, there exists a

strong gradient in DRTB+AV from the Gobi desert region to the more urban areas of Eastern China

134



and Northern India. Conversely to the North American domain, the spatial gradient of DRTB+AV

in Asia seems less influenced by urban areas. This is likely a result of high aerosol and precursor

concentrations in this region leading larger accumulation mode diameters through condensation and

coagulation. These larger-sized particles have higher deposition efficiencies in the TB+AV (Figure

7.1).

The spatial distribution of DRTB+AV is sensitive to our assumptions regarding particle growth in

the lung. In Figure D.4, we show DRTB+AV with no particle growth, particle growth based on an

RH of 98%, and particle growth based on an RH of 99.5%. The spatial variability between urban

regions and desert regions of DRTB+AV decreases with increasing particle growth in the lung. This

is due to accumulation-mode particles growing out of the minimum in the deposition fraction of

the ICRP model (Figure 7.1) thus depositing more efficiently, while coarse-mode particles grow to

sizes that deposit less efficiently. Assuming particle growth based on a lung RH of 99.5% thus may

provide a lower limit on the spatial variability of 99.5%.

7.3.3 Speciated size-dependent deposition
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Figure 7.6: Speciated distribution of PMTB+AV at each size interval for the region representing the (a)
Eastern US, (b) Algeria, (c) Indonesia, and (d) India.
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A current focus of much recent research is the possibility that regional variability in the health

response to PM2.5 exposure may be partly influenced by differential toxicity of different PM species.

To some degree, differences in size distributions reflect changes in composition of PM. Figure 7.6

shows speciated distributions of PMTB+AV (units of µgdep minhaled
-3). These plots are analogous to the

ambient mass distributions in Figure 7.2; however, they now show the TB+AV deposited particle

mass concentrations at each size interval. Across the four representative regions shown here, there

is variability not just in PMTB+AV, but in the composition of particles that deposit. In the Eastern

US and India, much of the PMTB+AV is OA, SO4, and dust with trace contributions from BC. The

relative contribution of dust to PMTB+AV is increased relative the contribution of dust to ambient PM

mass. Conversely, the PMTB+AV in Algeria is almost entirely dust, reflecting the dominant particle

emission source in this region. Due to the large contribution of biomass burning to the local PM

burden in Indonesia, accumulation-mode OA makes up much of the PMTB+AV in this region. The

variability in composition of PMTB+AV further motivates understanding the differential toxicity of

different PM species.

To some degree, variability in size distributions and variability in particle composition are

connected. Much of the accumulation-mode mass is made up of OA, SO4, and BC, while the

coarse-mode mass is made up of dust and sea salt. To test if variability in the respiratory deposition

of PM mass could be resolved by focusing only on variability in chemical species, Figure 7.7 shows

the DR for specific chemical species of PM. In Figures 7.7a and c, we show deposited PM mass of

SO4 per unit ambient PM2.5 mass of SO4 in all body regions (DRtotal) and DRTB+AV, respectively. In

Figures 7.7b and d, we show the same ratios for OA. When focusing on a specific PM species, there

still exists potentially significant geographic variability in DRtotal. For deposition in any region of

the body, the DRtotal of SO4 deposited mass to ambient SO4 PM2.5 mass varies by 40-50%, ranging

from minima in South America, sub-Saharan Africa, and Western Europe to maxima in the desert

Sahara and Middle East. The maxima in desert regions is likely caused by mixing of SO4 mass

into the coarse mode via coagulation with and condensation onto dust particles. The DRtotal for

OA has a similar range of variability, but with a different geographic distribution. The OA DRtotal
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Figure 7.7: Geographic variability of (a, c) sulfate DRtotal and DRTB+AV and (b,d) organic aerosol DRtotal
and DRTB+AV per unit ambient sulfate and OA PM2.5 mass, respectively.

has a maximum in South America and all of Africa and the Middle East with minima in North

America and Europe. The maxima in South America and central Africa are likely caused by the

larger emission MMD of biomass burning particles, as well as condensation of secondary OA onto

a relatively low number concentration (relative the Eastern US) allowing for particle growth to

larger diameters with higher TB+AV deposition efficiency. Similar to SO4, the maxima in the desert

regions of North Africa and the Middle east is likely caused by coagulation with coarse-mode dust

particles. The minima in DRtotal in North America and Europe is due to primary OA emitted at
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diameters similar to the minimum in the ICRP deposition fraction curve (Figure 7.1). The DRTB+AV

for SO4 and OA varies by up to 25%, similar to when considering DRTB+AV from all PM species.

The DRTB+AV for SO4 and OA differ in South America and sub-Saharan Africa, showing minima for

SO4 but maxima for OA. Conversely, both show lower DRTB+AV for the United States and Europe

relative India and China. These results show that even if the health effects of PM can be attributed

to specific PM species, we may still need to consider variability in the size distributions of these

species.

We show the DRTB+AV for SO4 and OA for the finer-resolution simulations in the North American

and Asian domains in Figure 7.8. In North America, the spatial variability in DRTB+AV for both

SO4 and OA follows a strong urban versus rural split. The minima in DRTB+AV are limited to

urban areas such as Minneapolis, Denver, Houston, coastal California, Calgary, and Mexico City.

Similar to DRTB+AV based on all-species PM respiratory deposition, this occurs due to a larger

hydrophobic particle fraction in urban areas (more hydrophobic OA and less SO4) leading to less

particle growth in the airways. While the deposited mass in Figures 7.7-7.8 are only from SO4

and OA, the water uptake in the lung is based on the total particle hygroscopicity in a given size

range (i.e., we assume internally mixed particles). Particle sizes in urban areas tend to be closer to

the minimum in deposition fraction (Figure 7.1) than rural regions, where increased atmospheric

processing increases hydrophilic OA and SO4 concentrations thus increasing overall hygroscopicity

and particle growth to sizes with more efficient deposition in the TB+AV. Thus, contributions from

non-SO4 and OA species still influence the particle size distributions. Conversely, this urban/rural

split is less apparent in India and China due to the larger ambient accumulation-mode median

diameters in these regions.Biomass burning leads to a lower DRTB+AV than fossil-fuel-emission

regions in both the North American domain (wildfires in Northern and Eastern Canada) and the

Asian domain (in Indonesia and the Philippines) due to larger emitted particle diameters and higher

hygroscopic particle fractions than fossil-fuel emissions.
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a) SO4 DRTB+AV North American Domain b) SO4 DRTB+AV Asian Domain

c) OA DRTB+AV North American Domain d) OA DRTB+AV Asian Domain
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Figure 7.8: The DRTB+AV based on (a) SO4 in the higher-resolution North American domain, (b) SO4 in
the Asian domain, (c) OA in the North American domain, and (d) OA in the Asian domain.
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Figure 7.9: DRtotal by (a) number (deposited number per ambient PM2.5 mass) and by (b) surface area
(deposition dry surface area per ambient PM2.5 mass) and (c) mass (deposited mass per ambient PM2.5 mass)
and DRTB+AV by (d) number, (e) surface area, (f) mass.

7.3.4 Deposition ratios based on number and surface area

In addition to considering the health response due to different PM species, it has also been

suggested that particle number and/or surface area may be key parameters influencing health

response due to PM2.5 exposure (e.g., Breitner et al., 2011; Delfino et al., 2005; Peters et al., 1997,

2006; Valavanidis et al., 2008). To test the sensitivity to these other PM quantities, Figure 7.9a-c

shows the DRtotal based on (a) particle number concentration (total respiratory deposited number

per unit ambient PM2.5 mass), (b) particle surface area concentration (total respiratory deposited

dry surface area per unit ambient PM2.5 mass), and (c) particle mass concentration (total respiratory

deposited mass per unit ambient PM2.5 mass). As seen in Figures 7.9a and b, DRtotal based on

number and surface area have substantially different geographic variability than the analogous

DRtotal based on mass (Figures 7.9c). The DRtotal based on number has maxima in regions where

new particle formation events are common but low overall PM2.5 mass concentration. This results

in high concentrations of sub-50 nm particles, where the ICRP deposition curves have maximum
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values (Figure 7.1). Such regions include the high-altitude regions of the Rocky Mountains and

Himalayas, along with South Africa and South America. Maxima in DRtotal by surface area and

mass occur in desert regions where there is substantial coarse-mode mass at particle size with

efficient deposition fractions in the head/nose region (Figure 7.1).

Similarly, in Figure 7.9d-f, we show the DRTB+AV based on (d) number, (e) surface area, (f)

and mass. Figure 7.9f is identical to Figure 7.6a except with a different colorbar. Comparing

DRtotal to DRTB+AV, much of the variability in respiratory deposition based on number is driven by

deposition in the TB+AV. Conversely, much of the variability in deposition by surface area is driven

by deposition in all respiratory regions (especially the head/nose regions). The spatial variability in

DRTB+AV based on surface area seems to share features with DRTB+AV from both number (such as in

the Rocky Mountains in the western US) and mass (such as in the Sahara). Deposition based on

mass shows substantial variability for DRtotal and DRTB+AV, suggesting a high degree of variability

due to ambient particle size distribution for each respiratory deposition site considered here. The

spatial distributions present in Figure 7.9 demonstrate the potential variability in health response

to PM2.5 exposure if the health response to exposure is more strongly correlated to deposition by

number, surface area, or mass. Given the DRTB+AV based on mass, surface area, and number show

different spatial distributions, it is essential to understand what PM parameters control the health

response to particle exposure.

7.3.5 Discussion and Conclusions

While studies consistently find a robust relationship with PM2.5 exposure and negative health

effects, variability in the health response to PM2.5 exposure remains. The aim of this work is to

motivate consideration of the role that particle size may play in determining the variability of the

health response to PM2.5 exposure. To explore this, we combine simulated aerosol size distributions

from a chemical-transport model with a size-resolved particle dosimetry model to explore the

geographic variability of deposited particle mass in the body. We find that on global scales, the ratio

of deposited PM mass per unit ambient PM2.5 mass in the tracheobronchial and alveolar regions
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varies by 20-30% between different highly populated regions (e.g., eastern US vs. India) due

to variability in ambient particle size distributions. This variability is also seen within countries

using higher-resolution nested simulations. This variability is a reflection of local emissions and

microphysical processes that affect ambient aerosol size distributions. In some regions, coarse-mode

mass contributes a substantial portion of deposited PM mass in the tracheobronchial and alveolar

regions. This mass is not included in ambient PM2.5 exposure measurements, resulting in variability

up to a factor of 5 between regions dominated by fossil-fuel emissions (e.g., the eastern US and

western Europe) and regions dominated by dust (e.g. North Africa).

To some degree, the variability in this deposition ratio is influenced by particle composition.

While the ICRP model predicts deposition fractions of around 10% for particle diameters greater than

2.5 µm, the large mass concentration of coarse-mode dust in desert regions leads to high deposition

ratios. This result further motivates the question of the toxicity of dust relative anthropogenic

emitted species of sulfate, OA, and BC. We still find geographic variability on the order of 30% for

sulfate and OA in the tracheobronchial and alveolar regions. As this spatial pattern is different than

total PM mass, this further motivates understanding potential differential toxicity of PM chemical

species. In addition to chemical composition, we also compared deposition ratios based on number

and surface area and find the spatial variability is substantially different when based on number,

surface area, or mass. These results show that regardless of the specific health impacts of individual

PM species or parameters (number, surface area, mass), we may likely need to consider variability

in the aerosol size distribution to fully connect exposure to dose and ultimately the health impacts.

A limitation of this work is the lack of observed aerosol size distributions. Long-term measure-

ments of aerosol size distributions ranging from diameters of 1-10 nm to 5-10 µm are limited. Size

distribution measurements in polluted regions sub-Saharan Africa, India, and China are especially

limited. In this work, we use a sectional aerosol microphysical model (TOMAS) that has been

shown to have skill in capturing the variability in long-term size-resolved aerosol measurements

within size ranges commonly measured at sites in Europe and North America. Despite this skill, the

coarse spatial and temporal resolution of the model reduces gradients in aerosol size distributions,
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particularly in urban areas. This suggest that variability in aerosol size distributions at regional

and continental scales may be greater than what is considered here. We also note here that there is

likely substantial uncertainty in size-specific particle deposition fractions in various regions of the

body. Despite these uncertainties, we know that particle deposition has a strong size dependence

across several orders of magnitude in particle diameter, and geographic variability in aerosol size

distributions has been commonly observed. The results of this work are a first step in exploring the

geographic variability of respiratory particle deposition rates.
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Chapter 8

Synthesis and future work

The scope of this dissertation sought to quantify estimates and identify key uncertainties in the

climate and health impacts of atmospheric aerosol emitted from residential solid fuel use (SFU).

We find that overall the aerosol radiative effects (the direct radiative effect and aerosol indirect

effect) from residential SFU and trash combustion are largely uncertain and can range between

positive and negative. Conversely, while major uncertainties remain in global mortality estimates,

the global health burden is substantial and suggests that improving residential combustion sources

in developing countries will likely greatly improve global health.

Limitations of SFU interventions due to nearby PM sources: The potential health benefits

of improving air quality in developing countries through reducing residential SFU emissions are

clear; however, important questions remain in the efficiency of certain emission mitigation plans.

From a policy standpoint, a major source of uncertainty is whether to focus on household-level or

village-level emission reduction plans. While intervention scenarios aimed at providing improved

cookstoves or wood heaters may reduce indoor aerosol concentrations, there still may be major

emissions at the village level that degrade air quality. These emissions may be from other combustion

sources (such as trash fires) or household air pollution transported from other nearby homes. It

is unclear to what degree mitigation programs need to focus on village-level ambient air quality

compared to household-level air quality and if other non-SFU sources must also be reduced to gain

substantial health benefits.

The importance of non-SFU sources in developing countries: In several chapters of this disser-

tation, we attempted to broaden the discussion above “household air pollution” to include other

emission sources typical in developing countries. In quantifying the aerosol health impacts from

residential trash fires, we can conclude that there are substantial emission sources affecting regional

and global health not included in typical “household air pollution” inventories. Thus, even with
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a successful household intervention program (such as providing cleaner-burning cookstoves to a

village), there may still be substantial exposure from other combustion sources in the area.

Past cookstove intervention studies have suggested the influence on non-cookstove aerosol

emission sources (such as trash fires) as a possible complexity in understanding changes in the

observed health response from the intervention. Specifically, Mortimer et al. (2016) suggests trash

fires and uncertainty in emission reductions from the improved cookstove as reasons for a null result

in investigating the influence of a cookstove intervention on childhood pneumonia in rural Malawi.

In calculating the combined exposure of household and ambient air pollution from all sources, we

developed a framework that can be used in similar intervention studies to estimate health impacts

from cookstove interventions while accounting for emissions from all other sources (such as trash

fires) and uncertainties in the emissions of “improved” cookstoves. Use of the model developed

in Chapter 4 for intervention programs is left for future work. Based on our initial results, we can

generally conclude that while improvements to household emissions can provide a meaningful

reduction in aerosol exposure, there will still be challenges (e.g., other emission sources) toward

bringing air pollution exposure in developing countries to recommended guidelines (World Health

Organization, 2006).

Impact of non-SFU PM on radiative effects of SFU PM: Aerosol emissions from other, non-SFU,

sources may also significantly influence the aerosol-climate impacts attributed to residential SFU.

Given the large emissions of black carbon (BC) in residential combustion sources, it is vital to

understand the BC climate forcing to assess potential mitigation scenarios; however, the mixing state

of BC remains a major uncertainty. Notably, our work constraining BC mixing state in the Arctic

demonstrates the importance of non-BC aerosol in representing mixing state. Bias in representation

of non-BC sources (including non-SFU sources) will impact the fraction of particles containing BC

and the coating thickness around a BC core, leading to biased estimates of the direct radiative effect.

Thus, it becomes important to not only quantify the BC emissions from residential SFU, but also

the mixing between SFU particles and non-SFU particles through condensation and coagulation.
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Climate and health impacts of near-source processing of aerosol properties: While the spatial

resolution of global and regional climate models is increasing along with increasing computational

resources, these models still lack sufficient spatial resolution to resolve aerosol impacts at the village

level. Several of the chapters in this dissertation demonstrate the importance of representation

of aerosol size distributions in investigating both aerosol climate and health impacts. Both the

direct radiative effect and aerosol indirect effect from uncontrolled combustion of domestic waste

are sensitive to emitted size distributions. We also found geographic variability in aerosol size

distributions to impact BC mixing state and respiratory deposition. Currently, the horizontal

resolution of global models cannot resolve microphysical processes that may be happening at

length scales corresponding to villages and neighborhoods. It is unclear how emitted aerosol size

distributions from residential SFU evolve from emissions near the combustion source, time spent

indoors at high concentrations, and dilution at the village and regional levels. This evolution is likely

impacted by surrounding emission sources (affecting coagulation, condensation, and nucleation

rates). Notably, treatment of the volatility of organic aerosol from residential SFU in global and

regional models is lacking in my work.

Aerosol sources will change in the future: While much of this dissertation focuses on emission

sources typical in developing countries, the information presented here is useful in understanding

future impacts of air pollution in developed countries. As increasing regulation and improving

technology continues to reduce the highest anthropogenic aerosol sources in developed countries,

there may be an increased contribution to ambient aerosol concentrations from biomass combustion

sources. Cooking emissions in restaurants and biomass (especially wood) heaters and fireplaces

in developed countries are already considered substantial aerosol sources in urban areas (Pandis

et al., 2016). Additionally, biomass combustion in the form of wildfires has been increasing due

to climate change (Westerling, 2016). As other emission sources decrease, the importance of

understanding the climate and health impacts of biomass combustion becomes essential. Moreover,

as regulation of many anthropogenic sources increases, it is becoming increasingly important to

not only characterize the emission properties of aerosol, but also aerosol properties as they age.

146



The chemical components of organic aerosol may evolve as time spent in the atmosphere increases.

It is possible that the health and climate relevant properties may evolve as chemical composition

changes.

Mitigating household air pollution has the potential to substantially improve global health,

particularly in developing countries where the mortality burden from air pollution is the highest.

However, the results of this dissertation suggest that a more complex approach that considers all

aerosol emission sources is needed better quantify aerosol climate and health impacts.
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Appendix A

Supplemental to Global burden of mortalities due to

chronic exposure to ambient PM2.5 from open

combustion of domestic waste

A.1 Details of the GEOS-Chem chemical transport model
The chemical-transport model, GEOS-Chem (http://geos-chem.org), uses re-analysis meteo-

rological data to predict concentrations of aerosols and gaseous species. In this study, we use

GEOS-Chem version 10.01 with GEOS-5 meteorological fields (http://gmao.gsfc.nasa.gov) to

predict surface level PM2.5. Aerosol species in GEOS-Chem include sulfate, ammonium, nitrate,

primary hydrophilic and hydrophobic black and organic carbon, secondary organic aerosol, accu-

mulation and coarse mode sea salt, and size-resolved dust.

The simulations in this study use black and organic carbon emissions for biofuel and fossil-fuel

sources from Bond et al. (2007) and biomass burning from Global Fire Emissions Database version

3 (GFED3; van der Werf et al., 2010) with three-hourly scale factors. Globally, anthropogenic

emissions from fossil-fuel combustion are from the Emissions Database for Global Atmospheric

Research (EDGAR) (Janssens-Maenhout et al., 2011) version 4. EDGAR emissions are overwritten

in the United States by the Environmental Protection Agency 2011 National Emissions Inven-

tory (NEI2011; http://www3.epa.gov/ttn/chief/), in Canada by Criteria Air Contaminants (CAC;

http://www.ec.gc.ca/inrp-npri/), in Mexico and the southwestern US by Big Bend Regional Aerosol

and Visibility Study (BRAVO) (Kuhns et al., 2005), in Europe by the Cooperative Programme for

Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe (EMEP)

(Vestreng et al., 2009), and in Asia by the Streets inventory (Streets et al., 2003).
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A.2 Total adult mortalities due to exposure to ambient PM2.5

Figure A.1 shows total premature adult mortalities due to chronic exposure to ambient PM2.5 in

the year 2010 in the 2°x2.5°-resolution simulation. We estimate 2.7 million (95% CI: 2.10-3.25

million) annual deaths, which is of similar magnitude to, yet slightly lower than, recent estimates

from other studies (e.g., Lelieveld et al., 2015; Lim et al., 2012, which estimated 3.1 million deaths

per year). We attribute part of this difference to the coarser model resolution.

A.3 Waste-combustion emissions
Emissions inventories currently in the standard GEOS-Chem setup do not include estimates of

waste combustion. In our simulation with waste-combustion emissions, we add the Wiedinmyer et al.

(2014) domestic-waste-combustion emissions inventory to the standard setup. Figure A.2 shows

waste-combustion emissions of primary black carbon (a), primary organic carbon (b), gas-phase

NH3 (c), and gas-phase SO2. In the model, 1% of gas-phase SO2 is emitted as SO4 aerosol (Stevens

and Pierce, 2013). This inventory also includes emissions of nitrogen oxides and non-methane

organic compounds, which together with NH3 and SO2 may increase aerosol mass through formation

of nitrate, sulfuric acid and secondary organic aerosol; however, these emissions are relatively minor,

and the PM2.5 increase due to these secondary processes is much smaller than through primary

emissions of organic and black carbon aerosol.

A.4 Model evaluation
GEOS-Chem aerosol estimates of PM2.5 mass have been evaluated in several studies (Park

et al., 2006; van Donkelaar et al., 2010). van Donkelaar et al. (2010) compares global GEOS-Chem

simulated PM2.5 to ground based measurements and finds a slope of 0.54, bias of 8.89 µg m-3, and a

correlation coefficient of 0.63 (Supplemental Table S2). Global PM2.5 measurements are limited,

especially in developing countries where waste combustion is common. To compare global aerosol

loading in the model in regions where waste burning exists, we compare model aerosol optical depth

(AOD) to Aerosol Robotic Network (AERONET) measurements as there are more AERONET
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measurements available in these regions than surface PM2.5 monitors. AOD measures the optical

extinction of radiation along a path length (in this case the atmosphere). While AOD is a common

metric to determine aerosol loading, we note that it does not directly yield information on surface

level aerosol concentrations. To compare to AERONET, we output GEOS-Chem AOD at three-hour

intervals. AOD is calculated online in GEOS-Chem using modeled aerosol mass concentrations

and refractive indices from the Global Aerosol Data Set (GADS) (Koepke et al., 1997). We restrict

model AOD to be greater than 0.01 as this is the uncertainty limit of AERONET AOD measurements.

AERONET sites attempt to measure AOD every 15 minutes. We average AERONET measurements

at each site to 3-hour intervals only if there are greater than 6 measurements, thus removing time

intervals where measurements were not possible due to clouds or instrument error. Figure A.3 shows

comparisons of annually averaged modeled AOD to AERONET measurements at all available

AERONET sites for the simulation with waste combustion (BASE) and without (WASTE_OFF). In

both simulations, the model captures the variability (slope = 0.98; log mean bias = -0.22). Given the

coarse spatial resolution of the model, the large variability is expected (r2=0.59). On a global scale,

including waste-combustion emissions leads to slight improvements in each of the three metrics:

slope, model bias, and r2.

A.5 Country-level mortalities
Table S1 of the online version of Kodros et al. (2016a) lists mortalities per capita for each

country as well as World Bank (WB) income level, population, and mass of waste generated per

capita. The WB considers high-income countries (HIC) to be developed while upper-middle income

(UMI), lower-middle income (LMI), and low income (LI) to be developing. Of the countries

affected by waste-combustion-PM2.5 exposure, mortality rates per capita in developing countries are

an order of magnitude greater than in developed countries; however, this difference decreases when

considering countries that have no mortalities due to waste-combustion PM2.5 (either through low

PM2.5 exposure or concentrations in the country are below the minimum threshold concentration in

our concentration-response function).
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S4 shows box and whisker plots organized by WBO income level for (top) kg of waste generated

per capita, (middle) mortalities from waste-generation PM2.5 per capita multiplied by 106, and

(bottom) mortalities per Tg of waste generated. A number of countries in each income level have

zero deaths from waste combustion emissions due, in part, from PM2.5 concentrations being below

the minimum threshold for health impacts in our concentration-response function. On average

(denoted by stars), developing countries tend to generate less waste and have higher mortality rates

per capita and per waste generated than in developing countries.

A.6 Sensitivity simulations
There are large uncertainties in the particulate emission mass from waste combustion. To

address this, we introduce a factor-of-2 uncertainty in waste-combustion PM2.5. The factor of 2 is

chosen because it is similar to uncertainties reported in emission factors from Akagi et al. (2011).

Figure A.5 shows the mortalities per 104 km2 per year for the doubled (‘HIGHMASS’) and halved

(‘LOWMASS’) emission simulations at the 2°x2.5° resolution.

Figure A.6 shows waste-combustion adult mortalities per 104 km2 per year at the 2°x2.5°

resolution using the “subtraction” method. Alternatively to “attributing” present-day mortalities

from waste-combustion, this method estimates the number of premature deaths avoided due to a

complete removal of waste-combustion emissions.

A.7 Mortalities at different resolutions
To explore the dependence of mortality estimates on model resolution, we perform global

simulations at 4°x5° and 2°x2.5°, as well as a 0.5°x0.666° simulation over Asia. Figure A.7 shows

the spatial pattern of mortalities per 104 km2 per year at the 4°x5° global simulation (and Figure 3.2

in the main text shows the mortalities at the finer 2°x2.5° resolution). Mortalities at this coarser

resolution are lower than at the 2°x2.5° resolution due to averaging PM2.5 concentrations over a

larger area. This reduces the model ability to co-locate high PM2.5 gradients with dense populations.
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In addition, PM2.5 spread over a larger area may decrease concentrations in the gridcell below the

minimum concentration threshold for health impacts.
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mortalities yr−1 104 km−2

Figure A.1: Total adult premature mortalities due to chronic exposure to ambient PM2.5 in the year 2010 in
the 2°x2.5°-resolution simulation.
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Figure A.2: Waste-combustion emissions flux of (a) organic aerosol (OA), (b) black carbon (BC), (c) NH3,
and (d) SO2 in µg m-2 day-1 from Wiedinmyer et al, 2014.
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Figure A.3: Comparison of annual-average AOD at 500 nm for the 2°x2.5° simulation with waste combustion
(top) and without waste combustion (bottom) with AERONET observations. There is one data point for each
of 193 AERONET sites.
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Figure A.4: Box-and-whisker plots (with stars denoting the mean) for countries organized into four WBO
income levels for (top) annual mass of waste generated, (middle) mortalities from waste-generation PM2.5
per capita multiplied by 106, and (bottom) mortalities per Tg of waste generated. “LI” refers to “Low
Income”, “LMI” to “Low Middle Income”, “UMI” to “Upper Middle Income”, and “HIC” to “High Income
Countries”. The y-axis is non-linear and scales with the 4th root of the y value (this scale is chosen to both
show the spread in the non-Gaussian distribution as well as extend to a value of 0, which a log y axis would
not). Mean values are denoted by stars, median values are denoted by black horizontal lines in the middle
of the colored boxes, 25th and 75th percentiles are the bottom and top of the colored boxes. The whiskers
extend to 1.5x the interquartile range (in 4th root space) or the max value, whatever is smaller. Outliers are
denoted by black diamonds.

212



(a) HIGHMASS (a) LOWMASS

1 5 10 25 50 100 300 500 700 900

mortalities 104 km−2 yr−1

Figure A.5: Annual premature adult mortalities per 104 km2 due to exposure to waste-combustion PM2.5 at
the global 2°x2.5° model resolution when waste-combustion emission mass is doubled (a) and halved (b)
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Figure A.6: Annual premature adult mortalities per 104 km2 estimated using the “subtraction” method (i.e. a
complete removal of waste-combustion emissions).
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Figure A.7: Annual premature adult mortalities due to waste-combustion PM2.5 per 104 km2 at the global
4°x5° model resolution.
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Appendix B

Supporting Information for Quantifying the

contribution to uncertainty in mortality attributed to

household, ambient, and joint exposure to PM2.5

from residential solid-fuel use

B.1 GEOS-Chem model setup
We simulate the fraction of ambient PM2.5 originating from SFU emissions using the Goddard

Earth Observing System chemical-transport model (GEOS-Chem) version 10.01 (Bey et al., 2001;

http://acmg.seas.harvard.edu/geos/). GEOS-Chem is driven by GEOS-5 assimilated meteorology

fields (http://gmao.gsfc.nasa.gov), and includes PM tracers for black carbon, organic aerosol, dust,

sea salt, sulfate, nitrate, and ammonium in addition to 52 gas-phase species. Global aerosol

emissions are derived from The Emissions Database for Global Atmospheric Research (EDGAR)

Hemispheric Transport of Air Pollution (HTAP) version 2.2 (Janssens-Maenhout et al., 2015). We

simulate the year 2010 with and without emissions from the residential sector in order to estimate

the fraction of total population-weighted PM2.5 in a country originating from SFU.

B.2 Calculating lognormal parameters
All input parameters (with the exception of the concentration-response function) are published

with mean and 95% confidence bounds. As the underlying uncertainty distribution itself is not

explicitly provided, we assume a lognormal uncertainty distribution in the main text of this study

(and consider a uniform distribution below). To describe the lognormal distribution, we calculate

the standard deviation using the relationship that the ratio of the width of the 95% confidence

interval to the standard deviation is a factor of 3.92. This assumes that the confidence interval is
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symmetric about the median (a factor of 1.96 of the standard deviation on each side). While the

input parameters are not all symmetric about the median, this asymmetry is generally small and we

do not feel it greatly impacts our results.

B.3 Sensitivity analysis results with a lognormal uncertainty

distribution and restricting input parameters to 2.5 to 97.5

percentile range
Figure B.1 shows the results of the sensitivity analysis for the J-SFU calculation assuming a

lognormal uncertainty distribution for all input parameters (except for the concentration-response

function, as defined in the main text), but restricting the sampling to values within the 95%

confidence interval. This restriction reduces the summed total effect to 118-130% across all four

regions.

B.4 Sensitivity analysis results with uniform uncertainty distri-

butions (where the endpoints are the 2.5 to 97.5 percentiles)
Figure B.2 shows the results of the sensitivity analysis for the J-SFU calculation assuming a

uniform uncertainty distribution for all input parameters (except for the concentration-response

function, as defined in the main text). The uniform distribution is truncated at the 95% confidence

interval. This restriction reduces the summed total effect to 108-110% across all four regions.
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Figure B.1: Contribution to overall variance by each parameter to the uncertainty in the joint-effect mortality
calculation in China (a) and India (b) as well as regional averages weighted by cookstove mortalities for
countries in Latin America (c) and Sub-Saharan Africa (d). Figure B.1 is similar to Figure 4.6 of the main
text, but restricting sampling to the 95% confidence interval.
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Figure B.2: Contribution to overall variance by each parameter to the uncertainty in the joint-effect mortality
calculation in China (a) and India (b) as well as regional averages weighted by cookstove mortalities for
countries in Latin America (c) and Sub-Saharan Africa (d). Figure B.2 is similar to Figure 6 of the main text,
but with a uniform uncertainty distribution truncated at the 95% confidence interval.
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Appendix C

Supplemental Material to Size-resolved mixing state

of black carbon in the Canadian high Arctic and

implications for simulated direct radiative effect

C.1 Bounding cases of coating thickness for rBC cores less than

140 nm and resulting direct radiative effect
To determine the coating thickness as a function of rBC core diameter (as shown in Figure 6.2)

the rBC cores were binned in 5 nm intervals and the median coating thickness across all flights and

measurements was calculated for each bin. However, since there is a known bias toward thicker

coatings at smaller rBC cores sizes, this median value is not accurate for rBC core diameters less

than 140 nm. This is due in large part to the fact that small particles with thin or no coatings do

not produce a detectable elastic scattering signal and therefore cannot have a coating thickness

determined for them. To overcome this, conservative minimum and maximum coating thickness

were also calculated for each bin. We estimated minimum coating thicknesses by assuming that

all particles for which a coating thickness could not be determined were bare rBC particles. We

estimated maximum coating thicknesses by assuming that all particles for which a coating thickness

could not be determined had the median coating thickness from the successful fits. For bins where

>90% of all particles could be successfully assigned a coating thickness, the minimum, maximum,

and median were very similar. For smaller particles, where <90% could be assigned a coating

thickness, the differences were significant. In order to overcome the known biases in the median for

these cases, we used the minimum and maximum coating values as bounding values. The median

coating value for bins with <90% successful fits was set as the overall median coating thickness

from bins where the LEO success rate was 90% or greater. For rBC core diameters larger than 220
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nm, the median value for a 220 nm particle was used. The results from this are shown in Figure C.1.

This process was carried out separately for each flight and the average of all flights (black line in

Figure C.1) was used for the GEOS-Chem simulations.

Table C.1 presents the resulting direct radiative effect (DRE) for the rshell-constrained and fBC-

constrained mixing states considering the minimum, median, and maximum coating assumptions.

Overall there is not a large difference in DRE across the minimum and maximum assumptions. This

is due to most of the optical extinction taking place at particle diameters greater than 140 nm.

Figure C.1: Minimum, median, and maximum possible coating thicknesses as a function of rBC core
diameter. In each scenario, there are separate symbols and a fit line for each flight, and there is a heavy black
line which is the fit to all flights combined.

221



Table C.1: The DRE for measurement-constrained mixing states using the minimum, median, and maximum
assumptions.

Simulation Assumption DRE [W m-2]

fBC-constrained min -1.462
med -1.454
max -1.455

rshell-constrained min -1.593
med -1.591
max -1.588

C.2 April mean albedo
Figure C.2 shows April climatological mean albedo in the Arctic. Albedo climatology is derived

from MODIS retrievals from years 2002-2007 and described in Heald et al. (2014). Ocean albedo is

held constant at a value of 0.07; however, sea ice alters the spatial distribution of albedo. Estimates

of DRE are likely sensitive to albedo climatology.
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Figure C.2: April mean albedo for visible wavelengths.
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Appendix D

Supplemental Information for The role of

inter-regional variability in aerosol size distributions

on respiratory deposition of particulate matter

D.1 Sensitivity to particle dosimetry model: ICRP versus MPPD
Two commonly referenced models of size-resolved particle deposition in the respiratory tract

include the International Commission on Radiological Protection (ICRP) model (ICRP, 1995) and

the Multiple Pathway Particle Dosimetry (MPPD) model (Miller et al., 2016). In the main text,

we present results with the ICRP model average across breathing rates using equations in Hinds,

1999. Here we explore the sensitivity of size-resolved particle deposition in the respiratory tract

to choice of dosimetry model. Figure D.1 shows deposition fractions for the ICRP and MPPD

models for all respiratory regions, the head and nose region, the tracheobronchial region, and the

pulmonary/alveolar region (following terminology used in each model, respectively). Generally,

deposition in all respiratory regions and the head/nose regions are similar between models. The

largest difference in total respiratory deposition is the minimum occurs at smaller particle diameters

in the ICRP model with lower deposition fractions. There are some differences between the two

models for deposition in the tracheobronchial and pulmonary/alveolar regions. Figure D.2 compares

the ICRP and MPPD models for the sum of the tracheobronchial and alveolar regions (TB+AV). The

TB+AV deposition fraction curves generally follow a similar shape, with the ICRP model showing

more efficient deposition at the maximum for ultrafine particles and less efficient deposition in the

minimum. The minimum for accumulation-mode particles is at a smaller particle diameter in the

ICRP model. Conversely, the MPPD model predicts more efficient coarse-mode deposition.

We explore the implication of differences in deposition fraction between the ICRP and MPPD

models in Figure D.3. Figure D.3 shows the ratio of the deposition mass in the TB+AV regions
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between the ICRP and MPPD models. The largest difference in deposition occurs in the desert

regions (e.g. North Africa and the Middle East) where the ICRP model predicts around 50% less

deposited mass than the MPPD model. This corresponds to deposition fractions between 1-10 µm.

The two models are most similar in biomass burning regions (South America and Central Africa).

The lower deposition efficiency of coarse-mode mass in the ICRP model suggests the DRTB+AV

(Figure 7.4 in the main text) would exhibit a higher spatial variability if we use the MPPD model.

Given the large uncertainties in particle deposition models and aerosol microphysical models

(that simulate ambient size distributions), we feel we are justified in using a single particle deposition

model. Using the MPPD model would not substantially alter our general discussion and conclusions.

D.2 Size-resolved particle growth due to water uptake in the

lung
Particles may take up liquid water due to an increase in relative humidity, thus increasing

diameter. Aerosol water uptake in the ambient atmosphere is accounted for online in GEOS-Chem-

TOMAS. This section describes swelling of aerosol particles due to water uptake in the lung. We

assume that air in the lung and associated airways has a relative humidity (RH) of 99.5% and a

temperature of 37◦ C (Anselm et al., 1990). This constant value of RH is used in other particle

deposition studies (e.g. Londahl et al., 2007; Londhal et al., 2009; Hussein et al., 2013); however, is

likely a simplification. We estimate the equilibrium particle diameter due to water uptake in the

lung using the hygroscopicity parameter, kappa, and Equation D.1:

Dp,equilibrium = (1 + κ
RH

1−RH
)1/3Dp,ambient (D.1)

where Dp,equilibrium is the equilibrium particle diameter in the lung, Dp,ambient is the ambient

particle diameter, RH is the relative humidity (in this case 99.5%), and k is the hygroscopicity

parameter (Petters and Kreidenweis, 2007). GEOS-Chem-TOMAS treats particles as internally

mixed within each size bin, and so we calculate the total particle k as the volume-weighted average
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of the individual chemical components. Equation D.1 calculates the particle diameter in the

lung under ideal conditions assuming the particle remains in the lung long enough to reach the

equilibrium diameter. We also assume the inhaled air mass instantly reaches the relative humidity

and temperature in the lung.

We approximate the timescale for particles to reach equilibrium due to condensation of water in

the lung with Equation D.2:

τ =
Dp,lung − Dp,ambient

4DgβM(c∞ − cs)(1/Dp,ambientρ)
(D.2)

where Dg is the diffusivity of water vapor, β is the Danheke correction factor, M is the molar mass

of water vapor, cinf is the water vapor concentration in the lung, cs is the water vapor concentration

at the particle surface, Dp,ambient is the initial ambient diameter, and ρ is the particle density. The

numerator of Equation D.2 is the maximum growth of the particle due to water uptake in the lung

if the particle is allowed to reach equilibrium. The denominator of Equation D.2 is the diameter

growth velocity due to condensation and is a function of particle diameter. Here, we approximate

the timescale as dependent on only the initial particle diameter. The condensation rate slows as the

particle takes up water and Cs increases, which is not captured in this approximation.

We compare the approximate equilibrium timescale with an assumed particle residence time in

the lung of 2.5 seconds (Miller et al., 2016). Equation D.3 compares the equilibrium timescale to

the lung-residence timescale:

f =
τ

τ + τlung
(D.3)

where τ lung is the residence timescale in the lung (2.5 seconds). This factor f is used to interpolate

between initial ambient diameter and the diameter in the lung:

Dp,lung = f ×Dp,ambient + (1− f)Dp,lung (D.4)
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where Dp,lung is the particle diameter in the lung. Ambient particle diameters up to around 10

µm are able to grow to the equilibrium size.

Finally, we calculate the particle diameter relevant for deposition in the body, Dp,deposition, as the

aerodynamic diameter after accounting for water uptake in the lung:

Dp,deposition = Dp,lung × (ρparticle/ρwater)
1/2 (D.5)

where ρparticle is the density of the particle and ρwater is the density of water. This approximation

of hygroscopic growth due to the relative humidity in the lung is likely an upper bound. First we

assume the inhaled air mass containing particles instantly acquires the temperature and relative

humidity in the body. Second, we calculate the condensation rate of the particles based on the

initial ambient diameter, but this rate will decrease as particle sizes grow. Both of these factors will

contribute to the growth timescale being longer than what we calculated here, and hence we expect

particles to be somewhat smaller that what we approximated. The approach taken here to account

for hygroscopic growth in the lung is simplistic. We test the sensitivity of particle deposition along

the respiratory tract assuming no particle growth and growth based on RH of 98% and 99.5% in

Figure D.4.

Figure D.4 shows DRTB+AV assuming no growth in the lung or growth based on RH of 98% and

99.5%. Assuming no growth leads to the largest geographic variability in DRTB+AV. This is because

accumulation-mode particles (largely from anthropogenic emissions) tend to be centered near the

minimum in deposition in the ICRP deposition fraction curve. Growth based on an RH of 98%

grows particle diameters out of this minimum. Growth based on an RH of 99.5% grows particles

even further out of this minimum (and closer to the local maximum at 2 µm), thus increasing the

DRTB+AV in fossil fuel dominated regions. Conversely, as deposition efficiency decreases from 2

µm and larger, growth of coarse-mode particles leads to decreasing DRTB+AV. The net result is more

water uptake in the lung leads to less geographic variability of DRTB+AV as accumulation-mode

particles grow to sizes that deposit more efficiently and coarse-mode particles grow to sizes that

deposit less efficiently.
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Figure D.1: Deposition fractions in the ICRP and MPPD models in (a) all respiratory regions, (b) head/nose
region, (c) tracheobronchial region, (d) pulmonary/alveolar region.
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Figure D.2: Deposition fractions in the ICRP and MPPD models for the sum of tracheobronchial and alveolar
regions.
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Figure D.3: The ratio of ICRP deposited mass and MPPD deposited mass in the TB+AV regions (with
ambient PM mass simulated by GEOS-Chem-TOMAS).
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Figure D.4: DRTB+AV assuming (a) no growth in the lung, (b) growth with an RH of 98%, (c) growth with
an RH of 99.5% (as in the main text).
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