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Abstract

This paper proposes a variant application of the Merton distance-to-default model by em-

ploying implied volatility and implied cost of capital to predict defaults. The proposed model’s

results are compared with predictions obtained from three popular models in different setups. We

find that our “best” model, which contains both forward-looking proxies of returns and volatility

outperform other models, carries a default prediction accuracy rate of 89%. Additional analysis

using a discrete-time hazard model indicates the psuedo-R2 values from regression models that

include the two forward-looking measures are as high as 51%. Overall, our results establish the

informational relevance of implied cost of capital and implied volatility in predicting defaults.
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Default Prediction Models: The Role of Forward-Looking Measures of

Returns and Volatility

1 Introduction

Effective estimation and prediction of corporate defaults are critical for asset pricing, credit risk

assessment of loan portfolios, and the valuation of other financial products that are exposed to

corporate defaults. Numerous studies establish the primacy of financial distress in explaining

empirical regularities in the cross-section of stock returns. For instance, Fama and French (1996)

argue that the SMB and HML factors in the Fama-French model are a proxy for financial distress

(see, e.g., Griffin and Lemmon, 2002, Vassalou and Xing, 2004, Avramov et al., 2007; Garlappi and

Yan, 2011). In drawing conclusions about underlying risk factors that are important for pricing

assets, studies attempt to identify firm-level default likelihood indicators that are closely associated

with financial distress. Along these lines, Chan and Chen (1991) describe marginal and distressed

firm as those that have lost value due to weak performance, are inefficient producers, carry high

amounts of leverage, and experience cash flow problems.

This work contributes to a growing literature on predicting corporate bankruptcy. Much of

the earlier literature focused on estimating default probabilities using financial accounting data

(see, e.g., Altman 1968; Beaver 1968; Ohlson 1980). Accounting-based models are often criticized

because they are inherently backward-looking thus limiting their ability to predict the probability

of bankruptcy. Furthermore, financial statements are thought to be constrained in their predictive

ability as they are constructed under the going-concern principle (i.e., under the assumption that

the firm will not go bankrupt), are subject to managerial discretion and manipulation, and fail to

incorporate important pricing information such as underlying asset volatility (see Hillegeist et al.

2004).

In contrast, more recently, motivated by Merton’s (1974) structural model of default risk, there

is renewed interest in the application of market-based bankruptcy prediction models that are based

on the contingent claims valuation approach. Market-based measures, at least in theory, are be-

lieved to overcome some of the limitations associated with accounting-based models since they are

forward-looking by design and incorporate all information relevant to the pricing of securities. In
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this context, option pricing models provide the necessary structural framework to estimate default

probabilities implied by the Merton distance-to-default (DD) model, which provides a measure

of the distance between the firm’s current value and its bankruptcy threshold. Although extract-

ing DD from the Black-Scholes option pricing model is computationally intensive and requires

a number of simplifying assumptions that may not necessarily hold in practice; these challenges

not withstanding, there is growing empirical evidence that the structural form of the Merton DD

model provides significantly superior information than purely accounting-based measures of default

probabilities (see, e.g., Hillegeist et al., 2004; Bharath and Shumway, 2008).

In implementing Merton’s (1974) structural model for default prediction Vassalou and Xing

(2004) propose an iterative procedure to estimate the parameters in the model by using historical

accounting information and market equity data, and by making other simplifying assumptions.

Bharath and Shumway (2008), while maintaining Merton’s functional form, propose an alternative

model where arbitrary values are used to circumvent the complicated iterative procedure. Results

indicate that their näıve probability measure outperforms the Merton DD probability estimated

by Vassalou and Xing (2004). Adopting a different tack, Campbell et al. (2008) use accounting

and equity market variables to develop a reduced form, econometric specification to predict corpo-

rate bankruptcies. They show that their model provide meaningful empirical advantages over the

bankruptcy risk scores proposed by Altman (1968) and Ohlson (1980), and is furthermore robust

to alternative estimates of distance-to-default. The study finds that corporate default rates are

strongly associated with lower profitability, higher leverage, lower and more volatile past returns,

and smaller cash holdings.

The presumed advantage of the market-based framework vis-à-vis accounting-based models

stems from its forward-looking structure; however, it is interesting to note that several important

inputs used to estimate the market-based Merton DD themselves are not fully forward-looking.

For instance, equity volatility used to infer firm volatility in the option-pricing framework is based

on historical stock returns data. In addition, past stock returns are often used as a proxy for

expected returns. Even reduced form specifications, such as the one by Campbell et al. (2008),

rely on historical excess stock returns and volatility to estimate default probability. We posit that

these backward-looking based inputs are not consistent with the forward-looking characteristics

of the option-pricing model of the Merton DD measure and may result in sacrificing the model’s
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predictive ability.

There is some related evidence that cast doubt on the historical measures used in bankruptcy

studies. For instance, Elton (1999), Pastor et al. (2008), Chava and Purnanandam (2010) document

that realized return is at best a noisy proxy of expected returns. Pastor et al. (2008) show that

under reasonable assumptions about dividend growth and expected return processes, the implied

cost of capital (ICC) is an excellent proxy for expected returns. ICC is the market implied internal

rate of return that equates current market price to the discounted future dividend payout based on

the analysts’ consensus forecasts. Chava and Purnanandam (2010) use ICC as a proxy for expected

returns and document a theoretically consistent positive cross-sectional relationship between default

risk and stock returns, resolving the anomalous and often puzzling empirical finding among prior

studies of a negative relationship between the two variables. Therefore, we contend that bankruptcy

risk should be reflected in the implied cost of capital.

There is also a rich stream of literature that examines the ability of implied volatility (IV) to

forecast future volatility in various markets. Studies such as by Latene and Rendleman (1976),

Chiras and Manaster (1978), and Beckers (1981) illustrate the superiority of implied volatility as

a proxy of future volatility. Jorion (1995) and Covrig and Low (2003) show that implied volatility

outperforms past realized volatility as a forecast of future realized volatility in currency markets.

Christensen and Prabhala (1998) find that implied option volatility is an unbiased and efficient

forecast of future realized volatility in the S&P 100 index. The incremental information in implied

volatility relative to past realized volatility in the stock market has found broad support among

several studies including Lamoureux and Lastrapes (1993), Fleming (1998), Pan and Poteshman

(2006), and Blair et al. (2001).

The contribution of our paper lies in proposing a new and alternative implementation of the

Merton (1974) model to measure default probabilities. Specifically, unlike previous studies, our

approach incorporates forward-looking or implied measures of asset returns and volatility into the

default prediction model. We contend that the information contained in implied volatility and

implied cost of capital would improve the forecasting ability of the default prediction model. Using

the relative information content and prediction accuracy testing approaches we compare the perfor-

mance of our model with three major default probability measurement approaches, as proposed by

Vassalou and Xing (2004), Bharath and Shumway (2008) and Campbell et al. (2008), respectively.
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Our regression results from a discrete-time hazard model, which evaluates the importance of each

default measure in explaining the actual probability of bankruptcy, indicate that the psuedo-R2

values for models that include implied measures are as high as 51% in comparison to 31.2% for

Campbell et al.’s (2008) model, 27% for Shumway’s (2001) model, and 15.9% when using Merton

distance-to-default. The improvement is even more evident when comparing our results with Hil-

legeist et al. (2004) who obtain a psuedo-R2 of only 12% for market-based measure based on the

Black-Scholes option pricing model. The log-likelihood statistics from estimating non-nested mod-

els show that forecasting approaches that rely on implied cost of capital and implied volatility are

the most preferred. We also assess bankruptcy prediction performance by estimating the accuracy

ratio (i.e., ratio of Type I and Type II error frequency) for each alternative model specification.

Results indicate that the most accurate model is one which incorporates both implied measures,

carrying a default prediction accuracy rate of about 89%. Overall, our results support the informa-

tional relevance of forward-looking measures of returns and volatility in forecasting firm failures.

The results from this paper carry implications for a wide range of studies examining credit risk,

credit ratings, and portfolio allocation decisions.

2 Bankruptcy Prediction Models

The information content of our proposed measures are evaluated by comparing them to three

important available models in the literature - the Vassalou and Xing (2004) implementation of the

Merton DD model, the Bharath and Shumway (2008) Näıve DD model, and the Campbell et al.

(2008) reduced-form specification model. This section describes the different models used in the

study.

2.1 The Merton (1974) Model

The Merton (1974) model proposes an approach to value corporate debt when a firm has only one

outstanding zero coupon bond. With some modification and relaxation of the assumptions this

model has been used to predict default. The model assumes the market value of a firm’s asset
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follows a Geometric Brownian motion:

dV = µV dt+ σV V dW, (1)

where, V is the market value of the firm’s assets with an instantaneous drift µ, and an instantaneous

volatility σV , and W is a standard Wiener process.

Assume the firm has outstanding debt with a face value of F and maturity of T . Since share-

holders are residual claimants of the firm’s assets, the market value of equity, E, can be valued as a

call option on V with risk free interest rate r, time to maturity T , and strike price F . If the value

of the firm’s assets is greater than the face value of the firm’s debt, equity holders will exercise the

option and pay off the bondholders. On the other hand, if the value of the firm’s assets drops below

the value of its liabilities, equity holders will let the call option expire and transfer ownership of

the firm to debtholders.

The Black-Scholes equation for valuing the firm’s equity under these conditions is given by:

E = VN (d1)− Fe−rTN (d2), (2)

where

d1 =
ln(V/F ) + (r + 0.5σ2

V )T

σV
√
T

, (3)

and d2 = d1 − σV
√
T .

Based on option pricing theory, the risk-neutral probability of default of the firm is the proba-

bility that the call option is out-of-the-money, i.e., N (−d2). Similarly, the physical probability of

default is N (−DD), where, DD, the distance to default is defined as

DD =
ln(V/F ) + (µ− 0.5σ2

V )T

σV
√
T

. (4)

DD can be interpreted as the number of standard deviations of annual asset growth by which

the asset level (or expected asset level at a given time horizon) exceeds the face value of the firm’s

liabilities. The probability of bankruptcy in the Black-Scholes model depends upon the actual

distribution of future asset values, which is a function of µ. Note V , µ, σV are not directly observable
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and must therefore be estimated. The other three variables, F , T and r can be approximated.

In equation (2), only the market value of equity, E, is observable. The risk free rate, r, is

usually represented by the LIBOR rate or the one-year Treasury-bill rate. The other variables, the

strike price F, the instantaneous drift µ, the instantaneous volatility σV , and the time to maturity

T are unobservable since bankruptcy is not known until it is filed. Vassalou and Xing (2004) and

Bharath and Shumway (2008) propose different implementation approaches of the Merton model.

In this paper, we use both these approaches as benchmarks to compare our results.

Vassalou and Xing (2004) Implementation Vassalou and Xing (2004) propose an interesting

approach to estimate distance-to-default. They use the one-year Treasury rate as a proxy of the

risk free rate r and set T = 1. To approximate the strike price, F , the model uses the sum of the

current debt and 50% of long-term debt. The remaining three variables, namely, the market value

of the firm’s assets V, the instantaneous drift µ and instantaneous volatility σV are estimated by

following an iterative procedure using daily equity data from the previous 12 months. First, using

daily data from the past 12 months σE , the standard deviation of equity returns is estimated and

used as an initial value for the estimation of σV .1 Then, using equation (2) V is computed for

each trading day using the corresponding market value of equity for that day, E. The standard

deviation of the daily logarithmic returns of those V ’s are then used as the value of σV for the

next iteration. This procedure is repeated until the values of σV from two consecutive iterations

converge. The estimated σV is then used to back out the asset value V for each day. The drift, µ,

is the mean of the change in lnV , the logarithm daily “return” of assets. The estimated drift µ is

plugged into equation (4) to compute the probability of default.

Bharath and Shumway (2008) Alternative Bharath and Shumway (2008) propose a näıve

estimation of DD as follows:

näıve DD =
ln((E + F ) /F ) + (rt−1 − 0.5 näıve σ2

V )T

näıve σV
√
T

, (5)

where

näıve σV =
E

E + F
σE +

E

E + F
(0.05 + 0.25σE) . (6)

1σE is just used as the initial value for σV . Using other reasonable values will converge to the same estimation.
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The näıve model has the same functional form as Merton’s DD probability, and essentially

captures the information used by Merton’s DD. V is approximated by E+F , the one-year Treasury

bill rate is used as the proxy for the risk-free rate, and the sum of the current debt and 50% of

long term debt is used to approximate the strike price. The asset drift, µ, is approximated by

the previous year’s cumulative return (calculated by cumulating monthly returns). Bharath and

Shumway (2008) document that their approach is at least as good as the Vassalou and Xing (2004)

model.

An Alternative Implementation Since equity is an option on firm value, the volatility of

equity, denoted σE , is also a function of V and σ. Denoting this function by g, then:

σE = g(V, σV ). (7)

If we write E = f(V, σV ), using Ito’s lemma,

σE = g (V, σV ) = σV V
∂f
∂V

f
= σV

V

E
N(d1). (8)

we can then simultaneously solve the system of nonlinear equations (2) and (8) to obtain V and

σV if we have a good approximation of σE . Hillegeist et al. (2004) use this approach to estimate

default probability.

2.2 Campbell, Hilscher and Szilagyi (2008) Model

Campbell et al. (2008) predict defaults using a discrete-time hazard model. The hazard rate model

uses historical data of realized default to estimate default probability by using a reduced form

empirical specification. In this model, the marginal probability of bankruptcy or failure over the

next period follows a logistical distribution, as follows:

Pt−1(Yit = 1) =
1

1 + exp(−α− βxi,t−1)
, (9)

where Yit is a dummy variable that equals one if the firm goes bankrupt in time t conditional on not

failing earlier, and xi,t−1 is a vector of explanatory variables known at the end of the previous period,
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and (α+βxi,t−1), a linear combination of explanatory variables indicate the default possibility of a

firm i at time t. The higher the value of (α+βxi,t−1), the greater possibility that a firm will default

in the forecast period. The Campbell et al. (2008) model is estimated at the end of each month.

The explanatory variables used in their “best” model include geometrical four quarters moving

average of Net Income to Market-valued Total Assets (NIMTAAVG), geometrical 12-month moving

average monthly log excess returns relative to the S&P 500 index (EXRETAVG), Total Liability

to Market-valued Total Assets – the sum of firm market equity and total liability – (TLMTA),

the ratio of Cash and Short-term Assets to the Market-valued Total Assets (CACSHMTA), the

standard deviation of each firm’s daily stock return over the past 3 months (SIGMA), log price per

share, truncated above $15 (PRICE), the relative size of each firm measured as the log ratio of its

market capitalization to that of the S&P 500 index (RSIZE), and market-to-book ratio of equity

(MB). The book value of assets are adjusted by adding 10% of the differences between market and

book equity to the book value of total assets. The book value of equity is also adjusted in a similar

manner. Book value of equity is truncated at $1 to avoid negative values.2

Well beyond the early models of Altman (1968) and Ohlson (1980), CHS develop a very good

model to predict bankruptcies using multiple accounting and market-based variables. Although the

CHS model performs quite well overall, it is interesting to point out that the model underpredicts

frequency of failure in the 1980s, and overpredicts failure during the 1990s. Furthermore, as the

forecast horizon increases, market-based variables exert greater importance relative to accounting

variables.

2.3 Proposed New Measures

All the above discussed approaches share a similar drawback in that they rely on historical data to

estimate volatility and expected returns. However, by design, the structural-based option pricing

equations (2)-(4) are forward looking. Since we are interested in estimating the default probability

of a firm in the future, it would seem more informative to use forward-looking estimates of σV and

µ instead of backward-looking estimates. Therefore, we propose to estimate default probability by

replacing historical estimates of volatility and returns with market implied measures of volatility

and cost of capital. Specifically, we estimate three alternative specifications of the Merton-based

2For detailed descriptions of the variables, see Campbell et al. (2008).
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DD model:

1. IV-DD Model (Model 1): We use the OptionMetrics “standard” fixed maturity at-the-money

call option implied volatility as the proxy of σE , and simultaneously solve the system of

nonlinear equations (2) and (8) to obtain V and σV . This can be solved each day for the

previous 12 months. In order to isolate the marginal information content of implied volatility,

this model uses the past one year logarithm returns of the estimated asset value as a proxy for

future returns. The default probability measure produced by this model is labeled as IV-DD.

2. IV/ICC-DD Model (Model 2): We use the same approach as IV-DD to estimate V and σV .

However, in this model we employ the implied cost of capital used in Lee et al. (2009),

Pastor et al. (2008), and Chava and Purnanandam (2010) as a proxy of expected returns.3

We expect this approach to perform the best since it uses forward-looking measures for both

volatility and expected returns. The default probability produced by this model is labeled as

IV/ICC-DD.

3. IV/ICC-Näıve DD Model (Model 3): We plug the option implied volatility into equation

(6) as σE . Then, we use equation (5) to estimate the näıve distance-to-default by replacing

rt−1 in Bharath and Shumway’s model with ICCt, the implied cost of capital. The default

probability estimate produced by this model is labeled as IV/ICC-Näıve DD.

The key difference between Model 1 (IV-DD) and Model 2 (IV/ICC-DD) is the use of alter-

native estimates of future asset returns, µ, to calculate distance-to-default. In Model 1, we first

simultaneously solve the system of equations (2) and (8) to obtain estimates of V and σV . Then,

based on the solutions obtained for asset value V , Model 1 uses the mean of the logarithm returns

during the previous 12 months as an estimate of future asset returns, µ. Given the backward looking

nature of this estimate, we contend that using ex post realized returns may result in handicapping

the model’s ability to accurately predict defaults.

Although the realized return estimate used in Model 1 is a convenient one, numerous studies

indicate that it is a biased and noisy estimate of expected returns (see, e.g., Elton, 1999, Pastor et

al., 2008). Chava and Purnandam (2010) advocate the use of ex ante estimates of returns, and find

3Computation of the implied cost of capital is detailed in Appendix A.
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Implied Cost of Capital (ICC) to be a good proxy for expected returns. Specifically, ICC is the

internal rate of return that equates the current market price to the discounted value of future cash

flows based on analyst forecasts. Therefore, in Model 2, we follow Chava and Purnanandam (2010)

and use ICC as a proxy for future asset returns. Since both Model 1 and Model 2 use the same

estimate of V and σV , but only deviate in the estimation of asset returns, our approach is able to

uniquely isolate the marginal contributions of using the forward looking measure. The application

of ICC is consistent with (2) and (8), and importantly we seek to find out whether this measure

adds considerably to the predictive power of Model 2.

3 Data and Summary Statistics

This section describes our data sources, sample selection and summary statistics.

3.1 Data Sources

The data for the study covers the time period 1996 to 2012. There is significant variation in

the sample period used in prior studies - Vassalou and Xing (2004) cover the period 1971 to

1999, Campbell et al. (2008) study the 1963 to 2003 time period, and Bharath and Shumway’s

(2008) examination spans 1980 to 2003. The relatively more recent start date of our sample, 1996,

is attributed to the availability of historical options data and implied volatility measures from

OptionMetrics since this time period. The bankruptcy data for the period 1996 to 2008 is the

same data as Chava and Jarrow (2004), Chava and Purnanandam (2010), Chava et al. (2011), and

Alanis et. al. (2016), and is provided by Professor Sudheer Chava. Data for the more recent time

period, 2009-2012, is collected from Bankruptcy.com and the UCLA-LoPucki bankruptcy research

database. Firm accounting information is obtained from COMPUSTAT, and monthly and daily

equity markets data are from CRSP. The analysts forecast data used to calculate the implied cost

of capital data is from I/B/E/S. To classify firms into industries, we thankfully acknowledge the

Fama-French 48 industry classification definition from Professor Kenneth R. French’s data library.
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3.2 Sample Selection

We start the sample selection process with all common stocks traded on NYSE, AMEX and NAS-

DAQ. We use COMPUSTAT quarterly files to get each firm’s “Debt in one Year” and “Long-Term

debt” series for all companies. To ensure that all information used to calculate the default measures

are publicly available, we do not use book value of debt of the new quarter until 3 months have

elapsed from the end of the previous quarter. We require a firm to have at least one year of finan-

cial information to be included in the sample. We then combine the accounting information from

COMPUSTAT with daily and monthly equity market data from CRSP. Firms without equity mar-

ket data from CRSP are dropped at this step. Following Bharath and Shumway (2008), financial

firms with Fama-French industry code 44 to 47 are excluded. The default measures are computed

at the end of each month for the whole sample period, 1996-2012. According to Vassalou and Xing

(2004), the default probability for default firms goes up sharply in the 5 years prior to default and

many firms are delisted from the exchange about 2 to 3 years prior to default. Therefore, if we

only considered firms that defaulted in the coming one month this would result in a significant loss

in sample size. Therefore, in all our calculations, we match the last available quarterly accounting

data in COMPUSTAT and market equity data in CRSP to the default within the coming five year

period. That is, any defaulted firm with both accounting information and market equity data in

the five years prior to default is included in the final default sample. A firm is only counted in the

default sample only once at the last time when COMPUSTAT and CRSP data are available. It is

considered to be solvent at any point of time before then.

Our proposed measures rely on options data to obtain implied volatility. We only consider

firms that have at least one year of 182-days implied volatility of “at-the-money” call in the Op-

tionMetrics’ standard options database. Following Hillegeist et al. (2004) and others, all default

probability measures are winsorized at the 0.001% and 99.999% levels.4

Using the sample data we calculate six separate default prediction estimates at the end of each

month, with three estimates corresponding to Vassalou and Xing (2004) (the VX-DD approach),

Bharath and Shumway (2008) (the BS-Näıve DD approach), Campbell, Hilscher and Szilagyi (2008)

(the CHS approach), respectively. Additionally, we calculate three new default prediction estimates

4To be consistent with the original work, in the estimation of the Campbell et. al. (2008) logit regression model,
we winsorize all the regressors at 5% and 95%.
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using the newly proposed measures given by IV-DD (Model 1), IV/ICC-DD (Model 2), and IV/ICC-

Näıve DD (Model 3). In this context, it is important to reiterate that the VX-DD and BS-Näıve

DD approaches are based on Merton’s structural model; whereas, the CHS approach is an empirical

measure of default that is estimated by running a dynamic panel model using a logistic specification

of various accounting and market equity explanatory variables for solvent and bankrupt firms. We

provide a comparative analysis of prediction accuracy and relative information content obtained

from the proposed new approaches with existing default models.

3.3 Summary of Sample

Summary description of our final sample are presented in Tables 1 and 2. Table 1 reports the total

number of firms and failure events in our data set on a yearly basis. As with other studies, due

to the nature of bankruptcy filings, there is substantial annual variation in the total number of

firms and bankruptcy cases. The number of firms vary between 1383 (in the year 2002) and 2020

(in the year 2012). The highest rates of default are witnessed in 2001 when 84 of the 1487 firms

in the sample (about 5.65%) defaulted during the year. By contrast, the default rate in 2010 was

only about 0.43%. Table 2 breaks the sample firms down into the Fama French 48 industries. We

notice that certain types of industries carry greater default risk than others. For instance, 3 of the

11 firms in the Fabricated Products industry (industry code 20) in the sample defaulted. There

were no corporate defaults in seven of the 48 industries during the study period. They are Candy

and Soda, Beer and Liquor, Tobacco Products, Aircraft, Shipbuilding and Railroad Equipment,

Nonmetallic and Industrial Metal Mining, and Shipping Containers.

Table 3 presents summary statistics of the default probabilities for solvent and bankrupt com-

panies in our sample. In general, the six default measures all show significant differences in default

probabilities between solvent and bankrupt firms across all statistics. Not surprisingly, the differ-

ences in the 1st percentile are relatively small due to winsorization of the data. Among the six

measures, Model 1 (IV-DD) has the highest default probability means of 5.29% and 66.39% for the

solvent and bankrupt sub-samples, respectively. By contrast, the CHS model provides the lowest

default probability means of 0.014% and 0.537% for the two corresponding sample firms. Among

the Merton DD-based approaches, Model 2 (IV/ICC-DD) produces the lowest mean and median

for bankruptcy firms. It is interesting to note that the 99th percentile for several of the default
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probability measures of the bankruptcy firms get very close to 100%. For Model 2, the value is

81.41% which is the lowest among the five Merton-DD measures. However, the 99th percentile

of CHS default measure for the bankruptcy firms is only 4.56%. We attribute this result to the

fact that the CHS measure cannot be technically interpreted as an absolute measure of default

probability, but rather a default probability measure that is conditional on survival.5

Table 4 reports the correlation matrix across the different default probability measures. The

lower triangular and the upper triangular parts of the matrix represent the Pearson product mo-

ment correlation and the Spearman rank order correlation respectively. The results show that the

correlations across the different measures are all positive ranging from about 0.3 to 0.9. Among the

different measures, IV-DD and VX-DD default probabilities share the highest Pearson correlation

of 0.86; whereas, IV/ICC-Näıve DD and CHS measures have the lowest Pearson correlation of 0.33.

It is also evident that the correlation between IV/ICC-DD and all the other measures are similar,

ranging between 0.52 and 0.62.

Table 5 compares the out-of-sample default predictability performance of the six default mea-

sures. Firms are sorted into deciles at the end of each year based on a particular forecasting variable.

Then the number of defaults that occur in each of the decile groups are summarized. We report the

results for each of the top five deciles separately and combine the lowest five deciles into one row

in the table. The IV/ICC-DD approach, which includes implied estimates of volatility and cost of

capital in the Merton DD framework, exhibits the best out-of-sample predictive ability. This model

is able to classify about 79% of the default firms into the 1st decile, and classify about 96% of all

default firms into the top five deciles. The DD model with implied volatility (IV-DD) classifies

about 71% of the default firms into the 1st decile and a total of 93% into the highest five deciles.

Examining the top two deciles combined, the rank-order performance of the out-of-sample default

predictability are as follows: IV/ICC-DD (87.9%), IV-DD (86.2%), CHS (77.7%), BS-DD (76.7%),

VX-DD (75.9%), and IV/ICC-Näıve DD (73.3%), respectively. The magnitude of the performance

difference between the IV/ICC-DD model and other competing models provides an indication of

the economic significance of the results. These results broadly conform with Bharath and Shumway

5Theoretically, the CHS measure is not directly comparable with the Merton-DD measures. Default probability
estimates based on Merton’s model can be calculated using a firm’s one period accounting and equity data. In contrast,
estimation of the CHS measure requires a robust sample of historical default data, as this model is calibrated using
all available information. Arguably, the sample dependent nature of the CHS measure, as well as the Z-score and
O-score, is viewed as a shortcoming of this type of model.
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(2008) who also find that the Merton-based VX and näıve approaches classify about 80% of the

defaults into the highest quintile. The slightly better out-of-sample performance of the CHS ap-

proach is also consistent with the findings of Campbell et al. (2008). Most notably, preliminary

indications from this particular exercise indicates that the DD model that includes our proposed

two new measures - implied volatility and implied cost of capital - stand out as the “best” model

among the alternative forecasting approaches. The statistical significance and relative performance

of the different default probability measures are more formally investigated in the following section.

4 Model Evaluation Approaches

The bankruptcy prediction performance of the different implementation approaches are evaluated

using two different tests: the receiver operating characteristic (ROC) curve to assess predictive

accuracy and the relative information content tests using a discrete-time hazard model.

4.1 The ROC Curve

The ROC curve, which has its origins in the field of signal detection, has been recently applied to

assess credit rating models and compare different default risk measures (Agrawal and Taffler 2008;

Vassslou and Xing 2004). ROC is a graphical plot that illustrates the performance of a binary

classifier system with varying discrimination thresholds. The ROC curve is constructed by plotting

the fraction of true positives out of the total actual positives versus the fraction of false positives out

of the total actual negatives, at various threshold settings. In our case, true positives are defined

as the number of correct forecast of defaults and the actual positives are defined as the actual total

number of defaults. In a symmetric fashion, false positives are the number of non-default firms

forecasted as defaults and the actual negatives reflect the total number of non-defaults.

The prediction accuracy for each model is evaluated by calculating the area under the ROC

curve (AUC). In order to calculate AUC, the ROC is smoothed by the binomial model and then

the area is calculated using a closed-form expression. The accuracy ratio (AR), which can vary

from 50% (random model) to 100% (perfect model), is a linear transformation of the area under

the ROC curve:
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AR = 2× (AUC − 0.5). (10)

We construct the ROC curve at the end of calendar year where all firms are ranked based on

their default from highest risk to lowest risk. For every integer between 0 and 100, we first examine

how many firms actually failed within the first x% of firms with highest bankruptcy risk. This

number is then divided by the total number of failures in the sample and plotted against x.

4.2 Relative Information Content Test

The relative information content test is employed to assess the marginal contribution of default

related information contained in each model, and the results are then used to rank order the

predictive performance of the various models. The discrete hazard model is particularly well-suited

for bankruptcy data since they contain binary, cross-sectional and time-series observations, and offer

many econometric advantages over static single period models of bankruptcy. The Vuong (1989)

test is used to compare the log-likelihood statistics obtained from the different non-nested discrete

hazard models, and determine whether the performance differences are statistically significant.

Since we use multiple firm-year observations for each firm we adopt the same form of discrete-

time hazard model as in Campbell et al. (2008). The discrete-time hazard model has the following

form:

pji,t =
eα(t)+βXi,t

1 + eα(t)+βXi,t
=

1

1 + e−(α(t)+β1Xi,t+β
j
2S

j
i,t)

, (11)

where, α(t) is a time-varying, system-wide variable that captures the baseline hazard rate, X is a

vector of independent variables for the ith firm at time t, and β is the parameters to be estimated.

The inclusion of a time dependent baseline hazard rate in the model allows for default rates to vary

each year. However, fluctuations in the baseline hazard rate will cause cross-sectional observations

to be correlated across time. Therefore, similar to Hillegeist et al. (2004) we proxy the baseline

hazard using the previous year’s actual default rate. Our results indicate that in most of the

regressions the prior year’s default rate is not statistically significant. Therefore, we drop the real

default rate by making α(t) constant and discuss only this set of results in the paper. Since default

probability is bounded between 0 and 1, it is not suitable as an independent variable for a logistic

model. Therefore, we transform all the default probability into a “score” using the inverse logistic
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function to remove the range restriction. The score of a default probability measure P has the

following form:

Score(P ) = ln

(
P

1− P

)
. (12)

Notice as the default probability P approaches one (zero), the score gets to negative (positive)

infinity. After the transformation, each of the DD-related default measure becomes a score and

the score for CHS default measure is represented by the (α + βxi,t−1) term. To avoid the impact

of extreme values in the regression, we winsorize all the probability measures at the minimum and

maximum values of 0.001% and 99.999%. The winsorization results in minimum and maximum

values of the scores to be between -11.5 and +11.5. The default scores are labeled as SV X , SBS ,

SCHS , SM1, SM2 and SM3 for the scores corresponding with VX-DD, BS-Näıve DD , CHS, IV-DD,

IV/ICC-DD and IV/ICC-Näıve DD estimation approaches, respectively.

The Vuong (1989) closeness test and the Clarke (2001, 2003) sign test are used to statistically

evaluate for the differences in the non-nested model. The Vuong (1989) test is a likelihood-ratio

based test with the null hypothesis that the two models are equally close to the actual model,

against the alternative that one model is closer. The Clarke (2001, 2003) distribution free test

applies a modified paired sign test to evaluate the differences in the individual log-likelihood from

two non-nested models. The test determines whether or not the median log-likelihood ratio is

statistically different from zero. If the models are equally close to the true model, half the individual

log-likelihood ratio should be greater than zero and the other half should be less than zero. The

reported test is the difference between the number of positive and negative log-likelihood ratios.

5 Empirical Results

5.1 ROC Results

Figure 1 plots the ROC curves for the six models along the 45
◦

line which represents the ROC

benchmark of random guesses. It is easily evident from the figure that the prediction accuracy for

all models are significantly better than the random model. With the exception of the IV/ICC-Näıve

DD and BS-Näıve DD models, the ROCs of the remaining models are found to be tightly grouped

together. A closer inspection of the area reported under the curve (AUC), at the bottom panel
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beneath the figure, reveals very little difference in default predictability between the IV/ICC-DD

and the CHS approaches, with both their areas being close to 0.94. Similarly, there is very little

distinction between IV-DD and VX-DD, although they each perform better than the BS-Näıve DD

model.

Table 6 presents the AUC and AR statistics, as well as the χ2 test results from comparing each

model’s ROC against the benchmark IV/ICC-DD model’s ROC. The results show that the default

accuracy of IV/ICC-DD is significantly larger (statistically significant at the 1% level) than VX-DD,

BS-DD, IV-DD and IV/ICC-Näıve DD. The difference in the prediction accuracy between IV/ICC-

DD and CHS, however, is not found to be statistically significant. In other words, based on the

ROC analysis, we conclude that the predictive power of Model 2 is statistically indistinguishable

from that of the CHS model. Overall, our results confirm that, with the exception of the CHS

model, the forecast accuracy of Model 2 is superior to all other models.

It is interesting to observe that the CHS model, which does not explicitly contain forward-

looking measures, perfoms quite well. We attribute the relatively strong performance of the CHS

model to two reasons. First, the CHS model seem to capture firm-level attributes that are related

to financial distress (also see Shumway, 2001). As opposed to the structural-based approach to

predicting firm failure events, CHS adopts a reduced-form econometric model to predict bankrupt-

cies. Second, the predictive ability of the model is enhanced by fine-tuning the set of explanatory

variables in a manner that yields optimal model specification.

5.2 Relative Information Content Test Results

We compare the relative information content of the six models by estimating six separate discrete

hazard models with a constant baseline hazard rate as follows:6

pji,t =
1

1 + e−(αj+βjSji,t)
, j = 1 to 6, (13)

where, Sji,t is the jth score of firm i at time t.

6We also estimate discrete hazard model using previous year real default rate and the previous five year real default
rate as proxy of the baseline rate. In most of the models, the coefficients of the baseline rate are not significant.
Thus, we decide to report the results of a constant baseline rate. The results with time-varying baseline rate are
available upon request.
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The results from each model are reported in Table 7. Table 7 presents the estimated coefficients,

the log-likelihood values, the McFadden’s pseudo-R2 values (calculated as 1 − L1/L0, where L1 is

the log-likelihood of the estimated model and L0 is the log-likelihood of the null model that includes

only a constant term).

Several interesting results are evident. First, the estimated parameters for all the six scores

are positive and statistically significant at the 1% level. Second, the log-likelihood values range

from -1300 for the model with SM2 to -1848 for Model with SM3. Between these two extremes,

the performance rank-order of the different default scores are: SCHS , SV X , SBS and SM1. This

rank-order is preserved even in the context of evaluating the pseudo-R2 values, with SM2 generating

the highest pseudo-R2 of 44.8%. The lowest pseudo-R2, 20%, is associated with the IV/ICC-Näıve

DD model. Notably, the explanatory power for all the different models are significantly larger than

those found by Hillegeist et al. (2004) who use a similar discrete hazard model and find a pseudo-R2

of only 12% for the Merton-based default probability. Overall, results from relative information

content corroborate the conclusions derived from the prediction accuracy analysis.

The Vuong and Clarke tests in Panel B suggest that the model with SM2 is statistically closer

to the “optimal” model than the models with SV X , SBS , SM1and SM3. Although the model

with SM2 has a slightly higher pseudo-R2 and log-likelihood value than the model with SCHS ,

the difference is not found to be statistically significant. Among the three models with implied

measures we find that the model with SM2 which incorporates both implied volatility and implied

cost of capital outperforms the other two models - SM1 and SM3. The relatively weak performance

of IV-DD may be attributed to the fact that using historical estimated return of assets to compute

distance-to-default significantly reduces the power of the implied volatility measure in the model.

Although IV/ICC-Näıve DD incorporates both implied volatility and implied cost of capital, it is

a measure which simply (or näıvely) replaces historical volatility and historical equity returns with

implied measures into the BS-Näıve DD model. It appears that the simple setup of the Bharath

and Shumway model is not able to fully utilize the power of the two forward-looking measures.

It may also be the case that the BS-Näıve DD model is optimized with historical measures, and

as such it performs poorly compared with alternative model setups that include forward-looking

measures. In contrast, the proposed IV/ICC-DD model seems to fully benefit from the power of

implied volatility as a proxy of future volatility and ICC as a proxy of expected returns in estimating
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default probabilities.

We find that the performance of the IV/ICC-DD model to be on par with the CHS model in

predicting defaults. However, it must be noted that the estimation results of the CHS model is

sample dependent (i.e., specific to the characteristics of the sample used in the regression), which

may make it more difficult to establish the model’s robustness under alternative samples. By

contrast, the DD-based structural model can be computed for any publicly traded firm - therefore,

our approach using implied volatility and cost of capital further enhances the attractiveness of using

a structural framework to estimate default probabilities.

In Table 8 we conduct a side-by-side comparison of our “best” predictive model (IV/ICC-DD)

with each of the remaining estimation models. In other words, in each model, SM2 and one of

the other five measures are treated as explanatory variables in the discrete-time hazard model.

These results are compared with Tables 7 to confirm the information superiority of the IV/ICC-

DD model in predicting defaults. For example, the model with only SV X in Table 7 shows that

the estimated coefficient of SV X is 36.6%, with a log-likelihood value of -1466.1 and pseudo-R2 of

36.5%. In the corresponding regression model that is enhanced with forward-looking measures in

the second column of Table 8, the estimated coefficients of SV X and SM2 are both significant, with a

substantial increase in pseudo-R2 (36.5% to 46%). In other words, adding forward-looking measures

of volatility and expected returns result in a significant improvement in the predictive ability of

the model. On the other hand, comparing the result with just SM2 as a single factor, we notice

that adding SV X only results in a small increase in the pseudo-R2 from 44.8% to 46%. Similar

results hold for all the other models, with one important exception - the inclusion of SCHS to SM2

does not greatly improve the model’s performance when compared with the model containing just

SCHS or SM2. This suggests that the forward-looking measures of the Merton DD model is not a

superior alternative to the CHS model.

5.3 Additional Relative Information Content Test Results

Platt and Platt (1991) suggest that it is possible to extract additional information by adjusting

the default probability measures for industry effects. Thus, similar to Hillegeist et al. (2004), we

investigate whether adjusting the default probability measures for industry effects would change the

relative performance of the different measures. Using the Fama-French industry classification, the
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default probability measures are decomposed into the prior year’s industry mean and its deviation

from its previous year’s industry mean. The discrete-time hazard model has the following form:

pji,t =
1

1 + e−(αj+βjmSjim,t−1+βjdS
j
id,t)

, j = 1 to 6, (14)

where, Sjim,t−1 refers to the previous year’s mean of the jth “score” for the industry where the ith

firm belongs, and Sjid,t = Sji,t − S
j
im,t−1 is the deviation of the jth score of firm i at time t.

The results for the industry-adjusted models are presented in Table 9. All the estimated param-

eters are statistically significant at the 1% level. The results show that there is significant industry

variation in default rates; however, incorporating this information into the hazard model results

only in a slight improvement of the overall information content of the different models. Importantly,

there is no evidence of change in the relative rankings even after adjusting for industry effects. The

Vuong and Clarke tests again confirm the superiority of the model containing the IV/ICC-DD mea-

sure with respect to the other Merton DD-based implementations. On the other hand, the Vuong

and Clarke tests provide conflicting evidence on the relative superiority of IV/ICC-DD versus CHS

models.

In order to obtain additional default information we decompose the default measures into lagged

levels and changes. The discrete-time hazard model has the following form:

pji,t =
1

1 + e−(αj+βjLS
j
i,t−1+βjC∆Sji,t)

, j = 1 to 6, (15)

where, ∆Sji,t = Sji,t − S
j
i,t−1 is the change of the jth score of firm i at time t from time t − 1. The

estimated results from the discrete hazard model regressions are reported in Table 10. The results

again confirm the relative superiority of IV/ICC-DD. The Vuong’s z-statistics of the difference

between the model with SM2 and the model with SCHS is 2.397, which is statistically significant

at the 5% level.

5.4 Direct Comparison to the Campbell et al. (2008) Hazard Model

All of the five Merton DD-default based specifications provide direct measures of bankruptcy;

whereas, the CHS measure is the predicted result from a discrete hazard model. In this section, we

20



first run the Campbell et al. (2008) hazard model that contains the eight factors from their “best”

model at the end of each year. We then sequentially add one of the six “scores” and estimate the

results from this new model. Notably, in this setup the Campbell et al. (2008) hazard model is

nested in the other specifications. To make the comparison consistent we also run a model with

the CHS measure. Since the CHS score is from the Campbell et al. (2008) hazard model hazard

model itself, we would not expect to find that the CHS score to change the results of the hazard

model.

The estimated results of this set of models are in Table 11. The results show that although the

CHS model itself should not be considered as an absolute default probability measure, it predicts

default quite well. The model has a log-likelihood of -1274.5 and a pseudo-R2 of 45.9%, which is

slightly higher than -1300.1 and 44.8% obtained from the model with SM2 as a single factor (as seen

in Table 7). These results can be contrasted with those found by Campbell et al. (2008), who find

that the pseudo-R2 of the DD model is only 15.9%, whereas their “best” model has a pseudo-R2

of 31.2%. In Campbell et al. (2008), when DD is added as an additional factor into their best

model, in the 0-horizon (forecasting window of 1-month) model the parameter changed direction,

and in the longer horizon the parameters decrease dramatically. For the 12-month horizon, the

magnitude of the parameter values decreased by about 74% (from -0.345 to -0.091). The results

show that although in longer horizons adding the DD factor contain some additional information,

the predictive power of the DD factor is significantly reduced by the other factors.

In our case, adding the eight CHS variables into the hazard model only improves the performance

slightly and reduces the coefficients of all but the CHS parameter. The decrease of the coefficient of

SM2 is the least, from 0.632 in a single factor setting to 0.446. The observed change is much smaller

than what is documented by Campbell et al. (2008). The pseudo-R2 for the model with SM2 and

the eight CHS factors is 51.2% (log likelihood value of -1155.1) compared to 44.8% (log likelihood

value of -1300.1) with SM2 as a single factor in the discrete hazard model. The results suggest that

the DD related models may carry more information for long forecast horizons than short horizons,

rendering the parameters to be more resilient to the addition of more factors. In summary, adding

the eight explanatory variables into the one-factor hazard model does not significantly strengthen

models default prediction performance.

Panel B shows the likelihood ratio test of model differences. The base model is the CHS best
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model. The null hypothesis is that alternative models with additional factors (the six other scores)

is not different in default prediction from the base model. Since the CHS model is nested in the

other models, the likelihood ratio test is used. The results in Panel B shows that the models with

default scores are better than the model without these scores. In other words, adding the scores

strengthen the information content of the CHS model.

6 Conclusions

Default risk is a critical risk factor for both shareholders and debtholders. In this paper, we develop

default prediction models that incorporate forward looking measures of returns and volatility. We

posit that any variable that contains (possible) future information should be preferred in default risk

models. Among the different types of default models, the Merton (1974) distance-to-default based

model is one of the most important and widely used model. However, in empirical applications,

most implementations of the Merton distance-to-default model use historical return and volatility

as proxies of expected return and volatility. We propose an important and variant application of

the Merton distance-to-default model that uses implied cost of capital and option implied volatility

as forward-looking proxies to improve the prediction of defaults.

Studies show that option implied volatility is a better predictor of future volatility than the

historical volatility. Similarly, the implied cost of capital is a measure that is implied by current

equity prices and market consensus represented by a group of financial analysts who follow the firm

closely. Thus, it also contains market expectations about future equity returns. We contend that

the combination of both measures into the Merton distance-to-default model should result in more

accurate predictions of default risk.

Empirical data for the period 1996 to 2012 are used to evaluate the results of our proposed

approach with existing implementations of the Merton DD-based model by Vassalou and Xing

(2004) and Bharath and Shumway (2008), as well as the dynamic logistic empirical specification

of Campbell et al. (2008) in different setups. Results from receiver operating characteristic and

relative information content tests with discrete-time hazard model indicate that our proposed mea-

sures perform well in all settings. The model’s out-of-sample performance compared with other

Merton-based models is superior and statistically significant at the 1% level. The results also show
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that our proposed implementation is at least as good as, and in some cases better than, the best

model specification in Campbell et al. (2008).

We conclude that implied cost of capital and implied volatility contain important information

and should be considered as proxies of future expected returns and volatility in default prediction

models. Additional insights into the economic significance of the results can be obtained by exam-

ining whether or not there is a risk premium associated with investing in distressed stock portfolios

formed by using our various predictive models. This would offer an interesting extension to our

study, and is a topic left for future research.
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Table 1: Bankruptcy by Year

The table reports the number of bankruptcy cases each year during 1997-2012.

Year Bankrupt Firms Rate

1997 8 1670 0.479
1998 12 1772 0.677
1999 17 1582 1.075
2000 39 1494 2.610
2001 84 1487 5.649
2002 68 1383 4.917
2003 42 1405 2.989
2004 19 1561 1.217
2005 20 1606 1.245
2006 9 1758 0.512
2007 10 1836 0.545
2008 17 1709 0.995
2009 39 1787 2.182
2010 8 1875 0.427
2011 10 1963 0.509
2012 15 2020 0.743
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Table 2: Bankruptcy by Industry

The table reports the number of bankruptcies sorted by the Fama-French 48 Industry
classification (financial industry excluded).

Ind Code Industry Firm Number Defaults Percentage of Percentage of
Firm-years firms

Years of Firms Bankrupt Bankrupt

1 Agriculture 115 22 2 1.739 9.091
2 Food Products 534 73 4 0.749 5.479
3 Candy and Soda 73 11 0 0.000 0.000
4 Beer and Liquor 129 15 0 0.000 0.000
5 Tobacco Products 72 10 0 0.000 0.000
6 Recreation 138 27 5 3.623 18.519
7 Entertainment 457 87 18 3.939 20.690
8 Printing and Publishing 219 33 7 3.196 21.212
9 Consumer Goods 445 58 5 1.124 8.621
10 Apparel 372 57 6 1.613 10.526
11 Healthcare 532 105 15 2.820 14.286
12 Medical Equipment 867 164 7 0.807 4.268
13 Pharmaceutical Products 2058 400 16 0.777 4.000
14 Chemicals 847 116 8 0.945 6.897
15 Rubber and Plastic Products 145 30 2 1.379 6.667
16 Textiles 68 16 4 5.882 25.000
17 Construction Materials 403 64 6 1.489 9.375
18 Construction 333 49 6 1.802 12.245
19 Steel Works 578 93 10 1.730 10.753
20 Fabricated Products 39 11 3 7.692 27.273
21 Machinery 1012 160 10 0.988 6.250
22 Electrical Equipment 399 68 8 2.005 11.765
23 Automobiles and Trucks 464 81 13 2.802 16.049
24 Aircraft 161 21 0 0.000 0.000
25 Shipbuilding and Railroad Equipment 66 13 0 0.000 0.000
26 Defense 61 6 1 1.639 16.667
27 Precious Metals 269 53 1 0.372 1.887
28 Non-Metallic and Metal Mining 223 40 0 0.000 0.000
29 Coal 120 22 1 0.833 4.545
30 Petroleum and Natural Gas 1989 331 16 0.804 4.834
31 Utilities 1311 164 9 0.686 5.488
32 Communication 1599 337 59 3.690 17.507
33 Personal Services 286 56 8 2.797 14.286
34 Business Services 2965 727 55 1.855 7.565
35 Computers 1021 222 19 1.861 8.559
36 Electronic Equipment 2036 367 20 0.982 5.450
37 Measuring and Control Equipment 575 84 3 0.522 3.571
38 Business Supplies 450 61 5 1.111 8.197
39 Shipping Containers 109 14 0 0.000 0.000
40 Transportation 1084 182 18 1.661 9.890
41 Wholesale 954 153 16 1.677 10.458
42 Retail 1763 280 37 2.099 13.214
43 Restaurants, Hotels and Motels 548 88 5 0.912 5.682
48 Almost Nothing 452 88 13 2.876 14.773

Total 28341 5059 441 1.556 8.717
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Table 4: Correlation Matrix of Default Probability Measures

The table reports the correlation matrix of the default probability measures. The lower triangular
and upper triangular parts of the matrix represent the Pearson correlation and the Spearman
rank correlation. Here, VX, BS, CHS, and M1, M2 and M3 refer to the Vassalou and Xing (2004),
Bharath and Shumway (2008) Näıve measure, the Campbell et al., (2008) best model, the
proposed IV-DD, IV/ICC-DD and IV/ICC Näıve DD measures, respectively.

Variables VX BS CHS M1 M2 M3

VX 0.775 0.724 0.817 0.763 0.799
BS 0.749 0.646 0.717 0.699 0.680
CHS 0.488 0.503 0.688 0.670 0.711
M1 0.859 0.674 0.417 0.797 0.756
M2 0.611 0.619 0.597 0.591 0.868
M3 0.708 0.561 0.326 0.553 0.522

30



Table 5: Out-of-Sample Forecasts

The table reports out-of-sample forecasts for the different default probability measures. Here, VX,
BS, CHS, and M1, M2 and M3 refer to the Vassalou and Xing (2004), Bharath and Shumway
(2008) Näıve measure, the Campbell et al., (2008) best model, the proposed IV-DD, IV/ICC-DD
and IV/ICC Näıve DD measures, respectively.

Decile VX BS CHS M1 M2 M3

1 57.143 61.050 60.302 70.748 78.458 62.528
2 18.802 15.654 17.407 15.420 9.524 10.835
3 8.756 6.446 8.259 4.308 4.082 4.063
4 5.069 4.512 4.796 1.814 2.268 2.483
5 3.134 2.394 2.931 0.907 1.134 2.032

6-10 7.097 9.945 6.306 6.803 4.535 18.059
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Table 6: Results from the Receive Operating Characteristic Analysis

The table reports the results of the Receiver Operating Characteristic analysis. Here, VX, BS,
CHS, and M1, M2, and M3 refer to the Vassalou and Xing (2004), Bharath and Shumway (2008)
Näıve measure, the Campbell et al., (2008) best model, the proposed IV-DD, IV/ICC-DD and
IV/ICC Näıve DD measures, respectively. AUC and AR are the area under the curve and
accuracy rate. The χ2 statistics is the statistics test results of comparing each ROC against the
benchmark IV/ICC-DD model’s ROC. ∗∗∗ indicates significance at the 1% level.

Measures AUC StdErr χ2 AR

VX 0.922 0.007 33.98∗∗∗ 0.843
BS 0.902 0.009 34.10∗∗∗ 0.803
CHS 0.939 0.007 0.54 0.879
M1 0.926 0.007 18.97∗∗∗ 0.853
M2 0.943 0.006 0.885
M3 0.831 0.012 113.69∗∗∗ 0.662
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Table 7: Logistic Regression with Default Scores as Single Factors

The table reports the results of the Hazard model:

pji,t =
1

1 + e−(αj+βjSji,t)
, j = 1 to 6, (16)

where, Sji,t is the jth score of firm i at time t. Here, VX, BS, CHS, and M1, M2, and M3 refer to
the Vassalou and Xing (2004), Bharath and Shumway (2008) Näıve measure, the Campbell et al.,
(2004) best model, the proposed IV-DD, IV/ICC-DD and IV/ICC Näıve DD measures,
respectively. ∗, ∗∗, and ∗∗∗ indicates significance at the 10%, 5% and 1% level.

Panel A: Logistic Regression Estimation Results

Parm SV X SBS SCHS SM1 SM2 SM3

Constant -2.467∗∗∗ -1.950∗∗∗ 4.900∗∗∗ -2.852∗∗∗ -0.298 -2.350∗∗∗

SV X 0.366∗∗∗

SBS 0.408∗∗∗

SCHS 1.018∗∗∗

SM1 0.263∗∗∗

SM2 0.632∗∗∗

SM3 0.275∗∗∗

Log Likelihood -1466.1 -1503.9 -1332.5 -1575.3 -1300.1 -1848.2
Pseudo-R2 0.365 0.348 0.433 0.324 0.448 0.200
Observations 28341 28341 28341 28341 28341 28341
Bankruptcy 441 441 441 441 441 441

Panel B: Vuong Test and Clarke Sign Test Results

Vuong’s Z Clarke
VX versus M2 7.227∗∗∗ 10398.0∗∗∗

BS versus M2 7.107∗∗∗ 10745.5∗∗∗

CHS versus M2 1.331 7455.5∗∗∗

M1 versus M2 9.208∗∗∗ 10704.5∗∗∗

M3 versus M2 13.183∗∗∗ 11863.5∗∗∗
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Table 8: Logistic Regression with SM2 as a Common Factor

The table reports the results of the Hazard model:

pji,t =
1

1 + e−(αj+βM2S
M2
i,t +βjSji,t)

, j = 1 to 5, (17)

where, SM2
i,t refers to the score of the IV/ICC DD measure, and Sji,t is the score of the other five

measures. Here, VX, BS, CHS, and M1, M2, and M3 refer to the Vassalou and Xing (2004),
Bharath and Shumway (2008) Näıve measure, the Campbell et al., (2008) best model, the
proposed IV-DD, IV/ICC-DD and IV/ICC Näıve DD measures, respectively. ∗, ∗∗, and ∗∗∗

indicates significance at the 10%, 5% and 1% level.

Parameter SV X SBS SCHS SM1 SM3

Constant -0.636∗∗∗ -0.335 2.518∗∗∗ -0.743∗∗∗ -0.323
SM2 0.496∗∗∗ 0.544∗∗∗ 0.381∗∗∗ 0.484∗∗∗ 0.703∗∗∗

SV X 0.119∗∗∗

SBS 0.105∗∗∗

SCHS 0.489∗∗∗

SM1 0.121∗∗∗

SM3 -0.096∗∗∗

Log Likelihood -1255.5 -1249.9 -1237.9 -1265.3 -1284.2
Pseudo R2 0.460 0.463 0.475 0.463 0.455
Observations 28341 28341 28341 28341 28341
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Table 9: Logistic Regression with Industry Means and Deviations

The table reports the results of the Hazard model:

pji,t =
1

1 + e−(αj+βjmSjim,t−1+βjdS
j
id,t)

, j = 1 to 6, (18)

where, Sjim,t−1 refers to the previous year’s mean of the jth “score” for the industry where the ith

firm belongs, and Sjid,t = Sji,t − S
j
im,t−1 is the deviation of the jth score of firm i at time t. Here,

VX, BS, CHS, and M1, M2, and M3 refer to the Vassalou and Xing (2004), Bharath and
Shumway (2008) Näıve measure, the Campbell et al., (2008) best model, the proposed IV-DD,
IV/ICC-DD and IV/ICC Näıve DD measures, respectively. ∗, ∗∗, and ∗∗∗ indicates significance at
the 10%, 5% and 1% level.

Panel A: Logistic Regression Estimation Results

Parameter SV X SBS SCHS SM1 SM2 SM3

Constant -2.723∗∗∗ -1.711∗∗ 4.539∗∗ -2.286∗∗∗ -0.983 -1.453∗∗

SV Xid 0.376∗∗∗

SV Xim 0.338∗∗∗

SBSid 0.401∗∗∗

SBSim 0.433∗∗∗

SCHSid 1.026∗∗∗

SCHSim 0.984∗∗∗

SM1
id 0.253∗∗∗

SM1
im 0.332∗∗∗

SM2
id 0.654∗∗∗

SM2
im 0.566∗∗∗

SM3
id 0.254∗∗∗

SM3
im 0.376∗∗∗

Log Likelihood -1464.4 -1503.1 -1332.3 -1566.2 -1295.7 -1836
Pseudo-R2 Rsq 0.366 0.348 0.433 0.329 0.450 0.205
Observations 28341 28341 28341 28341 28341 28341
Bankruptcy 441 441 441 441 441 441

Panel B: Vuong Test and Clarke Sign Test Results

Vuong’s Z Clarke
SV Xid and SV Xim versus SM2

id and SM2
im 7.167∗∗∗ 10412.0∗∗∗

SBSid and SBSim versus SM2
id and SM2

im 7.192∗∗∗ 10802.5∗∗∗

SCHSid and SCHSim versus SM2
id and SM2

im 1.468 7568.5∗∗∗

SM1
id and SM1

im versus SM2
id and SM2

im 8.959∗∗∗ 10738.5∗∗∗

SM3
id and SM3

im versus SM2
id and SM2

im 13.139∗∗∗ 11869.5∗∗∗
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Table 10: Logistic Regression with Lags and Changes

The table reports the results of the Hazard model:

pji,t =
1

1 + e−(αj+βjLS
j
i,t−1+βjC∆Sji,t)

, j = 1 to 6, (19)

where, ∆Sji,t = Sji,t − S
j
i,t−1 is the change of the jth score of firm i at time t from time t− 1. Here,

VX, BS, CHS, and M1, M2, and M3 refer to the Vassalou and Xing (2004), Bharath and
Shumway (2008) Näıve measure, the Campbell et al., (2008) best model, the proposed IV-DD,
IV/ICC-DD and IV/ICC Näıve DD measures, respectively. ∗, ∗∗, and ∗∗∗ indicates significance at
the 10%, 5% and 1% level.

Panel A: Logistic Regression Estimation Results

Parameter SV X SBS SCHS SM1 SM2 SM3

Constant -2.161∗∗∗ -1.716∗∗∗ 5.991∗∗∗ -2.118∗∗∗ 0.177 -2.433∗∗∗

SV Xt−1 0.412∗∗∗

∆SV X 0.346∗∗∗

SBSt−1 0.442∗∗∗

∆SBS 0.377∗∗∗

SCHSt−1 1.133∗∗∗

∆SCHS 0.954∗∗∗

SM1
t−1 0.375∗∗∗

∆SM1 0.268∗∗∗

SM2
t−1 0.726∗∗∗

∆SM2 0.652∗∗∗

SM3
t−1 0.275∗∗∗

∆SM3 0.272∗∗∗

Log Likelihood -1203 -1239 -1138.1 -1078.2 -900.25 -1374.6
Pseudo-R2 0.377 0.357 0.447 0.369 0.478 0.199
Observations 26908 26908 26908 26908 26908 26908
Bankruptcy 417 417 417 417 417 417

Panel B: Vuong Test and Clarke Sign Test Results

Vuong’s Z Clarke
SV Xt−1 and ∆SV X versus SM2

t−1 and ∆SM2 6.489∗∗∗ 8537.0∗∗∗

SBSt−1 and ∆SBS versus SM2
t−1 and ∆SM2 6.560∗∗∗ 8747.0∗∗∗

SCHSt−1 and ∆SCHS versus SM2
t−1 and ∆SM2 2.397∗∗ 7397.0∗∗∗

SM1
t−1 and ∆SM1 versus SM2

t−1 and ∆SM2 7.483∗∗∗ 8714.5∗∗∗

SM3
t−1 and ∆SM3 versus SM2

t−1 and ∆SM2 11.713∗∗∗ 9441.5∗∗∗
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Table 11: Logistic Regression with Campbell et al. (2008) Factors

The table reports the results of the Hazard model:

pji,t =
eα(t)+βXi,t

1 + eα(t)+βXi,t
=

1

1 + e−(α(t)+β1Xi,t+β
j
2S

j
i,t)

, (20)

where, Xi,t are the eight explanatory variables in the Campbell et al. (2008) best model, and Sji,t is the jth score of
firm i at time t. Here, VX, BS, CHS, and M1, M2, and M3 refer to the Vassalou and Xing (2004), Bharath and
Shumway (2008) Naive measure, the Campbell et al., (2004) best model, the proposed IV-DD, IV/ICC-DD and
IV/ICC Naive DD measures, respectively. ∗, ∗∗, and ∗∗∗ indicates significance at the 10%, 5% and 1% level.

Panel A: Logistic Regression Estimation Results

Parameter Original SV X SBS SCHS SM1 SM2 SM3

Constant −8.403∗∗∗ −5.561∗∗∗ −6.282∗∗∗ 4.105 −5.811∗∗∗ −2.583∗∗ −6.730∗∗∗

NIMTAAVG −24.220∗∗∗−22.490∗∗∗−20.240∗∗∗ 3.413 −24.220∗∗∗−16.980∗∗∗−22.650∗∗∗

TLMTA 2.130∗∗∗ 0.217 0.820∗∗ −1.826∗ 0.749∗∗ −0.631∗ 1.211∗∗∗

EXRETAVG −24.150∗∗∗−18.920∗∗∗−21.390∗∗∗−11.620∗∗∗−18.630∗∗∗−18.900∗∗∗−23.090∗∗∗

SIGMA 1.432∗∗ 0.546 0.853 −0.440 0.766 −0.001 1.247∗∗

RSIZE −0.274∗∗ −0.236∗∗ −0.257∗∗ −0.214 −0.199 −0.178∗ −0.241∗∗

CASHMTA −4.004∗∗∗ −4.161∗∗∗ −3.319∗∗∗ −1.420 −4.235∗∗∗ −3.771∗∗∗ −3.948∗∗∗

MB 0.072∗ 0.078∗∗ 0.048 −0.020 0.082∗∗ 0.042 0.063∗

PRICE −0.680∗∗∗ −0.606∗∗∗ −0.679∗∗∗ 0.000∗∗∗ −0.619∗∗∗ −0.408∗∗ −0.793∗∗∗

SV X 0.177∗∗∗

SBS 0.145∗∗∗

SCHS 1.057∗∗∗

SM1 0.148∗∗∗

SM2 0.446∗∗∗

SM3 0.082∗∗∗

Log Likelihood -1274.5 -1222.2 -1213.2 -1274.5 -1224.4 -1155.1 -1260.2
Pseudo-R2 0.459 0.475 0.479 0.459 0.481 0.512 0.465
Observations 28341 28341 28341 28341 28341 28341 28341
Bankruptcy 441 441 441 441 441 441 441

Panel B: Likelihood Ratio Test of Model Difference

χ2

SV X versus Original 61.29∗∗∗

SBS versus Original 79.28∗∗∗

SCHS versus Original 0.00
SM1 versus Original 100.18∗∗∗

SM2 versus Original 238.84∗∗∗

SM3 versus Original 28.51∗∗∗

37



Figure 1: ROC Curves for Different Models

The graph plots ROC curves for different bankruptcy prediction models. The ROC curve plots Sensitivity (true
positives) against Specificity (false positives) for different cut-off points of a parameter. The area under the curve
(AUC) measures the prediction accuracy of each model.
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Appendix A: Computation of Implied Cost of Capital

We follow Chava and Purnanandam (2010) to compute the Implied Cost of Capital (ICC) using

the discounted cash flow framework to value equity. The model relies on explicitly forecasting cash

flows for the next T = 15 years and incorporates the effect of subsequent cash flows using a terminal

value calculation. The expected free cash flow to equity, FCFE,of firm i in year t+ k is given by:

Et [FCFEi,t+k] = FEi,t+k × (1− bi,t+k), (21)

where, FEi,t+k is the earning estimate of firm i in year t + k and bi,t+k is the earnings plow-back

or retention rate.

1. We compute the terminal value as a perpetuity:

TVi,t+T =
FEi,t+T+1

ri,e
. (22)

2. Collecting all the terms, we get the following:

Pi,t =
∑T

k=1

FEi,t+k × (1− bi,t+k)
(1 + ri,e)k

+
FEi,t+T+1

ri,e(1 + ri,e)T
. (23)

3. Solving the equation for ri,e gives us the Implied Cost of Capital – Expected Return.

Estimating Earnings:

FEi,t+k is estimated using the earnings forecast available from I/B/E/S (Institutional Brokers’

Estimate System) database. We use one-year and two-year ahead consensus (median) forecasts as

proxies for FEi,t+1 and FEi,t+2, respectively. FEi,t+3 = FEi,t+2 × (1 + LTG), where, LTG is the

consensus long-term growth forecast from I/B/E/S. We forecast earning from year t+4 to t+T +1

by mean-reverting the year t + 3 earnings growth rate to a steady state growth rate of the firm’s

earnings which is assumed to be the ten year moving average of gross domestic product (GDP)
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growth rate (g).7 The growth rate for year t+ k (k > 3) is

gi,t+k = gi,t+k−1 × exp

(
ln(g/LTG)

T − 2

)
. (24)

Using this, we compute earning as follows:

FEi,t+k = FEi,t+k−1 × (1 + gi,t+k). (25)

Estimating Earnings Plowback Rate:

The most recent year payout is defined as the sum of dividends and share repurchases minus

any issuance of new equity. This data is obtained from COMPUSTAT. The payout ratio is the

payout divided by net income. Plow-back rate is one minus the payout ratio. We use the above

plow-back ratio for the first year and mean-revert it to a steady state value by year t+ T + 1. At

the steady state g = ROI × b. Set ROI for new investments to re. That is, we assume that the

presence of industry competition would drive the return on a firm’s new investments to be equal

to its cost of equity. Thus, the plow-back rate for year t+ k (2 ≤ k ≤ T + 1) is:

bi,t+k = bi,t+k−1 −
bi,t+1 − bi

T
, (26)

bi =
g

ri,e
. (27)

Expected risk-premium: We subtract the prevailing one-year risk-free rate from the ICC to

obtain the expected risk-premium.

7GDP growth data is taken from Bureau of Economic Analysis.
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