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ABSTRACT 

 
 
 

LARGE SCALE BRAIN NETWORK MENTAL WORKLOAD ENGAGEMENT IN 

SCHIZOPHRENIA 

 
 
 

Objective: Cognitive deficits in patients diagnosed with schizophrenia are a core 

feature of the disorder. There are currently no treatments for these cognitive deficits. 

Our aim is to examine and compare patterns of increased versus decreased activity in 

the central executive network (CEN), salience network (SN), and default mode network 

(DMN) between healthy controls (HC) and patients diagnosed with schizophrenia (SZ) 

as well as to explore the influence of task load on these networks between HC and SZ.  

Method: Analyses focused on a secondary dataset comprising Blood Oxygen-

Level Dependent (BOLD) data collected from 25 HC and 27 SZ who completed a 

working memory (WM) task (N-back) with 5 load conditions while undergoing 

functional magnetic resonance imaging (fMRI). Region of interest (ROI) data were 

analyzed using linear mixed-effects models. Dynamic causal modeling (DCM) was used 

in an exploratory analysis to examine working memory load input to these networks.  

Results: Group activation differences were found in the posterior salience 

network (pSN), default mode network (DMN), dorsal default mode network (dDMN), 

and ventral default mode network (vDMN) showing greater activity for SZ. Specifically, 

pSN, SMN, dDMN, and vDMN all showed increased activity in SZ compared to HC. The 

curve of brain activity was consistent between HC and SZ with the exception of the 
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vDMN, where HC show greater activation at modest mental workload (quadratic curve) 

and SZ showed greater brain activation at lower mental workload (linear). In the CEN, 

there were no group differences, and the response curve was the same for both groups. 

In DCM analysis, working memory load acted as an input on different networks between 

HC and SZ.  

Conclusions: These group differences demonstrate network difference between 

HC and SZ and could show value in treatments targeting cognitive deficits in SZ from a 

large-scale brain network connectivity perspective. Future studies are needed to confirm 

these results with higher sample size in order to examine potential subtleties of 

interactions between these networks. 
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INTRODUCTION 

 

 

 

 Schizophrenia is a debilitating mental illness that affects between 0.5 and 

1% of the world’s population (Knapp et al., 2004). This disorder also increases early 

mortality rate by two to three times (Laursen et al., 2014). Symptoms typically manifest 

in what is considered the ‘prime of life’, between the ages of 18 and 25, and then persist 

throughout adulthood (de Girolamo et al., 2019). There is a desperate need to better 

understand, treat, and minimize the impact of this disorder. 

Schizophrenia diagnosis requires the presence of positive and/or negative 

symptoms (American Psychiatric Association, 2013). Positive symptoms include: (1) 

delusions, or fixed beliefs that do not change when presented with conflicting evidence; 

(2) hallucinations, or sensory perception-like experiences that occur separate from 

outside stimuli; and (3) disorganized thinking, speech, and or motor behavior, which is 

characterized by switching from one subject to another and or non-goal-oriented motor 

behavior. Negative symptoms are generally characterized by experiential (i.e., avolition 

and anhedonia) or expressive (i.e., affective blunting/flattening and alogia) features. 

Although not required for diagnosis, cognitive deficits are a third common feature of 

schizophrenia.  

Cognitive deficits, which have been associated with psychosis since the writing of 

Kraepelin (Kahn, 2014), are not an incidental feature of the disorder. Rather, cognitive 

deficits more strongly predict functional outcomes than do positive and negative 

symptoms (Bowie & Harvey, 2006; Carter & Barch, 2007; Green et al., 2000). Despite 
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this, the search for effective procognitive therapeutics remains elusive. A possible 

explanation is that little is known about the brain network basis of these deficits. The 

goal of this thesis is to characterize brain network disruption in schizophrenia, and by 

doing so shed light on possible causes of global cognitive disfunction in the disorder. 

Cognitive Deficits in Schizophrenia 

Cognitive deficits associated with schizophrenia are global. Most notably, 

patients show deficits in general intelligence that are typically in the moderate effect size 

range (Woodberry et al., 2008). Attenuated deficits are present in patients who are later 

diagnosed with schizophrenia even before they experience their first psychotic episode 

(Aylward et al., 1984; David et al., 1997; Reichenberg et al., 2006). Evidence also 

suggests that people who develop schizophrenia have premorbid IQs that are lower than 

that of their siblings (Lane & Albee, 1965).  

Patients diagnosed with schizophrenia have deficits across nearly all cognitive 

domains including general intelligence, attention, motivation, verbal ability, and 

working memory (Aylward et al., 1984; David et al., 1997; Kubicki et al., 2009; Lane & 

Albee, 1965; Nuechterlein & Dawson, 1984; Oker et al., 2019; Woodberry et al., 2008). 

Of these domains, working memory (WM) is among the most prominent and well-

studied (Barch & Smith, 2008; Kalkstein et al., 2010; Lee & Park, 2005), and most 

strongly connected to many functional outcomes (Green et al., 2000). WM has been 

defined as “ … mechanisms or processes that are involved in the control, regulation and 

active maintenance of task-relevant information in the service of complex cognition … ” 

(Miyake & Shah, 1999). WM is also strongly related to effort and motivation in that high 

levels of working memory load exert a heavier toll on mental workload (the total amount 



3 
 

of a person’s mental resources that are invested in a task). Notably, SZ also have deficits 

in effort (Barch & Dowd, 2010; Culbreth et al., 2016). Indeed, it has been suggested that 

some aspects of patients’ cognitive deficits on WM and other demanding cognitive tasks 

can be explained by a failure to engage mental workload (Oker et al., 2019). These issues 

make treating cognitive deficits in SZ challenging as the cognitive basis for these deficits 

are ambiguous. 

Treatment of Schizophrenia 

 Treatment for schizophrenia relies heavily on pharmacological 

interventions, though psychosocial interventions are also recommended (Kane & 

Marder, 1993; Keepers et al., 2020). Antipsychotic treatments typically target specific 

dopamine and serotonin and norepinephrine pathways (Kane & Marder, 1993; Stępnicki 

et al., 2018). These medications are, in general, effective in reducing the severity of 

hallucinations and delusions (Stępnicki et al., 2018). However, they have less of an 

impact on negative symptoms (Leucht et al., 2009), and have no positive effect on 

cognitive functioning. Antipsychotics can be associated with iatrogenic effects for 

cognition. Specifically, many antipsychotics have anticholinergic properties, and these 

anticholinergic effects have been associated with dose-dependent deficits in cognitive 

functioning (Joshi et al., 2021). Not only do common pharmacologic treatments for 

schizophrenia not improve cognition, but they can also exacerbate preexisting cognitive 

deficits. Moreover, there are no drugs that are approved for the treatment of cognitive 

deficits (Stępnicki et al., 2018). 

Brain Differences in Schizophrenia 
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A possible explanation for why cognitive treatments for schizophrenia have 

proven elusive is that we lack a comprehensive understanding of the brain-basis of 

cognitive psychopathology (Carter & Barch, 2007). Gaining a better understanding of 

cognitive and brain abnormalities in schizophrenia could lead to more targeted 

treatments (Carter & Barch, 2007). What is known is that patients show widespread 

differences in the brain relative to healthy controls (HC), and that these differences are 

associated with cognitive deficits (Barch, 2005). Brain abnormalities associated with 

psychosis are both structural and functional (Chua & McKenna, 1995). The affected 

regions are found throughout the brain, but especially in frontal and parietal cortices, as 

well as the striatum (Zhao et al., 2018).  

 A truism of schizophrenia is that there is no one brain location that 

explains deficits. As noted by Swerdlow ( 1991), “The ‘hole’ thing is wrong.” However, it 

is important to note that several key brain areas that show abnormal structure and 

function in schizophrenia are considered to be functional nodes within interrelated 

brain networks. These include the dorsolateral prefrontal cortex, posterior parietal 

cortex, medial prefrontal cortex, angular gyrus, insula, and anterior cingulate cortex 

(Manoliu et al., 2014; Menon, 2011). Understanding how these brain regions function, 

or misfunction, in the context of network difference in patients with schizophrenia (SZ) 

is an increasingly important area of research.  

Brain Network Differences 

Patients diagnosed with schizophrenia show disruption in several brain 

networks, namely, the default mode network (DMN), the salience network (SN), and the 
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central executive network (CEN). This is important because the interplay of these three 

networks is critical to successful cognitive task performance (Menon, 2011).  

 The CEN (also referred to as the frontoparietal network) is a brain network 

that shows increased activity during task engagement (van den Heuvel & Hulshoff Pol, 

2010). The network’s major nodes include the dorsolateral prefrontal cortex (dlPFC) 

and the posterior parietal cortex (PPC). These cortical areas are observed to be 

functionally connected when an individual is ‘on task’; that is, purposefully engaged 

with a cognitive task (Cao et al., 2016). More granularly, the dlPFC is known to be more 

active during tasks that involve decision making and WM (Philiastides et al., 2011; 

Schon et al., 2013), and the PPC known to be more active during a variety of cognitive 

tasks, but especially tasks that involve spatial reasoning, visual WM, and calculation 

(Berryhill & Olson, 2008; Malhotra et al., 2009).  

 The DMN is known to show increased activity during breaks, rest, and 

self-referential activities such as daydreaming (van den Heuvel & Hulshoff Pol, 2010). 

The network’s major nodes include the medial prefrontal cortex (mPFC), the posterior 

cingulate cortex (PCC), and the angular gyrus (AG). The mPFC is known to be more 

active during self-referential decision making and reward learning (Euston et al., 2012), 

the PCC is known to be more active during self-referential memory and emotional 

salience (Leech & Sharp, 2014), and the AG is known to be more active during with 

language, spatial cognition, and attention (Cattaneo et al., 2009). 

 The SN is known to show increased activity when tasks require particular 

stimuli to stand out from others (van den Heuvel & Hulshoff Pol, 2010). The network’s 

major nodes include the anterior insula (aINS) and the anterior cingulate cortex (ACC). 
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The aINS is known to be more active during tasks that require multi-modal sensory 

(audio-visual) sensory processing, body awareness, interoception, and emotional 

salience (Stephani et al., 2011). The ACC is known to be more active during tasks that 

require error detection and monitoring, reward learning, and emotional modulation 

(Vogt, 2005). 

 In the ‘triple network model’, healthy or neurotypical individuals show an 

inverse pattern of activation in the DMN and CEN with the SN mediating between the 

two (Li et al., 2018; Menon, 2011). That is, when an individual is engaged in a task, the 

CEN is more active and the DMN is less active and vice-versa when the individual is not 

engaged in a task. The SN appears to play an important role in the relationship between 

the two (Li et al., 2018; Menon, 2011).  

While the DMN, CEN, and SN appear to show naturally balanced patterns of 

activity in healthy or neurotypical individuals, they appear to be disrupted in many 

psychiatric and neurological disorders (Menon, 2011). This is particularly true of 

schizophrenia (Calhoun, 2009). Patients diagnosed with schizophrenia exhibit 

functional abnormalities between the CEN, DMN, and SN and the balance of the triple 

network model seems to be abnormal (Jeong & Kubicki, 2010). In particular, there is 

evidence of less suppression of the DMN during task activity and also less engagement 

of the CEN (Zhou et al., 2016). Notably, network activity is not just related to cognitive 

deficits, but also symptoms and functional outcomes in a positive or negative direction 

depending on the network (Cao et al., 2016; Hare et al., 2019), suggesting that 

elucidating these abnormalities could lead to better target treatment and improved 
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functional outcomes. Indeed, network abnormalities have been linked to improvements 

in treatment (Lin et al., 2021).  

Aims 

 Decades of research have now clearly established that patients with SZ 

show impairments in cognitive ability and effort, and that the functional activity of 

several important brain networks is disrupted in schizophrenia. However, we do not 

know how these networks engage and disengage interactively under mental workload. It 

is possible that SZ results in the disruption of normal connectivity within the triple 

network model under workload, thereby explaining, in part, why patients show both 

poor cognitive ability and poor functioning. Understanding the nature of this 

abnormality activity could prove crucial to developing effective cognitive treatments for 

patients. The first aim is to examine and compare patterns of increased versus decreased 

activity in the CEN, DMN, and SN between HC and SZ. In particular, I will examine how 

changing mental workload modulates brain network engagement. Hypothesis 1 is that 

patients diagnosed with schizophrenia will show less mental workload-based 

modulation of these networks. The second, exploratory aim is to examine how N-back 

level (task-load) acts as an input on these large-scale brain networks to see if there are 

differences between HC and SZ. Specifically, I wanted to know whether external 

demands of cognitive task difficulty might differentially affect these three networks 

between HC and SZ.
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METHOD 

Participants 

 Data were selected from a previously competed study (Thomas et al., 

2021). Specifically, 27 patients diagnosed with schizophrenia or schizoaffective disorder 

and 25 healthy controls were recruited to participate in a brain imaging study of 

cognitive deficits in psychosis. The inclusion criteria were unimpaired hearing and 

eyesight and English fluency and between 18 and 70 years of age. Exclusion criteria were 

inability to give consent, positive drug toxicology screen, substance dependency in the 

last 6 months, pregnancy, contraindications for MRI, significant past head injury, 

significant extrapyramidal symptoms or tardive dyskinesia, and significant other 

medical or neurological diagnoses. Controls were additionally excluded if they were 

enrolled in special education courses during school or met diagnostic criteria for any 

psychosis spectrum disorder or bipolar disorder. Left-handedness was not excluded, as 

this trait tends to be higher in patients diagnosed with schizophrenia (although the 

proportion in this study was nearly identical to HCs). Clinical diagnoses were verified by 

a licensed clinical psychologist using structured interviews (Thomas et al., 2021). 

Design 

 The original experimental design was a two-by-five mixed factorial. The 

between-subjects factor was population (i.e., HC vs. SZ; 2 levels). The within-subjects 

factor was WM load (5 levels). To manipulate load, participants were administered the 

N-back task. The N-back task is a measure of WM that requires examinees to monitor a 

continuous stream of stimuli (pseudowords) and respond each time an item is repeated 

from N before. Three N-back runs were created, each consisting of 5 blocks of trials (i.e., 
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1- through 5-back load conditions). One run was administered outside of the scanner 

and the remaining two were administered within the scanner. Blocks were 

counterbalanced over runs. The task was administered using PsychoPy (Peirce et al., 

2019). Pseudowords were presented in white font on a black background for 2500ms 

with a 500ms inter-item-interval. The timing was constrained so that each block would 

last exactly 60s. Blocks were separated by 20s intervals (with a fixation cross). 

Preprocessing 

Imaging data was previously processed using local scripts as well as software 

from Analysis of Functional NeuroImages (AFNI; Ver. 18.1.14) (Cox, 1996) and FMRIB 

Software Library (FSL; Ver. 5.0.10) (Jenkinson et al., 2012) to process the structural and 

functional images. In AFNI non-brain tissue was removed from structural images, and 

adjustments to registration were made to automatically warp the images into Talairach 

space (Talairach & Tournoux, 1988) using the ICBM-452 brain template (Rex et al., 

2003). Magnetic field distortions were corrected using FSL’s TOPUP tool. Scanner 

artifacts (spikes) were removed using AFNI’s 3dDespike tool. Next, AFNI’s alignment 

tool (align_epi_anat) was used to co-register functional images (3dvolreg) within the 

time-series and then align them to the (unregistered) structural images (3dAllineate). 

Given the block design, the data were not time shifted (Poldrack et al., 2011). 

In order to account for physiological motion, respiration and cardiac activity were 

acquired in parallel with the functional images and converted to sines and cosines of the 

first and second phase cycles modeling the physiological activity (Glover et al., 2000). 

Using AFNI’s 3dDeconvolve tool, a general linear model (GLM) was then applied to each 

participant’s co-registered functional images and movement time-series data. The GLM 
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analysis incorporated covariates accounting for linear, quadratic, cubic, and quartic 

drift, six motion parameters, eight physiological noise regressors, and the reference 

functions. The GLM was performed on a slice-by-slice basis with slices re-assembled 

into a 3D map. The physiological regressors had a differential correction depending on 

slice to account for the differential effects of physiological motion depending on brain 

location.  

Spatial smoothing was not used for the ICA portion of the analysis, per 

recommendations by the developers of FSL, as such smoothing will lead to lesser detail 

in the component extraction and causes peak activation focus to be displaced. A high 

pass filter was also not be applied, again based on the FSL developers’ 

recommendations, as this is only recommended for resting-state network extraction, not 

for task based component extraction (Beckmann & Smith, 2004; Jenkinson et al., 

2012b). 

Analysis 

Preprocessing  

Initially, independent component analysis (ICA) was used to extract timeseries 

data from relevant brain networks in HC and SZ participants. ICA is a statistical method 

used to separate signal into its additive components, or blind source separation (Bell & 

Sejnowski, 1995). This technique was chosen in order to identify the network ROIs from 

all participants using a data driven technique. Probabilistic ICA analysis was conducted 

using Multivariate Exploratory Linear Optimized Decomposition into Independent 

Components (MELODIC) in FSL to extract brain networks and their time course data 

(Beckmann & Smith, 2004). Unfortunately, the ROIs extracted were more 
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representative of nodes within networks without clear parcellation rather than full 

networks. For example, the components that were picked out were either too granular or 

too large and not constrained the networks of interest (Figures 1-2). Therefore, the brain 

components that were extracted using MELODIC were not used to create ROIs for use 

with GLM. Instead, pre-existing masks were constructed using Functional Imaging in 

Neuropsychiatric Disorders (FIND) lab functional brain network ROIs (Shirer et al., 

2012). Sub-networks for CEN are the right CEN (rCEN), and left CEN (lCEN). 

Subnetworks for the SN are the anterior SN (aSN) and the posterior SN (pSN). Sub-

networks for the DMN are the dorsal DMN (dDMN) and the ventral DMN (vDMN). 

FIND lab masks were also combined into single network ROIs from smaller component 

ROIs using AFNI’s 3dcalc function (for example, the right and left executive control 

network ROIs were combined into a single executive control network ROI to better 

match the literature on large scale brain network ROIs). These masks were then 

resampled using AFNI’s 3dresample function to match fMRI voxel resolution (2.4 mm 

isotropic) and were then ready to be used for the ROI analysis.  

Aim 1 Analyses 

Hypothesis 1 relied on linear mixed-effects models using the lme4 package for R 

(Bates et al., 2015). Mental workload was operationalized as discriminability (d’) from 

an equal variance signal detection-item response model (Thomas et al., 2018) estimated 

within each level of N-Back load. That is, each participant had five estimates of d’: d’ at 

1-back, d’ at 2-back, d’ at 3-back, d’ at 4-back, and d’ at 5-back. Our lab has previously 

shown that this type of analysis—referred to as conditional performance analysis—

provides more accurate and interpretable estimates of mental workload using fMRI data 
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(Thomas et al., 2021). Blood Oxygen-Level Dependent (BOLD) activity within each ROI 

was regressed onto group (dummy coded), mental workload (contrast polynomial coded 

with linear and quadradic terms), and the group by mental workload interaction. 

Random intercepts were included in the models as well. Inferential tests were two-sided 

at p < 0.05. Hierarchical regression was used to determine which fixed effects to include 

in each model for each ROI. Model 1 only contained the intercept. Model 2 contained 

the intercept and group fixed effect. Model 3 contained the intercept, group, and linear 

d’ fixed effects. Model 4 contained the intercept, group, linear d’, and quadratic d’ fixed 

effects. Model 5 contained the intercept, group, linear d’, quadratic d’, and group by 

linear d’ interaction fixed effects. And, finally, model 6 contained the intercept, group, 

linear d’, and quadratic d’, group by linear d’ interaction, and group by quadratic d’ 

interaction fixed effects. Models were then compared for each network and all sub-

networks using the Akaike information criterion (AIC), Bayesian information criterion 

(BIC), and chi-squared difference test (Δχ2). AIC is an estimator of prediction error 

making lower values point to a better fitting model. BIC is related to AIC, as both use 

likelihood functions, but BIC uses Bayesian methods. For BIC lower values indicate 

better model fit as well. Finally, Δχ2 is an indicator of whether the current model is 

significantly different (better fit) than the one before, so if significant the more complex 

model is needed, as it provides a better fit to the data. 

Aim 2 Analyses 

Causal relationships between networks were examined using dynamic causal 

modeling (DCM). DCM was chosen as it is a technique specifically developed for 

neuroimaging to compare models based on theory by quantifying how well they fit the 
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data using Bayesian model selection after modeling the neuronal response from the 

BOLD signal using a series of differential equations (Friston et al., 2003).  

Images from AFNI were converted to Neuroimaging Informatics Technology 

Initiative (NIfTI-1) format for use in the DCM pipeline using AFNIs ‘3dAFNItoNIFTI’ 

for all scans and all participants. Four dimensional NIfTI-1 fMRI images were then 

converted to multiple three-dimensional images (one per full scan repetition or 512) per 

scan per participant using the FMRIB Software Library (FSL-6) function ‘fslsplit’. 

Statistical Parametric Mapping (SPM12; Ver. 12) in conjunction with Matlab, a common 

DCM pipeline, was used to perform DCM analyses (Ashburner et al., 2014). Models were 

constructed and selected based on the aforementioned triple network model of task 

engagement as well as previous research on network dynamics in schizophrenia 

(Calhoun, 2009; Dauvermann et al., 2014; Diaconescu et al., 2011; Hare et al., 2019; 

Jeong & Kubicki, 2010; Mc Glanaghy et al., 2021; Menon, 2011). These task load input 

models represent the three direct inputs to each of the three networks in the triple 

network model (Figure 1).  

fMRI model specification and estimation was set up using seconds for units of 

design, and an interscan interval of 0.8 seconds (repetition time from the scanner), 

microtime resolution and microtime onset were left at default values (16 and 8 

respectively). Onsets were then specified according to the task block onsets in seconds 

(10, 90, 170, 250, 330s) accounting for 60s task block durations and a 20s inter-task 

interval. Parametric modulations were set up for linear effects and quadratic effects 

(polynomial expansion of 2nd order) of load using task order for positioning of load in 

the design matrix as follows depending on condition block (3 1 5 2 4, or 5 3 2 4 1, or 2 4 1 
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3 5). The global masking threshold was left at the default of 0.8. Then, an omnibus F-

contrast was set up using a 3x3 weight matrix (for intercept, linear, and quadratic 

conditions). Using the model estimation and F-contrast, time series data were extracted 

from network ROIs (from FIND lab) using a threshold of 1 for all activity. Extracted time 

series data and specified models were then used (specified in matrix form with columns 

specifying connection source, and row specifying targets) for random effects Bayesian 

model comparison for individual then group. The best fitting model was determined by 

model expected probability (probability of the given model fitting for a random subject), 

model exceedance probability (probability that one model is more likely than any 

others), and the probability of equal model frequencies (probability that all models have 

the same frequency in the group).
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RESULTS 

Aim 1 Results 

 Participants did not differ in age, race, ethnicity, gender, or parent’s 

education in years (Table 1). They did differ in years of education and WRAT scores, 

which is common for HC to SZ samples. Chlorpromazine dose, SAPS, and SANS were 

not applicable to the HC group. 

Central Executive Network 

The model that included group, linear, and quadratic terms as regressors was the 

best model for the bilateral CEN ROI, the rCEN ROI, and the lCEN ROI (Table 2). The 

CEN shows a significant negative quadratic effect for mental workload and no 

significant group effects (Table 5). Predictions for this model, shown in Figure 2, show 

that patterns of brain activity are greatest for modest levels of mental workload.  

Additionally, there is little separation between HC and SZ in model predictions.  

Salience Network  

The model that included group, linear, and quadratic terms as regressors was the 

best model for the combined SN ROI, aSN ROI, and for the pSN ROI. For the combined 

SN ROI and the pSN ROI there was a significant group effect (Table 3). Additionally, 

there were significant quadratic effects for all three SN ROIs (Table 6). Predictions for 

this model, shown in Figure 2, show that patterns of brain activity are greatest for 

modest levels of mental workload in the combined SN ROI and aSN ROI with little 

separation between HC and SZ. In contrast, the pSN shows larger separation between 

HC and SZ with SZ showing greater activity. 
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Default Mode Network  

The model that included group only was the best model for the combined DMN 

ROI and the vDMN ROI (Table 4). The model that contained group and linear effects 

was the best model for the dDMN ROI. Significant effects for group were found in the 

combined DMN ROI, dDMN ROI, and vDMN ROI. Additionally, a significant linear 

effect was found in the dDMN ROI. Predictions for these models, shown in Figure 2, 

show separation between HC and SZ for all DMN ROIs and a linear trend can be seen in 

the dDMN ROI depicting brain activity increasing with lower levels of mental workload 

(higher d’). It is also notable that the vDMN ROI show more of a quadratic curve for HC 

in the vDMN ROI. 

Aim 2 Results 

 For the exploratory aim we found that there are group differences in which 

network is affected by task load. Specifically, we found that task load seems to act as an 

input on CEN in HC while acting as an input on SN in SZ (Figure 3). It should be noted, 

however, that the probabilities of equal model frequencies are high for both HC and SZ. 

In SZ that probability is very high.
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DISCUSSION 

This paper set out to examine large-scale brain network differences between HC 

and SZ as it pertains to mental workload. Specifically, the first aim of this project was to 

compare patterns of activity in the CEN, SN, and DMN between HC and SZ with the 

hypothesis that SZ would show less mental workload modulation of these networks. For 

mental workload, we found that overall activity was higher in the SN, pSN, DMN, 

dDMN, and vDMN, though the patterns of activity (e.g. linear or quadratic) were largely 

similar between groups.  

 For the CEN ROIs, there were no significant differences between HC and 

SZ. That is, peak brain activation was observed at modest levels of mental workload. At 

highest and lowest levels of mental workload, activity was lower, showing an overall 

inverted-U or quadratic curve. This implies that when the task is easier for a participant, 

they do not show as much brain activity as they find the task less challenging, whereas 

when the task is harder for the participant, they find the task more challenging, and 

engagement may be less effortful. The peak at the modest mental workload level 

indicated that the challenge matches ability. Such a finding was not unexpected as it is 

in line with previous research (Thomas et al., 2021).  

For the SN ROIs, observations for the aSN were similar to that of the CEN ROIs. 

Whereas for the combined SN and pSN, the shape of the brain activity as it related to 

mental workload was similar in HC and SZ, but the overall activity level in SZ was 

higher. This seems to imply that the SN and pSN are having a harder time performing 

their role in mediation between the CEN and DMN and may be giving excess attention 

to internal experiences (Wotruba et al., 2014). Alternately, it could suggest that there is 
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a breakdown of the link between the CEN and the SN in SZ (Manoliu et al., 2014; 

Palaniyappan et al., 2013). 

For the DMN ROIs, the combined DMN differences between HC and SZ in that 

SZ showed higher activity overall. There was also a slight increase in DMN activity as 

mental workload decreased for both HC and SZ. In the dDMN, activity for SZ was also 

significantly higher, and as mental workload decreases vDMN activity increases for both 

HC and SZ. In the vDMN overall activity was also higher for SZ, and there was a 

significant inverted-U or quadratic curve. That this implies that the idea of the triple 

network model where the CEN and DMN show inverse activity from one another may 

not take into account non-linear relationship with task load. For SZ, the DMN activity 

seems entirely linear, where the CEN activity shows the expected inverted-U or negative 

quadratic curve. In the vDMN, HC show an inverted-U or negative quadratic curve, so 

both the CEN and vDMN show the same curve. More research is needed both to confirm 

these findings and investigate this phenomenon. These findings do suppose the idea 

that impaired DMN suppression is present in SZ (Jeong & Kubicki, 2010; Zhou et al., 

2016).  

Our hypothesis was partially supported by these group differences, as there were 

differences in the pSN, DMN, dDMN, and vDMN but not in the others. There were no 

interactions that we were able to detect with this sample size, though the plots could 

indicate that there might be some with a small effect size. It is also of note that the DMN 

showed a linear curve instead of the quadratic U curve that would represent the inverse 

activity pattern from the CEN, as expected from the triple network model. These 

findings confirm that SZs are inefficient at suppressing the DMN (Zhou et al., 2016) and 
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show more activity in the SN and pSN to achieve the same level of same task 

performance as HCs. Interpreting the relationship between fMRI BOLD signal and 

neuronal activity is outside of the scope of this paper. 

Additionally, our exploratory aim sought to examine N-back load input difference 

models using DCM. We found that task-load acts as an input to CEN in HC and in SZ 

task-load acts as an input to the SN using random effects Bayesian model selection. This 

was surprising, and possibly indicates that task load acts as an input to the CEN in HC 

to allow the CEN to direct load-based information to the SN, which in turn moderates 

the CEN and DMN in accordance with the triple network model (Menon, 2011). Task 

load acting as an input to the SN in SZ could have a number of different interpretations. 

One possibility is that the SN is not responding properly in SZ, and thus interpreting N-

back load differently than the CEN. This would be in line with current literature that 

shows that insula (a primary SN node) dysfunction and aberrant salience network 

activity have been noted in SZ (Manoliu et al., 2014; Palaniyappan & Liddle, 2012; 

Wotruba et al., 2014). A second possibility, related to the CEN itself being disrupted in 

SZ (Chen et al., 2016), is that the CEN is dysfunctional in SZ and is unable to redirect 

the load information properly. If this is true, it could be that the SN somehow 

compensates for poor executive control functions in patients. It is also possible that the 

DMN is not being properly suppressed by either the CEN or SN (Zhou et al., 2016), and 

thus overactivity in the DMN is causing this input discrepancy. Clearly, more research is 

needed. 

As mentioned earlier, current treatment options for SZ are largely limited, 

pharmacological in nature, and focused on controlling positive symptoms (Kane & 
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Marder, 1993; Keepers et al., 2020). Our understanding of functional and effective 

connectivity in SZ could lead to better or alternate treatments. Potential ramifications of 

these findings are numerous.  

For the CEN, some previous findings have demonstrated either hypoactivity 

(Glahn et al., 2005) or hyperactivity (Brown & Thompson, 2010) in the dorsolateral 

prefrontal cortex (the primary hub node of the CEN), so there is some disagreement 

between these findings. This study and more recent findings suggest that, when taking 

mental workload into effect, there may be less of a difference to HC than previously 

thought, suggesting that the CEN may not be a great target for treatment (Thomas et al., 

2021). 

In the SN, this study found hyperactivity in the combined SN and pSN. This is in 

line with other findings suggesting inefficacies in the SN (Chen et al., 2016; Manoliu et 

al., 2014; Palaniyappan et al., 2013). These findings, combined with this and other 

studies’ support of a lack of suppression of the DMN, suggest that network relationship 

between the SN and the DMN could be an idea target for treatment. 

It has been demonstrated that one can alter large-scale brain network 

connectivity pharmacologically (Grady et al., 2013), through neural stimulation using 

transcranial direct current stimulation or transcranial magnetic stimulation (Muldoon 

et al., 2016), and through mindfulness meditation (Fam et al., 2020). Future research 

could use these methods to focus on treating hyperactivity and inefficacies between the 

SN and DMN networks. 

Limitations 
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Results of this study should be interpreted in light of its limitations. First, the 

results could only apply to the N-back task or working memory tasks more broadly. 

Additionally, research is needed using different cognitive tasks and domains of 

cognition. Second, the sample was modest in size. A larger sample size may reveal more 

subtle effects than those reported here. Third, SZ and HC could not be randomized, as 

one cannot randomize disease. Therefore, any condition uniquely related to having 

schizophrenia is potentially a confound. Fourth, although effect sizes are reported for all 

inferential tests, familywise error corrections were not applied to the results, which 

could lead to Type I errors. Lastly, network-based volumes of interest (VOI) have not 

been used much in DCM. The intrinsic connections of major networks are more 

complicated than simpler nodal based VOIs (Suárez et al., 2020), so this could 

potentially cloud the model comparison. A direct comparison of more nodal VOI versus 

full network VOI should be conducted. Other methods that are more general could also 

be employed to test this method’s validity (SEM, Granger causality, etc.).   

Conclusion 

It is of note that, though SZ display the same activity pattern as it relates to 

mental workload in network activation as HC, overall activity is higher in the pSN and 

DMN. This is not unexpected, given the cognitive deficits in SZ. The linear activation of 

the DMN in mental workload in both HC and SZ warrants more research as well as the 

differences in causal input relationships between N-back load and these networks as this 

could suggest that there are potentially fundamental differences in how HC and SZ 

process task load. Methodological comparison studies might focus on ICA extraction 

versus network ROI mask extraction (for post-hoc analysis) as well as comparison 
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between network VOI and nodal-based DCM model comparison. Finally, more studies 

are needed to fully understand network relationships and effective connectivity in 

patients with schizophrenia to form a more complete picture and thus have more 

relevant recommendations for treatment.



 

Table 1. Demographics and clinical characteristics 
 

 HCs SZs p HCs vs. 
SZs 

Sample size 25 27 - 
Age 40.60 (9.38) 43.26 (9.59) 0.32 
Age Range 23-54 21-58 - 
Sex: Male 16 (65%) 18 (67%) >.999 
Hispanic 5 (20%) 8 (30%) 0.53 
Race - - 0.37 
  American Indian / Alaskan Native 0 (0%) 1 (4%) - 
  Asian 4 (16%) 3 (11%) - 
  Black or African American 2 (8%) 6 (22%) - 
  More than one race 5 (20%) 2 (7%) - 
  White 14 (56%) 15 (56%) - 
Education 15.80 (2.06) 12.70 (2.15) <.001 
Parents' education 13.92 (3.56) 12.67 (3.25) 0.19 

WRAT reading score 
104.36 
(10.98) 96.00 (10.87) 0.01 

Chlorpromazine equivalent doses - 
482.61 
(462.83) - 

SAPS - 21.48 (9.90) - 
SANS - 6.59 (4.11) - 

 
Note: HC = Healthy Controls. SZs = Patients diagnosed with schizophrenia. Means reported 
for continuous variables with percentages and counts for discreet variables.  Groups were 
compared using regression for continuous variables and Fisher’s exact test for categorical 
variables. Education is in years completed. SANS = Scale for the Assessment of Negative 
Symptoms reported as total global rating scores. SAPS = Scale for the Assessment of Positive 
Symptoms reported as total global rating scores; WRAT = Wide Range Achievement Test.
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Table 2. CEN model comparison statistics 
 

CEN npar     AIC     BIC  Δχ2 df p 

Intercept 3 234.88 247.64    
Group 4 236.49 253.50 0.394 1 0.5301 
GrpLinear 5 238.36 259.63 0.123 1 0.7263 
GrpLinQuad 6 232.89 258.41 7.473 1 0.0063 ** 
Int1 7 232.96 262.74 1.926 1 0.1652 
Full 8 234.88 268.92 0.078 1 0.7804 

       
rCEN npar     AIC     BIC  Δχ2 df p 

Intercept 3 357.70 370.46    
Group 4 359.48 376.49 0.220 1 0.6393 

GrpLinear 5 361.41 382.68 0.065 1 0.7983 

GrpLinQuad 6 356.11 381.63 7.303 1 0.0069 ** 

Int1 7 356.05 385.83 2.053 1 0.1519 

Full 8 357.92 391.95 0.137 1 0.7112 

       
lCEN npar     AIC     BIC  Δχ2 df p 

Intercept 3 167.23 180.00    
Group 4 168.68 185.69 0.558 1 0.4553 
GrpLinear 5 170.43 191.70 0.246 1 0.6203 
GrpLinQuad 6 165.99 191.52 6.437 1 0.0112 * 
Int1 7 166.81 196.59 1.181 1 0.2772 
Full 8 168.79 202.82 0.023 1 0.8784 
              

 

Note: The above are model fit statistic using analysis of variance (ANOVA) comparing all 
hierarchical models. All models regressed onto centered BOLD signal for the given network. 
Intercept – Model with only the intercept. Group – Model with intercept and group. GrpLinear = 
Model with intercept, group, and linear mental workload. GrpLinQuad – Model with intercept, 
group, linear mental workload, and quadratic mental workload. Int1 - Model with intercept, 
group, linear mental workload, quadratic mental workload, and group by linear interaction. Full - 
Model with intercept, group, linear mental workload, quadratic mental workload, group by linear 
interaction, and group by quadratic interaction. Npar – number of parameters in the model. AIC 
– Akaike Information Criteria. BIC – Bayesian Information Criteria. Δχ2 – Chi-squared. Df – 
Degrees of freedom. p – p-value. 
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Table 3. SN model comparison statistics 

SN npar     AIC     BIC  Δχ2 df p 

Intercept 3 -20.91 -8.15    
Group 4 -22.15 -5.14 3.242 1 0.0718 . 
GrpLinear 5 -20.20 1.07 0.045 1 0.8321 
GrpLinQuad 6 -24.28 1.24 6.085 1 0.0136 * 
Int1 7 -23.35 6.42 1.070 1 0.3009 
Full 8 -21.40 12.64 0.041 1 0.8392 

       
aSN npar     AIC     BIC  Δχ2 df p 

Intercept 3 -20.91 -8.15     
Group 4 24.34 41.35 <0.001 1 >0.999 
GrpLinear 5 26.24 47.51 0.093 1 0.7609 
GrpLinQuad 6 22.62 48.14 5.627 1 0.0177 * 
Int1 7 23.67 53.44 0.949 1 0.3301 
Full 8 25.65 59.68 0.016 1 0.8991 

       
pSN npar     AIC     BIC  Δχ2 df p 

Intercept 3 67.02 79.78    
Group 4 59.37 76.39 9.645 1 0.0019 ** 
GrpLinear 5 60.47 81.74 0.899 1 0.3432 
GrpLinQuad 6 57.62 83.14 4.854 1 0.0276 *  
Int1 7 59.00 88.78 0.615 1 0.4330 
Full 8 60.85 94.88 0.154 1 0.6949 
              

 

Note: The above are model fit statistic using analysis of variance (ANOVA) comparing all 
hierarchical models. All models regressed onto centered BOLD signal for the given network. 
Intercept – Model with only the intercept. Group – Model with intercept and group. GrpLinear = 
Model with intercept, group, and linear mental workload. GrpLinQuad – Model with intercept, 
group, linear mental workload, and quadratic mental workload. Int1 - Model with intercept, 
group, linear mental workload, quadratic mental workload, and group by linear interaction. Full - 
Model with intercept, group, linear mental workload, quadratic mental workload, group by linear 
interaction, and group by quadratic interaction. Npar – number of parameters in the model. AIC 
– Akaike Information Criteria. BIC – Bayesian Information Criteria. Δχ2 – Chi-squared. Df – 
Degrees of freedom. p – p-value. 
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Table 4. DMN model comparison statistics 

DMN npar     AIC     BIC  Δχ2 df  p 

Intercept 3 20.89 33.65     
Group 4 13.25 30.27 9.635 1 0.0019 ** 
GrpLinear 5 11.92 33.19 3.336 1 0.0678 .  
GrpLinQuad 6 13.25 38.78 0.662 1 0.4157 
Int1 7 15.07 44.85 0.181 1 0.6705 
Full 8 15.97 50.00 1.101 1 0.2942 

       
dDMN npar     AIC     BIC  Δχ2 df  p 

Intercept 3 94.33 107.09    
Group 4 86.52 103.53 9.812 1 0.00173 ** 
GrpLinear 5 80.52 101.79 7.993 1 0.00470 ** 
GrpLinQuad 6 82.46 107.98 0.070 1 0.7916 
Int1 7 84.45 114.23 0.003 1 0.9574 
Full       

       
vDMN npar     AIC     BIC  Δχ2 df  p 

Intercept 3 128.36 141.12    
Group 4 123.96 140.97 6.403 1 0.0114 * 
GrpLinear 5 125.95 147.22 0.009 1 0.9236 
GrpLinQuad 6 123.07 148.59 4.881 1 0.0272 * 
Int1 7 124.06 153.83 1.012 1 0.3145 
Full 8 125.14 159.17 0.912 1 0.3395 
              

  
 
Note: The above are model fit statistic using analysis of variance (ANOVA) comparing all 
hierarchical models. All models regressed onto centered BOLD signal for the given network. 
Intercept – Model with only the intercept. Group – Model with intercept and group. GrpLinear = 
Model with intercept, group, and linear mental workload. GrpLinQuad – Model with intercept, 
group, linear mental workload, and quadratic mental workload. Int1 - Model with intercept, 
group, linear mental workload, quadratic mental workload, and group by linear interaction. Full - 
Model with intercept, group, linear mental workload, quadratic mental workload, group by linear 
interaction, and group by quadratic interaction. Npar – Number of parameters in the model. AIC 
– Akaike Information Criteria. BIC – Bayesian Information Criteria. Δχ2 – Chi-squared. Df – 
Degrees of freedom. p – p-value.



 

 
Table 5. Central Executive Network Best Model Statistics 
 

  Central Executive Network   Right Central Executive Network   
Left Central Executive 
Network  

  β p SE   β p SE   β p SE  
Intercept 0.0965 0.0061 0.0338 ** 0.1351 0.0011 0.0392 ** 0.0481 0.1384 0.0320  
Group 0.0372 0.4301 0.0468  0.0352 0.5202 0.0543  0.0387 0.3872 0.0443  
Mental Workload 0.0217 0.0921 0.0129 . 0.0250 0.0847 0.0145 . 0.0176 0.1454 0.0121  
Mental Workload 
Quad. -0.0075 0.0061 0.0027 ** -0.0083 0.0069 0.0031 ** -0.0065 0.0105 0.0025 * 
             

 
R2 m        R2 

cond.   
R2m        R2c 

  
R2m       R2c 

  
 0.0157 0.2125   0.0143 0.2268   0.0150 0.2171   
                         

 
Note: Reported statistics from best fitting model for central executive network (CEN). 
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Table 6. Salience Network Best Model Statistics 

 

  Salience Network     
Anterior Salience 
Network     Posterior Salience Network  

  β p SE   β p SE   β p SE  
Intercept 0.0107 0.7058 0.0282  0.0890 0.0072 0.0318 ** -0.1239 <0.001 0.0320 *** 
Group 0.0790 0.0487 0.0391 * 0.0335 0.4500 0.0441  0.1526 0.0012 0.0444 ** 
Mental Workload 0.0189 0.0594 0.0100  0.0152 0.1459 0.0105  0.0241 0.0263 0.0108 * 
Mental Workload 
Quad. -0.0052 0.0142 0.0021 * -0.0052 0.0185 0.0022 * -0.0050 0.0281 0.0023 * 
             
 R2m        R2c   R2m        R2c   R2m        R2c   
 0.0296 0.2587   0.0119 0.2854   0.0708 0.3137   
                         

 
Reported statistics from best fitting model for central executive network (CEN).  
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Table 7. Default Mode Network Best Model Statistics 
 

  Default Mode Network Dorsal Default Mode Network 
Ventral Default Mode 
Network  

 β p SE   β p SE   β p SE  
Intercept -0.2360 <0.001 0.0260 *** -0.2768 <0.001 0.0298 *** -0.1796 <0.001 0.0287 *** 
Group 0.1151 0.0025 0.0361 ** 0.1408 0.0013 0.0414 ** 0.1081 0.0090 0.0398 ** 
Mental Workload 0.0138 0.0614 0.0074 . 0.0227 0.0039 0.0078 ** 0.0194 0.0946 0.0116 . 
Mental Workload 
Quad.                 -0.0055 0.0264 0.0024 ** 
             
 R2m       R2c   R2m        R2c   R2m        R2c   
 0.0489 0.2200   0.0650 0.2648   0.0390 0.2047   
                         

 
 
Note: Reported statistics from best fitting model for central executive network (CEN).  
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Figure 1: All Task Load input models for DCM analysis. 
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Figure 2: Model predictions for best fitting linear mixed model regression. Y-axis - Network Blood Oxygen-Level Dependent 
(BOLD) Activity shown as a function of conditional performance. X-axis – Mental workload as discriminability (d’).  
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Figure 3: Random effects (RFX) Bayesian model selection from dynamic causal modeling (DCM). On the y-axis, column 1 is the 
model expected probability (probability of the given model fitting for a random subject), column 2 is the model exceedance 
probability (probability that one model is more likely than any others), column 3 is the probability that all models have the same 
frequency in the group. 
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