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ABSTRACT 

THE SPECTRUM OF ENERGY IN TURBULENT SHEAR FLOW 

The spectrum of energy in isothermal turbulent shear 

flow at large wave numbers is studied following the pheno-

menological approach used by Tchen (1953), Hinze (1959), 

and Panchev (1968, 1969). The considered spectrum equation 

consists of the dissipation, the transfer, the production, 

and the diffusion spectrum function. 

Parametric solutions for the three-dimensional energy 

spectrum function, E(k) are obtained firstly by using 

Heisenberg's type of approximations for the transfer func-

tion. Much simpler solutions for E(k) are obtained with 

the modified Obukhov approximation (Ellison 1962). Some 

closed form solutions for E(k) are derived by using a 

vorticity approximation concept. 

It is shown that Tchen's k-l law cannot exist if 

diffusional effects are taken into account. Computed one-

dimensional energy spectra (isotropic relations were used) 

show good agreement with measurements from the viscous 

region of a turbulent boundary layer. 
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THE SPECTRUM OF ENERGY IN TURBULENT SHEAR FLOW 

l. Introduction 

Most of the work in the statistical theory of turbu-

lence has been concerned with isotropic and homogeneous 

turbulent fields. From these studies, however, it has been 

possible to gain an insight into processes such as turbu-

lent dissipation and transfer of energy between eddies of 

various sizes. The nonlinear process of the balance of 

turbulent energy in the wave number space emerges from 

these studies as controlled by a transfer function re-

presenting the transfer of energy from large eddies into 

small ones. Several forms of the transfer function have 

been proposed, all leading to the ''-5/3" spectral law in 

agreement with Kolmogorov's postulates for the inertial 

subrange. According to the experimental research of the 

last decade, this law seems to be well founded and can be a 

starting point in any research dealing with the structure 

of turbulent flows. 

The importance of Kolmogorov's ideas is in their appli-

cability both to decaying turbulence, whether isotropic or 

not, and to maintained shear turbulence o The simultaneous 

application to both decaying and maintained turbulence and 

to isotropic and nonisotropic turbulence is achieved by 
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concentrating attention on a d Cffidl n of restricted dimensions, 

i.e., on a range of sufficiently large wave numbers. In 

this restricted domain only local velocities are considered 

and for a sufficiently large Reynolds number (Re~> 1), 

local isotropy is postulated for all statistical quantities. 

Except for the concept of local isotropy, little has 

been accomplished in the statistical theory of shear tur-

bulence. Most attempts to obtain informations on the 

structure of shear turbulence have been experimental. From 

the statistical theory of isotropi c turbulence it is known 

which quantities are important in describing the fluctuating 

field; such as turbulent intensities, correlations, spec-

trum, probability distribution, etc . Hence, these quantit-

ies are usually measured in experiments on shear turbulent 

flows. 

For an analitical study of shear turbulence signifi-

cant simplifications are needed due to the extreme com-

plexity of the problem once nonisotropy is brought into the 

picture. Even the theories on isotropic turbulence are 

faced at the present time with great difficulties and, 

though many advances have been made in the last thirty 

years, a complete solution of the problem is still an un-

attainable goal . 

While a complete mathematical solution of the problem 

of shear turbulence is the thing of the future, it is 

possible, with appropriate assumptions, to obtain a 
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reasonable simplification of the problem enabling de-

rivation of analytical results. At least for some of the 

statistical quantities a picture of their behavior in shear 

turbulence can be obtained. 

The number of contributions to the theory of shear tur-

bulence, due to its great complexity, is very small. Axi-

metrical turbulence, a type of turbulence second in sim-

plicity to isotropic turbulence, was the first step toward 

nonisotropic turbulence. The kinematics of this type of 

turbulence has been treated as completely as has been pos-

sible with isotropic turbulence. However, although it may 

be nearer to reality than isotropic turbulence, aximetrical 

turbulence is still far away from actual turbulence. In 

boundary layers and other shear turbulent flows several 

important processes are encountered that are not studied 

in the isotropic or the aximetrical turbulence theory. 

Among these processes are those associated with mean veloc -

ity gradients and inhomogeneity of turbulence. Even in the 

case of supposedly isotropic turbulence generated by flow 

through a grid, there will exist inhomogeneity due to decay 

of turbulence in the direction of the mean flow. 

Difficulties encountered in considering all turbulent 

processes simultaneously are very great. As a result, some 

analytical studies have been made by considering these 

processes separately. 

Two-point equations for velocity and pressure-velocity 
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correlations are the starting point in these studies. 

These generalized two-point correlation equations are con-

structed from the Navier-Stokes equations by methods simi-

lar to those used by von Karman and Howarth (1938 ) for 

isotropic turbulence. They are, however, too complex and 

simplifications are introduced to make the problem deter-

minate. 

Deissler (1961) used the weak turbulence approximation, 

i.e., he neglected the inertia effects represented by the 

triple correlations. Obviously, this assumption limits the 

analysis to low Reynolds numbers. Moreover, to be able to 

obtain solutions for spectra of such a "weak turbulence," 

Deissler (1961) made further simplifications. He considered 

first the effects of longitudinal and of transverse inho-

mogeneities but without a mean velocity gradient, and then 

he considered the effect of a uniform transverse velocity 

gradient on a homogeneous turbulent field. 

Nevertheless, interesting conclusions were obtained 

from these results. The mean velocity gradient, for example , 

appeared (in tne simplified case studied) as having the role 

of the usual transfer term, i.e., as affecting the transfer 

of energy among eddies of various sizes. This transfer was 

interpreted as a stretching of vortex lines by the mean 

velocity gradient. 

In a more recent paper, Deissler (1965) again treated 

the case of the weak turbulence (triple correlation terms 
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neglected) but without additional simplifications. In this 

case, however, the set of simultaneous correlation equations 

that must be considered consists of four nonlinear partial 

differential equations in four i ndependent and four depen-

dent variables. These equations are too complicated to be 

of practical use. 

Qualitative conclusions were obtained by expanding 

these equations in power se r ies in each of the space vari-

ables, valid only for small values of variables. The pre-

sence of pressure-velocity correlations and of nonlinear 

production terms appears as very -important if a steady-

state shear flow turbulence is to exist. Though the results 

of studies involving correlations between velocities and 

their derivatives are still very meager, they help in ex-

plaining some of the features of actual shear flows and 

can contribute to a better understanding of shear turbulence. 

Deissler (1965) concludes that a system of correlation 

equations for turbulent shear flow, wh i ch is closed by 

neglecting the h i ghest order correlations, should yield 

reasonable steady-state solutions . Th i s is of course in 

princip~e, because the so l ution of such a set of equations 

is faced with almost unsurmountable difficulties. 

Besides treating the correlation equations obtained 

from the complete Navier-Stokes equations, many efforts have 

been made to gain some insight into the inner workings of 

turbulence by us i ng simplified equations in place of those 
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for the real fluid. The well known Burgers' equation was 

proposed as a one-dimensional analog to the Navier-Stokes 

equation. It has been examined by many different methods, 

The most recent analysis is given by Kraichnan (1968) who 

treated it with his Lagrangian-history direct-interaction 

approximation. 

Though there are similarities between the Burgers and 

Navier-Stokes equations, the sharpest difference is that 

Burgers' equation appears to offer no counterpart to the 

hierarchy of the instabilities which makes the small-scale 

structure of high Reynolds number turbulence chaotic and 

unpredictable. If the initial Reynolds number is high, 

Burgers' equation leads to shock fronts. The result is that 

Burgers' equation reduces initial chaos instead of increas-

ing it . 

In contrast to the widely accepted -5/3 energy spec-

trum of Nav1er-Stokes turbulence at high Reynolds numbers, 

the shockfront structure of evolved solutions of Burgers' 
-2 equation leads to the k inertial-range spectrum , On 

the other hand, the advection term in Burgers' equation 

tends to produce, similarly as the corresponding term in 

the Navier-Stokes equation, regions of steepened velocity 

gradients, which implies a transfer of excitation from lower 

to higher wave number components of the velocity field 

Kraichnan {1968) concludes that Burgers' equation should be 

viewed as a vehicle for exploring the limits of applicability 
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of statistical approximations designed for Navier-Stokes 

turbulence. 

The statistical theory of turbulence at the present 

time is not able to produce explicit quantitative results 

concerning important characteristics of shear turbulent 

flows without making very restrictive assumptions. However, 

the study of some basic chaLacteristics of shear turbulence 

can be made if phenomenological type approximations, similar 

to those made in the study of isotropic turbulence, are 

used. 

Using a phenomenological approach Tchen (1953) studied 

the spectral law of small eddies for a turbulent shear flow 

with a given pattern of mean motion. He derived an equation 

for energy balance in spectral terms by means of the Fourier 

analysis of the Navier-Stokes equation . The deduced shear 

turbulence spectral equation involves five spectrum func-

tions: the dissipation function, the transfer function, 

the production function, the diffusion function, and the 

convection function. The first two functions are common to 

isotropic and homogeneous turbulence without mean motion. 

Depending on the relation between the vorticity of the 

mean motion and the vorticity of the turbulent motion, Tchen 

d istinguishes two cases: the case of ''weak turbulence' and 

the case of "strong turbulence". In the first case, the 

vorticity of the main motion is small compared with that of 
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the turbulent motion. The interaction between the two 

vorticities is slight and there is no resonance. In the 

second case, the vorticities of the two motions are com-

parable. There may be a very strong interaction between 

them and violent resonance may occur. It should be noted 

that a fully developed turbulent boundary flow would re-

present the case of strong interaction, i.e., strong tur-

bulence. Correspondingly, this is the case of the greatest 

interest. 

So far, there has not been any solution of the com-

plete shear turbulence spectrum equation for the case of 

strong turbulence. Tchen (1953) neglected the diffusion 

and the convection term and, furthermore, considered only 

asymptotic solutions of the remaining balance equation, 

which allowed him additional simplifications. Panchev 

(1968, 1969) was the first to consider the solution of the 

equation when the dissipation, the transfer, and the pro-

duction term are taken into account simultaneously o He 

obtained parametric solutions for the three-dimensional 

energy spectrum function Elk). 

All solutions of the shear turbulence spectral equation, 

when the diffusion term is neglected, produce the well 

known k-l law in the low wavenumber subrange of the 

equilibrium range. Tchen (1953), who was the first to 

obtain the k-l result, assumed that the diffusional 

effects can be neglected. However, as will be seen, these 

effects must be taken into account, 
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In the present study, solutions of the shear turbu-

lence spectrum equation are sought for the case when the 

effects of inhomogeneity are not neglected. The dissipation, 

the transfer, the production, and the diffusion spectrum 

function are treated simultaneously in finding solutions 

for the energy spectrum function E(k). 

In the first part, solutions of the spectrum equation 

are obtained following the approach used by Tachen (1953), 

Hinze {1959) and Panchev (1968, 1969); i . e . , by using approx-

imations of Heisenberg's type for the transfer spectrum 

function. In the second part, it is shown that the Modified 

Obukhov approximation (Ellison 1962) for the transfer func-

tion can be used successfully in treating the shear turbu-

lence spectrum equation. It is employed here for the first 

time and leads to simple solutions for the energy spectrum 

function. In the third part, the vorticity approximat i on 

for the transfer spectrum function--which was used in the 

derivation of closed form expressions for spectra of turbu-

lent energy and scalar fields in isotropic turbulence--is 

used in solutions of the shear tubulence spectrum equation . 

This approximation made possible the derivation of some 

closed form expressions for the three-dimensional energy 

spectrum of shear turbulence. 

In the following, only an isothermal and incompressible 

turbulent shear flow with steady mean motion is considered. 

An examination of the basic spectral characteristics of 
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turbulence in the presence o f temperature gradients could 

be made along the lines used here for isothermal turbulence. 

As in the previous attempts on solving the isothermal shear 

spectrum equation, all works on spectra of a thermally 

stratified shear turbulent flow have used Heisenberg's 

t ype of approximation for the energy and the temperature 

transfer function (Monin 1962, Gisina 1966, Lin 1969J. This 

type of approximation for transfer functions leads to fairly 

complex solutions of the spectrum equation. Solutions for 

the energy and the temperature 1spectrum function are then 

usually obtained by numerical integration. Asymptotic 

solutions for particular spectral ranges are of the greatest 

interest here and they are usually sought (buoyancy sub-

range, for example). 

The possibility of obtaining simpler solutions for 

spectra of thermally stratified shear turbulence by using 

the Modified Obukhov approximation or the vorticity approx-

imation approach is not investigated in the present work. 

2. The Energy Spectrum Equation 

The derivation given here is based on general two-

point equations for the velocity correlations. We start 

with the incompressible Navier-Stokes equation written for -the points N and N', separated by the vector r , 
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'2 

JUt JU, · U,;_ I '7)/ 'd LI,· (3-/) + - - - -! ')) I 
'"ot d-(~ t J~ ),('- ~¼ 

I 
'JU ·1U

1 '2. I 

~(}., -:J? ~0· -2+ ./ ~ = - .L + y'J I I } (3-£) ?JI: d .,ti .f J .,,(~ ~~ d..(~ 
~ .J 

where the subscripts can take on values of 1, 2 or 3 and a 

repeated subscript in a term indicates a summation. The 

quantities 

ponents, 

u . 
i 

and U'. 
J 

are instan~aneous velocity com-

x is a space coordinate, 
i 

t is the time, JD 
is the density, -Y is the kinematic viscosity, and P is 

the instantaneous pressure: 

~·=!J~1uj ?--=P-1f:i 
J j O , I I .. 

If the usual time averages are taken of (3-1) and 

(3-2) and the averaged equations are subtracted from the 

unaveraged ones, one obtains 

(3-3) 
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The next step is to mult i ply Eq. (3-3) by u . and 
J 

Eq. (3-4) by u . . 
i 

For Eq. (3-3), one obtains 

and, similarly, for Eq. (3-4), 

(3-5) 

(3-C) 

The addition of Eq. (3-SJ and Eq. (3-6) and averaging with 

respect to time (keeping in mind that quantities at one 

point are independent of the position of the other point) 

yields 
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In order to differentiate between the effects of the 

distance between the points N and N', and of their loca-

tion {due to inhomogeneity we have to take both effects 

into consideration) new variables are introduced: -
) 

Thus, for a quantity R that is a function of (xk) and 
m 

one obtains 

dR J r;)/? 
?)4_ - .2 J(x.:.J,., 

;)_g_ .-L dR + ~ 
'ox* :2.,, 7J(X1::.),,, o rK.. J 

'2 
.... .L _'";;)_R __ _ 

2 ci{,r/(.)ln d {xk.)/'r) 

Employing these transformations, if follows 
-- u.·uT 

~ ~ u_l, - .L 'd "J. ox IC. 'J - .2.., 71 (%k-)lrJ 

• (3-8) 
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Hence, Eq. (3-7) will read 

(3-V 
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Th i s i s the two-point correlati on equation for the general 

case of inhomogeneous turbulence with mean velocity 

gradients. 

Because Eq. (3-9) is too complicated and intractable, 

the usual further step in the shear turbulence analysis is 

to assume homogeneity, i.e., that all derivatives with re-

spect to (xk m vanish (Hinze 1959, Deissler 1961). This 

assumption contributes appreciably to the simplification of 

the problem and is not contradictory to the existence of 

shear turbulence. Full homogeneity with a shear is possible 

if the curvature of the mean velocity profile is neglected. 

In other words, to create a homogeneous turbulence with 

shear the main motion should have a constant velocity in a 

given direction and a constant velocity gradient i n the con-

sidered reg i on (Hinze 1959, Lumley & Panofsky 1964). Though 

thi s type of shear turbulence may be considered a hypothet-

ical case too, it is a reasonable approximation and is much 

less remote from actual turbulence than other theor et i cal 

models usually considered. 

In the following analysis, we also assume that the 

mean velocity gradient is constant, at least in a l i mited 

region of the flow, but do not assume homogeneity i n all 

directions. The assumption is (often used in a turbulent 

boundary layer analysis) that the flow is homogeneous in 

and directions but not in the direction. Ob-

viously, inclusion of inhomogeneity will bring the analysis 



16 

closer to the actual shear turbulent flow than in the case 

of full homogeneity. 

Hence, derivatives of correlations do not vanish in 

the direction, i.e., derivatives with respect to 

are not neglected: 

-' J {( v ) d{JJ -.J f v I = /12. ,.' c/,t~ == C'o l)S' , ) 

Writing for shortness, 

QL;j = ~ · 4) 
St~ kj' = tc, · tr t ~-
'-..)1 l ' \ ) = t~ 

1 
Cl,' u k__ 

) 

) 

) 

l<?;j = Ju// 
Kc~/ = {/t4· ) 

) 

we obtain, from the condition (3-10), 

) 

) 

where, as usual, J.' = l 1) 
for i = j, zero otherwise , 

(3-lo) 
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Eq. (3-9) now reads 

( 3-//) 

If new tensors are defined as 

~ [ S't!c,J - !;,~ Kj] = Ti,J ) 

j [o ~ k;,1 J - ;3; k,;} = ~) J (3-/2) 

and, having in mind that 

(3-1 3) 

Eq . ( 3-11 ) w 111 re ad 
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(3-/4) 

The last two terms on the right side are due to in-

homogeneity and they would not have appeared had the as-

sumption of full homogeneity been made. If, for example, 

an additional assumption of no shear is made, the second 

term on the left side drops out and Eq. (3-14) reduces to 

the corresponding dynamical correlation equation for iso-

tropic-homogeneous turbulence. 

Equation (3-14) is as far as we can go without further 

assumptions. The presence of triple correlations is the 

basic reason, similarly as in the case of isotropic turbu-

lence, for insolubility of the dynamical two-point correla-

tion equation. To proceed, suitable assumptions concerning 

Fourier transforms of correlation functions can be made 

following the approach used in studies on isotropic turbu-

lence. 
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Defining a part of inhomogeneous terms in Eq. (3-14) 

as another tensor function, 

~ [~'r! 1- S1K;J rjd!;;_ /y,1J, j c!;:.: k~;}~ I'</ ) (3-/1a) 
Eq. (3-14) will .read 

In order to write the correlation equation in spectral 

form, the three-dimensional Fourier transforms are defined 

as 

00 

1vf0x7.)-_fF,j(~() Uf (cX."!) dk~) 

L 11 (r;- -r; J = f V ~d r k:X-: J ey (it. t) d ;;_.,,. . 
- oO 

(3-!6) 

From Eq. (3-16) it follows 
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00 

(3 - 17) 

and, the followi ng dynami c equation for the energy spectrum 

funct i on, E . . , is obtained 
l., J 

0£t;j (dc,1-£ .1 J, £. _ ~ d/; t;j)dU1 
'c>t: t 2;j 'dt <1 2 1 ;Jk2 d.X2 

fi · 1- fl t' · - 2v k 2 /;t" ·_ Z_ 1). , + 1 ?/1=- l~J· 
d 1d . d o(,{JtlJ 'tj :L d(~ ) J{X2) ' 

In n,, 

Contracti ng the indi ces, i = j = k , one obtains 

~ [-_- {'.~ l . -f /2 f::- -- J. rJ £ (~ l . ;' cl u, 
0 i:. l"' I; 2 , I ~o 1'2. . d .X .2. 

- !:: ... - 2 1::_2 l-· . cJ D ,; { .J.. ?/£ ; / 
- I ii l y t, l - 0()<_2)1>i ./- 2 y J(XL);., d/i:2.)11, ) 

where from the condi t i on of incompressibility P .. = 0 
1.,1. 

( 3 -//J) 

and, consequently, n i,i = 0. The spectrum functions are 

then averaged over all directi ons of the wave number k 

by summi ng over all va l ues of i. Thus, mean values of 
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these f unctions over spherical surfaces k = canst. are 

obtained. New spectrum functions are defined as 

£ (~)= ;_ J £ t'l. o1 A fkJ , 

F(k) = -j_ j F:l· d A (k) 1 

J)(lz) 

Application of the above averaging procedure to Eq. (3-19 ) 

(3-20) 
•· 

Without the second term on the left side (production 

term) and the last two terms on the right side (inhomogene-

ity)1 Eq , t3-20J reduces to the spectrum equati on obtained 

for the case of isotropic-homogeneous turbulence (Batchelor 

1953). Similarly as in that case, assumptions about the 

spectrum transfer function, F(k), are needed here also. 

In the case of shear turbulence, however, additional as-

sumptions must be made concerning the spectrum production 

function, '?:(k), and the spectrum diffusion function, D(k). 
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r.v The physical meaning of the spectrum function l - (k) 

can be made clearer if the defining expression for 2' (k) 

is integrated from O to ex'.) 

The first part of the integral on the right side can be 

evaluated from the relationship between Q1 , 2 and 

and from the defining expression for spherical averages 

(3-19a) as 

For r = 0 
oO 

cPtz (o) = a1 u 2 - .L f [ 2 ~It 2- o14 ol k. o<_ 
0 

Thus, O<:) 

ffE~2. dAdk = 012.(0) = /.// ti 2. (3 -2/) 
-oO 

Using the first of the relations (3-17), following the 

same procedure' and noticing that r I;_ (ocQ i1/g 0 ) ] = 0 ' 
r=o 

one obtains 
0(,) 

I [ff? ~~/t' -
2 o I d '1<2.. 

From (3-2 i ) and (~-2'2) . it follows 
I 

0 

0 • (3-22) 

) 
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i .e., '['(k) is the shear stress spectrum function and 

(clU,/d~2 )
0 

.f" 'elf) df is the production of turbulence 

in the range from k = 0 to k. 

In further analysis, we assume that the turbulence 

Reynolds number is large enough and that there exist an 

equilibrium range for large wave numbers. We shall study 

the spectral law in the equilibrium range in a way analogous 

to the case of isotropic turbulence. 

For a steady flow, Eq. (3-20) reads 

• 

Integrating from k to ex) 

(3-24) 
and, because 

oO I( 

- 2JI })'€(to/' -2/J j}'l'tJ>dj 
k. 

e - 2Y _f/-E(JJ o/ 
0 

) 

one obtains 
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k 

C = '2 Y fr'[(jo) 7 + 

• (3 -25) 

The first term on the right side represents the viscous 

dissipation in the wave number range from O to k. The 

second term is again the transfer of turbulence energy from 

smaller to larger wave numbers. The transfer term arises 

from the nonlinear terms in the equation of motion o It 

does not make any contribution to the total energy, i . e . , 
r 

0 
,._,i F (k) dk = 0, The third term is the production term . 

It represents the production of turbulence in the range 

from k to o<J The last two terms are due to inhomo-
OC) 

genei ty in the x 2 direction. The term -· ½X.., ~r 'PffJ c/t 
represents turbulent diffusion in wave number space. 

The last term represents diffusion of turbulent energy 

due to molecular viscosity. It is obvious from Eq. (3-24) · 

that this term is very small due to small values of the 

molecular viscosity, ~; , and small values of the integral 

from k to oo of E (k) in the equilibrium range where t.he 
K oo 

inequality O .f £(pJdf >>k JE. (fa) d? is usually assumed c 

Thus, the molecular diffusion term can be completely ne-

glected . 
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In a more accurate analysis, however, the molecular 

diffusion term should be combined with the dissipation term 

0 
f ;' rv k 2 £ {rJ 0 l/::; . The corresponding terms in real 

space, i.e., in the equation of motion for an inhomogeneous, 

incompressible turbulent flow are 

') -/ 9 q_ 2-- y __::_x___ 
2 ~,(, · J ,(, J 

These two terms result from the term representing the 

work done per unit of mass and of time by the viscous shear 

stresses plus the term representing the dissipation per 

unit of mass. However, they do not have the same meaning 

and the last term, - 'V d ~ J · /J ~ d ,C, · , does not represent 

the total dissipation in an inhomogeneous turbulent flow 

(Hinze 1959). If, on the other hand, the departure from 

homogeneity is not too strong (what may be assumed to be 

true in a boundary layer except very close to the wall) the 

both, combined, viscous terms are nearly equal to the dis-

sipation for a homogeneous turbulent flow, i.e., to 

_ -y d ~ ? ~ / ~ ,,e,, · 9 ,t., · The corresponding term in wave 
o.,:, 

number space is 2 ';!.I _(- ,........tf t.t;( "k.) ol~ • Thus by equating 

this term with the total dissipation, € , in Eq. (3-24), 

it is tacitly assumed that the molecular diffusion term is 

negligible. 

Besides being negligible, the molecular diffusion term 

is not of great interest on yet another basis. In the 
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present work, the pr imary interest is in studying the shape 

of the energy spectrum function of shear turbulence in the 

equilibrium region and the influence of particular spectrum 

functions on that shape . The molecular diffusion term, 

however, does not affect the basic functional shape of the 

energy spectrum function E {k) but affects only the total 

dissipation. Equation (3-25) thus .reads 
k oa 

<£= '2 ?I_[£ (rJ ?27 + f_.F(jJ o{_f 
0 

oO oc 
dU, f rtr;Jd/ d [;]) 0) 1 (3-20) d~z_ 0 X2 K 

In order to determine E(k ) f.rom Eq. ( 3-26) , the 

functions F(k), 1; (k), and JJ(k) must be expressed in 

terms of E(k). As the wave number k is assumed to be 

suffic i ently large and the equilibrium .region is assumed to 

exist, the assumptions concerning the spectrum function 

F(k) are similar to those used for isotropic turbulence. 

For the spectrum function rt' (kJ, Tchen (1 953) sug-

gested a mechanism of spectral transfer that enables it to 

be linked with the energy spectrum f nct1on · E (k). Depend-

ing on the relationship between the scale of the main motion 

and the size of turbulent eddies, two cases are distinguish-

ed: a weak turbulence, when the transfer is determined by 

the gradient of the main motion, and a strong turbulence, 

when the transfer is determined by the vorticity of the 
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t urbulent motion. For the case of weak turbulence , Tchen 

(1953) assumed that 1c:(k) is given as 

00 

(3 -27) 

which is an analog of Boussinesq's concept concerning tur-

bulent transfer of momentum, i.e., 

Thus, in this case, 

which can be interpreted as the dissipation of energy of the 

main motion by eddy viscosity. 

For the case of strong turbulence with strong inter-

action between the main and turbulent motion, Tchen sug-

gests that the flow of a quantity created by the diffusiona l 

mechanism of transfer is proportional to the vorticity of 

turbulence, instead of the main motion vorticity as in the 

first case. Therefore, 
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where c is a constant. Hence, 

Of main interest is the case of strong turbulence, 

which is the case, for example, of a turbulent boundary 

layer with large Reynolds number. With the relation 3-28 ) , 

Eq. (3-25) will read: 
I< 

€= 2yfa2£(f Jo/ f-

a 

d (]) ··. j (p)dp 
t>"'2 -k 1/ I 

(3 -29) 

3. Previous Solutions 

Tchen (1953) was the first to study the spectrum of 

energy in turbulent shear flow. He used Heisenberg's ap-

proximation for the spectrum transfer function, F(k), and 

consequently for r1(kJ, 
~ ~ k 

f F(f!d/ = ~l JI~) 1 faf ~(jJdt ) 
I<_ -C-_ )> O 

(3-30) 

where }( is a constant, and the first integral on the right 

side represents turbulent viscosity, r"}'T(k). Tchen consid-

ered only asymptotic solutions, i.e., he considered two 
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particular subranges: (a) nonviscous subrange (the lowest 

wave number range of the equilibrium range)Jand (b) viscous 

subrange (the upper part of the equilibrium range). In this 

way it was possible to simplify Eq. (3-29) because some of 

the spectrum functions can be assumed negligible for a 

particular subrange. 

The simplest solutions are obtained for the case of 

weak turbulence. In this case the production term is 

simply 

Neglecting the diffusion term, a solution of Eq. (3-29 1 

for this c~se can be easily obtained. However, the nature 

of this solution (Hinze 1959) is entirely the same as of 

the solution obtained for the equilibrium range of isotropic 

turbulence. The weak turbulence case does not affect the 

spape of the energy spectrum that is obtained for isotropic 

turbulence. There is only a larger dissipation . This means 

that the solution of Eq. (3-29) for the weak turbulence case 

can be obtained if E in the solution for isotropic turbu-

lence is replaced with c + 0-' (d0 / d X2 ) 
2
· • Considering 

the underlying assumptions made for the weak turbulence 

case, this final result is not surprising. 

For the strong turbulence case (the case of strong 

interaction between the main and turbulent motion) in which 
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we are primarily interested, an asymptotic solution for 

nonviscous subrange {lower wave numtar region of the equi-

librium range) can be obtained if the dissipation and the 

transfer spectrum function are assumed negligible. If the 

diffusion term is neglected too, Eq. (3-29) reduces to the 

simple relation 

(3- 31) 

Using Heisenberg's expression for ~ (k), a solution for 

E(k) is readily obtained as 

£ ({J = i~ ~o/d-r2 l ,P - I , (3 -32) 

This is the original asymptotic solution obtained by Tchen 

(1953) for this subrange. 

This asymptotic solution, however, does not show how 

much a strong production term affects the inertial subrange . 

For this information, a solution for E(k) that would con-

nect the low wave number region with the "-5/3" inertial 

subrange is needed. 

Panchev (1968, 1969) considered solutions for E(kJ 

in the case of strong turbulence when the dissipation, the 

transfer, and the production function are taken into account 

simultaneously. The effects of inhomogeneities were, how-

ever, neglected. He also used Heisenberg's approximation 

for the transfer spectrum function, but for /"/ (k) 
7 

he used 
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a generalized form that reduces to Heisenberg's and Howells' 

form for s = 1 and s = 2 , respectively: 

(3 -33) 

With Heisenberg's and Howell's expression for ~ (k) , 

solutions for the three-dimensional energy spectrum were 

obtained in parametric forms. For corresponding ranges of 
-1 wave numbers, the k range, Eq. (3-32), the inertial 

k- 5/ 3 subrange, and the viscous k- 7 range are obtai ned. 

The -7 k result is obvJously a consequence of the Heisen-

berg concept for the spectrum transfer function . 

The sparce data on energy spectra measured in shear 

turbulent flows show sometimes an approximate -1 k var i at ion 

of E(k) in the lower subrange of the equilibrium range a s 

suggested by Eq. (3-32). The conditions for the existence 

of this law, namely, a strong velocity gradient and, conse-

quently, a large production term at the point in cons i der -

ation usually mean that a strong inhomogeneity i s created 

in the considered region. 

The existing data on energy spectra in shear turbulent 

flows show many inconsistencies and irregularities in the 

wave number region where the effect of shear is expected to 

be the strongest. This indicates that the behavior of the 

lower part of the equilibrium range of shear turbulence 
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cannot be explained as a result of the effects of the 

velocity gradient only. The effects of inhomogeneities 

must be accounted for if a more realistic description of the 

spectrum behavior is to be obtained. 

4. Solutions for the Complete Spectrum Equation 

Before an attempt is made to solve the complete spec-

trum equation, Eq. (3-29), additional assumptions must be 

made concerning the diffusion spectrum function, D(k). 

To see more cleaLly the physical meaning of the in-

homogeneous term in Eq. (3-29), it is integrated from 0 

to 00 and from the defining expression for sperical aver-

ages, Eq. (3-19a), one obtains 

(3- 34) 

On the other hand, using again the definition for spherical 

averages, 

and, using the Fourier transfoLm relations, (3 -16 ), 

oO 

I,jj{r) = J,f([DM ~ (1{t}o1kJci4 
For r: O, and contracting indices, i = J = k, 

00 

Ii i r o J = ;_ J f Di l o1 ~ d4 
I - oc, 

- ff PtiDCAol'2_ 
0 

(3-33) 
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Thus, from Eq. (3-34) and Eq . (3-35) 

00 00 

f V(k)c;/6_ = j fj})t't"cl4c/~ JJ-, , /) 
==2-, t.c(O • 

0 0 

Going back to Eq. (3-14a), 

for i = j = k 

and, for r = 0 J 

Thus, 

which corresponds to the term representing i nhomogeneity in 

the turbulence energy equation (obtained by multiplying the 

one-point equation, Eq. (3 -1), by U . 
1 

and taking an aver-

age). This term represents the convective diffusion by tur-

bulence of the total turbulence energy. An analogy with 

diffusional processes is used to write an expression for 

the corresponding inhomogeneous term in wave number space. 
00 

From Eq. (3-37) it i s possible to see that _J-.bf6)46 
(> 
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represents a flux of turbulent energy. Accordingly, it is 
C() 

assumed that -6. ,./r })(j>J d..p can be written in wave number 

space as the product of a turbulent viscosity and the 

energy gradient: l.z 
oc - c, 1;J~)~Jf ~r;Jr J 

Thus, the diffusion term reads 

As the primary interest is in the equilibrium range, 
-k oO 

the usual assumption is that O J E(jJ df >>kJ~{;)d/) /e, J 
-k 0() 

OJ £/JJclj --__, l £("'-)di?. 

Hence, Eq. (3-29) reads now 
,{ 00 

c= 2y_[~(!Jfz~ f--[F(tJcfj 

+ C ¥fl,):~ [ / J ~(f J /cf/] f, r_, a~Ji{/1,J i/i l) J J (3 · )8) 
where writing the total turbulence energy as /4 "j2- in 

the expression for the diffusion term means that the 

energy diffusion due to existence of velocity-pressure cor-

relations is neglected. 

The diffusion term complicates in this form the solu-

tion of Eq. (3-38). A further simplification is need ed. 

Expanding the term, one obtains: 
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We assume now that the gradient --OYr!l1//'J.,1z is negli-

gible and that consequently the second term on the right 

side can be neglected altogether. 

Thus, the diffusion term reads 

0() 

(3-39) 

Obviously, this form can be viewed as describing the 

diffusion of turbulent energy in a locally homogeneous tur-

bulent field, i.e., ~ (k) is assumed approximately con-

stant in the considered region and the expression (3-39) 

follows from (3-38a). 

In considering a shear turbulent flow where the gradi-

ent of the total turbulent energy decreases along the axis 

x 2 (as in a turbulent boundary layer) the second derivative 

7:/·( /4 7,2.)/?3 {t will be negative and the diffusion term 

will be therefore positive. 

Finally, for the case of strong turbulence, Eq. (3-38) 

reads 
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k. <.>() 

c = 2v _[~{fJ/ 2 
-1- J;Ff/Jdj 

-f C rfiV,J&J{[~f/J/df] f, -f (,_ Y,-(6.)1:t ' 
Thus, the equilibrium in the exchange of energy is 

expressed as 

.. 

In the following paragraphs, solutions of the balance 

equation, Eq. (3-40), are obtained when the complete equa-

tion is considered, i.e., when all terms are taken into ac-

count. Following previous approaches, solutions are first 

derived using Heisenberg's type of approximation for the 

transfer function F(k). Several simple solutions for the 

energy spectrum are then derived using the Modified Obukhov 

approximation (Ellison 1962). In the last part, the vorti-

city approximation approach is used for the derivation of 

closed form expressions for E k J . 

The solutions are then computed for different produc-

tion and diffusion parameters. A discussion of these re-

sults and comparision with data from actual shear turbulent 

flows are presented in the last section. 
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4 .1 Solutic:>h:s with Heisenberg's Approximation 

In this case (Heisenberg 1948), 

~ ~ k 

[ F(kJcl~ - ¾ [ fp2 f _[2/E(f;cf/ J 

where~ is a constant and the first integral is the tur-

bulent viscosity r-yT (k) , i.e. , 

~ (1;_) -= g: f ·®2 r I-/ k r 13 . 
The spectrum equation, Eq. (3-40), becomes now 

/\ ~ 

C= 211[U;,Jfo/ + J7iciJ.,(kJ[2;1E(J,Jo/ 

or, 

With the expression for "VT ( /;__) , 
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oO le 

C = tv ffa;,>~/ ,- ~ ,/ vfffe1 ( [ J~;;0> 1 

(3-41) 

The constant KH should be determined from the condition that 

in the inertial subrange the following relationship holds: 

o/3 -13 E (~) = o<~ R . 
Consequently, one obtains 

6L = ! c( ;/2-
li r i 

where o( is the Kolmogorov constant for the inertial sub-

range. 

(3-42) 
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A nondimens ional form is more convenient for handling 

and computation of the results; hence, the following non-

dimensional variables are int~dduced~ 

) 

where 

(3-43) 

Substituting into Eq. (3-42), one obtains 

le X. 

2'21[;,2£{;,Jcif = C j/{fJ/1, 
00 oC 

r.@ c;/h = o<. 1~ r v11f; otfa 
k. J f JS I J~ i f 3 I J 

/c X 

J2;2~f/Jdj; =c-:) ftr;oJ/olj. 
r) 

Hence, Eq. (3-42) in nondimensional form reads 

or, writing 
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where m and n represent the production and the diffusion 

parameter, respectively, at the point in the flow where the 

energy spectrum is measured. 

Eq. (3-42) now reads 

,{ 

Let ;/-- .[2tq,j/dt 1 

so that (3-46) 

Eq. (3-45) now becomes 
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(3-47) 

or 00 

• 

Differentiati ng with respect to x, and after some rear r ange-

ment, one obtains 

o1.z ,z 4 2[tn:1. + :l ,_ + m] 4 

cl-{ =fr)[,;' -1--(!1-,n):l 1 -:1 z.2_]2 
_5 

' .t . (:3-18) 

Hence, this ordi nary differential equat i on wi th separat ed 

variables and the relationship (3-46) represent a parametric 

solution for the three-dimensional energy spectrum, ~ (x) , 

when the complete spectrum equation, Eq . (3-45), i s con-

sidered. 

If we concentrate now our attention on the nonvisc ous 

region and, consequently, neglect the d i ssipation ter m, Eq . 

(3-47) becomes 
00 

I= ({J f/Tf 1 (z2+ tri 2 + ~J. (3-49) 

After different i ation with respect to x, one obta i ns 
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(3-.50) 

Though in this case the differential ratio dz/dx is some-

what simplified, we still ha v e a fairly complex parametric 

solution for ~ (XJ, and an assessment of the effects of 

the product i on and the diffusion term on the energy spec-

trum in the nonviscous reg i on is impossible without a 

numerical solution for 2: (x). 

4.2 Solutions with Howel_ls I __ Approx imation 

Another Heisenberg's t ype of approximat i on for the 

turbulent viscosity ,,..-~T(k ) , and consequently for the trans-

fer function Flk), is t h e appr ox imation due to Howells 

(1960). He originally proposed it in an article on spectra 

of scalar fields. It reads 
oo , . 

'1? ('k )= ~ -, [ /£JJ) ·· 'at1 J.;/2 
Both Howell's and Heisenberg's approximations can be 

viewed as particular cases cf a general expression for ' )~1k : 

that must satisfy the following requirements: (a) its di-

mensions must be square of length di v ided by time, and (b) 

the turbulent viscosity r).) (kl 
T is expressed as an integral 

over all wave numbers greater than k . There are several 
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ot these general expressions for r"j)1 (k ) r Stewart and Town-

sned (1951) showed that th i s particular form for r'/.) (kJ in 
T 

combination with the second integral in the expression for 

the transfer function leads to a power law energy spectrum 

in the dissipation range. 

With Howell's expression :or 

comes 

c= 

r7/._ ( k l , Eq. ( 3- 4 0) be-
/ 

• 

For Howell's approximation one finds, in the same way 

as in the case of Heisenberg's approximation, 

Using nondimensional variables 1 3-431, relations 3-

44a), and making again the substitution 

Eq. (3-40) becomes 

7 d7 
x 2 ol.J( ) 
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or 

Squaring both sides and differentiating with respect to 

x , one obtains 

'.2. 

2 (n,_:Z -1 ~::· (J-1 ) J 

0-2 2
) (i11 -1- 2Z +1#-Z

2
1 2,, 2-) 

Thus, because the differential ratio dz;dx cancels 

on both sides, we obtain directly x = f(z ) which, to-

gether with the relation (3-46)/ represents a parametric 

solution for the energy spectrum function ~ (xl, 1 e., 

~ ·== /(2-) ;, 
~ ' z d:Z-( (xJ = --- __ -

- l V '.2 . .Jy /\ (~ .. , ,,_ 

If the dissipation spectrum tunction is neglected, 

Eq . (3-53, becomes 

/ = 
?0 ] IJ_ r "-

2 J ,...1:' -- :i 12 l _ 2.. - / ?[; J (_(hJpJfo ./]_-1-1117Z-1-1;\ 
J _, ,X I I / ( L ' ) J 

, ~' (3-·5J) 

and, following the above proc edur e, a parametric solution 

valid in the nonviscous region is obtained as 
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(3-St) 

Again, as in the previous case of Heisenberg's approxi-

mation, nothing can be concluded about the effects of the 

production and the diffusion term on the energy spectrum. 

For this, the complete numerical computation of the para-

metr ic solution is needed. 

Even if the lowest part of the equilibruim range is 

considered and assuming that the transfer function can be 

neglected, one still obtains only a parametric solution, 

i.e. , 

(3- S7) 

After squaring and differentiating w. r.t.x, it fol-

lows 

(3-S8) 
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Though Howell's approximation for ~ (k), similar to 

Heisenberg'sJdoes not lead to explicit expressions for the 

energy spectrum function, t (x), it does produce parametric 

solutions that are much less complex. Computation of these 

solutions and discussion of the result is given in sections 

5. and 6. 

4.2 Solutions with the Modified Obukhov Approximation 

In the study of isotropic turbulence, the transfer 

theories of Obukhov, Heisenber~and Kovasznay have played 

an important role. The particular analytical form of each 

theory is obtained by considering a plausible physical mech-

anism of energy transfer and by satisfying certain dimen-

sional requirements. On physical grounds, however, there 

has been a tendency to favor Heisenberg's theory and its 

consequences have been worked out in more detail than of 

any other theory. Some justification for this lies in the 

fact that Obukhov's approximation 1 for example, leads to the 

physically impossible solution for the energy spectrum 

(Batchelor 1953). 

Ellison's modification of the original Obukhov approxi-

mation (Ellison 1962) overcomes this difficulty and leads to 

very interesting solutions for the energy spectrum. It was 

the first approximation which produced the energy spectrum 
-k2 that trails off in the viscous region as .- e . 

The Modified Obukhov approximation is based on the 
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oc 

phy sical argument that the flux x... / - f(t ) d.f is a conse-

quence of a Reynolds stress taken as proportional to k·E1k) 

and acting on the r oot-mean square rate of strain of all 

smaller wave numbers, i.e., 

S/i:_ J = 

where (from E(k) for the inertial subrange ) 

(_ L_ a--3/2-
0 - - ex 

11 / . 3 '~ • 

The modified Obukhov approximation for the transfer 

function does not have an explicit expression for ~ \k J 

needed in the spectrum balance equation , Eq. (3-40). This 

can be easily overcome if the modified Obuhkov approximation 

is written in a slightly different form, i.e . , 

where the ratio between the energy k • E (k) and the vortic-

i ty [ [ { E (p ) j} df] f :i. represents the turbulent v isc o sity 

(3-6{) 
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It is interesting to note that in the derivation of 

the turbulent diffusion equation by using a probabilistic, 

random walk approach (Monin & Yaglom 1965) the diffusion co-

efficient arises as a limit of the ratio w2/A, where w2 

is the energy, [L 2 /T 2 J , of the diffusing particle and A 

i s a characteristic frequency (T-l 
> 

Hence, Eq . (3-40 ) now reads 

Using nondimensional variables (3-43) and the expres-

sion for ½t1 , Eq. (3-62) becomes 

,{ 

1 = _F2t/t) 1?d1) ~ a 
0 

or, 
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where, as before, 

The complete solution in this case is very simple. For, 

from (3-64) 

Hence, 

(3-£S) 

and the integration constant is zero from the condition: 

X =- 0, 2 = 0. 

This parametric solution, represented by Eq. (3-651 

and Eq. (3-64a) is much simpler than the other two obtained 

in the previous paragraphs. 

In this case, moreover , explicit asymptotic solutions 

for the energy spectrum function, ~ (X l, are possible. 
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Neglecting only the dissipation term, one obtains 

I = Vl J: trx) { Z'-1- ;{ +//J / , 
./ 

and, with (3-64a), 

The only poss i ble explicit solution for;! would be 

for m=2Vn: 

• 

Thus, 

and 

Hence, 

) (3-tG) 

~ = t?n/.2. 
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For n = m = O, the spectral law of the inertial sub-

range is recovered: 

In considering the nonviscous region where 

it follows from Eq. (3-66) that for smaller and smaller 

[ .)/) 1/:z. J/2 7 ;/J . r:: wave numbers as the difference C 1/2.. + rh _ - Y h-

becomes smaller, the exponent representing the behavior of 

the energy spectrum function, ~(~) r'v , becomes 

less than one. Thus, the -1 
X law of shear turbulence for 

the lower wave number region--found for the case when the 

- effects of inhomogeneities are neglected--is affected if 

diffusion of energy is taken into account. Only for 

[ C 3 /i. ) 3/2. + rri 3/2 J f7; > > ("/11,. 
) will 'e -1 C (x) /'\, x • 

If only the production term due to shear and the 

diffusion term are cons1dered--the transfer term is assumed 

negligible--Eq. (3-64) then becomes 

) 

and, with solution is 
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Hence, 

As the value of Z cannot be negative, only the first 

r oot is considered. Thus, 

(J-t8) 

Obviously, only for n = 0 would ~ (x} -1 rv x , as was 

obtained originally by Tchen (1953}. It is again apparent 

that the -1 k law cannot be maintained if the diffusion 

due to inhomogeneity is taken into account, i.e ., when 

/YI =I= () • 

Solutions with the VorticitLApproximation 

An explicit expression for the energy spectrum func-

tion, ~ (x,m,n), as a solution of the complete spectral 

equation is possible if a vorticity approximation approach 

is employed (Kesic 1969). 

In the universal equilibrium range, for the range of 

wave numbers far from the dissipation range, k <~k
0

, we 

can make the usual assumption t hat the viscosity "'V does 

not play any important role and the vorticity of turbulence 

can be expressed, on dimensional grounds ( E and k being 
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the only pertinent variables ), as 

The same result follows as the solution of the vorticity 

integral if E (k) rv k - 5/ 3 • 

With this approximation for the vorticity, the trans-

fer function becomes 

s1ffL)= fv ~£/R)[C~'_]~ 

fv = /c<_ 

The case when the diffusion term is neglected is considered 

first. Equation (3-40) then becomes 

/ ~-70·· .. 
' .. I, 

Because the inertial subrange approximation is employed 

f , h , ' , rf ( C k 2 l/) h f ' 1 • or t e vorticity, i.e " , O. c:. ) , t e ina expression 
V 

for the energy spectrum function is not expected to be 

strictly valid in the dissipation range. This inaccuracy, 

however, can be accepted because the main impact of shear 

is expected to be in the lower part of the inertial sub-

range and it is our main interest here. 

Using the nondimensional variables (3-43), Eq . (3-70) 

reads 
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,t_ 

I _[ 2 tr;, J Fett -1- { t-rx > (,,/:_ "'J. (3- 11J 

With 
,( 

:J:2= [ 2tr;,;(1 ) 
c!°rx) = x.~(d ¼)() } 

i t follows 

.xct.x: Zcl~ 
-

--t 2/3 + 1h (; - 7: 2.) 

Using the following subst t tution: 

j-', .,,( ) =- / ll,,, / 

d f__ = 3 d,{2. dtt I 

Eq o (3-72) reduces to the case of table integrals and inte-

where C is the integration constant to be determined from 

the Condition: ~=OJ ;i{ = a ~ 

Thus, 
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.. 
Hence, 

Finally, 

(3-74) 

In the low wave-number region, Eq. (3-74) yields 

t<x)rv x-1 . For negligible shear, m = 0, it is reduced 

to the expression for the energy spectrum in isotropic tur-

bulence obtained by Pao (1965)~ 

A more accurate solution for ~ (x,m) should use an 

approximation for the vorticity valid in the dissipation 

range also. 
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By using such a vorticity approximation (Kesic 1969) 

Eq. (3-70) then becomes 

X r X¼ 
/ =: f 2 f(p ) ;?dt I x'trx J 21~ -f 

1 , .. ( /-I )Y 3 
0 • 

', 

11J. (3-7s) 

Following the same procedure as in the derivation of Eq . 

(3-74), one finally obtains 

where b = m T 1 . In the low wave number region, Eq . 3-76) 

gives the same result as Eq. (3-74). The difference shows 

only in the dissipation range. 

The complete spectral equation, with both the produc-

tion and the diffusion terms, reads 
/<. , f-; 

c! = .2. Y fC f/ J f? cf/ -1- 6v k {/k) (E I~/) -· 
0 

+ (' ~ i£f &.J f- t. ,,,l(Fi/ -k E(I.J 
, c1 .r-i- 2 ~ ;:/ CE R ~Jr~ ; (3-71) 

or, in nondimensional fcrm, using (3-43 ) and (3-44a), 

{ 

/ = / 1. d"(!J/clj + x trxJf)(~ It/ 1- /J X}. (3_7~) 
u 

Before solving the complete Eq. (3-77), an analysis 01 



57 

the behavior of the energy spectrum in the nonviscous 

range is possible . Concentrating attention to this region, 

the dissipation term can be neglected and directly from 

Eq. (3-77) it follows that 

(3-77) 

Obviously, for m = n = O, the -5 / 3 inertial subrange 

law results. For n = 0, 

-I 
_,t 

) 

and for small x 1 such that ~ 2/3 -1 m ~ x I the x nonvis-

cous region follows. However, if 

will be definitely affected. 

In the case when n )'> mx 21 3 

n ; 0 the -1 
X .result 

(For very small x, for 

example), Eq. (3-79) gives the asymptotic solution as 

tv x-113 . This, however, cannot be valid. In the low 

wave number region of the nonviscous subrange, where ap-

parently the -5/3 spectral law is affected, the approxi-

mati on for the vorticity cannot be 'v (c k 2 J 113 which is 

strictly valid for the inertial subrange only. For small 

departure from the -5 / 3 inertial subrange, however, this 

can be accepted as a first approximation . 

By using the substitution (.3-46 i , Eq . ( 3-78 1 becomes 
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Hence, 

/- :f 2- (3-82) 

Making the following substitution: 

Eq. (5-12) is reduced to 

Q .I :::t. 
-<.. (.,/ ,,.;_ 

2 
/W +l""w 1- />1 I- ~2 

) 

2 and, a solution for fl. is obtained as 

(3-BS) 

valid for m2 > 4n. In the case of m2 <( 4n or m2 = 4n, 
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only the last term in the exponent would be changed to 

7 

3 IJ.117 - In.._./ 

or -2x ½ + IJ., 
) 

respectively. 

The integration constant, C, in (3-83) is determined 

from the condition: x = 0, z =- 0. Thus , for m2 7 4n, 

The energy spectrum function then follows as 

and, with (3-83), 

(3-84) 

5. Computation of Solutions for the Ener9y Spectrum 

Among the solutions obtained with Heisenberg's type 

approximation for "1-!r (k), Howell's approximation, Eq. 
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(3- 51 ), leads to a simpler solut i on of the spectral equation 

(3-40) than the or i g i nal Heisenberg approx i mation. In the 

latter case the parametri c solution (3-48) was obtained . 

Though . the .dif f erential equatio n (3-481 can be readily inte-

grated by use of table integrals, the final result is very 

c omplex. Even a solut i on val i d in the non-viscous range 

only (the diss i pat i on term neglected) i s impractically long. 

Howell's approximation, on the o t her hand , yields a 

much s i mpler solution. It i s given, Eq . (3-54 ) , as 

) 

and the energy spectrum funct i on follows as 

. ({11,,,- 1/ 71/,/ 7 ) (2- '2 + ;,.,,-, 2 _j_ !J)' 4 1, . • 1/~1A ..:... / A:_ / 'I '- , L X, ) =- ----~---- -·-- -- - - - ) 
( / -7:2.) A'./' '-:-:> . 1· 2 -; ) C / I - ;~· • /1 ' C + , z~ -I- /J} Z. + h . ' .2:: 

( '1 -t~ \ ' .;) .., J 

This parametric solution is computed for different 

values of the paramet ers m and n and the results are 

plotted in Figs. 8 and 9 
The Modified Obukhov approximation for the transfer 

spectrum function leads to especially simple solutions oi 

Eq. (3-40). In thi s case the parametric solution is, Eq. 
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(3-65), 

Hence, 

+ 2(!- ~) ) 

and 

<!'rx) - (3-Jl) 

The results, computed for different values of m and 

n, are plotted in Figs. I - 7. 

In the case of the vorticity approximation, explicit 

expressions for the energy spectrum 'f!. (x) are obtained . 

Thus, the values of t (x) are calculated for different 

values of m and n directly from Eq. (3-84). 

All these solutions, obtained by using d i fferent approx-

imations for the transfer spectrum function, are for the 

three-dimensional energy spectrum. So far, there has not 

been any experimental data on the three-dimensional energy 

spectrum. All measurements refer to the one-dimensional 

spectrum functions. In literature, the one-dimensional 

spectra are calculated by exact relations derived for the 
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case of isotropic turbulence. In the case of shear turbu-

lence, however, the present knowledge of the spectral den-

sities is insufficient for an exact calculation of the one-

dimensional spectral functions. Monin (1962) suggested that 

within the equilibrium range the one-dimensional spectrum 

f unctions could be calculated--at least as a crude estimate--

by means of the formulas valid for locally isotropic turbu-

lence. He used this procedure to calculate the one-dimen-

sional spectra from relations derived for the three-dimen-

sional spectra in a thermally stratified atmosphere. 

The same proceudre is used here to calculate the one-

dimensional energy spectra from the expressions for the 

three-dimensional energy spectrum ~ (x). Calculation is 

carried out for two cases: (a) 't (x) obtained with the 

use of the Modified Obukhov approximation1 and (b) '6_ (x) 

obtained with the vorticity approximation. 

The relationship between the one-dimensional energy 

spectrum F(x1 ) and the three-dimensional energy spectrum 

l (x) is given (Hinze 1959) for the 

ponent as 
O('.) 

f (;-
X; 

{( 2 / I spectrum com-

13-%7) l ,· , 

In the case of an explicit expression for ~(x), as 

was obtained by using vorticity approximation, Eq , ( 3 - 8 7) 

is transformed into a form that is more convenient for 
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numerical integration by substituting a new variable 

Thus, 

and 

(3-tt) 

Writing the de.rived expression for £.. (:x), Eq. (3-84 ) / 

as a function of (x1/y), the above relation is used to 

calculate the one-dimensional energy spectrum F(x1 ). The 

results are plotted in Figs. 17 and i8 1t, 

In the case of the Modified Obukhov approximation, the 

solution for ~ (x) was obtained in a parametric form, 

Eq. ( 3-65) • 

obtains 

Substituting (3-46) into Eq. 13-87), one 

Y= oo 

J:(x1J- j (i - ;:_2)}:, ;: ci.x._ ) 
,(= )( I 

Z(.r~o0) I 
or, 

1-rx,J = j{;- /;2

) ,r1 dz ~ j(;-/_); c!Z! 
2(x::.x,) ...Z(A'=-r,J 

) 
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where 

These two relations are used to calculate F (x 1 ). The re-

sults are plotted in Figs. 19--26. 

6. Results and Discussion 

The results obtained from the solut i ons derived in 

this chapter are plotted in F i gs. - 28~ In Figs , 1-11 

the three-dimensional energy spectrum t (x) is plotted 

for different values of the production parameter, m, and 

for different approximations for the transfer spectrum 
-1 function. All these approximations lead to the x solu-

tion for the low-wave number range if the diffusion spec-

trum function is neglected in Eq. (3-40 ). The effect of 

the shear is clearly displayed. As the production parameter 

increases, the inertial x-S;J subrange is affected more 

and more--up to a larger and larger wave number . For a 

very strong production, i.e . , for large values of the para-

meter m, the shear effects penetrate the energy spectrum 

even through the dissipation range . 

The impact of the diffusion term on the three-dimen-

sional energy spectrum in the low wave-number range is 

shown in Figs . -L1 - g In F .1gs. l - 7 the solutions for 

the three-dimensional energy spectrum obtained with the 

Modified Obukhov approximation and for different values of 
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the production parameter, m, and the diffusion parameter, 

n, are shown. It is clear that by taking the diffusion 
-1 spectrum function into account the x range 1s strongly 

affected. Only for very small values of the diffusion para-

meter, n, (relative to the production parameter m> 1s it 

possible to obtain a solution for the energy spectrum func-

tion, ~ (x), that gives the variation of a part of the 
-1 spectrum in the low wave number range as x However, 

even with as large a value of the production parameter as 

m = 2, Fig. S the diffusion parameter as small as 

n = 0.005 will destroy the -1 
X range completely. 

The relation between the terms of the spectral equation 

(3-40) and their relative magnitudes for different values 

of the production and the diffusion parameter is shown in 

Figs. /2. - / 6 . It is clear from these diagrams that with 

the penetration of the shear and the diffusional effects to-

ward larger wave numbers, the dissipation 1s moved toward 

larger wave numbers too--a fact that has already been 

noticed in experiments on turbulent boundary layers lH1nze 

1959, Tielman 1967). At the same time, the transfer term 

becomes smaller and smaller 1ndicat1ng a shrinkage of the 

inertial -5/3 k subrange. 

In Fig. / a composite plot of the three-dimensional 

energy spectrum is given. Together with an increase of the 

value of the production parameter, m, an increase of the 

diffusion parameter, n, 1s assumed also . This hypothetical 

case represents the actual situation in a turbulent boundary 
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layer. The i ncrease of m represents an i ncr eas e of the 

velocity gradient, du/dx 2 , and the increase of n repre-

sents an increa s e of the di f fusional effect s a s the distance 

from the wall is d ecreased. The behavior of the three-di-

mensional energy spectrum in the prese nce of shear and in-

homogeneities, as given by Fig. 7 , is in a good qualitative 

agreement with the experimental data on energy spectra in 

turbulent boundary layer s . These data are, however, still 

very meager. 

The first systematic measurements of the energy spec-

trum were reported by Klebanoff (1951 > and Laufer (1954J. 

Klebanoff's data were taken in an isothermal turbulent 

boundary layer with zero pressure gradient - The meas r ed 

energy spectra (Klebanoff 1951, Fig. 6) show that the c ontri-

bution to the turbulence energy in the low-wave number range 

decreases as the wall is approached, but that the contribu-

tion in the high-wave number range is increased. This is 

the same picture as given by the solutions of the spectral 

equation, Eq. (3-40j, and shown in Figs . i- 28L 

The most recent measurements of the energy spectrum in 

an isothermal boundary layer were done by Tielman (1967) . 

He plotted Heisenberg's isotropic relation for comparison 

but found, in agreement with the solutions of Eq. (3-40) 

presented in Fig. 7, that each spectrum branches away from 

Heisenberg's theoretical solution at a different point and, 

consequently, the k- 5/ 3 inertial subrange shrinks more 

I 
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and more as the wall is approached. Tielman's data, plotted 

in the same nondimensional variables as the spectra in Fig. 

7, show striking similarity to the calculated spectra. 

However, a comparison of the solutions of Eq . (3-40) and 

Tielman's data (Fig. 56, cit. ref.) cannot be made directly 

because the data represent the one-dimensional energy spec-

tra and the solutions, Fig./ , represent the three-dimen-

sional energy spectra. 

It is not known, however, how the one-dimensional 

energy spectrum is related to the three-dimensional energy 

spectrum in shear turbulence. One is then forced, as al-

ready pointed out, to use the relationship valid for locally 

isotropic turbulence. As this relationship is used for the 

high-wave number energy spectrum where an approximate local 

isotropy may exist and local homogeneity is assumed (Monin 

1962) it is hoped that a reasonable representation for the 

one-dimensional energy spectrum can be obtained. The basic 

condition is, of course, that the solution for the three-

dimensional energy spectrum is in itself a good mathematical 

model for the real phenomenon , 

The computed one-dimensional spectra in Fig " /2 --

corresponding to the three-dimensional spectra in Fig . 7 

immediately show that the main characteristics of the three-

dimensional spectra (already observed as in a good qualita-

tive agreement with the actual data) are preserved. 

Obviously, the computed one-dimensional spectra from 

Fig. 2 2, could be compared with experimental measurements 
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and an assessment of the values of the production para-

meter, m, and the diffusion parameter, n, can be made~ 

Intuitively, it is expected that there should be some de-

pendence between these parameters and the turbulence Rey-

nolds number. 

It is known that in the regions of both strong shear 

and inhomogeneities, as in the region close to the wall, the 

turbulence Reynolds number is very small and that for larger 

Re?!., (greater than 500, say), the effects of shear and in-

homogeneities on the energy spectrum can be neglected, 

From ( 3-44a) 1 

J 

Using the definition for the turbulence Reynolds number, 

i.e. , 

Re == 
ll. 

where 11, is the microscale or the dissipation scale, and 

the isotropic relation: 

one obtains 

(/) t 

?{ '2 

/SY /2.2.. ) 

) 
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and 

) 

where B is a constant. 

In a turbulent boundary layer with the increase of the 

mean velocity gradient (approaching the wall) the microscale 

and the turbulence Reynolds number decrease and vice versa . 

The form of the variation of is the same 

for any fully developed boundary layer (going from zero to 

some finite value) and it can be assumed that the value of 

is the same if Re 7t at the points 

in question is the same (for two different mean velocities, 

for example). Thus, 

~ = Re,\ 
) I 2. 

Moreover, in a part of the boundary layer one can expect 

const. In that case, the 

production parameter would vary as /',_, ( con st /Re i'l) . 

Similarly, for the diffusion parameter, it is assumed that 

1/ ~A=- !<e/l-, 
I 2 

Hence, according to the above assumptions, the para-

meters m and n for two different turbulent boundary 
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layer flows have the same valu es if Re Jt.. is the same. 

This is an interesting result as it indicates a similarity 

of the energy spectra in a turbulent boundary layer. In the 

case of isotropic turbulence;similarity exists for any energy 

spectrum i f plotted in nondimensional variables ~ 

/ 
!°rx) ·= £(i)/( ~ v3) f-4-. In 

the case of shear turbulence, similarity would then exist 

if i n addition to the same nondimensional variables the 

t urbulence Reynolds number is the same. 

The only measurements of the spectra in a bou ndary 

layer that are calculated and plotted in a nondimensional 

form using the above mentioned variables are those by Tiel-

man (1967). He obtained the energy spectrum data for two 

different velocities: U o(J = 2 0 ft / sec , and 4 0 ft / sec. 

A check of his results (F i g. 56, cit. ref . ) strongly indi-

cates that the energy spectra fall on the same curve for 

the same Reynolds number i rrespective of the distance from 

the wall or the mean velocity, Uv J . This supports the 

above assumption of similarity of energy spectra if scaled 

with the turbulence Reynolds number . 

Comparison of the computed one-dimensional spectra 

from Fig.2.2 with Tielman's measurements shows that agree-

ment exists. Though originally the data were intended to 

be used only as an illustration of the qualitative correct-

ness of the analytical solutions, it was not difficult to 

obtain a good fit to Tielman's da~a with the Kolmogorov 



71 

constant c{ = 1.7 and varying the values of m and n , 

The calculated one-dimensional spectra are presented in · 

Figs. /q- 2 8 . 

Comparing the values of m and n, used in plotting 

the fitting curves to Tielman's data, with the turbulence 

Reynolds number for corresponding points, it is clear that 

m and n vary in a regular manner as Re ~ decreases, i . e . , 

as the wall is approached . It was found that a good approx-

imation for the product.1.on parameter, m, can be written as : 

/fJ1 /'v 
/0"7 / 2 

Re;,_ 
for the part of the boundary layer where Re i l . varies from 

/vlOO to /\.,3, and for the di ff usion par a meter, n, as 

' ) ( .. v, ,) 
0 

These results support the above assumption that in a 

turbulent boundary layer the production term (in nondimen -

sional form) may vary as "'' C/ Re , and the diffusion para-

meter, n, as a funct i on of Re ?t, also , This enables a 

similarity of the energy spectra, for the same Re ~ , to 

exist . 

For Re~-~ oC , the isotropic solution (m = 0 , 

n = 0) is obtained from Eq. t3-40 ) In Figs, 2 3 -- 2 8 

Tielman's data are plotted together with the isotropic 

solution for comparison. It can be seen that for m > O. l 

(i.e.' Re ( l O O ) 
1 

the -5/3 k inertial subrange is 
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nonexistent. Only for Re~ 200 does the inertial range 

becomes a sizeable part of the spectrum. 

From the obtained results it can be concluded that 

the derived solution for the three-dimensional energy 

spectrum, Eq. (3-65), gives an accurate picture of the 

behavior of the energy spectrum function in a turbulent 

boundary layer and that the one-dimensional energy spectrum 

calculated by means of Eq. (3-87) from the three-dimensional 

spectrum, Eq. (3-65), g i ves a good quantitative agreement 

with the actual measurements from turbulent boundary layers. 
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