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ABSTRACT

THE SPECTRUM OF ENERGY IN TURBULENT SHEAR FLOW

The spectrum of energy in isothermal turbulent shear
flow at large wave numbers is studied following the pheno-
menological approach used by Tchen (1953), Hinze (1959),
and Panchev (1968, 1969). The considered spectrum equation
consists of the dissipation, the transfer, the production,
and the diffusion spectrum function.

Parametric solutions for the three-dimensional energy
spectrum function, E(k) are obtained firstly by using
Heisenberg's type of approximations for the transfer func-
tion. Much simpler solutions for E(k) are obtained with
the modified Obukhov approximation (Ellison 1962). Some
closed form solutions for E(k) are derived by using a
vorticity approximation concept.

It is shown that Tchen's k-l law cannot exist if
diffusional effects are taken into account. Computed one-
dimensional energy spectra (isotropic relations were used)
show good agreement with measurements from the viscous

region of a turbulent boundary layer.
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THE SPECTRUM OF ENERGY IN TURBULENT SHEAR FLOW

. Introduction

Most of the work in the statistical theory of turbu-
lence has been concerned with isotropic and homogeneous
turbulent fields. From these studies, however, it has been
possible to gain an insight into processes such as turbu-
lent dissipation and transfer of energy between eddies of
various sizes. The nonlinear process of the balance of
turbulent energy in the wave number space emerges from
these studies as controlled by a transfer function re-
presenting the transfer of energy from large eddies into
small ones. Several forms of the transfer function have
been proposed, all leading to the "-5/3" spectral law in
agreement with Kolmogorov's postulates for the inertial
subrange. According to the experimental research of the
last decade, this law seems to be well founded and can be a
starting point in any research dealing with the structure
of turbulent flows.

The importance of Kolmogorov's ideas is in their appli-
cability both to decaying turbulence, whether isotropic or
not, and to maintained shear turbulence. The simultaneous
application to both decaying and maintained turbulence and

to isotropic and nonisotropic turbulence is achieved by



concentrating attention on a dcomain c¢f restricted dimensions,
i.e., on a range of sufficiently large wave numbers. In

this restricted domain only local velocities are considered
and for a sufficiently large Reynolds number (Re >*1),

local isotropy 1s postulated for all statistical quantities.

Except for the concept of local 1isotropy, little has
been accomplished in the statistical theory of shear tur-
bulence. Most attempts to obtain informaticns on the
structure of shear turbulence have been experimental. From
the statistical theory of isotropic turbulence it is known
which quantities are important in describing the fluctuating
field; such as turbulent intensities, correlations, spec-
trum, probability distribution, etc. Hence, these quantit-
ies are usually measured 1n experiments on shear turbulent
flows.

For an analitical study of shear turbulence signifi-
cant simplifications are needed due to the extreme com-
plexity of the problem once nonisotropy is brought into the
picture. Even the theories on 1sotropic turbulence are
faced at the present time with great difficulties and,
though many advances have been made 1n the last thirty
years, a complete solution of the problem 1s still an un-
attainable goal.

While a complete mathematical solution of the problem
of shear turbulence 1s the thing of the future, it ais

possible, with appropriate assumptions, to obtain a



reasonable simplification of the problem enabling de-
rivation of analytical results. At least for some of the
statistical quantities a picture of their behavior in shear
turbulence can be obtained.

The number of contributions to the theory of shear tur-
bulence, due to its great complexity, is very small. Axi-
metrical turbulence, a type of turbulence second in sim-
plicity to isotropic turbulence, was the first step toward
nonisotropic turbulence. The kinematics of this type of
turbulence has been treated as completely as has been pos-
sible with isotropic turbulence. However, although it may
be nearer to reality than isotropic turbulence, aximetrical
turbulence is still far away from actual turbulence. In
boundary layers and other shear turbulent flows several
important processes are encountered that are not studied
in the isotropic or the aximetrical turbulence theory.
Among these processes are those associated with mean veloc-
ity gradients and inhomogeneity of turbulence. Even in the
case of supposedly isotropic turbulence generated by flow
through a grid, there will exist inhomogeneity due to decay
of turbulence in the direction of the mean flow.

Difficulties encountered in considering all turbulent
processes simultaneously are very great. As a result, some
analytical studies have been made by considering these
processes separately.

Two -point equations for velocity and pressure-velocity



correlations are the starting point in these studies.
These generalized two-point correlation equations are con-
structed from the Navier-Stokes equations by methods simi-
lar to those uséd by von Karman and Howarth (1938) for
isotropic turbulence. They are, however, too complex and
simplifications are introduced to make the problem deter-
minate.

Deissler (1961) used the weak turbulence approximation,
i.e., he neglected the inertia effects represented by the
triple correlations. Obviously, this assumption limits the
analysis to low Reynolds numbers. Moreover, to be able to
obtain solutions for spectra of such a "weak turbulence,"
Deissler (1961) made further simplifications. He considered
first the effects of longitudinal and of transverse inho-
mogeneities but without a mean velocity gradient, and then
he considered the effect of a uniform transverse velocity
gradient on a nhomogeneous turbulent field.

Nevertheless, 1nteresting conclusions were obtained
from these results. The mean velocity gradient, for example,
appeared (in tne simplified case studied) as having the role
of the usual transfer term, i.e., as affecting the transfer
of energy among eddies of various sizes. This transfer was
interpreted as a stretching of vortex lines by the mean
velocity gradient.

In a more recent paper, Deissler (1965) again treated

the case of the weak turbulence (triple correlation terms



neglected) but without additional simplifications. 1In this
case, however, the set of simultaneous correlation equations
that must be considered consists of four nonlinear partial
differential equations in four independent and four depen-
dent variables. These equations are too complicated to be
of practical use.

Qualitative conclusions were obtained by expanding
these equations in power series in each of the space vari-
ables, valid only for small values of variables. The pre-
sence of pressure-velocity correlations and of nonlinear
production terms appears as very -important if a steady-
state shear flow turbulence is to exist. Though the results
of studies involving correlations between velocities and
their derivatives are still very meager, they help in ex-
plaining some of the features_of actual shear flows and
can contribute to a better understanding of shear turbulence.

Deissler (1965) concludes that a system of correlation
equations for turbulent shear flow, which is closed by
neglecting the highest order correlations, should yield
reasonable steady-state solutions. This is of course in
principdle, because the solution of such a set of equations
is faced with almost unsurmountable difficulties.

Besides treating the correlation equations obtained
from the complete Navier-Stokes equations, many efforts have
been made to gain some insight into the inner workings of

turbulence by using simplified equations in place of those



for the real fluid. The well known Burgers' equation was
proposed as a one-dimensional analog to the Navier-Stokes
equation. It has been examined by many different methods.
The most recent analysis 1s given by Kraichnan (1968) who
treated it with his Lagrangian-history direct-interaction
approximation.

Though there are similarities between the Burgers and
Navier-Stokes equations, the sharpest difference 1is that
Burgers' equation appears to offer no counterpart to the
hierarchy of the instabilities which makes the small-scale
structure of high Reynolds number turbulence chaotic and
unpredictable. If the initial Reynolds number 1s high,
Burgers' equation leads to shock fronts. The result 1s that
Burgers' equation reduces initial chaos instead of 1increas-
ing it.

In contrast to the widely accepted -5/3 energy spec-
trum of Navier-Stokes turbulence at high Reynolds numbers,
the shockfront structure of evolved solutions of Burgers'
equation leads to the k_2 inertial-range spectrum. On
the other hand, the advection term in Burgers' equation
tends to produce, similarly as the corresponding term 1n
the Navier-Stokes equation, regions of steepened velocity
gradients, which implies a transfer of excitation from lower
to higher wave number components of the velocity field
Kraichnan (1968) concludes that Burgers' equation should be

viewed as a vehicle for exploring the limits of applicability



of statistical approximations designed for Navier-Stokes
turbulence.

The statistical theory of turbulence at the present
time 1s not able to produce explicit quantitative results
concerning important characteristics of shear turbulent
flows without making very restrictive assumptions. However,
the study of some basic characteristics of shear turbulence
can be made if phenomenological type approximations, similar
to those made 1n the study of 1isotropic turbulence, are
used.

Using a phenomenological approach Tchen (1953) studied
the spectral law of small eddies for a turbulent shear flow
with a given pattern of mean motion. He derived an equation
for energy balance in spectral terms by means of the Fourier
analysis of the Navier-Stokes equation. The deduced shear
turbulence spectral equation involves five spectrum func-
tions: +the dissipation function, the transfer function,
the production function, the diffusion function, and the
convection function. The first two functions are common to
isotropic and homogeneous turbulence without mean motion.

Depending on the relation between the vorticity of the
mean motion and the vorticity of the turbulent motion, Tchen
distinguishes two cases: the case of "weak turbulence' and
the case of "strong turbulence". In the first case, the

vorticity of the main motion is small compared with that of



the turbulent motion. The interaction between the two
vorticities is slight and there 1s no resonance. In the
second case, the vorticities of the two motions are com-
parable. There may be a very strong interaction between
them and violent resonance may occur. It should be noted
that a fully developed turbulent boundary flow would re-
present the case of strong interaction, 1.e., strong tur-
bulence. Correspondingly, this is the case of the greatest
interest.

So far, there has not been any solution of the com-
plete shear turbulence spectrum equation for the case of
strong turbulence. Tchen (1953) neglected the diffusion
and the convection term and, furthermore, considered only
asymptotic solutions of the remaining balance equation,
which allowed him additional simplifications. Panchev
(1968, 1969) was the first to consider the solution of the
equation when the dissipation, the transfer, and the pro-
duction term are taken into account simultaneously. He
obtained parametric soclutions for the three-dimensional
energy spectrum function E(k).

All solutions of the shear turbulence spectral equation,
when the diffusion term is neglected, produce the well
known k"l law in the low wavenumber subrange of the
equilibrium range. Tchen (1953), who was the first to
obtain the k! result, assumed that the diffusional
effects can be neglected. However, as will be seen, these

effects must be taken into account.



In the present study, solutions of the shear turbu-
lence spectrum equation are sought for the case when the
effects of inhomogeneity are not neglected. The dissipation,
the transfer, the production, and the diffusion spectrum
function are treated simultaneously i1n finding solutions
for the energy spectrum function E(k).

In the first part, solutions of the spectrum equation
are obtained following the approach used by Tachen (1953),
Hinze (1959) and Panchev (1968, 1969); i.e., by using approx-
imations of Heisenberg's type for the transfer spectrum
function. In the second part, 1t 1s shown that the Modified
Obukhov approximation (Ellison 1962) for the transfer func-
tion can be used successfully 1in treating the shear turbu-
lence spectrum equation. It 1s employed here for the first
time and leads to simple solutions for the energy spectrum
function. 1In the third part, the vorticity approximation
for the transfer spectrum function--which was used in the
derivation of closed form expressions for spectra of turbu-
lent energy and scalar fields 1in isotropic turbulence--is
used 1n solutions of the shear tubulence spectrum equation.
This approximation made possible the derivation of some
closed form expressions for the three-dimensional energy
spectrum of shear turbulence.

In the following, only an isothermal and 1ncompre551ble
turbulent shear flow with steady mean motion 1is considered.

An examination of the basic spectral characteristics of
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turbulence 1n the presence of temperature gradients could
be made along the lines used here for i1isothermal turbulence.
As in the previous attempts on solving the isothermal shear
spectrum equation, all works on spectra of a thermally
stratified shear turbulent flow have used Heisenberg's
type of approximation for the energy and the temperature
transfer function (Monin 1962, Gisina 1966, Lin 1969). This
type of approximation for transfer functions leads to fairly
complex solutions of the spectrum equation. Solutions for
the energy and the temperature Epectrum tunction are then
usually obtained by numerical integration. Asymptotic
solutions for particular spectral ranges are of the greatest
interest here and they are usually sought (buoyancy sub-
range, for example).

The possibility of obtaining simpler solutions for
spectra of thermally stratified shear turbulence by using
the Modified Obukhov approximation or the vorticity approx-

imation approach 1s not investigated in the present work.

2. The Energy Spectrum Eqguation

The derivation given here 1s based on general two-
point equations for the velocity correlations. We start
with the incompressible Navier-Stokes equatlion written for

—_—
the points N and N', separated by the vector r ,
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where the subscripts can take on values of 1, 2 or 3 and a
repeated subscript in a term indicates a summation. The
quantities Ui and U% are instantaneous velocity com-
ponents, X, is a space coordinate, t 1is the time, jD
1s the density, Y 1s the kinematic viscosity, and P 1is

the instantaneous pressure:

e % 5, AU
Vi= U +/@-) é/==Z§ # U 72: fo/ﬁ,/ 57 =

\Y,

é «

N\

If the usual time averages are taken of (3-1) and
(3-2) and the averaged equations are subtracted from the
unaveraged ones, one obtains

20 9 [, 0% -
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The next step is to multiply Egq. (3-3) by uj and

Eg. (3-4) by us . For Eg. (3-3), one obtains

% ¢’ /7 D4,
) ‘5‘%9 'V‘M 21,([‘“”& )
_ 1y _ﬁ ) ot
4 J%' V? Ot DX (375)

and, similarly, for Eq. (3-4),

/790 /
/‘4/ *‘ﬂv‘fk—jz+m0ﬂ /a—’ /4711,< auk)
/ Q /
= _ Ly 2F %
=_ L 4’Va, (3-¢,
f 3*’ dxl oK, )

The addition of Eg. (3-5) and Eg. (3-6) and averaging with
respect to time (keeping in mind that quantities at one

point are independent of the position of the other point)

yields
Fds oY — s
i ot A o Y, 2 ] !
3 /'/‘k"J /kl-f éax; (// -X J 0 / J
K3
_ _ 2 4 2 ;
K
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In order to differentiate between the effects of the

distance between the points N and N', and of their loca-

tion (due to inhomogeneity we have to take both effects

into consideration) new variables are introduced:

—

N A/

(42),= £ (% %4)

Thus, for a quantity R that 1s a function of (xk)

r one obtains

k'

T TR Y
YR 2R _ 3R ~g

KoK | Dl oR | 2olw), o)y T LR -

Employing these transformations, if follows

L 24N 2 a7
“lf - Z %0, e

Dx,c

and

-8)



P i ? 7 ?
oy = L —— uu s i 4
22, C) T 20, ) T 2 g
— Kk = L = 4wy — 2 47
: / /] 2 7
S Y% = 4 g, Y

2 = 4o a4 2 P
915/' Wj‘/m 25: )
. | 92
+ /
[9,\/,\9)4& D4 0

ot RICT: ”52 92/40%")
‘*j J "~ Wﬂcx) () < o B

Hence, Eq. (3-7) will read
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This is the two-point correlation equation for the general
case of inhomogeneous turbulence with mean velocity
gradients.

Because Eq. (3-9) is too complicated and intractable,
the usual further step in the shear turbulence analysis 1s
to assume homogeneity, i.e., that all derivatives with re-

spect to (x vanish (Hinze 1959, Deissler 1961). This

k)m
assumption contributes appreciably to the simplification of
the problem and is not contradictory to the existence of
shear turbulence. Full homogeneity with a shear is possible
1f the curvature of the mean velocity profile is neglected.
In other words, to create a homogeneous turbulence with
shear the main motion should have a constant velocity in a
given direction and a constant velocity gradient in the con-
sidered region (Hinze 1959, Lumley & Panofsky 1964). Though
this type of shear turbulence may be considered a hypothet-
ical case too, 1t 1s a reasonable approximation and is much
less remote from actual turbulence than other theoretical
models usually considered.

In the following analysis, we also assume that the
mean velocity gradient 1is constant, at least i1n a limited
region of the flow, but do not assume homogeneity in all
directions. The assumption is (often used in a turbulent
boundary layer analysis) that the flow is homogeneous in

X and X4 directions but not in the x2 direction. Ob-

1

viously, inclusion of inhomogeneity will bring the analysis
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closer to the actual shear turbulent flow than in the case

of full homogeneity.

Hence, derivatives of correlations do not vanish in

the X, direction, 1.e., derivatives with respect to

are not neglected:

G-fn), E 2t G-G-0, 2 0

a4, / 212

Writing for shortness,

Yoj ki o K= P

Si k= U ulu) —
= /3[@‘ )

i

J

\S‘/K/ éé,%k ,

we obtain, from the condition (3-10j,

4 EL__ ).,

J% 9* JECQJ dx.

Uik jz/," = %4 O/"(;_,, k. )
9*/( C?[XZ_

/Z4'+ '/k ;5 />YK)M C;?'// =0 )

(-0 55 - (4-0)559- 150 3

O

where, as usual, cg, =1 for 1 = 3, zero otherwise.

1]

)

(3-10)
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Eq. (3-9) now reads

??629 =5.
) I 4 2 2%
/jth'a(ﬁi)m 224; 2942

LS
&~
o

(3-/)

If new tensors are defined as

’@2@ [Sﬁ"/‘d‘ -5 K/’]= Iy
2
f/ i /’/ ( /}] J (5-/12)

and, having in mind that

2 Sk Ky = =2 .
?//\/k)/hgk /] 9/,&),,]/(/’/J ) (3-13)

Eq. (3-11) will read
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,2(94 ‘ . M
—27*}'7‘(&1@2/J+é\/\j_@c/l+/;2§éi ji/;

7 T
= ' o /¥
4 * P‘/J + 2w 2% on

2 T I Sk . J\\
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A%)y, 01 )y (3-14)

+ £V

The last two terms on the right side are due to in-
homogeneity and they would not have appeared had the as-
sumption of full homogeneity been made. I1If, for example,
an additional assumption of no shear 1s made, the second
term on the left side drops out and Eq. (3-14) reduces to
the corresponding dynamical correlation equation for iso-
tropic-homogeneous turbulence.

Equation (3-14) 1s as far as we can go without further
assumptions. The presence of triple correlations is the
basic reason, similarly as in the case of isotropic turbu-
lence, for insolubility of the dynamical two-point correla-
tion equation. To proceed, suitable assumptions concerning
Fourier transforms of correlation functions can be made
following the approach used in studies on isotropic turbu-

lence.



19

Defining a part of inhomogeneous terms in Eq. (3-14)

as another tensor function,

£[Syy + Sy rfdic K,j o 4 i Ky - Iy, )

Eq. (3-14) will read

(Jl 2 prfraép :/fz

??Cp}/ D >,
= % _ 1/ .
7'0/ *’DJ*Z%Q 5% " X o) * F Ve, /5)

In order to write the correlation equation in spectral
form, the three-dimensional Fourier transforms are defined

@y’ (h 4 )= _“féy'/@;’) 6%/(7757/ K
'@( ;(,n)_ f/“— /fx,,,)z%/ﬁ[/rr)o//?)

> - - ‘—>'_> >
T2, (5 1) = f%‘ (5 ) exp(Thr) k)

L/( - ,J//c X,,/ P,t/‘a[z/c r)c//( , (3-16)

From Eq. (3-16) 1t follows
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_Zy,a_‘d’ ".271‘&{% gzy &/’[l/f'/‘) o K )

Lv% AL f-‘_ YT
* o), olr), 2 or)o0x) A‘d&/’ﬂff'f)d/c} (3-17)

and, the following dynamic equation for the energy spectrum

function, E.l j ! 1s obtained
’

694?4{ _ :Dé:( c/gj
ot (e 52/ 1 i % J)d/\’zj

/e /(9 éZHJ -
UJ ZWV{J a/x)m@g ,U(/rz)f(xz) (3)

Contracting the indices, 1 = j = k , one obtains

& - (&L Y dY,
== lt_/_(Zé/z // 92/2(’/0/*&

I

?
= ! 95( / -
oy, - 2D, 1y 28
L V( l/l ,Z(XZ)MVL 2 Va/XL/" 9&1)”1 ) 4 f)
where from the condition of incompressibility Pi g = 0
14

and, consequently, T]i i = 0. The spectrum functions are
14
then averaged over all directions of the wave number k

by summing over all values of 1. Thus, mean values of



21

these functions over spherical surfaces k = const. are

obtained. New spectrum functions are defined as

E(k)= 3 JEudmy,
F//{?/zléfﬁi AA (%)

(k) = 3 (6, 4258 )day

DE) = £ D dAck) . 19)

Application of the above averaging procedure to Eq. (3-19)
yields

2%

C(&)Tx:

: a&% 2L(%) ]
:/—m-wmmm L

Without the second term on the left side (production
term) and the last two terms on the right side (inhomogene-
1ty), Eq. (3-20) reduces to the spectrum equation obtained
for the case of isotropic-homogeneous turbulence (Batchelor
1953). Similarly as in that case, assumptions about the
spectrum transfer function, F(k), are needed here also.

In the case of shear turbulence, however, additional as-
sumptions must be made concerning the spectrum production

function, ?r(k), and the spectrum diffusion function, D(k).
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The physical meaning of the spectrum function &7(k)

can be made clearer if the defining expression for fr(k)

is integrated from 0 to o&
Seyott =1 [[[12€, -4 255 )dlAmy] 4t
o 0

The first part of the integral on the right side can be

Ql,2 and El,2

and from the defining expression for spherical averages

evaluated from the relationship between

(3-19a) as
@/,z [*)r‘z/f@/,z A4 "Z{ /f£4z &Yfﬂ'-zf) C/K*o//]- .
For r =0

B (0) = G, = £ [[2£,, dbddt .
Thus,

//.E/,z dAdk = 474.)_/0} = ”/7.;. } (3-2))

Using the first of the relations (3-17), following the
same procedure, and noticing that [/;_ (25?:'( 9/-7 )]: o ,
r=o0

one obtains o

! 2 /v
.z/é/mi= o, (3-22)

o

From (3-2/) and!?*QQb it follows

Jeay e - o7,
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. - P fv(k) is the shear stress spectrum function and
Oﬂgz4y*§.)o~jA?”Oh) Céb is the production of turbulence
in the range from k = 0 to k.

In further analysis, we assume that the turbulence
Reynolds number is large enough and that there exist an
equilibrium range for large wave numbers. We shall study
the spectral law in the equilibrium range in a way analogous
to the case of isotropic turbulence.

For a steady flow, Eg. (3-20) reads

t)92 - Fa)- 1ot E)- 2. D) 49 S22

Integrating from k tood |
0-50 ) aﬂ
L Jeprap = [Fipap = 22 ey,
() ? 5
JD FLEPY

2 /
— e V v
one LEPWP T3V 5ok

and, because

o0 o 'S
znyﬁg@ U = zsz/a’é(/s)a//o - zyl/fg@)d/s

R
- e- 2 [FEP A

one obtains
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& [/9{//5) d/’ f/://») ap - C/U’ J f/a)d/b

Z/Eﬁs)c/
zxszﬁ)d/éf 2 5)& 24,&/9 ) (3 -25)

The first term on the right side represents the viscous
dissipation in the wave number range from 0 to k. The
second term 1s again the transfer of turbulence energy from
smaller to larger wave numbers. The transfer term arises
from the nonlinear terms in the equation of motion. It
does not make any contribution to the total energy, i.e.,

0
i F(k)dk = U. The third term is the production term.

O o’
It represents the production of turbulence in the range
from k to o< ., The last two terms are due to inhomo-

geneity in the x

5 direction. The term — %)(2 [’;}a)o,/ﬁ
represents turbulent diffusion in wave number space.

The last term represents diffusion of turbulent energy
due to molecular viscosity. 1t 1s obvious from Eg. (3-24)
that this term 1s very small due to small values of the
molecular viscosity, 7 , and small values of the integral
from k to aﬁKpf E(k) 1in the equilibrium range where the

o0

inequality ,J E(dp >>k.12£6%'céb 1s usually assumed.

Thus, the molecular diffusion term can be completely ne-

glected.
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In a more accurate analysis, however, the molecular
diffusion term should be combined with the dissipation term
XD
2
Ig v é £ (/J) 6’[/0 . The corresponding terms in real
0

space, i.e., 1n the equation of motion for an inhomogeneous,

incompressible turbulent flow are

, .
9% . ) L U,

’L y\ - ) " V‘zi—J—‘iﬁ P
o4, 04, D4 24

These two terms result from the term representing the
work done per unit of mass and of time by the viscous shear
stresses plus the term representing the dissipation per
unit of mass. However, they do not have the same meaning
and the last term, — V DK{E/Q& 9»&' , does not represent
the total dissipation in an inhomogeneous turbulent flow
(Hinze 1959). 1f, on the other hand, the departure from
homogeneity 1s not too strong (what may be assumed to be
true 1n a boundary layer except very close to the wall) the

both, combined, viscous terms are nearly equal to the dis-

sipation for a homogeneous turbulent flow, 1.e., to
2 9‘7/9 4 24 . The corresponding term in wave

number space 1is 2% f(, o;lézg/é/ G‘/é . Thus by equating
this term with the total dissipation, E , in Eq. (3-24),
it is tacitly assumed that the molecular diffusion term 1is
negligible.

Besides being negligible, the molecular diffusion term

1s not of great interest on yet another basis. 1In the
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present work, the primary interest 1s 1in studying the shape
of the energy spectrum function of shear turbulence in the
equilibrium region and the influence of particular spectrum
functions on that shape. The molecular diffusion term,
however, does not affect the basic functional shape of the
energy spectrum function E(k) but affects only the total

dissipation. Equation (3-25) thus reads

& = wagffa)/ozd/b + f;f/b)o(/:

C/(/, , 5 7
Jtpap =5, [Opp . w)

In order to determine E(k) from Eg. (3-26), the
functions F(k), T (k), and Jj(k) must be expressed 1in
terms of E(k). As the wave number k 1s assumed to be
sufficiently large and the equilibrium region is assumed to
exist, the assumptions concerning the spectrum function
F(k) are similar to those used for 1isotropic turbulence.

For the spectrum function ftl(k), Tchen (1953) sug-
gested a mechanism of spectral transfer that enables i1t to
be linked with the energy spectrum function E(k). Depend-
ing on the relationship between the scale of the main motion
and the size of turbulent eddies, two cases are distinguish-
ed: a weak turbulence, when the transfer 1s determined by
the gradient of the main motion, and a strong turbulence,

when the transfer i1s determined by the vorticity of the
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turbulent motion. For the case of weak turbulence, Tchen

(1953) assumed that QYXk) 1s given as

~ A
{L(/:)a/o = - (’5/0“,2 ) 3-27)

which is an anolog of Boussinesq's concept concerning tur-

bulent transfer of momentum, i.e.,

f@fé)d{?-=/“/"2="5/na/zu .

Thus, in this case,

_ f/‘(é)o/%z Y /é)/j“ )L/

c/xz E

which can be interpreted as the dissipation of energy of the
main motion by eddy viscosity.

For the case of strong turbulence with strong inter-
action between the main and turbulent motion, Tchen sug-
gests that the flow of a quantity created by the diffusional
mechanism of transfer 1s proportional to the vorticity of
turbulence, 1instead of the main motion vorticity as in the

first case. Therefore,

ff?(/s)d/c =- C. 77, /’&) Turbulent VOf_‘7/C/7}/f
) A, b
- e [Ep ] o
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where ¢ 1s a constant. Hence,

n - Z; - 2
_ Y Kﬁ‘f/a)d/a <0 )3 [ [repap/*

Of main interest 1s the case of strong turbulence,
which is the case, for example, of a turbulent boundary
layer with large Reynolds number. With the relation (3-28),

Eq. (3-25) will read:
K o0
oy [PLpidp + | Flp) )
JFEpp - J Ry

//7_
+ey&)Sy, /f Fepa |- 5 /f P (329

<

3 Previous Solutions

Tchen (1953) was the first to study the spectrum of
energy in turbulent shear flow. He used Helisenberg's ap-
proximation for the spectrum transfer function, F(k), and

consequently for 4 (k),

o0 = R
Fidp = & | /<P ot / el 3-30)
&f /" /{3 Hﬁ//a / y Z /”) /b ) (

where ég 1s a constant, and the first integral on the right
side represents turbulent viscosity, /}§(k). Tchen consid-

ered only asymptotic solutions, i.e., he considered two
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particular subranges: (a) nonviscous subrange (the lowest
wave number range of the equilibrium range))and (b) viscous
subrange (the upper part of the equilibrium range). In this
way it was possible to simplify Eq. (3-29) because some of
the spectrum functions can be assumed negligible for a
particular subrange.

The simplest solutions are obtained for the case of

weak turbulence. In this case the production term is
oq -
- 2
é{U,f/\< [
i C(p)elp = 0 Y%
dl\/z,é /> /b T/)O/*2 °

Neglecting the diffusion term, a solution of Eg. (3-29)

simply

for this case can be easily obtained. However, the nature
of this solution (Hinze 1959) is entirely the same as of
the solution obtained for the equilibrium range of isotropic
turbulence. The weak turbulence case does not affect the
shape of the energy spectrum that is obtained for isotropic
turbulence. There is only a larger dissipation. This means
that the solution of Eg. (3-29) for the weak turbulence case
can be obtained if & 1n the sclution for isotropic turbu-
lence is replaced with & + ’1‘53%4/44*}‘)2, Considering
the underlying assumptions made for the weak turbulence
case, this final result is not surprising.

For the strong turbulence case (the case of strong

interaction between the main and turbulent motion) in which
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we are primarily interested, an asymptotic solution for

nonviscous subrange (lower wave numker region of the equi-
librium range) can be obtained 1f the dissipation and the
transfer spectrum function are assumed negligible. If the
diffusion term is neglected too, Eg. (3-29) reduces to the

simple relation
s 4 y
el oLy edp 72
E=c . %/é)[ojz/s E(p) {/3] , (3-3/)

Using Helsenberg's expression for ’7;(k), a solution for

E(k) 1is readily obtained as

) » e ~'7 »w/
o= e

This is the original asymptotic solution obtained by Tchen
(1953) for this subrange.

This asymptotic solution, however, does not show how
much a strong production term affects the inertial subrange.
For this information, a solution for E(k) that would con-
nect the low wave number region with the "-5/3" inertial
subrange 1is needed.

Panchev (1968, 1969) considered solutions for E (k)
in the case of strong turbulence when the dissipation, the
transfer, and the production function are taken into account
simultaneously. The effects of inhomogeneities were, how-
ever, neglected. He also used Heilisenberg's approximation

for the transfer spectrum function, but for /?;(k) he used
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a generalized form that reduces to Heisenberg's and Howells'

form for s =1 and s = 2 , respectively:

o0 g % .3 y A L
{F[ﬁ)df =o§[£€7@)/ﬂ /d/b] Df,z{(/y)/fff (3-33)

With Heisenberg's and Howell's expression for ’74 (k),
solutions for the three-dimensional energy spectrum were
obtained in parametric forms. For corresponding ranges of
wave numbers, the k T range, Eq. (3-32), the inertial
x~3/3 subrange, and the viscous k™7 range are obtained.
The k_7 result is obviously a consequence of the Heisen-
berg concept for the spectrum transfer function.

The sparce data on energy spectra measured in shear
turbulent flows show sometimes an approximate k_l variation
of E(k) in the lower subrange of the equilibrium range as
suggested by Eg. (3-32). The conditions for the existence
of this law, namely, a strong velocity gradient and, conse-
quently, a large production term at the point 1in consider-
ation usually mean that a strong inhomogeneity 1is created
in the considered region.

The existing data on energy spectra in shear turbulent
flows show many inconsistencies and irregularities in the
wave number region where the effect of shear is expected to
be the strongest. This indicates that the behavior of the

lower part of the equilibrium range of shear turbulence
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cannot be explained as a result of the effects of the
velocity gradient only. The effects of inhomogeneities
must be accounted for if a more realistic description of the

spectrum behavior is to be obtained.

4. Solutions for the Complete Spectrum Equation

Before an attempt 1s made to solve the complete spec-
trum equation, Eg. (3-29), additional assumptions must be
made concerning the diffusion spectrum function, D(k).

To see more clearly the physical meaning of the in-
homogeneous term in Eg. (3-29), it is integrated from 0
to ©0 and from the defining expression for sperical aver-

ages, Egq. (3-19a), one obtains
SDtyat = £ J[ JDii A4 ] A% (3-34)

On the other hand, using again the definition for spherical

averages,

o = P
L/r)jfﬂ,/e%/
and, using the Fourier transform relations, (3-16),

7,560~ 4L [ wp it

For r = 0, and contracting indices, 1 = ] =k,
0
Toilo)=4 J | Dic dbocth
= [ [ DicctAdt . (3-2%)
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Thus, from Eg. (3-34) and Eq. (3-35)

fpw/z)dé ffp“c/zla/ b =410 (o)

Going back to Eg. (3-14a),

4= 4055 By 5]

for 1 j =

(/L/i.éf U U4 Mﬁ@% éa/a)

and, for r = 0/

7

Tofy = 42eie g ap]=[% (6% 5 o)
Thus,
9 od
— 2 Of?)/é)a’ﬁ =-2.41,,0)
__ 2 1], ,:,______ |
== Aty (67 ) ) (2-37)

which corresponds to the term representing inhomogeneity 1in
the turbulence energy equation (obtained by multiplying the
one-point equation, Eg. (3-1), by u, and taking an aver-
age). This term represents the convective diffusion by tur-
bulence of the total turbulence energy. An analogy with
diffusional processes 1s used to write an expression for

the corresponding inhomogeneous term in wave number space.

From Eq. (3-37) it is possible to see that vflb/éﬁ#é
o
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represents a flux of turbulent energy. Accordingly, it 1is
(=)

assumed that é\ijDCE) Géb can be written in wave number

space as the product of a turbulent viscosity and the

energy gradient:
fD(/s)d/» /@9 UEK/) 0%]

Thus, the diffusion term reads

& o0 iR Y]

As the primary interest is in the equilibrium range,
the usual assumption is that oféz?a) C//6 >>éféf/;)c4/b/ t:&’,/
"3 =0 _ -
2
oféﬁ»)d/b - 5[5/4)4:& ~far-fg%,
Hence, Eg. (3-29) reads now

& = 2»yf£/<(/o)pzal/= + JFp)
+ CV/ﬁ)dU/[/Zgg’)/S%A]A ¥y ﬁ/@ (Iz)j (-3)

where writing the total turbulence energy as /é ;2‘ in
the expression for the diffusion term means that the
energy diffusion due to existence of velocity-pressure cor-
relations is neglected.

The diffusion term complicates in this form the solu-
tion of Bg. (3-38). A further simplification is needed.

Expanding the term, one obtains:
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oYt 74 7 17
LP ) S D

We assume now that the gradient 73)4/%&?42 1s negli-
gible and that consequently the second term on the right
side can be neglected altogether.

Thus, the diffusion term reads
. (3-39)

Obviously, this form can be viewed as describing the
diffusion of turbulent energy in a locally homogeneous tur-
bulent field, i.e., ‘74(4é) is assumed approximately con-
stant in the considered region and the expression (3-39)
follows from (3-38a).

In considering a shear turbulent flow where the gradi-
ent of the total turbulent energy decreases along the axis
X (as in a turbulent boundary layer) the second derivative

,32(>% 2?5&/;’ﬁ% will be negative and the diffusion term
will be therefore positive.

Finally, for the case of strong turbulence, Egq. (3-38)

reads
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K )
& e 21/[5(/))/624 {F[/;)d/b

. % / o
(/ " ‘3 Va2
re Gum)f[2eppen]” s onmls |y

Thus, the equilibrium in the exchange of energy 1is

expressed as
& = Disspalon (o,2) + Transter (4,20)

4 ;}bcﬁchay7/ano)_f-JD[%Z:S?kh /Kico)

In the following paragraphs, solutions of the balance
equation, Eg. (3-40), are obtained when the complete equa-
tion 1s considered, 1.e., when all terms are taken into ac-
count. Following previous approaches, solutions are first
derived using Heisenberg's type of approximation for the
transfer function F (k). Several simple solutions for the
energy spectrum are then derived using the Modified Obukhov
approximation (Ellison 1962). In the last part, the vorti-
city approximation approach is used for the derivation of
closed form expressions for E(k).

The solutions are then computed for different produc-
tion and diffusion parameters. A discussion of these re-
sults and comparision with data from actual shear turbulent

flows are presented in the last section.
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4.1 Solutions with Heisenberg's Approximation

In this case (Heisenberg 1948),

4 = k
[rom =4 [+ [rpe,

where H is a constant and the first integral is the tur-

bulent viscosity ");.(k), i.e.,
(=)
/1?_(4): X,L/ [/Egﬁ) "
K

The spectrum equation, Eq. (3-40), becomes now

K K
&= ZVJE/P)/O?O(/» * @@/k)cf.z/o?gqa)d/;
2 2

aﬂ57 2 A ? 4 2
o Erepylt ol

or,

K ,k
&L= w//fg@d/%#/ﬁ)//j/bz’g?’)d/b
_ o« 5 2/h ot
g . ;2 (23)
rg BlLepy) 25 fZ

With the expression for ’Iﬁ-/ﬁi) ’
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&= zv//fé(/a)d/wa’L f//g@# {fz/gzég;)d/b

Y : (49
Rl fz/ 54”#] o 61

The constant KH should be determined from the condition that

in the inertial subrange the following relationship holds:
/5’
£2)=xe’3 2,

Consequently, one obtains
P
7

)

where oK is the Kolmogorov constant for the inertial sub-
range.

Thus,

w8 e
7 WU 7 57”%7 & I8 )

+ L dy 2x2
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A nondimensional form is more convenient for handling
and computation of the results; hence, the following non-

dimensional variables are intrdduced:

b Loy= ER)/E,

Y, %, s
- ()7 Ep= X (FV) T, (64)

Substituting into Eq. (3-42), one obtains
& X
20 [FEQp = € JERPY
f/\ th = Wfﬁ B
f FepP=(>) /f?f)/’df

Hence, Eg. (3-42) in nondimensional form reads

= [etgp e ) ), @ 9/, /Z}?f%z#

*@/)ﬂl[fgfzg?)d/’wz “(5)9 =) (4)

or, writing
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2)(2) -
(A/H) ( ) QE/A)Z_ "

where m and n represent the production and the diffusion

parameter, respectively, at the point in the flow where the
energy spectrum is measured.

Eqg. (3-42) now reads

i=f Zé‘f/w/fdf G)J1 ot;% g// 2 PP
/ m[ofxz ?73)/;5{/)]6 @f (3-45)
x
Let = b/,gé"(/a)/b?d/b/
so that Lo == 2=, (3-96)

Eg. (3-45) now becomes
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/= Zﬂ/;’))(f}/%o//o/,z’;m2+ 72}} (3-47)

/- Z* (J’)f,/é(ﬁ)

Z% hZE4m

or

Differentiating with respect to x, and after some rearrange-

ment, one obtains

4 Z/mz+ Z* +/»77 -°
(3)[5—’7+//m)3¢;—’72 2 /2 e

Hence, this ordinary differential equation with separated
variables and the relationship (3-46) represent a parametric
solution for the three-dimensional energy spectrum, CE?(x),
when the complete spectrum equation, Eq. (3-45), is con-
sidered.

If we concentrate now our attention on the nonviscous
region and, consequently, neglect the dissipation térm, Eq.

(3-47) becomes

/= (/_)/0/ Z+/77Z7.+47€ (3-49)

After differentiation with respect to x, one obtains
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7 _s
£ (3-50)

CZZ__: iy’)l Z[ZZ+MZ+ n/
AKX g4 (2;2"7‘//?7)2

Though in this case the differential ratio dz/dx 1s some-
what simplified, we still have a fairly complex parametric
solution for eg(x;, and an assessment of the effects of
the production and the diffusion term on the energy spec-
trum in the nonviscous region 1s impossible without a

numerical solution for 8;(x).

4.2 Solutions with Howellslmggggggimggigg

Another Heisenberg's type of approximation for the
turbulent viscosity /%;(k), and consequently for the trans-
fer function F(k), 1s the approximation due to Howells

(1960) . He originally proposed 1t 1n an article on spectra

of scalar fields. It reads
(%) "
- s //'//',,“/ ;'2."/ 7’//2
% [éj: A//:/}V L ;( t/')// O(/}_// o {’55/\,

Both Howell's and Heisenberg's approximations can be
viewed as particular cases cf a general expression for 7¢xk:
that must satisfy the following requirements: (a) 1ts di-
mensions must be square of length divided by time, and (b)

the turbulent viscosity /%;(k) 1s expressed as an integral

over all wave numbers greater than k. There are several
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of these general expressions for /2;_(k), Stewart and Town-

sned (1951) showed that this particular form for /Z;(k) in
combination with the second integral in the expression for
the transfer function leads to a power law energy spectrum

in the dissipation range.

With Howell's expression for /zi(ky, Eg. (3-40) be-
7

comes

o QVf[(/v) d/:# KH []E/)f df] I//bg/f)c//
G c/u///;;g( d]/”‘ c2thy))]
7LXHM/';/)(Z- O/J /O)/D 7Lcf//w /\’&jf

For Howell's approximation one finds, in the same way

as in the case of Heisenberg's approximation,

-()\;\
I

n Z .Yy
z //r;‘f) o /‘

Using nondimensicnal variables i3-43), relations (3-

44a), and making again the substitution

Ny 2L ] 2 B __;éf A

Eg. (3-40) becomes

| =Z% //(za,z)f/azfmzvm,, (359)
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or

-2 2Ty (rye z
g - FESEE )]

T2y mi4h

Squaring both sides and differentiating with respect to

X, one obtains

it X ) |
227 = ) = (-Z x7 (5-54)
O“Zz)ﬂZ-/ZZ4/WZ-%2/);Z7 /6

Thus, because the differential ratio dz/dx cancels

on both sides, we obtain directly x = fiz) which, to-

gether with the relation (3—46;/ represents a parametric

solution for the energy spectrum function %;(X), 1460 4

f(Z)

Be o FEAXE
Clx)==, 5%
(’ / X2 ch( ‘

1f the dissipation spectrum tunction 1s neglected,

Lg. (3-53, becomes

&

7 (g /Q' 7
j/— J )ﬁquz ‘QZJ%Z4CI) ﬁw55§

)
a parametric solution

and, following the above procedure,

valid in the nonviscous region 1s obtained as
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z(2+ﬂ7,¥44¢)

(m + 2Z)

Se) =2 % . (3-56)

Again, as in the previous case of Heisenberg's approxi-
mation, nothing can be concluded about the effects of the
production and the diffusion term on the energy spectrum.
For this, the complete numerical computation of the para-
metric solution is needed.

Even if the lowest part of the equilibruim range is
considered and assuming that the transfer function can be

neglected, one still obtains only a parametric solution,

i.e.,
e Ve
3[3‘ /3"‘ mZ +m -
h < )P [ (57
After squaring and differentiating w.r.t.x, it fol-
lows

ZmZ+m) = m?/(
&) = _z Oﬁ (z3-58)

/KZ OIX, i
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Though Howell's approximation for ’A%_(k), similar to
Heisenberg's)does noct lead to explicit expressions for the
energy spectrum function, é? (x), i1t does produce parametric
solutions that are much less complex. Computation of these
solutions and discussion of the result is given in sections

5. and 6.

4.2 Solutions with the Modified Obukhov Approximation

In the study of isotropic turbulence, the transfer
theories of Obukhov, Helsenberg/and Kovasznay have played
an important role. The particular analytical form of each
theory is obtained by considering a plausible physical mech-
anism of energy transfer and by satisfying certain dimen-
sional requirements. On physical grounds, however, there
has been a tendency to favor Heisenberg's theory and its
consequences have been worked out i1in more detail than of
any other theory. Some justification for this lies 1in the
fact that Obukhov's approximation, for example, leads to the
physically impossible sclution for the energy spectrum
(Batchelor 1953).

Ellison's modification of the original Obukhov approxi-
mation (Ellison 1962) overcomes this difficulty and leads to
very interesting solutions for the energy spectrum. It was
the first approximation which produced the energy spectrum
that trails off in the viscous region as.~fe_k2.

The Modified Obukhov approximation is based on the
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[
physical argument that the flux k_/'FCL)q#> 1s a conse-
quence of a Reynolds stress taken as proportional to k<E(k)
and acting on the root-mean square rate of strain of all

smaller wave numbers, i.e.,

| - ¢ Z
Ste) = [Fraat=4 4 L&) 2574 ] ¢

% "33
where (from E(k) = & & é /- tor the 1inertial subrange)

f— —J)/—\

7
4 Vzo0 "

The modified Obukhov approximation for the transfer
function does not have an explicit expression for /1;(k;
needed in the spectrum balance equation, Eq. (3-40). This

can be easily overcome 1f the modified Obuhkov approximation

1s written in a slightly different form, 1i.e.,

C Lk
: CJREGE) -,
Ste)=&,7 “w,}lf%/f Y (-6

- _k
!éé&ﬁfﬁ#:/

where the ratio between the energy k:E(k; and the vortic-

. [f..K ?d _7/1
ity L_o‘féé%%b /ﬂ/ represents the turbulent viscosity

LE(E)
[Fepr ]

(%)= 3/;7 (3-¢))
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It is 1nteresting to note that in the derivation of
the turbulent diffusion equation by using a probabilistic,
random walk approach (Monin & Yaglom 1965) the diffusion co-
efficient arises as a limit cf the ratio WZ/A, where W2
is the energy, [L2/T2], of the diffusing particle and A

1s a characteristic frequency' [ ™) .

Hence, Egq. (3-40) now reads

4
, e %L (%) 2
=2y [EG)pieip+ 4 2% ()4
el [fff)/"ﬂ/z///b "

/ QLJ ?
Jfg 7, /]2%)/"’/’7 %@‘U 1(. (3-¢2)

Using nondimensional variables (3-43) and the expres-

sion for £CM , Eg. (3-62) becomes

)(
] - 2, 7/

FalE ) EAAC /ﬂ)/ /;é/’)/ 4/’]-4‘;” (343

or,

/_—zi/}x&x){—fv‘m 7!3_/, (3-64)
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where, as before,

= / ZE@ PP )

_F g
= P O,fz : (3- a)

The complete solution in this case is very simple. For,

from (3-64)

T
M
N
I
o)
><

Z dZ f22+/¢72+/h(}

vy P
Xdx = /3 ijbj/‘/’? oA Z

Hence,

2 = o
e 535//,!0)4@7:@2’ 24427 (49

47

and the integration constant 1s zero from the condition:
=0, = 0.

This parametric solution, represented by Eg. (3-65)
and Eqg. (3-64a) 1s much simpler than the other two obtained
in the previous paragraphs.

In this case, moreover, explicit asymptotic solutions

for the energy spectrum function, (5?(x;, are possible.
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Neglecting only the dissipation term, one obtains

2 ZirhZ +m )
:V;Xé\/x)( = l,& )

/

2/3{3-7& mZi %ZJ[

and, with (3-64a),

Z

(5= 2

S

The only possible explicit solution for j? would be

for m=2/;:

(’/’1—*2)3 Z3 - ,47%'
= = 3+/77—2+w£¢z ,

Thus,
Lo, o (51 2)
,a’/i_’L s 3
and .5 34— R A.ﬂ;@ i
Z[E) a7 a ]
/:
Hence, JA Y, 7
é?a i?CjZ Vr‘ ZZ//) o - VG;
) Pl (2_/r
= d [ 3/, //Xz* m/‘ /% & / (3-6¢)
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For n =m = 0, the spectral law of the inertial sub-

range is recovered:

2 Vo ), gy S
L) =64 () () e 7

Mm=n=0

In considering the nonviscous region where X <K L 8
it follows from Egqg. (3-66) that for smaller and smaller

Y2 /)
wave numbers as the difference [(54) . 07A_7 i VC;

becomes smaller, the exponent representing the behavior of
the energy spectrum function, C;§(¥7 s vK;-CL , becomes
less than one. Thus, the x_l law of shear turbulence for
the lower wave number region--found for the case when thé

effects of inhomogeneities are neglected--is affected 1if

diffusion of energy is taken into account. Only for

[(3/2)3/2+ m” ] %o ) Will €= (%)~ 5L,

If only the production term due to shear and the
diffusion term are considered--the transfer term 1s assumed

negligible--Eg. (3-64) then becomes

/= X&) f””im y (3-67)

and, with ég(X) = <£Z>(X'2) GLZ;/;%J( , the solution is

xi= mZ*+ o0 .
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Hence,

”gf/a :_%f /(/’77@)2* 4%/2 .

As the value of Z cannot be negative, only the first

root is considered. Thus,

/
Cej(x)=gd—z ={f‘<} Q,,_

X2z dX ¥M‘X7é

-1
6—;)& (-4

Obviously, only for n = 0 would E;(x)rv.x-l, as was
obtained originally by Tchen (1953). It is again apparent
that the k-'l law cannot be maintained if the diffusion

due to inhomogeneity is taken into account, i.e., when

me# 0,

Solutions with the Vorticity Approximation

An explicit expression for the energy spectrum func-
tion, cE?(x,m,n), as a solution of the complete spectral
equation is possible if a vorticity approximation approach
is employed (Kesic 1969).

In the universal equilibrium range, for the range of
wave numbers far from the dissipation range, k <§.ko, we
can make the usual assumption that the viscosity ) does
not play any important role and the vorticity of turbulence

can be expressed, on dimensional grounds (& and k being



o3

the only pertinent variables), as

£ L Th 21/
[J2epra ]~ (<4)”.

The same result follows as the solution of the vorticity
integral if E(k)~k /3 .
With this approximation for the vorticity, the trans-

p(//é)= 5, ®E%) [f‘é‘]/f
XL - /OC : (3-69)

The case when the diffusion term is neglected is considered
first. Equation (3-40) then becomes
é o
2 r~ P / 2'/;’7 c
&= v [Eppap L ALLBER)S o
0

&

)

'L L% ) (5-70,

ey

Because the 1inertial subrange approximation 1s employed
for the vorticity, 1i.e., 8:(€]<2)l/3, the final expression
for the energy spectrum function 1s not expected to be
strictly valid in the dissipation range. This 1inaccuracy,
however, can be accepted because the main impact of shear
is expected to be in the lower part of the inertial sub-
range and it is our main interest here.

Using the nondimensional variables (3-43), Eg. (3-70)

reads
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A
/= Zzé"@)/éza(/» +)(5‘fx){»(2fimf, (3-7/)
With X .
2= [2Ep
éc&/‘—‘ i(dz/o/,( ) )

it follows

xdy _ ZdZ )
x”4m o (1-Z22) (>72)

Using the following substitution:
7 4
)\/_ > = AU
- 2 4
(}'L(( = S @(/(,/
Eq. (3-72) reduces to the case of table integrals and inte-

gration yields

2 7 2 e

where C 1s the integration constant to be determined from
the condition: «(=0/ L=0.

Thus,
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302l () 3m=
(=20 = )

B . _/3
From Eq. (3-73), and w1th,/% = X

—3f2% ) Bwh i Bim)
SZ‘2== /”’(? é? 2& ,f

Hence,

C/.Z‘2

v/ % 2 2
(& ) -3{4 é_mxﬁmﬁﬂrﬁm)}}
() = L

= Jye AX - (CC

Finally,

P/
g(x} X@/hé m)Cb{ W,f (3-7)

In the low wave-number region, Eq. (3-74) yields

2?(x)’v x L. For negligible shear, m = 0, it is reduced
to the expression for the energy spectrum in isotropic tur-
bulence obtained by Pao (1965),

A more accurate solution for E;(x,m) should use an
approximation for the vorticity valid in the dissipation

range also.
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By using such a vorticity approximation (Kesic 1969)
Egq. (3-70) then becomes

/‘ 2/

2
/ (hxﬁd/b /\/C?T/X/‘ .‘)‘ /‘/ 27‘“ * /j (3—75)
( /4 y™73 .

Following the same procedure as in the derivation of Eq.

(3-74), one finally obtains

p
~f =g -;§J§i{€,1/{?%_@/;%’/

= A+rKT ZJ 2 b

L(X/_/;7ﬂ+xs)+x/5 /}1,‘/2,\(’/3 G J /3-76/-)

where b =m + 1. In the low wave number region, Eq. (3-76)
gives the same result as Egq. (3-74). The difference shows
only in the dissipation range.

The complete specpral equation, with both the produc-

tion and the diffusion terms, reads

: /A
<=2 f éf/»‘/“df b &y b))

Ly 4ty 0 fff/ (ﬁ e, (37)

or, in nondimensional fcrm, using (3-43) and (3-44a),

r % %)

= [Zc}(/b)/DC{/ﬁfo/X)ZXJfM%ﬁXJ (‘3767

1)

Before solving the complete Eq. (3-77), an analysis ot
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the behavior‘of the energy spectrum in the nonviscous
range is possible. Concentrating attention to this region,
the dissipation term can be neglected and directly from

Eq. (3-77) it follows that

/
<ty = L (3-79)

APt ma F X"

Obviously, for m = n = 0, the -5/3 1inertial subrange

law results. For n = 0,

-/

5&) "*7)‘(—“ )

f///m( X Bt b

1S % 2/3

and for small x, such that m>» x , the x_l nonvis-

d
cous region follows. However, 1f n # 0 the x-l result
will be definitely affected.

In the case when nj%-mx2/3 (For very small x, for
example), Eg. (3-79) gives the asymptotic solution as
s x_l/3. This, however, cannot be valid. 1In the low
wave number region of the nonviscous subrange, where ap-
parently the -5/3 spectral law is affected, the approxi-

2,173 which 1is

mation for the vorticity cannot be ~ (& k“)
strictly valid for the 1inertial subrange only. For smaill
departure from the -5/3 1nertial subrange, however, this

can be accepted as a first approximation.

By using the substitution (3-46;, Eq. {(3-78), becomes
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2
| - %
,2_341' 2, s
- £ YL i /) -
T E AR m X | (3-¢)
Hence,
A & A X L f2_§<:z
K7y m -z (2

Making the following substitution:
Y/
! 2
A = U y 6{{3— /G‘Vzcsld )

Eq.(3-77) is reduced to

3 W AW 7 o Z
S o S — )
Wb W /- Z2

and, a solution for ;{2 is obtained as

/3

/ C&(/’f 9—/)//Yi/}’ ﬁ(X+/¢;X+/,

%

?/m;-h/ % Z/+lz1_ 1,/:, 4/1, '/
T A e 7 i) (3-83)

valid for m2)>4n. In the case of m2<'4n or m2 = 4n,
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only the last term in the exponent would be changed to

Zhy—

VIn-m*

Smn —

/4rc7§r,

Gy R

{/7/]_ /172. }

2

—_—

°r 2x 75 + h

respectively.

The integration constant, C, 1n

from the condition:

C-epplhi

(3-83) is determined
=0, 2 =0. Thus;, for m2:74n,
W— V= 7/

Thiy — M
2/41— %”/’L/ll/—4/)/j

The energy spectrum function then follows as

<tx)=

(3-83),

5?%%— £

XV x #4947

and, with

Z o*
X X

_ L dZ*
Ix2 Ax

W Y

4)ﬁ, (X*M’M

2/
24 ‘——//K 2/77/\/ /—/ﬂ/

3
+ hh 2/\/-/' W= /}1—"///// (5 84)
V%%'40 ;ZK’-fﬂ#f %@ Ip
5. Computation of Solutions for the Energy Spectrum

Among the solutions obtained with Heisenberg's type

approximation for /L;

(k) ,

Howell's approximation, Eqg.
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(3-51), leads to a simpler solution of the spectral equation
(3-40) than the original Heisenberg approximation. In the
latter case the parametric solution (3-48) was obtained,
Though. the .differential equation (3-48) can be readily inte-
grated by use of table integrals, the final result is very
complex. Even a solution valid in the non-viscous range
only (the dissipation term neglected) is impractically long.
Howell's approximation, on the other hand, yields a

much simpler solution. It is given, Eq. (3-54), as

Z(Z%nZ+1 )3
(-2 Z% 2/0inZ 4 py

J<4=(€/§)

and the energy spectrum function follows as
’ 2 \
» 3 ;g 4
Ky BN (F e nz )T
/ . . 5
(/- Z%) /j E 4 \/Z{Hl'/gﬂ'ih)' C/Z

A= mz?s Z(144) k)
L=/Z%¢ A4+ 20 )

C=9Imz>t £/14m)ZF — 2 . (3-45}

This parametric solution 1s computed for different
values of the parameters m and n and the results are
plotted in Figs. 8 and 9

The Modified Obukhov approximation for the transfer
spectrum function leads to especially simple soclutions ot

Eg. (3-40). 1In this case the parametric solution 1is, Eq.
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(3-65),

= Z&G;Z/ky#”)/%Y%%’é?-—‘£?4£7/?‘é?%)“‘igjz J
Ex) = Z dz

®

Hence,

A& 2/; Lt [ h 4 m
//7‘,7.) 2/-Z) )

and

(f?x)= /Z "-//_Zj

: %)
X(Z%mZ+») (-4,

The results, computed for different values of m and
n, are plotted in Figs. |- /.

In the case of the vorticity approximation, explicit
expressions for the energy spectrum Z?(x) are obtained.
Thus, the values of éf(x) are calculated for different
values of m and n directly from Eg. (3-84).

All these solutions, obtained by using different approx-
imations for the transfer spectrum function, are for the
three-dimensional energy spectrum. So far, there has not
been any experimental data on the three-dimensional energy
spectrum. All measurements refer to the one-dimensional
spectrum functions. In literature, the one-dimensional

spectra are calculated by exact relations derived for the
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case of isotropic turbulence. In the case of shear turbu-
lence, however, the present knowledge of the spectral den-
sities is insufficient for an exact calculation of the one-
dimensional spectral functions. Monin (1962) suggested that
within the equilibrium range the one-dimensional spectrum
functions could be calculated--at least as a crude estimate--
by means of the formulas valid for locally isotropic turbu-
lence. He used this procedure to calculate the one-dimen-
sional spectra from relations derived for the three-dimen-
sional spectra in a thermally stratified atmosphere.

The same proceudre is used here to calculate the one-
dimensional energy spectra from the expressions for the
three-dimensional energy spectrum E?(x). Calculation 1is
carried out for two cases: (a) Ei(x) obtained with the
use of the Modified Obukhov approximation)and (b) EZ(X)
obtained with the vorticity approximation.

The relationship between the one-dimensional energy
spectrum F(xl) and the three-dimensional energy spectrum

2?(x) is given (Hinze 1959) for the /453 spectrum com-

ponent as

- >~
X5 Cx) ;
Frx,) = ///— AN gy (3-87)
/ X/ x .
ol
In the case of an explicit expression for é?(x), as

was obtained by using vorticity approximation, Eqg. (3-637)

is transformed into a form that is more convenient for
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numerical integration by substituting a new variable

7T=%/ .

Thus,

and

Fo, )= f (577 -—d-) Ay (3-64)

Writing the derived expression for S:(x), Eq. (3-84)/
as a function of (xl/y), the above relation 1s used to
calculate the one-dimensional energy spectrum F(xl). The
results are plotted in Figs. |7 and (8 .,

In the case of the Modified Obukhov approximation, the
solution for éz(x) was obtained in a parametric form,

Eq. (3-65). Substituting (3-46) into Eg. (3-87), one
obtains Ve oo
?/X/)‘/ )(426//( A )

X=X,
Z(1=00) /

)= [0~ E)Z dz = fl-5)Eaz
Zl¥=X, ) 2/ x=4,)

or,
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where
o 2
= 2V L 2 . 4 (/- -
A ygf(/wzmz;u Lh(rz)-Z¢
These two relations are used to calculate F(xl). The re-

sults are plotted in Figs. |- 28,

6. Results and Discussion

The results obtained from the solutions derived in
this chapter are plotted in Figs. | - 28. In Figs. | — 1l
the three-dimensional energy spectrum é?(X) 1s plotted
for different values of the production parameter, m, and
for different approximations for the transfer spectrum
function. All these approximations lead to the x_l solu-
tion for the low-wave number range 1f the diffusion spec-
trum function is neglected in Eq. (3-40). The effect of
the shear is clearly displayed. As the production parameter
increases, the inertial x—5/3 subrange 1s affected more
and more--up to a larger and larger wave number. For a
very strong production, i.e., for large values of the para-
meter m, the shear effects penetrate the energy spectrum
even through the dissipation range.

The impact of the diffusion term on the three-dimen-
sional energy spectrum in the low wave-number range 1is
shown in Figs. 4 - 9 ., 1In Figs. | — 7 the solutions for

the three-dimensional energy spectrum obtained with the

Modified Obukhov approximation and for different values of
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the production parameter, m, and the diffusion parameter,
n, are shown. It is clear that by taking the diffusion
spectrum function into account the x—l range 1s strongly
affected. Only for very small values of the diffusion para-
meter, n, (relative to the production parameter m) 1s 1t
possible to obtain a solution for the energy spectrum func-
tion, é; (x), that gives the variation of a part of the
spectrum in the low wave number range as x—l. However,
even with as large a value of the production parameter as

m = 2, Fig. 5 ) the diffusion parameter as small as

0.005 will destroy the x L range completely.

n
The relation between the terms of the spectral equation
(3-40) and their relative magnitudes for different values
of the production and the diffusion parameter 1s shown 1in
Figs. [2 - & . It 1is clear from these diagrams that with
the penetration of the shear and the diffusional effects to-
ward larger wave numbers, the dissipation 1s moved toward
larger wave numbers too--a fact that has already been
noticed i1n experiments on turbulent boundary layers (Hinze
1959, Tielman 1967). At the same time, the transfer term
becomes smaller and smaller indicating a shrinkage of the

{nertial k /7

subrange.

In Fig. 7 a composite plot of the three-dimensional
energy spectrum is given. Together with an increase of the
value of the production parameter, m, an increase of the

diffusion parameter, n, 1s assumed also. This hypothetical

case represents the actual situation i1n a turbulent boundary
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layer. The increase of m represents an increase of the
velocity gradient, dﬁ/dxz, and the increase of n repre-
sents an increase of the diffusional effects as the distance
from the wall is decreased. The behavior of the three-di-
mensional energy spectrum in the presence of shear and in-
homogeneities, as given by Fig. 7 , 1s in a good qualitative
agreement with the experimental data on energy spectra 1in
turbulent boundary layers. These data are, however, still
very meager.

The first systematic measurements of the energy spec-
trum were reported by Klebanoff (1951, and Laufer (1954).
Klebanoff's data were taken i1n an isothermal turbulent
boundary layer with zero pressure gradient- The measured
energy spectra (Klebanoff 1951, Fig. 6) show that the contri-
bution to the turbulence energy in the low-wave number range
decreases as the wall 1is approached, but that the contribu-
tion i1n the high-wave number range 1s increased. This 1s
the same picture as given by the solutions of the spectral
equation, Eq. (3-40), and shown in Figs., |- 28.

The most recent measurements of the energy spectrum in
an isothermal boundary layer were done by Tielman (1967).
He plotted Heisenberg's isotropic relation for comparison
but found, 1n agreement with the solutions of Eg. (3-40)
presented in Fig. / , that each spectrum branches away from
Heisenberg's theoretical solution at a different point and,

k-5/3

consequently, the inertial subrange shrinks more
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and more as the wall is approached. Tielman's data, plotted
in the same nondimensional variables as the spectra in Fig.
7, show striking similarity to the calculated spectra.
However, a comparison of the solutions of Eg. (3-40) and
Tielman's data (Fig. 56, cit. ref.) cannot be made directly
because the data represent the one-dimensional energy spec-
tra and the solutions, Fig. / , represent the three-dimen-
sional energy spectra.

It is not known, however, how the one-dimensional
energy spectrum is related to the three-dimensional energy
spectrum in shear turbulence. One is then forced, as al-
ready pointed out, to use the relationship valid for locally
isotropic turbulence. As this relationship is used for the
high-wave number energy spectrum where an approximate local
isotropy may exist and local homogeneity is assumed {(Monin
1962) it is hoped that a reasonable representation for the
one-dimensional energy spectrum can be obtained. The basic
condition is, of course, that the solution for the three-
dimensional energy spectrum 1s 1n 1tself a good mathematical
model for the real phenomenon.

The computed one-dimensional spectra in Fig. [2 --
corresponding to the three-dimensional spectra in Fig. /7 --
immediately show that the main characteristics of the three-
dimensional spectra (already observed as in a good qualita-
tive agreement with the actual data) are preserved.

Obviously, the computed one-dimensional spectra from

Fig. 22 could be compared with experimental measurements
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and an assessment of the values of the production para-
meter, m, and the diffusion parameter, n, can be made.
Intuitively, it is expected that there should be some de-
pendence between these parameters and the turbulence Rey-
nolds number.

It is known that in the regions of both strong shear
and inhomogeneities, as 1n the region close to the wall, the
turbulence Reynolds number 1s very small and that for larger
Rez’ (greater than 500, say), the effects of shear and in-
homogeneities on the energy spectrum can be neglected.

From (3-44a),

4
/Qh (1/@1 ﬁélﬂ m = /1(/mi):9 /;’Z )
=Ll g 5112 / .
Using the definition for the turbulence Reynolds number,

/=72
p _ax)
e oy )

7 v

i.e.,

where 71 is the microscale or the dissipation scale, and

the 1sotropic relation:
K

E=/5Y 5

v\ % A2
@ - £5 (%)

L
ML

one obtains
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and

= 5(7/5 )/22%
exr AXa /
where B 1is a constant.

In a turbulent boundary layer with the increase of the
mean velocity gradient (approaching the wall) the microscale
and the turbulence Reynolds number decrease and vice versa.
The form of the variation of /?253¢2//E{)K1 1s the same
for any fully developed boundary layer (going from zero to
some finite value) and it can be assumed that the value of

/lzda /0/)(2. is the same if Re , at the points

/i
in question is the same (for two different mean velocities,

for example). Thus,
(L il ) -5 ) 632 Bty

Moreover, in a part of the boundary layer one can expect
that (ﬂ_z =17 /C‘(X;_ ) ~~ const. 1In that case, the
production parameter would vary as /"~ (const /Re p ).

Similarly, for the diffusion parameter, 1t 1s assumed that

= (v/g 'D(/%) 7[//%)} (AT ///@,,f/@/xz.

d/(f.

Hence, according to the above assumptions, the para-

meters m and n for two different turbulent boundary
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layer flows have the same values if Re A 1S the same.
This is an interesting result as it indicates a similarity
of the energy spectra in a turbulent boundary layer. 1In the
case of isotropic turbulence;similarity exists for any energy
spectrum if plotted in nondimensional variables :

X = % /(5_,-"»3_)//4 p 5?\',) = [/4,{/(67“#)2?, in
the case of shear turbulence, similarity would then exist
if in addition to the same nondimensional variables the
turbulence Reynolds number 1i1s the same.

The only measurements of the ;? spectra 1n a boundary
layer that are calculated and plotted in a nondimensional
form using the above mentioned variables are those by Tiel-
man (1967). He obtained the energy spectrum data for two
different velocities: Uy, = 20 ft/sec, and 40 ft/sec.

A check of his results (Fig. 56, cit. ref.) strongly indi-
cates that the energy spectra fail on the same curve for
the same Reynolds number irrespective of the distance from
the wall or the mean velccity, Ues . This supports the
above assumption of similarity of energy spectra 1f scaled
with the turbulence Reynolds number.

Comparison of the computed one-dimensional spectra
from Fig. 22 with Tielman's measurements shows that agree-
ment exists. Though originally the data were intended to
be used only as an illustration of the qualitative correct-
ness of the analytical solutions, 1t was not difficult to

obtain a good fit to Tielman's data with the Kolmogorov
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constant ¢ = 1.7 and varying the values of m and n.

The calculated one-dimensional spectra are presented in-
Figs. /9 - 26 .

Comparing the values of m and n, used in plotting
the fitting curves to Tielman's data, with the turbulence
Reynolds number for corresponding points, 1t 1s clear that
m and n vary in a regular manner as Re ,k decreases, 1.e.,
as the wall i1s approached. It was found that a good approx-

imation for the production parameter, m, can be written as:

/0= /2
A e —5—
Aer
for the part of the boundary layer where Re ., varies from

/1

~ 100 to ~~ 3, and for the diffusion parameter, n, as

. 05
I v —
KNe

These results support the above assumption that in a
turbulent boundary layer the production term (1n nondimen-
sional form) may vary as <~ C/Re , and the diffusion para-
meter, n, as a function of Re » also. This enables a
similarity of the energy spectra, for the same Re ; , to
exist.

For Re , —» o< , the 1isotropic solution (m = 0,

n = 0) is obtained from Eg. (3-40) In Figs. 235 - 28
Tielman's data are plotted together with the isotropic
solution for comparison. It can be seen that for m > 0.1

(L.e., Re<flOO)’the k—5/3 inertial subrange 1is
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nonexistent. Only for Re = 200 does the inertial range
becomes a sizeable part of the spectrum.

From the obtained results 1t can be concluded that
the derived solution for the three-dimensional energy
spectrum, Eq. (3-65), gives an accurate picture of the
behavior of the energy spectrum function in a turbulent
boundary layer and that the one-dimensional energy spectrum
calculated by means of Eg. (3-87) from the three-dimensional
spectrum, Eq. (3-65), gives a good quantitative agreement

with the actual measurements from turbulent boundary layers.
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