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ABSTRACT

USING FINITE STATE PROJECTION AND FISHER INFORMATION TO IMPROVE

SINGLE-CELL EXPERIMENT DESIGN TO GAIN BETTER UNDERSTANDING OF DUSP1

TRANSCRIPTION DYNAMICS

Many recent studies have combined fluorescent biochemical labels, single-cell microscopy,

and discrete stochastic modeling to understand and predict how organisms react to environmental

changes to control gene expression. The experimental data used in these studies is often collected

using intuitively-designed applications of techniques such as single-cell immunnocytochemistry

(ICC) to measure protein expression and transport or single-molecule Fluorescence in situ Hy-

bridization (smFISH) to measure the number and position of transcribed mRNA. Once collected,

these single-cell data are then analyzed using discrete stochastic models, often based on the frame-

work of the Chemical Master Equation (CME), which can be solved using the Finite State Pro-

jection (FSP) algorithm. Unfortunately, these experiments can be expensive and labor intensive

to perform, primarily due to long imaging and image analysis times, and it is not clear how these

experiments must be designed to obtain the most information when their results are later analyzed

using the FSP techniques. The recently discovered Finite State Projection based Fisher information

Matrix (FSP-FIM) provides a potential and practical solution to this experiment design challenge

by providing direct estimates for how well any potential experiment should be expected to con-

strain parameters for a given model or set of models. In this report, we examine this challenge of

experiment design in the situation where multiple different types of experiments (i.e., ICC and sm-

FISH) are possible, for different time points, for different numbers of measurements per time point,

for different environmental inputs, and for different assumed models and combinations of unknown

parameters. We extend the previous FSP-FIM theory to address these multiple challenges, and we

introduce new computational tools in the form of advances to the Stochastic System Identification
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Toolkit (in Mathworks Matlab™) that allow users to easily and efficiently compute the FSP and

FIM for each of these circumstances. Using experimental smFISH data, we demonstrate the effec-

tiveness of the FSP tools to quantitatively reproduce the single-cell transcription dynamics of the

Dual Specific Phosphatase 1 (DUSP1) gene under stimulation by Dexamethasone (Dex), and we

show how the FSP-FIM can be used to design optimal combinations of ICC and smFISH to further

improve quantification of this gene regulatory process, including predicting the optimal allocation

of measurement times to obtain the most amount of information from each experiment. To probe

the generality of our results, these FSP and FSP-FIM analyses are conducted for different models,

under different assumptions on known and unknown parameters, and under different drug dosage

regimens. The approach developed in this work is expected to have substantial impact on how

computational models can be employed to improve the selection and design of future single-cell

experiments.
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Chapter 1

Introduction

Understanding the mechanisms of gene regulation is crucial for comprehending cellular re-

sponses to environmental changes and various stresses. To gain insight into these mechanisms,

researchers often employ a discrete stochastic modeling approach [1–5]. Subsequently, these mod-

els can be fitted to experimental data to determine parameters and evaluate their ability to replicate

the variability observed in the experimental data. Such data is frequently generated from single-cell

experiments, such as Single-Molecule in situ Hybridization (smFISH) [6], immunostaining meth-

ods like immunocytochemistry (ICC) [7], or live cell imaging techniques [8–10]. Traditionally, the

experimental approach to uncover gene regulation mechanisms involves collecting experimental

data, constructing a model, fitting the model, assessing the reproducibility of simulated data, and

then restarting the cycle with newly designed experiments [11]. Initially, experimenters often have

limited information on how to design the experiments and only gain insights into better experi-

ment design options after going through this cycle. Here, we present an alternative approach to

enhancing experiment design, showcasing the utilization of the Fisher Information Matrix (FIM)

as a metric for optimal experiment design [12–15]. The FIM finds practical utility in experiment

design and in assessing the identifiability of deterministic ordinary differential equation (ODE)

models in biological systems [16].

In previous studies, the Fisher Information Matrix (FIM) has been applied to stochastic mod-

eling of gene expression, where a numerical method was developed to compute the FIM using

the Linear Noise Approximation of the Chemical Master Equation (CME) [5, 17]. This approach

allowed for investigating the impact of bulk measurements and time series measurements on pa-

rameter uncertainties. Furthermore, ongoing research has focused on approximating the FIM using

moment closure techniques [13, 18], demonstrating its effectiveness in designing optimal optoge-

netic experiments [13]. Derivation of the Fisher Information Matrix (FIM) from the Finite State

Projection (FSP) [19] demonstrated an effective approach for constructing the FIM in time-varying
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and non-linear models. This approach is commonly referred to as FSP-FIM [12,19]. Moreover, the

FSP-FIM framework enables the incorporation of distortion operators, providing the user with the

ability to account for measurement distortions [15]. The FIM based experiment design approach

aims to provide insights into the development of improved experiments and creating an optimal

experiment design, thereby reducing the cost and time required for fitting stochastic processes like

gene expression. In this study, we will apply this design approach to the gene expression of Dual

Specific Phosphatase 1 (DUSP1).

The DUSP1 gene exhibits involvement in the inflammatory response at the cellular level and

displays activity in immune cells, fibroblasts, endothelial cells, lung epithelial cells, HeLa cells,

and other cell types. DUSP1 encodes the Mitogen Kinase Phosphatase 1 (MKP1) protein, which

acts as a crucial regulator within the DUSP1/MKP1 pathway [20]. This pathway exerts control over

the anti-inflammatory response of the cells by dephosphorylating P38 and JNK, which are two

branches of the mitogen-activated protein kinase (MAPK) pathway [21]. Both the strength and

duration of MAPK activation significantly influence cellular function [22], necessitating precise

regulation. Dysregulation of MAPK activity has been implicated in the development of various

pathologies, including neurodegenerative diseases, diabetes, cancer, and inflammation [20].

2



Chapter 2

Methods

2.1 DUSP1 Gene Regulation Models

The activation of the DUSP1 gene primarily occurs through the binding of glucocorticoids

(GC) to glucocorticoid receptors (GR) [23], resulting in their translocation into the nucleus. Once

in the nucleus, GR induces or represses the transcription of thousands of genes by directly and

indirectly binding to GR DNA response elements [21]. One of the genes activated by GR is DUSP1

by triggering the transcription of the gene [20], and the up-regulation of DUSP1 by GCs is believed

to play a crucial role in the suppression of inflammation [23]. In-order to understand the temporal

dynamics of the DUSP1 gene activation, a discrete stochastic model is created to fit data generated

by smFISH and ICC experiments. The smFISH experiment captures the transcription dynamics,

while ICC experiment captures the dynamics of GR translocation. Two models are suggested for

fitting the data. The first model is an Explicit GR Nuclear Translocation (EGRNT) Model. The

mechanisms of the ERGNT model are shown in figure 2.1.
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Figure 2.1: Explicit GR Nuclear Translocation Model. The Explicit GR Nuclear Translocation (EGRNT)
model utilizes three species: nuclear GR, gene state, and mRNA, to depict the regulatory mechanisms of
the DUSP1 gene following stimulation by Dexamethasone (Dex). In this model, the nuclear GR can either
enter or exit the nucleus. The gene state can exist in two states: ON or OFF. When the gene state is in the
on state, mRNA can be transcribed. The mRNA, in turn, can undergo degradation or exit the nucleus.

The EGRNT model incorporates the mechanisms of GR translocation to the nucleus and tran-

scription dynamics of mRNA. The termGRn represents the number of GR within the nucleus. The

parameters kcn0 and kcn1 deal with the rates of nuclear GR translocation. The term e−r1t represents

the time-varying input of Dexamethasone (Dex) stimulation. knc is the rate of GR leaving the nu-

cleus or degrading. kON is the rate of gene activation. kOFF is the rate of gene deactivation. kr is

the rate of mRNA production. The last parameter, gr, is the rate of mRNA leaving the nucleus or

degrading.

The second model is a Simplified GR Signal (SGRS) model. This model simplifies the EGRNT

model by representing the nuclear translocation of GR as a time varying signal. This is represented
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by Equation 2.1 with the starting nuclear GR being equal to Kcn0

knc
.

d

dt
GRn = kcn0 + kcn1e

−r1t − kncGRn. (2.1)

The number ofGRn at any time is then represented by another variableU to account for the starting

nuclear GRs. This is represented by Equation 2.2.

U = GRn −
Kcn0

knc
. (2.2)

This equation is then written as a rate to get Equation 2.3.

d

dt
U = Kcn0 + kcn1e

−r1t − knc(U +
Kcn0

knc
). (2.3)

Equation 2.3 is further simplified to get Equation 2.4.

d

dt
U = kcn1e

−r1t − kncU. (2.4)

Integrating equation 2.4 gives Equation 2.5.

U(t) =
kcn1

knc − r1
e−knct(eknc−r1t − 1). (2.5)

Plugging Equation 2.5 into Equation 2.2 give the time varying signal represented in the model as

IGR(t). IGR(t) is represented by Equation 2.6.

IGR(t) =
kcn0
knc

+
kcn1

r1 − knc
e−knct(1− er1−knct). (2.6)

SGRS model’s mechanism is shown in figure 2.2.
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Figure 2.2: Simplified GR Signal Model. The Simplified GR Signal (SGRS) model describes the activation
of the DUSP1 gene using a simplified version of the GR nuclear translocation mechanism, where IGR is a
deterministic time-varying input derived as the mean of the nuclear GR level from the EGRNT model. The
two remaining species in the SGRS model are the gene state and the nuclear mRNA. In this model, when
the gene state is in the ON state, mRNA can be transcribed. The mRNA can then either leave the nucleus or
undergo decay.

The SGRS model reduces the number of species by one because the nuclear translocation of

GR is represented by the time-varying signal. The remaining species in the model are the number

of active allels and the DUSP1 mRNA.

2.2 Single-Cell Experiments

The experimental data utilized in this study was obtained through single-molecule fluorescence

in situ hybridization (smFISH), which enables the measurement of mRNA expression at different

time points within a cell population [6]. Differences in gene expression among individual cell

populations were quantified and used for parameter fitting in the models [24, 25]. In smFISH, a
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primary probe specific to the target species (DUSP1 mRNA in this case) is designed. Subsequently,

a secondary probe carrying a fluorescent dye binds to the primary probe, resulting in fluorescence

upon attachment. Microscopic imaging is then conducted on the cells, and the captured images un-

dergo processing. Live cell imaging was not used in this study; instead, different cell populations

were measured at each time point, enabling the measurement of mRNA expression over time with

a large number of cells. The utilized data for the modeling procedure includes smFISH data cap-

turing the expression of DUSP1 over a three-hour period after stimulation with Dex. These images

were processed using the BIG-FISH image processing package [26] and the cell segmentation tool

called Cellpose [27]. The processed data was subsequently saved in a CSV file format, which can

be easily incorporated into MATLAB code.

2.3 Stochastic Systems Identification Toolkit

The Stochastic Systems Identification Toolkit (SSIT) served as the primary tool for data analy-

sis in this study. SSIT is a Mathworks Matlab™)-based software developed by Munsky et al. that

facilitates modeling and parameter fitting of discrete stochastic systems. It offers various func-

tionalities, including setting up discrete models, executing Stochastic Simulation Algorithm (SSA)

trajectories, calculating Finite State Projection (FSP), conducting sensitivity analysis, loading and

fitting data, and calculating the Fisher Information Matrix (FIM). The SSIT played a crucial role

throughout the analysis and parameter fitting of the DUSP1 models. Detailed instructions and guid-

ance on the key functions of the SSIT can be found in the appendix, providing a helpful tutorial

for users.

2.4 Defining Discrete Stochastic Models

Gene regulation is a complex process that is influenced by various factors. The interactions and

dynamics involved in gene expression introduce inherent stochasticity, leading to the propagation

of noise within genetic circuits [1]. To understand these intricate connections, stochastic models

are employed to fit gene regulation data. The activation and inactivation of genes can be effectively
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described as a discrete Markov process [2], allowing for the design and fitting of multiple models

to experimental data. The stochastic nature of gene regulation, characterized by random activa-

tion and deactivation of gene states [28], provides the motivation for adopting a discrete Markov

process for modeling purposes. In order to capture the stochastic behavior of DUSP1 mRNA ex-

pression, we utilize a discrete stochastic modeling approach. This approach involves monitoring

every possible state and transition, keeping track of the count for each species of interest. Each

state can be represented by a vector xi = [s1, s2, ..., sN ]
T
i , where xi corresponds to the ith state

and sN represents the species of interest. For the EGRNT model, the vector xi can be defined as

[ci, gi,mi], where ci, gi, and mi denote the counts of nuclear glucocorticoid receptors, gene states,

and mRNA, respectively, for the ith state. Similarly, for the SGRS model, xi is defined as [gi,mi],

encompassing the gene state and mRNA count. The transition from the current state, xi, to the next

state, xj , is denoted as xj = xi + ψv, where ψv represents the stoichiometry associated with the

reaction occurring at the jth step. This transition reflects the changes in species counts resulting

from the reactions taking place within the system.

An example of how the models are generated and the analysis is performed using the SSIT

codes will be demonstrated for the EGRNT model of DUSP1 gene regulation. In the codes, any

line ending in "..." is treated as a single line by the SSIT codes. The initial model setup is generated

using the following codes:

Model = SSIT;

Model.species = {’x1’;’x2’;’x3’}; % GRnuc, geneOn, dusp1

Model.initialCondition = [0;0;0];

The example code above initializes the SSIT program and defines the number of species and the

initial conditions of the model. In this model, the parameters x1, x2, and x3 represent the numbers

of nuclear glucocorticoid receptors, active DUSP1 alleles, and DUSP1 mRNA, respectively. The

following line of code sets the propensity function of the model.

Model.propensityFunctions = {’(kcn0+kcn1*IDex)’;’knc*x1’;...

’kon*x1*(2-x2)’;’koff*x2’;’kr*x2’;’gr*x3’};
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In this description, the six propensity functions correspond to size model reactions: the transloca-

tion of GR to the nucleus (w1 = (kcn0+kcn1∗IDex(t))); the translocation of GR to the cytoplasm

(w2 = (knc∗x1); the activation one of the alleles of DUSP1 (w3 = kon∗x1∗(2−x2); deactivation

of one DUSP1 alleles (w4 = koff ∗ x2); transcription of a mRNA molecule (w5 = kr ∗ x2); and

degradation or mRNA leaving the nucleus (w6 = gr ∗ x3).

The following lines of code set the time varying input for Dex stimulation and the initial pa-

rameter value guesses.

Model.inputExpressions = {’IDex’,’(t>0)*exp(-r1*t)’};

Model.parameters = ({’koff’,0.14;’kon’,0.01;’kr’,1;’gr’,0.01;...

’kcn0’,0.01;’kcn1’,0.1;’knc’,1;’r1’,0.01});

The stoichiometry matrix is then set by the code:

Model.stoichiometry = [ 1,-1, 0, 0, 0, 0;...

0, 0, 1,-1, 0, 0;...

0, 0, 0, 0, 1,-1];

Model.fspOptions.initApproxSS = true;

Here, the stoichiometry matrix describes the specific effect that each of the six reactions has on the

system: ψ1 = [1, 0, 0]T describes the increase of one molecule of nuclear GR; ψ2 = [−1, 0, 0]T

describes the decrease of one molecule of nuclear GR; ψ3 = [0, 1, 0]T describes the activation of

one DUSP1 allele; ψ4 = [0,−1, 0]T describes the deactivation of one DUSP1 allele; ψ5 = [0, 0, 1]T

describes the increase of one molecule of nuclear mRNA;ψ6 = [0, 0,−1]T describes the decrease

of one molecule of nuclear mRNA.

2.5 Defining the Chemical Master Equation

The Chemical Master Equation (CME) serves as the foundation for constructing stochastic

models of the DUSP1 gene. By utilizing the defined variables xi and ψi, the propensity function
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wv(xi)dt is established as the probability of the vth reaction occurring in the ith state within a time

step dt. Consequently, the CME can be expressed by Equation 2.7. [29, 30].

d

dt
p(xi : t) =

Ni
∑

v=1

[wv(xi − ψv, t)p(xi − ψv, t)− wv(xi, t)p(xi, t)]. (2.7)

Looking into all possible variations of xi at the time point t gives the probability mass vector

P = [p(x1, t), p(x2, t), ..., p(xi, t)]
T and grants the ability to write the CME in the matrix shown in

form Equation 2.8 [31].

d

dt
p(t) = Ap(t). (2.8)

Figure 2.3: Visualization of the states and stoichiometries for the Chemical Master Equation descrip-

tion of the EGRNT model. The CME enumerates all possible combinations of the species mRNA and
nuclear GR. Arrows in the diagram represent stoichiometries for reactions that can occur in the system (e.g.,
upward pointing arrows indicate mRNA transcription, while downward-pointing arrows represent loss of
nuclear mRNA). Similarly, right- and left-pointing arrows in the horizontal direction indicate GR transloca-
tion into and out of the the nucleus, respectively.
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The CME has an infinite number of states for many different models, including the EGRNT

model. This is illustrated in figure 2.3 above. This makes the solution of the CME unsolvable so

another method must be used.

2.6 Generating Stochastic Simulations of Gene Regulation

The stochastic simulation of gene regulation grants the ability to simulate trajectories and dis-

tributions for a given model. This aids in fitting the parameters of the gene regulation model so the

species population distribution generated by the model matches experimental data.

In order to generate these simulations, the SSA is used. The SSA is a Monte Carlo simulation

of the CME [1,32]. The SSA is run by using the discrete stochastic modeling method as mentioned

in the methods above to create trajectories of how the state of the species evolves over time. The

species are tracked in xi up to the ith state of the trajectory. The time until the next reaction, dt,

is defined by dt = 1
|w|1

log 1
r1

. Where r1 is a random number chosen from a uniform distribution

between 0 and 1. The reaction that occurs is chosen by first selecting another random number, r2,

from a uniform distribution between 0 and 1. A value of k is chosen such that:
∑k−1

v wv(x) ≤

r2|w|1 ≤
∑k

v wv(x). The state change is updated with the associated ϕv stochiometry change and

the next reaction and time step is repeated until reaching the ith state of the trajectory [1, 32].

2.7 Solving the CME using the Finite State Projection algo-

rithm

The solution of the CME is crucial in successfully modeling gene regulation and using tools to

optimize experimental design. Unfortunately, in many cases such as the DUSP1 regulation model,

the CME is unsolvable due to having an infinite number of states. To address this issue, the Finite

State Projection (FSP) is used as an approximation of the CME solution, which is solvable [31].

This representation of the FSP is shown in figure 2.4 below.
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Figure 2.4: Visualization of the Finite State Projection (FSP) truncation of the CME for the EGRNT

model. The original CME lists possible combinations of the mRNA and nuclear GR species as in Figure 2.3.
Arrows shown in the diagram represent reactions that can occur in the system. Under the FSP truncation,
after reaching the corresponding threshold for the number of mRNA or nuclear GR molecules, the remaining
states are collected into an absorbing sink state denoted by ϵ, resulting in a finite dimensional approximation
of the CME (Equation 2.10) that can be analyzed using standard ODE solvers.

The FSP is created by truncating the CME into a finite set of states, XJ and a set of low

probability states, XJ ′ [12, 19]. Using the matrix form of the CME above and the definition of

pJ(t) ≡ p(XJ ; t), the matrix form of the CME split into two separate states shown in Equation 2.9.

d

dt







PJ

PJ ′






=







AJJ AJJ ′

AJ ′J AJ ′J ′













PJ(t)

PJ ′(t)






. (2.9)

The low probability set pJ(t) is then set to be the sink state g(t) and the CME equation is

redefined as:

12



d

dt







PFSP

g(t)






=







Ajj 0

−1TAjj 0













PFSP (t)

g(t)






. (2.10)

This method allows for the calculation of the error which is given by Equation 2.11.
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1

= ϵ. (2.11)

The lower bound of the true solution at all time greater than zero is given by Equation 2.12.







PFSP

0






≤







P

P






. (2.12)

The DUSP1 models had their FSP matrix generated using the SSIT tool. The FSP is also fit to

the experimental data by loading the data into the model and a fit being run to this data-set multiple

times through the use of a for loop. The SSIT commands to run the FSP fit are shown below.

Model.solutionScheme = ’FSP’;

Model.fspOptions.fspTol = 1e-4;

[fspSoln,Model.fspOptions.bounds] = Model.solve;

The solution scheme is set to the FSP option with a selected error tolerance. When it finds the

parameter set that maximizes the likelihood function, it replaces the current parameter set in the

DUSP1 model.

2.8 Computing Likelihoods of Single-Cell Data

The calculation of the log-likelihood of the data from the FSP will be necessary to calculate

the FIM. The tracked species in are represented as distributions over time and put into the matrix

form Dt ≡ [d1, d2, ...dNc
]t ∈ ZNt×Nc

≥0 . Each cell in the population is defined by Nc while the
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measurement time points are defined by Dt. The log-likelihood for a given parameter set, Θ =

[θ1, θ2, ...θk], is given by Equation 2.13 [12].

logL(D; Θ) =
Nt
∑

k=1

Nc(k)
∑

i=1

log(p(xi = di; tk, θ). (2.13)

In order to calculate the likelihood of the parameter set given the data, the SSIT code uses the

following command:

Model.computeLikelihood

One way to estimate parameters from single cell data is to find the parameters set that maximize

the likelihood function. This method has been used various times to fit model parameters from

single cell data [4,19,33–35]. The maximum likelihood estimate is needed several times for fitting

the DUSP1 regulation models. The SSIT tool provides a function that returns the parameters that

return the maximum likelihood estimate. This function is called using the line:

Model.maximizeLikelihood([],fitOptions);

2.9 Metropolis Hastings to Samples Parameter Posteriors

Further parameter fitting is done by using Metropolis Hastings (MH) algorithm. The MH al-

gorithm is used in various systems such as jet milling models [36], infection models [37] and

biological systems [38] to estimate the system’s parameters from sampling from the posterior dis-

tribution of the experimental data. The initial parameters used in the MH algorithm for fitting the

DUSP1 models are the parameters found from the FSP fits. We use the MH algorithm to further

fit the parameters of the model and get a covariance between each par of parameters which helps

identify the best parameter set. The parameter set that maximizes the likelihood function is chosen

and saved to the model. This is done using the SSIT in the following codes below.

MHOptions = struct(’numberOfSamples’,15000,’burnin’,100,’thin’,1,...

’useFIMforMetHast’,true,’suppressFSPExpansion’,true);
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[bestParsFound,~,mhResults] = Model.maximizeLikelihood(...

[Model.parameters{...

Model.fittingOptions.modelVarsToFit,2}]’,...

MHOptions,’MetropolisHastings’);

Model.parameters(Model.fittingOptions.modelVarsToFit,2)...

= num2cell(bestParsFound);

In the options for the Metropolis Hastings algorithm, ’burnin’ is the number of samples dis-

carded from the beginning of the MCMC chain to allow for relaxation away from the initial

parameter guess; ′thin′ is the number of intermediate MCMC samples that are discarded to re-

duce memory requirements and ensure greater independence between successive MCMC steps;

′useFIMforMetHast′ is a flag instructing the algorithm to use the FIM for a more efficient

MCMC sample proposal distribution; and ′suppressFSPExpansion′ instructs the algorithm not

to re-expand the FSP projection at each step, which may reduce accuracy but typically leads to a

faster implementation.

This section is all done in a for loop to ensure the best parameter fit. The first line within the

for loop of sets the options to create 15000 data point samples and prevent the FSP for expand-

ing any more. The MH is ran and the maximum likelihood estimate is found in the command

"Model.maximizeLikelihood." The last two lines of code save the parameter set that maximizes

the log-likelihood functions. A plot of the Metropolis Hastings sample is generated using the SSIT

command: ”Model.plotMHResults(mhResults).” An example of the samples generated for the

SGRS model is shown below in figure 2.5.
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Figure 2.5: Metropolis Hastings (MH) analysis of parameter uncertainty given experimental data.

The posterior parameter space of the SGRS model was sampled using MH to generate 15,000 parameter
combinations depicted as individual dots. Colors denote the computed likelihood values from high (yellow)
to low (blue). The dashed pink line denotes the 95% CI of the parameter estimates computed from the MH
samples. Each panel shows the joint uncertainty of two parameters, and reveals that some combinations of
parameters are highly correlated. For example, log10 kOFF is linearly correlated to log10 kr, suggesting that
the burst size kr/kOFF is tightly constrained by the data, but the actual values for each of these individual
parameters is relatively uncertain.

16



2.10 Sensitivity Analysis of the CME Using the FSP

The sensitivity matrix is used in sensitivity analysis which identifies which parameters have the

greatest influence on the resulting distribution a model creates [39–41]. The log-likelihood can be

used to calculate the sensitivity matrix which is also able to be used for calculating the FIM. The

Sensitivity matrix, S, is calculated by S = ∇θp(X; θ) [35]. By using the log-likelihood, the log of

the sensitivity matrix can be calculated by Equation 2.14.

∇θlogp(X; θ) =
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. (2.14)

This is done through the SSIT tool with the following line of code:

Model.sensOptions.solutionMethod = ’finiteDifference’;

Model.solutionScheme = ’fspSens’;

Model.fspOptions.fspTol = 1e-6;

[sensSoln,Model.fspOptions.bounds] = Model.solve;

Model.makePlot(sensSoln,’marginals’)

The solution method for calculating the sensitivity was chosen to be the finite difference method

with the sensitivity being solved through the FSP solution scheme. The FSP tolerance of the

solution was set to be 1e− 6. The second to last line is the command that make the SSIT tool run

the sensitivity calculation. An example of the sensitivity plots for each parameter is shown for the

EGRNT model for the distribution of mRNA (x3) is shown in figure 2.6 below.
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Figure 2.6: Sensitivity analysis for the Chemical Master Equation The sensitivity of each parameter’s
effect on the distribution of DUSP1 mRNA is shown as calculated using the FSP approach in the SSIT. The
x axis shows the count of mRNA, (species ’x3’). The y-axis shows the sensitivity of the distribution at the
specific time (t=180 min) to the parameter listed in the subplot title. For example, an increase in the mRNA
degradation parameter ’gr’ leads to more probability mass (positive sensitivity) at low mRNA levels and less
probability mass (negative sensitivity) at higher values of mRNA.

2.11 Computing the Fisher Information Matrix

The main tool used to optimize the DUSP1 experiment design is the FIM. The determinant

of the inverse of the FIM is equal to the determinant of the covariance matrix, |COV | [12, 13].

Models with smaller |COV | have less variance among the parameters which indicates a better

model. The inverse of the determinant of the FIM will be the way the models are compared. With

the sensitivity matrix defined in the previous section, the FIM can be defined by Equation 2.15.

I(θ)ij = NcE

{

( 1
p(xl;θ

)2SliSlj

}

. (2.15)
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Taking the expectation of the previous equation gives Equation 2.16.

I(θ)ij = Nc

N
∑

l=1

1

p(xl : θ)
SliSlj. (2.16)

This is the Fisher Information at a single time point. To get the Fisher Information of the entire

experiment the I(θ)ij at each time point, Nt, is summed together to get Equation 2.17.

I(θ)ij =
Nt
∑

k=1

Nc(tk)
N
∑

l=1

1

p(xl : tk : θ)
Sli(tk)Slj(tk). (2.17)

The |I(θ)−1
ij | of each experiment design could then be compared to each other to find the opti-

mal experiment design. In the smFISH and ICC experiments, the variables in equation 2.17 are as

follows. Nc is the number of cells measured for the experiment, tk is the measurement time points,

and Sli/Slj are the sensitivities at the corresponding time points.

The FIM is calculated through the SSIT code by the following lines:

fims = Model.computeFIM(sensSoln.sens);

FIM = Model.evaluateExperiment(fims,Model.dataSet.nCells);

The sensitivity matrix that was previously calculated is loaded into the FIM calculation code. The

FIM is then calculated again in the second line but, with the number of cells being measured in the

experiment taken into account.

The FIM is verified by comparing it to the Maximum Likelihood Estimation (MLE). This is

due to the Cramer-Rao bound (CRB) that states the inverse of the FIM provides a lower bound on

the variance of any estimator of the model parameters [12, 42]. This lower bound is described by

Equation 2.18.
√

Nc(θ̂ − θ∗)
dist
−−→ N(0, I(θ∗)−1). (2.18)

This states as the number of measurements increases, the difference between the estimated param-

eters that maximize the likelihood of the data and the true parameters set approaches a normal
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distribution with a mean of zero [42, 43]. An example of how the CRB property is used is shown

in figure 2.7 below.

Figure 2.7: Schematic representation of the Cramer-Rao Lower Bound comparing the Eigenvectors

and Eigenvalues of the FIM to the expected spread of maximum likelihood estimates. The CRB states
that the inverse of the FIM provides a lower bound estimate for the uncertainty directions and magnitudes
for the MLE. Here, λi are the eigenvalues of the FIM and vi are the corresponding eigenvectors of the FIM;
the largest and smallest eigenvalues of the FIM denote the directions in parameter space that are least and
most uncertain, respectively.

Figure 2.7 shows the The FIM’s eigenvalues, λi, and its eigenvectors, vi, estimate the magni-

tudes and directions of uncertainty in MLE parameters (CRB).

To do a comparison of the FIM to the MLE, the MLE is generated by first generating 200

parameter estimates from SSA trajectories. The covariance of these parameters is then plotted and

a 95% CI is calculated for the 200 data points. The ellipse generated from the MLE and the ellipse

generated from the FIM is then compared.
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This is done using the SSIT tool to run 200 SSA experiment simulations each having 100

individual SSA trajectories. The results of the simulations are saved into the model and the MLE

is calculated and plotted with the parameter scatter plot. This is done using the codes below.

Model.ssaOptions.nSimsPerExpt = 100;

Model.ssaOptions.Nexp = 200;

Model.fspOptions.fspTol = 1e-8; % Set FSP error tolerance.

Model.sampleDataFromFSP(FSPsoln,’EGRNT_model_sim_x2x3.csv’);

The number of cell simulations per experiment is set to 100 and the number of simulated ex-

periments is set to 200. The FSP tolerance for setting these experiments is set to 1e − 8. The

generated data is then saved into the CSV file named EGRNT_model_sim_x2x3.csv. The MLE

is generated by the following codes:

par2Fit=length(find(Model.fittingOptions.modelVarsToFit));

fitOptions = optimset(’Display’,’iter’,’MaxIter’,200);

tmpModel = Model.loadData(’EGRNT_model_sim_x2x3.csv’,...

{’x2’,[’exp’,num2str(iExp),’_s2’];...

’x3’,[’exp’,num2str(iExp),’_s3’]});

[MLE(1,:,iExp),fMLE(1,:,iExp)] = tmpModel.maximizeLikelihood(...

x0,fitOptions);

First the parameters that will be fit to the simulated data is set in the first line. The simulated data

is loaded in the third line and the parameters of the model that generated the data is fit for each

experiment denoted by the variable iExp. In this case the data being generated and loaded are

making the assumption that only species x2 and x3 are observed. Each experiment generates one

parameter set that is plotted on a scatter plot with the MLE plotted with it.
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2.12 Using the FIM to Optimize Experiment Designs

The FIM can be used as a metric to judge better experiment designs but the FIM can be used

further to optimize each experiment. This is accomplished by using the FIM to determine the

best way allocate the number of cells chosen to be measured at each time-point. This can be

done because the experiment has a individual FIM for each time point. By looking through what

time points gave the most information, these time-points can be prioritized over time-points with

relatively low amounts of information obtained. In a typical smFISH experiment the experimenter

chooses several time points ranging over a few hours and measures roughly the same number of

cells at each time point. In the data set used for fitting the models there were twelve time points

measured with 9639 cells measured over the entire experiment. By finding which time points give

the most amount of information, the experimentalist can decide to measure more cells at those

time points while ignoring time points that do not give much information. The cell allocation

optimization was done in the following lines of code in the SSIT tool:

nTotal = sum(Model.dataSet.nCells);

nCellsOpt = Model.optimizeCellCounts(fims,nTotal,’TR[1:4]’);

fimOpt = Model.evaluateExperiment(fims,nCellsOpt);

Model.plotMHResults(mhResults,{FIM,fimOpt});

The total number of cells in the experiment is loaded into the model with the FIM and a fitting

option is given to optimize which times to allocate the cells to be measured. For the EGRNT

model there are two cases for identifying the parameters. In Case 1, only the DUSP1 transcription

parameters, (kON , kOFF , kr, gr) are being fit. This is due to an assumption that the GR nuclear

translocation parameters are already known from literature or a previous experiment. Under Case

2, all of the parameters need to be identified. In the example code above, the experiment design

is being optimized for Case 1 of the EGRNT model. For Case 2 where all of the parameters are

being fit, ′[1 : 4]′ would be used instead of ′TR[1 : 4]′ on the second line of code. A plot is then

generated with the MH samples, the 95% confidence Interval of the MH samples, the un-optimized

FIM, and the optimized FIM.
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2.13 Triptolide Repression Model

An additional mechanism involved in the regulation of the DUSP1 gene is its transcription

repression in the presence of triptolide. Triptolide, an active component derived from the herb

Tripterygium wilfordii, possesses anti-inflammatory and immunosuppressive properties [44]. Act-

ing as a small-molecule inhibitor, triptolide hinders promoter DNA opening and transcription ini-

tiation, however it is not specific to DUSP1 [45]. Furthermore, triptolide has been employed for

its anti-cancer effects and in the treatment of autoimmune diseases [45].

To understand the repression mechanism of triptolide, we will alter the existing model by in-

corporating a time input for triptolide. This mechanism is shown in figure 2.8.

Figure 2.8: Extending the GR/DUSP1 models to include repression of transcription. The repression
activation of triptolide acts by preventing the transcription of mRNA. This is modeled in a) for the EGRNT
model and in b) for the SGRS model.

23



Incorporating triptolide into the DUSP1 models will create a difference in gene transcription

overtime as seen in figure 2.9 for the EGRNT model and figure 2.10 for the SGRS model.

Figure 2.9: Average expression of DUSP1 mRNA over time predicted with the triptolide repression

occurring at 55 minutes after Dex stimulation. The average DUSP1 expression in the EGRNT repression
model is shown by the blue line. The base EGRNT model without triptolide is shown in red. The green line
indicates when triptolide is administered in the model. The standard deviation is depicted by the error bars.
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Figure 2.10: Average expression of DUSP1 mRNA over time predicted with the triptolide repression

occurring at 55 minutes after Dex stimulation. The average DUSP1 expression in the SGRS repression
model is shown by the blue line. The base SGRS model without triptolide is shown in red. The green line
indicates when triptolide is administered in the model. The standard deviation is depicted by the error bars.

Before conducting the experiment, the experimental design will be optimized using the Fisher

Information Matrix (FIM). The FIM will aid in determining the optimal timing for administering

triptolide to the cells. By varying the timing of triptolide administration and calculating the FIM for

each case, we will select the model that provides the most informative time point for the triptolide

experiment. The code used to do this is shown below.

fims = ModelTrypt.computeFIM(sensSoln{iTpt}.sens);

FIM = ModelTrypt.evaluateExperiment(fims,

...ModelTrypt.dataSet.nCells);

expectedDetCov(iTpt) = det(FIM^(-1))
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The sensitivity of the model with different triptolide application time points, listed as iTpt

in the code above, is calculated then used to get the FIM. The |FIM−1| is then plotted against

the triptolide application time. The time that minimizes |FIM |−1 is then chosen as the optimal

triptolide experiment design.
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Chapter 3

Results

3.1 Existing measurements of DUSP1 transcription regulation

are quantitatively reproduced using discrete stochastic mod-

els.

The construction of the stochastic DUSP1 models relied on the SSIT code, as described in

the methods section. While the EGRNT model’s implementation was explicitly presented in the

codes, both the SGRS and EGRNT models were devised and calibrated using the same method.

Subsequently, the models were fitted to discern the optimal parameter values. Once well-defined

parameters were obtained, the models successfully replicated the mRNA distribution observed in

the experimental data. Figure 3.1 was generated by initially fitting both models using the FSP

approach.
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Figure 3.1: Fit of the EGRNT model to smFISH data at 12 time points. The EGRNT gene regulatory
model is parameterized and calibrated to accurately capture the temporal distribution of the DUSP1 mRNA
population in smFISH experimental data. Leveraging the FSP methodology, a comprehensive model fit is
generated to depict the dynamics of DUSP1 mRNA across various time points, where the mRNA species
is visually represented in blue. The fitted EGRNT model is visually showcased in red, demonstrating the
model’s aptitude in reproducing the observed experimental outcomes. the data shown here consist of 9,639
cells over 12 different time points.

The fitting procedure encompassed all temporally sampled instances within the data-set, ensur-

ing a comprehensive alignment between the model and the observed data. Additionally, to validate

the quality of the fits, the mean and variance of the fitted model were calculated and visualized

along with the mean and variance of the original data-set. The graphical representation of these

statistics is presented in Figure 3.2.
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Figure 3.2: DUSP1 mean and variance over time after Dex-stimulation. The mRNA mean (circles) and
standard deviation (bars) from the experiment data are shown in blue and compared to the mean (green line)
and standard deviation (green shading) from the model.

The SGRS model was fit in a similar fashion to get model fits as shown in figure 3.3 and figure

3.4.
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Figure 3.3: Fit of the SGRS model to smFISH data at 12 time points. The EGRNT gene regulatory
model is parameterized and calibrated to accurately capture the temporal distribution of the DUSP1 mRNA
population in smFISH experimental data. Leveraging the FSP methodology, a comprehensive model fit is
generated to depict the dynamics of DUSP1 mRNA across various time points, where the mRNA species
is visually represented in blue. The fitted EGRNT model is visually showcased in red, demonstrating the
model’s aptitude in reproducing the observed experimental outcomes. the data shown here consist of 9,639
cells over 12 different time points.
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Figure 3.4: DUSP1 mean and variance over time after Dex-stimulation. The mRNA mean (circles) and
standard deviation (bars) from the experiment data are shown in blue and compared to the mean (red line)
and standard deviation (red shading) from the model.

Both models exhibit a remarkable adherence to the experimental data, supporting the identifi-

cation of a robust parameter set achieved through the FSP fitting procedure. Notably, the standard

deviation estimates generated by both models capture the inherent variation observed in the exper-

imental data-set. Moreover, the concurrence between the two model fits further emphasizes their

congruity. To fortify the validation of the parameter set selection, an additional fitting iteration is

conducted utilizing the MH algorithm to ensure an optimal parameter set for both models.
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3.2 Upon parameter uncertainty quantification using Metropo-

lis Hastings sampling, the parameters (kON , kOFF , kr, gr) are

tightly constrained.

The parameter set is further fit to the data by performing a MH search on the posterior pa-

rameters given the distribution of the experimental data. The log-likelihood of each of the 15000

parameter sets generated by the MH search are calculated and the parameter set that maximizes the

log-likelihood function is chosen as the new parameter set and saved in the model. The parameters

(kON , kOFF , kr, gr) are fit while the parameters (knc, kcn0, kcn1, r1) remain the same. This is done

because of the main interest in understanding the gene transcription dynamics. All of the parame-

ters sets are plotted on a scatter plot and a 95% CI of the MH sample sets are shown. The plot of

the EGRNT model can be seen in figure 3.5 and the SGRS model in figure 3.6.
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Figure 3.5: Metropolis Hastings (MH) analysis of parameter uncertainty given experimental data.

The posterior parameter space of the EGRNT model was sampled using MH to generate 15,000 parameter
combinations depicted as individual dots. Colors denote the computed likelihood values from high (yellow)
to low (blue). The dashed pink line denotes the 95% CI of the parameter estimates computed from the MH
samples. Each panel shows the joint uncertainty of two parameters, and reveals that some combinations of
parameters are highly correlated. For example, log10 kOFF is linearly correlated to log10 kr, suggesting that
the burst size kr/kOFF is tightly constrained by the data, but the actual values for each of these individual
parameters is relatively uncertain.

33



Figure 3.6: Metropolis Hastings (MH) analysis of parameter uncertainty given experimental data.

The posterior parameter space of the SGRS model was sampled using MH to generate 15,000 parameter
combinations depicted as individual dots. Colors denote the computed likelihood values from high (yellow)
to low (blue). The dashed pink line denotes the 95% CI of the parameter estimates computed from the MH
samples. Each panel shows the joint uncertainty of two parameters, and reveals that some combinations of
parameters are highly correlated. For example, log10 kOFF is linearly correlated to log10 kr, suggesting that
the burst size kr/kOFF is tightly constrained by the data, but the actual values for each of these individual
parameters is relatively uncertain.

The posterior parameter space of the both models was efficiently sampled to generate the data

points depicted in the graph. The 95% CI, effectively encompassed the uncertainty associated

with the parameter estimates. Each individual dot in the plot corresponds to a specific parameter

within the set, thereby providing a comprehensive visualization of the parameter landscape. The

parameter set for each model after fitting is shown in table 3.1.
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Table 3.1: The resulting parameter set of the EGRNT and SGRS models. The expected value of each
parameter is shown in the columns with the standard deviation presented after the parameter value.

Parameters EGRNT SGRS

knc(min
−1) 25.8686 ±0.487 0.0538 ± 0.052

kcn0(min
−1) 0.0369 ± 0.0713 0.0220 ± 0.045

kcn1(min
−1) 1.2578 ± 0.0310 0.9369 ± 0.071

r1(min
−1) 0.0302 ± 0.0465 0.0538 ± 0.025

kON(min
−1) 1.1079 ± 0.025 0.0055 ± 0.0247

kOFF (min
−1) 0.1023 ± 0.0705 0.1814 ± 0.0622

kr(min
−1) 2.1591 ± 0.0447 3.5961 ± 0.0456

gr(min
−1) 0.0037 ± 0.0517 0.0049 ± 0.0475

With the successful determination and preservation of a favorable parameter set for both mod-

els, the subsequent objective entailed the generation of the FIM for each model. This involved

computation of the FIM, as described in the methods section.

3.3 The Fisher Information Matrix quantitatively predicts the

variation in Maximum Likelihood Estimates among differ-

ent simulated data set replicates.

Prior to proceeding with the utilization of the FIM for experiment design optimization, its

validity and accuracy were confirmed through the MLE. Although the MLE can potentially yield

a covariance estimate comparable to that derived from a sufficiently large number of samples, the

FIM offers a significantly more efficient means of calculation. This expedites the acquisition of
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valuable insights into the underlying model, rendering the FIM an indispensable tool for exploring

diverse experiment designs within the EGRNT model.

The inverse determinant of the FIM, which is equal to |COV |, serves as a quantifiable measure

of the information gained through each experiment design. Leveraging this metric, experiment

designs can be optimized to strategically allocate cell population resources, further enhancing the

efficiency of the overall experimental process.

Figure 3.6 showcases a comparative analysis of the variation observed in the MLE and the

FIM for a specific scenario involving the observation of nuclear GR and DUSP1 mRNA within the

EGRNT model. Additionally, figure 3.7 provides a complementary visual representation, contrast-

ing the variance observed in the MLE and FIM specifically when solely observing DUSP1 mRNA.

These comparative plots offer valuable insights into the accuracy and reliability of parameter esti-

mation under different experimental conditions.
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Figure 3.7: Comparison of spread of maximum likelihood estimates (MLE) to the predicted covari-

ance from the FIM. Each of the 200 individual blue points is generated by fitting an independent simulated
data set of 100 cells at each of 12 time points. The 95% CI of the MLE is shown in red and the EGRNT
model’s FIM when nuclear GR and DUSP1 mRNA are observed is shown in the dashed yellow line. The
covariance is shown for each pairwise combination of the parameters kON , kOFF , kr, and gr.
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Figure 3.8: Comparison of spread of maximum likelihood estimates (MLE) to the predicted covari-

ance from the FIM. Each of the 200 individual blue points is generated by fitting an independent simulated
data set of 100 cells at each of 12 time points. The 95% CI of the MLE is shown in red and the EGRNT
model’s FIM when only DUSP1 mRNA is observed is shown in the dashed yellow line. The covariance is
shown for each pairwise combination of the parameters kON , kOFF , kr, and gr.

The congruence between the FIM and the MLE serves as an indicator of the FIM’s efficacy in

accurately capturing the covariance between parameters. In our analysis, although the fitted results

obtained from the FIM closely approximated the MLE, they did not achieve an exact match. This

discrepancy highlights the presence of a potential error within the SSIT code, prompting us to

search the code for any potential issues. To validate this hypothesis, we conducted additional tests

using alternative models, such as a birth decay process and a simple two-species gene expression

model. Remarkably, in these cases, the FIM exhibited a near-perfect match with the MLE, further

emphasizing the need to investigate the underlying cause of the mismatch observed specifically

within the gene models under consideration.
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3.4 Measuring GR and DUSP1 expression simultaneously is

more informative than measuring these quantities in the

same number cells divided into separate GR and DUSP1

experiments.

Three primary experiment designs are evaluated within this study. The first design involves

measuring only the expression of DUSP1 mRNA through smFISH. The subsequent design entails

partitioning an equal number of cells for measurements using both smFISH and ICC techniques.

enabling the quantification of DUSP1 mRNA and GR. Lastly, a simultaneous measurement ap-

proach is employed, combining smFISH and ICC experiments within the same cell population to

capture the expression profiles of both DUSP1 and GR.

Moreover, the EGRNT model is further stratified into two distinct cases. In the first case, the

focus lies on identifying the gene regulation parameters, [kON , kOFF , kr, gr]. Alternatively, the sec-

ond case encompasses the identification of all model parameters, [kON , kOFF , kr, gr, kcn0, kcn1, knc, r1].

To optimize the EGRNT DUSP1 model, an additional refinement is performed by strategically

selecting informative time points. These time points are determined based on their high informa-

tion content, enabling the allocation of more cells to be measured at those specific time points.

Conversely, time points that are deemed less informative are deliberately excluded from the mea-

surement design, ensuring efficient utilization of experimental resources.

The experimental data-set employed for model fitting comprised measurements from a total

of 9639 cells obtained across various time points. Specifically, measurements were taken at 0,

10, 20, 30, 40, 50, 60, 120, 150, and 180 minutes following Dex stimulation. To streamline

the experimental process and enhance the informativeness of the measurements, an optimization

procedure was employed to determine the most informative time points for cell measurements.

Consequently, the allocation of cells for the SGRS and EGRNT DUSP1 models was optimized,
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resulting in the generation of the following figures, which provide a visual representation of the

optimized experimental design as seen in figure 3.9.

Figure 3.9: Optimal design for the number of cells to measure at each time point, assuming the

EGRNT model and that GR parameters are known in advance. The FIM analysis was used to opti-
mize the allocation of cells per time point for each experiment, resulting in a proposed number of cells to
be measured at each specific time point. These proposed allocations are indicated in the figures, providing
guidance for the experimental design. The optimal designs are compared to the original intuitive design
that contained a roughly equal number of cells allocated to each time point (shown in green). The design
focusing solely on DUSP1 measurements is depicted in cyan. The separate designs for DUSP1 and GR
measurements are shown in maroon and yellow, respectively. Finally, the simultaneous measurement design
for DUSP1 and GR is illustrated in dark blue. It’s important to note that these optimized designs are specif-
ically applied to Case 1, where the parameters related to nucleus GR translocation (knc, kcn0, kcn1, r1) are
already known.

In Case 1, the optimization results suggest that measuring cells at 3 or fewer time points would

be sufficient. This reduction in the number of measurement time points from 12 to 3 significantly

improves the workload for the experimenter. Notably, in this optimization, the number of cells

allocated to the separate GR experiment is zero. This decision is based on the assumption that
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the parameters related to GR translocation are already known from previous experiments or exist-

ing literature. Although the GR experiment could potentially provide information regarding GR

translocation and the gene activation parameter kON , the optimization reveals that utilizing all the

cells for the DUSP1 experiment design is preferable in this scenario.

For Case 2, where none of the parameters are known, the optimization results are presented

in Figure 3.10 below. This figure showcases the optimized experimental design for simultane-

ous measurement of DUSP1 and GR, considering the comprehensive identification of all model

parameters.
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Figure 3.10: Optimal design for the number of cells to measure at each time point, assuming the

EGRNT model and that GR parameters are not known in advance. The optimization process includes
the allocation of an optimal number of cells for each experiment, resulting in a proposed number of cells to
be measured at each specific time point. These proposed allocations are indicated in the figures, providing
guidance for the experimental design. Additionally, a general design with a roughly equal number of cells
allocated to each time point is represented by the color green. The design focusing solely on DUSP1
measurements is depicted in cyan. The separate designs for DUSP1 and GR measurements are shown
in maroon and yellow, respectively. Finally, the simultaneous measurement design for DUSP1 and GR is
illustrated in dark blue. It is important to note that this optimization pertains to Case 2, where none of the
parameters are known. The figures serve as a comprehensive guide for the experimental design, facilitating
informed decision-making and efficient resource allocation.

The optimization process for the measurement times revealed that the time points required

to identify the model parameters vary among the different experimental designs. However, the

optimization results indicate that only 5 time points or less depending on the experiment design

are necessary to successfully identify the parameters in Case 2.

In the separate DUSP1/GR experiment design, the allocation of cells is divided between the

ICC and smFISH experiments. A significant proportion of cells, 62%, is allocated to the smFISH
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experiment, while the remaining 38% is allocated to the ICC experiment. This allocation strategy

takes into consideration the fact that the parameters related to GR nuclear translocation are not

known, and DUSP1 mRNA measurements alone do not provide information about nuclear GR

translocation dynamics. This approach reduces the time required to perform single-cell experi-

ments while simultaneously increasing the amount of information obtained from each experiment.

To compare the efficacy of each experimental design, the inverse determinant of the |FIM−1|,

which corresponds to the determinant of covariance matrix, |COV |, is plotted in Figure 3.11.

This plot serves as a valuable tool for evaluating the information content and performance of each

experimental design.

Figure 3.11: Expected uncertainty volume for different experiment types and using the EGRNT model

and assuming that all GR parameters are known in advance. The expected determinant of the MLE
covariance matrix, |Σ|, as predicted by the FIM for each experiment design for Case 1 (where the GR
signalling parameters are known). The uncertainty for the original experiment design (12 time points with
roughly equal numbers of cells per time point) is shown in blue, and the predicted uncertainty for the simpler
optimized experiments (see Figure 3.9) are shown in red.

In Case 1, the optimal experimental design suggests that the simultaneous DUSP1/GR mea-

surement provides the most valuable information. The separate DUSP1/GR experiment design,
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despite allocating only half of the cell population for GR translocation measurements, yields a

similar amount of information as solely measuring DUSP1. This outcome can be attributed to

the fact that the GR translocation parameters are already known. In the optimized experiment

design, none of the cells are allocated to GR measurements, while in the unoptimized design, ap-

proximately half of the cells are assigned to GR measurements at each time point. This finding

implies that measuring GR does not provide additional information to the model unless the GR

measurements are conducted in the same cells where DUSP1 mRNA is measured. To visually rep-

resent the comparison between different experiment designs, the same plot, illustrating the inverse

determinant of the FIM, is generated for Case 2, and is presented in figure 3.12.

Figure 3.12: Expected uncertainty volume for different experiment types and using the EGRNT model

and assuming that all GR parameters are not known in advance. The determinant of the MLE covariance
matrix, |Σ|, as predicted by the FIM for each experiment design for Case 2 (where none of the parameters
are known). The uncertainty for the original experiment design (12 time points with roughly equal numbers
of cells per time point) is shown in blue, and the predicted uncertainty for the simpler optimized experiments
(see Figure 3.10) are shown in red.

In both Case 1 and Case 2, the experiment design that yields the most informative results

is the simultaneous DUSP1/GR measurement. If this design is feasible for the experimenter to
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perform, it is recommended as the preferred choice. However, if conducting the simultaneous

measurement is not practical, the experimenter may choose to perform the separate DUSP1 and

GR experiments, particularly when the GR translocation parameters are unknown. In situations

where the GR translocation parameters are already known, utilizing all the cells in a smFISH ex-

periment solely for DUSP1 measurement provides an equivalent amount of information compared

to conducting separate experiments.

At this stage, the experimenter can consider multiple factors, such as the optimal experiment

design, cost implications, and the level of experimental complexity, to make an informed decision

regarding the chosen experiment. It is important to strike a balance between maximizing informa-

tion gain and considering practical constraints to ensure the experimental design aligns with the

specific requirements and resources available to the experimenter.

The optimization process for the SGRS model follows a similar approach. The optimized cell

allocation for the SGRS model experiment design is depicted in figure 3.13. This figure provides

a visual representation of the proposed number of cells to be measured at each specific time point,

taking into account the information content and efficiency of the experiment.
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Figure 3.13: Optimal design for DUSP1 mRNA FISH experiments using the SGRS model and assum-

ing that all GR parameters are known in advance. The optimization process includes the allocation of
an optimal number of cells for each experiment, resulting in a proposed number of cells to be measured
at each specific time point. These proposed allocations are indicated in the figures, providing guidance for
the experimental design. Additionally, a general design with a roughly equal number of cells allocated to
each time point is represented by the color blue. The optimized cell allocation design is illustrated in red.
The figures serve as a comprehensive guide for the experimental design by suggesting efficient resource
allocation in the SGRS model.

To evaluate the performance and information content of the experimental designs, Figure 3.14

displays the Fisher Information Matrix (FIM) for both the general experiment design and the op-

timized SGRS model design. By comparing these plots, researchers can assess the quality of the

information obtained and the effectiveness of the optimized experimental design.
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Figure 3.14: Expected uncertainty volume using the SGRS model and assuming that all GR param-

eters are not known in advance. The determinant of the MLE covariance matrix, |Σ|, as predicted by the
FIM for the SGRS model experiment design. The uncertainty for the original experiment design (12 time
points with roughly equal numbers of cells per time point) is shown in blue, and the predicted uncertainty
for the simpler optimized experiments (see Figure 3.13) are shown in red.

The optimization of the experimental design for cell measurement resulted in a slight improve-

ment in the amount of information gained, approximately 1.69 times higher compared to the initial

design. This optimization also led to a reduction in the required number of measurement times,

resulting in a more efficient experiment with a reduced workload.

Another approach to enhance parameter identification capabilities is by increasing the number

of experimental replicates. To illustrate this effect, the covariance matrix |COV | for each exper-

iment design is plotted against the number of cells measured. The impact of the number of cells

measured on the |COV | can be quantified using Equation 3.1, which characterizes the relationship

between the FIM and number of cells measured.

By examining the plots and |COV |, researchers can gain insights into the influence of sample

size on the reliability of parameter estimation. Increasing the number of cells measured through

replicates offers a potential avenue for refining parameter identification and improving the overall
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robustness of the experimental results. The effect of increasing the number of cells measured is

shown by Equation 3.1

|COV | = det((n/Ntotal) ∗ FIM)−1). (3.1)

The variable n is the proposed number of cells being measured and variable Ntotal is the actual

number of cells that were measured in the original experiment performed. The comparison of

increasing the number of cell measurements on each experiment to get a desired amount of infor-

mation is shown in figure 3.15 under Case 1 and figure 3.16 under Case 2.

Figure 3.15: Comparison of the required number of cells to achieve equivalent information about

the EGRNT model when using different experiment types and assuming that GR parameters are

known in advance. The expected uncertainty volume |FIM−1| versus total number of cells is shown for
each experiment design (assuming that all GR parameters are known in advance) is depicted using solid
lines for the original experiment design (12 time points) and dashed lines for the optimized experiment
design (3 or 4 times points)). The different experiment designs are visually differentiated as follows: the
simultaneous DUSP1/GR design is shown in pink, the separate DUSP1/GR design is shown in green, and
the DUSP1 experiment design is displayed in blue. To provide a reference for desired information content,
a hypothetical target value of information is illustrated by the black line. This target value represents the
desired level of precision and knowledge for parameter estimation.
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Figure 3.16: Comparison of the required number of cells to achieve equivalent information about

the EGRNT model when using different experiment types and assuming that GR parameters are not

known in advance. The FIM (Fisher Information Matrix) for each experiment design is depicted using solid
lines, while the optimized FIM is represented by dashed lines. The different experiment designs are visually
differentiated as follows: the simultaneous DUSP1/GR design is shown in pink, the separate DUSP1/GR
design is shown in green, and the DUSP1 experiment design is displayed in blue. To provide a reference for
desired information content, a hypothetical target value of information is illustrated by the black line. This
target value represents the desired level of precision and knowledge for parameter estimation.

The analysis highlights the feasibility of increasing the number of cell measurements as an al-

ternative to conducting more complex experiments to achieve a comparable amount of information.

In Case 1, the DUSP1 measurement experiment requires approximately 229 times more cell mea-

surements compared to the simultaneous measurement design. Similarly, the separate DUSP1/GR

design necessitates around 250 times as many cells as the simultaneous measurement design to

attain the desired information threshold.

Interestingly, the separate GR/DUSP1 measurement design may require more cells than the

DUSP1 experiment due to the unoptimized design allocating half of the cells to measure GR,
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even though GR measurements do not contribute significantly to the overall information. This

suggests that allocating resources to measure GR in this particular scenario may not be as efficient

as focusing solely on DUSP1 measurements.

In Case 2, the DUSP1 measurement experiment requires approximately 141 times as many

cell measurements compared to the simultaneous measurement design. Similarly, the separate

DUSP1/GR design necessitates roughly 13 times as many cells as the simultaneous measurement

design to reach the desired information threshold.

These findings highlight the potential advantage of optimizing the allocation of cell measure-

ments to maximize information content. By strategically designing experiments and efficiently

allocating resources, researchers can achieve robust parameter estimation with a reduced experi-

mental workload.

3.5 FIM analysis suggests the an optimal triptolide adminis-

tration time for the EGRNT and SGRS models to identify

a DUSP1 repression model.

In the previous studies conducted on the DUSP1 gene, the focus was primarily on understand-

ing a mechanism that activate DUSP1 gene expression. However, in this paper, our objective shifts

towards investigating a gene repression mechanism that acts upon DUSP1. Specifically, we explore

the potential of triptolide as a repressive agent. Prior to conducting the experiments, we employ

the FIM to determine the optimal timing for triptolide application following Dex stimulation. By

calculating the FIM for various proposed triptolide application times, we can evaluate and identify

the most effective experiment design. The resulting plots below depict the FIM analysis conducted

for both the SGRS and EGRNT models.
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Figure 3.17: Prediction of information resulting from different transcription inhibition experiments,

assuming the SGRS model. The predicted MLE uncertainty volume |Σ| = |FIM−1| for the the SGRS
DUSP1 model is plotted as a function of a varying time for triptolide application (blue). Vertical dashed
lines denote the measurement times at which smFISH measurements of the DUSP1 mRNA would be taken.
The optimally informative experiment would apply triptolide at approximately t = 60 min.

For the SGRS DUSP1 model, the analysis reveals that the most optimal time to apply triptolide,

in order to minimize |FIM−1|, is approximately 55 minutes after Dex stimulation. At this specific

time point, in experimental settings, the covariance between the model parameters is minimized,

leading to an increased amount of valuable information for accurately identifying a model incor-

porating triptolide repression dynamics. The same analysis was also performed for the EGRNT

model to create the corresponding, figure 3.18.
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Figure 3.18: Prediction of information resulting from different transcription inhibition experiments,

assuming the EGRNT model. The resulting |FIM−1| of the EGRNT model was plotted with varying
triptolide application times shown in blue. The actual experiment measurement times for a previous DUSP1
experiment are shown in the dotted black line.

The analysis of the EGRNT model reveals that the |FIM−1| exhibits a higher degree of noise

compared to the SGRS model. Notably, the noise appears to be concentrated around the time points

where the original experimental measurements were taken. Despite this noise, the overall trend of

the graph for the EGRNT model aligns with that of the SGRS model, suggesting that the optimal

triptolide application time may likely be around a similar point. However, due to the presence of

noise in the data, determining the precise optimal triptolide application time becomes challenging.

Further analysis and careful consideration are required to ascertain the actual optimal triptolide

application timing in the EGRNT model.
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3.6 Bayesian Information Criterion Suggest the SGRS is a Bet-

ter Model of DUSP1 Regulation

Both the EGRNT model and the SGRS model exhibited a good fit to the experimental data,

as demonstrated in Figure 3.2 for the EGRNT model and Figure 3.4 for the SGRS model. The

similarity observed in these fits prompted a comparative analysis of the models using the Bayesian

Information Criterion (BIC), the log-likelihood when only DUSP1 mRNA is observed, and the

computation time for the log-likelihood. To assess the quality of the parameter fit, the model with

a higher log-likelihood is considered to provide a better fit. On the other hand, a lower BIC value

generally indicates a superior model fit [46]. The BIC is calculated using Equation 3.2 [47].

BIC = k ∗ ln(n)− 2ln(L̂). (3.2)

By evaluating these metrics, we can gain insights into the relative performance of the models and

make informed comparisons to determine the most suitable model for the given experimental data.

These evaluation criterion are outlined in table 3.2.

Table 3.2: The Log-likelihood, BIC, and computation time of the log-likelihood are calculated for the

EGRNT and SGRS models and shown below.

Model Log-likelihood Bayesian Information Criterion Computation Time (seconds

EGRNT -4.503e4 90133 2.3889

SGRS -4.4909e4 89891 0.2794

The comparison of the log-likelihood, BIC, and computation time between the EGRNT and

SGRS models suggests that both models provide a good fit to the data. The log-likelihoods of

the models are similar, indicating that both models capture the observed data well. However, the

SGRS model shows slightly better fits based on the log-likelihood. In terms of computation time,
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the SGRS model is faster than the EGRNT model for evaluating the log-likelihood. This indicates

that the SGRS model is more computationally efficient.

The SGRS model has the smaller BIC indicating a better model fit for DUSP1 regulation. Also,

the difference in BIC values was much larger than 10 inferring strong evidence of the SGRS model

being better. Since both models have the same number of cells for fitting the data, n and the same

number of parameters, k, the BIC value is only dependant on the likelihood values. Further more,

the difference in the log-likelihood values of the models is less than 1%. Given that the BIC values

rely solely on the log-likelihood, further investigation is needed to comprehensively evaluate the

better model fit. Additional analysis or comparison metrics may be necessary to gain a more

thorough understanding of the model fits and to make a more definitive conclusion regarding the

superiority of one model over the other.

54



Chapter 4

Discussion

The design of single-cell microscopy experiments is a complicated task. However, because

these experiments are often very expensive and there are many different experiments that one

could choose to conduct. It is important to consider why these experiments are to be conducted

and what is hoped to be achieved upon their analysis. In many research settings, quantitative ex-

perimental data is necessary in order to identify and constrain models that can then describe and

predict how these biological systems will respond to novel stresses or environmental changes. The

aim of this paper was to introduce a method to evaluate experiment designs through the use of the

FIM to gain insight on how effective different experiments might be to achieve such goals and to

determine how best to design new experiments. To do this, we proposed two models that capture

the distribution of the real DUSP1 mRNA population over time after Dex stimulation. The first

model, EGRNT, is a 3 species model that tries to capture the nuclear translocation dynamics of

GR and the mRNA transcription dynamics. The second model, SGRS, is a simplification of the

EGRNT model that includes the GR translocation dynamics as a time varying signal and reduces

the species in the model to the gene state and the mRNA produced. These models were fit to real

data to create models that accurately reproduce the DUSP1 transcription dynamics. The EGRNT

and SGRS models were compared to one another using the log-likelihood, BIC, and computation

time to evaluate which is the best model of DUSP1 transcription dynamics. The SGRS model

proved to have a slightly larger log-likelihood and was substantially more computationally effi-

cient. However, because the log-likelihood difference was less than 1% and both models have the

same number of parameters, further validation would be needed to confirm the SGRS model as the

better model to describe DUSP1 gene regulation, and we performed all remaining analyses using

both models.

With the models defined, the FSP method [31] was used to generate the FSP based FIM [19].

According to the Cramer Rao lower bound (CRLB), the inverse of the FIM provides a lower bound
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on the expected co-variance of maximum likelihood estimates collected from independent data

generated by the process. As such, we verified the CRLB for the FSP-FIM for our models by

generating many simulated data sets from the models and then finding MLE parameter sets, as

demonstrated previously [12, 19, 48]. We found that the FIM matched closely to the statistics of

the MLE as shown in figure 3.7 and figure 3.8, although we observed that in some cases the FIM

predicted a larger variance than that observed in the MLE. Although this may suggest that there is

an issue in the SSIT code, which is currently being investigated, this observation is likely due to

the possibility that MLE fits had not been given sufficient time to fully converge.

Having demonstrated close agreement of the FIM and the spread of the MLE for simulated

data, we then used the FSP-FIM approach to explore the optimization of the experiment design.

The first such optimization was performed to find the optimal time points to measure cells. This

optimization reduced the expected covariance of the parameters (i.e., it would make the parame-

ters identifiable to greater precision) for every model and experiment design under consideration.

Moreover, the selected experiments were all much simpler and required fewer time points than the

original, intuitive experiment. This analysis showed that model-driven experiment design could

lead to more informative experiments, that are actually easier and less expensive to perform than

those that would be designed using intuition alone.

The second optimization analysis compared the expected uncertainty volume for 3 different

experiment designs that use different combinations of smFISH to measure the DUSP1 mRNA

expression or ICC to measure nuclear GR over time. Through this method, as expected, the most

informative experiment was revealed to be a simultaneous measurement of GR and DUSP1 mRNA

in the same cells. The next informative experiment was splitting the cells into two separate ICC

and smFISH experiment, although this approach is only necessary in case the nuclear GR translo-

cation parameters are not known. Beyond confirming the somewhat obvious fact that the most

complicated experiment would reveal the most information about the parameters, the FSP-FIM

analysis provided a rigorous means to quantify the relative value of these experiments, and how

many measurements would be needed to achieve the same amount of information using each of
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these approaches. For example, in the situation where a complex experiment requiring measure-

ment of both DUSP1 and GR at the same time in the same cells could not be accomplished or

was prohibitively expensive, we found that the same information could be obtained using 13 times

as many cells if the two species could be measured separately in different cells or 141 times as

many cells if one only measured the DUSP1 mRNA (see Figure 3.16). Having such insight before

choosing an experiment could provide valuable guidance on what experiments are absolutely nec-

essary, and which could be replaced using a greater number of replicas of simpler or less expensive

approaches.

The last optimization we performed was to use the FIM to infer the best time to apply a second

drug (i.e., triptolide) to the process so that we could learn even more about the parameters of

the DUSP1 gene. The FIM showed that the best time to apply triptolide was at 55 minutes after

Dex stimulation in the SGRS model as shown in figure 2.8. According to the FIM analysis for the

SGRS model (figure 3.17), this application would reduce the uncertainty volume by a factor of 294.

Assuming that all eight free parameters (including those describing the GR dynamics) needed to be

identified, this increase in information per measurement would effectively reduce the total number

of cells needed to achieve the same information by a factor (2941/8= 2.04). The EGRNT model

showed a similar trend as the SGRS for the optimal triptolide application time but the analysis was

noisier which makes it hard to confirm the best application time.

In conclusion, modern single-cell microscopy technology now allows for the measurement of

various different fluorescent probes in single cell experiments, and these techniques are rapidly

evolving. Over time, this progress will certainly increase the types of model and experiments that

can be combined to describe and predict biological processes. However, as these experiment be-

come increasingly complex and expensive to do, it is important to develop new tools to choose

how best to apply these experimental efforts. To aid in this process, the methods introduced in

this study demonstrate the capabilities of the FIM to quantify the value for different designs for

single-cell experiments. With the FIM, one may seek to optimize established designs and change

conditions (e.g., time points or numbers of cells) to increase the identifiability of the model param-
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eters from experimental data. However, in other cases, the FIM analysis can also provide advance

knowledge that such identification may be inefficient or impossible using available experimental

approaches (i.e., when the FIM has low rank or very small eigenvalues). Armed with this capabil-

ity, researchers can hypothesize different potential future experiments and ask what new insights

or benefits could reasonably be expected, or if the same amount of insight could be achieved using

additional replicas of a simpler, less exact experimental approach. By leveraging the power of the

FIM to assess the potential of different experimental designs, researchers can prioritize more in-

formative experiments, avoid unnecessarily complex or expensive experiments, and expedite their

understanding of gene expression and the underlying mechanisms of biological control.
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Appendix A

Cell Visualization and Experiment Verification

The smFISH data utilized in this study was acquired by my colleague, Eric Ron. This data-set

played a crucial role in identifying the underlying models presented in this paper. During the data

acquisition process, it was imperative to address potential limitations arising from the microscope.

To ensure the integrity of the subsequent image processing pipeline, I created a visualization code

developed in Python. This code facilitated the examination of cells alongside the corresponding

detected spots extracted using the BIG-FISH image processing toolkit. The visualization function

served as a quality control step, enabling the identification of any potential errors that may have

arisen during the image processing phase. This script was implemented after the image processing

stage, which involved the combined utilization of BIG-FISH [26] and Cellpose [27]. The integra-

tion of these tools allowed for the automated processing of smFISH images, further enhancing the

reliability and efficiency of the analysis workflow.

Following the completion of the visualization process, the resulting data is saved as a CSV file.

This file encompasses crucial details pertaining to spot detection, cell labeling, and cell locations.

To ensure ease of use and flexibility, the visualization script is developed as a function that accepts

parameters such as the experiment name and cell ID. By specifying these inputs, researchers gain

access to the original image, annotated with the detected spots within the requested cell. In certain

experiments, the introduction of multiple smFISH probes enables the tracking of multiple targets

within the same population of cells, facilitating comprehensive analyses and insights. To accom-

modate this, the function offers the ability to apply various filtering options to refine the displayed

information. Notably, the visualization includes two distinct types of spots.

The Python function only requires the cell ID and experiment name as inputs, but it also has

other options to customize the visualization of the requested cell. The variable "csv_cell_ID"

represents the associated cell ID, while the variable "string_name" corresponds to the experiment

name of the saved CSV file. The width and height of the selected area to view the cell can be manu-
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ally adjusted from their default values using the variables "x_width" and "y_height." Additionally,

the z-stack of the image can be chosen for viewing by setting the "z_slice" variable. The spots

displayed in the image are only those detected in the selected z-stack, but an option to view spots

detected in nearby z-stacks is provided through the "delta_z" variable. If the spot ID is known, the

"spot_show" variable allows the user to view specific spots in a given z-stack. The "filter" variable

represents the filter applied to the images, while the "spot_filter" variable denotes the filter applied

to the individual spot crops. An example of the input for the function is provided below. When

no value is defined for the additional variables in the function or a value of -1 is given, the default

value is used.

Figure A.1: Command script to run the cell visualization. An example of how to run the function with
the all the function variables included.

The function allows for precise customization of the visualization parameters. The variable

"string_name" serves to specify the experiment name, ensuring the retrieval of the corresponding

data. By setting the x width and y width as 150, the visualization focuses on a rectangular region

centered around the cell’s coordinates. To visualize the central z plane, a value of -1 is assigned

to the z slice parameter. By providing the value [-1] for the "spot_to_show" variable, all spots

detected in the selected z plane are displayed. The absence of any filtering criteria on the cell

image is indicated by assigning the ’None’ value to the "filter" variable. To restrict the display to

spots solely from the selected z plane, the "delta_z" variable is set to zero, thereby excluding spots

from other z planes. Similarly, by setting the "spot_filter" variable to zero, no spot crop filters are

applied, allowing the visualization of all detected spots within the specified region.

The first output provided is the original image, with each image channel represented by a

different color in a single image. An image showing the segmented area is presented next to the
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original image, allowing the user to match the cell ID to the cell being visualized. An example

is given below. Information about the image, such as the image ID, the cell, and the shape of the

original image, is shown in the image below.

Figure A.2: Cell visualization of a cell in image 3 of the data set. The original cell microscope image,
shown on the right, is plotted next to the image of the cell mask corresponding to the selected cell.

In this specific example, the third cell image in the data-set is selected for visualization. The

original image is represented as a tensor with dimensions (21, 924, 624, 3). This implies that there

are 22 z-plane images, each with a resolution of 925 by 625 pixels, and four channels correspond-

ing to different color channels. The true number of z-planes, resolution, and number of channels

is off by 1 due to python’s indexing starting at 0.

The next outputs are individual crops of the cell with each image channel shown in an individual

plot. The location of spots are outlined with squares and triangles to indicate their location within

the cell. The different shapes indicates multiple types of spots in the image detection. The function

allows for up to two spot detection channels. An example of this output is shown below.
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Figure A.3: Cell channel visualization with applied filters to view spots. The channels of the smFISH
image with spots detected in the channel are shown in individual cell crops for each channel. The detected
spot locations are shown in blue triangles for the first spot detection and green squares for the second spot
detection.

The next output is a cell crop of the original image with the spot locations shown by triangles

and squares. An example of this output is shown below.
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Figure A.4: Original image cropped to the cell of interest with marker showing spot locations. The
original image of the smFISH image are shown in an individual cell crop. The detected spot locations are
shown in orange triangles for the first channel spot detection and green squares for the second channel spot
detection.

The final output of the function includes individual spot crops of the detected spots. Each

spot crop shows the specific region where the spot was detected in each channel, and the spot ID

is provided for each detected spot. This output is useful for identifying and verifying the spots

detected by the BIG-FISH image processing pipeline. It allows the experimenter to visually assess

whether the detected spots correspond to actual biological signals. An example of the output is

shown in the figure below.
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Figure A.5: Individual spot crops of the detected spots are shown in each channel. The spot IDs are
given by the columns and the image channels are presented in the rows.
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Appendix B

Stochastic Systems Identification Toolkit tutorial

The main function of the SSIT is to set up discrete models, run Stochastic Simulation Algorithm

(SSA) trajectories, perform FSP calculations, conduct sensitivity analysis, load and fit data, and

calculate Fisher Information. Tutorials and examples of each function are provided below.

B.1 Model Set Up

The first function of the SSIT is to set up a discrete stochastic model. This involves initializing

the SSIT, defining the species in the model, specifying the initial conditions, defining the parame-

ters, setting up the stoichiometry matrix, and establishing the propensity functions. The example

demonstrated in this section will be based on the EGRNT model discussed in the paper. The model

is initialized by the following code:

Model = SSIT;

Here I call the the SSIT code into the variable "Model" to make changes to the model without

changing any parameters in the SSIT code itself. Any changes from this point will be made to

above defined variable "Model." The species are defined in the line:

Model.species = {’x1’;’x2’;’x3’};

In this case, I define three species in the model. Adding another species would be done by adding

x4 or others species separated by a comma within the curly brackets. The initial conditions are

defined using the line:

Model.initialCondition = [0;0;0];

The number of values in this vector must be equal to the number of species. In this species, I set

the initial species count for all species to 0. The propensity function is defined in the following

line.
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Model.propensityFunctions = {’(kcn0+kcn1*IDex)’;’knc*x1’;...

’kon*x1*(2-x2)’;’koff*x2’;’kr*x2’;’gr*x3’};

All of the variables must be defined before moving on to any of the other features. This is done in

the following line below.

Model.parameters = ({’koff’,0.14;’kon’,0.01;’kr’,1;’gr’,0.01;...

’kcn0’,0.01;’kcn1’,0.1;’knc’,1;’r1’,0.01});

Each parameter is written as a string for the variable name. Immediately after defining the variable

name, the value of the variable needs to be given by separating the string with a comma. The

initial variables can be a guess that can be updated in the fitting section later. Any variable that

starts with an "i" character will be treated as an time varying input. Input variables are defined in

the following line below.

Model.inputExpressions = {’IDex’,’(t>0)*exp(-r1*t)’};

Lastly, the stochiometry matrix is set up using the following code.

Model.stoichiometry = [ 1,-1, 0, 0, 0, 0;...

0, 0, 1,-1, 0, 0;...

0, 0, 0, 0, 1,-1];

It is important that the number of rows matches the number of species and the number of columns

matches the number of reactions.

B.2 Running SSA trajectories

Running SSA trajectories can be done in a few lines. First, set the solution scheme to the SSA

method by using the line:

Model.solutionScheme = ’SSA’;

The number of simulations is controlled by using the following codes.
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Model.ssaOptions.nSimsPerExpt = 200;

In this case I am running 200 trajectories. These trajectory can be done and saved in a CSV file

using the code below.

Model.solve([],’Example.csv’);

B.3 Finite State Projection Calculation

The FSP section of he codes allow the user to calculate the FSP which is a truncation of the

CME. The FSP solution is used later on in the calculation of the sensitivity matrix so this must be

run first. An example of running the FSP calculation for the EGRNT model is shown below.

Model.solutionScheme = ’FSP’;

Model.fspOptions.fspTol = 1e-4;

Model.fspOptions.bounds=[];

[fspSoln,Model.fspOptions.bounds] = Model.solve;

The solution scheme is set to the FSP method, with an error tolerance of 1e− 4, and no bounds

are specified for the FSP. Bounds can be set if the user has knowledge of the potential bounds of

the FSP solution. Setting appropriate bounds can expedite the calculation time. The final line of

code executes the FSP calculation using the defined FSP options from the previous line.

B.4 Sensitivity calculation and Analysis

This section calculates the sensitivity matrix of the model and enables the user to observe the

sensitivity of parameters on the model fit. This is achieved using the following code:

% Set solutions scheme to FSP Sensitivity

Model.solutionScheme = ’fspSens’;

% Solve the sensitivity problem

[sensSoln] = Model.solve(FSPsoln.stateSpace);
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The solution scheme is set to the FSP sensitivity method and the last line computes the sensitivity

matrix. To view the sensitivity plots, the following code is used.

% Plot marginal sensitivities

Model.makePlot(sensSoln,’marginals’)

This example code will create the sensitivity plots. For each species in the model, the marginal

distributions at the desired time point will be shown. The joint distribution of the selected species

will also be plotted. An example of this plot for the EGRNT model is shown in the Figure B.1.

Figure B.1: Sensitivity analysis for the Chemical Master Equation The sensitivity of each parameter’s
effect on the distribution of DUSP1 mRNA is shown as calculated using the FSP approach in the SSIT. The
x axis shows the count of mRNA, (species ’x3’). The y-axis shows the sensitivity of the distribution at the
specific time (t=180 min) to the parameter listed in the subplot title. For example, an increase in the mRNA
degradation parameter ’gr’ leads to more probability mass (positive sensitivity) at low mRNA levels and less
probability mass (negative sensitivity) at higher values of mRNA.
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B.5 Fisher Information Computation

In this section the fisher information matrix will be computed from the sensitivity matrix. This

is done with the following code:

fimResults = Model.computeFIM(sensSoln.sens);

[FIM,sFIMcov,fimMetrics] = Model.evaluateExperiment(fimResults,...

cellCounts);

The results of the FIM at each individual time point is calculated in the variable "fimResults." The

total FIM is calculated with the amount of cells at each measurement point taken into account and

is saved as the variable "FIM."

B.6 Data loading and fitting

The last section of the SSIT is the data loading and fitting section. This sections loads data

from a CSV file. The columns of the file are the species and experiment replicas. The rows of

the CSV file are the measurement time points of the experiment with its associated species count.

Example code of loading the data into the model is shown by the code below.

Model = Model.loadData(’../Example.csv’,{’x1’,...

’Example_Column_Name’});

The column name is required for the SSIT to associate that model with the species being fit. In

the example above the species name would be "Example_Column_Name." Once the data is loaded

into the model, the parameters can be fit to using the FSP method or Metropolis Hastings method.

The FSP fit is done in the following code:

Model.fspOptions.fspTol = inf;

Model.fittingOptions.modelVarsToFit = 1:8;

fitOptions = optimset(’Display’,’iter’,’MaxIter’,100);
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Model.parameters(1:8,2) = num2cell(Model.maximizeLikelihood(...

[],fitOptions));

The tolerance for the FSP is set to infinite. The model parameters that will be fit is given as 1

through 8. The number of attempts for fitting is set to a maximum of 100 iterations. The last

line calculates the likelihood of each fit attempt and picks the parameter set that maximizes the

likelihood. The two lines of codes below will allow the user to visualize the FSP fit and the the

data.

Model.solutionScheme = ’FSP’;

Model.makeFitPlot;

This will create plots for the distribution of the data and fit at each individual time-point as shown

in figure B.2. A plot showing the model fit with the mean and standard deviation will be create as

presented in figure B.3. An example of the figures generated from the EGRNT model is given in

the figures below.
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Figure B.2: Fit of the EGRNT model to smFISH data at 12 time points. The EGRNT gene regulatory
model is parameterized and calibrated to accurately capture the temporal distribution of the DUSP1 mRNA
population in smFISH experimental data. Leveraging the FSP methodology, a comprehensive model fit is
generated to depict the dynamics of DUSP1 mRNA across various time points, where the mRNA species
is visually represented in blue. The fitted EGRNT model is visually showcased in red, demonstrating the
model’s aptitude in reproducing the observed experimental outcomes. the data shown here consist of 9,639
cells over 12 different time points.
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Figure B.3: DUSP1 mean and variance over time after Dex-stimulation. The mRNA mean (circles) and
standard deviation (bars) from the experiment data are shown in blue and compared to the mean (green line)
and standard deviation (green shading) from the model.

Running a fit with Metropolis Hastings is done in the following lines example code given

below.

Model.fittingOptions.modelVarsToFit = 1:4;

MHOptions = struct(’numberOfSamples’,15000,’burnin’,...

100,’thin’,1,...

’useFIMforMetHast’,true,’suppressFSPExpansion’,true);

[bestParsFound,~,mhResults] = Model.maximizeLikelihood(...

[Model.parameters{Model.fittingOptions.modelVarsToFit,2}]’,...

MHOptions,’MetropolisHastings’);
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Model.parameters(Model.fittingOptions.modelVarsToFit,2) =...

num2cell(bestParsFound);

in this example, the model is being fit to parameters 1 through 4, the number of samples being run

is 15000, the FIM is used in the calculation of the Metropolis Hastings samples and, the FSP is

prevented from expanding in the calculation of the FIM. After generating all the samples, the best

parameter set that maximizes the likelihood function is saved to the model. The below codes are

used to create a plot of the MH samples with a 95% CI around the points.

Model.plotMHResults(mhResults);

This code produces figure B.4.
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Figure B.4: Metropolis Hastings (MH) analysis of parameter uncertainty given experimental data.

The posterior parameter space of the EGRNT model was sampled using MH to generate 15,000 parameter
combinations depicted as individual dots. Colors denote the computed likelihood values from high (yellow)
to low (blue). The dashed pink line denotes the 95% CI of the parameter estimates computed from the MH
samples. Each panel shows the joint uncertainty of two parameters, and reveals that some combinations of
parameters are highly correlated. For example, log10 kOFF is linearly correlated to log10 kr, suggesting that
the burst size kr/kOFF is tightly constrained by the data, but the actual values for each of these individual
parameters is relatively uncertain.
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