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ABSTRACT
A FLOOD FREQUENCY DERIVATION TECHNIQUE
BASED ON KINEMATIC WAVE APPROACH

The present study deals with the derivation of a methodology to
obtain a flood frequency distribution, for small ungaged watersheds,
where the overland flow phase is considered to be an important timing
component. In the hydrological literature, this technique comprises
three components: a rainfall infiltration model, an effective
rainfall-runoff model and the probabilistic component.

The study begins with a review of the Geomorphological
Instantaneous Unit Hydrograph (GIUH), in order to establish icts
-applicability to the aforementioned type of watersheds.

Some effective rainfall-runoff models currently used in the
practice of hydrology, like the GIUH and models based on Kinematic
Wave approach, lack the required features or do not consider all
possible responses within the watershed. Therefore, a new model is
developed and calibrated, based on Kinematic Wave approach, for a
first order stream with two symmetrical lateral planes. The model is
conformed by analytical and approximate solutions, the latter improved
via regression analysis.

The formulated model is used along with a statistical
distribution for the effective rainfall intensity and effective
duration, in order to derive the flood frequency distribution
technique through the probabilistic component. The structure of the

equations considered in the different components imposes a numerical
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algorithm to compute the flood frequency distribution curve for a
given watershed.

The derived technique is proved for hypothetical and real
watershed configurations, showing its capability to forecast flood
frequency curves for ungaged watersheds and to account for the
influence of parameters on the physics of flood formation. Actual
watersheds are conceived as first order streams with two symmetrical

planes.

Luis Guillermo Cadavid
Department of Civil Engineering
Colorado State University

Fort Collins, CO 80523

Spring 1987

iv



ACKNOWLEDGMENTS

Grateful appreciation is extended to my former advisor and now my
co-advisor, Dr. H. W. Shen, for his constant support and sponsorship
throughout this study. To my actual advisor, Dr. J. Obeysekera, for
his constant guidance and interest in the development of the present
study. Special gratitude is also extended to the members of my
committee, Dr. J. D. Salas and Dr. S. A. Schumm, for their
cooperation.

To my wife, Olga, for her constant Support, encouragement and
dedication in the achievement of this study. Special acknowledgments
for her work on the drawing and part of the typing.

To Mrs. Lesley Noone, from the Intensive English Program at
Colorado State University, for her amiability and patience in checking
the writing of the final report,

Sincere gratitude to the staff of Technical Typing in the
Engineering Research Center of Colorado State University.

Finally, thanks to my family for their encouragement during my
studies. Special appreciation is extended to my friends Jorge, Ana
and Pablo Restrepo, for their constant friendship, care and company
during the development of my graduate studies at Colorado State
University.

This study was funded through Contract No. DAAG29-83-K-0160 by

the United States Army Research Office.



vi

To my Wife, Olga
To my Mother, Ruth

To my Father, Hernando



TABLE OF CONTENTS

Chapter

1 INTRODUBTEION. ..o e sav 4 45t 556% 5100 mom miese moore soa ooes s st oo <
Lol GenBEEL. s s 50945 G55 8o ue sece sum wmen e stmy oo e sy
1.2 Objective.................oovinuo oo
1.3 Review of Related Literature.....................
1.4 Scope of the 2255 L U —————
2 THE GIUH AND THE KINEMATIC WAVE APPROACH..............
2.1 Introduction...................... ... ...
22 TBO BIUH, coorwiy i omis 55 555 555 5008 me s s cons o

2.3 Computation of the IUH Using the Kinematic
Wave: MOGBL, .o samiss 5405 5% von mme wior scovs s sbe S sta i
2.4 Contrived Watersheds.............. ... ... .. . "
2.5 Experiments and Results............. . ... .. ...
2.6 Conclusions......................... ...
3 KINEMATIC ROUTING. .. .......ooviuiiuinnnnnnn

3.1 Imtroduction...................... . ...
3.2 Flow Equations and the Kinematic Wave............
3.3 Solution to Kinematic Flow Equations for
Overland Flow by the Method of Characteristics. ..
3.4 Solution to Kinematic Flow Equations for
Channel Flow by the Method of Characteristic.. ...
3.5 Some Exact Solutions for the Peak Variables in
A First Order Channel.................. ... .. .
3.5.1 Case 1l: Concentration on Plane and
Concentration on Channel..................
3.5.2 Case 3: No Concentration on Plane and
Concentration on the Stream...............
3.6 Approximate Kinematic ROBERNE i 005 55 mn v vie s o
3.6.1 Routing and Rising Limb................ ...
3.6.2 Routing the Plateau................... . . ..
3.6.3 Routing the Receding Limb........... ... . ..
3.7 Computation of the Total Hydrograph using
Approximate Kinematic Routing.................. ..
3.8 Application of the Approximate Kinematic
Routing Method................... ... .. .. ... . ... .
3.8.1 Case 1l: Concentration on Plane and
Concentration on Channel..................
3.8.2 Case 2: Concentration on Plane and No
Concentration on Channel..................
3.8.3 Case 3: No Concentration on Plane and
Concentration on Channel................. .
3.8.4 Case 4: No Concentration on Plane and
No Concentration on Channel...............

vii

O WO WO



Chapter Page
3.8.5 Preliminary Analysis of Results for the
Approximate Kinematic Routing......... .. .. 77
3.9 Improvement of the Equations to Compute
COa VALIADIS: . v s w3 6% 50n i mom romrmrecs st sos 85
3.10 Summarized Procedure for Computing the Peak
VAEEABLED cr e s 1515 512 V0 S50 momer sonn 1y w008 203 st s 102
3.11 Final Remarks on the Effective Rainfall-
BABOEE MEBUL. 1osic <95 43 s women e simre wisims i s 104
4 ;LOOD FREQUENCY DERIVATION............... . . . . . 106
Loz IDEROMUCEION. o1t b v e v i g 106
4.2 Rainfall-Infiltration Component............. .. . 106
4.3 Probabilistic COMPORMBIIL ... vy st 424 155 51mr ommn worms s 116
4.4 Description of the Algorithm to Compute the
Flood Frequency Distribution Curve...... . . ... . . . . 132
4.5 Computation of the Flood Frequency Distribution
Curve for Hypothetical Configurations........ .. .. 140 —
4.6 Sensitivity Analysis for the Flood Frequency
RELEVRETONG 117 nin ropon 3 5085 5555, €6 sremmon e sk s . 140
4.7 Application of the Flood Frequency Derivation
Technique to Actual Watersheds................ . 156
4.8 Discussion Regarding the Flood Frequency
Derivation Technique..............0 .. 7. ... .. 165
5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS............. . 170
ol (OIS ki S 03 e em s 5 S B ke 170
248 COMCLUSEBNGYS i e v v v v i s 171
5.3 Recommendations for Future Investigations........ 174
BIBLIRERARHITLG 555 s misn wavs vt 5564 5535 55 arm omctms st st o eccs 176
Appendix A - HYDRAULIC ROUTING MOBELS, s voom we 9575 58 v o 178
Sk TOLEOMIEEIO0 .. cn s 1 503 565 vmrmms sows wrscnos s 178
A.2 General Description of the Model........... . 179
A.3 The Hydrologic Component..... . ...  '""""""° 183
A.4 The Geomorphic Component.......... ... . ... . 184
A.5 The Hydraulic Component.......... ... .. .. .. . " 188
A.6 Solution to Kinematic flow Equations for
Overland Flow by the Method of Characteristics... 190
A.7 Solution of the Kinematic Flow Equations for

Channel Flow with no Upstream Tributaries

(First Order R 199
A.8 Solution of the Flow Equations for Channel

Flow with Upstream Tributaries (Second or

Higher Order Chammels......... ... ... . .. . . . . 200 ¢
A.9 Summary of Assumptions and Limitations for the §
MOOBLcr v wom w0t 595 458 W e s woma 590 6078 So0rS s 205 i
Appendix B - FLOOD FREQUENCY DERIVATION USER MANUAL i
FOR THE COMPUTER PROGRAM.............. . 207
B.1 Introduction...... . ... ... . . [Tttt 207
B.2 Input Data File Description.................. . 207

viii




Chapter

o o
ur o

ix



LIST OF TABLES

Contrived watersheds geomorphological parameters......

KIUH and GIUH comparison for the contrived

WatersSheds . . .o i it i i e e e e e e e

Estimated values for the peak flow velocity for the

CONEEIVEd WateRsheds: vy oy wes atews vl §m7 63 9ol Gals i 2%
Cases in the analytical integration for channel flow..
Comparison of results for Cases 1 and 3...............
Comparison of resglts for Cases 2 and & .. v o voms sars s

Typical holding times for Cases 2 and 4...............

Configurations to improve peak variables for Cases

2 AR Bl sis o v wm wien S S DR SO O3 FeR SR 0% SaE $AYE v s

Typical time values for Case 4 (tC >t > 0 and

B 8 . B B L e e s o s Gne sxeiS RS ve aen SEIE S5 Sl v
P e s

Simulated and approximate peak variable wvalues for

CABE: 25,551 50,2 5 Snine branm s susrs Srausinos soese sceme wis s e v s e rawn

Simulated and approximate peak variable values for

GHSE. Winon wie odve mimm s oo Smon 66 s s s e Sk s G wa ok e

A Ul coovvin asey wemm s insr B0, S0 SR BE G P VL A RN SR W% G

27

47

81

82

86

87

88

89

90

91

99



Figure

LIST OF FIGURES

Rising and recession limb IUHs obtained using the

kinematic wave model. Watershed #2. ie = 6.0 in/hr..

Incremental IUH procedure (Valdes et al., 1979).......
Incremental IUHs for Watershed #2...................

KIUH and GIUH for Watershed #2, ie = 0.6 in/hr........

KIUH and GIUH for Watershed #3, J'.e = 0.6 in/hr........

Il
(o)}
;-
pe
=1
=

KIUH and GIUH for Watershed #4 ie

Sensitivity analysis on Ry for the GIUH for

WALETSNEH #2..« vx s inn w5k 6 €89 6% 45 5 56 womce sme sie wrers o s

Sensitivity analysis on RA for the GIUH for

Watershed #2. ... ... .. .iiuninuiniininsinsinnem

Sensitivity analysis on V for the GIUH for

WALETENRA B2 vce s 3 22600 €0 5% BT 535018 D558 mears srmrmrarn st ot i

Water depth profile evolution for t > t, and

B 025 Wivr sowmmn s s doe Wi WS SO 95 BETE BRUE voa m e wene s g
e c

Typical discharge hydrograph for the plane when

By BB B 005 tamvios muwn arn men au w0 R 60 EIEE WO 5 5% e s s
e c

Water depth profile evolution for t > t, and t, <t,..

Typical discharge hydrograph for the plane when

e

Typical discharge hydrographs for a first order

stream with symmetrical planes........................

xi

g R o T
c

15

17

18

20

21

22

24

25

26

36

40

42

43

45

48



Figure
3

3

3.

.10
.11

.12
= 0

.14

A5

.16

7

.18
.19
420
42

.22

.23

1

23

4.4

X-t plane for concentration on plane and

COMELACTALLOn ON ChENREL. wu sois c5 65 5ils e sue v c s

x-t plane for no concentration on plane and

concentration on channel.......... .. ..... . .. .. ..

Procedure and notation for the approximate

kinematic ROUCIOZ : i v 5155 575 bomen nomom sor ey st sis s oo
CRBE Ly v s v w0 0 6 5655 Fome v o o wesi 50 s e

Case 1. I =1 in/hr, te ol L - -

GESE B35 iron momseieis vinis w6 9505 B35 B9 Hikon romce e cns S50rm o .

Case 2 - I =1 in/hr, te =50 min............... ..

BB B 003 H50 oon mosnace N 000 X455 BB TS B mense oo ssare S

Case 3 - I =10 in/hr, £, = 12 min. .. .............

CRBRE By GBI Fimcm oo wrson 09 X055 2545, 50 B8 o mros et s s

Case 4 - I =1 in/hr, te =40 min.................

Forecasted time to peak for Case 2........... ... . .
Forecasted time to peak for Case &4.............. ..
Forecasted peak discharge for Case 2....... . ... . .

Forecasted peak discharge for Case 4........ ... . ..

Forecasted discharge for Case 2 using the

regression model.........oouuiiniiiinrnnn .

Forecasted discharge for Case 4 using the

TEEresslon MOdel .. . v oo i1 4535 554 vue o are momre s s v

Rainfall-infiltration process (Diaz-Granados

L L R P

Integration regions for the flood frequency

COMPULEEIOM e sn 555 375 FIdH ia1m ave monn powe gt 50505 66 S i &

Integration regions for Configuration 1 and

Q% B00 REE 5 <0045 50l 1ur srase sumis s oo s 51936 ol Srats o

Integration regions for Configuration 2 and

Q% L0 CEE 51t vo ven mwwis wmis 55 558 50055 5655 F5%s 1 s oo

xii

54

58
67

70

71
73

74

76

78

79

92
93
95

96



Integration regions for Configuration 3 and
Q o= 600 CE8 ;i wuiivn g as WEE G e VT BEE VR 0 DR RN 65 B s 123

Integration regions for Configuration 4 and
Q = 600 s ... e e 124

Integration regions for Configuration 5 and
G s BUR MER® sos v wonsmais AnEes wiie KOV SiR 0 RGD SUBEE SR K KK K 125

Flood frequency distribution curve for
COnLIPUration L ou v ses v sie was saw soe o5 Sos s e 08 e 141

Flood frequency distribution curve for
CORELPUTAETON. 2 i iss o s wrain soo0s s s GAaG T0E avE 20m 8158 294 & 142

Flood frequency distribution curve for
BORETguracTon. 8! o o vwwis cei % 56 S0 555 SO GoF 05 Bl e 143

Flood frequency distribution curve for
CONFIGULALION, B i ivd cs suiie sios s1o mmis mopis siose siens wim o sis simss s sion 144

Flood frequency distribution curve for
Configuration 5 ...........iiiiiiiiniin .. 145

Sensitivity of the flood frequency distribution
curve to changes in the plane width................... 148

Sensitivity of the flood frequency distribution
curve to changes in the plane slope................... 149

Sensitivity of the flood frequency distribution
curve to changes in the channel length................ 150

Sensitivity of the flood frequency distribution
curve to changes in the channel slope................. 151

Sensitivity of the flood frequency distribution
curve to changes in the mean rainfall intensity....... 152

Sensitivity of the flood frequency distribution
curve to changes in the mean rainfall duration........ 153

Sensitivity of the flood frequency distribution
curve to changes in the hydraulic conductivity........ 154

Sensitivity of the flood frequency distribution

curve to changes in the SOEPEIVILY. suu v v e wws ss s 155
Ralston Creek Watershed near Iowa City, Iowa.......... 158
Flood frequency curves for Ralston Creek.............. 162

xiii



Tigure

Santa Anita Creek Watershed near Sierra Madre,
CRLLEERITA . c 00055 G0 R 43 5t m mn semon ws miere scots ame w1 cobis Sois e ks 163

Map and model representation for a given
watershed. . ........... ... .. 180

Piecewise integration of characteristic lines
arising im the ¥ axisi.. ev con i 208 €45 065 10 5 on s ooe o 195

Piecewise integration of characteristic lines
arising in the t (or to) BRIE S 7550 570 5 on mimn mrmie srece 5o aties s 197

Rectangular network in the x-t plane.................. 202

Xiv



Chapter 1

INTRODUCTION

1.1 General

One of the more common tasks found in hydraulic engineering
design is the selection of flood events. Generally, the person in
charge of the design faces one of two problems: 1) selection of the
flood event when annual flood or partial duration series do exist, and
2) determination of a flood value when no historical flood records are
available.

In the first kind of approach, the historical data is fitted to a
given probability distribution, and the design annual flood is
selected by specifying a value for the exXceedence probability or
return period.

In the second line of design, the first step is given by a
rainfall frequency analysis. This allows the assignation of
exceedence probabilities or return periods to different values of
rainfall intensity and duration. The design chosen values are passed
through an infiltration model, producing in this way the effective
quantities to be imposed over the watershed. Up to this point, two
alternate ways can be followed. In the first, the design engineer
picks up a synthetic unit hydrograph and obtain the peak discharge.
The second way requires the use of watershed routing models. 1In
either of the latter methodologies, the rainfall return period is

assigned to the peak discharge.



For ungaged watersheds, it is also suitable to follow a
statistical approach in which the parameters describing a certain
flood distribution are derived for the problem watershed via regional
analysis,

Since 1972, beginning with the now classical work by Eagleson,

a set of works has appeared in the hydrological literature, which in
a wide sense can be referred to as derivation of flood frequency
distributions. Although the name given to the new methodology is
ambiguous, since it can encompass the other approaches already
described, it is clarified when the effective rainfall-runoff model is
defined.

The method has three components: a rainfall-infiltration
component, an effective rainfall-runoff component and a probabilistic
component. In the first element, a joint distribution for the total
rainfall intensity and duration is proposed, as well as a model for
the infiltration process, producing the corresponding probability for
null runoff and the joint distribution for the effective intensity and
duration. The second model provides a set of equations or algorithms
for the computation of the peak variables, peak discharge and time to
peak. The transformation of the joint distribution for the effective
intensity and duration into the cumulative distribution function for
the peak discharge is accomplished via the probabilistic component,
integrating the former over certain regions defined by the effective
rainfall -runoff model, and adding the probability of null runoff. In
the last step, the flood frequency distribution curve is obtained by
performing some operations over the cumulative distribution function

for the peak discharge.



As stated above, the type of rainfall-runoff model qualifies the
derivation of the flood frequency curve. Some authors have used
physically based models, while others have included geomorphological
approaches.

Obviously, as other methodologies do, the derivation of flood
frequency distribution has advantages and disadvantages. In the first
category, advantages such as its ability to incorporate climatic,
soil, geomorphological and dynamical parameters, and to provide some
light into the problem, can be €énumerated. In the second,
disadvantages like the requirement of invertibility of the functions
defining the infiltration model, the development and implementation of

numerical algorithms and the consumption of computer time are counted.

1.2 Objectives

The objective of the Present study is the derivation of a
Physically based flood frequency technique for small ungaged
watersheds, where the overland flow phase is an important component,
Within this main objective, the derivation of an effective rainfall-
runoff model for a first order stream with two symmetrical planes is
also posed. The constraint in the order of the channel is necessary,
given the actual state of the art, in order to preserve the physical
quality of the model. This means that for the flood frequency
technique application, actual watersheds are conceived as the simple
catchment geometry described above,

Some effective rainfall-runoff models suggested in the
literature, in regard to flood frequency derivation, lack certain
features, like ability to predict Peak discharge in small watersheds

Or complete forecast of the peak discharge given the effective
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intensity-duration space. This consideration forces the formulation
of an alternate effective rainfall-runoff model upon the basis of
physical considerations. The new model has to account for all
variables déscribing the catchment area and the channel, as well as
their dynamic properties.

One of the effective rainfall-runoff models frequently used in
the_literature is the Geomorphological Instant Unit Hydrograph (GIUH).
This study also intends a review of such model in regard to its
applicability to small watersheds, where the overland flow phase is an
important component.

Summarizing, three are the main objectives for the present study:
1) a review of the GIUH approach in regard to its applicability to
small watersheds, 2) formulation of a physically based effective
rainfall-runoff model, and 3) derivation of a physically based flood

frequency distribution for a first order stream.

1.3 Review of Related Literature

The classical work, setting up the methodology for derivation of
flood frequency distributions, was published by Eagleson in 1972.
More than the results themselves, Eagleson’s greatest contribution
puts together the elements conforming the methodology. 1In the
rainfall-infiltration component, Eagleson considers the total rainfall
intensity and total duration as independent exponentially distributed.
Other features pertaining this stage are the consideration of a point
rainfall-areal rainfall relationship and the description of the
infiltration process through the ¢ index method (Viessman et aly

19779,



In the effective rainfall-runoff component Eagleson develops an
algorithm to forecast the peak discharge in a first order Stream,
using the kinematic wave approach. However, this algorithm does not
encompass all possible runoff cases in the catchment area, for
example, concentration on the channel given no concentration on the
overland flow planes. Besides, its reduction of the decision tree for
peak direct streamflow depends on certain values assumed for slope and
roughness in the planes and in the stream, as well as on the rainfall
intensity.

After deriving the annual flood frequency curve, Eagleson
compares it with observations from natural watersheds and obtain a
good agreement.

It is important to emphasize in the fact that Eagleson’s approach
is physical, due to the inclusion of kinematic wave approach, for
which, based on work by other authors, he points out important
practical advantages as well as the tendency to overestimate peak
floods.

The next important step in flood frequency derivation is given by
Hebson and Wood (1982). In the rainfall-infiltration model they
follow Eagleson works (1972, 1978). 1In the effective rainfall-runoff
model the convolution equation is used, where the unit instantaneous
response is assumed to be the Geomorphological Instantaneous Unit
Hydrograph (GIUH), formulated back in 1979 by Rodriguez-Iturbe and
Valdes (1979). The application of Hebson and Wood's development to
two actual watersheds shows good agreement.

In 1983, Diaz-Granados et al. (1983) go a step further in the
derivation of flood frequency distributions by considering in the

infiltration model a ponding time equation, that is the Philip’s



equation. This fact generates a joint probability distribution
function for the effective rainfall intensity and duration different
from that used in the Previous works. In fact, the invertibility
condition required in the derived distribution technique (Freeman,
1963), is solved by means of regression analysis performed on
dimensionless variables.

In the effective rainfall-runoff component of the flood frequency
derivation, Diaz-Granados et al. use the GIUH, in the sense that they
take the expressions for the peak discharge and time to peak obtained
by Rodriguez-Iturbe and Valdes (1979), assign these values to the
triangular instantaneous unit hydrograph developed by Henderson
(1963), and obtain an expression for the peak discharge in any
watershed as a function of the effective rainfall and geomorphological
variables. Once thé development is complete, they perform some
sensitivity analysis for the variables included in the flood frequency
derivation on a hypothetical watershed. The analysis is completed by
application to actual watersheds, reporting good results.

In regard to the Geomorphological Instantaneous Unit Hydrograph
(GIUH), two works are considered as integral part of the present
study. In the first Rodriguez-Iturbe and Valdes (1979) present the
analytical derivation of the GIUH along with the synthesis of the peak
discharge and time to peak. In the second, Valdes et al. (1979)
summarize the application of the GIUH to real world watersheds.

The review of literature herein presented, related to the
derivation of flood frequency distributions, yields two important
conclusions: 1) the applicability of the method to actual watersheds
and 2) the capability to provide some light into the internal

structure of flood frequency distributions, related to variables



describing basin morphology, infiltration behavior and runoff
response. These two features make the method an important tool to be
applied to ungaged watersheds.

As a last point, it is valuable to provide some references
regarding the kinematic wave theory widely used in the present study.
Eagleson (1970 and 1972) gives an excellent base for the theoretical
development. In the development and applicability of the method to
more complex cases, Garbrecht (1984) and Koch (1985) are strongly

recommended .,

1.4 Scope of the Study

Due to the fact that a straight forward method to the flood
frequency derivation could be the adoption of the Geomorphological
Instantaneous Unit Hydrograph as the effective rainfall-runoff
component, a review of its applicability to small watersheds, where
overland flow is an important timing component, is first intended.

The derivation itself of the flood frequency distribution is
performed following the steps already outlined for this me thodology.
Some components are taken from other authors; others are developed as
an integral part of this study. Special attention is given to the
sensitivity analysis and to the application of the derived flood
frequency distribution to two small watersheds.

As the reader will notice, some values regarding the plane and
channel dynamics are held con.stant along the present study. Such
values are roughness and the coefficients describing the hydraulic
radius cross-sectional area relationship for the channel, R = aAb.
Particularly, a = 0.25 and b = 0.35 are recommended by Koch (1985),

based on Garbrecht’s findings (1984), who obtained such values after



analysis of several stable channel relationships presented in the
literature.

The value of the roughness conditions the coefficient for the
depth-discharge relationship in the Plane and for the area-discharge
in the plane. However, the variation on these coefficients is taken
into account through variation of slopes. Besides, when needed,
calibrations are performed on dimensionless variables, and the
obtained expressions account for all variables representing the
pProcess under consideration.

During the development of the Present study a kinematic wave
computer model was used for the simulation of the rainfall-runoff
process in different watersheds. To the best of the author's
knowledge, the model is traced back to Simons, Li and Eggert (1976).
Spronk (1978) enhanced it substantially and it was-modifiéd later by
Garbrecht (1984) . Furthermore, Koch (1985) did some fine-tuning of
the computer code as did the author of the present work. Appendix A
presents a description of the model in its theoretical basis, which is
completely based on Garbrecht (1984), and it is presented for the sake

of completeness.



Chapter 2

THE GIUH AND THE KINEMATIC WAVE APPROACH

2.1 Introduction

Since 1979 the Geomorphological Instantaneous Unit Hydrograph
GIUH has been a tool widely used in hydrology to forecast peak
discharge and to develop physically based flood frequency distribution
curves (Hebson and Wood, 1982: Diaz-Granados et al., 1983).

This chapter is intended o review the applicability of the GIUH
to small watersheds where the overland flow is an important timing
component. The revision of the method is made on its own basis, that
is, comparing the GIUH with the Instantaneous Unit Hydrograph obtained
via detailed simulations. These simulations were performed using the
kinematic wave model described in Appendix A, and follows the
methodology presented by the GIUH's authors (Rodriguez-Iturbe and
Valdes, 1979:; Valdes et al., 1979).

The basic data required to perform the analysis were obtained
from three contrived watersheds (Koch, 1985), all these being third
order catchment areas. This order agrees with the GIUH derivation

(Rodriguez-Iturbe and Valdes, 1979).

2.2 The GIUH
This section summarizes the basic considerations and expressions
used to obtain the GIUH for a third order watershed (Rodriguez-Iturbe

and Valdes, 1979) .
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The derivation of the GIUH is based on the determination of the
probability that a rainfall drop chosen at random reaches the
watershed outlet at time t. In other words, the GIUH is given by the
probability distribution function of the arrival time of rainfall
drops to the catchment outlet. The main hypotheses taken into account
for the GIUH derivation are: 1) the watershed behaves following the
laws of stream numbers, scream lengths and stream areas; 2) the
transition probabilities from one state or order to another follow a
Markov process, i.e., those probabilities depend only on the actual
state; 3) the holding time or the time a drop spends in a given state
or order is exponentially distributed and: 4) the dynamic of the drop
as it travels along channels is well described by the peak flow
velocity, which supposedly remains constant for a given rainfall event
within the watershed.

The channel ordering scheme defined by Strahler (1957) is
selected. Sources are defined as the points farthest upstream in a
channel network, and the outlet is the point farthest downstream. The
point at which two channels combine to form one is called junction.
It is assumed that multiple junctions do not occur. The ordering
scheme proceeds as follows: channels that originate at a source are
first order channels; when two channels of order w join, a channel
order w + 1 is created, and when two channels of different order join,
the channel immediately downstream of the junction retains the higher
order of the two joining channels. The highest channel order (Q) in a
channel network is also the network order.

The process begins with the probability that the drops start they

travel at a given state w, where w varies from 1 to 1, and Q denotes
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the watershed order. These probabilities are designated as Sw(o) and

they can be estimated following

Ry
g,(o0) = — (2.5
1 o2
A
R, R. (R + 2R, - 2)
8,(0) = R—B . B - B B (2.2)
A R (2R, - 1)
R R. (RZ - 3R, + 2)
B 1 | B "B B
f3(0) =1 - g 2 R, - 1 (2423
A R B
A
Subject to RB <R,.

RB and RA represent respectively bifurcation and area ratios, and

according to the corresponding laws are defined as
RB = Nw/Nw+l (2.4)
RA = Aw+l/Aw (2::5)

where N stands for the number of streams of order w and Aﬁwfor the
mean area for the basins of order w.

The process continues with the computation of the transition
probabilities pij for a drop going from state i to state j; where
j > i, using the equations

2

RB - ZRB + 2

P1p = .
12 ZRB (RB 1)

(2.6)
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R -3RB+2
P13 = 2R, (Rp - 1)

Py = 1

(27

(2.8)

Finally, the GIUH is computed for a third order watershed as:

GIUH(t) = 6;(0) #1s + 8,(0) $5s + 0,(0) ¢4

¢i5 = - AIAl exp (-Alt) - A2A2 exp (~A2t)

* *
- AA,C exp (-A3t) + A

)*
373 exp (' 3t)

3

W *
- A, Ay exp (-A3t)

L= 0% (gpys - 3710, - A O - ApF

b=
I

* 2 * 2
Az £ (A3) Alplz/[(lz = A1) (A3 s Az) ]

* * * *
By = Ag (A2, = AA3p93) /[ = A3) (A5 - Ag)]

(2.9)

(210}

(2.11)

(2.12)

(2.13)

* 2

o=
I

* * )
=2 M5 - 2 A5 + A0 (A, (Ag)

*, 2

3 2 *
= Al (A3) P13)}/[(A3) (Al - A3) (A2 - A3

A2 B AT 3(A
4 T {( 3) A1P13 (AB = Al) ( 5 = 3) = [ \ 3)

)2] (2.14)
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; * 2 *x 2 * 2
¢25 = Az(A3) /(A3 - Az) exp ('Azt} = Az(*3)/(la =] Az)t

A* A A* * A A*
exp (' 3t) + 2 3/(A3 - 2) exp (‘ 3t)

* * * 2 *
- A2A3 (2 A3 - Az)/(kz - A3) exp (-ABE) (2.15)
) ) *
¢35 = (A3) t exp (- A3t) (2.16)
A 2.17
AS = 2 A3 2.7

where Aw represents the inverse of the mean holding time for the state

w and is computed, according to the stream length ratio RL as

kl = A3 RL (2.18)
Az = AB RL (2.19)
AB = V/L3 (2.20)

In Equation (2.20) V stands for the peak flow velocity and L3 is
the mean channel length for basins of order three. The length ratio
R, is defined according to

L

R, =L /L, (2.21)
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2.3 Computation of the IUH using the Kinematic Wave Model

The procedure herein presented to obtain the IUH follows that
described by Valdes et al. (1979) and is the same by which the GIUH's
authors performed its calibration and test.

When an effective rainfall intensity ie of duration t_, uniform

~

in time and.space, is imposed over the waéefshed, such that t_ is
greater than its time of concentration, the discharge hydrograph Q(t)
is composed of the rising limb, a horizontal line showing the steady
state, and the recession limb.

Two IUHs can be obtained performing the following operations:

ri
hl(t) = I_ “—EE‘—— (2.22)
e
dQ__(t)
1 re
hz(t) = E; **EE—‘— (2.23)

The former corresponds to the rising limb and the latter to the
recession limb. Due to the fact that the kinematic wave model is not
a liner representation of the rainfall runoff process within the
watershed, hl(t) and hz(t) are quite different, as shown in Figure
2.1, for one of the watersheds used in this section and described in
Section 2.4.

In order to overcome the aforementioned problem, the procedure
called incremental IUH, described by Valdes et al. (1979) was used.
It begins by imposing over the watershed an effective rainfall
intensity ie. Once the watershed has reached the steady state, i.e.,
for a time t_, greater than the time of concentration, the rainfall

intensity is increased an amount &ie. The new intensity value ends at
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a time tol lesser than t. The value used for Aie was 10 percent of
ie' as recommended by Valdes etz al. (1979). Figure 2.2 depicts the
incremental IUH procedure,

When Equations (2.22) and (2.23), changing ie by aie, are applied
to the upper rising and recession limbs depicted in Figure 2.2, two
new IUH are obtained. An example of these are presented in Figure 2.3
for Watershed #2. Due to the fact that a small increase in the
effective rainfall intensity does not induce a substantial change in
the flow velocity, the two new IUH are practically the same. As the
same results were obtained for the other two watersheds, the IUH
resulting from the rising limb was adopted as the definitive Kinematic
Instantaneous Unit Hydrograph, hereafter referred to as KIUH.

The simulations performed to obtain the KIUH were done with the
full watershed area catching rainfall and the same area contributing
with runoff to the streams in order to impose on the KIUH the

significance of the overland flow component.

2.4 Contrived Watersheds

As mentioned earlier, three watersheds were used during the
described analysis. Although they are contrived, they resemble in
most of their parameters values commonly encountered in natural
catchment areas (Koch, 1985):

The main parameters for each watershed related to the present
analysis are listed in Table 2.1. The value given for the time of
concentration is valid for a rainfall intensity of 6.0 in/hr and no
infiltration. The same values were applied to all experiments, and

consequently &ie took the value of 0.6 in/hr.
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Table 2.1. Contrived watersheds geomorphological parameters.

Watershed # 2 3 &
Area (mi?) 3.0 3.0 3.0
Order 3 3 3
Bifurcation Ratio 5 2 3.00 3iE3
Length Ratio 1.49 1..22 1.76
Area Ratio 3.62 3:91 4.29
Concentration time (min) 75 74 57

Up to this point it is necessary to estimate the peak flow
velocity V in order to compute the GIUH for the three contrived
watersheds. Following Valdes et al. (1979), this velocity is assumed
constant through the whole watershed, and for experimental purposes
they recommend to take it as that corresponding to the first steady
state when the incremental intensity rainfall pattern is simulated for
each watershed. Assuming this guideline, values of 8.05 and 14.10
ft/sec were obtained, the former for watersheds 2 and 3 and the latter

for watershed 4.

2.5 Experiments and Results

The first experiment performed was the computation and comparison
of the KIUH and the GIUH. Figures 2.4, 2.5 and 2.6 present graphical
results for the three contrived watersheds, and Table 2.2 summarizes
some important numerical results.

In Table 2.2 K stands for kinematic results and G denotes values
related to the GIUH. The comparison of results is made in terms of

percent difference, defined as

(Value)K - (Value)
(Value)K

A (B = S % 100 (2.24)



x1e”3

OMUBSNe MOITDIONND

o v

X SINULATED
a4 GEOMORPHOLOGICAL

500 1000 1500 ceoe ases

TIME (SEC)

Figure 2.4. KIUH and GIUH for Watershed #2, ie

= 0.6 in/hr.

4000

0¢



OMUINE= MOIDION=D

x1e” 3
0.8

X SIMULATED
& GEOMORPHOLOGICAL

Figure 2.5. KIUH

and GIUI

TINE (SEC)

Watershed #3,

0.6 in/hr.

1¢



OMUIseE MOIADION~D

X10™2

.12

0.08

.04

8.02

X SINULATED
& GEOMORPHOLOGICAL

Figure 2.6.

TIRE (SEC)

KIUH and GIUH for Watershed #4, ie

2500

6 in/hr.

3900

3509

I~
13



Table 2.2. KIUH and GIUH comparison for the contrived watersheds.

Watershed # 2 3 4

(a,)g (1/sec) 0.6098 x 10> 0.6205 x 10°° 0.9124 x 107>
(a,)g (1/sec) 0.5475 x 10> 0.7316 x 10°>  0.1017 x 102
8q, (%) 10.2% -17.9% -11.5%

(€ )y (min) 24 20 13

(t))g (min) 15 11 6

&tp (%) 37.5% 45% 38.5%

As can be observed from the graphical and numerical results, there is
no agreement between the KIUH and the GIUH.

Up to this point, one can suspect that the poor agreement
obtained is due to a bad estimation in the geomorphological ratios or
in the dynamical velocity. Figures 2.7 through 2.9 summarize
grapniczlly a sensitivity analysis performed for Watershed #2, in

réder to guess the values of the aforementioned parameters which

o

m
H

generate a good fitting. The necessary conclusion is that no
agresment is reached at all.
Another attempt to obtain a more adequate estimated value for the

peak Ilow velocity is made through the expression obtained after

caliZrzzlon for the GIUH peak variables (Rodriguez-Iturbe and Valdes,
197¢.. “hen qp, peak discharge, is given in 1l/sec, tp, time to peak,
in sscends, V in ft/sec and L3 in ft, the equations are:
0.43 V¥
aQ = o 2.
9y 0.3639 Ry L (2.25)

3
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(2.26)

As one obtains (qp)K and (tp)K via kinematic wave simulation
along with the incremental IUH procedure, two values of V can be
estimated from the above equations, denoted respectively Vq and Vt.

Table 2.3 summarizes the values of Vq and Vt for Watersheds 2, 3
and 4.

The results obtained for the peak flow velocity lead to the
conclusion that it is impossible to obtain a unique velocity allowing

the joint estimation of qp and tp.

Table 2.3. Estimated values for the peak flow velocity for the
contrived watersheds,

Watershed 2 3 4

(a,) (1/sec) 0.6098 x 107> 0.6205 x 107> 0.9124 x 1073
(£ )y (sec) 1440 1200 780

L2 (ft) 6239 4032 6633

R, 1.49 1.22 1.76

R, 3.62 3.91 4.29

R, 3. 77 3.00 312

v (fps) 8.81 6.32 13.05

V. (£ps) 5.09 4.27 9.14

V (£ps) 8.05 8.05 14.10

2.6 Conclusions
The most important conclusion, yielded by the comparison of the

Geomorphological Instantaneous Unit Hydrograph GIUH and the Kinematic
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Instantaneous Unit Hydrograph KIUH, performed on three contrived
watersheds, is given by the inadequacy of the former to describe the
response for small watersheds where overland flow is considered to be
an important timing component,

This conclusion is based on the experiments performed. The KIUH,
deri;ed via simulation, considers overland flow, while the GIUH
incorporates the catchment areas for each order just as initial
states with no holding time within them.

The overland flow effect is observed in the behavior of the peak
flow and time to peak. The peak flow for the KIUH tends to be less
than the GIUH peak flow for two of the three analyzed examples,
indicating that the latter enables a lesser holding time than the
former. Furthermore, the time to peak shows the same behavior.

Another concern is the ability of the geomorphological ratios to
describe the watershed shape and arrangement. In small watershed,
sample variations in these parameters are larger and more important
than in medium or large watersheds, and their variations are not
included in the GIUH.

The conclusions herein presented do not pretend to disqualify the
GIUH as a tool useful for hydrological forecast and synthesis in
medium or large watersheds, where overland flow plays no significant
role, cases for which the authors have proved its applicability. They
are directed toward the applicability of the GIUH to small watersheds
where overland flow is considered to be an important timing component.

In regard to this, the inclusion of an extra state, given by the
holding time in the Planes as suggested by Gupta et al. (1980), can
yield better results, providing the required timing or storage

component,



Chapter 3

KINEMATIC ROUTING

3.1 Introduction

As stated pPreviously, the scope of this work encompasses the
derivation of flood frequency distributions for small watersheds,
where the overland flow is an important timing component. In order to
achieve this, an effective rainfall-runoff model has to be derived
where such a component is included and plays an important role.

The effective rainfall-runoff model is derived for a catchment
area formed by two symmetrical planes and a first order stream, i.e.,
no upstream tributaries to the channel are considered.

The tool used to obtain the aforementioned model is the kinematic
wave theory. First, for the sake of completeness, the analytical
solution for the discharge hydrograph in the plane is presented, based
on Eagleson (1970) and Garbrecht (1984). After investigation
regarding the analytical solution for the channel, some significant
results are obtained. These can be considered as an extension of
Eagleson’s work (1972).

An approximate kinematic routing model is developed and used,
together with theoretical results, in order to forecast the peak
discharge and time to peak for any rainfall event and for any first
order catchment. In the last stage, some equations used in the
forecasting model are improved via regression analysis performed on

dynamic watershed variables.
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3.2 Flow Equations and the Kinematic Wave
The differential equations of motion for one-dimensional ,

incompressible, free surface flow in a channel can be written as:

S (3.1)
8Q . 3 .02 9y _ E
gt ax (a) *eA oy - gA (5 -5)) (3.2)

a given time t, q represents the lateral inflow per unit length in x
direction, y is the average depth of flow in the section, S0 stands
for the channel slope, Sf for the friction slope and g denotes the
gravity constant. The above equations reépresent a gradually varied
unsteady flow and other assumptions inherent to them are: uniform
distribution of velocities through the section, hydrostatic pPressure
distribution along the vertical, small channel slope and no momentum
exchange due to lateral inflow. The solution for these two equations
must yield the flow properties Q and A as a function of position x and
time t.

The kinematic wave approximation considers that the inertia and
Pressure terms in the equations of motion are negligible compared to
the gravity and friction terms, so that the following set of equations

is obtained:

(3.3)



31

In the present work, the Manning’s equation according to the English

system of units is selected, and is given by:

1.386 AR2/3S 1/2

Cc

Q = (3.5)

Cc

where n, is the Manning'’s roughness coefficient, SC is the channel bed
slope and R is the hydraulic radius, By definition, R = A/P, in which
P stands for the wetted perimeter and can be expressed as a function

of the area. Thus, the Cross-sectional shape is described by means of

where a and b are determined either empirically or assuming a regular

well-defined geometrical shape.

Plugging Equation (3.6) into Equation (3.5) yields the following

result

Bc
Q = aCA (3.7)

o - 1486 2/3 1/ (3.8)
{ad nc C

Bec =1 + %h

(3.9)
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Notice that Equation (3.7) enables the consideration of other flow
resistance formulas different from Manning’s equation.

The kinematic wave équation is obtained by multiplying Equation
(3.3) by 3Q/aA, yielding

3 , 30 80 .
at Y aa (gx -V =0 o

The term 8Q/dA is known as kinematic wave celerity (also referred to
as the Kleitz-Seddon celerity) and represents the local travel

velocity for the incremental unit width discharge 8Q/6x - q:

Bec-1
gﬁ - apea = g - pey (3.11)

where V stands for the mean velocity of flow.

The equations of motion considering kinematic wave approximation
for the overland flow are obtained by analogy with Equations (3.3) and
(3.4), taking into account that such a flow is similar to that in a

wide channel. Therefore, the flow properties are expressed per unit

width:

oy , 2q _ . (3.12)

q=a PP (3.13)

where y represents the flow depth, q the discharge per unit width and
ie the effective precipitation intensity. The coefficients ap and fAp

for the plane are also obtained using Manning’s equation, but
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considering that the plane behaves like a very wide channel, i.e.

=y. Under these conditions

o o L.486 . 172 (3,183
P n p
P
Bp = 5/3 (3.15)

where np and Sp stands for the plane roughness and plane slope,

respectively.

3.3 Solution to Kinematic Flow Equations for Overland Flow by the
Method of Characteristics

In the following paragraphs, Equations (3.12) and (3.13) are
solved using the method of characteristics. Then, that solution is
applied to the case of overland flow produced by a constant effective
rainfall intensity. For the solution when variable rainfall intensicty
is considered see Appendix A.

The essence of the method of characteristics, when applied to the
equations of motion, is to find a space-time locus (x = x(t)) along
which a discontinuity of the partial derivatives of the flow
properties, unit width discharge and flow depth, exists. This locus
defines the path of wave propagation along which an observer moving
with it can describe the process in terms of an ordinary differential
equation.

Considering the definition of a total differential, the following

two equations can be written

aq daq = 3.16
o dx + 3¢ 4t = dq (3.16)



34

& gy 4 2 ge - gy (3.17)
Equations (3.12) . (¥.13), (3.16) and (3.17) comprise a system of
equations where the partial derivatives are considered as unknowns.
If this system is expressed in matrix notation, the discontinuity is
g;ven, in fi;st place, by vanishing the determinant of the coefficient
matrix, and secondly, by applying the same condition to the four
determinants obtained replacing the columns in the matrix coefficient

by the independent term vector. The first condition, after some term

manipulations, gives rise to the equation

dx p-1
ac = appy” (3.18)

The second condition implies the equations

d 2

Eﬂ - L (3.19)
d :

Elc[“ 53 (3.20)
dq _ 5 p-1

ac = (1) “pﬁpyﬂ (3.21)

previous defined celerity (Equation ¢3.T1YY
Equations (35 19) through (3.21) are valid only along the
characteristic lines. An important physical observation obtained from

those equations is that the discharge, the depth, the mean flow



| 35

velocity and the celerity remain constant along the characteristic
lines, under the absence of effective rainfall intensity.
Calling W the width of the plane, the following initial and

boundary conditions, respectively, can be posed

y=0,0<x=<W t=0 (3.22)

y=0,x=0, t=0, (3.23)

Besides, the effective rainfall pattern is completely defined by the
intensity ie and duration S Then, integration of Equation (3.20)

between zero and any time t gives
y =1i.t (3.24)
Taking this result to Equation (3.18) and integrating between an

initial point (xo, tO) and another generic (x,t), the equation

describing the characteristic path is

x - %, = 1eﬁp'1<t i co)ﬁp (3.25)

An important result, shown in Figure 3.1, is obtained by making X, = 0
and t, = 0. The resulting line is called the limiting characteristic
and is described by:

x =a iPPlgéFp (3.26)

where X, and ty denote the coordinates of a point on the limiting

characteristic.
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In Figure 3.1 the effective rainfall pattern is shown at the
left. However, the same pattern holds true for all values of x.

Now, let the effective duration tend to infinity, such that the
plane attains concentration, which means that the hydrograph at the
plane outlet (x=W) reaches a steady state, and beyond a certain time,
called time of concentration, no increase in the discharge takes
place. The depth, for all characteristic arising at the x-axis, is
governed by Equation (3.24). Notice that all these characteristic
lines are located below the limiting characteristic.

The characteristic lines arising at the t-axis, at a time to and
X, = 0, are governed by the two following equations, obtained after

integration of Equations (3.20) and (3.18).

¥ =L ME - B (3.27)

x = a ieﬁp'l(t - cok)ﬁp (3.28)

Applying Equation (3.28) to any value of x, 0 < x < W, say X ., one

W
obtains

5k . (3.29)

Now, going back to Equation (3.26), one realizes that the right hand

term of Equation (3.29) is -

- = 3.,
t -t =t (3.30)
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For a given location Xgr G will not change, thus t - t and the

ok
depth remain constant above the limiting characteristic. Such value

of the depth is computed by means of

y =it (3.31)

On the other hand, the value of t, 1s obtained, for a given location
X ,» using Equation (3.26). Particularly, for x = W, the limiting

characteristic time value is computed as:

e

E. ™ S (3:32)

P
which defines the point beyond of which discharge is constant at the
plane outlet and so it represents the time of concentration for the
plane.

Now, let the effective rainfall duration take a finite value
greater than the time of concentration for the plane. The final
objective is given by the determination of the discharge hydrograph at
the plane outlet, i.e., for x=W.

Up to this point, the depth hydrograph at the plane outlet is

described by Equation (3.24) for 0 < t < t, and by
y = ietc (3.33)
for t =< tc < te, where te stands for the effective rainfall duration.

After the excess rainfall stops, Equatiomns (3.19), (3.20) and (3.21)

have to be equated to zero. As it has been stated, this means that
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discharge, depth and celerity remain constant along characteristic

lines.

Figure 3.2 depicts the evolution of the water surface profile for

times greater than t,

The equation for the steady state profile

(t = te} is obtained by making t = t, in Equation (3.24) and replacing

it in (3.26), yielding the following result

. x i 11/8p
| w e

use the propagation celerity C to locate the point in space at any

time t > te From Figure 3.2 and Equation (3.18) integrated for y

constant the following is obtained

interpreted as C At. Obtaining x

(3.35),

w 10 Equation (3.34) and taking it to

after some term manipulation yields

X = ap yﬂp'l [%‘ + Bp(t - te)J (3.36)

effective rainfall ends.
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At this point, it is possible to summarize the computation of the
discharge hydrograph at the plane outlet when concentration is

attained (te > tc) as follows:

y = iet, Ost<tc (3.37)
y = ietc’ tcstste (3.38)
W= a, yPP-1 [i— + Bp(t - te)J ), <t <w (3.39)
q=a yP (3.40)

w1 1-Ap)1/6p

=]

c a
P

(3.41)

Notice that the computation of y from Equation (3.39) for a specific
value of t requires the use of a numerical algorithm, since such a
equation cannot be reduced to a closed solution for y.

Figure 3.3 presents the typical shape for the plane outlet
hydrograph when concentration is attained.

Now, the case when the excess rainfall ceases before the initial
perturbation has reached the catchment outlet is considered. Figure
3.4 describes the evolution of the water surface profile for times
equal or greater than the effective duration t, -

The maximum profile (ABC) takes Place at t =t . For a time

e

t > t, point B will move to Bl and the new profile will be ABIC. At a

time cp the profile will not be a broken line anymore, when point B

reaches point C, Taking into account that the depth for 0 < t < t, is
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given by Equation (3.24), and that the depth for t = ty is iete’ the

time tp is computed as:

Bp - 1 W

t t + (3.42)
p ﬁp e apﬁp(iete)ﬁp-l

For t > tp the procedure for obtaining the depth is the same as that

presented for the case of concentration on the plane. Hence, the

—

computation of the discharge hydrograph at the plane outlet for an

effective rainfall lasting less than the time of concentration is

summarized via the following set of equations:

| y=1it , 0=s¢t< ty (3.43)
y = iete : te <t < tp (3.44)
| W=a ;AP-1 [t + Bp(t - ce)J LE < (3.45)
q=a, y?P (3.46)
; % = %_1' Gy ¥ : | (3.47)

A pp-1
apﬁp(lete)

Again the solution of Equation (3.45) for y requires an appropriate

numerical method.

Figure 3.5 depicts the plane hydrograph for g, < te-
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3.4 Solution to Kinematic Flow Equations for Channel Flow by the
Method of Characteristic

Following a procedure similar to that outlined in Section 3.3 and
beginning with Equations (3.3) and (3.7), the expressions governing

the flow in a channel along characteristic lines are obtained as:

%% - a_fc aPe-1 (3.48)
%g. - g (3.49)
%% ~ (3.50)
.;1_05 - q a_pc aPe-1 (3.51)

where q stands for the total lateral inflow, i.e., the addition of the
left and right plane hydrographs.
The objective in this case would be the integration of the above

equations when q is derived from those results obtained in the

previous section. The initial and boundary conditions are

, t =20 (3.52)

A=0,x=0,t=20 (3:53)

where Lc represents the channel length.
Following a hierarchical approach to the solution, the first case
to be considered would be a first order stream with equal lateral

planes. This means that there would be no upstream inflow and that
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the lateral inflow hydrograph could be computed as two times the
hydrograph produced by one plane.

Table 3.1 presents all possible combinations of cases to be
considered by the analytical integration of the characteristic
equations, in order to describe completely the discharge hydrograph in
the channel. Figure 3.6 depictsjthe four possible hydrographs. Table
3.1 has been elaborated on the basis of concentration on the planes
and concentration on the channel. The concept of concentration on the
plane has been stated in Section 3.3. Concentration on the channel
means that under a constant input to the channel, during a certain

time interval, the discharge hydrograph at the downstream end reaches

a steady state.

Table 3.1. Cases in the analytical integration for channel flow.

Plane Channel
Case 1 Concentration Concentration
Case 2 Concentration No concentration
Case 3 No concentration Concentration
Case 4 No concentration No concentration

It must be pointed out that Case 1 implies concentration in the
whole catchment area.

Although the problem is considered well posed, it is not possible
to obtain the analytical solution for the first order channel
discharge hydrograph. 1In first place, this is due to the fact that
the plane hydrograph can not be expressed analytically in a complete
fashion; the solution for its receding limb requires the use of some

numerical scheme, so that a set of numerical values is obtained. On
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the other hand, an analytical integration can be intended for the
receding limb and the plateau, but the presence of some integrals with
no closed solution makes this second attempt impossible.

Obviously, when the first order channel is considered along with
two different planes, the solution becomes more complicated. The
input inflow, once the two lateral hydrographs are added, could be
like a step function, a double-peak hydrograph, or even a simple plane
hydrograph.

Continuing with the hierarchical approach, one can go further
into second or higher order channels. However, in addition to the
aforementioned restrictions, a third one appears, given by the an
upstream boundary condition. As there is upstream tributary inflow,
condition (3.53) is no longer valid and a finite difference scheme is
required.

Summarizing, this section shows that it is impossible to obtain a
complete analytical solution for the channel discharge hydrograph,
even in the simpler case, the first order stream with two symmetrical
Planes. However, the reasoning here exposed does not inhibit an
analytical solution for the first order channel, in some cases, for
the peak discharge and time to peak, and an approximate solution for
the others, as will be shown in the following sections.

Some values regarding the plane and channel dynamics are held
constant. Such values are roughness and the coefficients describing
the hydraulic radius Cross-sectional area relationship for the
channel, R = aAb. Particularly, a = 0.25 and b = 0.35 are recommended
by Koch (1985), based on Garbrecht's findings (1984). This last
author obtain such values after analysis of several stable channel

relationships presented in the literature.
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3.5 Some Exact Solutions for the Peak Variables in a First Order
Channel

The cases when concentration on the stream is attained are
suitable of exact solution for the time to peak and peak discharge in
the discharge hydrograph. These cases encompass the two possible

responses on the plane, concentration and no concentration.

3.5.1 Case 1: Concentration on Plane and Concentration on Channel

Figure 3.7 presents an scheme of the plane x - t, used to obtain
the analytical solution when concentration are present on both
elements, plane and channel. The catchment unit herein considered is
a first order unit, composed by two symmetrical planes of width W and
a channel of length L.. Therefore, the uniformly distributed input
along the channel is given by two times the plane hydrograph, and
since there is concentration on the planes, this hydrograph is given
by Equations (3.37) through (3.41). Although the input is shown on
the t axis, it is the same along the full channel length. Obviously,
there is no upstream tributaries and the conditions given in (3.52)
and (3.53) are wvalid.

Here, the concept of concentration on the channel can be
presented more clearly. The rising limb in the plane’'s hydrograph
lasts from zero to t.- The characteristic line starting at x = 0 and
t =t will arrive a the channel downstream end at a time t. * t.-
The channel outflow hydrograph will then increase from zero to a given
value during the interval zero to t. + t . Any characteristic line
starting at x = 0 and times greater than t., and arriving downstream
before the rainfall ends, will produce the same discharge as that

starting at t.,» since both of them are submitted to the same
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accreation of inflow. Then, after e+ t the discharge at the

downstream end of the channel becomes constant, and that time

represents the total time of concentration for the whole watershed.

*
Calling such a time t

*
t =t +t (3.54)
c s
The objective is to describe the characteristie starting at tc in

* -
| order to obtain t, and the maximum discharge. For this case t will

also represent the time to peak

As the channel has two symmetrical planes, Equation (3.50), for

the time interval tc to te’ together with Equations (3.38), (3.40) and

(3.41), evaluated for the same interval, yields

da )
| ac = 2vi_ (3.55)

Integration of Equation (3.55) between tc and a time t less than t

gives
A = 2W1e(c - t) (3.56)
Taking this result to Equation (3.48) and integrating it between the

' same limits, the desired characteristic equation is

T __ 7
X ac(2W1e) (t tc) (3.57)
Evaluating this last equation for x = LC and t = o t, 1s given by
Lc 1/Bc
t = (3.58)
| a_(2wi_yPe-l
- (o] e

Combining Equations (3.41), (3.54) and (3.58) the concentration time

for the whole catchment area is obtained as
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+ . ol (3.59)
p a, (2Wi )

The time to peak, denoted by tn’ ¢an be obtained also by using

Equation (3.59).

t =t (3.60)

The maximum discharge Qm is computed by plugging Equation (3.59) into

(3.56) and applying Equation €3.7)

Qm = 2Lc W ie (3.61)

This is an expected result, since concentration in the whole watershed

means a continuity condition between the effective rainfall and the

discharge at the catchment outlet, with no change in the storage.
Equations (3.60) and (3.61) are applicable for computing the peak

variables given that the following condition is met

L. 2> E (3.62)

3.5.2 Case 3: No Concentration on Plane and Concentration on the
Stream

Figure 3.8 presents the scheme of the plane x - €, used to obtain
the analytical solution when concentration is present on the stream,
but not on the plane. Again, the catchment has two symmetrical planes
of width W and a channel of length L.. The uniformly distributed

input along the channel is given by two times the input hydrograph,
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given by €quations (3.43) and (3.47). As there is no upstream
tributaries, the conditions given in (3.52) and (3.53) are still
applicable.

The behavior of the channel hydrograph is similar to that
described in Section 3.5,1. Hence, after the time t f: t; the
discharge in the channel outlet behaves as a plateau. The objective
is then to describe the characteristic line starting at t, and
arriving at the downstream end at the time t, + t“ Equation (3.50),
considering the aggregated discharge for both planes in the time
interval ¢t to te + t;, given by Equations (3.44) and (3.46),

e

becomes
da _ . Bp
iy 2ap(1ete) (3.63)

Following the same Procedure as that Presented for Case 1, the results

obtained are:

Lb 1/8c o
t“ - .
g ac[zap<iete)ﬂp15°'1

t =t + er (3.65)
. Bp
Q. = 2Lcap(lete) (3.66)

where tm and Qm stands for the time to peak and peak discharge,

respectively.



Peak variables in a first order channel with symmetrical planes given

that the following condition is attained

b (3.67)

where tp is computed using Equation (3.47) .

3.6 Approximate Kinematic Routing

reason for which it is

not possible to obtain analytical solutions for the peak variables for

Cases 2 and 4. 1In both cases,

. Figure 3.7 and Figure 3.8 show clearly the
‘ as there is not concentration on the

channel, the characteristic line responsible for the peak discharge

cannot be located exactly. For example, for Case 2, it could start

before, at or after tc and it would arrive before, at or after ce.

The analytical solution would require the integration of the

characteristic lines for the complete x - ¢ plane, a task considered

impossible as was stated earlier. A similar reasoning is applicable

to Case 4,

This section is intended to solve the foregoing gap by

developing, based on physical considerations, approximate

relationships to compute the peak variables for Cases 2 and 4.

The first is
given by the fact that no attenuation of the hydrograph takes place as

it travels along the channel. Only deformation occurs in the

hydrograph, formed by increased steepness of the rising limb and

flattening of the receding limb. This means that under the presence
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of lateral inflow, the discharge will always increase in the
downstream direction, and when there is no lateral inflow entering the
channel, any discharge will remain constant as it travels along the
channel.

The second property, related to some values used in the present
study, is given by the weak dependence of the wave celerity on the
discharge. This enables the possibility of translating a given
discharge in the channel, without considering an accreation of the
flow contributing to the wave celerity.

As in the preceding cases, the runoff area under consideration
comprises two lateral symmetrical planes with no upstream inflow,
i.e., a first order stream. The approximate sketch is formed by the
Stream with the plane hydrographs, QP’ as point inputs in the upstream
and downstream ends of the channel. The upper plane hydrograph is
translated to the downstream end, using the approximate kinematic
routing and the hydrograph denoted by QL is obtained. The addition of
QP and QL in a time proper manner Produces Q, the total discharge
hydrograph.

Figure 3.9 presents the sketch for the approximate kinematic
routing, as well as some variables used during the development,

The total plane hydrograph Qp is computed as
Q =L, g (3.68)
where q is computed using Equations (3.37) to (3.41) or Equations

(3.443) to (3.47) depending on whether there ig concentration on the

plane or not.
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Equation (3.48) defines the characteristic paths for the channel,

(3.7), the former becomes

(24
o

g% = acﬁc[g—]l-l/ﬁc (3.69)

upstream end and tL the time at which the wave arrives downstream, the

following result is yielded after integration of Equation (3.69)

L, - afc [S—Jl'l/ﬂc (t, - t) (3.70)

c

Now, as Q is the discharge in the channel, at this point it ig

the downstream end of the channel.
3.6.1 Routing the Rising Limb
No matter which case is under analysis, the rising limb for the

hydrograph entering the upstream end is given by

Q = L 6% 8P (3.71)

Making Q = Qp and taking Equation (3.71) to (3.70),
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L a (i t)ﬁp l-l/ﬁc
cp- €

L, = aBc (¢, - ©) (3.72)

[0 4
Cc

This equation may be used in two different ways: 1) given a
value of t, time at which a given discharge enters the channel

upstream end, Equation (3.72) yields the time t. at which such

L
discharge arrives downstream; 2) if tL is specified in advance,
Equation (3.72) gives the time t at which a given discharge was
produced upstream.

As will be seen later, the second way is the more adequate for
computational purposes, but requires a numerical algorithm in order to
solve for t.

However, the first way of using Equation (3.72) enables the

formulation of some limitations for the approximate kinematic routing.

If CL is obtained as a function of t

b ¢ |V gpaspe-y |
c apL i Ap

(3.73)

one realizes that due to the values of Bp and fc used in this study

(Bp = 5/3, Bc = 1.233) two sentences can be done

Lim t, = (3.74)
t=0
Lim £, = = (3.75)
t—roo

which allows one to conclude that for some value of t there is a

maximum for tL denoted t1 below of which the approach is no longer
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valid (Figure 3.9). Making dtL/dt = 0 and solving , the limiting value

of t, denoted tpl’ is given by

acﬁcz Lcapieﬂp l-l/ﬂc ﬁC/[ﬁp(l-ﬁC)-ﬁCJ
£ . = . (3.76)
pl L.Bp(Bec-1) o,
Consequently, the value of tLl can be calculated as
- % [VHER gp(i/e-1)
tLl_cxﬂc 3 tl +t1 (3.77)
c a L i PP P P
pce

It must be pointed out that the variables denoted at tpl and €1 do
not have any physical meaning. They just mark a boundary for the
applicability of the approximate kinematic roating, to be analyzed
further.

Therefore, as shown in Figure 3.9, the routed rising limb would
be given by curve CBD. Obviously, the branch BC does not present any
physical meaning. Therefore, it is proposed to approach this part by
the straight line AB. The validity of this assumption will be

verified later.

3.6.2 Routing the Plateau
Whether there is concentration on the planes or not, the time
duration of the plateau is known. Denoting by Dp such duration, for

concentration on planes it is given by

D =t -t (3.78)
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and for the case of no concentration

D =¢ . ¢ (3.79)

The first point on the plateau, corresponding to the t, or €
whichever is the case, must be routed following the procedure
described in the Previous section, i.e., Equation (3.72). The
corresponding discharge will have 1 travel time given by the

difference between the downstream arrival time and the upstream

entering time. This means, that for the two cases aforementioned, the

travel time is given by

tp =t -t (3.80)

CT = tL -t (3.81)

where tT with the subindex ¢ or € stands for the travel time with

concentration or no concentration respectively; similarly for t.. but

L’
denoting the downstream arrival time.

As the discharge remains constant in the plateau, all points will
have the same travel time, and neither shortening nor elongation of
the plateau length will take place. 1In other words, for routing the
plateau, one calculates the travel time for the first point or maximum
discharge in the upstream hydrograph and then translates it. The same

length of the plateau, beginning at this last point, appears at the

downstream hydrograph.
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3.6.3 Routing the Receding Limb

The last point in the plateau or the first point in the recession

curve has been already solved as explained above. The recession limb

is routed by solving simultaneously the following set of equations

L o
t - c (_C)]-'l/ﬂp

L acﬂc Q + t (3.82)
apyﬁp+l [31’: + Bp(t - te)J B 0 (3.83)
Q - L apyﬁp (3.84)
Q - Q (3.85)

The first equation, obtained from (3.70), gives the downstream

time. The second one includes the depth at the pPlane outlet at a time

t, necessary to calculate the discharge by means of Equations (3.84)

and (3.85). Equation (3.85) is the condition of no attenuation.

There are five unknowns in the four equations: £, tL’ Q, QL and

Y. In order to solve the system, one has to specify one of them.

Again, as in the routing of the rising limb, one can specify t or t

L L]

and, as it will be stated further, the more adequate is t; . Anyway,

No matter which time one specifies, a numerical scheme is needed to

solve the system and obtain at last, QL and t or tL'
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Routing

Up to this point, two hydrographs are known. The first one is

the hydrograph entering the upstream or the downstream end of the

channel, denoted by Qp. The second is the hydrograph produced when

Qp’ entering the upstream end, is routed to the channel outlet,
producing the hydrograph denoted by Q. The addition to QP and Q; in

a timely proper manner yields the total hydrograph Q, or
Q(t) = Q(8) + Q (t) (3.86)

Although one is able to compute the discharge and timing for the

individual hydrographs,

due to the following facts it is difficult to

.obtain an analytical closed expression for the total hydrograph:

L The hydrograph at the plane outlet can only be expressed in
an analytical closed manner for the rising limb and for the
plateau, but not for the recession limb, where some

2.

numerical scheme must be used to solve the equations.
The routed hydrograph can not be computed in a straight

forward manner. Especially the routing of the recession

limb requires the solution of a set of equations, which can

only be obtained using some numerical algorithm,

The aforementioned limitations require a procedure for

computation which begins by calculating the plane hydrograph for a

time increment uniform along the simulation horizon. Obviously, the

points where the hydrograph is not continuous do not agree with such

criteria. Then, the discontinuity points in the hydrograph arriving

downstream are computed and the whole hydrograph is calculated using
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the same time step and the proper expressions for each part. 1In this
case, the values for the time are specified in such a way that they
agree with those times in the upstream hydrograph. Finally, the
hydrograph ordinates with the same time values are added, yielding the

total hydrograph at the channel outlet.

3.8 Application of the Approximate Kinematic Routing Method
In this numeral, the approximate kinematic routing is applied to
a small watershed formed by two symmetrical planes and one channel,

with the following characteristic values:

Plane width: W =658 ft
Plane roughness: np = 0.30
Plane slope: Sp = 0.096
Channel iength: L. = 1861 fc
Channel roughness: n, = 0.04
Channel slope: SC = 0.026

The applications were performed for rainfall intensities of 1.0,
5.0 and 10.0 in/hr. The rainfall durations were selected in an
arbitrary way, in order to show how this parameter gives rise to the
same four cases described in Table 3.1. The objective of this section
is to compute, for each case, the discharge hydrograph for the whole
catchment area using the approximate kinematic routing, to compare
this hydrograph with that obtained via detailed kinematic simulation
(Appendix A) and to formulate approximate expressions to compute the
Peak discharge and time to peak for each case. Whenever is possible,

the approximate expressions are compared with the analytical solutions
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derived in Section 3.5, The tool for the approximate kinematic

routing was a FORTRAN computer program.

3.8.1 Case 1: Concentration on Plane and Concentration on Channel
For this case, the rainfall effective duration t Produces
concentration in the Planes, in the channel and in the whole
watershed. The following times are defined in Figure 3.10 and the
eXpressions for their computation are given in Equations (3.90)

through (3. 94) .

t.: concentration time for the planes

tpl: minimum upstream time generating downstream discharge
tle minimum downstream time

th: initial downstream time for the plateau

€ final downstream time for the plateau

From the approximate kinematic point of view, concentration on
the stream, which does not require concentration on Planes, means that
the plateaus for the two hydrographs at the downstream end have a
common time interval during which equal discharges take place. Hence,
concentration in the planes and in the channel implies concentration
in the whole watershed.

The condition for Case 1 Ls:

te > E >t St (3.87)

Le c L1

The expressions recommended for approximating the peak discharge Q

and time to peak t are:

Q = 2L Wi (3.88)
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o = th (3.89)

B, ~ -3 (3.90)
2 . Bp|Bc-1 Bc
e S ;cf; . “e%le |"pc | TAp(1-po)Be] ——
P 5 P Cc- Q’c
L, a, 1-1/8c o)
[ ¥4 = + £ ¥
Rl acﬂc Lcap(ietpl)ﬂp ek
L [e Ji-v8c  |wi 1-PP|1/p
B —c_ g (3.93)
Le acﬁc LCW1e ap
LC @, 1-1/8c o
“Le T a_fe Lwi_ i, (3:94)

Equatidn (3.88) for computing the peak discharge agrees completely
with Equation (3.61). Equations (3.60) and (3.59) for computing the

time to peak can be written in a similar way to Equations (3.89) and

(3.93) as

L, [ape Ao/Be-D1-1/8c [ 1-pp]1/8p
tm T a Bc 2L Wi % a (3,992
e e P

[t

Equations (3.95) and (3.93) are similar in shape. The first term in
both of them stands for the holding time in the stream and the second

for the concentration time for the planes. However, the holding time
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in the stream in Equation (3.95) includes additionally the coefficient
[(ﬂc/z)ﬂc/(ﬁc'l)]l'l/ﬁc which evaluated numerically for Jec = 1.2333
yields 1.0818. This means that under the assumption of the channel
cross-sectional behaving as the value defined by Bc, the first term in
Equation (3.93) underestimates the channel holding time by
approximately an 8%. Therefore, the applicability of Equations (3.89)
and (3.93) depends on the channel holding time-plane concentration
time ratio; the smaller the ratio the more applicable the equations.
Figure 3.11 presents the application of Case 1 to the example

catchment.

3.8.2 Case 2: Concentration on Plane and No Concentration on Channel

The rainfall duration enables the development of concentration in

the planes, but no concentration on the channel nor in the whole

watershed, as shown in Figure 3.12. The times are defined as in Case

1 and the expressions for computing them are the same. The condition
giving rise to Case 2 is
> > i

th > te t. tLl (3.96)

and the approximate expressions for the peak discharge Qm and the time

to peak t, are
Qm - ZLCWie (3.97)

t, = (&, + € )2 (3.98)
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Notice that when te = th, Case 2 becomes Case 1. Figure 3.13 depicts

the results for Case 2 when applied to the catchment example.

3.8.3 Case 3: No Concentration on Plane and Concentration on Channel

The rainfall duration for Case 3 is such that it does not
geénerate concentration in the lateral planes, but does in the stream.
Hence, no concentration is attained in the whole watershed. Figure
3.14 presents the notation for Case 3. The times are defined as

follows, upon the basis that te stands for the effective rainfall

duration:
tpl: minimum upstream time generating downstream discharge
tLl: minimum downstream time
tp ¢ final upstream time for thg plateau

tLe: initial downstream time for the plateau
tLp: final downstream time for the plateau
The condition generating Case 3 is
L € S ¢
c e

L1 and r:p > tLe (3.99)

The equations needed to compute the characteristic times are:

¢ Pl . . W (3.100)
o fp(i ¢ )PP-1
p e e

2 ; Bp|Bec-1 Be
. a_fe Leagi, Be [[Bp(1-Bc)-Bec] (3.101)
pl L. Bp(Bc-1) % e |

L, a 1-1/Bc
)ﬁp

- (3.102)
Ll aBe |t & (1t
cpepl
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L, o, 1-1/8c¢
t., = + ot (3.103)
Le afe 1 o (i yBP e
cpee
LC a, 1-1/8c
Cp. = o i 3 +t (3.104)
P %P L a (it )PP P
cCpee

Finally,

discharge and its time are:

Q, = 2L (it )P (3.105)

m Le (3.106)

Equation (3.105) provides the same result as the analytical result for

Case 3. The time to peak, from Equations (3.64) and (3.65), can be

rewritten as

Lc O'c ﬁcﬁc/(ﬂc-l) l-l/ﬂc
£t = + t (3.107)
TP L a (it yBP g
C pee
The same analysis as presented for Case 1 is valid for Case 3. The

first term in Equation (3.103) or the stream holding time gives an
approximate error of 8% and the adequacy of this equation depends
again on the relative values of the channel holding time and the

effective rainfall duration.

Figure 3.15 presents the application of Case 3 to the example

catchment,

the recommended approximate expression for the total maximum

B
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3.8.4 Case 4: No Concentration on Plane and No Concentration on
Channel

does not enable concentration in any component of the watershed. The
different characteristic times are defined and computed as in Case 3.
Using Figure 3.16 as a definition sketch, the conditions giving rise

to Case 3 are

t:c > te > tLl and tLe > tp (3.108)
The equations used to approximate the peak discharge Qm and its time
t are

m

Q, - 2Lcap(iete)ﬁp (3.109)

Figure 3,17 Presents the application of Case 4 to the example

watershed.

direct runoff Process in a first order Stream. Hence, the best way to
perform a test on the validity of the simplified method is to compare
its results with those obtained via detailed simulation, using the

hydraulic routing model described in Appendix A.
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All the experiments were performed for the first order watershed
described at the beginning of this section, applying detajiled
simulation, the simplified kinematic routing and the exXpressions

recommended in each case to approximate the peak pParameters. Hence

AC%) = (Value) - (Value)s

(Value)s X 100 (3.111)

where (Value) stands for the estimation via the simplified kinematic
routing or via the approximations, for any peak parameter, and
(Value)s stands for values obtained using detailed simulation,

First, Table 3.2 presents the comparison of results for those
cases where an analytical solution is possible. The comparison is
done in terms of the simulated, approximated and analytical results.
The results summarized in Table 3.2 allows one to conclude, as it was
eéxpected, that the analytical solution does better than any other
approach, even the simulation. This is due to the fact that the
detailed simulation model described in Appendix A is also an
approximation, even for the first order Stream, since the lateral
Planes hydrographs are added and translated into inflow histograms, a
step in which some accuracy is lost.

Table 3.3 presents the results for those cases where no
analytical exact solution is feasible. They show that, for the
selected example, the simplified kinematic routing and the approximate
éxpressions for the peak parameters provide good estimation. For

example, for the peak discharge, the maximum percent difference in

L.

aru SRR R




Table 3.2.

Comparison of results for Cases 1 and 3.

SIMULATION ANALYTICAL APPROXIMATION
Case i, e Q, “m U b a0 A 9, i A At
(in/hr) (min) (cfs) (min) (cfs) (min) (%) (%) (cfs) (min) (%) (%)
1 1.0 70 56.7 54 56.7 52 0 “3s.d 56.7 52 0 -3.7
3 1.0 25 Z1.1 34 2711 34 0 0 23.1 33 0 -3.0
1 5.0 35 283.5 29 283.5 29 0 0 283.5 29 0 0
3 5.0 15 1319 21 131.7 %1, -0.2 0 131.7 20 =0.2 -5.0 o
—
1 10.0 25 566.9 23 566.9 23 0 0 566.9 23 0 0
3 10.0 12 287.7 17 288.3 17 0.2 0 288.3 16 0.2 -5.9
Plane width: W =658 ft Channel length: Lc = 1861 ft
Plane roughness: n_ = 0.30 Channel roughness: n,=0.04
Plane slope: Sp = 0.096 Channel slope: SC = 0.026



Table 3.3. Comparison of results for Cases 2 and 4.

SIMULATION SIMPLIFICATION APPROXIMATION
s ie te U “in Qm “m ﬂqm Atm Qm i AQm AL,
(in/hr) (min) (cfs) (min) (cfs)  (min) (%) (%) (cfs) (min) (%) (%)
2 1.0 50 56.4 51 54.8 51 -2.8 0 56.7 51 0.5 0.0
4 1.0 40 46.0 47 44.9 47 2.4 0 46.2 46 0.4 -2.1
2 5.0 25 269.9 26 249 .4 28 -7.6 7.7 283.7 27 ik 3.9
b4 5.0 20 211.8 24 203.6 25 =38 4.2 212.8 25 0.5 -3.9 &
ra
2 10.0 20 550.0 21 510.2 22 -7.2 4.8 567.6 21 3.2 0
4 10.0 15 412.9 18 388.9 19 =978 5.6 418.2 19 1.3 -5.8
Plane width: W = 658 ft Channel length: L, = 1861 ft
Plane roughness: np = 0.30 Channel roughness: n, = 0.04
Plane slope: Sp = 0.096 Channel slope: S, = 0.026
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absolute value given by the simplified method is 7.6% whereas for the
approximation it is around 5.1%. In the same order, for the time to
peak, one obtains 9.1% and 5.8%. It is also important to point out
that the maximum time difference does not exceed two minutes (2.0
min) .

Up to this point of the development, it seems to be that the
approximate expressions for peak discharge and time to peak are
adequate for estimation in a first order stream. Also, from Figures
311, 3.13, 3.15 and 3.17 ons concludes that the simplified kinematic
routing is able to predict the time distribution of the discharge in a
fairly good manner.

In order to make some final judgements about the applicability of
the method, two other aspects must be analyzed. The first one is
given by the lower boundary established for the effective rainfall
intensity, denoted by ti1- On the other hand, the example herein
developed presents the feature of small holding times in the channel
compared to those for the Plane. Besides, the analysis made for the
approximation and exact solutions for Case 1 and Case 3 in Sections
3.7.1 and 3.7.3 suggests that the larger the channel (or its holding
time) and the shorter the plane (or its holding time) the worse the
approximation. The first aspect to be analyzed, the lower boundary
tLl’ intends to replace it by zero.

The second one, related to both Cases 2 and 4 intends to improve
the purposed approximated expressions. However, further analysis is
required for Cases 2 and 4; Cases 1 and 3 are completely accepted and
described by the analytical solutions. Under the acceptance of the
analytical solutions for Cases 1 and 3, the equations describing Cases

2 and 4 can be rewritten as follows:
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- Case 2: Concentration on Planes and No Concentration on Channel

tk > £ >k (3.112)
[ Cc
Qm =2L Wi €3.113)
c e
tm = (te + t*) /2 (3.114)

where t* is the concentration time for the whole catchment area and is
given in Equation (3.59)

- Case 4: No Concentration on Planes and No Concentration on

Channel
t >t >0 and t <t + t" (3.115)
o] e P e s
Q =2L a (it )PP (3.116)
m c p e e
tm = (tp + te + t;)/z (3.117)

where t; is the holding time in the channel when there is concentra-
tion on this element, but not on the planes, and is computed using
Equation (3.64).

The condition differentiating Cases 3 and 4 is the relationship
between tp and €, -+ t;. When the rainfall intensity is such that tp
is greater than L, + t;, Case 3 is attained; when the opposite condi-
tion is true, Case 4 appears. For given catchment configuration and
given effective rainfall intensity, a function f(te) - tp S R

e s

can be defined as
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W LC 1/Bc ) Eﬁ

f(te) - (3.118)

apfolit )PPt la (20 (i e )PP fel A

such that f(te) > 0 means Case 3 and f(te) < 0 defines Case 4.
Through all the development it was realized that the effective
rainfall intensities for Case 4 (f(te) < 0) are greater than the rain-
fall intensities for Case 3 (f(te) > 0); even for some catchment con-
figurations and intensities Case 3 may not be defined. Anyway, as

Case 3 has an analytical solution, the lower boundary t can be

Ll
replaced confidently by zero. Under this reformulation of the
problem, Table 3.4 presents the holding times for the plane and the

channel used as example in this section, applicable to the aspects to

be analyzed for Cases 2 and 4.

3.9 Improvement of the Equations to Compute Peak Variables

In the preceding section it was established that some
shortcomings for the approximated peak variables may arise when the
holding time in the channel is similar or even greater than the
holding time in the plane.

In order to solve this problem and since no further analytical
solution is possible, the tool used to improve the peak variables for
Cases 2 and 4 was regression analysis. -To perform this, five
different plane-channel configurations were defined, which are
expected to represent a wide range of cases. The values defining each
configuration are presented in Table 3.5, where Ep and ¢ o represent
the inclination angle for the plane and the channel, and except for

Configuration 5, they are related via (Garbrecth, 1984)



Table 3.4. Typical holding times for Cases 2 and 4.

Case ie t. t. e L* tc/ts te te/L;
(in/hr) (min) (min) (min) (min) (-) (min) (-)
2 1.0 50 45.2 7 2 52.4 6.3 -- --
4 1.0 40 - - -- -- 7.4 5.4
2 5.0 25 28.6 5.3 33.9 5.4 - £
4 5.0 20 - - -- -- - - 5,6 3.6
2 10.0 20 18.0 4.6 22.6 3.9 -- - -
4 10.0 15 22 -- o o 4.9 i !
Note: -- means time uot applicable for the respective case.
Plane width: W = 658 ft Channel length: L, - 1861 ft
Plane roughness: B ™ 0.30 *  Channel roughness: n_ = 0.04
Plane slope: s = 0.096 Channel slope: s = 0.026

P c

98
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Table 3.5. Configurations to improve peak variables for Cases 2 and 4.

c i "
onfiguration W Sp Ep L. Sc BC
(ft) (-) *) (ft) (=) £-d
1 2618 0.176 10 990 0.055 )
2 658 0.364 20 1861 0.131 7.5
3 356 0.577 30 4966 0.220 12.4
4 2618 0.577 . 30 990 0.220 12.4
5 356 0.100 Fud 4966 0.010 0.6

5] (3.119)

s, = tan[(sp/4)1'2
In Table 3.5 the roughness for plane and channel were held
constant in 0.30 and 0.04 respectively. For each of the
configurations, six.effective rainfall intensities were used, 0.5,
1.0, 2.0, 4.0, 7.0 and 10.0 in/hr and for each intensity proper
effective durations were chosen to generate Cases 2 and 4. Table 3.6
list typical time values for Case 2 and Table 3.7 does for Case 4.
Tables 3.8 and 3.9 present the basic data needed to perform the
regression analysis, for Cases 2 and 4 respectively. The data is made
up of the peak variables, obtained by simulation and using the
approximate expressions defined by Equations (3.112) through (3.117).
The first variable to be analyzed is the time to peak. Figures
3.18 and 3.19 present a graphical comparison of the forecasted and
simulated values. Besides, Tables 3.8 and 3.9 show that the maximum
percent difference are 10 and 12% for Case 2 and 4 respectively, the
maximum absolute differences being two (2) and three (3) minutes. The
graphical comparison along with the magnitude of the errors allows one
to conclude that the approximation proposed is good enough, and no

further improvement is required for the time to peak. Furthermore,
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Table 3.6. Typical time values for Case 2. (t* > t, > tc)

Configuration i t t t t* t /t

e e c s ¢’ s
(in/hr) (min) (min) (min) (min) (=)

1 0.5 115 113.9 2.8 116.7 40.7
1.0 87 86.3 2.4 88.7 36.0

2.0 66 65.4 2.1 67.5 31,1

4.0 50 49.6 1.9 51.5 26.1

7.0 40 39.6 1.7 41.3 23.3

10.0 35 34 .4 1.6 36.0 21.5

2 0.5 42 40.0 4.2 44 .2 9.5
1.0 32 30.3 3.7 34.0 8.2

2.0 25 23.0 3.3 26.3 7.0

4.0 18 17.4 2.9 20.3 6.0

7.0 15 13.9 2.6 16.5 5.3

10.0 13 12.1 2.4 14.5 5.0

3 0.5 28 24.1 8.6 32.7 2.8
1.0 22 18.3 7.5 25.8 2.4

2.0 16 13.8 6.6 20.4 2.1

4.0 14 10.5 5.8 16.3 1.8

7.0 10 8.4 5.2 13.6 1.6

10.0 10 7.3 4.9 12.1 1.5

4 0.5 80 79.8 1.6 8l.4 49.9
1.0 61 60.5 1.4 61.9 43.2

2.0 46 45.8 1.2 47.0 38.2

4.0 35 34.7 1.1 35.8 31.5

7.0 28 27.8 1.0 28.7 27.8

10.0 -- 24.1 0.9 25.0 26.8

5 0.5 50 40.8 29.9 70.7 1.4
0.5 60 40.8 29.9 70.7 1.4

1.0 35 30.9 26.3 57.2 1.2

1.0 45 30.9 26.3 57.2 1.2

2.0 27 23.4 23.0 46.4 1.0

2.0 40 23.4 23.0 46 .4 1.0

4.0 20 17.7 20.2 37.9 0.9

4.0 40 L7.7 20.2 37.9 0.9

7.0 18 14.2 18:.2 32.4 0.8

7.0 28 14.2 18,2 32.4 0.8

10.0 15 12.3 17.0 29.3 0.7

10.0 25 12.3 17.0 29,3 0.7
Note: -- means no effective rainfall duration due to narrow range of

variation.
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Table 3.7. Typical time values for Case 4 (e, >t >0 and tp<te+t;).

Configuration i 5 £ £ t! € /t"
e e o 2] s B8

(in/hr) (min) (min) (min) (min) (-)

1 0.5 112 113.9 113.9 2.8 40.0
1.0 84 86.3 86.4 2.5 33.6

2.0 64 65.4 65.4 2.2 29.1

4.0 48 49.6 49.6 1.9 25.3

7.8 . 39 39.6 39.6 1.7 22.9

10.0 33 34.4 34.4 1.6 20.6

2 0.5 37 40.0 40.1 4.3 8.3
1.0 27 30.3 30.5 3.9 6.9

2.0 21 23.0 23.0 3.4 6.2

4.0 15 17.4 17.5 3.0 5.0

7.0 12 13.9 14.0 2.7 4.k

10.0 10 2.1 12.2 2.6 3.8

3 0.5 20 24.1 24.4 L 0 252
1.0 15 18.3 18.5 8.0 1.9

2.0 9 13.8 14.7 75 L2

4.0 6 10.5 11:5 6.9 0.9

7.0 7 8.4 9.1 Gl 11

10.0 5 73 7.6 5:5 0.9

4 0.5 79 79.8 79.8 1.6 49.4
1.0 60 60.5 60.5 1.4 42.9

2.0 45 45.8 45.8 1.2 37.5

4.0 34 34.7 34.7 1.1 30.9

7.0 27 27.8 27.8 1.0 1.0

10.0 -- 24.1 -- -- --

5 0.5 35 40.8 41.1 31.4 2P |
0.5 30 40.8 42.0 33.0 0.9

0.5 25 40.8 43.9 34:.9 0.7

0.5 20 40.8 47.3 37'.5 0.5

1.0 25 30.9 31.4 28.1 0.9

1.0 20 30.9 32.8 30.1 0.7

1.0 10 30.9 43.3 7.5 0.3

2.0 20 23.4 23.6 24.2 0.8

240 15 23.4 24.9 26.5 0.6

2.0 10 23.4 28.8 30.1 0.3

4.0 10 7.7 19.6 24.2 0.4

4.0 5 o 26.8 301 0.2

720 10 14.2 14.7 20.3 0.5

7.0 5 14.2 (% & 25.2 0.2

10.0 10 12.3 12.5 18.1 0.6

10.0 5 12.3 15.5 22.6 0.2
Note: -- means no effective rainfall duration due to narrow range of

variation.
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Table 3.8. Simulated and approximate peak variable values for Case 2.

SIMULATION APPROXIMATION

Configuration i, t, Q, th Q, th
(in/hr) (min) (cfs) (min) (cfs) (min)

1 0.5 115 59.8 116 60.0 116
1.0 87 119.3 88 120.0 88

2.0 66 238.7 67 240.0 67

4.0 50 476.7 51 480.0 S1

7.0 40 832.9 41 839.9 41

10.0 35 1193.6 36 1199.9 35

2 0.5 42 28.1 43 28.3 43
1.0 32 56.0 33 56.7 33

2.0 25 11.3..0 25 113 .4 26

4.0 18 216.6 18 226.8 19

7.0 15 389.9 15 396.8 16

10.0 13 555.2 13 566.9 14

3 0.5 28 39.3 30 40.9 30
1.0 22 78.8 23 81.8 24

2.0 16 150.2 17 163.7 18

4.0 14 316.7 14 327 .4 15

7.0 10 510.3 11 572.9 12

10.0 10 17957 10 818.5 11

4 0.5 80 59.7 81 60.0 80
1.0 61 119.6 62 120.0 61

2.0 46 239.1 47 240.0 47

4.0 35 479 .4 36 480.0 35

7.0 28 839.9 29 839.9 27

5 0.5 50 35.5 60 40.9 60
0.5 60 39.6 65 40.9 65

1.0 35 63.3 47 81.8 46

1.0 45 76.4 51 81.8 51

2.0 27 121.0 37 163.7 37

2.0 40 159.4 42 163.7 43

4.0 20 219:7 30 327.4 29

4.0 32 316.2 34 327 .4 35

7.0 18 404 .9 25 572.9 25

7.0 28 559.0 29 572.9 30

10.0 15 5307 23 818.5 22

10.0 29 794.0 26 818.5 27
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Table 3.9. Simulated and approximate peak variable values for Case 4.

SIMULATION APPROXTMATION
Configuration i te Q, th Qm s
(in/hr) (min) (cfs) (min) (cfs) (min)
1 0.5 113 58.2 115 58.3 114
1.0 84 114.6 87 114.6 87
2.0 64 230.9 66 231.3 66
4.0 48 454.5 50 454 .6 50
7.0 39 810.3 41 817.3 40
10.0 33 1121.0 35 1121.0 35
2 0.5 37 24.8 41 24.9 41
1.0 27 46.7 31 46.7 31
2.0 21 971 23 97.6 24
4.0 15 176.8 17 176.8 18
7.0 12 309.8 14 309.8 14
10.0 10 414.3 12 414.3 12
3 0.5 20 28.7 26 30.0 27
1.0 15 55.6 20 58.9 21
2.0 9 78.7 15 19,9 16
4.0 6 127.3 12 129.0 12
7.0 5 232.9 10 242.0 14,
10.0 5 394.1 9 438.4 9
4 0.5 79 58.8 81 59.0 80
1.0 60 1177 61 118.4 61
2.0 45 231.7 46 232.8 46
4.0 34 462.4 35 463.3 35
7.0 27 801.7 28 801.7 28
5 0.5 35 25.2 55 31.7 54
0.5 30 21.0 54 24.5 53
0.5 25 16.5 53 18.1 52
0.5 20 12.1 53 12.5 52
1.0 25 44.3 44 57.5 42
1.0 20 33.6 42 39.6 41
1.0 10 12.4 45 12.5 45
2.0 20 88.0 35 125.8 34
2.0 15 61.9 35 7719 33
250 10 35.8 36 39.6 35
4.0 10 96.3 29 125.8 27
4.0 5 36.9 33 39.6 31
7.0 10 207.1 25 319.8 23
7.0 5 83.0 28 100.7 25
10.0 10 333.3 23 37949 20
10.0 5 136.9 25 182.5 22
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Figure 3.18.

Estimated time to peak
: Simulated time to peak

Forecasted time to peak for Case 2.
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Figure 3.19. Forecasted time to peak for Case 4.
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this conclusion is reinforced by the fact that this variable is not
required for the derivation of the flood frequency distribution, the
main objective of this work.

During the regression analysis performed on the peak discharge,
some considerations were made. First, variables with a truly physical
link with the problem were selected, and second, those variables were
made dimensionless, in such a way that the obtained relationship can
be applied to other configurations with a certain confidence. This
last consideration solves, at least in part, the problem of the
reduced basic data to perform the regression, where it is practically
impossible to cover all configurations.

For the sake of illustration, Figures 3.20 and 3.21 present the
forecasted peak discharge. The objective of the regression analysis
is to bring all points as close as possible to the perfect agreement
line.

Equations (3.113) and (3.116) forecast the peak discharge for
Cases 2 and 4, but these equations are the same for Cases 1 and 3
respectively. Hence, a good selection for the dependent variables for
Cases 2 and 4 is given by the ratio, expressed in percentage, between

the true discharge and the forecasted discharge, or

%ns

AQ = 7 x 100 (3.120)
na
where Qms stands for the peak discharge obtained by simulation and Qma

does for the approximation, i.e. when Equations (3.113) or (3.116) are

applied, whichever is the case. In other words, AQ represents the
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percent of the peak discharge under concentration that appears at the
catchment outlet when there is no concentration.

The selection of independent variables can be done by considering
that in Case 2 no concentration is attained, since the effective
duration €, is less than the total time of concentration. The first

independent variable for Case 2 is proposed to be

- &
At = T X 100 (3:.:121)

The second variable involves the distance Xp

teristic starting at x =0 and t = t. when t = o> obtained by inte-

traveled by the charac-

gration of Equations (3.38), (3.40), (3.50) and (3.48) as

Bc-1

xg = a (W i) (t, - cc)ﬁc (3.122)

The dimensionless independent variable is defined as

Ax = — x 100 (3.123)

The independent variables At and AXx represent, in a certain way, the
percentage of concentration attained in Case 2 with respect to Case 1.
Following a similar reasoning, the independent dimensionless

variables for Case 4 are defined as

t

_ — D
At te Py t; X 100 (3.124)



Xy = a_[2 ap(iece>ﬁp]ﬁ°'1 (e - v 7 (3.125)
*R

ax = 28 x 100 (3.126)
&

Once the variables to be entered in the regression analysis have been
defined, a last consideration is taken into account. In order to
preserve mathematical cdntinuiCy between the analytical and
approximate equations, any chosen regression model must provide
AQ = 100 for At = 100 and Ax = 100. In addition to the inclusion of

this point into the regression data set, and since any proposed model
will not pass exactly through the forced point, some transformation
must be performed on the selected model. Such a transformation can be
either the subtraction of the residual for AQ = 100 or the division by
the estimated wvalue for AQ = 100. The transformation yielding the
minimum regression standard error and the minimum maximum percent
error was chosen in each case.

After performing all the necessary computations and analyzing
different kind of models, the model giving the best fitting was
defined by the independent variables in the natural logarithm space
and the dependent variable in the real space. The model selected for

Case 2 is

AQ = -129.697 + 49.878 Ln At (3.127)

Similarly, for Case 4

AQ = -118.552 + 47.458 Ln At (3.128)
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At last, Ax was not included in the models, since its contribution to
the explained variance of AQ was not significant, 1.7% and 0.7% for
Cases 2 and 4 respectively.

Table 3.10 summarizes the properties for the models presented in
Equations (3.127) and (3.128). For Case 2 AQ varied between 100 and
64.8 while At wvaried between 100 and 51.20. The same variation

ranges for Case 4 were 100, 57.52 and 100, 44.48.

Table 3.10. Properties for the regression models for Cases 2 and 4.

Property Case 2 Case 4
Coefficient of determination 0.959 0.951
Standard error (%) 2.04 2.56
Maximum percent error (%) 5.74 7.03

Plugging Equations (3.113), (3.120) and (3.121) in (3.124) che

resulting model for Case 2 is

100 t
e -
Qm = 0.02 [-129.697 + 49.878 Ln [——E;*—]] LC W i €3.,129)

Doing the same with Equations (3.115), (3.120), (3.124) and (3.128),

the equation recommended for Case 4 is

100 ¢t Bp
Qm = 0.02 |-118.552 + 47.458 Ln e+ t; LC ap(lete) (3.:130)

Figures 3.22 and 3.23 present a graphical representation of the

behavior of the forecasting models for Cases 2 and 4.
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101

1000.0

800.0 1

600.0

QE (CFS)

400.0

200.

Lo8 ]
D
2

00.9 1000.0

600.0
(CFS)

QE : Estimated peak discharge (improved)
QS : Simulated peak discharge

Figure 3.23. Forecasted discharge for Case 4 using the regression
model.
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3.10 Summarized Procedure for Computing the Peak Variables

This section is intended to present a summary of the equations
used to predict the peak discharge and time to peak, when an effective
rainfall intensity ie of duration t, is imposed over a catchment
area formed by a first order stream of length L and two symmetrical
planes of width W.

13 Step 1: Compute the coefficients and exponents in the area-

discharge relationship for the plane and stream.

o - L.486 (172 (3.131)
P n, P
P
Bp = 5/3 (3.132)
2/3
o o L.486 (0.25)77° (1/2 (3.133)
c n c
C
Bc =1+ 0.7/3 (3.133)

where n stands for roughness and S for slope, and p
distinguishes plane’s properties from stream's properties.

2. Step 2: Compute the following times

-

w 1 boAe|/ee
tc ol i (3.135)
L P
l L, 1/Bc
_— (3.136)
8 o (2 W i yBe-1
{2 e
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(3.137)

where t, is the concentration time in the plane, t, concen-

tration time in the stream given concentration on plane and

t* is the total time of concentration.

Step 3: Apply Case 1 when t, = t¥ as

Qm = 2 LC 1% ie

Step 4: Apply Case 2 when t* > t, = t. as

100 t
Q, = 0.02|-129.697 + 49.878 Ln |[——= L, Wi

t%

tm = (tE + t¥x)/2

Step 5: Compute the following times

Bp-1 W
C. = .+
) -1
P Bp e @, fp (lete)ﬁp

LC 1/Bc
Be-1

S 5
a (2 a (i.t) P

Step 6: Apply Case 3 when £, &k and L, ttl =t

Q, = 2 L, a (i, te)ﬁp

(3.138)

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)

as
P

(3.144)
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g Y (3.145)
m e s
7 Step 7: Apply Case 4 when E >t and t, + tg > tp as
100 t 8
Qm = 0.02|-118.552 + 47.458 Ln|——==||L « (i _t ) P (3.146)
t, + tg cpree
= (l:p +t, + t;)/Z (3.147)

3.11 Final Remarks on the Effective Rainfall-Runoff Model

As was stated in the introduction for the present chapter, and as
the interested reader may verify, the effective-rainfall runoff model
herein developed follows closely Eagleson’s work (1972), not only in
the notation, but in the determination of some characteristic times
for the catchment area. However, Eagleson’'s work lacks some
important features: first, the runoff cases considered depend on his
decision tree, which was reduced upon the basis of particular values
for rainfall intensity and discharge coefficients, and second, the
development does not cover all effective-rainfall runoff, for example
concentration on channel given no concentration on planes.

It is the believe of the author that the developed effective
rainfall-runoff model solves the shortcomings found in Eagleson's
study. Through the derivation and calibration of the effective
rainfall-runoff model, the variables describing roughness and the
hydraulic radius-area relationship for the channel were held constant.
The value of the roughness conditions the coefficient for the depth-
discharge relationship in the plane and for the area-discharge in the

plane. However, the variation on these coefficients was taken into
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account through variation of slopes. Besides, the calibrations was
performed on dimensionless variables, and the obtained expressions
account for all variables representing the Process under
consideration.

A serious shortcoming can be put on the model due to the fact
that regression analysis was employed. However, this fact can make
the model more flexible since the same technique may be applied to
other configurations, actual or hypothetical, depending on modeler’s
needs.

At last, the use of the model is recommended since it has been
obtained through analytical development combined with regression

analysis, the latter performed on dimensionless variables.



Chapter 4

FLOOD FREQUENCY DERIVATION

4.1 Introduction

The objective of this chapter is to put together the different
components of the flood frequency derivation technique.

For the rainfall-infiltration component, the results given by
Diaz-Granados et al. (1983) are taken.

The effective rainfall-runoff model has been already developed
and formally presented in Chapter 3.

Once this elements are put together an algorithm . for the
computation is developed and translated into a computer FORTRAN code,
to be run in the CYBER205. The wuser manual for this program is
presented in Appendix B,

The flood frequency derivation technique is applied to the five
configurations used in Chapter 3 (Table 3.5) and a sensitivity
analysis is performed. To improve any judgment about the
applicability of the method, this is applied to two real world small

watersheds.

4.2 Rainfall-Infiltration Component
In Chapter 3 an algorithm was implemented in order to estimate
the peak discharge and time to peak for a first order stream with

symmetrical lateral planes. The computation is performed as function
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of the effective rainfall intensity i, the effective duration t, and
the catchment geometry and dynamics.

Unfortunately, in real world watersheds, neither the effective
intensity nor the effective duration can be measured. In the best of
the cases, a cumulative rainfall depth record along time is obtained.
From the total precipitation depth and total duration t, an average
total intensity ir can be estimated. Now, if marginal or joint
probability distribution functions (pdf) are formulated for ir and tr’
along with an infiltration model, the joint pdf for i, and t, can be
obtained.

Following Eagleson (1972), it will be supposed, for the present
study, that the total rainfall point intensity ir and the total
rainfall duration t_ are independent exponentially distributed as

- * *- -
fIr(lr) = B exp(-B8 lr), i =0 (4.1)

fTr(tr) = § exp(-6 tr), tr =0 (4.2)
*
where f and § are given as
* ¥
B =1/i_ (4.3)
5§ = l/t:rm (4.4)

In the last two equations Irm and Erm represent the mean total

point rainfall intensity and mean total duration respectively.
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Eagleson (1972) propose the following expression in order to
account for the difference between point precipitation and areal

precipitation:
-1/4
k =1 - exp(-1.16 )[1 - exp(-0.01a )] (4.5)

where § is given in hours and A, the catchment area, in square miles,
and k represents the ratio between the areal total depth and point
depth precipitation. Furthermore, supposing that the duration for
both events, areal and point, area the same, he concludes that the

*
inverse of the mean areal precipitation, B, is related to B as
*
B=58/k (4.6)

Therefore, the pdf for the total areal rainfall intensity is

written as
fIr(ir) = f exp(-ﬂir), ir =0 (4.7)

and the joint pdf for ir and t; in view of their assumed independence,

as

fIr,Tr(ir’tr) = Bé exp(-ﬁir - Gtr ) (4.8)

For a uniform rainfall of intensity ir and duration tr,the

infiltration process is describe via the set of equations:

0 ol R (4.9)



f-%St"l/2+K,c<tst (4.10)
5 (] 7 1
52
t0 - ‘——‘————*—5 , ir > K (4.11)
2(ir )

where f is the infiltration capacity rate at any time t, S is the
sorptivity, KS the hydraulic conductivity and t is the ponding time,
defined as the time at which the upper layer of soil saturates and a
film of water forms, being able to generate  runoff  (Morel-
Seytoux, 1981).

Equation (4.10) can be recognized as Philip’s equation, with a
slight  difference, given by the fact that the gravitational
infiltration rate has been replaced by Ks’ value to which, in several
infiltration models, the capacity rate has to tend when the rainfall
duration is large (Morel-Seytoux, 1981). This assumption sounds valid
and add simplicity to the computations.

The sorptivity S measures the capacity of the soil to absorb
water, Based on Koch (1981), for a steady rainfall intensity, S can

be computed as
1/2
S = [ 2Ks(9S - Hi)HC] (4.12)

where 95 and ﬁi are the soil water content at natural saturation and
at  the beginning of the rainfall, respectively, both of thenm
dimensionless, and HC is the capillary drive or suction head.

Equation (4.11), obtained by Eagleson (1978) as an approximation,

gives the ponding time as a function of sorptivity, rainfall intensity
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and hydraulic conductivity. This last term appears in Equation (4.11)
by the same reason as in Equation (4.10).

Equation (4.9) through (4.11) state that when the time is less
than the ponding time, the infiltration capacity is greater than the
rainfall intensity and no runoff takes place. If ir is greater than
KS, progressively, the water content of the soil increases up to a
value when ponding 1is reached. After this, part of rainfall
infiltrates following Equation (4.10) while the remaining portion
produces runoff. Figure 4.1 depicts a schematic representation of the
rainfall-infiltration process.

The area denoted de in Figure 4.1 represents the effective depth

and was approached by Eagleson (1978) as
d. = (£ = KS) - S(tr/2)l/2 (4.13)
Defining the effective duration t, as
t =€ - ¢ (4.14)
the mean effective intensity is computed via

i =d/t, (4.15)

With the results presented up to this point, the probability of

null runoff, denoted by P[ie =0, te = 0] , can be computed as

i 4.16
P[tr st 1> KS] ( )



ie f

—

o]
—

-

Figure 4.1. Rainfall-infiltration process (Diaz-Granados et al.

(1983)).

11T
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The first probability can be obtained from Equation (4.7), as the

cumulative pdf of i evaluated at K_, yielding the result
Pli_ = R, = 1 - exp(-BK.) (4.17)

To compute the probability of the rainfall duration being less or
equal than tne ponding time when simultaneously the rainfall intensity
is greater than the hydraulic conductivity, the following integration

has to be performed

ro
PlE, =ty 1.2 K ] = B8 J: [ IKexp[-ﬁlr - Str]dlr]dtr (4.18)
S
The upper limit in the inner integral, iro’ must be obtained
from Equation (4.11) as a function of t. and it represents the
intensity generating a ponding time equal to such duration
1 -1/2

i = 3 St
r

o 5 + K (4.19)

Note that Equation (4.19) can also be obtained by replacing f and
t by ir and t. in Equation (4.10). Taking (4.19) to Equation (4,18),
solving the 1inner integral and taking this result along with

expression (4.17) to Equation (4.16), the null runoff probability is

P [L, =0, = 0] =1 - & exp(-BK) I:exp[ -5t =

-1/2
ps(2t.) ] de_ (4.20)

Equation (4.20) has no closed solution. Although one can solve

it numerically for particular values of the parameters, Eagleson
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(1972) presents an approximation for this kind of integral. Using his

own notation, he proposed

a Jmexp(-at - bt-m) dt = exp[-ﬁ ]a(-g+l) I'(o) (4.21)
0
1/(m+1)
o = a[%] (4.22)

provided ¢ 1is of order of unity. The notation I'(.) stands for the
Gamma function.
For the present case a = §, b = ﬂS/(Z)l/2 and m = 1/2. Therefore

the following results are yielded

P i, = 0,c, =0] =1 -T(0)o™" exp(-fK_ - 20) (4.23)

(4.24)
(2)3/26

g =6 [ ___ﬁﬁ__] o
Using the above results, Diaz-Granados et al. (1983) derive a
joint pdf for the effective intensity and effective duration. First,
they obtain the marginal distribution for the effective duration and
then multiply it by the conditional distribution for ie given t,-
This is
er,Te(le’te) - er/Te(le’te} fTe(te) (4.23)
In order to obtain the marginal distribution for e the following

operation is performed:
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d__ -
fTe(t:e) - dte (P[te = 0] + P[0 < 1:e < tell) (4.26)

i The first term in the derivative is equal to the null runoff
probability, since, as Diaz-Granados et al. (1983) stated, te is equal
to zero if and only if ie is equal to zero.

The second term between parenthesis in Equation (4.26) is
i obtained by double integration of (4.8), between t, and t_ + t, as
functions of ir along e direction, and between Ks and infinite along

ir' Again, an unsolvable integral is found, but a closed approximate

solution for (4.26) is finally obtained by letting the term between
parenthesis, the cumulative pdf for te’ tend to one when t:e tends to

infinite. The final result, reported by Diaz-Granados et al. (1983),

is
-g
fTe(te) = § I'(oc + 1)o exp(-ﬁKs - 20 - 5te) (4.27)

The evaluation of er/Te(le' te) requires the invertibility of

the function defined by Equations (4.13), (4.14) and (4.15), or

t . 1/2
. - -x)[1+—°]~ o ., -L (4.28)
e

The invertibility condition means that ir has to be obtained as a

function of ie and t,- This is necessary since

f ) (4.29)

Ie/Te(le’ te) - die FIe/Te(le‘ e
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or

£ 5w L

er/Te(ie' e die P[Ie = ie/ Ee} (%30

Now, expressing Equation (4.28) as Ie = g(Ir), since te assumes a

given value
£ (i, t)=3—plg1)<i/rc] (4.31)
Ie/Te e’ e die Bllpt = 4y e ;

Equation (4.31), applying the invertibility condition, gives

. d G
fle/reler to) = af, Pl =& (1) / ¢t (4.32)

In the right hand side term of Equation (4.32) one recognizes the
-1
cumulative pdf of ir’ evaluated at g (ie) for a given value of -

Making the explained replacement and developing the derivative

- =4
' ) ~ dg (ie)

fre/Tetler te) = £1.(87 (1)) di_ )

where the absolute wvalue [.| in the last term has been added in order

to account for the possibility of g'l(ie) increasing or decreasing
monotonically (Freeman, 1963).

Unfortunately, Equation (4.28) can not be inverted, since t0 is
a function of ir and t, depends on t,- In order to solve this
problem, Diaz-Granados et al. (1983) approached the above function by

1 performing regression analysis on some dimensionless variables,

obtaining for ir




k k k
i =143 Vg Zg 2 (6.34)
3 e e
with
kln 0.1558 (4.35)
k2= -0.0779 (4.36)
k3= (1 - kl ) (4.37)
Finally, the conditional pdf for ie is computed as
k k
: S |1 2
er/Te(le, t,) = 1.4434 k3ﬁ [ie] e
k k k
exp[ 1.4434 g s L £ " e, ] (4.38)

Plugging Equations (4.27) and (4.38) into (4.25), the joint pdf

for i and t is
o e
er,Te(ie' te) = 1.4434 k3 B 6 exp(-ﬂKS - 20) T(o + 1)

k k k, k, k
&7 [g—] L t 2 exp[ -éte - 1.4434 B S lie 3te 2 ]

4.3 Probabilistic Component
Once the joint pdf for ie and te has been presented, the

probabilistic component, already used in part in the previous section,
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deals with linking the rainfall-infiltration component and the
effective rainfall-runoff model.

The effective rainfall-runoff model was formulated in Chapter 3
and a summary is presented in Section 3.10.

The first objective of the probabilistic component is given by
the determination of the cumulative pdf for the peak discharge,

FQ (Q). Once this computation has been accomplished, the return
m

period for a given value of Q can be computed as (Eagleson, (1972);

Diaz-Granados et al. (1983))

p
r om0 Ry @]

T, (4.40)

where Tr stands for the return period. It represents the average
number of years elapsed between the occurrence of two events with the
same magnitude for Q. The term m, in Equation (4.40) denotes the
average number of independent rainfall events per year, from which
just one is selected to conform the flood annual series. Note that
Equation (4.40) does not consider any base flow discharge in the
watershed, term considered negligible within the present study (Diaz-
Granados et al. (1983)).

As stated above, before any application of Equation (4.40) is

intended, it is necessary to set up an algorithm for computing FQm(Q).

In the present development, as is the case in most of previous
related works, the randomness in the peak discharge is given by the
randomness in the rainfall. This means that no probabilistic behavior
is assigned to other variables, like soil and morphologic parameters,

except for Eagleson's work (1972), where he considered a variable



118

catchment width depending on rainfall conditions. However, this fine-
tuning will not be included in the present work.

By definition, the cumulative pdf for the peak discharge Q. is
By (@ = B [Q,(1,.5) s (4.41)

In words, (Q) gives the probability of the random wvariable Qm

L8
being less or equal than a certain value Q. Equation (4.41) points
out that the randomness in Qm depends on the randomness of ie and t, -
Hence, in order to determine the above probability, it is necessary to
integrate the joint pdf of ie and t, over certain regions. Figure
4.2 1illustrates the plane ie - t, and the regions where the
integration has to be performed. The boundaries for those regions
depend on the value given to Q. As stated through the development of
the effective rainfall-runoff model and summarized en Section 3.10,
four cases for computing the discharge are to be considered.

Although the definition of the boundaries depends on the wvalue
given to Q, for the sketch presented in Figure 4.2, these are

conformed as follows:

- Region 1: from t, =t  + t_ to le(ie,te) = Q for te1p tO

15 ;
emax

" . . =% = +
Region 2: from t, =t tot =t e for ta12 O topax and

from te = tc to QmZ(ie'te) = Q for t324 to te12'
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Figure 4.2. Integration regions for the flood frequency computation.
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- i : = - £ = ot and
Region 3: from €, tp Lo tot =t for ooy B0 s

from L = tp - t; to Qma(le’te) = Q for te43 to

teZ&‘

- Region 4: fromi =0to t =t t" for t to t nd
e e s e

P 43
from i, = 0 to Qm3(ie’te) = Q for Contn B0 L,

a
emax

43"

In the above definition, Qmi(ie,te) = Q stands for the functional
relationship wused to compute the discharge for Case i, i =1, .., 4.
Similarly, teij denotes the intersection point of Qmi(le,te) = Q with
the boundaries between two cases. For instance, teza represents the
intersection point of sz(le,te) = Q (or Qm&(le’te) = Q) with the
boundary between Cases 2 and &, L = Each region, as defined
above, delimits the zone where Qmi(ie,te) = Q, within the range of
application for Case i. Figures 4.3 through 4.7 present integration
regions for the five configurations used in Section 3.9 (Table 3.5)
and some values of Q.

Based on the aforementioned considerations, the cumulative pdf
FQm(Q) can be computed as

FQm(Q) = P[ 1e =0, te =0] +

4
‘E J .er,Te(ie‘ te)dledte (4.42)
i=] “Ri

where Ri stands for region i and the null runoff probability has been

included properly.
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Before any further step is given in regard to the application of
Equation (4.42), it 1is ~valuable to analyze the integration of
er,Te(ie’ te), function defined by Equation (4.39). Again, following
the work by Diaz-Granados et al. (1983), one realizes that it is

possible to integrate Equation (4.39) in the ie direction. Calling ¢

and ¥ respectively

k
= 1.4434 ky B 6 exp(-Bk_ - 20) T(o+l)o™%s L (4.43)
%1
¥ = 1.4434 B S (4.44)
er,Te(ie‘te) can be rewritten as
k
€, ‘ ky Kk,
fle,Te(le’te> =4 kl exp| -6 - ¥ i €, (4.45)
1
e

Denoting iel and ie2 the lower and upper limits of integration when

this operation is performed along ie direction, one obtains:
Te2
J er,Te(le’te)dle - g(lel‘le2’te) (%:46)
i

with

- _ é exp(-6t ) Ky kz]
g(lel’leZ’te) = ¥ k3 exp|-y lel te

k k
- exp[~w i 2” (4.47)
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where < ie2' Referring back to Figure 4,2, using the

el
corresponding definition for each region and taking Equation (4.47) to

(4.42), FQ (Q) can be computed as
m

emax
Fq (@ = Pli, =0, ¢t = 0] + j 8li11(8), 1g)5(E,) e lde

(teE)l
6 | (Fe2)y
* .22 J Bligg3(ty), i ,:1(c ), Jde
1=
(te1)y
Cemax
+ I g[]'eli(te)’ le212(te)’ teldte (4.48)
(Ce2)y
Some features have to be explained in Equation (4.48) . The first

integral following the null runoff probability represents Region 1,
while the summation covers Regions 2 to 4. As except for Region 1,
the  computation covers two subregions within each region, two
integrals appear within the brackets for the summation. Besides,
within each region iel does mnot change from one subregion to the
second, while ie2 does, then the former has been denoted ieli and the
latter ieZij' with i = 1,..,4 and J = 1,2. Emphasis has been done on
the fact that ieli and ieZij are functions of e For each region,
except for the first, there are three integration limits: (tel)i the

lower, (te2)i the intermediate and te is always the upper. Table

max

4.1 presents the equivalent notation for application of Equation

(4.48).
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Table 4.1. Equivalent notation for computation of FQm(Q).
Region i ieli (tel)i (t32)i Subregion j ie21j
1 Yetgtts o Ce12 i o
2 le(le’te) =9
. e=te Ce24 te12 : Uz (e te) = Q
2 t =t + ¢t
e s c
2 =ar temin te43 L Qm3(le'te) =Q
2 o _t!!
e o) s
4 byt €et3 €04 1 Qua(ia:t) = Q
2 t =t
e c
Additional emphasis is put on the fact that i .. and i ... as
eli e2ij

presented above express functional relationship between the effective
duration e and the effective intensity ie. In order to clarify this,

the different functions referred in Table 4.1 are presented completely

in the following:

| B t =t +t :
' e s C
!
|
} i 1/ [y 1 1-8p)1/6p
c e
# | [—— -t =0 (4.49)
. (Be-1 @ e
QC(ZWle) P
2 t =+t :
e c
i Wi 1-ﬁp l/ﬁp
{ £ -t =0 (4.50)

|
1
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t =+t - t"
e P s
L 1/Bc t
C _ W =B O
; =1 <1 " -
ac |22 (1, e e o pp(i t )PPl Ap
le(ie’te) - Q

2L Wi -Q=0

QmZ(ie’te) =Q:

= C e
‘ a_(2wi )Pe-1 ’ “p
Cc e

*

100 t
0.02 [-129.697 + 49.878 o [ E gy
t C e

Qm3(ie,te) =03
: Bp
2LC ap(lete) - Q=0

Qma(ie’te) =Q

Bp -1 W
E t +
P 5P e apﬁp(iete)ﬁp'l

L 1/Bc
" = - c

S a [2& & )ﬂpJﬂc-l
cl7pee

(4.

(4.

(4.

(4.

(4.

(4.

(4.

51)

52)

53)

54)

55)

56)

57)
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100 ¢

0.02]-118.552 + 47.458 Ln |——2|| Lo (i £ )PP - 1 — ¢ (4.58)
te+tS cp ee

For the computation of the coefficients ap, Bp, @, Bc, and the
definition of notation, the reader is addressed to Chapter 3, Section
3.2 and 3.10.

For Equations (4.49), (4.51), (4.53), (4.54), (4.56), (4.57) and
(4.58) it is impossible to obtain ie as an explicit function of ty-
For the other equations ((4.50), (4.52) and (4.55)) an explicit
solution can be obtained. Besides, the computation  of the
intersection points detailed in Table 4.1 requires simultaneous
solution of different system of equations, many of them not linear.

The aforementioned restrictions, added to the fact that a closed

integration of Equation (4.47) is impossible, make necessary the

implementation of a numerical algorithm to compute FQm(Q) using

Equation (4.48).

The primary objective of such algorithm is to compute each of the
integrals in Equation (4.48) within a certain tolerance. In other
words, once the algorithm has performed two successive approximations
to any integral, in any stage of the computation, the absolute value
of their difference must be less or equal than the specified
tolerance, in order to be accepted as the finai approximation.

The requirement of a numerical algorithm to compute the
cumulative pdf for the peak flow is the reason for which nothing has
been mentioned, up to this point, about the integration limits, temin
and temax’ appearing in Equation (4.48). If this equation could be
solved analytically, t . and t would have to be replaced by zero

emin emax

and infinite respectively. Due to the structure of the functions
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involved in the numerical algorithm, it is difficult to estimate a
value for temin such that a specified tolerance can be attained in the
integration. Hence the lower integration limit has to be defined by
the user. For the present study, Comin — 0.05 sec was used and good
accuracy was obtained.

However, the value of temax can be estimated to achieve the
desired tolerance. First, all boundary functional relationships,

defined in Table 4.1 and through Equations (4.49) to (4.58), tend to

zero when te tends to infinite. Therefore, one can compute

Lim g(i_,.i_,,t,) - ;{;L Lim [exp(-6t )]

t o 3t 4
e e
k k k, k
: : 3 2 . . 3. “2 :
{Elfm[exp[-w i1 £ ]} - Elfm[exp[~¢ 1., 't ]]}
e e
=E§—x0x(1-1)-o (4.59)
3
The wvalue of t can be chosen imposing the followin
emax & &
condition,
E% exp(-6t ) < tol (4.60)
3

The required limit is then computed as

f Y k3 tol
t = - = [n|——— (4.61)
emax § ¢
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where tol stands for cthe tolerance and fS for a safety factor
(fS > 1). For the pressent study fs = 1.2 was taken.

In addition to the approximation of the integrals involved in the
computation of the cumulative pdf for the peak discharge, the
numerical algorithm has to solve the equations defining intersection
points and the equations defining a value of ie for any given value of
o
4.4 Description of the Algorithm to Compute the Flood Frequency

Distribution Curve

In the previous section, the problem of obtaining the flood
frequency distribution curve has been formulated and its solution has
been  presented. In this section, the set of procedures and
instructions required to compute the flood frequency distribution
curve for a collection of peak flow values, for a given watershed, is
outlined. The reader is addressed to Figure 4.2 and Table 4.1, where
most of the notation is explained.

The algorithm is presented as a sequence of steps. In many steps
decisions about the truthfulness or falseness of certain statements
has to be done. This is accomplished through logical if statements.
In order to identify the structure of combined statements and its
related possibilities, a number between parenthesis has been assigned
to each one. For instance, any if statement or related instruction
preceded by (1) is in the first level. Others with (2) are in the
second level and contained within another branching instruction in the

first level.
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- Step 1: Data input
Rainfall parameters: 3, 6, m
Infiltration parameters: KS, S
Plane parameters: W, n , S

P
Stream parameters: L , n , S a, b

[o! c el
Discharge values: Q(k), k = L a4ng
Integration controlling parameters: n, toli, temin
n: maximum number of iterations approximating integrals
toli: tolerance for approximating integrals
Solution of Equations controlling parameters: nit, nbis, tole.
nit: maximum number of iterations solving equations
nbis: maximum number of iterations for initial approximation
to the root of an equation
- Step 2: Computation of parameters
Plane’'s discharge coefficients: ap, Bp
Stream’s discharge coefficients: @, Bc
Joint pdf for ie and t:e coefficients: o, I'(o+l), é, ¥
Null runoff probability: P[ie=0,te—0}
Let cdfl = P[ie-O, te=0]
Upper integration limit: L
- Step 3: Flags indicating results in Regions 2 to 4 are set
equal zero
Let ir2 =0
Let ir3 =0
Let ir3 =0

- Step 4: The flood frequency computation begins

For k = 1,..,nq, do steps 5 to 45
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Let FQm(k) = cdfl

Step 5: Region 3

Step 6: When ir3 = 1, the integral in this region has reached
4 constant value and the computation is not performed
anymore

(1) if ir3 = 0 then

Step 7: The intersection point, te&3’ between te = tp - t; and
QmB(ie’te) = Q(k) is computed

Step 8: te43 is checked to be greater than £

max

(2) 1f tea3 > temax then

Step 9: Integrate from te axis to Qm3(le'te) = Q(k) for the

]

Step 10: te43 is checked to be greater than t

interval [t . , ¢
emin’ “emax

emin
(2) else if te43 > temin then
Step 11: Integrate from te axis to QmB(le’te) = Q(k) for the
interval [t . i ] and from t axis Co E. = £ ="
emin’ “e43 e e P s

for [t ]

t
e43’ “emax
(2) else
Step 12: The integral in Region 3 reaches a constant value for

the first time. Integrate from t, axis to Gy =~ cp-t;

for the interval [te ]. Update ir3 = 1 and

., t
min emax
cdfl
(2) end if

Step 13: Update Fhm(k) adding the integral results

(1) end if
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Step 1l4: Region 4

Step 15: When ir4 = 1, the integral in this region has reached
a constant value and the computation is not performed
anymore

(1) if ir4 = 0 then

Step 16: The intersection point found in the previous region is
checked to be greater than e

max

2) 3f € then

e43 = Temax

Step 17: The integral in Region 4 is zero

(2) else

Step 18: The integral in Region 4 does exist. The intersection
point teza between te = tC and qu(ie,ce) = Q(k) is
computed

Step 19: Cetid within the integration range is considered

(3) if ir3 = 0 then

Step 20: topy 1s checked to be greater than €,

max
(4) if £ ,, = Comax then
Step 21: Integrate from t. - tp -ty to qu(le,te) = Q(k)
(4) else
Step 22: Integrate from t =t - t! to t = t_  for the
e P s o c
interval [t oo E ] and from t = t_ - t" to
e24 emax : e p s

Qma(ie’te) = Q(k) for [te43’ t324]

(3) else if t324 > temax

Step 23: Integrate from te - tp - ts to Qm4(1e,te) = Q(k) for

]

the interval [t . .t
emin’ emax

(3) else if te24 > temin
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- Step 24: Integrate from t, = tp - ts to t, = tC for [te24’

temax] and from t, = tp - t; to Qma(le’te) =10(k) For

[t

emin’ te2&]
(3) else

- Step 25: The integral in Region 4 reaches a constant value for

the first time. Integrate from t =t - t" to t =
e o) s e

t for the interval [

- ]. Update ir4 =1

PN
emin emax
and cdfl
(3) end if

(2) end if

- Step 26: Update Fbm(k) adding the integral results

(1) end if

- Step 27: Region 2

- Step 28: When ir2 = 1, the integral in this region has reached

4@ constant value and the computation is not performed
anymore

(1) if ir2 = 0 then

- Step 29: The intersection point found in the previous region is

checked to be greater than t .
emin

(2) if ¢ >t . then
e e

24 min

Step 30: A new value for teos is computed as the intersection
point between te = tC and Qm2(le’te) = Q(k)

(2) else

Step 31: Let Caos = temin/z

(2) end if

Step 32: The intersection point te24 is checked to be greater

than t
emax
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(23 AAf tE then

=t
24 emax

Step 33: The integral in Region 2 is zero
(2) else
Step 34: The integral in Region 2 does exist and the

intersection point t between t = t + t and
el2 e c s

Qm2(le'te) = Q(k) is computed
Step 35: toos Within the range of integration is considered
(3) if ir4 = 0 then

Step 36: te1p 1s checked to be greater than temax

(4) if t:el2 > temax then

Step 37: Integrate from te = t, to Qua (i t) = Q(k)

(4) else

Step 38: Integrate from e, - tc to £, = t. f ts for [t912’
temax] and from Ey = t, to sz(ie,te) = Q(k) for
[te2s: tegp]

(3) else if tel2 > temax then

Step 39: Integrate from te = tc to sz(ie,ce) = Q(k) for the

]

interval [t . .
emin emax

(3) else if te12 > temin then
Step 40: Integrate from L, = t, to t, = t. + ty for [te12’
temax] and from te = t. to szfle,te) = Q(k) for

[E

emin’ te12]
(3) else

Step 41: The integral in Region 2 reaches a constant value for

i ime. egrat omt =+t tot = t +t
the first time Integrate fr S i o atts

for [t ]. Update ir2 = 1 and cdfl.

2 5 B
emin’ “emax
(3) end if

(2) end if
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- Step 42: Update FQm(k) adding the integral results

(1) end if
- Step 43: Region 1
- Step &44: Integrate from te = tC + ts to le(le‘te) = Q(k) for

]

- Step 45: Repeat computation for next discharge

[teIZ‘ temax

- Step 46: For k = 1,..,nq compute the return period Tr(k)
- Step 47: Output
Same parameters as in step 1

Cumulative distribution function de(k), k=1,..,nq

Flood frequency distribution curve Tr(k), k = 1,..,nq

- Step 48: Stop

Within the general algorithm others have to be considered 1in
order to solve equations and perform the required integrations. To
solve equations, a combination of Bisection and False Position methods
was used. The first one provides an interval containing the root for
the equation, such that the function changes sign within that
interval. The False Position method takes that interval and,
approaching the derivative of the function by means of a secant line,
iterates until the desired tolerance is attained or the maximum number
of allowed iterations is overpassed. For more details about these
algorithms, the interested reader is referred to Burden and Douglas
(1985).

For the integration algorithm Romberg method was chosen (Burden
and Douglas (1985)). It uses a composite trapezoidal rule to give

preliminary approximations and then applies Richardson extrapolation
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process to improve the initial approximations. In order to approach
the definite integral between a and b for a given function f(x), the
composite trapezoidal rule is applied for k = 1,..,n, where n is some

positive integer, as

m = 27 (4.62)

by = (& - a)/m (4.63)
!

R g VR A By (4.64)
1 "/
- -

Mol T2 Pl * Mo 2 f[a + [1 - 2] hk_l] (4.65)

To improve the initial approximations Richardson extrapolation

algorithm is applied by making for i = 2,..,n and j = 2,..,i

- [4G-D : G-1)

The term with the largest values for i and j, i.e., Rn,n provides
the best approximation to the integral. Hence, the larger the n the
better the approximation.

The algorithm here described was translated into a FORTRAN

computer code. Appendix B presents the user manual for such a

program.
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4.5 Computation of the Flood Frequency Distribution Curve for

Hypothetical Configurations

The flood frequency distribution computation was applied to the
five catchment configurations used in Chapter 3, Section 3.9 (Table
3.5), Other parameters were required in addition to those described
in Table 3.5 and these were:

- Mean areal rainfall intensity: 1/8 = 1.0 in/hr

- Mean rainfall duration: 1/6 = 4.0 hr

Hydraulic conductivity: Ks = 0.4 in/hr

- Sorptivity: S = 0.5 in/hr1/2

- Mean number of independent events: m, = 10

The flood frequency distribution curves for the five
configurations are presented in Figures 4.8 through 4.12. They depict
normal graphical results in the sense that the curves obtained are
smooth. The results can be also classified as logical, since the
slight upward concavity in the curves shows that a small increase in
the return period will increase appreciably the flood discharge, as it
shall be.

Configurations 1 and 4 (Table 3.5) exhibit the same geometry, but
the plane and channel slope are different. The flood frequency
distribution curves depicted in Figures 4.8 and 4.11 are practically
the same, showing a low sensitivity of the method to the variation on
these parameters. The same conclusion is yielded from Configurations

3 and 5 and Figures 4.10 and 4.12.

4.6 Sensitivity Analysis for the Flood Frequency Derivation
In order to infer the behavior of the flood frequency

distribution curve when some parameters are changed, a sensitivity
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analysis was performed. The configuration for these case was chosen
more realistic, corresponding to a catchment area of 4.0 square miles,

The parameters describing catchment geometry and dynamics are:

Plane width: W = 3520 ft
Plane roughness: np = 0.25
Plane slope: Sp = 0.268
Channel length: LC = 15840 ft
Channel roughness: n, - 0.03
Channel slope: Sc = 0.026

The values selected, describing the rainfall infiltration model are

listed below:

Mean areal rainfall intensity: 1/8 = 1.0 in/hr
Mean rainfall duration: 1/6 = 4.0 hr
Hydraulic conductivity: Ks = 0.4 in/hr
Sorptivity: S =0.5 in/hrl/2
Number of independent events: m, = 20
The parameters selected to perform the sensitivity analysis were: W,

Sp’ LC, Sc’ 1/8, 1/6, Ks , and S. Each parameter was changed once, as

described in the following:

W = 1760 ft, half the initial wvalue

Sp = 0.134, half the initial wvalue

LC = 7920 ft, half the initial wvalue

SC = 0.052, two times the initial value
1/8 = 2.0 in/hr, two times the initial value
1/6 = 8.0 hr, two times the initial wvalue
KS = 0.2 in/hr, half times the initial wvalue

S =1.0 in/hrl/z, two times the initial value.
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Figure 4.13 to 4.20 present the graphical results, obtained when
each one of the aforementioned parameters are changed.

The first result to be pointed out, already outlined in the
previous section, is the low sensitivity of the flood frequency
derivation technique to slope variations, as shown in Figures 4.14 and
4.16. However, the effective rainfall-runoff model is the component
responsible for this behavior, since slopes are included as part of
the discharge coefficients.

Between the analyzed parameters, there are two which quantify the
ability of the soil to incorporate water. These are the hydraulic
conductivity Ks and the sorptivity S. As shown in Figures 4.19 and
4.20, an increase in the value of these parameters yields an 1increase
in the return period, when the discharge is held constant. This
behavior sounds reasonable, since an increase in KS or S means that
more extraordinary rainfall events are required to produce the same
discharge and, therefore, an increase in the return period is
obtained.

The remaining parameters, W, Lc, 1/8 and 1/§, are classified as a
measure of the watershed and climate ability to produce runoff. The
greater those parameters, the more frequent high flood discharges and
consequently the lesser the return period for the same discharge
value. This is exactly the behavior shown by Figures 4.13, 4.15, 4.17
and 4.18.

Although, the observed behavior depends on the values assigned to
the aforementioned parameters, there are some that tend to change the
value of the null runoff probability, while the others change the
relative position of the maximum for the joint pdf for ie and t,- In

the first category 1/§ and KS can be included, since they induce a
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parallel displacement of the flood frequency curve, By the other
hand, in the second type, W, LC, 1/8 and S are 1listed. Besides of
producing a change in the initial probability, they generate a
relative change in the position of the maximum for the original pdf,

translated into a rotation of the flood frequency curve.

4.7 Application of the Flood Frequency Derivation Technique
to Actual Watersheds

The application of the flood frequency derivation technique to
two real world small watersheds intends the establishment of final
judgments about the usefulness of the method for ungaged watersheds.
In other words, this section deals with the ability of the flood
frequency derivation technique to approach the historical annual flood
series, using reasonable values for the parameters included in the
model.

Before any application is intended, some considerations are
presented regarding the parameters included in the methodology.
First, the mean rainfall intensity 1/8 and the mean rainfall duration
1/8 have to be estimated from historical rainfall records. Such
estimation procedure is usually time consuming since most of the data
is comprised by a collection of cumulative rainfall depth versus
time. When time is considered to be an important constraint, educated
guesses can be obtained, For the present study, the first
approximation for the parameters describing rainfall distributions
were taken from Chow (1964), who presents maps for the continental
United States giving total rainfall depth, associated to given
durations and return periods. For the present application, rainfall

depth values with a return period of two (2) years and two different
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durations were selected, for each watershed. The wvalue of two (2)
years in the return period was considered the most adequate due to its
direct relationship to mean values. Once the total depth and total
duration are chosen, the intensity is computed as the quotient between
the former and the latter. It is important to emphasize that this
procedure does not yield the sample mean values for the parameters
describing rainfall distributioé, but given the lack of data and the
constraints in its compilation, the method can provide a normal
educated guess.

In regard to the parameters describing the infiltration process,
they are not usually measured for actual watersheds, although some
values for experimental watersheds or obtained wunder laboratory
conditions may be found in the current literature, For example,
Billica and Morel-Seytoux (1984) gives typical values for ‘the
hydraulic conductivity Ks and for the water content 95 = Bi‘ according
to the type of soil. If a value of the suction head Hc is also
obtained (Morel-Seytoux, (1981)), application of Equation (4.12)
completes the  guessing process for KS and S. For practical
applications, the predominant type of soil within the watershed shall
be taken into account.

The first watershed to be analyzed is located in Iowa. In fact,
the gaging station is situated within TIowa City urban perimeter,
although the watershed has not been modified appreciably and there is
no  upstream regulation. The gaging station, classified according to
the U.S.G.S as 5-4550, measures the discharge in Ralston Creek.

A sketch for Ralston Creek Watershed is shown in Figure 4.21.
The values defining Ralston Creek configuration, conceived as a first

order stream with two symmetrical overland flow planes, were measured
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on topographical maps to 1:24000 scale, provided by the BD.8.6:8. .

These values, along with assumed roughness values are listed bellow:

Average plane width: W = 2579 ft
Plane roughness: np = 0.30
Average plane slope: Sp = 0.106
Main channel length: L. = 16266 ft
Channel roughness: n, = 0.04
Average main channel slope: Sc = 0.005

Average plane width and main channel length wvalues Presented
correspond to an area of 3.0] square miles, as detailed by the
U.S.G.S.. The main channel, for this case, was chosen as the longest
identified on planes, but it also corresponds to the main flow
collector.

In order to obtain a point of comparison, the historical annual
flood series was obtained from data published by the U.S.G.s. (1965,
1971), conformed by 28 values, from 1938 to 1965, The return period
was computed for each wvalue using the Weibull plotting position
formula (U.S. Water Resources Council, 1976). After discharge values
are ranked in decreasing order, the return period for the nth value is

given by:

N +1
Tr(n)= = (4.67)
As an additional comparison point, a Log-Pearson III distribution

was fitted to the historical records. For this purpose, the discharge

associated to a return period Tr is computed via (U.S. Water Resources

Council, 1976)
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Log Q. = (Log Vp + KT, , 6) x SLog (4.68)
where Log Qr is the logarithm (base 10) of the flood discharge, and
(Log Q)m, SLog and G are the mean, standard deviation and the skewness
coefficient, respectively, for the series obtained after logarithmic
transformation on the original historical data. Besides, K(Tr , G)
stands for a coefficient, function of Tr and G, values for which are

given in tabular form by the U.S. Water Resources Council (1976).

The aforementioned statistics for the historical sample, wusing
moments estimators, are given as
N
(Log Q) = { = (Log Q) ] / N (4.69)
i=]
A 2 1/2
SLog - { iEl [ (Log Qi) - (Log Q)m] / (N -1) ] (4.70)
2 3
G =N { > [ (Log Q;) - (Log Q)m] / (N -1)
i
/ N -2) /s, )3 (4.71)
Log '

Applying Equations (4.69) through (4.71) the following values are
obtained for the sample statistics at Ralston Creek:

(Log Q)m = 2.5796

S = 0.4292
g
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G = -0.4643

The calibration of the derived flood frequency distribution curve
for Ralston Creek is based on a trial and error process, The wvalues
describing the catchment area configuration, as listed above, were not
changed during this calibration. The variation was given to the mean
areal rainfall intensity 1/8 and to the mean rainfall duration 1/6
mainly, and secondly to the hydraulic conductivity K, and sorptivity
S. The initial values for 1/8 and 1/§ were obtained from Chow (1964),
as described previously. The value for 1/8 varies from 2.56 in/hr for
1/6 = 0.5 hr to 1.56 in/hr for 1/6§ = 1.0 hr. The best calibration for
Ralston Creek yielded the following values for the parameters
describing rainfall and infiltration:

Aereal mean rainfall intensity: 1/8 = 0.60 in/hr

Mean rainfall duration: 1/6 = 0.90 hr
Hydraulic conductivity: KS= 0.25 in/hr
Sorptivity: S=1.10 irl/hrl/2
Number of independent events: m = 20

Figure &4.22 depicts the flood frequency distributions obtained
for Ralston Creek: these are historical, Log-Pearson III and derived
distribution.  Although, the Log-Pearson III distribution fits the
historical distribution quite well, the derived distribution shows its
ability to reproduce, at least in part, the historical sequence of
events.

Some tentative explanations, for the difference between the
historical values and the derived curve, for high and low values of
the flood discharge, will be addressed later.

The second application watershed is depicted in Figure 4.23. The

stream is located in California, near Sierra Madre. The watershed has
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not been modified appreciably and there is no upstream regulation,
The gaging station, classified according to the U.S.G.S as 11-1000,
measures the discharge in Santa Anita Creek.

As in the first watershed, the values defining Santa Anita Creek
configuration, assuming a first order symmetrical Wooding geometry,
were measured on topographical maps to 1:24000 scale, provided by the
U.5.6.5.. These values, along with assumed roughness values are

listed bellow:

Average plane width: W = 5688 ft
Plane roughness: np = 0.30
Average plane slope: Sp = 0.582
Main channel length: Lc = 23795 Ft
Channel roughness: n, = 0.04
Average main channel slope: SC = 0.172

The watershed area, as.given by the U.S.G.S, is 9.71 square
miles. The main channel was selected as the longest identified on
planes,

The historical annual flood series for Santa Anita Creek was
obtained from data published by the U.S.G.S. (1965, 1970, 1976),
conformed by 51 values, from 1917 to 1970 (three missing values).
The recorded flood frequency distribution was computed by  applying
Equation (4.67).

Again, as a second peint of comparison, the Log-Pearson III
distribution was fitted to the historical values. The sample moments,
computed using Equations (4.69) through (4.71) were:

(Log Q) = 2.4482



G =0.0632
Following the same procedure as for Ralston Cree: the flood
frequency curve was calibrated for Santa Anita Creek. The initial
value for 1/8, obtained from Chow (1964), ranges from 1.2 in/hr for
1/6 = 0.5 hr to 0.8 in/hr for 1/6 = 1.0 hr. After calibration was
performed, the values obtained for the parameters were:

Aereal mean rainfall intensity: 1/8 = 0.94 in/hr

Mean rainfall duration: 1/6 = 0.30 hr
Hydraulic conductivity: KS= 0.80 in/hr
Sorptivity: S = 1.12 in/hrt/?
Number of independent events: m = 20

Figure 4.24 presents the flood frequency curves for Santa Anita
Creek, obtained by three methods outlined above. Similar comments as

those presented for Ralston Creek are valid here.

4.8 Discussion Regarding the Flood Frequency Derivation Technique

In this chapter, an algorithm allowing the computation of flood
frequency distribution curves for small watersheds has been developed.
Besides, such technique has been applied to several hypothetical
catchment configurations and to a couple of small watersheds.

Through the sensitivity analysis, the flood frequency derivation
technique has proved its ability to account for the influence of
parameters describing watershed geometry, watershed dynamics and
rainfall-infiltration process, providing explanation on the physical
process of flood discharges. Although, such conclusion is not new, it
confirms an important feature already outlined in some previous

similar works.
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In Chapter 3, an effective rainfall-runoff model was developed.
Despite of the inclusion of the well known Manning equation in the
runoff model, no sensitivity was identified for the flood frequency
derivation technique on slopes, for plane and channel. As these
parameters are incorporated in the effective rainfall-runoff
component, and they do not appear at any other point, such component
is responsible for the observed behavior.

Besides, the effective rainfall-runoff model was developed with
emphasis on its applicability to small watersheds, where overland flow
phase is supposed to be an important component. However, once this
model is added to the flood frequency derivation technique, nothing
inhibits its application to small watersheds with a small contributing
rainfall area. Although no statistical distribution was considered
for the plane width, such an application can be obtained through a
parametric variation in this quantity.

In regard to applicability of the flood frequency derivation
technique to some real world watersheds and based on the values
obtained during the calibration for the parameter set, it has also
proved its ability to resemble, at least in part, the historical
distribution.

The wvalues obtained during the calibration for the parameters
describing rainfall in both watersheds do not match at all the
variation ranges obtained from Chow (1964). The values for Ralston
Creek exhibit a good result for the mean rainfall duration 1/§, while
for the mean rainfall intensity 1/8 the calibrated value departs
considerably. An opposite behavior is observed for Santa Anita Creek,
this 1is, a good agreement for 1/8, but fairly poor for 1/§. However,

the values obtained during the calibration can be considered as
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normal, in the sense that they are not low neither high, and they
resemble values which could be obtained from historical precipitation
records.

A possible explanation for the observed behavior can be put in
the fact that kinematic wave based rainfall-runoff models tend to
overestimate discharge, as pointed out by Eagleson (1972). Hence, the
lower value for some of the two parameter can be visualized as a trend
to solve the overestimation. Besides, the reader must bear in mind
that the initial values obtained from Chow (1964) were taken as
educated guesses and therefore they are approximations to historical
values.

As stated previously, a detailed look at Figures 4.22 and 4.24,
shows that for high flood values or low discharge events, there is an
appreciable deviation between the derived and the historical
distribution. For the high values, this can be explained, in part,
by the uncertainity inherent to the estimation of high return periods
from historical records. For low values, as well as for high values,
there is an additional uncertainty, given by the possibility that
parameter values controlling the dynamics of flood formation are
different for low and high return periods.

A second reason for the observed behavior may be stated in the
fact that the derived flood frequency distribution technique yields a
population result, in the sense that it covers all possible
realizations of the process, while the historical result conforms just
a sample from the population.

As a last point, additional emphasis is put in the fact that the
historical results were yielded along time, with quite different

parameters describing rainfall, infiltration and catchment geometry
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and  dynamics, perhaps reflecting climatic, physiographic or
geomorfological changes within the watershed. When  the  flood
frequency derivation technique is wused, several average values are
included, which no necessary resemble the history of the watershed.

The two real world watersheds herein considered to test the
applicability of the flood frequency derivation technique are quite
different. Santa Anita Creek is much steeper and larger than Ralston
Creek. Due to their location, their climatic behavior should be also
different and so should be the runoff process. Despite this
appreciable difference, the results yielded for both streams are
qualitatively similar, in the sense that the historical record is
reproduced more or less within the same accuracy range.

The previous analysis yields the conclusion that the flood
frequency derivation technique can be applie& to small ungaged
watersheds. Care must be exercised in the selection of the
parameters. As long as possible, rainfall parameters shall be
obtained from records, specially the mean rainfall intensity, one of
the most important values conditioning results. Several authors
recommend values for the parameters describing the infiltration
process, according to the equation here used (Morel-Seytoux, 1981).
In any case it 1is wise to compare the ungaged watershed with other

similar, where some records are available.
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Chapter 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Since 1972, there has appeared in the hydrological literature a
set of works referred to as flood frequency derivation. Three
components are common to all these works: a rainfall-infiltration

component, an effective rainfall-runoff model and a probabilistic

component, Depending on the basis of the effective rainfall-runoff
model, the technique <can be <classified as physical or
geomorphological.

The present study considers the derivation of a physically based
flood frequency technique, applicable to small ungaged watersheds,
where the overland flow phase is an important timing component.

In the last decade, the Geomorphological Instantaneous Unit
Hydrograph (GIUH) has been an important tool wused in discharge
forecasting and flood frequency derivation. Considering the
aforementioned scope, a review of the GIUH is performed on its own
basis, that 1is, comparing it with the Instantaneous Unit Hydrograph
obtained via detailed kinematic simulation, in order to establish the
applicability of the GIUH to small watersheds, where the overland flow
phase is an important component.

Due to the fact that the GIUH lacks the required feature, a
model, based on kinematic wave assumption, is developed and

calibrated. The new effective rainfall-runoff model covers all
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possible responses and solves the plane timing problem in a small
watershed, conformed by two planes and a first order stream. In order
to achieve this goal, an approximate kinematic routing model 1is used
as an intermediate tool.

Based on the developed model and previous results published by
other  authors, the flood frequency distribution technique 1is
assembled, formulated as a numerical algorithm and translated into a
computer program. The technique is tested for several hypothetical
catchment configurations. Also, a sensitivity analysis is serformed
in order to establish the capability of the whole technique to account
for parameters variation. As last point, the particular derived
methodology is tested with real world small watersheds, these
conceived as first order streams with two symmetrical planes.

5.2 Conclusions

The conclusions obtained throughout the present study, following

the order in which it was developed, are summarized in the following

points:

1. The GIUH is appears to be inadequate to describe watershed
response when the overland flow is considered to be an

important timing component.

2. Another concern is the ability of the geomorphological ratios
to describe the watershed shape and arrangement. In small
watersheds, sample variations on those parameters are larger
than in medium or large watersheds, and such variations are

not included in the GIUH.
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The effective-rainfall runoff  model developed follows
closely Eagleson’'s work (1972) in the determination of
characteristic times for the catchment area. However, in
Eagleson’s work the following features were not included:
first, the runoff cases considered depend on his decision
tree, which was reduced upon the basis of particular values
for rainfall intensity and discharge coefficients, and
second, the development does not  cover all possible

effective-rainfall runoff events.

In the study reported herein the shortcomings found in
Eagleson’'s work are solved. The calibration of the model,
performed on dimensionless variables, as well as the obtained
expressions, account for all variables representing the

process under consideration.

A shortcoming of the effective rainfall-runoff model results
since regression analysis was émployed. However, this makes
the model more flexible, since the same technique may be

applied to other configurations, actual or hypothetical.

The wuse of the model for forecasting peak discharge and time
to peak is recommended. Also, the employment of kinematic
approximate routing is recommended for small watersheds,
where the plane holding time dominates within the watershed,
when  the hydrograph shape is a important. The above

recommendations are based on the agreement found via detailed
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kinematic simulation. The physical basis given to the

derivation supports this recommendation.

The effective rainfall-runoff model was developed with
emphasis on its applicability to small watersheds, where
overland flow phase is supposed to be an important component.
However, nothing inhibits its application to small watersheds
with a small contributing rainfall area, since a parametric
variation can be given to the catchment width, even when
considered  jointly with the flood frequency derivation
technique, although no  statistical distribution was

considered for the plane width.

Through sensitivity analysis, the general flood frequency
derivation technique has proved its ability to account for
the influence of parameters describing watershed geometry,
watershed dynamics and rainfall-infiltration process,
providing explanation on the physical process of flood

discharges.

In regard to applicability of the flood frequency derivation
technique to some particular problems, it encompasses, due to
the algorithm design, the inclusion of other joint pdf for

the effective rainfall intensity and duration.

The following shortcomings are inherent to the proposed
methodology: symmetrical planes, first order stream,

limitations in the kinematic wave approach, low sensitivity
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to slope variations and average parameters describing the
infiltration process. The modeler must be aware of these

shortcomings for actual applications of the methodology.

11. The application of the flood frequency derivation technique
to ungaged watersheds is recommended, followed by a careful
analysis of the required and available data (from the same
watershed or from others with similar hydrological behavior).
As much as possible, a comparison with a catchment area with

available records is encouraged.

12. The fitting of the derived distribution to the historical one
can be made by considering different values of the parameters
according to the discharge stage. This shows that flood
events are not governed by the same type of rainfall

distribution.

5.3 Recommendations for Future Investigations
Many could be the investigation guidelines arising from this

study. Those considered as most important are listed bellow.

1. 1In regard to the GIUH, the inclusion of an extra state, given
by the holding time in the Planes as suggested by Gupta et
al. (1980), could make this approach applicable to overland

flow component.
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Further analytical investigation is necessary in regard to
the watershed dynamics as well as in understanding the

physics of the process.

A wider calibration of effective rainfall-runoff model could
open the possibility of a better fitting of the derived

distribution to historical data.

Consideration, within the framework of the flood frequency
derivation technique, of more realistic rainfall

distributions and other ponding time infiltration models.

Analysis of flood frequency curves coming from different or

similar populations, with different parameters.
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Appendix A

HYDRAULIC ROUTING MODEL

A.1 Introduction

This appendix presents a description of the hydraulic model used
for the simulation of the rainfall-direct runoff process in a given
watershed.

The model is traced back to Simons, Li and Eggert (1976). Spronk
(1978) enhanced it substantially and it was modified later by
Garbrecht (1984). Furthermore, Koch (1985) did some fine-tuning as
did the author of the present study.

In order to achieve that objective, a general description of the
model is given, followed by its analytical basis, i.e., the kinematic
wave approach. At that point, the main hypothesis, assumptions and
limitations of the model are pointed out.

As one of the shortcomings of the model is the large amount of
data required, even for small watersheds, the reader is addressed to
Garbrecht (1984), where a complete procedure for obtaining a
simplified representation of the watershed is given.

For the sake of simplicity, not all analytical derivations are
presented. An excellent guide for this purpose can be found in
Garbrecht (1984). Also, Eagleson (1970) presents a complete study of
cases where physical interpretations of analytical solutions are

available.
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Any person ineterested in the User Manual for the corresponding
computer program can get it from the Hydrology and Water Resouces

Program, Colorado State University.

A.2 General Description of the Model

The purpose of the hydraulic routing model is the simulation of
the rainfall-direct runoff process for a given watershed. The
simulation is performed under the basis of a kinematic wave approach.

The first step in the simulation process is the representation of
the watershed and its respective channel network as a set of modular
units. Each unit is composed by a channel link and two adjacent
planes. This kind of geometry is known in the literature as Wooding
planes or open book representation.

Upon the basis of the type of intermediate result obtained, there
are two kinds of modular units: the first type corresponds to all
planes drainaging directly into first order streams, and, since there
are no upstream tributaries to the link, an analytical solution to the
kinematic wave equations can be obtained. The second type of modular
units is given by those links with order greater or equal than two,
composed of two upstream tributaries, two lateral planes and one
channel link. The presence of upstream tributaries forces the use of
a numerical scheme for the solution in the second type of modular
units. Figure A.l depicts the map and model representation for a
given watershed. It must be noted that since the planes do not
present upstream boundary condition, the overland plane hydrograph is
obtained by means of the analytical solution.

Once the model representation for the watershed has been

obtained, the planes are described by their width, slope and
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Numbers indicate channel omer
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Open book geometry

Map representation
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Numbers 1 to 15 indicate
simulation sequence
14
.
15
Figure A.1.

Map and model representation for a given watershed.
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roughness, and the channels by their length, slope, roughness and an
empirical or analytical relationship between the flow area and the
hydraulic radius. This description has two inherent hypotheses: 1)
the flow in the Planes is considered to be turbulent and to take place
in a wide rectangular channel, 2) the flow in the channels are
considered to be turbulent.

The operation of the model proceeds in the same way as the paths
followed by the water to get the catchment outlet. Beginning with the
first order streams in the upper paths, a rainfall intensity pattern
is imposed to the plane. This pattern is uniform across the plane,
but can be changed from plane to plane.

At this point, depending on the Problem requirements, one of
three possibilities for infiltration purposes must be specified: 1)
describe the infiltration as an expoz'"aential decay law using Horton's
eéquation, 2) consider constant infiltration along time, and 3)
define no infiltration, i.e., the original rainfall intensity pattern
is in fact effective rainfall. The two first choices imply that an
instantaneous ponding takes Place in the whole watershed, and, as a
characteristic inherent to the model, the infiltration continues after
the rainfall ends. The third choice enables the user to make an
external to the model treatment of the infiltration, considering for
example ponding type infiltration formulas, like Philip’s equation or
Green-Ampt equation (Morel-Seytoux, 1981). Similar to the rainfall
intensity, the infiltration parameters are considered constant across
a given plane, but can change from plane to plane. As the last
feature, the user can specify for each plane the percentage of the

area where infiltration takes place.
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The definition of infiltration along time allows the computation
of the effective rainfall intensity pattern for a given plane. This
intensity pattern is routed, using the analytical solution, to the
plane outlet. The basic result at this stage of the simulation is
given by the overland plane hydrograph, whose dimensions correspond to
discharge per unit width.

Once the overland plane hydrographs for two adjacent planes
draining into the same first order channel have been computed, they
are added and the resultant hydrograph is translated into a histogram
of discharge per unit width. The translation from hydrograph to
histogram is performed in such a way that quantity and distribution of
water along time are preserved, and it is required in order to obtain
the analytical solution for the first order streams. Notice that at
this point the solution for the first order streams is identical to
the solution for the planes, since in both cases there is a uniform
distributed input along length, either plane width or channel length
and no upstream boundary condition. It is important to mention that
no infiltration is considered along channels.

When two first order streams joining and forming a second order
stream have been completely solved, the next step is given by the
solution of the latter. The two lateral planes are solved as
explained above and the result is given by the discharge per unit
width histogram uniformly distributed along the channel length. The
hydrographs for the two upstream tributaries are then added and
translated into a histogram giving the upstream boundary condition.
The two inputs, upstream and lateral histograms, are collected and
routed along the second order channel using a numerical scheme for the

solution of the kinematic wave equations. The result is given by the
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discharge hydrograph at the downstream end of the second order
channel.

The simulation continues with the same procedure, taking into
account that the solution for any channel link must be preceded by the
solution of all links and planes located upstream of the new link.

The final result is given by the discharge hydrograph for the
whole watershed at the catchment o;tlet.

The numbers in the model representation in Figure A.1 describe
the sequence or order of simulation,

As can be concluded from the general description of the model,
this has three main parts: the hydrologic component, the geomorphic
component and the hydraulic component. These are described in the

following paragraphs.

A.3 The Hydrologic Component

The hydrologic component of the model comprises the total
rainfall, the infiltration and the effective rainfall. It is
basically operated as a water mass balance. Although no explicit
treatment of other abstractions, like evaporation, interception or
depression storage are considered within the model, they can be
included, when considered important enough, as part of the
infiltration.

The rainfall duration, intensity, and pattern, are boundary
conditions and are assigned arbitrary values.

Infiltration is the flow of water into the soil through the
ground surface. The rate at which it occurs is influenced by such
factors as the type and extent of vegetative cover, the condition of

the ground, rainfall intensity, and physical properties of the soil.
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The infiltration Process was studied by Horton in the early
1930s, and an outgrowth of his work was the following exponential

relationship determining infiltration capacity
-kt
f = fc + (f0 - fC) e (A.1)

where f is the infiltration capacity at some time t, k is the
recession constant for infiltration, fC is the final or equilibrium
capacity, and f0 is the initial infiltration rate. Equation (A.1)
indicates that if rainfall supply exceeds infiltration capacity,
infiltration tends to decrease in a exponential manner. For short
duration and high intensity storms, one can generally expect the
rainfall intensity to exceed the infiltration capacity and Equation
(A.1) applies.

After the storm ends, there is still surface runoff on the ground
and the infiltration Process continues as long as surface runoff
exists. Since, for post rainfall conditions, rainfall water rapidly
concentrates into many small rills, an additional parameter, defining
the percent area over which the post rainfall infiltration is
effective, is incorporated into the runoff analysis.

By accounting for the abstractions, the total rainfall intensity

and duration is reduced to an effective rainfall intensity and its

duration.

A.4 The Geomorphic Component
The drainage basin receives the rainfall, collects it in a system
of catchments and channels, and transforms it into a flow hydrograph

as the water flows through the channel network. This section defines
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channel network, channel network composition and channel ordering
scheme.

Catchment areas, which receive effective rainfall, produce
overland flow which in turn is collected by the channel network. The
different runoff characteristics and the sequential coupling of
overland flow and channel flow suggest two separte entities, the
overland flow and the channel flow phase. The overland flow phase
corresponds to the catchment areas of the drainage basin. A catchment
area is defined as an area receiving effective rainfall and draining
it into a specific channel reach defined as a link. The dashed lines
in Figure A.1 define the boundaries of catchment areas, and the
bordering channel links receive all overland flow from these
catchments. Because the geometry of the catchments depends on the
spatial arrangement of the channel network, the determination of the
catchment geometry is addressed after the channel network description
which follows.

The channel network is an arrangement of channel links and
connecting points. If the channels are displayed as single lines the
resulting diagram is the channel network.

Referring to Figure A.l, sources are the points farthest upstream
in a channel network, and the outlet is the point farthest downstream.
The point at which two channels combine to form one is called a
Jjunction. It is assumed that multiple junctions do not occur. An
exterior link is a segment of channel network between a source and the
first junction downstream; an interior link is a segment of streanm
network between two successive junctions or between the outlet and the
first junction upstream. A channel network with n sources has n

exterior links, n-1 interior links, and n-1 junctions (Smart, 1972).
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With these definitions, a channel network ordering scheme, which
quantitatively defines channel lengths, slopes, number and spatial
arrangement, can be defined. This channel ordering scheme must
reproduce hydrologically significant basin features.

Strahler’s channel ordering scheme is selected (Strahler, 1957)
because it is simple, meets the proposed requirements and leads to
concise channel network composition laws. Strahler's (1957) ordering
scheme can be summarized as follows (Figure A.1): channels that
originate at a source are called first order channels; when two
channels of order w join, a channel or order w+l is created, and
when two channels of different orders join, the channel immediately
downstream of the junction retains the higher of the orders of the two
joining channels. The highest channel order (Q) in a channel network
is also the network order.

To complete the description of the channel network, channel cross
section must be defined. Since the model is not limited to a specific
set data for a given channel, a power relation between hydraulic
radius and flow area is selected to define the cross-sectional shape

o= g AL (A.2)

where R 1is hydraulic radius, A is flow area perpendicular to the
flow direction, and a and b are empirically defined coefficients.
Three stable channel design methods were used by Garbrecht (1984) to
determine values of the coefficients a and b, ranging from 0.23 to
0.30 and 0.35 to 0.50 respectively. The hydraulic radius is thus

approximately proportional to the square root of the flow area.
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Nevertheless, whenever possible, field data for the specific
region under consideration should be used to determine cross-sectional
relationships.

In view of the numerical simulation of the rainfall runoff
process, the catchment shape is approximated by a rectangle. The
length of the rectangle corresponds to the length of the adjacent
channel link into which the catchments drains, and the width of the
catchment is obtained by dividing the catchment area by its length.
As for the definition of catchment slope, Horton's (Horton, 1947)

c

relation between catchment slope Sp and channel gradient § is

used,

mlm
n

slope ratio = (A.3)

g}

Steep catchment slopes thus correspond to steep channel gradients and
vice versa. Strahler (1950) confirmed this relationship by arguing
that high sediment yield from steep catchment slopes demand a steep
channel gradient for continuity of sediment transport. Strahler'’s

quantitative relation for nine maturely dissected regions is

S =458 7 (A.4)

where Sp and Sc are in degrees.
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A.5 The Hydraulic Component
The differential equations of motion for one-dimensional,
incompressible, free surface flow in a moderately wide channel can be

written as:

dA aQ

at * ax ~— 9 (a.3)
Q9 3 .02 ay

at & ax (A ) + gA 8% & (So-sf) (A.6)

where Q represents the discharge through the Cross-sectional area A
in a given time t, q Trepresents the lateral inflow per unit length in
X direction, y is the average depth of flow in the section, S0 stands
for the channel slope, Sf for the friction slope and g denotes the
gravity constant. The above equations represent a gradually varied
unsteady flow and other assumptions inherent to them are: uniform
distribution of velocities through the section, hydrostatic pressure
distribution along the vertical, small channel slope and no momentum
exchange due to lateral inflow. The solution for these two equations
must yield the flow pProperties Q and A as a function of position
X and time ¢,

The kinematic wave approximation considers the inertia and
preéssure terms in the equations of motion negligible compared to the
gravity and friction terms, so that the following set of equations is

obtained

(A.7)
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S = Sf (A.8)
Equation (A.8) can be expressed as a uniform flow resistance formula.

For the model, Manning’s equation according to the English system of

units is selected, and was given by:

1.486 ,.2/3_ 1/2
Qe Wy (A.9)

where n is Manning's roughness coefficient and R 1is the hydraulic
radius. By definition, R = A/P, in which P stands for the wetted
perimeter and can be expressed as a function of the area. Thus, the
Cross-sectional shape is described by means of Equation (A.2).
Plugging Equation (A.2) into Equation (A.9) yields the following

result

Q = aA (A.10)

a = 1:486 2/3. 1/2 (A.11)
n f

p-1+20 (A.12)

Notice that Equation (A.10) enables the consideration of other flow
resistance formulas different from Manning’'s equation.
The kinematic wave equation is obtained by multiplying Equation

(A.7) by 8Q/aA, yielding

89 . 3Q ,3Q
ot T aa (gx ~ D =0 £y
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The term 4dQ/3A is known as kinematic wave celerity (also referred to
as the Kleitz-Seddon celerity) and represents the local travel

velocity for the incremental unit width discharge 48Q/dx - q:

i) -1
ﬁ - apaP L o ﬁ% - BV (A.14)
where V stands for the mean velocity of flow.

The equations of motion considering kinematic wave approximation
for the overland flow are obtained by analogy with Equations (A.7) and

(A.8), taking into account that such a flow is similar to that in a

wide channel. Therefore, the flow properties are expressed per unit
width:
3y , 8q _ . -
at Tax ~ f (A.15)
q = c::y'8 (A.16)

where y represents the flow depth, q the discharge per unit width, i
the total precipitation intensity and f the instantaneous rate of

infiltration.

A.6 Solution to Kinematic Flow Equations for Overland Flow by the
Method of Characteristics

In the following paragraphs, Equations (A.15) and (A.16) are
solved by the method of characteristics. The resulting solution is
applied to the case of overland flow with temporally variable rainfall

and infiltration rates.
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The essence of the method of characteristics, when applied to the
equations of motion, is to find a space-time locus (x = x(t)) along
which a discontinuity of the partial derivatives of the flow

Properties, unit width discharge and depth flow, exists. This locus

equation.
Considering the definition of a total differential, the following

two equations can be written

gﬂ dx + g% dt = dq (A17)
& ax + g{ dt = dy (A.18)

partial derivatives are considered as unknowns. If this system is
éXpressed in matrix notation, the discontinuity is given, first, by
vanishing the determinant of the coefficient matrix, and secondly, by
applying the same condition to four determinants, obtained replacing
the columns in the matrix coefficient by the independent term vector.
The first condition, after some term manipulations, gives rise to the

equation
- apyfl (A.19)

The second condition implies the equations



el i-f (A.20)
gﬁ - i-f (a.21)
g% = (i-£) apy?! (A.22)

Previous defined celerity.
Equations (A.20) through (A.22) are only valid along the
characteristic lines. An important physical observation obtained from

those equations is that the discharge, the depth, the mean flow

lines, under the absence of effective rainfall intensity.
Calling W the width of the plane and ie the effective
rainfall intensity, in the more general case varying with time, and

posing the following initial and boundary conditions, respectively,
Yy =0, for 0 < x < W, t =0 (A.23)
y=0, forx =0, t > 0. (A.24)

integration of Equation (A.20) gives the time variation of the depth

along a characteristic line crossing through the point (to,xo):

t
y - f ie(t) dt + Yo (A.25)

c
(0]



Now, plugging this equation into (A.19) and integrating again, the

characteristic lines are described by:
t £i 8
- = i 1
b X af Jt Jt 1e('r)dr E Y5 dt (A.26)
o] o

where 7 represents a dummy variable of integration and ¥, Stands
for the depth at location X, at time to

Expression (A.26) is only integrable in a closed equation under
very particular conditions.

At this point it is important to point out that the initial and
upstream boundary condition have the inherent assumption of dryness of
the plane at the beginning of the rainfall.

However, one question remains unanswered. Why does the
integration of Equations (A.25) and (A.26) enable the solution of the
problem herein considered?

The main magnitude in which the engineer is interested in is
given by the discharge hydrograph at the plane outlet. This means
that once a time t, at the plane outlet has been specified, the
discharge should be computed straightforwardly. Now, it is assumed
that the starting point for the characteri;tic generating this
discharge is such that to#O, xO-O and yO#O, where t, 1s unknown and
¥y is known. Besides x=W and if Equation (A.26) is integrated, just
one unknown remains: t,- Once t has been found, the integrability
of Equation (A.25) between to and Cy allows the computation of the
depth at the plane outlet. Finally Equation (A.16) gives the desired

discharge.
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The notation chosen enables a differentiation between the
starting and arrival times t, and .y for a given characteristic
line. They are measured in the same scale with the same origin, but
their physical meanings are different.

When in the Equation (A.26), describing the characteristic lines,
ie(r) is given as a histogram, a piecewise integration must be
performed.

Following the notation shown in Figure A.2, from any point
(xi,ti) on characteristic C, the value of Xy for time ¢t. may

+1 i+l

be calculated as

t.
i+l -1
= 1 - 1
Xigp = ¥ F af Jt { lei+l(tl ti) + oy } dt (A.27)
i

Besides, for the same interval

Ygg1 =¥y ¥ 00 (G5 - 8 CA28)

and integration of Equation (A.27) yields

SR - s ) ﬁ_ B
Bepg ™ R TG {[lei+l (€141 - &) + ¥4 Yi} (A.29)
ei+l
For a given plane of width W, values of X;,1 are calculated until

xi+1>w. IE (xj,tj) represents the last point for which xj<w, the

arrival time of characteristic C at the downstream boundary may be

obtained from Equation (A.29) as

B 1 lejal ﬁ]l/ﬁ_ } . P
t, tj + iej+1 {[ = (W xj) + yj yj (A.30)
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Hence, the discharge at the plane outlet is computed via

-

9,(t,) = aly(t )1

y(tw) =y, + i

3 syer ity €t (A.31)

The foregoing procedure is also valid for any characteristic
arising from the x axis. Due to the fact that for this
characteristic lines ¥,=0 for t, = 0, the solution is straight
forward. However, as shown in Figure A.3, the solution becomes more
difficult when characteristic lines arise from the ¢t (or to) axis.

Making x=W and xo-O, Equation (A.26) becomes

w tl
EE - J { I i (r)dr }5'1dc1 (A.32)
t t

In Figure A.3 the interval [tk’tk+1] is defined as that containing the
time of arrival ty of the characteristic C to the plane outlet,
while [tj’tj+l] contains the starting time ty- With this notation in

mind, the piecewise integration of (A.19) may be written as:

t t
w tl k t1
EE = I { I i (r)dr Jﬁ'ldtl + j [I ie(r)dr}ﬁ'ldtl
t tO tj +1 tO

tj+1 e 1
* J I i, (r)dr dt! (A.33)
t t,
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The inner integral in the last equation can be expressed as

tl
It i (r)dr = y(t‘)-yo (A.34)
(o]

where y(t!) stands for depth accreation evaluated between zero and

t!. With this result, Equation (A.33) becomes

t
LT : i (tl-t, )+y(t, )-y(t.)-1i (t_-t,) Prlyea
af ~ ). ek+1 e R B R L
k
LA : 1
T I i u i 1
vz J Leg (87-ty )4y (e 4)-y(E) 1,400 (Ep-E) | Tt
i=j+2 ‘¢,
i-1
tj+1 ) . -1 .
+ Jt lej+1(t -to) dt (A.35)
o]

When some operations are performed and calling

C; = - iy 5.9 +y(eg ) - y(tj)+iej+l tj (A.36)
Equation (A.35) becomes:
t
L
. S, £ 1 g ' B-1,01
af J { lek+1 & 7 ck+l ) 1ej+l to} dg
t
k
ki -
+ z j i.tt+cC, -1 t dt!
S i i +1 o
i=j+2 ti 1
t.
N PR | (A.37)
. ej+l ej+l o '
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Performing the integrations, the following equation is obtained

1 : . B ’ : B
F g o {(lek+ltw o1 7 Teji1 )" Gepa®i * i Lejurto) }
k
1 { . ; B g . ﬁ}
+ = = €L t: 46, - 1 .. < i . &, + C., - i . £ 9
{mi+2 B ig ei’i i ej+l o ei "i-1 i ej+l o
1 : ) ﬁ} W
Hmmemm—— O = - % . t ) i T ) (A.38)
B lej+l ej+l "j+1 ej+l "o aff

If e is specified in the above equation, only one unknown remains,
£ The solution of Equation (A.38) can be accomplished by using some
numerical scheme. In particular, for the model a second order Newton-
Raphson method is used.

Once €, has been obtained numerically, the discharge at the

plane outlet is computed using the following equations:

k

B F B L -ty g) b L (kg
i=j+2

y(tw) - iej+1(tj+l- : tk)

+ (A.39)

q,(t,) = aly(t)1?

A.7 Solution of the Kinematic Flow Equations for Channel Flow with no
Upstream Tributaries (First Order Streams)

The equations governing the flow routing in the channel are

44 , 90 (A.40)

Q = anf (A.41)



200

where q represents the total lateral inflow entering the channel
from both planes.
If a first order stream, i.e., no upstream tributaries, is now

considered, the initial and boundary conditions are given as:

A=0, for O<x=<Land t =20 (A.42)

A=0, for x=0and t=0 (A.43)

The value of q 1is obtained by following the procedure described in
Section A.6. This means that for both planes, left and right, a4 and
q. are obtained and added point by point. The hydrograph gq is then
formed by a collection of ordered pairs of time and discharge. 1If,
following some procedures, q is translated into a histogram of
discharge, the methodology presented for the plane can also be applied
for the first order channel. The accuracy of the treatment given to
the channel stands on the translation of a continuous function to a
discrete function. Therefore, the more accurate the results the more
similar the histogram and the hydrograph are in terms of shape and

volume,

A.8 Solution of the Flow Equations for Channel Flow with Upstream
Tributaries (Second or Higher Order Channels)

For channels with order higher than one, the presence of an
upstream boundary condition, given by the entering hydrograph, makes
impossible the solution by procedures similar to those presented in

Sections A.6 and A.7. Therefore, a finite difference scheme is used,
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applied to the equations governing the flow in the channel, but not to
the characteristic equations.

Equations (A.40) and (A.41) represent the system to be solved,
with Q and A the unknown variables. In order to obtain a finite
difference scheme the network presented in Figure A.4 is used. The
finite difference form of Equation (A.40) using the values of Q and

A at the four points shown in Figure A.4 is

n+l n+l n n n+l .n n+l n
4179 L5y + 2174 | o [AraAry ST ik 1
Ax Ax At At
(1-9) q" + ¢ "1 (A.44)

where § stands for the weighting factor in time direction and ¢
does in x direction. For the present case q does not change along
the x direction.
At this point, a selection about the dependent variable must be
. n+1 n+1l 3
made. Equation (A.44) presents two unknowns , Ai+l and Qi+l’ since
these quantities are supposed to be known at the other three points of

the grid. Besides, Equation (A.41) relates area and discharge, and

also their relative errors as:

>[5

Q _ B (A.45)
Q

Assuming that this relationship stands for the numerical scheme, if
one computes the discharge incorrectly, and since B>1, the relative

error in the flow area would be smaller than the relative error in the

discharge. On the other hand, the error in the discharge is magnified
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if the numerical computations are performed on the flow area.
Therefore, the discharge is the better selection for the unknown in

the numerical computations. Performing the following transformations:

B =1/8 , a' = (L/a)? (A.46)
the discharge-area of flow relationship becomes

A= a'Aﬁ' (A.47)
and for any point in the network

A = o' @)? (A.48h)

Taking this last relationship to the finite difference scheme and

performing some operations, the following result is obtained

At n+1l i n+l B' At n+1 n n
ax (18) Q4 + e (-0 @ DP = 851-6) Q- @l - QD)
+ar (1-0) (@7, P -ela’ @1 -ar @DF Jrac(1-0)q™aq™)  (a.49)

The right hand side in Equation (A.49) is a known quantity and will be
represented by Q1. Besides, making § = At/Ax and r = Q ?$iEquation

(A.49) is written as:

6(1l-6)r + a’(l-é)rﬂ'w Q (A.50)
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As this equation is not linear on r, it is necessary to apply an
iterative technique. Again, the second order Newton-Raphson algorithm
is proposed.

The initial guess, . is the key to obtain a fast convergence to
the numerical solution of Equation (A.50). The best way to determine
r, is to use a linear scheme. 1In Equation (A.40), the following

replacement is performed:

dA

&
3

il 3q at (A.51)
But, from Equation (A.47)
.a_A_ rat )8"1
Q a'f' Q (A.52)
Then, Equation (A.40) becomes:
rgroP <Y 29 ;. 80 _
a’f'Q at T ox = ¢ (A.53)

The linear finite difference scheme is obtained from equation (A.53),

but not including the unknown in the coefficient of the partial time

derivative:
n+l n B-1 n+l n n+1 n
o | S Y Qg Uel - Yoy fhe &5 & Q - Q il .
9 2 At At
n+l n n n
Q; Q Q.1 - Q
i+l i i+l i o P EA T n+l
[ o (1-6) + o § } = (1-3)q + & q (A.54)
n+1

and solving for Qi+1



n+l n (B'-1
- 1-6 . ., -8 |4  *Q, (1 o) !
(Q1+l) Ax ta'p At 2 i
n n n+l n [(B'-1 n+l n
S T L e e e Y Y
Ax < wip 2 At Q41 At
+ (1-8) q" + @ q“+l} (A.55)

n+l

The above equation provides the best initial estimate r, or (Ql+1 i5

for solving Equation (A.50). However, Equation (A.S55) is not
applicable when Q?+l = Q?+l = 0 and in this case Equation (A.50) can

be used with g'=1:

= Q
o 6(1-6) + a'(1-% )

(A.56)

Although this topic will not be developed here, the stabilicy
conditions for the numerical scheme are:

a<1/2, as< g < 1/2 (A.57)

6+ ap (Qn+l Bg'-1

For a more detailed description of this topic see Garbrecht (1984).

A.9 Summary of Assumptions and Limitations for the Model
In the following, a list of the more important assumptions and
limitations encountered in the development of the model is presented.
1. The type of flow considered in the model, in planes and channels
is one-dimensional, incompressible and turbulent. Besides it

are treated as free surface flow in a wide channel, with uniform
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distribution of velocities in the depth for planes and across the
section for channels. The intertia and pressure forces are
considered negligibles and the kinematic wave model allows the
propagation of perturbations in the downstream direction, without
attenuation of the peak discharge.

The Manning's equation is considered acceptable for describing
the force balance in the flow.

Within a given plane, its properties, slope and roughness are
considered constant.

For a given channel, its properties, slope, roughness and cross-
sectional shape are considered constant.

The rainfall intensity is considered constant for a given plane,
but may change from plane to plane. No simulation can be
performed with gaps in the rainfall intensity histogram.

The infiltration is considered uniform within a given plane, but
can change from plane to plane. No ponding type equations for
infiltration are considered in the model. In the best of the
cases, the infiltration behaves like a exponential decay law by
means of Horton equation.

No infiltration takes place in the channels.

The simulation begins with a dry watershed: this means no
moisture nor flow in planes or channels prior to the beginning of
rainfall, as neither subsurface or groundwater flows along

simulation horizon.



Appendix B
FLOOD FREQUENCY DERIVATION
USER MANUAL FOR THE COMPUTER PROGRAM

B.1 Introduction

This appendix contains the User Manual for the computer program
used to calculate the flood frequency curve for a given watershed.

For a complete understanding of the algorithm translated into the
program and its theoretical basis, the reader is addressed to Chapters

3 and 4 of this thesis.

B.2 Input Data File Description
In the following, a complete description of the records contained
in the input file, required to perform any program run, is presented.

Special care is recommended for the units, as specified for each

variable.
LINE COLUMN FORTRAN FORMAT DESCRIPTION
NAME

1 1 P(13) F10.0 Mean areal rainfall intensity,
(in/hr).

1 11 P(14) F10.0  Mean rainfall duration (hr).

2 1 AMV F10.0 Mean number of independent
rainfall events within the
year (dimensionless).

3 1 P(20) F10.0 Minimum rainfall intensity to

be considered in the
integrations (in/hr).
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LINE COLUMN FORTRAN FORMAT DESCRIPTION
NAME

4 1 P(15) F10.0 Hydraulic conductivity at

natural saturation (in/hr).

4 11T ey UUF10000 T Tseit sorptivity (in/hrl/2y "

5 1 P(5) F10.0 Plane width (ft).

g % SR e R flé.o. : é.i.é-ﬁ é.'.r.ﬁ'ﬁ-gnﬁlﬁ'é'é-é
(dimensionless).

5 21 SP F10.0 Plane slope (dimensionless) . -

6 1 P(6) F10.0 Channel length (ft).

6 f &k ANC F10.0 Channel rou ghness
(dimensionless).

6 21 sc F10.0  Channel siope (dimensionless).

6 31 AC fH)O Coéfficignt in.tﬁe aiéa
hydraulic radius relationship.

6 41 BC FI0.0 - Exponent in the are s
hydraulic radius relationship.

7 1 QP(1) F10.0 Initial discharge for the
flood frequency computation
(cfs).

71 DQP FINS Tosismans o % e
discharge in the flood
frequency computation (cfs).

7 21 QPMAX F10.0 Maximum discharge for thé
flood frequency computation
(cfs).

8 iE N I5 Maximum number of iterations

allowed for integration.

8 6 P(25) El4.7  Integration tolerance.

9 1 NIT I5 Maximum number of iterations
allowed for solving equations.

é ------ é ....... &ﬁié -------- Ié o ﬁaﬁimﬁmlnuﬁber of iterations
allowed for initi al
approximations to equation
roots

é ----- é ....... f&éj ........ Eﬂu%- Tolerance for solving

equations.
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B.3 Program Capacity

The program for computing the flood frequency distribution curve
was designed to run in the CYBER205. Due to the extent and
requirement of the computations, it could be expensive to run it in
another type of machine.

In regard to memory requirements, the maximum number of discharge
values to be considered within a run shall not exceed 100. For larger

requirements it is necessary to modify the program.

B.4 Output Description

Once the program has been run, the user gets three different
printouts. The first gives a trace of the particular execution,
informing the user about the regions and subregions covered,
intersection points, partial integration results and limits. The
second, considered a formal listing, prints the catchment geometry and
dynamic description and rainfall-infiltration parameters. It also
provides a table, in which, for each considered discharge, the values
for cumulative pdf and return period are given. The last printout
gives a list of return period and discharge, as sequence of ordered

pairs, designed as input file to plotting facilities.

B.5 Program Source Code
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PROGRAM FLOOD(OUTPUT,TAPEl,TAPE2=0UTPUT, TAPE3)

THIS PROGRAM PERFORMS THE INTEGRATION OF THE JOINT PROBABILITY
DISTRIBUTION FUNCTION FOR EFFECTIVE RAINFALL INTENSITY AND DURA-
TION, OVER REGIONS DEFINED BY SEVERAL EXPRESSIONS USED TO COMPU-
TE THE PEAK DISCHARGE, GIVEN A RAINFALL EVENT. THE EQUATIONS
USED TO COMPUTE THE PEAK DISCHARGE ARE THOSE OBTAINED BY LUIS
CADAVID.

INPUT UNIT: TAPEl

OUTPUT UNIT: TAPE2

PLOTING: TAPE3

AUTHOR: LUIS CADAVID

COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO.
NOVEMBER, 1986

DIMENSION CDF(100),QP(100),P(30),TRET(100)
EXTERNAL FNUL,FBR43,FBR24,FBR12,FQ3,FQ4,FQ2,FQl,FINT4,FINT2, FIN

THE RAINFALL PARAMETERS ARE READ
READ(1,100)P(13),P(14)

FORMAT (8F10.0)

READ(1,100)AMV

P(13)=12.%3600./P(13)
P(14)=1./3600./P(14)
READ(1,100)P(20)
P(20)=P(20)/3600./12.

THE INFILTRATION PARAMETERS ARE READ
READ(1,100)P(15),P(16)
P(15)=P(15)/3600. /12.
P(16)=P(16)/60./12.

THE PLANE PARAMETERS ARE READ
READ(1,100)P(5),ANP,SP

THE STREAM PARAMETERS ARE READ
READ(1,100)P(6),ANC,SC,AC, BC

THE FLOOD PARAMETERS ARE READ



OO

QOO o

211

READ(1,100)QP(1),DQP,QPMAX
THE INTEGRATION PARAMETERS ARE READ

READ(1,200)N,P(25)
200 FORMAT(I5,El4.7)
READ(1,100) TEMIN

PARAMETERS CONTROLLING THE SOLUTION OF EQUATION ARE READ

READ(1,300)NIT,NBIS,P(26)
300 FORMAT(215,El4.7)

P(1)=1.486%SQRT(SP) /ANP
P(2)=5./3.
P(3)=1.486%(AC¥*(2./3.))*SQRT(SC) /ANC
P(4)=1.+2.%BC/3.
P(7)=-129.697
P(8)=49.878
P(9)=-118.552
P(10)=47.458
PLL)=P(14)*(P(13)*P(16)/2./SQRT(2.)/P(14))**(2. /3.)
P(12)=GAMMA(P(11)+1.)
CDFL-1.-EXP(-P(13)*P(15)-2.%P(11))*P(12)%(P(11)**(-P(11)))
PIN=CDF1
F(22)=1.2185%P(13)*P(14)*EXP(-P(13)*P(15)-2.%P(11))*P(12)
1 *(P(11)%*(-P(11)))*(P(16)**0.1558)
P(23)=1.4434%P(13)%(P(16)**0.1558)
P(27)=FLOAT(NIT)
R=20./3600. /12.
TEMAX=-1.2%ALOG(0.8442%P(23)*P(25) /P(22)) /P(14)
P(17)=TEMIN
P(18)=TEMAX
WRITE(2,500)
>00 FORMAT(1HL,///,TS,'GENERAL PARAMETER SET',/,TS,'I’.
1 T20, 'VALUE' , /)
WRITE(2,550)(I,P(I),I=1,18)
550 FORMAT(T3,13,T20,G12.6)
WRITE(2,600)P(20)
600 FORMAT(T4,’20’,T20,G12.6)
WRITE(2,550)(I,P(I),I=22,23)
WRITE(2,550) (I,P(I),I=25. 27)
IR2=0
IR3=0
IR4=0

THE COUNTER DEFINING THE NUMBER OF FLOOD VALUES IS COMPUTED AND
COMPARED WITH THE MAXIMUN. THE VALUE OF THE MAXIMUN FLOOD IN
THE INTEGRATION IS REDEFINED
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NQ=INT( (QPMAX-QP(1))/DQP)+1
IF(NQ.GT.100)THEN
WRITE(2,1000)NQ

FORMAT(1H1,///,TS,'THE NUMBER OF FLOOD VALUES "o L,
1 "EXCEEDS THE ALLOWED MAXIMUN: 100')

STOP
END IF

QPMAX=FLOAT (NQ) *DQP

THE INTEGRATION BEGINS
DO 10 I=1,NQ

QP(I)=QP(1)+FLOAT(I-1)*DQP

WRITE(2,1005)I,QP(I)

FORMAT(2X, 'I= ',1I5,2X,'QP(I)= ',F8.1)

P(19)=QP(I)

P(24)=P(19)/2./P(6)/P(5)

THE CDF FOR THE ACTUAL VALUE OF QP IS INITIALIZED

CDF(I)=CDF1

FOR THE ACTUAL VALUE OF QP, THE FIRST THIRD OF INTEGRATION (E3)
DEFINED, AS THE INTERSECTION OF R3 AND Q3.

WRITE(2,1010)
FORMAT (T2, '**** REGION E3 Kedeskok ! )

WHEN IR3=1 THE INTEGRAL IN THIS REGION HAS REACHED A CONSTANT
VALUE AND IS NOT PERFORMED ANYMORE

IF(IR3.EQ.O)THEN

THE INTERSECTION POINT OF FBR43 AND FQ3 IS TESTED TO BE
GREATER THAN TEMIN

RE3=FQ3 (P, TEMIN)
RE43=FBR43 (P, TEMIN)
IF(RE3.LT.RE43)THEN

THE INTERSECTION POINT IS COMPUTED

D=(P(19)/2./P(6)/P(1))**(1./P(2))
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TE43=P(5)/P(1)/(D**(P(2
(DX¥*P(2)))**(P(4)-
IF(TE43.LE.0.0)TE43=TEM

TE43 IS LESS THAN TEMIN

ELSE
TE43=TEMIN/2 .

END IF

WRITE(2,1015)TE43

FORMAT(T2, ' INT. POINT: ’,

THE INTERSECTION POINT TE
MAXIMUN

IF(TE43.GE. TEMAX) THEN
E3 :TE AXIS TO FQ3 FOR
WRITE(2,1020)
FORMAT (T2, 'E3 :TE AXIS

CALL ROMB(N,TEMIN, TEMAX
IF(IR.EQ.1)THEN

1
-4

)-1.))-P(2)*(P(6)/P(3)/((2.%P(1)*
1.)))**(1./P(4))
IN/2.

Gl4.7)

43 IS CHECKED TO BE GREATER THAN THE

[ TEMIN,TEMAX ]

TO FQ4 FOR [ TEMIN,TEMAX ]')
,P(25),P,IR,AC1,FIN, FQ3, FNUL)

WRITE(2,1025)I,QP(I),N

FORMAT(/, TS, ' ROMBERG ALGORITHM DOES '

‘NOT CONVERGE,

‘QP(I)= ',G12.
‘l !,IS)
STOP
END IF
-AC2=0.0

',/,T10, ' I= L T1O,
6,/,T10, 'NUMBER OF ITERATIONS:; '

THE INTERSECTION POINT TE43 IS CHECKED TO BE WITHIN THE RANGE

OF INTEGRATION

ELSE IF(TE43.GT.TEMIN) THEN

E3 :TE AXIS TO FQ3 FOR

[ TEMIN,TE43 |

TE AXIS TO FBR43 FOR [ TE43,TEMAX |

WRITE(2,1030)

FORMAT(T2,'E3 :TE AXIS TO FQ3 FOR | TEMIN, TE43 ]

/,T7,'TE AXIS TO

FBR43 FOR [ TE43,TEMAX 1)

CALL ROMB(N, TE43, TEMAX, P(25), P, IR,ACL, FIN,

FBR43, FNUL)
IF(IR.EQ.1)THEN

WRITE(2,1025)I,QP(I),N

STOP
END IF

CALL ROMB(N,TEMIN,TE43,P(25),P,IR,ACZ,FIN,FQB,FNUL)

IF(IR.EQ.1)THEN

WRITE(2,1025)I,QP(I),N

STOP
END IF
ELSE
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C
c E3 :TE AXIS TO FBR43 FOR [ TEMIN,TEMAX |
C
WRITE(2,1035)
1035 FORMAT(T2,'E3 :TE AXIS TO FBR43 FOR [ TEMIN,TEMAX ]')
CALL ROMB(N,TEMIN,TEMAX,P(25),P,IR,ACL,FIN,
1 FBR4 3, FNUL)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I),N
STOP
END IF
AC2=0.0
IR3=1
CDF1=CDF1+AC1
END IF
o
o THE TOTAL INTEGRAL IS UPDATED
C
CDF(I)=CDF(I)+AC1+AC2
WRITE(2,1040)AC1,AC2,CDF(I)
1040 FORMAT(T2, 'RESULTS FOR E3:',/,TS,’ACl= ',Gl4.7,/,TS,
1 'AC2= ' ,Gl4.7,/,T5,'CDF(I)= ',Gl4.7,//)
END IF
C
G hcmmr im0 e T 0577 50 5 i vt 8 S
C REGION E&4
Cimm o e e e o e e e e e e e e e e m e mm e e e
Cc
G
C FOR THE ACTUAL VALUE OF QP, THE FOURTH REGION OF INTEGRATION C
(E4) IS DEFINED AS THE INTERSECTION OF R4 AND Q4
C

WRITE(2,1045)
1045  FORMAT(T2, 's#¥%% REGION E&4 %sskx')

c
c WHEN IR4=1 THE INTEGRAL IN THIS REGION HAS REACHED A CONSTANT
C VALUE AND IS NOT PERFORMED ANYMORE
C
IF(IR4.EQ.O0)THEN
C
C THE INTERSECTION POINT FOUND IN THE PREVIOUS REGION IS CHECKED
c TO BE INSIDE THE RANGE OF INTEGRATION. WHEN IT IS GREATER
C THAN TEMAX REGION E4 DOES NOT EXIST.
C
IF(TE43.GE.TEMAX)THEN
C
c E4 DOES NOT EXIST
C
WRITE(2,1050)
1050 FORMAT(T2, 'E4 DOES NOT EXIST')
AC1=0.0
AC2=0.0

ELSE
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E4 DOES EXIST AND THE INTERSECTION POINT BETWEEN BR24 AND Q4
IS TESTED TO BE GREATER THAN TEMIN

oSN Ns N o]

RE4=FQ4 (P, TEMIN)
RE24=FBR24 (P, TEMIN)
IF(RE4.LT.RE24) THEN

c THE INTERSECTION POINT IS COMPUTED

TE1=TE43
TE2=(P(5)*(P(24)%* (1. =P(2)))/P(1))**(1./P(2))
DO 15 J=1,NBIS
TE3=(TE1+TE2) /2.
IF(FINTA(P,TEI)*FINT&(P,TEB).LE.0.0)THEN
TE2=TE3
ELSE
TE1=TE3
END IF
15 CONTINUE
CALL FALSI(NIT,TEL,TE2,P(26),P,IT,IR,TE24, FINT4)

THE FLAG INDICATING THE TYPE OF RESULT IS ANALYZED

oNeNe!

IF(IR.EQ.1)THEN

THE SOLUTION DOES NOT CONVERGE FOR THE GIVEN NUMBER OF
ITERATIONS

e NeoNeNe]

WRITE(2,1055)I,QP(I),NIT
1055 FORMAT(/,T5, ' FALSE POSITION ALGORITHM DOES ',

1 'NOT CONVERGE FOR REGION E&4.',/,T10,'I= ,I5,/,
2 T10,'QP(I)= ’,G12.6,/,T10, 'MAXIMUN NUMBER OF'
3 ,' ITERATIONS: ’,I5)
STOP
ELSE
c
G THE INTERSECTION POINT HAS BEEN FOUND SUCCESSFULLY
c
IF(TE24.LE.0.0) TE24=TEMIN/2,
END IF
ELSE
TE24=TEMIN/2.
END IF
WRITE(2,1015)TE24
c
c TE43 BEING WITHIN THE RANGE OF INTEGRATION IS CONSIDRED
C
IF(IR3.EQ.0)THEN
@
¢ TE24 IS CHECKED TO BE GREATER THAN TEMAX
C
IF(TE24 . GE. TEMAX) THEN
c
C E4 :FBR43 TO FQ4 FOR [ TE43,TEMAX |
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WRITE(2,1060)

1060 FORMAT(T2,'E4 :FBR43 TO FQ4 FOR [ TE43, TEMAX 1)
CALL ROMB(N,TE43,TEMAX,P(25),P,IR,ACL,FIN,
1 FQ4 , FBR43)

IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I) N
STOP

END IF

AC2=0.0

ELSE

E4: FBR43 TO FBR24 FOR [ TE24,TEMAX |
FBR43 TO FQ4 FOR [ TE43,TE24 ]

2l ollele

WRITE(2,1065)
1065 FORMAT(T2, "E4: FBR43 TO FBR24 FOR [ TE24, TEMAX ]
1 /TS, 'FBR43 TO FQ4 FOR [ TE43,TE24 |')
CALL ROMB(N,TE24,TEMAX,P(25),P,IR,ACL, FIN,
1 FBR24, FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I) N
STOP
END IF
CALL ROMB(N,TE43,TE24,P(25),P,IR,AC2,FIN,
1 FQ4 , FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I) N
STOP
END IF
END IF
ELSE IF(TE24.GE.TEMAX)THEN

¥

E4 :FBR43 TO FQ4 FOR [ TEMIN,TEMAX ]

QGG

WRITE(2,1070)
1070 FORMAT(T2, 'E4 :FBR43 TO FQ4 FOR [ TEMIN,TEMAX ] ')
CALL ROMB(N,TE43,TE24,P(25),P,IR,AC], FIN,
1 FQ4 , FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP
END IF
AC2=0.0
ELSE IF(TE24.GE.TEMIN)THEN

E4 :FBR43 TO FBR24 FOR [ TE24,TEMAX ]
FBR43 TO FQ4 FOR [ TEMIN,TE24 |

SN EoNe]

WRITE(2,1075)
1075 FORMAT(T2, 'E4 :FBR43 TO FBR24 FOR [ TE24,TEMAX ]’
1 /,T7,'FBR43 TO FQ4 FOR [ TEMIN,TE24 ]')
CALL ROMB(N,TE24,TEMAX,P(25),P,IR,ACl,FIN,
1 FBR24 , FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I),N
STOP



[2¥]
=
e |

END IF
CALL ROMB(N,TEMIN,TE24,P(25),P,IR,AC2,FIN,
1 FQ4,FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I),N
STOP
END IF
ELSE

E4 :FBR43 TO FBR24 FOR | TEMIN, TEMAX ]

oo

WRITE(2,1080)
1080 FORMAT(T2, 'E4 :FBR43 TO FBR24 FOR [ TEMIN,TEMAX ]')
CALL ROMB(N,TEMIN,TEMAX,P(QS),P,IR,ACI,FIN,
1 - FBR24 ,FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I),N
STOP
END IF
AC2=0.0
CDF1=CDF1+AC1l
IR4=1
END IF
END IF

C THE TOTAL INTEGRAL IS UPDATED
CDF(I)=CDF(I)+ACl1+AC2

WRITE(2,1085)AC1,AC2,CDF(I)
1085 FORMAT (T2, 'RESULTS FOR E4:',/,T5,'ACl= L N N

1 ‘AC2= ',Gl4.7,/,T5, 'CDF(I)= 26147, A1)
END IF

c

K05 e B i 5 S e s e
C REGION E2

il T P ——————
C

c

C FOR THE ACTUAL VALUE OF QP, THE SECOND REGION OF INTEGRATION C

(E2) IS DEFINED AS THE INTERSECTION OF R2 AND Q2

C

WRITE(2,1090)
1090 FORMAT (T2, ' *%%% REGION E?2 kst ! )

c
c WHEN IR2=1 THE INTEGRAL IN THIS REGION HAS REACHED A CONSTANT
c VALUE AND IS NOT PERFORMED ANYMORE
c
IF(IR2.EQ.0)THEN
C
¢ THE INTERSECTION POINT BETWEEN BR24 AND Q2 IS TESTED TO
c BE GREATER THAN TEMIN
C

IF(TE24.GT.TEMIN) THEN

THE INTERSECTION POINT IS COMPUTED

aao
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TE1=0.95*TE24
TE2=(P(5)*(P(24)**(1.-P(2)))/P(1))**(1./P(2))
DO 25 J=1,NBIS
TE3=(TE1+TE2) /2.
IF(FINT2(P,TEL)*FINT2(P,TE3) .LE.0.0) THEN
TE2=TE3
ELSE
TE1=TE3
END IF
25 CONTINUE
CALL FALSI(NIT,TEl,TE2,P(26),P,IT,IR,TE24,FINT2)

THE FLAG INDICATING THE TYPE OF RESULT IS ANALYZED

o NN ]

IF(IR.EQ.1)THEN

THE SOLUTION DOES NOT CONVERGE FOR THE GIVEN NUMBER OF
ITERATIONS

OO0

WRITE(2,1095)I,QP(I),NIT
1095 FORMAT(/,T5, 'FALSE POSITION ALGORITHM DOES ',

1 'NOT CONVERGE FOR REGION E2.',/,T10,'I= ',15,/,
2 T10, 'QP(I)= ',G12.6,/,T10, 'MAXIMUN NUMBER OF'
3 ,' ITERATIONS: ',IS)
STOP
ELSE
(8
c THE INTERSECTION POINT HAS BEEN FOUND SUCCESSFULLY
G
IF(TE24.LE.0.0)TE24=TEMIN/2.
END IF
END IF
WRITE(2,1015)TE24
c
c THE INTERSECTION POINT FOUND IS CHECKED TO BE INSIDE THE
c RANGE OF INTEGRATION. WHEN IT IS GREATER THAN TEMAX,
c REGION E2 DOES NOT EXIST.
c
IF(TE24 .GE. TEMAX) THEN
c
c E2 DOES NOT EXIST
C
WRITE(2,1100)
1100 FORMAT (T2, 'E2 DOES NOT EXIST')
AC1=0.0
AC2=0.0
ELSE
C
c E2 DOES EXIST AND THE INTERSECTION POINT BETWEEN BR12 AND Q2
¢ IS COMPUTED.
(&
RI=P(24)
TE12=(P(5)*(RI**(1.-P(2)))/P(1))**(1./P(2))+(P(6)/(P(3)*
1 ((2.*P(5)*RI)**(P(4)-1.))))**(1./P(4))

WRITE(2,1015)TE12
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C
¢ TE24 BEING WITHIN THE RANGE OF INTEGRATION IS CONSIDRED
c
IF(IR4.EQ.0)THEN
c
g TE12 IS CHECKED TO BE GREATER THAN TEMAX
c
IF(TE12.GE. TEMAX) THEN
C
c E2 :FBR24 TO FQ2 FOR [ TE24,TEMAX |
c
WRITE(2,1105)
1105 FORMAT(T2, 'E2 :FBR24 TO FQ2 FOR [ TE24,TEMAX ')
CALL ROMB(N,TE24,TEMAX,P(25),P,IR,ACL, FIN,
1 FQ2,FBR24)
IF(IR.EQ.1)THEN
WRITE(2,1025)T,QP(I),N
STOP
END IF
AC2=0.0
ELSE
C
c E2 :FBR24 TO FBR12 FOR [ TE12,TEMAX |
c FBR24 TO FQ2 FOR [ TE24,TE12 ]
c
WRITE(2,1110)
1110 FORMAT(T2, 'E2 :FBR24 TO FBR12 FOR | TE12,TEMAX ],
1 /,T5,'FBR24 TO FQ2 FOR [ TE24,TE12 ]')
CALL ROMB(N,TE12,TEMAX,P(25),P,IR,ACL,FIN,
1 FBR12, FBR24)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I) N
STOP
END IF
CALL ROMB(N,TE24,TE12,P(25),P,IR,AC2,FIN,
1 FQ2,FBR24)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I),N
STOP
END IF
END IF
ELSE IF(TE12.GE.TEMAX)THEN
C
C E2 :FBR24 TO FQ2 FOR [ TEMIN,TEMAX |
c
WRITE(2,1115)
1115 FORMAT(T2, 'E2 :FBR24 TO FQ2 FOR [ TEMIN,TEMAX ]')
CALL ROMB(N,TEMIN, TEMAX,P(25),P,IR,ACL,FIN,
1 FQ2,FBR24)

IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP

END IF

AC2=0.0

ELSE IF(TE12.GE.TEMIN)THEN
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E2 :FBR24 TO FBR12 FOR [ TE12,TEMAX |
FBR24 TO FQ2 FOR [ TEMIN,TE12 |

[eNeNeNe!

WRITE(2,1120)
1120 FORMAT(T2, 'E2 :FBR24 TO FBR12 FOR [ TE12,TEMAX ',
1 /,T7,'FBR24 TO FQ2 FOR [ TEMIN,TE12 ')
CALL ROMB(N,TE12,TEMAX,P(25),P,IR,AC],FIN,
1 FBR12,FBR24)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I),N
STOP
END IF
CALL ROMB(N,TEMIN,TE12,P(25),P,IR,AC2,FIN,
1 FQ2,FBR24)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I) N
STOP
END IF
ELSE

C E2 :FBR24 TO FBR12 FOR [ TEMIN, TEMAX ]

WRITE(2,1125)
1125 FORMAT(T2, 'E2 :FBR24 TO FBR12 FOR [ TEMIN,TEMAX 1)
CALL ROMB(N,TEMIN,TEMAX,P(25),P,IR,ACl,FIN,
1 "FBR12, FBR24)
IF(IR.EQ.1)THEN
WRITE(2,1025)I,QP(I) N
STOP
END IF
AC2=0.0
CDF1=CDF1+AC1
IR2=1
END IF
END IF

THE TOTAL INTEGRAL IS UPDATED

s eNe]

CDF(I)=CDF(I)+AC1+AC2
WRITE(2,1130)ACI,ACQ,CDF(I)
1130 FORMAT (T2, 'RESULTS FOR E2:',/,T5,'ACl= ',Gl4.7,/,T5,

1 'AC2= ',G14.7,/,T5,'CDF(I)= ',Gl4.7,//)

END IF
c
ks R ——————
c REGION E1
C _______________________________________________________________________
c

WRITE(2,1135)
1135  FORMAT(T2, '*¥%* REGION E1 #*#%’)

C

C FOR THE ACTUAL VALUE OF QP, THE FIRSTH REGION OF INTEGRATION
C (E1) IS DEFINED AS THE INTERSECTION OF R1 AND Q1
C



OoOaon

aaa

1140

1150
10

1500

WO wr

221

E1 :FBR12 TO FQl FOR [ TE12,TEMAX ]

WRITE(2,1140)
FORMAT(T2,'El :FBR12 TO FQL FOR [ TE12,TEMAX ]')
CALL ROMB(N,TE12,TEMAX,P(25),P,IR,ACL,FIN,FQl,FBR12)
IF(IR.EQ.1)THEN

WRITE(2,1025)I,QP(I),N

STOP
END IF

THE TOTAL INTEGRAL IS UPDATED

CDF(I)=CDF(I)+ACl

WRITE(2,1145)ACL,CDF(I)

FORMAT (T2, 'RESULTS FOR El:',/,TS,’ACl= ',Gl4.7,/,TS,
"CDF(1)= ',Gl4.7,//)

A NEW FLOOD VALUE IS OBTAINED

WRITE(2,1150)CDF(I)
FORMAT (2X, 'CDF(I)= ',Gl4.7)
CONTINUE

THE RETURN PERIOD IS COMPUTED FOR EACH DISCHARGE

DO 35 I=1,NQ
TRET(I)=1./AMV/(1-CDF(I))
CONTINUE

THE HEADING IS PRINTED

WRITE(2,1300)
FORMAT(1H1,///,TS, 'FLOOD FREQUENCY DISTRIBUTION',///)

THE WATERSHED PARAMETERS ARE PRINTED

WRITE(2,1500)P(5),ANP,SP,P(6),ANC,SC,AC, BC
FORMAT(//,T10, 'WATERSHED PARAMETERS',/,
T20,'PLANE WIDTH: ',TS50,F8.0,T65, FT’,/,
T20, 'PLANE ROUGHNESS: ',T50,F8.5,T65,'-',/,
T20, 'PLANE SLOPE: ',T50,F8.5,T65,'-',/,
T20,'STREAM LENGTH: ‘,T50,F8.0,T65,‘FT’,/,
T20, 'STREAM ROUGHNESS: ‘,T50,F8.5,T65,'-',/,
T20, ' STREAM SLOPE: ',T50,F8.5,T65,'-',/,
T20,'CROSS-SECTIONAL AREA PARAMETERS: ',/,T30,'AC: '
T50,F8.5,/,T30,'BC: ',T50,F8.5,/)
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c
C THE INFILTRATION PARAMETERS ARE PRINTED
c
WRITE(2,1700)P(15),P(16)
1700 FORMAT(//,T10,’'INFILTRATION PARAMETERS',/,
1 T20, 'HYDRAULIC CONDUCTIVITY: ‘,TS0,F9.7,T65, 'FT/SEC’,/,
2 T20, 'SORPTIVITY: ',T50,F8.5,T65, FT/(SEC**.5)", /)

THE RAINFALL PARAMETERS ARE PRINTED

OO0

P(13)=1./P(13)

P(14)=1./P(14)

MV=INT (AMV)

WRITE(2,1800)P(13),P(14),TEMIN, TEMAX MV
1800 FORMAT(//,T10, 'RAINFALL PARAMETERS',/,

1 T20, 'MEAN INTENSITY: ‘,TS0,F9.7,T6S,'FT/SEC',/,
2 T20, 'MEAN DURATION: ',TS0,F9.2,T65,'SEC’,/,
3 T20, 'MINIMUN DURATION: ',T50,F9.2,T65,'SEC’,/,
4 T20, 'MAXIMUN DURATION: ',T50,F9.2,T65,'SEC',/,
5 T20, 'NUMBER OF INDEPENDENT EVENTS: ',TS0,I5,/)
C
C THE FLOOD FREQUENCY DISTRIBUTION CURVE IS PRINTED
C

WRITE(2,2000)NQ, PIN
2000 FORMAT(1H1,///,T5,'VALUES OF THE CUMULATIVE DISTRIBUTION '

1 'FUNCTION',/,T10, 'NUMBER OF POINTS: ',I5,//,T20,

2 "P[IE=0.0 AND T=0.0]= ', F7.5,//,T20,

3 'DISCHARGE',T50, ' PROBABILITY',T70, 'RETURN PERIOD',/,

A T20, ' (CFS)*,T55,'(-)",T70, ' (YEARS) ', /)

DO 20 I=1,NQ

WRITE(2,2100)QP(I),CDF(I),TRET(I)
2100  FORMAT(T20,F9.2,T50,F7.5,T70,F7.2)
20 CONTINUE

THE VALUES OF THE CUMULATIVE DISTRIBUTION FUNCTION ARE SAVED ON
TAPE3 IN ORDER TO BE USED (PLOTTED) LATER

[oNoNoNe!

DO 30 I=1,NQ
WRITE(3,2200)TRET(I),QP(I)
2200  FORMAT(2X,F9.2,4X,F9.2)
30 CONTINUE
STOP
END
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SUBROUTINE ROMB(N,A,B,TOL, P, IR,APP,FRO,FSUP, FINF)

.......................................

*********************;r?'r')'t;\;{;\K?{AnKN'J\'-\AN.A:\'?F.‘\nKKKAAK?:K?\'AHKKKJ\AAHKKAAKK

SUBROUTINE ROMB
PURPOSE

APPROXIMATE A GIVEN DEFINITE INTEGRAL USING ROMBERG ALGORITHM,
THE STOPPING CRITERIA USED IS GIVEN BY THE COMPARISON OF THE
ABSOLUTE ERRORS FOR TWO CONSECUTIVE ROWS WITH THE TOLERANCE.

REFERENCE: DOCUMENTATION ABOUT THE ALGORITHM HERE IMPLEMENTED
CAN BE FOUND IN "NUMERICAL ANALYSIS" BY R. L. BURDEN AND
J. D. FAIRES, 3RD EDITION.

AUTHOR: LUIS CADAVID, COLORADO STATE UNIVERSITY, SUMMER 1986.
COURSE: NUMERICAL ANALYSIS I, M 350,
INPUT VARIABLES:

N: MAXIMUN NUMBER OF ITERATIONS ALLOWED IN THE PROCESS.
A: LEFT END POINT OR LOWER INTEGRATION LIMIT.

B: RIGHT END POINT OR UPPER INTEGRATION LIMIT.

P: SET OF PARAMETERS USED TO EVALUATE THE FUNCTION FRO,
TOL: TOLERANCE.

OUTPUT VARIABLES:

I: ACTUAL NUMBER FO PERFORMED ITERATIONS.
IR: FLAG INDICATING THE TYPE OF RESULT.
IR=0: THE PROCESS CONVERGES BEFORE OR AT N ITERATIONS.
IR=1: THE PROCESS DOES NOT CONVERGE WITHIN N ITERATIONS,
R: ARRAY OF SIZE I TIMES I. IT CONTAINS THE APPROXIMATION
TABLE. PARTICULARLY, R(I,I) CONTAINS THE BEST
APPROXIMATION

C
c
*
c
C
c
c
c
C
C
C
C
C
C
c
C
c
C
c
C
C
c
c
c
C
C
C
C
C
o
C
c
C
C
C
C
C
C FOR THE DEFINITE INTEGRAL

C

C LOCAL VARIABLES:

C

C H: INTERVAL LENGTH.

C LI: UPPER SUMMATION LIMIT FOR THE EXTENDED TRAPEZOIDAL
c APPROXIMATION.

C X: ANY VALUE OF THE INDEPENDENT VARIABLE.

EXJ: EXPONENT USED IN THE EXTRAPOLATING FORMULAE.

C
c
c SUBROUTINES NEEDED:

C FRO: FUNCTION PROGRAM WRITTEN BY THE USER. IT EVALUATES THE
c FUNCTION TO BE INTEGRATED AT ANY POINT.
C
C
C

----------------------------------------------------------------------

DIMENSION R(100,100),P(30)
EXTERNAL FSUP,FINF
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THE FLAG INDICATING THE TYPE OF RESULT IS INITTALIZED.
IR=0

THE LENGTH FOR THE ENTIRE INTERVAL AND THE FIRST APPROXIMATION
ARE CALCULATED.

H=B-A
CALL FRO(P,A,FSUP,FINF,RES])
CALL FRO(P,B,FSUP, FINF, RES?)
R(1,1)=(RES1+RES2)*H/2.

BEGINING WITH THE SECOND, A NEW ROW IS CALCULATED UNTIL THE
THE PROCESS CONVERGES OR FAILS.

DO 10 I=2,N
THE FIRST ELEMENT FOR THE ITH ROW IS CALCULATED.,

IF(I.EQ.2)THEN
LI=1

ELSE
LI=2%*(I-2)

END IF

R(I,1)=0.0

DO 20 J=1,LI
X=A+(FLOAT(J)-0.5)*H
RES1=0.0
CALL FRO(P,X,FSUP,FINF,RES1)
R(I,1)=R(I,1)+RES1

20  CONTINUE
R(I,1)=(R(I-1,1)+R(I,1)*H)/2.

THE EXTRAPOLATION IS PERFORMED.

DO 30 J=2,1
EXJ=FLOAT(J-1)
R(I,J)-((ﬁ.**EXJ)*R(I,J-l)-R(I-l,J-l))/((&.**EXJ)-1.)
30 CONTINUE
IF(I.EQ.2)GO TO 35

WHEN MORE THAN TWO ROWS HAVE BEEN COMPUTED THE STOPPING CRITERIA
IS APLIED.

IF(ABS(R(I,I)-R(I,I-I)).LT.TOL)THEN
IF(ABS(R(I-I,I~l)-R(I-l,I-2)).LT.TOL)THEN
APP=R(I,I)
RETURN
END IF
END IF

A NEW ITERATION IS PERFORMED.

35  H=H/2.
10 CONTINUE



OO0

THE PROCEDURE FAILS AFTER N ITERATIONS,
RESULT IS UPDATED

IR=1
RETURN
END

THE FLAG INDICATING THE
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SUBROUTINE FALSI(NIT,YO,Y1l,TOL,P,I,IR,Y,FFAL)

C
c
Cdskdbdesd ke st kbbbl ok sk st ook st sk s s sk sk s sk s sk s st s s e s s b s s oo e s e s s e e o
C
o
C THIS SUBROUTINE FINDS AN APPROXIMATION FOR THE ZERO Y OF A
C FUNCTION F(X)=0.0. TO PERFORM THIS TASK THE FALSE POSITION
C ALGORITMH IS USED. THE STOPPING CRITERIA IS GIVEN BY THE
c ABSOLUTE ERROR BETWEEN TWO CONSECUTIVE APPROXIMATIONS.
c
C AUTHOR: LUIS CADAVID, COLORADO STATE UNIVERSITY, NOVEMBER 1986.
C
C SUBROUTINES NEEDED:
C FFAL: FUNCTION PROGRAM WRITTEN BY THE USER. IT EVALUATES THE
c FUNCTION TO BE SOLVED AT ANY POINT.
C
C INFORMATION ABOUT THE ALGORITHM HERE IMPLEMENTED CAN BE FOUND
C IN "NUMERICAL ANALYSIS" BY R. L. BURDEN AND J. D. FAIRES, 3RD
C EDITION.
C
Creseseddab ks ol oot ook ok sk skt sdbe sk stk s skt s s st o s ek s e s s s o s s o o e s o e oo o sk s sk s s sk o s oo
C
C
DIMENSION P(30)
C
C THE FLAG INDICATING THE FINAL RESULT, IR, IS INITIALIZED.
C
IR=0
C
C THE POSSIBILITY OF THE SOLUTION BEING AT THE INITIAL END POINTS
C IS INVESTIGATED.
C
IF(FFAL(P,Y0).EQ.0.0)THEN
Y=Y0
RETURN
ELSE IF(FFAL(P,Y1l).EQ.0.0)THEN
Y=Y1
RETURN
END IF
C
C THE FALSE POSITION METHOD IS APPLIED.
c
DO 10 I=1,NIT
C
C A NEW ITERATE IS CALCULATED.
c
Y=Y0-FFAL(P,Y0)*(Y1-Y0)/(FFAL(P,Y1)-FFAL(P,YO0))
C
c IF THE ABSOLUTE ERROR FOR THE LAST TWO BOUNDARY POINTS IS LESS
C THAN THE TOLERANCE, TOL, THE PROCEDURE IS CONSIDERED SUCCESSFUL.
c

IF(ABS(Y-Y1).LT.TOL)RETURN

NEW ENDING POINTS FOR THE INTERVAL CONTAINING Y ARE DETERMINED.

oMo Ne]
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IF(FFAL(P,Y)*FFAL(P,Y1).LT.0.0)THEN
YO=Y1
Y1=Y
ELSE
Y1=Y
END IF
10 CONTINUE

THE ITERATIVE PROCESS FAILS AFTER N ITERATIONS.
PONDING FLAG IS UPDATED.

IR=1
RETURN
END

THE CORRES-
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SUBROUTINE FIN(P,TE,FSUP,FINF,RES)

DIMENSION P(30)

R1=FINF(P,TE)

R2=FSUP (P, TE)
RES=P(22)*(EXP(-P(23)*(R1%%0.8442)%(TE**(-0.0779)))

1 -EXP(-P(23)*(R2%*0.8442)*%(TE**(-0.0779))))*
2 EXP(-P(14)*TE) /P(23)/0.8442

RETURN

END

FUNCTION FNUL(P,TE)
DIMENSION P(30)
FNUL=0.0

RETURN

END

FUNCTION FBR43(P,TE)
DIMENSION P(30)
EXTERNAL FUNC43
P(21)=TE
NIT=INT(P(27))
R1=P(20)
IF(ABS (FUNC43(P,R1)).LE.P(26))THEN
FBR43=R1
RETURN
END IF
IF(FUNC43(P,R1) .GT.0.0)THEN
DO 10 I=1,NIT
R2=2.%*R1
IF(FUNC43(P,R1)*FUNC43(P,R2).LT.0.0)GO TO 30
R1=R2
10  CONTINUE
ELSE
DO 20 I=1,NIT
R2=R1/2.
IF(FUNC43(P,R1)*FUNC43(P,R2).LT.0.0)GO TO 30
R1=R2
20  CONTINUE
END IF
WRITE(2,500) :
500 FORMAT(/,T5,’NO INITIAL APPROXIMATION ATTAINED FOR FBR43')
STOP
30 CALL FALSI(NIT,R1,R2,P(26),P,IT,IR,RES,FUNC43)
IF(IR.EQ.1)THEN
WRITE(2,1000)
1000  FORMAT(/,TS,'FALSE POSITION ALGORITHM DOES ',
1 ‘NOT CONVERGE FOR REGION FBR43')
STOP
END IF
FBR43=RES
RETURN
END
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FUNCTION FBR24(P,TE)
DIMENSION P(30)
FBR24=(P(1)*(TE**P(2))/P(5))%%(1./(1.-P(2)))
RETURN

END

FUNCTION FBR12(P,TE)
DIMENSION P(30)
EXTERNAL FUNC12
P(21)=TE
NIT=INT(P(27))
R1=P(20)
IF(ABS(FUNC12(P,R1)).LE.P(26))THEN
FBR12=R1
RETURN
END IF
IF(FUNC12(P,R1).GT.0.0)THEN
DO 10 I=1,NIT
R2=2 . %R1
IF(FUNC12(P,R1)*FUNC12(P,R2).LT.0.0)GO TO 30
R1=R2
10  CONTINUE
ELSE
DO 20 I=1,NIT
R2=-R1/2.
LF(FUNC12(P,R1)*FUNC12(P,R2).LT.0.0)GO TO 30
R1=R2
20  CONTINUE
END IF
WRITE(2,500)
>00 FORMAT(/,T5,'NO INITIAL APPROXIMATION ATTAINED FOR FBR12')
STOP
30 CALL FALSI(NIT,R1,R2,P(26),P,IT,IR,RES,FUNC12)
IF(IR.EQ.1)THEN
WRITE(2,1000)
1000 FORMAT(1H1,///,TS,’FALSE POSITION ALGORITHM DOES
1 ‘NOT CONVERGE FOR FBR12')
STOP
END IF
FBR12=RES
RETURN
END

FUNCTION FQ3(P,TE)
DIMENSION P(30)
FQ3=((P(19)/2./P(6)/P(1))**(1./P(2)))/TE
RETURN

END

FUNCTION FQ4(P,TE)
DIMENSION P(30)
EXTERNAL FUNC4
P(21)=TE
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NIT=INT(P(27))
R1=P(20)
IF(ABS(FUNC4(P,R1)) .LE.P(26))THEN
FQ4=R1
RETURN
END IF
IF(FUNC4(P,R1) .LT.0.0)THEN
DO 10 I=1,NIT
R2=2.%R1
IF(FUNC4 (P,R1)*FUNC4 (P,R2).LT.0.0)GO TO 30
R1=-R2
10  CONTINUE
ELSE
DO 20 I=1,NIT
R2=R1/2.
IF(FUNC4 (P,R1)*FUNC4 (P,R2).LT.0.0)GO TO 30
R1=R2
20  CONTINUE
END IF
WRITE(2,500)
500 FORMAT(/,T5,'NO INITIAL APPROXIMATION ATTAINED FOR FQ4')
STOP
30 CALL FALSI(NIT,R1,R2,P(26),P,IT,IR,RES,FUNC4)
IF(IR.EQ.1)THEN
WRITE(2,1000)
1000  FORMAT(/,TS,'FALSE POSITION ALGORITHM DOES ',
1 'NOT CONVERGE FOR FQ4')
STOP
END IF
FQ4=RES
RETURN
END

FUNCTION FQ2(P,TE)
DIMENSION P(30)
EXTERNAL FUNC2
P(21)=TE
NIT=INT(P(27))
R1=P(20)
IF(ABS(FUNC2(P,R1)).LE.P(26))THEN
FQ2=R1
RETURN
END IF
IF(FUNC2(P,R1).LT.0.0)THEN
DO 10 I=1,NIT
R2=2.*R1
IF(FUNC2 (P,R1)*FUNC2(P,R2).LT.0.0)GO TO 30
R1=R2
10  CONTINUE
ELSE
DO 20 I=1,NIT
R2-R1/2.
IF(FUNC2(P,R1)*FUNC2(P,R2).LT.0.0)GO TO 30
R1=R2
20  CONTINUE
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END IF
WRITE(2,500)
500 FORMAT(/,TS,'NO INITIAL APPROXIMATION ATTAINED FOR FQ2')
STOP
30 CALL FALSI(NIT,RI.RZ,P(ZG),P,IT,IR,RES,FUNCQ)
IF(IR.EQ.1)THEN
WRITE(2,1000)
1000 FORMAT(1H1,///,TS, 'FALSE POSITION ALGORITHM DOES ',
1 ‘NOT CONVERGE FOR FQ2')
STOP
END IF
FQ2=RES
RETURN
END

FUNCTION FQL(P,TE)
DIMENSION P(30)
FQ1=P(24)

RETURN

END

FUNCTION FINT4(P,TE)
DIMENSION P(30)

RI=(P(L)*(TE**P(2))/P(5))**(1./(1.-P(2)))
TP=(P(2)-1.)*TE/P(2)+P(5)/P(1)/P(2)*((RI*TE)**(1.-P(2)))
TS=(P(6)/P(3)*((2~*P(1)*((RI*TE)**P(2)))**(1--P(é))))**(l-/P(h))
FINT4=0.02%(P(9)+P(10)*ALOG(100.*TP/(TE+TS) ) ) *P(6)*P (1)*( (RIXTE)
1 *%P(2))-P(19)

RETURN

END

FUNCTION FINT2(P,TE)
DIMENSION P(30)

RI=(P(1)*(TE**P(2))/P(5))**(1./(1.-P(2)))
TS=(P(6)/(P(3)*((2.¥P(5)*RI)**(P(4)-1.))))**(1./P(4))
FINT2=0.02%(P(7)+P(8)*ALOG(100.*TE/(TE+TS)))*P(6)*P(5)*RI
1 -P(19)

RETURN

END

FUNCTION FUNC43(P,R)

DIMENSION P(30)

FUNC43=P(5)/(P(1)*P(2)*((R*P(Zl))**(P(Z)-1-)))-P(21)/P(2)-(P(6)

1 /P(3)/((2-*P(l)*((R*P(El))**P(Q)))**(P(ﬁ)-l-)))
*%(1./P(4))

RETURN

END

FUNCTION FUNC4(P,R)
DIMENSION P(30)
TP=(P(2)-1.)*P(21)/P(2)+P(5)/P(1) /P(2)*((R*P(21))**(1.-P(2)))
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TS=(P(6)/P(3)*((2.*P(1)*((R*P(21))**P(2)))**(1.-P(4))))**(1./P(4))
FUNC4=0.02% (P(9)+P(10)*ALOG(100.*TP/(P(21)+TS) ) )*P(6)*P(1)*

1 ((R¥P(21))**P(2))-P(19)

RETURN

END

FUNCTION FUNC2(P,R)

DIMENSION P(30)
TC=(P(5)*(R¥*(1.-P(2)))/P(1))**(1./P(2))+(P(6)/P(3)/((2.%P(5)*R)
1 **(P(4)-1.)))**(1./P(4))

FUNC2=0.02% (P(7)+P(8)*ALOG(100.*P(21)/TC))*P(6)*P(5)*R-P(19)
RETURN

END

FUNCTION FUNC12(P,R)

DIMENSION P(30)
FUNC12=(P(5)*(R¥*(1.-P(2)))/P(1))**(1./P(2))+(P(6)/P(3)/
1 ((2.%P(3)*R)**(P(4)-1.)))**(1./P(4))-P(21)

RETURN

END
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