
A FLOOD FREQUENCY DERIVATION TECHNIn

BASED ON KINEMATIC WAVEAPPROACH



Date Due

Cat. No. 23 233 Printed in U.S.A



THESIS

A FLOOD FREQUENCY DERIVATION TECHNIQUE
BASED ON KINEMATIC WAVE APPROACH

Submitted by

Luis Guillermo Cadavid

Department of Civil Engineering

In partial fulfillment of the requirements

for the Degree of Master of Scie

Colorado State University <51 o

Fort Collins. Colorado

Spring 1987



X3V

COLORADO STATE UNIVERSITY

Spring 1987

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR SUPERVISION

BY LUIS GUILLERMO CADAVTD

ENTITLED A FLOOD FREQUENCY DERIVATION TECHNIQUE BASED ON KINEMATIC

WAVE APPROACH

BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCF.

Committee on Graduate Work

YtTw o -f I
AcWiser

)epdrtment Head

COLOHADO S I Alt. UNIVERSITY LIBRARIES



ABSTRACT

A FLOOD FREQUENCY DERIVATION TECHNIQUE
BASED ON KINEMATIC WAVE APPROACH

The present study deals with the derivation of a methodology to
obtain a flood frequency distribution, for small ungaged watersheds,
where the overland flow phase is considered to be an important timing
component. In the hydrological literature, this technique comprises
three components: a rainfall infiltration model, an effective

rainfall-runoff model and the probabilistic component.

The study begins with a review of the Geomorphological
Instantaneous Unit Hydrograph (GIUH), in order to establish its
applicability to the aforementioned type of watersheds.

Some effective rainfall-runoff models currently used in the

practice of hydrology, like the GIUH and models based on Kinematic
Wave approach, lack the required features or do not consider all

possible responses within the watershed. Therefore, a new model is

developed and calibrated, based on Kinematic Wave approach, for a
first order stream with two symmetrical lateral planes. The model is

conformed by analytical and approximate solutions, the latter improved
via regression analysis.

The formulated model is used along with a statistical

distribution for the effective rainfall intensity and effective
duration, in order to derive the flood frequency distribution

technique through the probabilistic component. The structure of the

equations considered in the different components imposes a numerical



algorithm to compute the flood frequency distribution curve for a

given watershed.

The derived technique is proved for hypothetical and real

watershed configurations, showing its capability to forecast flood

frequency curves for ungaged watersheds and to account for the

influence of parameters on the physics of flood formation. Actual

watersheds are conceived as first order streams with two symmetrical

planes.

Luis Guillermo Cadavid

Department of Civil Engineering
Colorado State University
Fort Collins, CO 80523
Spring 1987
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Chapter 1

INTRODUCTION

1.1 General

One of the more common tasks found in hydraulic engineering
design IS the selection of flood events. Generally, the person in
charge of the design faces one of two problems: I) selection of the
flood event when annual flood or partial duration series do erist, and
2) determination of a flood value when no historical flood records are
available.

In the first kind of approach, the historical data is fitted to a
given probability distribution, and the design annual flood is
selected by specifying a value for the exceedence probability or
return period.

In the second line of design, the first step is given by a
rainfall frequency analysis. This allows the assignation of
exceedence probabilities or return periods to different values of
rainfall intensity and duration. The design chosen values are passed
through an infiltration model, producing in this way the effective
quantities to be imposed over the watershed. Up to this point, two
alternate ways can be followed. In the first, the design engineer
picks up a synthetic unit hydrograph and obtain the peak discharge.
The second way requires the use of watershed routing models. In

either of the latter methodologies, the rainfall return period is
assigned to the peak discharge.



For ungaged watersheds, It is also suitable to follow a

statistical approach in which the paran,eters describing a certain
flood distribution are derived for the problem watershed via regional
analysis.

Since 1972, beginning with the now classical work by Eagleson,
a set of works has appeared in the hydrologlcal literature, which in

a wide sense can be referred to as derivation of flood frequency
dtstrlbutions. Although the name given to the new methodology is
ambiguous, since it can encompass the other approaches already
described, it is clarified when the effective rainfall-runoff model is
defined.

The method has three components; a rainfall - infiltration

component, an effective rainfall-runoff component and a probabilistic

component. In the first element, a joint distribution for the total

rainfall intensity and duration is proposed, as well as a model for
the infiltration process, producing the corresponding probability for
null runoff and the joint distribution for the effective intensity and
duration. The second model provides a set of equations or algorithms
for the computation of the peak variables, peak discharge and time to
peak. The transformation of the joint distribution for the effective
intensity and duration into the cumulative distribution function for
the peak discharge is accomplished via the probabilistic component,
integrating the former over certain regions defined by the effective

rainfall-runoff model, and adding the probability of null runoff. In
the last step, the flood frequency distribution curve is obtained by
performing some operations over the cumulative distribution function
for the peak discharge.



As stated above, the type of rainfall-toooff „„del qualifies the
derrvatlon of the flood frequency curve. So.e authors have used
physically based models, while orhpy-c v,

ave included geomorphological
approaches.

Obviously, as other methodologies do, the derivation of flood
frequency distribution has advantages and disadvantages. In the first
category, advantages such as Its ability to Incorporate climatic
aoil, geomorphological and dynamical parameters, and to provide some
Ught rnto the problem, can be enumerated. l„ the second
drsadvantages lihe the regulrement of Invertlblllty of the functions
<iafrnr„g the Infiltration model, the development and Implementation of
numerical algorithms anri ^)-.QS  and the consumption of computer time are counted.

1.2 Objectives

The objective of the present study Is the derivation of a
Physically based flood frepuency technl<.ue for small ungaged
watersheds, where the overland flow phase Is an Important component
"tthin this main objective, the derivation of an effective rainfall-
runoff model for a first order stream wirV. t-

tream with two symmetrical planes is
Iso posed. The constraint in the order of the channel is

Lue cnannei is necessary
Slven the actual state of the art, in order to preserve the physical
quality of the model. This means that for the flood frequency
technique application, actual watersheds are conceived as the simple
catchment geometry described above.

Some effective ralnfa 11.runoff models suggested in the
literature, in regard to flood frequency derivation, lack certain
features, like ability to predict peak discharge in small watersheds
or complete forecast of the peak discharge given the effective



intensity-duration space. This consideration forces the formulation

of an alternate effective rainfall - runoff model upon the basis of

physical considerations. The new model has to account for all

variables describing the catchm.ent area and the channel, as well as

their dynamic properties.

One of the effective rainfal 1 - runoff models frequently used in

the literature is the Geomorphological Instant Unit Hydrograph (GIUH).

This study also intends a review of such model in regard to its

applicability to small watersheds, where the overland flow phase is an

important component.

Summarizing, three are the main objectives for the present study

1) a review of the GIUH approach in regard to its applicability to

small watersheds, 2) formulation of a physically based effective

rainfall-runoff model, and 3) derivation of a physically based flood

frequency distribution for a first order stream.

1.3 Review of Related Literature

The classical work, setting up the methodology for derivation of

flood frequency distributions, was published by Eagleson in 1972.

More than the results themselves, Eagleson's greatest contribution

puts together the elements conforming the methodology. In the

rainfall-infiltration component, Eagleson considers the total rainfall

intensity and total duration as independent exponentially distributed.

Other features pertaining this stage are the consideration of a point

rai n f a 11 - areal rainfall relationship and the description of the

infiltration process through the (f> index method (Viessman et al.,

1977).



In the effective rainfall-runoff component Eagleson develops an
algorithm to forecast the peak discharge in a first order stream.
using the kinematic wave approach. However, this algorithm does not
encompass all possible runoff cases in the catchment area, for
example, concentration on the channel given no concentration on the
overland flow planes. Besides, its reduction of the decision tree for
peak direct streamflow depends on certain values assumed for slope and
roughness in the planes and in the stream, as well as on the rainfall
intensity.

After deriving Che annual flood frequency curve, Eagleson
compares it uith observations from natural watersheds and obtain a
good agreement.

It is important to emphasize in the fact that Eagleson's approach
is physical, due to the inclusion of kinematic wave approach, for
which, based on work by other authors, he points out important
P  ■ 1 advantages as well as the tendency to overestimate peak
floods.

The next important step in flood frequency derivation is given by
Hebson and Wood (1982). In the rainfall-infiltration model they
follow Eagleson works (1972, 1978). In the effective rainfall-runoff
model the convolution equation is used, where the unit instantaneous

response is assumed to be the Geomorphological Instantaneous Unit

Hydrograph (GIUH) , formulated back in 1979 by Rodriguez -1 turbe and
Valdes (1979). The application of Hebson and Wood's development to
two actual watersheds shows good agreement.

In 1983, Diaz-Granados et al. (1983) go a step further in the

derivation of flood frequency distributions by considering in the
infiltration model a ponding time equation, that is the Philip's



equation. This fact generates a Joint probability distribution
function for Che effective rainfall intensity and duration different
from that used in the previous works, m fact, the invertibiiity
condition required in the derived distribution technique (Freeman,
1963), is solved by means of regression analysis performed on
dimensionless variables.

In the effective rainfall-runoff component of the flood frequency
derivation, Diaz-Granados et al. use the GIUH, in the sense that they
take the expressions for the peak discharge and time to peak obtained
by Rodriguet-Iturbe and Valdes (1979), assign these values to the
triangular instantaneous unit hydrograph developed by Henderson
(1963), and obtain an expression for the peak discharge in any
watershed as a function of the effective rainfall and geomorphological
variables. Once the development is complete, they perform some
sensitivity analysis for the variables included in the flood frequency
derivation on a hypothetical watershed. The analysis is completed by
application to actual watersheds, reporting good results.

In regard to the Geomorphological Instantaneous Unit Hydrograph
(SIUH), two works are considered as integral part of the present
study. In the first, Rodriguez -1turbe and Valdes (1979) present the
analytical derivation of the GIUH along with the synthesis of the peak
discharge and time to peak. I„ the second, Valdes et al. (1979)
summarize the application of the GIUH to real world watersheds.

The review of literature herein presented, related to the
derivation of flood frequency distributions, yields two important

lusions. 1) the applicabilrty of the method to actual watersheds
and 2) the capability to provide some light into the internal
structure of flood frequency distributions, related to variables



describing basin morphology, infiltration behavior and runoff

response. These two features make the method an important tool to be

applied to ungaged watersheds.

As a last point, it is valuable to provide some references

regarding the kinematic wave theory widely used in the present study.

Eagleson (1970 and 1972) gives an excellent base for the theoretical

development. In the development and applicability of the method to

more complex cases, Garbrecht (1984) and Koch (1985) are strongly

recommended.

1.4 Scope of the Study

Due to the fact that a straight forward method to the flood

frequency derivation could be the adoption of the Geomorphological
Instantaneous Unit Hydrograph as the effective r a inf a 11 - runo f f

component, a review of its applicability to small watersheds, where

overland flow is an important timing component, is first intended.

The derivation itself of the flood frequency distribution is

performed following the steps already outlined for this methodology.
Some components are taken from other authors; others are developed as
an integral part of this study. Special attention is given to the

sensitivity analysis and to the application of the derived flood

frequency distribution to two small watersheds.

As the reader will notice, some values regarding the plane and

channel dynamics are held constant along the present study. Such

values are roughness and the coefficients describing the hydraulic

radius cross-sectional area relationship for the channel, R = aA^.

Particularly, a = 0.25 and b = 0.35 are recommended by Koch (1985),

based on Garbrecht's findings (1984), who obtained such values after



analysis of several stable channel relationships presented in the
literature.

The value of the roughness conditions the coefficient for the

depth-discharge relationship in the plane and for the area-discharge
in the plane. However, the variation on these coefficients is taken
into account through variation of slopes. Besides, when needed,
calibrations are performed on dimensionless variables, and the
obtained expressions account for all variables representing the
process under consideration.

During the development of the present study a kinematic wave
computer model was used for the simulation of the rainfall-runoff

process in different watersheds. To the best of the author's
knowledge, the model is traced back to Simons, Li and Eggert (1976).
spronk (1978) enhanced it substantially and it was'modified later by
Garbrecht (1984). Furthermore, Koch (1985) did some fine-tuning of
Che computer code as did the author of the present work. Appendix A
presents a description of the model in its theoretical basis, which is

completely based on Garbrecht (1984), and it is presented for the sake
of completeness.



Chapter 2

the giuh and the kinematic wave approach

2.1 Introduction

Sine. 1979 Che Geemorphological Inscantaneous Unit Hydrograph
GIUH has been a tool widely used in hydrology to forecast peak

g  and to develop physically based flood frequency distribution
curves (Hebson and Wood, 1982; Diaz-Granados et al., 1983).

This chapter is intended to review the applicability of the GIUH
to s„all watersheds where the overland flow is an important ti.ing
oofponent. The revision of the nethod is „ade on its own basis, that
is, comparing the GIUH with the Instantaneous Unit Hydrograph obtained
via detailed simulations. These simulations were performed using the
kinematic wave model described in Appendix A. and follows the
methodology presented by the GIUH's authors (Rodriguez-1turbe and
Valdes, 1979; Valdes et al., 1979).

The basic data required to perform the analysis were obtained
from three contrived watersheds (Koch, 1985), all these being third

catchment areas. This order agrees with the GIUH derivation
(Rodriguez-Iturbe and Valdes, 1979).

2.2 The GIUH

This section summarizes the basic considerations and expressions
used to Obtain the GIUH for a third order watershed (Rodriguez-1 turbe
and Valdes, 1979).



The derivation of the GIUH is based on the determination of the

probability that a rainfall drop chosen at random reaches the

watershed outlet at time t. In other words, the GIUH is given by the

probability distribution function of the arrival time of rainfall

drops to the catchment outlet. The main hypotheses taken into account

for the GIUH derivation are: 1) the watershed behaves following the

laws of stream numbers, stream lengths and stream areas; 2) the

transition probabilities from one state or order to another follow a

Markov process, i.e., those probabilities depend only on the actual

state; 3) the holding time or the time a drop spends in a given state

or order is exponentially distributed and; 4) the dynamic of the drop

as it travels along channels is well described by the peak flow

velocity, which supposedly remains constant for a given rainfall event

within the watershed.

The channel ordering scheme defined by Strahler (1957) is

selected. Sources are defined as the points farthest upstream in a

channel network, and the outlet is the point farthest downstream. The

point at which two channels combine to form one is called junction.

It is assumed that multiple junctions do not occur. The ordering

scheme proceeds as follows: channels that originate at a source are

first order channels; when two channels of order w join, a channel

order w + 1 is created, and when two channels of different order join,

the channel immediately downstream of the junction retains the higher

order of the two joining channels. The highest channel order (fl) in a

channel network is also the network order.

The process begins with the probability that the drops start they

travel at a given state w, where w varies from 1 to n, and Q denotes



the watershed order. These probabilities are designated as S arid

they can be estimated following

^^(o) (2.1)

^2(°) = (2.2)

^  ̂ • 1
A r

(2.3)

Subject to Rg < R^.

R  and R represent respectively bifurcation and area ratios, and
B  A

according to the corresponding laws are defined as

Rb = N /N
B  w w+1

(2.4)

Ra = a /aA  w+1 w
(2.5)

where N stands for the number of streams of order u> and A for the

mean area for the basins of order w.

The process continues with the computation of the transition

probabilities p^^ for a drop going from state i to state j; where
j > i, using the equations

R^ + 2Rg + 2
Pl2 ̂  2Rg (Rg - 1)

(2.6)
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Rg - 3Rg + 2
Pl3 ̂  2Rg (R - I) 2.7)

(2.8)
23

Finally, the GIUH is computed for a third order watershed as:

2.9)GIUH(t) = 5^(o) r + ̂ 2(0) ̂ 25 ^3^°^ ^35

exp (-A.,t) - A^A,, exp (-A,,t)
2 215

- A^A^t exp (-A_t) + A^ exp (-A_t)

'k k

- A^A^ exp (-A_t) (2.10)

A^ = (A*)^ (^1^13 ■ ■ ^1^ ^^3 ■ ^1^^

A2 = (A*)^ A^Pj^2/[(^2 " ̂ 1^ ' ̂2^ J (2.12)

A = A (A A - A A p )/[(A - A^) (A3 - A2)] (2.13)

A^ = {(A*)^ A^P^3 (A3 - A^) (A2 - A3) - [3(A3)^

2 A2A3 - 2 A^A* + A^A2] [A^A2 (A*)^

Ai (aJ)^ P;,3])/[(A3)^ (A^ - A*)^ (A2 - A*)^] (2.14)



>r -K -K

exp (- A^t) + \^\^/{\^ \^) exp (- A^t)

- A2A2 (2 A^ - A2)/(A2 * 2 *
A^) exp (-A^t) (2.15)

<^35 = (A3)^t exp (- A3t) (2.16)

A3 2 A3 (2.17)

where A represents the inverse of the mean holding time for the state
0)

u> and is computed, according to the stream length ratio as

A3 (2.18)

A3 R^ (2.19)

A„ = V/L, (2.20)

In Equation (2.20) V stands for the peak flow velocity and L3 is

the mean channel length for basins of order three. The length ratio

R^ is defined according to

Rt = L ̂ t/L
L  w+1 w

(2.21)



2.3 Computation of the lUH using the Kinematic Wave Model

The procedure herein presented to obtain the lUH follows that

described by Valdes et al. (1979) and is the same by which the GIUH's

authors performed its calibration and test.

When an effective rainfall intensity i^ of duration t^, uniform

in time and space, is imposed over the watershed, such that t^ is

greater than its time of concentration, the discharge hydrograph Q(t)

is composed of the rising limb, a horizontal line showing the steady

state, and the recession limb.

Two lUHs can be obtained performing the following operations.

h^(t) 1 (2.22)

h2(t)
1 (2.23)

The former corresponds to the rising limb and the latter to the

recession limb. Due to the fact that the kinematic wave model is not

a liner representation of the rainfall runoff process within the

watershed, h^(t) and h2(t) are quite different, as shown in Figure
2.1, for one of the watersheds used in this section and described in

Section 2.4.

In order to overcome the aforementioned problem, the procedure

called incremental lUH, described by Valdes et al. (1979) was used.

It begins by imposing over the watershed an effective rainfall
intensity i . Once the watershed has reached the steady state, i.e. ,

e

for a time greater than the time of concentration, the rainfall

intensity is increased an amount ai^. The new intensity value ends at
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a time t , lesser than t . The value used for Al was 10 percent of
el e e

,  as recommended by Valdes et al. (1979). Figure 2.2 depicts the

incremental lUH procedure.

When Equations (2.22) and (2.23), changing i^ by . 3-^® applied

to the upper rising and recession limbs depicted in Figure 2.2, two

new lUH are obtained. An example of these are presented in Figure 2.3

for Watershed #2. Due to the fact that a small increase in the

effective rainfall intensity does not induce a substantial change in

the flow velocity, the two new lUH are practically the same. As the

same results were obtained for the other two watersheds, the lUH

resulting from the rising limb was adopted as the definitive Kinematic

Instantaneous Unit Hydrograph, hereafter referred to as KIUH.

The simulations performed to obtain the KIUH were done with the

full watershed area catching rainfall and the same area contributing

with runoff to the streams in order to impose on the KIUH the

significance of the overland flow com.ponent.

2.4 Contrived Watersheds

As mentioned earlier, three watersheds were used during the

described analysis. Although they are contrived, they resemble in

most of their parameters values commonly encountered in natural

catchment areas (Koch, 1985).

The main parameters for each watershed related to the present

analysis are listed in Table 2.1. The value given for the time of

concentration is valid for a rainfall intensity of 6.0 in/hr and no

infiltration. The same values were applied to all experiments, and

consequently Ai^ took the value of 0.6 in/hr.
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Table 2.1. Contrived watersheds geomorphologlcal parameters

Watershed #

Area (rai^)
Order

Bifurcation Ratio

Length Ratio
Area Ratio

Concentration time (rain)

Up to this point it is necessary to estimate the peak flow

velocity V in order to compute the GIUH for the three contrived

watersheds. Following Valdes et al. (1979), this velocity is assumed

constant through the whole watershed, and for experimental purposes

they recommend to take it as that corresponding to the first steady

state when the incremental intensity rainfall pattern is simulated for

each watershed. Assuming this guideline, values of 8.05 and 14.10

ft/sec were obtained, the former for watersheds 2 and 3 and the latter

for watershed 4.

2.5 Experiments and Results

The first experiment performed was the computation and comparison

of the KIUH and the GIUH. Figures 2.4, 2.5 and 2.6 present graphical

results for the three contrived watersheds, and Table 2.2 summarizes

some important numerical results.

In Table 2.2 K stands for kinematic results and G denotes values

related to the GIUH. The comparison of results is made in terms of

percent difference, defined as

(Value) - (Value)

A (%) = ^ ^ X 100(Value)j^ (2.24)
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Table 2.2. KIUH and GIUH comparison for the contrived watersheds.

Watershed #

(qp)j^ (1/sec)

(qp)G (1/sec)

Aqp (%)

(tp)j^ (min)

(tp)^ (min)

Atp (%)

0.6098 X 10"

0.5475 X 10"

10.2%

37.5%

0.6205 X 10"

0.7316 X 10"

-17.9%

0.9124 X 10

0.1017 X 10"

•11.5%

38.5%

As can be observed from the graphical and numerical results, there is

no agreement between the KIUH and the GIUH.

Up to this point, one can suspect that the poor agreement

obtained is due to a bad estimation in the geomorphological ratios or

in the dynamical velocity. Figures 2.7 through 2.9 summarize

graphically a sensitivity analysis performed for Watershed #2, in

order to guess the values of the aforementioned parameters which

generate a good fitting. The necessary conclusion is that no

agreement is reached at all.

Another attempt to obtain a more adequate estimated value for the

peak flow velocity is made through the expression obtained after

calibration for the GIUH peak variables (Rodriguez-Iturbe and Valdes ,

1979. . When , peak discharge, is given in 1/sec, t^, time to peak,

in seconds, V in ft/sec and L., in ft, the equations are:

a  - 0.3639 f-
•P L

(2.25)
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t  = 1.5840 "77^ —
p  rI-'' k

O0.55 L3
(2.26)

As one obtains (qp)j^ and via kinematic wave simulation

along with the incremental lUH procedure, two values of V can be

estimated from the above equations, denoted respectively V and V

Table 2.3 summarizes the values of V and V for Watersheds 2, 3

and 4.

The results obtained for the peak flow velocity lead to the

conclusion that it is impossible to obtain a unique velocity allowing
the joint estimation of q and t

P  P"

Table 2.3. Estimated values for the peak flow velocity for the
contrived watersheds.

Watershed 2 3 4

(qp)j^ (1/sec) 0.6098 X 10"^ 0.6205 X 10"^ 0.9124 X 10

1440 1200 780

Lfl (ft) 6239 4032 6633

1.49 1.22 1.76

3.62 3.91 4.29

2.77 3.00 3.13

Vq (fps) 8.81 6.32 13.05

Vp (fps) 5.09 4.27 9.14

V (fps) 8.05 8.05 14.10

2.6 Conclusions

The most important conclusion, yielded by the comparison of the

Geomorphological Instantaneous Unit Hydrograph GIUH and the Kinematic



Instantaneous Unit Hydrograph KIUH, performed on three contrived
watersheds, is given by the inadequacy of the former to describe the

response for small watersheds where overland flow is considered to be

an important timing component.

This conclusion is based on the experiments performed. The KIUH,
derived via simulation, considers overland flow, while the GIUH

incorporates the catchment areas for each order just as initial
states with no holding time within them.

The overland flow effect is observed in the behavior of the peak
flow and time to peak. The peak flow for the KIUH tends to be less
than the GIUH peak flow for two of the three analyzed examples,
indicating that the latter enables a lesser holding time than the
former. Furthermore, the time to peak shows the same behavior.

Another concern is the ability of the geomorphological ratios to

describe the watershed shape and arrangement. In small watershed,
sample variations in these parameters are larger and more important
than in medium or large watersheds, and their variations are not

included in the GIUH.

The conclusions herein presented do not pretend to disqualify the
GIUH as a tool useful for hydrological forecast and synthesis in
medium or large watersheds, where overland flow plays no significant
role, cases for which the authors have proved its applicability. They
are directed toward the applicability of the GIUH to small watersheds

where overland flow is considered to be an important timing component.
In regard to this, the inclusion of an extra state, given by the

holding time in the planes as suggested by Gupta et al. (1980), can
yield better results, providing the required timing or storage
component.



Chapter 3

KINEMATIC ROUTING

3.1 Introduction

As stated previously, the scope of this work encompasses the

derivation of flood frequency distributions for small watersheds,
where the overland flow is an important timing component. In order to

achieve this, an effective rainfall - runoff model has to be derived

where such a component is included and plays an important role.

The effective rainfall-runoff model is derived for a catchment

area formed by two symmetrical planes and a first order stream, i.e.,
no upstream tributaries to the channel are considered.

The tool used to obtain the aforementioned model is the kinematic

wave theory. First, for the sake of completeness, the analytical

solution for the discharge hydrograph in the plane is presented, based
on Eagleson (1970) and Garbrecht (1984). After investigation

regarding the analytical solution for the channel, some significant

results are obtained. These can be considered as an extension of

Eagleson's work (1972).

An approximate kinematic routing model is developed and used,

together with theoretical r.aults, in order to forecast the peak

discharge and time to peak for any rainfall event and for any first
order catchment. In the last stage, some equations used in the

forecasting model are improved via regression analysis performed on

dynamic watershed variables.



3.2 Flow Equations and the Kinematic Wave

differential equations of motion for one - dimens ional
incompressible, free surface flow in a channel can be written as:

at dx

^ + ̂  (01, ^
at + 3x ^ gA (s^-sp

(3,2)

"here Q repreeenre the dlechatge through the cross-sectional area A In
e given tine t, q represents the lateral Inflow per unit length in x
direction, y is the average depth of flow m the section, S stands
for the channel slope, for the friction slope and g denotes the

y  nstant. The above equations represent a gradually varied
unsteady flow and other assumptions inherent to them are: uniform
distribution of velocities through the section, hydrostatic pressure
drstrihution along the vertical, small channel slope and no momentum
oKchange due to lateral Inflow, The solution for these two equations
.ust yield the flow properties , and A as a function of position x and
time t.

The kinematic wave approximation considers that the inertia and
pressure terms m the equations of motion are negligible compared to
the gravity and friction terms, so that the following set of equations
is obtained:

dx ^
(3.3)



s  =
o  f

Equation (3.4) can be expressed as a uniform flow resistance formula.
In the present work, the Manning's equation according to the English
system of units is selected, and is given by:

Q = ̂  Ar2/3s 1/2
(3.5)

where n^ is the Manning's roughness coefficient. is the channel bed
slope and R is the hydraulic radius. By definition. R = A/P. in which

nds for the wetted perimeter and can be expressed as a function
of the area. Thus, the cross-sectional shape is described by means of

R = aA

(3.6)

"here a and b a.e deta..l„ad aUh.r e^pl.laally or assa.l„, a regular
WP. •well-defined geometrical shape.

Uugging Equation (3.6) into Equation (3.5) yields the following

Q = a
c

^  2/3 1/2
c  n ^c  ̂

(3.7)

(3.8)

.c-i.a
(3.9)



Notice that Equation (3.7) enables the consideration of other flow

resistance formulas different from Manning's equation.

The kinematic wave equation is obtained by multiplying Equation

(3.3) by 3Q/3A, yielding

at dA ^dx - q) - 0 (3.10)

The term dq/dA is known as kinematic wave celerity (also referred to

as the Kleitz-Seddon celerity) and represents the local travel

velocity for the incremental unit width discharge 3Q/ax - q:

/9c-l

= /3cV
(3.11)

where V stands for the mean velocity of flow.

The equations of motion considering kinematic wave approximation

for the overland flow are obtained by analogy with Equations (3.3) and
(3.4), taking into account that such a flow is similar to that in a

wide channel. Therefore, the flow properties are expressed per unit

width:

dt dx e (3.12)

q = a
P ̂ (3.13)

where y represents the flow depth, q the discharge per unit width and

the effective precipitation intensity. The coefficients a and dp

for the plane are also obtained using Manning's equation, but



considering that the plane behaves like a very wide channel, i.e.,

R=y. Under these conditions

,  „ 1-^86 g 1/2
P  Hp p (3.14)

/9P = 5/3 (3.15)

where n^ and stands for the plane roughness and plane slope,

respectively.

3.3 Solution to Kinematic Flow Equations for Overland Flow by the
Method of Characteristics

In the following paragraphs. Equations (3.12) and (3.13) are

solved using the method of characteristics. Then, that solution is

applied to the case of overland flow produced by a constant effective

rainfall intensity. For the solution when variable rainfall intensity

is considered see Appendix A.

The essence of the method of characteristics, when applied to the

equations of motion, is to find a space-time locus (x = x(t)) along

which a discontinuity of the partial derivatives of the flow

properties, unit width discharge and flow depth, exists. This locus

defines the path of wave propagation along which an observer moving

with it can describe the process in terms of an ordinary differential

equation.

Considering the definition of a total differential, the following

two equations can be written

dx + dt - dq (3.16)



dx + dt = dy
(3.17)

Equations (3.12) (3 t -ic\ ^), ( .16) and (3.17) comprise a system of
equations ohero tha partial darlvatlvea are considered as unkno«,s
If this syste. is expressed in matrix notation, the discontinuity is
given, in first place, by vanishing the determinant of the coefficient
matrix, and secondly, by applying the same condition to the four
determinants obtained replacing the columns in the matrix coefficient
by the independent term vector. The first condition, after some term
manipulations, gives rise to the equation

dt °
(3.18)

The second condition implies the
equations

dx
(3.19)

^ = i
dt e

(3.20)

S - <fe>
(3.21)

Equation (3.18) defines the characteristic lines in space time
coordinates and it simply states that the discontinuity or
perturbation travels along those lines with a velocity equal to the
previous defined celerity (Equation (3.11)).

Equations (3.19) through (3.21) are valid only along the
characteristic lines. An important physical observation obtained from
those equations is that the discharge, the depth, the mean flow



velocity and the celerity remain constant along the characteristic

litiGs, under the absence of effective rainfall intensity.

Celling W the width of the plane, the following initial and

boundary conditions, respectively, can be posed

y=0, 0<x<W, t=0

y = 0, X = 0, t > 0.

(3.22)

(3.23)

Besides, the effective rainfall pattern is completely defined by the

intensity i^ and duration t^. Then, integration of Equation (3.20)

between zero and any time t gives

y = i t
e (3.24)

Taking this result to Equation (3.18) and integrating between

initial point (x^, t^) and another generic (x,t), the equation

describing the characteristic path is

X - X - a 1 - t )^P
o p e o (3.25)

An important result, shown in Figure 3.1, is obtained by making x = 0

''o ~ ^ resulting line is called the limiting characteristic
and is described by:

X - a i t ̂ P
w  p e w (3.26)

where x^ and t^ denote the coordinates of a point on the limiting

characteristic.



3.1. Limiting characteristic lii



In Figure 3.1 the effective rainfall pattern is shown at the

left. However, the same pattern holds true for all values of x.

Now, let the effective duration tend to infinity, such that the

plane attains concentration, which means that the hydrograph at the
plane outlet (x-W) reaches a steady state, and beyond a certain time,
called time of concentration, no increase in the discharge takes
place. The depth, for all characteristic arising at the x-axis, is
governed by Equation (3.24). Notice that all these characteristic

lines are located below the limiting characteristic.

The characteristic lines arising at the t-axis, at a time t , and
ok

- 0, are governed by the two following equations, obtained after

integration of Equations (3.20) and (3.18).

(3.27)

X = a i ̂ P"^(t - t )^P
P  e ^ok'' (3.28)

Applying Equation (3.28) to any value ofx, 0<x<W

obtains

say X ^ one

t - t

.  l-/9p] l/)8p

(3.29)

Now, going back to Equation (3.26), one realizes that the right hand

terra of Equation (3.29) is t
w*

t  - t , = t
ok w



For a given location x t will not change, thus t - t , and the
^  ok

depth remain constant above che limiting characteristic. Such value

of the depth is computed by means of

y = L t
e w (3.31)

On the other hand, the value of t^ is obtained, for a given location

x^, using Equation (3.26). Particularly, for x = W, the limiting

characteristic time value is computed as;

(3.32)

which defines the point beyond of which discharge is constant at the

plane outlet and so it represents the time of concentration for the

plane.

Now, let the effective rainfall duration take a finite value

greater than the time of concentration for the plane. The final

objective is given by the determination of the discharge hydrograph at

the plane outlet, i.e., for x=W.

Up to this point, the depth hydrograph at the plane outlet is

described by Equation (3.24) for 0 < t < t and by

y - i t
e c (3.33)

t < t^ < t^, where t^ stands for the effective rainfall duration.

After the excess rainfall stops. Equations (3.19), (3.20) and (3.21)

have to be equated to zero. As it has been stated, this means that



discharge, depth and celerity remain con
lines.

stant along characteristic

Figure 3.2 depicts the evolution of the voter surface profile for
greater than t^. The equation for the steady state profile

- t,) is obtained by „ahln, t - t„ 1„ Equation (3.24, and replacing
in (3.26), yielding the following result

(3.34)

One can now pick up a point on the profile at time t = t and
knowing that the future of the depth lies on a common character"stic,
use the propagation celerity C to locate the point in space at any

t > t^. From Figure 3.2 arid Equation (3.18) integrated for y
constant the following is obtained

- ^w = "p - t^
(3.35)

Notice that the right hand side term in Equation (3.35) can be
interpreted as C At. Obtaining in Equation (3.34) and taking it to
(3.35), after some term manipulation yields

a /P-1
P  ii  + ̂ P(t - t )

e  ̂ (3.36)

This last equation defines the characteristic lines after
effective rainfall ends.



Figure 3.2. Water depth profile evoiution for t > t and t > t
e  e c



At this point, It Is possible to summarise the computation of the
dlscharse hydrograph at the plane outlet when concentration Is
attained (t^ > t^) as follows:

y - it, 0 < t < t
/■ (3.37)

^ - ^e-^c' "^c ^ ^ 'e

« - " /"'l + ^p(t - t )] , t < t
L e e e

(3.38)

(3.39)

q = a
(3.40)

t  =
c

i i-y3p]i/^p
(3.41)

Notice that the computation of y from Equation (3.39) for a specific
value of t requires the use of a numerical algorithm, since such a
equation cannot be reduced to a closed solution for y.

Figure 3.3 presents the typical shape for the plane outlet
hydrograph when concentration is attained.

Now, the case when the excess rainfall ceases before the Initial
perturbation has reached the catchment outlet Is considered. Figure
3.4 describes the evolution of the water surface profile for times
equal or greater than the effective duration t

e ■The maximum profile (ABC) takes place at t - t^. For a time
t > t^ point B will move to and the new profile will be AB^C. At a
time tp the profile will not be a broken line anymore, when point B
reaches point C. Taking Into account that the depth for 0 £ t < t Is

e
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jure 3.4. WaCer depth profile evolution for t > t and t < t
e  e c ■



given by Equation (3.24), and that the depth for t = t is i t , the
e  e e

time t^ is computed as:

P  /3p e (3.42)

For t > tp the procedure for obtaining the depth is the same as that

presented for the case of concentration on the plane. Hence, the

computation of the discharge hydrograph at the plane outlet for an

effective rainfall lasting less than the time of concentration is

summarized via the following set of equations:

y = i t , 0 < t < t
®  e (3.43)

y = S^e ' ̂ e ^ ̂  ̂  tp (3.44)

W = ̂ p /P-1 ^ ̂
(3.45)

q = ySp
(3.46)

t  = t +
P  ySp e (3.47)

Again the solution of Equation (3.45) for y requi
res an appropriate

numerical method.

Figure 3.5 depicts the plane hydrograph for t < t
e  c ■





3.4 Solution to Kinematic Flow Equations for Channel Flow by the
Method of Characteristic

Following a procedure similar to that outlined in Section 3.3 and

beginning with Equations (3.3) and (3.7), the expressions governing

the flow in a channel along characteristic lines are obtained as:

a Pc A'
c

fic-1
(3.48)

(3.49)

(3.50)

q a^ySc A'y9c-l (3.51)

where q stands for the total lateral inflow, i.e., the addition of the

left and right plane hydrographs.

The objective in this case would be the integration of the above

equations when q is derived from those results obtained in the

previous section. The initial and boundary conditions are

A-0 , 0<x<L^ , t-0

A-0 , x = 0 , t>0

(3.52)

(3.53)

where represents the channel length.

Following a hierarchical approach to the solution, the first case

to be considered would be a first order stream with equal lateral

planes. This means that there would be no upstream inflow and that



the lateral inflow hydrograph could be computed as two times the

hydrograph produced by one plane.

Table 3.1 presents all possible combinations of cases to be

considered by the analytical integration of the characteristic

equations, in order to describe completely the discharge hydrograph in

the channel. Figure 3.6 depicts the four possible hydrographs. Table

3.1 has been elaborated on the basis of concentration on the planes

and concentration on the channel. The concept of concentration on the

plane has been stated in Section 3.3. Concentration on the channel

means that under a constant input to the channel, during a certain

time interval, the discharge hydrograph at the downstream end reaches

a steady state.

Table 3.1, Cases in the analytical integration for channel flow.

Plane Channel

Case 1

Case 2

Case 3

Case 4

Concentration

Concentration
No concentration

No concentration

Concentration
No concentration

Concentration
No concentration

It must be pointed out that Case 1 implies concentration in the

whole catchment area.

Although the problem is considered well posed, it is not possible

to obtain the analytical solution for the first order channel

discharge hydrograph. In first place, this is due to the fact that

the plane hydrograph can not be expressed analytically in a complete

fashion; the solution for its receding limb requires the use of some

numerical scheme, so that a set of numerical values is obtained. On
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Figure 3.6. Typical discharge hydrographs for a first order stream
with symmetrical planes.



the other hand, an analytical integration can be intended for the
receding limb and the plateau, but the presence of some integrals with
no closed solution makes this second attempt impossible.

Obviously, when the first order channel is considered along uith
two different planes, the solution becomes more complicated. The
input Inflou, once the two lateral hydrographs are added, could be
like a step function, a double-peak hydrograph, or even a simple plane
hydrograph.

Continuing with the hierarchical approach, one can go further
into second or higher order channels. However, in addition to the
aforementioned restrictions, a third one appears, given by the an
upstream boundary condition. As there is upstream tributary inflow
condition (3.53, is no longer valid and a finite difference scheme is
required.

Summarizing, this section shows that it is impossible to obtain a
mplete analytical solution for Che channel discharge hydrograph,

even in the simpler case, the first order stream with two symmetrical
planes. However, the reasoning here exposed does not inhibit an
analytical solution for the first order channel, in some cases, for

P ak discharge and time to peak, and an approximate solution for
the others, as will be shown in the following sections.

Some values regarding the plane and channel dynamics are held
constant. Such values are roughness and the coefficients describing
the hydraulic radius cross - sec tional area relationship for the
channel, R - aA . Particularly, a - 0.25 and b - 0.35 are recommended
by Koch (1985), based on Garbrecht's findings (1984). This last
author obtain such values after analysis of several stable channel
relationships presented in the literature.



3.5 Some Exact Solutions for the Peak Variables in a First Order
Channel

The cases when concentration on the stream is attained are

suitable of exact solution for the time to peak and peak discharge in

the discharge hydrograph. These cases encompass the two possible

responses on the plane, concentration and no concentration.

3.5.1 Case 1; Concentration on Plane and Concentration on Channel

Figure 3.7 presents an scheme of the plane x - t, used to obtain

the analytical solution when concentration are present on both

elements, plane and channel. The catchment unit herein considered is

a first order unit, composed by two symmetrical planes of width W and

a channel of length . Therefore, the uniformly distributed input

along the channel is given by two times the plane hydrograph, and

since there is concentration on the planes, this hydrograph is given

by Equations (3.37) through (3.41). Although the input is shown on

the t axis , it is the same along the full channel length. Obviously,

there is no upstream tributaries and the conditions given in (3.52)

and (3.53) are valid.

Here, the concept of concentration on the channel can be

presented more clearly. The rising limb in the plane's hydrograph

lasts from zero to t^. The characteristic line starting at x = 0 and

t = t will arrive a the channel downstream end at a time t + t
^  c s ■

The channel outflow hydrograph will then increase from zero to a given

value during the interval zero to t^ + t^. Any characteristic line

starting at x = 0 and times greater than t^, and arriving downstream

before the rainfall ends, will produce the same discharge as that

starting at t^ , since both of them are submitted to the same



Figure 3. x-t plane for concentration on plane and concentration on channel



aecre.tlon o£ Inflo„. Then, after t^ + the dlecharge at the
downstream end of the channel becomes constant, and that time
represents the total time of concentration for the whole watershed.

Calling such a time t*

t  = t + t
c  s (3.54)The objective is to describe the characteristic starting at t^ in

order to obtain t^ and the maximum discharge. For this case t* will
also represent the time to peak

As the channel has two symmetrical planes, Equation (3.50), for
the time interval t^ to t^, together with Equations (3.38), (3.40) and
(3.41), evaluated for the same interval, yields

dA

^ = 2Wiut e (3.55)

Integration of Equation (3.55) between t^ and a time t less than
gives

A = 2Wi (t - t )
e  c (3.56)

Taking this result to Equation (3.48) and integrating it between the
same limits, the desired characteristic equation is

X = a (2Wi - t ^
c' ^c'' (3.57)

Evaluating this last equation for x - L and t - t . t is elv.o h„
 is given by

s  S
t

a (2Wi )^<^-^
c^ e^

(3.58)

Combining Equations (3.41) (3 54-) and SR^V  ana (J.bB) the concentration time

for the whole catchment area is obtained as



*

t  =

i 1-^p] l//3p

a (2Wi
c  e

The ti„e to peak, denoted by t^, can be obtained also by usln,
Equation (3.59).

m (3.60)

xiraum discharge is computed by plugging Equation (3.59) into
(3.56) and applying Equation (3.7)

Qm = 2L W i^
(3.61)

This is an expected result, since concentration In the .hole watershed
.eans a continuity condition between the effective rainfall and the
discharge at the catchment outlet, with no change In the storage.

Equations (3.60) and (3.61, are applicable for computing the peak
variables given that the following condition is met

t  > t
e

(3.62)

stream^ '^'"■"""ation on Plane and Concentration on the
Figure 3.8 presents the scheme of the plane x - t, used to obtain

the analytical solution when concentration is present on the stream,
on the plane. Again, the catchment has two symmetrical planes

of width H and a channel of length . The uniformly distributed
Input along,the channel is given by two times the Input hydrograph.



ocplietel

Figure 3.8. x-t plane for no concentration on plane
and concentration on channel.



.iven by equations (3.43) ana (3,47). nh.na la no upaonea™
".buoaraea, aba conaUions given m (3.52) ana (3.53) are arm
applicable.

The behavior of the channel hydrograph la almllar to that
-4orlbea la section 3.5.1. Hence, after the tl„e t at- the
^I4=harge In the channel outlet behavea a'a a plateau; Xhe^bjeltlve
- then to aeacrlbe the character la tic line atartlng at t and
driving at the do^atrea™ end at the tl„e t^ e t■ . H.uatlon (3^0)
conalderlng the aggregated discharge for both planes In the tl„e
intciTval t tot 4- t-" • ie  e ^s' by Equations (3.44) and (3.46)
becomes

^ = 2a (i t )^Pat p ee
(3.63)

Following the same procedure as that
obtained

presented for Case 1, the results

[2a (i tc  p ee ^ (3.64)

P  = t + t"
•n e s (3.65)

Q - 2L a (i t )^P
™  c p^ e e (3.66)

where t^ and Q stands for the tii
respectively.

me to peak and peak dischari



Equations (3.64) through (3.66) are applicable for oo.puting the
in a first order channel with synmietrical planes given

that the following condition is attained

t^ + t" < t
6  S p

(3.67)

where t^ is computed using Equation (3.47)

3.6 Approximate Kinematic Routing

Figure 3.7 and Figure 3.8 show clearly the reason for which it is
not possible to obtain analytical solutions for the peak variables for
Cases 2 and 4. In both cases, as there is not concentration on the

Characteristic line responsible for the peak discharge
cannot be located exactly. For example, for Case 2, it could start
before, at or after t^ and it would arrive before, at or after t
The analytical solution would require the integration of the
characteristic lines for the complete x . t plane, a task considered
impossible as was stated earlipr a • -iearlier. A similar reasoning is applicable
to Case 4.

This section is intended to solve the foregoing gap by
developing, based on physical considerations, approximate
relationships to compute the peak variables for Cases 2 and 4.

The approximate relationships herein obtained are based on two
properties observed in the kinematic wave approach. The first is
given by the fact that no attenuation of the hydrograph takes place as
It travels along the channel. Only deformation occurs in the
hydrograph, formed by increased steepness of the rising limb and
flattening of the receding limb. This means that under the presence



of lateral l„flo„, the discharge .111 always Increase In the
do^strea™ direction, and when there Is no lateral imio. entering the
channel, any discharge .111 regain constant as It travels along the
channel.

The second property, related to so„e values used in the present
atudy, is given by the weak dependence of the wave celerity on the
discharge-. This enables the possibility of translating a given
discharge In the channel, without considering an accreatlon of the
flow contributing to the wave celerity.

As in the preceding cases, the runoff area under consideration
comprises two lateral symmetrical planes with no upstream inflow,
i.e., a first order stream. The approximate sketch Is formed by the
Stream with the plane hydroeranhs O ac „ • •y rographs, Q^, as point inputs in the upstream
and downstream ends of the channelne Channel. The upper plane hydrograph is

the downstream end, using the approximate kinematic
routing and the hydrograph denoted by Is obtained. The addition of
Qp and in a time proper manner produces Q, the total discharge
hydrograph.

Figure 3.9 presents the sketch for the approximate kinematic
routing, as well as some variables used during the development.

The total plane hydrograph is computed as

L  q
c ̂ (3.68)

"here q is computed using Equations (3.37) to (3.41) or Equations
(3.443) to (3.47) depending on .h.ther there Is concentration on the
plane or not.



Procedure



Equation (3.48) defines the characteristic paths for the channel,
while Equation (3.7) defines the area - discharge relationship.'
Replacing A in Equation (3.48) in terns of Q by neans of Equation

>  the former becomes

(3.69)

If Q is considered constant while the wave travels along the channel,
calling t the tine at which the discharge Q enters the channel in the
upstrean end and t^^ the tine at which the wave arrives downstrean, the
following result is yielded after integration of Equation (3.69)

'-c - "c^"= (t, ■ t) (3.70)

Now, as Q is the discharge in the channel, at this point it is
necessary to analyse the behavior of Equation (3.70) when the
different values of Q given by the conditions in the plane are used
Renenber that the objective is to route fron the upstrean end to
the downstream end of the channel.

3.6.1 Routing the Rising Limb

No natter which case is under analysis, the rising linb for the
hydrograph entering the upstream end is given by

Qr, - L a (i t)^PP  c p ̂ e ' (3.71)

Making Q = Qp and taking Equation (3.71) to (3.70),



L Q (i t)^Pl
L = a Be -£-2—^ (t . t)
c  c a L

c

(3.72)

This equation may be used in two different ways: 1) given a

value of t, time at which a given discharge enters the channel

upstream end, Equation (3.72) yields the time t^^ at which such

discharge arrives downstream; 2) if tj^ is specified in advance,

Equation (3.72) gives the time t at which a given discharge was

produced upstream.

As will be seen later, the second way is the more adequate for

computational purposes, but requires a numerical algorithm in order to

solve for t.

However, the first way of using Equation (3.72) enables the

formulation of some limitations for the approximate kinematic routing.

If t^ is obtained as a function of t

1-1/Bp

a y9c j . Bp
c  a L 1

pee

^;8p(l/^c-l) ^
(3.73)

one realizes that due to the values of BP used in this study

{Bp = 5/3, B^ " 1.233) two sentences can be done

Lim t. - 00

t^O

(3.74)

Lim t = 00

t->00

(3.75)

which allows one to conclude that for some value of t there is a

maximum for t^^, denoted , below of which the approach is no longer



valid (Figure 3.9). Making de^/dt - 0 and solving .the limiting value
of t, denoted is given by

a  [l a i ̂ p11-V/3c]^c/[^P(1-^c)-;9c]
t , = i S c p e
P  |Lc/3p(/9c-1) (3.76)

Consequently, the value of t^^ can be calculated as

LI a 0c Bp
c  a L 1

pee

«  ll-l/y9p
t  + t
pi pi (3.77)

It must be pointed out that the variables denoted at t , and t do
pi LI

not have any physical meaning. They just mark a boundary for the

applicability of the approximate kinematic routing, to be analyzed
further.

Therefore, as shown in Figure 3.9, the routed rising limb would

be given by curve CBD. Obviously, the branch BC does not present any
physical meaning. Therefore, it is proposed to approach this part by
the straight line AB. The validity of this assumption will be

verified later.

3.6.2 Routing the Plateau

Whether there is concentration on the planes or not, the time

duration of the plateau is known. Denoting by such duration, for

concentration on planes it is given by

- t - t
p e c (3.78)



and for the case of no concentration

D  = t - t
P  p e

first point on the plateau, corresponding to the t or t .
whichever Is the case, must be routed following the procedure
described in the previous section, i.e.. Equation (3.72). The
corresponding discharge will have a travel time given by the
difference between the downstream arrival time and the upstream
entering time. This means, that for the two cases aforementioned, the
travel time is given by

-T " t - t
c  h (3.80)

(3.81)

where t^ with the subindex c or e stands for the travel time with
concentration or no concentration respectively; similarly for tj^, but
denoting the downstream arrival time.

As the discharge remains constant in the plateau, all points will
have the same travel time, and neither shortening nor elongation of
the plateau length will take place. In other words, for routing the
plateau, one calculates the travel time for the first point or maximum
discharge in the upstream hydrograph and then translates it. The same
length of the plateau, beginning at this last point, appears at the
downstream hydrograph.



3.6.3 Routing the Receding Limb

The last point In the plateau or the fitat point in the recesalon
curve has been already solved as explained above. The recession Imb
la routed by solving simultaneously the following set of equations

£- /_Csl-l/;3p
L  a Be ^ (3.82)

«/p+1 ^  + Bp(t - t ) - w = 0
(3.83)

Qv = L ay'L  c p-^ (3.84)

Qt = Q
(3.85)

The first equation, obtained from (3.70), gives the downstream
time. The second one includes the depth at the plane outlet at a time
t, necessary to calculate the discharge by means of Equations (3.84)
and (3.85). Equation (3.85) is the condition of no attenuation.

There are five unknowns in the four equations: t, t^^. Q, and
y. In order to solve the system, one has to specify one of them.
Again, as in the routing of the rising limb, one can specify t or t ,
and, as it will be stated further, the more adequate is t^. Anyway,
no matter which time one specifies, a numerical scheme is needed to

solve the system and obtain at last, Q and t or t .
i- T.



SSr'"" Hydrograph using Appnoxl.aPe Kine.atlc
Up to this point, two hydrographs ate known. The fltst one Is

the hydrograph entering the upstrean. or the downstream end of the
Channel, denoted hy hydrograph produced when
Qp. entering the upstream end. Is routed to the channel outlet,
producing the hydrograph denoted by The addition to 0 and 1„
a timely proper manner yields the total hydrograph Q. or ^

Q(t) - Qp(t) + Q^(t)
(3.86)

Although one Is able to compute the discharge and timing for the
individual hydrographs, due to the following facts it is difficult to
.obtain an analytical closed erpresslon for the total hydrograph:

1. The hydrograph at the plane outlet can only be expressed in
an analytical closed manner for the rising limb and for the
Plateau, but not for the recession limb, where some
numerical scheme must be used to solve the equations.

2. The routed hydrograph can not be computed in a straight
forward manner. Especially the routing of the recession
limb requires the solution of a set of equations, which can
only be obtained using some numerical algorithm.

The aforementioned limitations require a procedure for
computation which begins by calculating the plane hydrograph for a
time increment uniform along the simulation horlson. Obviously, the
points where the hydrograph Is not continuous do not agree with such
criteria. Then, the discontinuity points in the hydrograph arriving
downstream are computed and the whole hydrograph Is calculated using



the same time step and the proper expressions for each part. In this
case, the values for the time are specified In such a way that they
agree with those times in the upstream hydrograph. Finally, the
hydrograph ordlnates with the same time values are added, yielding the
total hydrograph at the channel outlet.

3.8 Application of the Approximate Kinematic Routing Method
In this numeral, the approximate kinematic routing Is applied to

a small watershed formed hy two sy^etrical planes and one channel.
With the following characteristic values:

Plane width:

Plane roughness:

Plane slope:

Channel length:

Channel roughness:

Channel slope:

W = 658 ft

Hp = 0.30

0.096

1861 ft

He = 0.04

= 0.026

The applications were performed for rainfall Intensities of 1 0
5.0 and 10.0 l„/hr. The rainfall durations were selected In an
arbitrary way, m order to show how this parameter gives rise to the
same four cases described In Table 3,1. The objective of this section
IS to compute, for each case, the discharge hydrograph for the whole
catchment area using the approximate kinematic routing, to compare
this hydrograph with that obtained via detailed kinematic simulation
(Appendix A) and to formulate approximate expressions to compute the
peak discharge and time to peak for each case, whenever Is possible,
the approximate expressions are compared with the analytical solutions



derived in Section 3.5 The ton! ftool for the approximate kinematic
routing was a FORTRAN computer program.

3.8.1 Case 1: Concentration on Plane and Concentration on Channel
For this case, the rainfall effective duration t^ produces

ation in the planes, In the channel and In the whole
watershed. The following tines are defined In figure 3.10 and the

sions for their computation are given In Equations (3.90)
through (3.94).

t^. concentration time for the planes

tpi: minimum upstream time generating downstream discharge
^Ll" roinimura downstream time

\c- initial downstream time for the plateau
t^: final downstream time for the plateau

From the approximate hinematlc point of view, concentration on
the stream, which does not require concentration on planes, means that
the plateaus for the two hydrographs at the downstream end have a
common time interval during which equal discharges tahe place. Hence
«ncentratlon in the planes and in the channel implies concentration
in the whole watershed.

The condition for Case 1 is:

^ ̂ Lc > ̂ c > ''lI
(3.87)

The expressions recommended for

and time to peak t are•
m

approximating the peak discharge Q

Q„ ■= 2L Wim  c e (3.88)



Figur



t  =
ra Lc

w i l-^pli/;3p

a  [Lai
V- [^P(l-^c)-,c,

LI a Be
L a^(i tc p e pl'^

l-l/fic

C  c
a

a 6c L Wi
c  e

 ]l-i/6c fwi i--^p1V^p

1 % l^-V/Sc
'Le a 6c L Wi

c  c e
(3.94)

Equation (3.88) for computing the peak discharge agrees completely
"ith Equation (3.61), Equations (3.60) and (3.59) for computing the
time to peak can be written in a similar way to Equations (3.89) and
(3.93) as

^c/(^c-l)jl-l/^c r . l-^pll/;9p
n> 2 L W i

L  c e
(3.95)

Equations (3.95) and (3.93) are similar in shape. The first term in
both of them stands for the holding time in the stream and the second
for the concentration time for the planes. However, the holding time



In the stream in Equation (3.95) includes additionally the coefficient

J  which evaluated numerically for /3c = 1 2333

yields 1.0818. This means that under the assumption of the channel

cross-sectional behaving as the value defined by ̂ c. the first term in

Equation (3.93) underestimates the channel holding time by
pproximately an 8%. Therefore, the applicability of Equations (3.89)

and (3.93) depends on the channel holding time-plane concentration

time ratio; the smaller the ratio the more applicable the equations.

Figure 3.11 presents the application of Case 1 to the example
catchment.

3.8.2 Case 2: Concentration on Plane and No Concentration on Channel
The rainfall duration enables the development of concentration In

the planes, but no concentration on the channel nor in the whole
watershed, as shown in Figure 3.12. The times are defined as in Case
1 and the expressions for computing them are the same. The condition
giving rise to Case 2 is

tv > t > t > tLc e c LI (3.96)

and the approximate expressions for the peak discharge 0 and the ti.

to peak t are
m

Q = 2L Wi
m  c € (3.97)

t  = (t + t, )/2
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Notice that „hen t^ . , Case 2 becomes Case 1. Flgu„ 3.13 depicts
the results for Case 2 when applied to the catchment example.

3.8.3 case 3: No Concentration on Plane and Concentration on Channel
The rainfall duration for Case 3 Is such that It does not

generate concentration In the lateral planes, but does In the stream.
Hence, no concentration Is attained In the uhole watershed. Figure
3.14 presents the notation for Case ^ •ror tase 3. The times are defined as

follows, upon the basis that t stands for rf,o
g  canas tor the effective rainfall

duration:

tp^: minimum upstream time generating downstream discharge
^Ll' minimum downstream time

tp . final upstream time for the plateau

\e- initial downstream time for the plateau

downstream time for the plateau
The condition generating Case 3 is

and t^ >
(3.99)

The equations needed to compute the characteristic time
s are :

t  t + w
(3.100)

L a i gc

V ^ c
(3.101)

t  = l-l/pc
LI a 8c ^c^ La (i t ,)PP

. c p^ e pl^
(3.102)
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Lc a c
. c e

1 - l/y3c

-  = —^ jl-l/ygc
"'•P " °c^<= L » (I t )^p

r* r\ ̂  o £i'C p' e e'

Finally, the recommended approximate expression for the total maxi

cilsclia.irge and its time ate;

C) = 2L Q (i t )^P
™  c p^ e e"^

t  - t.
m  Le (3.106)

Equation (3.105) provider the sa»e result as the analytical result for
Case 3. The time to peak, from Equations (3.64) and (3.65), can be
rewritten as

a ^c^c/(^c-1)11-1/^0
ni a Be „ flri

2 L a (i t )^Pc  p^ e e'
(3.107)

The same analysis as presented for Case 1 is valid for Case 3. The
first term in Equation (3.103) or the stream holding time gives an
approximate error of 8% and the adequacy of this equation depends
again on the relative values of the channel holding time and the

effective rainfall duration.

Figure 3.15 presents the application of Case 3 to the example
catchment.
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Channel Concentration on Plane and No Concentration on
The last case to be covered is given by a rainfall duration that

does not enable concentration in any component of the watershed The
are Canned and conpured as In Case 3.

""ng Frgur. 3.16 as a definition sketch, the conditions giving rise
to Cas6 3 are

^c ̂  ̂ e ^ ̂ Ll ^Le ^
(3.108)

m

equations used to approKin,ate the peak discharge and its time

- ̂ Vp^e'e'^"
(3.109)

+ pLeV2
(3.110)

Figure 3.17

watershed.

presents the application of Case 4 to the example

f»r the Approxinate Kinematic

The present development has heen done under the hypothesis that
the kinematic wave approach stands for the simulation of the rainfall-
direct runoff process in a first order stream. Hence, the best way to
perform a test on the validity of the simplified method is to compare

results with those obtained via detailed simulation, using the
hydraulic routing model described in Appendix A.
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Figure 3.17. Case 4- 1-1 in/hr. t_ = 40 min



All the experiments were performed for the first order watershed
described at the beginning of this section, applying detailed
Simulation, the simplified kinematic routing and the expressions
recommended in each case to approximate the peak parameters. Hence,
the comparison is done for the maximum discharge and the time to peak
in terms of percent difference A(.) with respect to the simulated
values

fValuel -

(Value)s ^ (3.111)

"here (Value) stands for the estimation via the simplified hin.matie
routing or via the approximations, for any peak parameter, and
( alue)s stands for values obtained using detailed simulation.

First, Table 3.2 presents the comparison of results for those
t^ses where an analytical solution is possible. The comparison is
done rn terms of the simulated, approximated and analytical results.
The results summarised In Table 3.2 allows one to conclude, as it was
expected, that the analytical solution does better than any other
approach, even the simulation. This is due to the fact that the
detailed simulation model described in Appendix A is also an
approximation, even for the first order stream, since the lateral
planes hydrographs are added and translated into inflow histograms, a
Step in which some accuracy is lost.

Table 3.3 presents the results for those cases where no
analytical exact solution is feasible. They show that, for the
aalected example, the simplified kinematic routing and the approximate
expressions for the peak parameters provide good estimation. For
example, for the peak drscharge, the maximum percent difference in



Table 3.2. Comparison of results for Cases 1 and 3.

SIMULATION ANALYTTCAT.
approximation

III in(In/hr) (min) (cfs) (min) (cfs) (min) (%) (%) (cfs) („in) (%)

1 1.0 70 56.7 54 56.7 52 0 -3.7 56.7 52 0 -3.7

3 1.0 25 21.1 34 21.1 34 0 0 21.1 33 0 -3.0

1 5.0 35 283.5 29 283.5 29 0 0 283.5 29 0 0

3 5.0 15 131.9 21 131.7 21 -0.2 0 131.7 20 -0.2 -5.0

1 10.0 25 566.9 23 566.9 23 0 0 566.9 23 0 0

3 10.0 12 287. 7 17 288.3 17 0.2 0 288.3 16 0.2 -5.9

Plane width: W = 658 ft

Plane roughness: n = 0 30
P

Plane slope: S  = 0.096
P

Channel length:

Channel roughness: n - 0.04
c

Channel slope:

1861

S  = 0.02

 ft

6
c



Table 3.3. Comparison of results for Cases 2 and 4.

SIMULATION SIMFLIFICATTON APPROXTMATTON

AQ At
m  m AQ At

m  m(in/hr) (min) (cfs) (min) (cfs) (min) (%) (%) (cfs) (,„in) (%)

2 1.0 50 56.4 51

CO

51

00

CM
i

0 56.7 51 0.5 0.0

4 1.0 40 46.0 47 44.9 47 -2.4 0 46.2 46 . 0.4 -2.1

2 5.0 25 269.9 26 249.4 28 -7.6 7.7 283.7 27 5.1 3.9

4 5.0 20 211.8 24 203.6 25 -3.9 4.2 212.8 25 0.5 -3.9

2 10.0 20 550.0 21 510.2 22 -7.2 4.8 567.6 21 3.2 0

4 10.0 15 412.9 18 388.9 19 -5.8 5.6 418.2 19 1.3 -5.8

Plane width; W = 658 ft

Plane roughness: n - 0 30
P

Plane slope: 0.096

Channel length: L = 1861 ft
c

Channel roughness: n — 0 OA
c

Channel slope: S =0 026
c



absolute value given by the simplified method is 7.6% whereas for the

approximation it is around 5.1%, In the same order, for the time to

peak, one obtains 9.1% and 5.8%. It is also Important to point out

that the maximum time difference does not exceed two minutes (2.0
min) .

Up to this point of the development, it seems to be that the

approximate expressions for peak discharge and time to peak are

adequate for estimation in a first order stream. Also, from Figures
3.11, 3.13, 3.15 and 3.17 one concludes that the simplified kinematic

routing is able to predict the time distribution of the discharge in a

fairly good manner.

In order to make some final judgements about the applicability of
the method, two other aspects must be analyzed. The first one is

given by the lower boundary established for the effective rainfall

intensity, denoted by t^^^. On the other hand, the example herein

developed presents the feature of small holding times in the channel

compared to those for the plane. Besides, the analysis made for the

approximation and exact solutions for Case 1 and Case 3 in Sections

3.7.1 and 3.7.3 suggests that the larger the channel (or its holding
time) and the shorter the plane (or its holding time) the worse the

approximation. The first aspect to be analyzed, the lower boundary

'"LT ' intends to replace it by zero.

The second one, related to both Cases 2 and 4 intends to improve
the purposed approximated expressions. However, further analysis is

required for Cases 2 and 4; Cases 1 and 3 are completely accepted and

described by the analytical solutions. Under the acceptance of the

analytical solutions for Cases 1 and 3, the equations describing Cases
2 and 4 can be rewritten as follows:



Case 2: Concentration on Planes and No Concentration
on Channel

t* > t > t
e  c (3.112)

^ = 2 W i^
(3.113)

+ t*)/2 (3.114)

where t* is the concentration time for the whole catchment area and is
given in Equation (3.59)

- Case 4: No Concentration on Planes and No Concentration on

Channel

t  < t + t"
P  e (3.115)

Q  = 2 L a (i t )^P
m  c p e e'^ (3.116)

''m - (3.117)

where t^ is the holding time in the channel when there is concentra
tion on this element, but not on the planes, and is computed using
Equation (3.64).

The condition differentiating Cases 3 and 4 is the relationship
between t^ and t^ t^. when the rainfall intensity is such that t
is greater than t^ + t^, Case 3 is attained; when the opposite condi^
tion is true, Case 4 appears. For given catchment configuration and
given effective rainfall intensity, a function f(t ) = t - t - t"

e  p e s
can be defined as



f(t) ap^p(iet^)^P-^ [a^[2ap(iete)^P]^^-^
1/fic

such that f(t ) > 0 means Case 3 and f(t ) < 0 defines Case 4.
*= 6

Through all the development it was realized that the effective

rainfall intensities for Case 4 (f(t^) < 0) are greater than the rain-

^'^t^risities for Case 3 (f(t^) > 0); even for some catchment con-

fiS'^^^.tions and intensities Case 3 may not be defined. Anyway, as

Case 3 has an analytical solution, the lower boundary t_. can be
u JL

replaced confidently by zero. Under this reformulation of the

problem, Table 3.4 presents the holding times for the plane and the

channel used as example in this section, applicable to the aspects to

be analyzed for Cases 2 and 4.

3.9 Improvement of the Equations to Compute Peak Variables

In the preceding section it was established that some

shortcomings for the approximated peak variables may arise when the

holding time in the channel is similar or even greater than the

holding time in the plane.

In order to solve this problem and since no further analytical

solution is possible, the tool used to improve the peak variables for

Cases 2 and 4 was regression analysis. To perform this, five

different plane - channel configurations were defined, which are

expected to represent a wide range of cases. The values defining each

configuration are presented in Table 3.5, where 9 and 6 represent
p  c

the inclination angle for the plane and the channel, and except for

Configuration 5, they are related via (Garbrecth, 1984)



Table 3.A. Typical holding times for Cases 2 and 4

e  e

(in/hr) (min)

t  t
c  s

t* t /t
c' s

t /t"
e' s

(min) (min) (min) (-) (min)

45.2 7.2 52.4 6.3

7.4

28.6 5.3 33.9 5.4

5.6

18.0 4.6 22.6 3.9

Note: -- means time out applicable for the respective case.

Plane width: W = 658 ft Channel length: = 1861 f

Plane roughness: n^ = 0.30 ' Channel roughness: n^ = 0.04
Plane slope: Sp =0.096 Channel slope: =0.026

2 1.0 50

4 1.0 40

2 5.0 25

4 5.0 20

2 10.0 20

4 10.0 15



Table 3.5. Configurations to improve peak variables for Cases 2 and 4.

Configuration W S
P

9
P

L
c

S
c

6
c

(ft) (-) (°) (ft) (-) (°)

1 2618 0.176 10 990 0.055 3.2

2 658 0.364 20 1861 0.131 7.5

3 356 0.577 30 4966 0.220 12.4

4 2618 0.577 30 990 0.220 12.4

5 356 0.100 5.7 4966 0.010 0.6

- tan[(Sp/4)^-^^] (3.119)

In Table 3.5 the roughness for plane and channel were held

constant in 0.30 and 0.04 respectively. For each of the

configurations, six., effective rainfall intensities were used, 0.5,

1.0, 2.0, 4.0, 7.0 and 10.0 in/hr and for each intensity proper

effective durations were chosen to generate Cases 2 and 4. Table 3.6

list typical time values for Case 2 and Table 3.7 does for Case 4.

Tables 3.8 and 3.9 present the basic data needed to perform the

regression analysis, for Cases 2 and 4 respectively. The data is made

up of the peak variables, obtained by simulation and using the

approximate expressions defined by Equations (3.112) through (3.117).

The first variable to be analyzed is the time to peak. Figures

3.18 and 3.19 present a graphical comparison of the forecasted and

simulated values. Besides, Tables 3.8 and 3.9 show that the maximum

percent difference are 10 and 12% for Case 2 and 4 respectively, the

maximum absolute differences being two (2) and three (3) minutes. The

graphical comparison along with the magnitude of the errors allows one

to conclude that the approximation proposed is good enough, and no

further improvement is required for the time to peak. Furthermore,



Table 3.6. Typical time values for Case 2. (t* > t > t )

Configuration t /t
c  s

(in/hr) (min) (min) (min) (min) (-)

0.5 115 113.9 2.8 116.7 40.7

1.0 87 86.3 2.4 88.7 36.0

2.0 66 65.4 2.1 67.5 31.1

4.0 50 49.6 1.9 51.5 26.1

7.0 40 39.6 1.7 41.3 23.3

10.0 35 34.4 1.6 36.0 21.5

0.5 42 40.0 4.2 44.2 9.5

1.0 32 30.3 3.7 34.0 8.2

2.0 25 23.0 3.3 26.3 7.0

4.0 18 17.4 2.9 20.3 6.0

7.0 15 13.9 2.6 16.5 5.3

10.0 13 12.1 2.4 14.5 5.0

0.5 28 24.1 8.6 32.7 2.8

1.0 22 18.3 7.5 25.8 2.-4

2.0 16 13.8 6.6 20.4 2.1

4.0 14 10.5 5.8 16.3 1.8

7.0 10 8.4 5.2 13.6 1.6

10.0 10 7.3 4.9 12.1 1.5

0.5 80 79.8 1.6 81.4 49.9

1.0 61 60.5 1.4 61.9 43.2

2.0 46 45.8 1.2 47.0 38.2

4.0 35 34.7 1.1 35.8 31.5

7.0 28 27.8 1.0 28.7 27.8

10.0 24.1 0.9 25.0 26.8

0.5 50 40.8 29.9 70.7 1.4

0.5 60 40.8 29.9 70.7 1.4

1.0 35 30.9 26.3 57.2 1.2

1.0 45 30.9 26.3 57.2 1.2

2.0 27 23.4 23.0 46.4 1.0

2.0 40 23.4 23.0 46.4 1.0

4.0 20 17.7 20.2 37.9 0.9

4.0 40 17.7 20.2 37.9 0.9

7.0 18 14.2 18.2 32.4 0.8

7.0 28 14.2 18.2 32.4 0.8

10.0 15 12.3 17.0 29.3 0.7

10.0 25 12.3 17.0 29.3 0.7

Note: -- means no effective rainfall duration due to narrow range of
variation.



Table 3.7. Typical time values for Case 4 (t >t >0 and t <t +t").
c e p e s

Configuration t /t"
e  s

(in/hr) (min) (min) (min) (min) -)

0.5

1.0

2.0

4.0

7.0

10.0

112

84

64

48

39

33

113.9

86.3

65.4

49.6

39.6

34.4

113.9

86.4

65.4

49.6

39.6

34.4

2.8

2.5

2.2

1.9

1.7

1.6

40.0

33.6

29.1

25.3

22.9

20.6

0.5

1.0

2.0

4.0

7.0

10.0

40.0

30.3

23.0

17.4

13.9

12.1

40.1

30.5

23.0

17.5

14.0

12.2

4.3

3.9

3.4

3.0

2.7

2.6

8.3

6.9

6.2

5.0

4.4

3.8

0.5

1.0

2.0

4.0

7.0

10.0

24.1

18.3

13.8

10.5

8.4

7.3

24.4

18.5

14.7

11.5

9.1

7.6

9.1

8.0

7.5

6.9

6.1

5.5

2.2

1.9

1.2

0.9

1.1

0.9

0.5

1.0

2.0

4.0

7.0

10.0

79.8

60.5

45.8

34.7

27.8

24.1

79.8

60.5

45.8

34.7

27.8

1.6

1.4

1.2

1.1

1.0

49.4

42.9

37.5

30.9

1.0

0.5

0.5

0.5

0.5

1.0

1.0

1.0

2.0

2.0

2.0

4.0

4.0

7.0

7.0

10.0

10.0

40.8

40.8

40.8

40.8

30.9

30.9

30.9

23.4

23.4

23.4

17.7

17.7

14.2

14.2

12.3

12.3

41.1

42.0

43.9

47.3

31.4

32.8

43.3

23.6

24.9

28.8

19.6

26.8

14.7

19.1

12.5

15.5

31.4

33.0

34.9

37.5

28.1

30.1

37.5

24.2

26.5

30.1

24.2

30.1

20.3

25.2

18.1

22.6

1.1

0.9

0.7

0.5

0.9

0.7

0.3

0.8

0.6

0.3

0.4

0.2

0.5

0.2

0.6

0.2

Note:

variation.



Table 3.8. Simulated and approximate peak variable values for Case 2.

Configuration

(in/hr) (min)

SIMULATION

(cfs) (min)

APPROXIMATION

(cfs) (min)

60.0

120.0

240.0

480.0

839.9

1199.9

116

88

67

51

41

35

116

88

67

51

41

36

59.8

119.3

238.7

476.7

832.9

1193.6

115

87

66

50

40

35

0.5

1.0

2.0

4.0

7.0

10.0

28.3

56.7

113.4

226.8

396.8

566.9

28.1

56.0

113.0

216.6

389.9

555.2

0.5

1.0

2.0

4.0

7.0

10.0

40.9

81.8

163.7

327.4

572.9

818.5

39.3

78.8

150.2

316.7

510.3

779.7

0.5

1.0

2.0

4.0

7.0

10.0

60.0

120.0

240.0

480.0

839.9

59.7

119.6

239.1

479.4

839.9

0.5

1.0

2.0

4.0

7.0

40.9

40.9

81.8

81.8

163.7

163.7

327.4

327.4

572.9

572.9

818.5

818.5

35.5

39.6

63.3

76.4

121.0

159.4

219.7

316.2

404.9

559.0

530. 7

794.0

0.5

0.5

1.0

1.0

2.0

2.0

4.0

4.0

7.0

7.0

10.0

10.0



Table 3.9. Simulated and approximate peak variable values for Case 4.

SIMULATION APPROXIMATION

Configuration Qm

(cfs) (mm)(min)(cfs)(in/hr) (mm)

114

87

66

50

40

35

58.3

114.6

231.3

454.6

817.3

1121.0

112

84

64

48

39

33

58.2

114.6

230.9

454.5

810.3

1121.0

115

87

66

50

41

35

0.5

1.0

2.0

4.0

7.0

10.0

24.9

46.7

97.6

176.8

309.8

414.3

24.8

46.7

97.1

176.8

309.8

414.3

0.5

1.0

2.0

4.0

7.0

10.0

30.0

58.9

79.9

129.0

242.0

438.4

28.7

55.6

0.5

1.0

2.0

4.0

7.0

10.0

78.7

127.3

232.9

394.1

59.0

118.4

232.8

463.3

801.7

58.8

117.7

231.7

462.4

801.7

0.5

1.0

2.0

4.0

7.0

31.7

24.5

18.1

12.5

57.5

39.6

12.5

125.8

77.9

39.6

125.8

39.6

319.8

100.7

579.5

182.5

25.2

21.0

16.5

12.1

44.3

33.6

12.4

88.0

61.9

35.8

96.3

36.9

207.1

83.0

333.3

136.9

0.5

0.5

0.5

0.5

1.0

1.0

1.0

2.0

2.0

2.0

4.0

4.0

7.0

7.0

10.0

10.0



TS iTiIN:

TE ; Estimated time to peak
TS : Simulated time to peak

Figure 3.18. Forecasted time to peak for Case 2.





this conclusion is reinforced by the fact that this variable is not

required for the derivation of the flood frequency distribution, the

main objective of this work.

During the regression analysis performed on the peak discharge,

some considerations were made. First, variables with a truly physical

link with the problem were selected, and second, those variables were

made dimensionless , in such a way that the obtained relationship can

be applied to other configurations with a certain confidence. This

last consideration solves, at least in part, the problem of the

reduced basic data to perform the regression, where it is practically

impossible to cover all configurations.

For the sake of illustration. Figures 3.20 and 3.21 present the

forecasted peak discharge. The objective of the regression analysis

is to bring all points as close as possible to the perfect agreement

line.

Equations (3.113) and (3.116) forecast the peak discharge for

Cases 2 and 4, but these equations are the same for Cases 1 and 3

respectively. Hence, a good selection for the dependent variables for

Cases 2 and 4 is given by the ratio, expressed in percentage, between

the true discharge and the forecasted discharge, or

AQ = ̂  X ICQ
^a

(3.120)

where stands for the peak discharge obtained by simulation and

does for the approximation, i.e. when Equations (3.113) or (3.116) are

applied, whichever is the case. In other words, AQ represents the



OS (CFs:

QE : Estimated peak discharge
QS : Simulated peak discharge

Figure 3.20. Forecasted peak discharge for Case 2,
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QE : Estimated peak discharge
QS ; Simulated peak discharge

Figure 3.21. Forecasted peak discharge for Case 4.



percent of the peak discharge under concentration that appears at the

catchment outlet when there is no concentration.

The selection of independent variables can be done by considering

that in Case 2 no concentration is attained, since the effective

duration t is less than the total time of concentration. The first
e

independent variable for Case 2 is proposed to be

X 100 (3.121)

The second variable involves the distance traveled by the charac-

teristic starting at x = 0 and t = t^ when t = t^, obtained by inte

gration of Equations (3.38), (3.40), (3.50) and (3.48) as

X  = a (W i )^^"^ (t - t )^^
R  c e e c

(3.122)

The dimensionless independent variable is defined as

X 100 (3.123)

The independent variables At and Ax represent, in a certain way, the

percentage of concentration attained in Case 2 with respect to Case 1.

Following a similar reasoning, the independent dimensionless

variables for Case 4 are defined as

At = X 100

e  s

(3.124)



X  = a [2 a (i t )/3P]/3c-l ^ _ /3c
R  e •' ^ p e' (3.125)

Ax = X 100

c

(3.126)

Once the variables to be entered in the regression analysis have been

defined, a last consideration is taken into account. In order to

preserve mathematical continuity between the analytical and

approximate equations, any chosen regression model must provide

AQ = 100 for At = 100 and Ax = 100. In addition to the inclusion of

this point into the regression data set, and since any proposed model

will pass exactly through the forced point, some transformation

must be performed on the selected model. Such a transformation can be

®ither the subtraction of the residual for AQ = 100 or the division by

the estimated value for AQ = 100. The transformation yielding the

minimum regression standard error and the minimum maximum percent

error was chosen in each case.

After performing all the necessary computations and analyzing

different kind of models, the model giving the best fitting was

defined by the independent variables in the natural logarithm space

and the dependent variable in the real space. The model selected for

Case 2 is

AQ = -129.697 + 49.878 Ln At (3.127)

Similarly, for Case 4

AQ = -118.552 + 47.458 Ln At (3.128)



At last, Ax was not included in the models, since its contribution to

the explained variance of AQ was not significant, 1.7% and 0.7% for

Cases 2 and 4 respectively.

Table 3.10 summarizes the properties for the models presented in

Equations (3.127) and (3.128). For Case 2 AQ varied between 100 and

64.8 while At varied between 100 and 51.20. The same variation

ranges for Case 4 were 100, 57.52 and 100, 44.48.

Table 3.10. Properties for the regression models for Cases 2 and 4,

Property Case 2 Case 4

Coefficient of determination

Standard error (%)

Maximum percent error (%)

0.959

2.04

5.74

0.951

2.56

7.03

Plugging Equations (3.113), (3.120) and (3.121) in (3.124) the

resulting model for Case 2 is

0.02 -129.697 + 49.878 Ln

100 t

L W i (3.129)
c  e

Doing the same with Equations (3.115), (3.120), (3.124) and (3.128),

the equation recommended for Case 4 is

0.02 -118.552 + 47.458 Ln

100 t

L a (i t )^P (3.130)
t  + t" c p e e
e  s

Figures 3.22 and 3.23 present a graphical representation of the

behavior of the forecasting models for Cases 2 and 4.
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Figure 3.23. Forecasted discharge for Case 4 using the regression
model.



3.10 Summarized Procedure for Computing the Peak Variables

This section is intended to present a summary of the equations

used to predict the peak discharge and time to peak, when an effective

rainfall intensity i of duration t is imposed over a catchment
^  e 6

area formed by a first order stream of length and two symmetrical

planes of width W.

1. Step 1; Compute the coefficients and exponents in the area-

discharge relationship for the plane and stream.

1.486 ^1/2
a  =• o

P  Hp p
(3.131)

;8p - 5/3 (3.132)

1 .486 <-0.25)^^^ „l/2
a  — i>„
c  n c

c

(3.133)

/3c - 1 -I- 0.7/3 (3.134)

where n stands for roughness and S for slope, and p

distinguishes plane's properties from stream's properties.

2. Step 2; Compute the following times

Wi^
(3.135)

®  a (2 W i
c  e



t* = t + t
c  s

(3.137)

where t is the concentration time in the plane, t concen-
^  s

'^^^tion time in the stream given concentration on plane and

t* is the total time of concentration.

Step 3: Apply Case 1 when t > t* as
e

Q = 2 L W i
m  c e

(3.138)

t  = t*
m (3.139)

4. Step 4: Apply Case 2 when t* > t > t as
e  c

= 0.02 -129.697 + 49.878 Ln
100 t ]"
—^ W i^ (3.140)

(3.141)

5. Step 5: Compute the following times

c  . fiEU t + M
P  ''P P a (1 t

p  e e

(3.142)

t" =
s

a  [2 Q (i t
c"- p^ e e'^ •'

(3.143)

6. Step 6: Apply Case 3 when t > t and t + t" < t as
c  e e s p

0 = 2 L a (i t )'
TO c p e e

(3.144)



t  = t + t"
m  e s

7. Step 7: Apply Case 4 when and *-3 ^

0.02 -118.552 + 47.458 Ln

100 t ]1 .
^ L a (i t (3.146)

t  + t" c e
e  s ^

y j

t  = (t + t -h t")/2
m  p e s '

(3.147)

3.11 Final Remarks on the Effective Rainfall-Runoff Model

As was stated in the introduction for the present chapter, and as

the interested reader may verify, the effective-rainfall runoff model

herein developed follows closely Eagleson's work (1972), not only in

the notation, but in the determination of some characteristic times

for the catchment area. However, Eagleson's work lacks some

important features: first, the runoff cases considered depend on his

decision tree, which was reduced upon the basis of particular values

for rainfall intensity and discharge coefficients, and second, the

development does not cover all effective-rainfall runoff, for example

concentration on channel given no concentration on planes.

It is the believe of the author that the developed effective

rainfall-runoff model solves the shortcomings found in Eagleson's

study. Through the derivation and calibration of the effective

rainfall-runoff model, the variables describing roughness and the

hydraulic radius-area relationship for the channel were held constant.

The value of the roughness conditions the coefficient for the depth-

discharge relationship in the plane and for the area-discharge in the

plane. However, the variation on these coefficients was taken into



account through variation of slopes. Besides, the calibrations was

performed on dimensionless variables, and the obtained expressions

consideration.

A serious shortcoming can be put on the model due to the fact

that regression analysis was employed. However, this fact can make

the model more flexible since the same technique may be applied to

other configurations, actual or hypothetical, depending on modeler's

needs.

At last, the use of the model is recommended since it has been

obtained through analytical development combined with regression

analysis, the latter performed on dimensionless variables.



Chapter 4

FLOOD FREQUENCY DERIVATION

4.1 Introduction

The objective of this chapter is to put together the different

components of the flood frequency derivation technique.

For the rainfall-infiltration component, the results given by

Diaz-Granados et al. (1983) are taken.

The effective rainfall-runoff model has been already developed

and formally presented in Chapter 3.

Once this elements are put together an algorithm • for the

computation is developed and translated into a computer FORTRAN code

to be run in the CYBER205. The user manual for this program is

presented in Appendix B.

The flood frequency derivation technique is applied to the five

configurations used in Chapter 3 (Table 3.5) and a sensitivity

analysis is performed. To improve any judgment about the

applicability of the method, this is applied to two real world small

4.2 Rainfall-Infiltration Component

In Chapter 3 an algorithm was implemented in order to estimate

the peak discharge and time to peak for a first order stream with

symmetrical lateral planes. The computation is performed as function



of the effective rainfall intensity i , the effective duration t and
e' e

the catchment geometry and dynamics.

Unfortunately, in real world watersheds, neither the effective

intensity nor the effective duration can be measured. In the best of

the cases, a cumulative rainfall depth record along time is obtained.

From the total precipitation depth and total duration t^ an average

total intensity i^ can be estimated. Now, if marginal or joint

probability distribution functions (pdf) are formulated for i^ and t^,

along with an infiltration model, the joint pdf for i^ and t^ can be

obtained.

Following Eagleson (1972), it will be supposed, for the present

study, that the total rainfall point intensity i^ and the total

rainfall duration t^ are independent exponentially distributed as

flr(i-r^ - *exp(-;8*i^), i^. 2: 0 (4.1)

^Tr^'^r^ - S exp(-S t^), > 0 (4.2)

where and 6 are given as

*  —

P = l/i (4.3)

5 - 1/t, (4.4)

In the last two equations i and t represent the mean total
^  rm rm

point rainfall intensity and mean total duration respectively.



Eagleson (1972) propose the following expression in order to

account for the difference between point precipitation and areal

precipitation:

k - 1 - exp(-l.lS' / )[1 - exp(-O.OlA^)] (4.5)

where S is given in hours and , the catchment area, in square miles,

and k represents the ratio between the areal total depth and point

depth precipitation. Furthermore, supposing that the duration for

both events, areal and point, area the same, he concludes that the

inverse of the mean areal precipitation, is related to as

^  ̂ /k (4.6)

Therefore, the pdf for the total areal rainfall intensity is

written as

ffrCir^ = P exp(-/3i^), i^ > 0 (4.7)

and the joint pdf for i^ and t^ in view of their assumed independence.

^Ir,Tr^^r'^r^ " exp(-^i^ - St^ ) (4.8)

For a uniform rainfall of intensity i and duration t , the
y  r r

infiltration process is describe via the set of equations:

f-i , 0<t<t
r' o

(4.9)



^ " 2 ^S' ^ ̂  ^
b  O i;

-  ''s'
7  ' ̂T- ^ ̂r  s (4.11)

where f is the Infiltration capacity rate at any time t, S is the
sorptivity, the hydraulic conductivity and t^ is the ponding time,
defined as the time at which the upper layer of soil saturates and a
film of water forms, being able to generate runoff (Morel-
Seytoux, 1981).

Equation (4.10) can be recognlred as Philip's equation, with a
alight difference, given by the fact that the gravitational
infiltration rate has been replaced by , value to which, in several
infiltration models, the capacity rate has to tend when the rainfall
duration is large (Morel-Seytoux, 1981). This assumption sounds valid
and add simplicity to the computations.

The sorptivity S measures the capacity of the soil to absorb
water. Based on Koch (1981), for a steady rainfall intensity, S can
be computed as

[  - 'i>Hj (4.12)

where and are the soil water content at natural saturation and
the beginning of the rainfall, respectively, both of them

dimensionless, and is the capillary drive or suction head.

Equation (4.11), obtained by Eagleson (1978) as an approximation,
gives the ponding time as a function of sorptivity, rainfall intensity



and hydraulic conductivity. This last term appears in Equation (4.11)

by the same reason as in Equation (4.10).

Equation (4.9) through (4.11) state that when the time is less

than the ponding time, the infiltration capacity is greater than the

rainfall intensity and no runoff takes place. If i^ is greater than

,  progressively, the water content of the soil increases up to a

value when ponding is reached. After this, part of rainfall

infiltrates following Equation (4.10) while the remaining portion

produces runoff. Figure 4.1 depicts a schematic representation of the

rainfall-infiltration process.

The area denoted d^ in Figure 4.1 represents the effective depth

and was approached by Eagleson (1978) as

d = (i - K ) - S(t /2)
e  r s V j-/ /

(4.13)

Defining the effective duration t^ as

t  - t - t
e  r o

(4.14)

the mean effective intensity is computed via

i  - d /t
e  e e

(4.15)

With the results presented up to this point, the probability of

null runoff, denoted by P[i^ = 0, t^ = 0] , can be computed as

P[i^ = 0, = 0] = P[i^ < KJ +

P[t < t , i > K ]
r  o r s'

(4.16)



iaz-Granados et al. (1983)).



The first probability can be obtained from Equation (4.7), as the
cumulative pdf of i^ evaluated at , yielding the result

pri < K ] - 1 - exp(-;3K )
'• r s s

(4.17)

To compute the probability of the rainfall duration being less or

equal than cne ponding time when simultaneously the rainfall intensity
is greater than the hydraulic conductivity, the following integration
has to be performed

^ to' ^r > °

The upper limit in the inner integral, i^^, must be obtained

from Equation (4.11) as a function of t^ and it represents the
intensity generating a ponding time equal to such duration

i  = i St K
ro 2 r s

(4.19)

Note that Equation (4.19) can also be obtained by replacing f and

t by i and t in Equation (4.10). Taking (4.19) to Equation (4,18),
r  r

solving the inner integral and taking this result along with
expression (4.17) to Equation (4.16), the null runoff probability is

0, t^ = 0] = 1 - 5 exp(-^Kg) '^^r '

;9S(2tp"^/^ ] dt^ (4.20)

Equation (4.20) has no closed solution. Although one can solve
numerically for particular values of the parameters, Eagleson



(1972) presents an approximation for this kind of integral. Using his

own notation, he proposed

a J^exp(-at - bt"") dt = r(<7) (4.21)

" ■ 41]mb1 (4.22)

provided a is of order of unity. The notation r(.) stands for

Gamma function.

For the present case a - 5, b - ̂3/(2)^/^ m = 1/2. Therefore

the following results are yielded

^  " ̂'^e - 1 - r(a)<7 exp(-y9K - 2a) (4.23)

a = 8

(2)^/^5
(4.24)

Using the above results, Diaz-Granados et al. (1983) derive a

joint pdf for the effective intensity and effective duration. First,

they obtain the marginal distribution for the effective duration and

then multiply it by the conditional distribution for i given t

This is

^Ie,Te^^e'S^ ° ̂le/Te^^e' ̂e^ ^Te^%^ (4.25)

In order to obtain the marginal distribution for t the following

operation is performed:



- dT <''1^ - ''1° < 'e ̂  "^el" (4.26)

The first term in the derivative is equal to the null runoff

probability, since, as Diaz-Granados et al. (1983) stated, t is equal
e

to zero if and only if i^ is equal to zero.

The second term between parenthesis in Equation (4.26) is

obtained by double integration of (4.8), between t and t + t as
e  o e

functions of i^ along t^ direction, and between and infinite along

Again, an unsolvable integral is found, but a closed approximate

solution for (4.26) is finally obtained by letting the term between

parenthesis, the cumulative pdf for t , tend to one when t tends to
e  e

infinite. The final result, reported by Diaz-Granados et al. (1983),

^Te^^e^ - ̂ r(£T + l)a ° exp(-;9K^ - 2ct - 5t^) (4.27)

The evaluation of ^le/Xe^^e' ^e^ requires the invertibility of

the function defined by Equations (4.13), (4.14) and (4.15), or

^e - - ^s) ̂  ̂  t
e

t  1 1 1/2

9^ 2 ̂  2t
2t e

e

(4.28)

The invertibility condition means that i^ has to be obtained as a

function of i^ and t^. This is necessary since

^le/Te^^e- ^e^ " di^ ^le/Te^^e'^e^ (4.29)



f, (i , t )
le/Te e e ^ i / tj (4.30)

Now, expressing Equation (4.28) as I = g(I ), since t
assumes a

given value

^Ie/Te<^e' '^e^ = ^ V ̂e^ (4.31)

Equation (4.31), applying the invertibility condition, gives

^le/Te^^e- *^e^ " di^ ^ / ̂e^ (4.32)

In the right hand side term of Equation (4.32) one recognizes the

cumulative . pdf of i^, evaluated at g"\i ) for a given value of t .
®  e

Making the explained replacement and developing the derivative

^le/Te^^e' ^e^ " ̂Ir^® ^^e^^
dg" (i„)

di (4.33)

where the absolute value |.| in the last term has been added in order

to account for the possibility of g (i^) increasing or decreasing

monotonically (Freeman, 1963).

Unfortunately, Equation (4.28) can not be inverted, since t is
o

a function of i^ and t^ depends on t^. In order to solve this

problem, Diaz-Granados et al. (1983) approached the above function by

performing regression analysis on some dimensionless variables,

obtaining for i^



with

^2 ^31  = 1.4434 S ^ t ^1
t  e e

k^= 0.1558

k2= -0.0779

k3= (1 - k )

I'i'^slly I the conditional pdf for i is computed as

ik, k.

'le/Te»e' " I-''"'' V fM ̂  'e
e

V  J

^1 ^3 ^9
exp -1.4434 5 S i t

e  e
(4.38)

Plugging Equations (4.27) and (4.38) into (4.25), the joint pdf

for i and t is
e  e

^le.Te^^e' ^e^ ° ̂ .4434 ^ S exp(-/3K^ - 2ct) r(a + 1)

-  [i J ^e -P .^2 ^3 1^2
t  exp -5t - 1.4434 /3 S i t
e  e e e (4.39)

4.3 Probabilistic Component

Once the joint pdf for i^ and t^ has been presented, the

probabilistic component, already used in part in the previous section.



deals with linking the rainfall-infiltration component and the

effective rainfall-runoff model.

The effective rainfall-runoff model was formulated in Chapter 3

and a summary is presented in Section 3.10.

The first objective of the probabilistic component is given by

the determination of the cumulative pdf for the peak discharge,

this computation has been accomplished, the return

period for a given value of Q can be computed as (Eagleson, (1972);

Diaz-Granados et al. (1983))

^r " m^[l - Fq^(Q)] (4.40)

where T^ stands for the return period. It represents the average

number of years elapsed between the occurrence of two events with the

same magnitude for Q. The term m^ in Equation (4.40) denotes the

average number of independent rainfall events per year, from which

just one is selected to conform the flood annual series. Note that

Equation (4.40) does not consider any base flow discharge in the

watershed, term considered negligible within the present study (Diaz-

Granados et al. (1983)).

As stated above, before any application of Equation (4.40) is

intended, it is necessary to set up an algorithm for computing F (Q).

present development, as is the case in most of previous

related works, the randomness in the peak discharge is given by the

randomness in the rainfall. This means that no probabilistic behavior

is assigned to other variables, like soil and morphologic parameters,

except for Eagleson's work (1972), where he considered a variable



catchment width depending on rainfall conditions. However, this fine-

tuning will not be included in the present work.

By definition, the cumulative pdf for the peak discharge is

Fq (Q) = P [V^e-^e) (4.41)

In words, F (Q) gives the probability of the random variable Q

being less or equal than a certain value Q. Equation (4.41) points

out that the randomness in depends on the randomness of i^ and t^.

Hence, in order to determine the above probability, it is necessary to

integrate the joint pdf of i^ and t^ over certain regions. Figure

4.2 illustrates the plane i^ - t^ and the regions where the

integration has to be performed. The boundaries for those regions

depend on the value given to Q. As stated through the development of

the effective rainfall-runoff model and summarized en Section 3.10,

four cases for computing the discharge are to be considered.

Although the definition of the boundaries depends on the value

given to Q, for the sketch presented in Figure 4.2, these are

conformed as follows:

Region 1: from + t^ to =■ Q for to

- Region 2: from t =t tot =t +t for t ,„ to t e
°  e c e s c el2 emax

from t^ = t^ to Qj„2^^e'^e> = ^ ^e24 ^el2'



®ml('e ' 'e) ~ ®

Case 1

\®m2('e''e) - ®

^m4('e '^e) = ̂

Case 2

Case 4

Qm3('e.te)=Q Case 3

»e= «s^ »c

»e = «p- ts"

Figure 4.2. Integration regions for the flood frequency computation.



Region 3: from t = t - t" to t = t for t to t and
e  p s e c e24 emax

from t = t - t" to Q_,(i ,t ) = Q for t to
6  p s ^4^ e e ^ e43

- Region 4; from 1 = 0 to t = t - t" for t , „ to t and
e  e p s e43 emax

from 1 = 0 to 0^(1 ,t ) = Q for t . to t ,_.
e  ̂3^ e' e^ ^ emin e43

In the above definition, Q stands for the functional

relationship used to compute the discharge for Case i, 1=1, 4.

Similarly, denotes the intersection point of = Q with

the boundaries between two cases. For instance, ^^2^ represents the

intersection point of Q^2^^e'^e^ ° ̂  ^4^^e'^e^

boundary between Cases 2 and 4, '-g " Each region, as defined

above, delimits the zone (ig. Q, within the range of

application for Case i. Figures 4.3 through 4.7 present integration

regions for the five configurations used in Section 3.9 (Table 3.5)

and some values of Q.

Based on the aforementioned considerations, the cumulative pdf

Fq^(Q) can be computed as

Fq^(Q) = ig = 0. - 0] +

Ii=l
,^le,Te(^e' ^e^^^e'^^e (4.42)

where Ri stands for region i and the null runoff probability has been

included properly.
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Figure 4.4. Integration regions for Configuration 2 and Q = 100 cfs (see Table 3 5 for
configuration definition).
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Figure 4.5. Integration regions for Configuration 3 and Q - 600 cfs (see Table 3 5 for
configuration definition) . . j loi
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Figure 4.6. Integration regions for Configuration 4
configuration definition). and Q = 600 cfs (see Table 3.5 for
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Before any further step is given in regard to the application of

Equation (4.42), it is valuable to analyze the integration of

^le.Te^^e' ^e^ ' function defined by Equation (4.39). Again, following
the work by Diaz-Granados et al. (1983), one realizes that it is

possible to integrate Equation (4.39) in the i^ direction. Calling <j)
and ij) respectively

- 1.4434 ;3 5 exp(-;9k - 2a) r(a+l)<7'^S
k.,
1

(A.43)

= 1.4434 y3 S
(4.44)

^Ie,Te^^e'''e^ can be rewritten as

^Ie,Te^^e'^e^ V "'^'^e ' ̂ ̂e ^ ^e. ̂ 3 ̂  ̂ ^2
(4.45)

Denoting i^^ and i^^ the lower and upper limits of integration when

this operation is performed along i direction, one obtains:

r
J  ̂Ie,Te^^e''=e^^^e " S(iel ■ ^62 ' ̂e^ (4.46)

<f> exp (- 51 )
S(t„i >^QO>t„) = I 1,

k., k„y

'h 'e2 ^e . (4.47)



where Referring back to Figure 4.2, using the
corresponding definition for each region and taking Equation (4.47) to
(4.42), ^q^(Q) can be computed as

[ig 0, tg - 0] + J ^e212^'^e^ '
^^e2h

4  f^^e2^i
■i=2 I

^^el^i
^'■^eli^'^e^ ' ^e2il^^e^ '

^emax

J  ̂e2i2^^e^'
^^e2^i

(4.48)

Some features have to be explained in Equation (4.48). The first
integral following the null runoff probability represents Region 1,
while the summation covers Regions 2 to 4. As except for Region 1,
the computation covers two subregions within each region, two
integrals appear within the brackets for the summation. Besides,
within each region i^^ does not change from one subregion to the
second, while i^^ does, then the former has been denoted i^^. and the
latter ig2ij• ^ = 1, . . ,4 and j = 1,2. Emphasis has been done on
the fact that i^^. and i^^ij are functions of t^. For each region,
except for the first, there are three integration limits: (t^^^). the
lower, (t^2)i the intermediate and t^^^^ is always the upper. Table
4.1 presents the equivalent notation for application of Equation
(4.48).



Table 4.1. Equivalent notation for computation of F (Q).
TO

Region i 1^^^ Subreglon j 1

1  t =t +t
e  s c

t =t
e  c '42»e'^e) "5

t  .
emin

t  = t + t
e  s c

QmS^^e'V =Q

t =t -t"
e  p s

t  = t - t"
e  p s

VO-e'"^e' - "5
t  = t
e  c

Additional emphasis is put on the fact that i . and i „ as
ell e2Lj

presented above express functional relationship between the effective

duration t^ and the effective intensity i^. In order to clarify this,

the different functions referred in Table 4.1 are presented completely

in the following:

1. t = t + t :
e  s c

a (2Wi )
c^ e

;3c-l

1/Pc ( . l-;9p]l/^p
-  t = 0

e
(4.49)

2. t = t :
e  c

- t = 0
a  e

P  J
(4.50)



3. t = t - t":
e  p s

a \2a (i t
,  cL p e a y3p(i t )^P'^ ^P

p  e e'

2L W i - Q - 0
c  e ^

ac(2Wi^)/3c-l
fw i l-'^PlVySp

flOO c V0.02 -129.697 + 49.878 — W - Q = 0 (4.54)

- Q - 0 (4.55)

t  _ i£-zl W
P  ̂P ® a ^ N^Sp-la fip(i t

(4.56)

a \2a (i t
cL p e

(4.57)



0.02 -118.552 + 47.458 Ln
100 t

t +t"
e  s

La (i t
c  e e'

1 = 0 (4.58)

For the computation of the coefficients , ^p, , ^e, and the

definition of notation, the reader la addressed to Chapter 3, Section
3.2 and 3.10.

For Equations (4.49). (4.51). (4.53). (4.54). (4.56). (4.57) and
(4.58) It IS impossible to obtain i^ as an explicit function of t^.
For the other equations ((4.50). (4.52) and (4.55)) an explicit
solution can be obtained. Besides. the computation of the

intersection points detailed in Table 4.1 requires simultaneous
solution of different system of equations, many of them not linear.

The aforementioned restrictions, added to the fact that a closed

integration of Equation (4.47) is impossible, make necessary the
implementation of a numerical algorithm to compute F (Q) using

in

Equation (4.48).

The primary objective of such algorithm is to compute each of the

integrals in Equation (4.48) within a certain tolerance. In other
words. once the algorithm has performed two successive approximations

to any integral, m any stage of the computation, the absolute value

of their difference must be less or equal than the specified

tolerance, in order to be accepted as the final approximation.

The requirement of a numerical algorithm to compute the

cumulative pdf for the peak flow is the reason for which nothing has
been mentioned, up to this point, about the integration limits t

'  emin

^emax' in Equation (4.48). If this equation could be
solved analytically, and would have to be replaced by zero

and infinite respectively. Due to the structure of the functions



involved in the numerical algorithm, it is difficult to estimate a

value for such that a specified tolerance can be attained in the

integration. Hence the lower integration limit has to be defined by

the user. For the present study, t^^^^ =0.05 sec was used and good

accuracy was obtained.

However, the value of can be estimated to achieve the

desired tolerance. First, all boundary functional relationships,

defined in Table 4.1 and through Equations (4.49) to (4.58), tend to

zero when t^ tends to infinite. Therefore, one can compute

"■* - it '
3 t -+00

e

exp(-5t^)]

Lim exp -rj) i .t  ̂ el e

^3 ^2- Lim exp i „ t
^  ez et -+00 ^ J
e

X 0 X (1 - 1) = 0 (4.59)

The value of can be chosen imposing the following
condition.

exp(-5t ) < tol
eraax' (4.60)

The required limit is then computed as

fl_k3tol1
(4.61)



where tol stands for the tolerance and f for a safety factor

(f^ 2= 1) • For the present study f =1.2 was taken,
s  s

In addition to the approximation of the integrals involved in the

computation of the cumulative pdf for the peak discharge, the

numerical algorithm has to solve the equations defining intersection

points and the equations defining a value of i for any given value of

4.4 Description of the Algorithm to Compute the Flood Frequency
Distribution Curve

In the previous section, the problem of obtaining the flood

frequency distribution curve has been formulated and its solution has

been presented. In this section, the set of procedures and

instructions required to compute the flood frequency distribution

curve for a collection of peak flow values, for a given watershed, is

outlined. The reader is addressed to Figure 4.2 and Table 4.1, where

most of the notation is explained.

The algorithm is presented as a sequence of steps. In many steps

decisions about the truthfulness or falseness of certain statements

has to be done. This is accomplished through logical if statements.

In order to identify the structure of combined statements and its

related possibilities, a number between parenthesis has been assigned

to each one. For instance, any if statement or related instruction

preceded by (1) is in the first level. Others with (2) are in the

second level and contained within another branching instruction in the

first level.



- Step 1; Data input

Rainfall parameters: yS, 5 m
'  1/

Infiltration parameters: K S
s '

Plane parameters: W, n , S
P  P

Stream parameters: L , n , S , a, b
c  c c

Discharge values: Q(k), k = l,..,nq

Integration controlling parameters: n, toli t
'  emin

n. maximum number of iterations approximating integrals

toli: tolerance for approximating integrals

Solution of Equations controlling parameters: nit, nbis, tole.

nit: maximum number of iterations solving equations

nbis: maximum number of iterations for initial approximation

to the root of an equation

Step 2; Computation of parameters

Plane's discharge coefficients: a Bv
p. yi'

Stream's discharge coefficients: a Be
c'

Joint pdf for i^ and t^ coefficients: a, r(CT+l) , 4>, rj,

Null runoff probability: P[i =0,t =0]

Let cdfl = P[i =0, t -01
e  e

Upper integration limit: t
emax

Step 3: Flags indicating results in Regions 2 to 4 are set

equal zero

Let ir2 - 0

Let irS = 0

Let irS - 0

- Step 4: The flood frequency computation begins

For k = l,..,nq, do steps 5 to 45



Let = cdfl

-  Step 5; Region .1

Step 6. When ir3 = 1, the integral in this region has reached

a  constant value and the computation is not performed

anymore

(1) if ir3 - 0 then

- step 7: The intersection point, t^^j, between t - t - t" end
®  p s

<V3<ie''=e> - is computed
Step 8: t^^2 is checked to be greater than t

emax

(2) if te^j > t^^^^ then

■  Step 9: Integrate fro. t^ axis to Q^jd^.t^) - Q(P, f„, ,be
interval ft . t 1

emin' emax

Step 10; t^^2 is checked to be greater than t
emin

(2) else if t^„ > t^^.^ then

Step II: Integrate fro. t^ axis to Q^jd^.t^) . Q(k) for the
interval t^^^I and from t axis to t - t -t"

®  e p s
for [t t ]

e43 emax

(2) else

Step 12: The integral in Region 3 reaches a constant value for

the first time. Integrate from t axis to t - t -t"
®  e p s

for the interval ft t 1 TTr,at.t-rx ,• ->
emin' emax-' ' opoate ir3 = 1 and

(2) end if

Step 13: Update Fg^Ck) adding the integral results

(1) end if



-  Step 14: Region 4

-  Step 15: When ir4 = 1, the integral in this region has reached

a  constant value and the computation is not performed

an3rmore

(1) if ir4 =- 0 then

- Step 16: The Intersection point found in the previous region is

checked to be greater than t
emax

(2) if t ,- > t then
e43 emax

-  Step 17: The integral in Region 4 is zero

(2) else

-  Step 18: The integral in Region 4 does exist. The intersection

point t^24 between t^ = t^ and = Q(k) is

computed

Step 19: ^i^bin the integration range is considered

(3) if ir3 = 0 then

- Step 20: t is checked to be greater than t
emax

(4) if t - > t then
e24 emax

- Step 21: Integrate from t^ = t^ - t^ to Quj4^ie'^e^ °

(4) else

Step 22: Integrate from t = t
e  p

t" to t = t for the
s  e c

interval and from - t^ to

V<'e'V - I'e43' '024'
(3) else if t ... > t

e/4 emax

Step 23: Integrate from = t - t^ to 0^14(13- = Q(k) for

the interval [t . ,t 1
emin emax

(3) else if t „. > t
e24 emin



-  Step 24: Integrate from t = t^ - f to t = t for ft
®  P s e c ^ e24'

W  - tp - t- to V(I^.t^) - Q(k) for
emin'

(3) else

Step 25. The integral in Region 4 reaches a constant value for

the first time. Integrate from t = t - t" to t
e  p s e

tp for th. Update ir4 - 1

and cdfl

(3) end if

(2) end if

Step 26: Update adding the integral results

(1) end if

- Step 27: Region 2

- Step 28: When ir2 - 1, the integral in this region has reached

a  constant value and the computation is not performed

anymore

(1) if ir2 = 0 then

Step 29: The intersection point found in the previous region is

checked to be greater than t
emin

(2) if t > t . then
e24 emin

-  Step 30: A new value for t^24 is computed as the intersection

point between t^ = t^ and Q^2^^e'^e^ °
(2) else

Step 31: Let t = t . /2
e24 emin

(2) end if

Step 32: The intersection point t^24 is checked to be greater

than t
emax



thene/4 emax

Step 33: The integral in Region 2 is zero

(2) else

- Step 34: The integral in Region 2 does exist and the

intersection point t ^ between t
eiz e t  + t and

c  s

is computed

Step 35. t^24 within the range of integration is considered

(3) if ir4 = 0 then

Step 36: t^^^^ is checked to be greater than t
emax

" 'el2 ̂  'emax
- Stap 37: Integrate from t^ - t^ to Q„2(i^.t^) - Q(k)
(4) else

- step 38: Integrate from t^ - t^ to - t^ f t^ for

'^emax' " t^ " Q„2<*^0•'=e' " '(k) for
'"^e24' '^el2'

(3) else If t^^2 > t^^^^ then

- Step 39: Integrate from t^ - t^ to Q„2<le''=e> " ''(k) for the
interval [t . , t 1

emin' emax-'

(3) else If t^^2 > t^^.^ then

- Step 40: Integrate from t„ = t to t = t + t fnv ri-
^e ° ̂c '^s ttel2'

to Q^2(ie'^e) = for

'^^emin' ^el2^
(3) else

Step 41: The integral in Region 2 reaches a constant value for

the first time. Integrate from t = t to t = t +t
e  c e c s

f^emin' ^emax^" Update ir2 = 1 and cdfl.
(3) end if

(2) end if



Step 42: Update adding the integral results

(1) end if

-  Step 43: Region 1

- step 44: Integrate fron. e to Q„i(l^,t^) - Q(k) for
[t , t ]

ei2 eraax

Step 45: Repeat computation for next discharge

Step 46: For k = l,..,nq compute the return period T (k)

-  Step 47: Output

Same parameters as in step 1

Cumulative distribution function F (k) , k = l,..,nq

Flood frequency distribution curve T^(k), k = l,..,nq
-  Step 48: Stop

Within the general algorithm others have to be considered in
order to solve equations and perform the required integrations. To

solve equations, a combination of Bisection and False Position methods

was used. The first one provides an interval containing the root for

the equation, such that the function changes sign within that

interval. The False Position method takes that interval and,

approaching the derivative of the function by means of a secant line.

Iterates until the desired tolerance is attained or the maximum number

of allowed iterations is overpassed. For more details about these

algorithms, the interested reader is referred to Burden and Douglas
(1985) .

For the integration algorithm Romberg method was chosen (Burden

and Douglas (1985)). It uses a composite trapezoidal rule to give

preliminary approximations and then applies Richardson extrapolation



process to improve the initial approximations. In order to approach

the definite integral between a and b for a given function f(x), the

composite trapezoidal rule is applied for k = l,..,n, where n is some

positive integer, as

m, = 2
k

(4.62)

\ = (b - a)/m^ (4.63)

^1,1 2

\,1 ° 2 '\-l,l \-l " 2] \-l '

(4.64)

(4.65)

To improve the initial approximations Richardson extrapolation

algorithm is applied by making for i = 2,..,n and j = 2, .. ,i

'i.j " h,j-i - ■'i-i.j-i] / - 0
The term with the largest values for i and j, i.e. , ^ provides

the best approximation to the integral. Hence, the larger the n the

better the approximation.

The algorithm here described was translated into a FORTRAN

computer code. Appendix B presents the user manual for such a

program.



4.5 Computation of the Flood Frequency Distribution Curve for
Hypothetical Configurations

The flood frequency distribution computation was applied to the
five catchment configurations used in Chapter 3, Section 3.9 (Table
3.5). Other parameters were required in addition to those described

in Table 3.5 and these were:

Mean areal rainfall intensity: 1/^9 = l.Q in/hr

- Mean rainfall duration: 1/5 - 4.0 hr

- Hydraulic conductivity: = 0.4 in/hr

-  Sorptivity; S =■ 0.5 in/hr

Mean number of independent events: m = 10
The flood frequency distribution curves for the five

configurations are presented in Figures 4.8 through 4.12. They depict
normal graphical results in the sense that the curves obtained are
smooth. The results can be also classified as logical, since the
slight upward concavity in the curves shows that a small increase in
the return period will increase appreciably the flood discharge, as it
shall be.

Configurations 1 and 4 (Table 3.5) exhibit the same geometry, but
the plane and channel slope are different. The flood frequency
distribution curves depicted in Figures 4.8 and 4.11 are practically
the same, showing a low sensitivity of the method to the variation on
these parameters. The same conclusion is yielded from Configurations
3 and 5 and Figures 4.10 and 4.12.

4.6 Sensitivity Analysis for the Flood Frequency Derivation
In order to infer the behavior of the flood frequency

distribution curve when some parameters are changed, a sensitivity
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analysis was performed. The configuration for these case was chosen

more realistic, corresponding to a catchment area of 4.0 square miles.

The parameters describing catchment geometry and dynamics are:

Plane width: W = 3520 ft

Plane roughness: n = 0 25
P

Plane slope: S  = 0.268
P

Channel length: L = 15840 ft
c

Channel roughness: n^ = 0.03

Channel slope: 0.026

The values selected, describing the rainfall infiltration model are

listed below:

Mean areal rainfall intensity: l/fi =1.0 in/hr

Mean rainfall duration:

Hydraulic conductivity:

Sorptivity:

l/S = 4.0 hr

= 0.4 in/hr

S  =0.5 in/hr^

Number of independent events: m = 20
1/

The parameters selected to perform the sensitivity analysis were: W,

^p' ̂ c' ^c' ' Kg > S. Each parameter was changed once, as
described in the following:

W = 1760 ft, half the initial valuehalf the initial value

S  = 0.134,
P

L  = 7920 ft,
c

S  =0.052,
c  '

half the initial value

half the initial value

two times the initial value

1//3 =2.0 in/hr, two times the initial value

l/S = 8.0 hr. two times the initial value

Kg = 0.2 in/hr, half times the initial value
1/2

S  =1.0 in/hr , two times the initial value.



Figure 4.13 to 4.20 present the graphical results, obtained when

each one of the aforementioned parameters are changed.

The first result to be pointed out, already outlined in the

previous section, is the low sensitivity of the flood frequency

derivation technique to slope variations, as shown in Figures 4.14 and
4.16. However, the effective rainfall-runoff model is the component

responsible for this behavior, since slopes are included as part of
the discharge coefficients.

Between the analyzed parameters, there are two which quantify the
ability of the soil to incorporate water. These are the hydraulic

conductivity and the sorptivity S. As shown in Figures 4.19 and
4.20, an increase in the value of these parameters yields an increase

in the return period, when the discharge is held constant. This

behavior sounds reasonable, since an increase in or S means that

more extraordinary rainfall events are required to produce the same

discharge and, therefore, an increase in the return period is

obtained.

The remaining parameters, W, , l/fi and 1/5, are classified as a

measure of the watershed and climate ability to produce runoff. The

greater those parameters, the more frequent high flood discharges and

consequently the lesser the return period for the same discharge
value. This is exactly the behavior shown by Figures 4.13, 4.15, 4.17

and 4.18.

Although, the observed behavior depends on the values assigned to
the aforementioned parameters, there are some that tend to change the

value of the null runoff probability, while the others change the

relative position of the maximum for the joint pdf for i and t In
e  e ■

the first category 1/5 and can be included, since they induce a
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parallel displacement of the flood frequency curve. By the other
hand, in the second type, W. . l/p and S are listed. Besides of

producing a change in the initial probability, they generate a
relative change in the position of the maximum for the original pdf,
translated into a rotation of the flood frequency curve.

The epplicatlon of the flood frequency derivation technique to
tuo real world small watersheds Intends the establishment of final

Judgments about the usefulness of the method for ungaged watersheds.
In other words, this section deals with the ability of the flood
frequency derivation technique to approach the historical annual flood
series, using reasonable values for the parameters Included in the
model.

Before any application is intended, some considerations are
presented regarding the parameters included in the methodology.
First, the mean rainfall intensity l/p and the mean rainfall duration
1/8 have to be estimated from historical rainfall records. Such
estimation procedure is usually time consuming since most of the data
is comprised by a collection of cumulative rainfall depth versus
time. When time is considered to be an important constraint, educated

guesses can be obtained. For the present study, the first

approximation for the parameters describing rainfall distributions

were taken from Chow (1964), who presents maps for the continental

United States giving total rainfall depth, associated to given
durations and return periods. For the present application, rainfall
depth values with a return period of two (2) years and two different



durations were selected, for each watershed. The value of two (2)
years in the return period was considered the most adequate due to its

direct relationship to mean values. Once the total depth and total

duration are chosen, the intensity is computed as the quotient between
the former and the latter. It is important to emphasize that this

procedure does not yield the sample mean values for the parameters

describing rainfall distribution, but given the lack of data and the

constraints in its compilation, the method can provide a normal

educated guess.

In regard to the parameters describing the infiltration process,
they are not usually measured for actual watersheds, although some
values for experimental watersheds or obtained under laboratory
conditions may be found in the current literature. For example,
Billica and Morel-Seytoux (1984) gives typical values for the

hydraulic conductivity and for the water content 9
9^, according

the type of soil. If a value of the suction head is also

obtained (Morel-Seytoux, (1981)), application of Equation (4.12)
completes the guessing process for and S. For practical

applications, the predominant type of soil within the watershed shall

be taken into account.

The first watershed to be analyzed is located in Iowa. In fact,
the gaging station is situated within Iowa City urban perimeter,

although the watershed has not been modified appreciably and there is
no upstream regulation. The gaging station, classified according to

the U.S.G.S as 5-4550, measures the discharge in Ralston Creek.

A  sketch for Ralston Creek Watershed is shown in Figure 4.21.

The values defining Ralston Creek configuration, conceived as a first

order stream with two symmetrical overland flow planes, were measured
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on topographical maps to 1:24000 scale, provided by the U.S.G.S.
These values, along with assumed roughness values are listed bellow:

Average plane width:

Plane roughness:

Average plane slope:

M^in channel length:

W = 2579 ft

Hp = 0-30

Sp = 0.106

= 16266 ft

Channel roughness: n = 0 04
c

Average main channel slope: S - 0.005

Average plane width and main channel length values presented
correspond to an area of 3.01 square miles, as detailed by the

The main channel, for this case, was chosen as the longest
i.d.6nt if ifici on pianos hnf" if-,  but It also corresponds to the main flow
collector.

In order to obtain a point of comparison, the historical annual

flood series was obtained from data published by the U.S.G.S. (1965,
1971), conformed by 28 values, from 1938 to 1965. The return period
was computed for each value using the U.lbull plotting position
formula <U.S. Water Resources Council, 1976). After discharge values
are ranked in decreasing order, the return period for the nth value Is
given by:

Tj.(n) = N + 1

(4.67)

As an additional comparison point, a Log.Pearson III distribution
was fitted to the historical records. For this purpose, the discharge
associated to a return period is computed via (U.S. Water Resources
Council, 1976)



Log Qj. = (Log Q)^ + K(T^ , G) X Sj

where Log is the logarithm (base 10) of the flood discharge, and

(Log Q)^, and G are the mean, standard deviation and the skewness

coefficient, respectively, for the series obtained after logarithmic

transformation on the original historical data. Besides, K(T , G)

stands for a coefficient, function of and G, values for which are

given in tabular form by the U.S. Water Resources Council (1976).

The aforementioned statistics for the historical sample, using

moments estimators, are given as

(Log Q)^ = I (Log Q.) j / N
(^.69)

I  N r
'Log ° i ^^m (4.70)

I  N r T^ " N I i^^ L

/ (N -2) / (4.71)

Applying Equations (4.69) through (4.71) the following valuef

obtained for the sample statistics at Ralston Creek:

(Log Q)^ - 2.5796

St„„ = 0.4292Log



G = -0.4643

The calibration of the derived flood frequency distribution curve

for Ralston Creek is based on a trial and error process. The values

describing the catchment area configuration, as listed above, were not

changed during this calibration. The variation was given to the mean

areal rainfall intensity 1/^ and to the mean rainfall duration 1/5

mainly, and secondly to the hydraulic conductivity and sorptivity

S. The initial values for 1//9 and 1/5 were obtained from Chow (1964),

as described previously. The value for 1/p varies from 2.56 in/hr for

1/5 =- 0.5 hr to 1.56 in/hr for 1/5 = 1.0 hr. The best calibration for

Ralston Creek yielded the following values for the parameters

describing rainfall and infiltration:

Aereal mean rainfall intensity: l/yS = 0.60 in/hr

Mean rainfall duration:

Hydraulic conductivity:

Sorptivity:

1/5 = 0.90 hr

0.25 in/hr

S = 1.10 in/hr^

Number of independent events: m = 20
V

Figure 4.22 depicts the flood frequency distributions obtained

for Ralston Creek: these are historical, Log-Pearson III and derived

distribution. Although, the Log-Pearson III distribution fits the

historical distribution quite well, the derived distribution shows its

ability to reproduce, at least in part, the historical sequence of

events.

Some tentative explanations, for the difference between the

historical values and the derived curve, for high and low values of

the flood discharge, will be addressed later.

The second application watershed is depicted in Figure 4.23. The

stream is located in California, near Sierra Madre. The watershed has
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not been modified appreciably and there is no upstream regulation.
The gagtng station, classified according to the U.S.G.S as 11-1000,
measures the discharge in Santa Anita Creek.

AO in the first watershed, the values defining Santa Anita Creek
configuration, assuming a first order symmetrical Wooding geometry,
were measured on topographical maps to 1:24000 scale, provided by the
U.S.G,S.. These values, along with assumed roughness values are
listed bellow:

Average plane width:

Plane roughness:

Average plane slope:

Main channel length:

Channel roughness:

W = 5688 ft

Hp = 0-30

Sp = 0.582

- 23795 ft

n = 0.04
c

Average main channel slope: S =0.172

The watershed area, as given by the U.S.G.S, is 9.71 square
miles. The main channel was selected as the longest identified on
planes.

The historical annual flood series for Santa Anita Creek was

obtained from data published by the U.S.G.S. (1965, 1970, 1976),
conformed by 51 values, from 1917 to 1970 (three missing values).
The recorded flood frequency distribution was computed by applying
Equation (4.67).

Again, as a second point of comparison, the Log-Pearson III
distribution was fitted to the historical values. The sample moments,
computed using Equations (4.69) through (4.71) were:

(Log Q)^ = 2.4482

=Log - "-SWO



G = 0.0632

Following the same procedure as for Ralston Cree^ the flood

frequency curve was calibrated for Santa Anita Creek. The initial
value for 1/^, obtained from Chow (1964), ranges from 1.2 in/hr for
VS = 0.5 hr to 0.8 in/hr for 1/5 = 1.0 hr. After calibration was
performed, the values obtained for the parameters were:

Aereal mean rainfall intensity: 1//3 = 0.94 in/hr

Mean rainfall duration:

Hydraulic conductivity:

Sorptivity:

1/5 = 0.30 hr

0.80 in/hr

S - 1.12 in/hr^
Number of independent events: m = 20

u

Figure 4.24 presents the flood frequency curves for Santa Anita
Creek, obtained by three methods outlined above. Similar consents as
those presented for Ralston Creek are valid here.

4.8 Discussion Regarding the Flood Frequency Derivation Technique
In this chapter, an algorithm allowing the computation of flood

frequency distribution curves for small watersheds has been developed.
Besides, such technique has been applied to several hypothetical
catchment configurations and to a couple of small watersheds.

Through the sensitivity analysis, the flood frequency derivation
technique has proved its ability to account for the influence of

parameters describing watershed geometry, watershed dynamics and

rainfall-infiltration process, providing explanation on the physical
process of flood discharges. Although, such conclusion is not new, it

confirms an important feature already outlined in some previous
similar works.
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In Chapter 3, an effective rainfall-runoff model was developed.

Despite of the inclusion of the well known Manning equation in the

runoff model, no sensitivity was identified for the flood frequency

derivation technique on slopes, for plane and channel. As these

parameters are incorporated in the effective rainfall-runoff

component, and they do not appear at any other point, such component

is responsible for the observed behavior.

Besides, the effective rainfall-runoff model was developed with

emphasis on its applicability to small watersheds, where overland flow

phase IS supposed to be an important component. However, once this

model is added to the flood frequency derivation technique, nothing

inhibits Its application to small watersheds with a small contributing
rainfall area. Although no statistical distribution was considered

for the plane width, such an application can be obtained through a

pa.ira.nietrie variation in this quantity.

In regard to applicability of the flood frequency derivation

technique to some real world watersheds and based on the values

obtained during the calibration for the parameter set, it has also

proved its ability to resemble, at least in part, the historical

distribution.

The values obtained during the calibration for the parameters

describing rainfall in both watersheds do not match at all the

variation ranges obtained from Chow (1964). The values for Ralston

Creek exhibit a good result for the mean rainfall duration 1/5, while

for the mean rainfall intensity l/fi the calibrated value departs

considerably. An opposite behavior is observed for Santa Anita Creek,

this is, a good agreement for 1//3, but fairly poor for 1/5. However,

the values obtained during the calibration can be considered as



normal, in the sense that they are not low neither high, and they

resemble values which could be obtained from historical precipitation

records.

A possible explanation for the observed behavior can be put in

the fact that kinematic wave based rainfall-runoff models tend to

overestimate discharge, as pointed out by Eagleson (1972). Hence, the

lower value for some of the two parameter can be visualized as a trend

to solve the overestimation. Besides, the reader must bear in mind

that the initial values obtained from Chow (1964) were taken as

educated guesses and therefore they are approximations to historical

values.

As stated previously, a detailed look at Figures 4.22 and 4.24,

shows that for high flood values or low discharge events, there is an

appreciable deviation between the derived and the historical

distribution. For the high values, this can be explained, in part,

by the uncertainity inherent to the estimation of high return periods

from historical records. For low values, as well as for high values,

there is an additional uncertainty, given by the possibility that

parameter values controlling the dynamics of flood formation are

different for low and high return periods.

A  second reason for the observed behavior may be stated in the

fact that the derived flood frequency distribution technique yields a

population result, in the sense that it covers all possible

realizations of the process, while the historical result conforms just

a sample from the population.

As a last point, additional emphasis is put in the fact that the

historical results were yielded along time, with quite different

parameters describing rainfall, infiltration and catchment geometry



and dynamics, perhaps reflecting climatic, physiographic or

geomorfological changes within the watershed. When the flood

frequency derivation technique is used, several average values are

included, which no necessary resemble the history of the watershed.

The two real world watersheds herein considered to test the

applicability of the flood frequency derivation technique are quite

different. Santa Anita Creek is much steeper and larger than Ralston

Creek. Due to their location, their climatic behavior should be also

different and so should be the runoff process. Despite this

appreciable difference, the results yielded for both streams are

qualitatively similar, in the sense that the historical record is

reproduced more or less within the same accuracy range.

The previous analysis yields the conclusion that the flood

frequency derivation technique can be applied to small ungaged

watersheds. Care must be exercised in the selection of the

parameters. As long as possible, rainfall parameters shall be

obtained from records, specially the mean rainfall intensity, one of

the most important values conditioning results. Several authors

recommend values for the parameters describing the infiltration

process, according to the equation here used (Morel-Seytoux, 1981).

In any case it is wise to compare the ungaged watershed with other

similar, where some records are available.



Chapter 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Since 1972, there has appeared in the hydrological literature a

set of works referred to as flood frequency derivation. Three

components are common to all these works: a rainfall-infiltration

component, an effective rainfall-runoff model and a probabilistic

component. Depending on the basis of the effective rainfall-runoff

model, the technique can be classified as physical or

geomorphological.

The present study considers the derivation of a physically based

flood frequency technique, applicable to small ungaged watersheds,

where the overland flow phase is an important timing component.

In the last decade, the Geomorphological Instantaneous Unit

Hydrograph (GIUH) has been an important tool used in discharge

forecasting and flood frequency derivation. Considering the

aforementioned scope, a review of the GIUH is performed on its own

basis, that is, comparing it with the Instantaneous Unit Hydrograph

obtained via detailed kinematic simulation, in order to establish the

fty of the GIUH to small watersheds, where the overland flow

phase is an important component.

Due to the fact that the GIUH lacks the required feature, a

model, based on kinematic wave assumption, is developed and

calibrated. The new effective rainfall-runoff model covers all



possible responses and solves the plane timing problem in a small

watershed, conformed by two planes and a first order stream. In order

to achieve this goal, an approximate kinematic routing model is used

as an intermediate tool.

Based on the developed model and previous results published by

other authors, the flood frequency distribution technique is

assembled, formulated as a numerical algorithm and translated into a

computer program. The technique is tested for several hypothetical

catchment configurations. Also, a sensitivity analysis is performed

in order to establish the capability of the whole technique to account

for parameters variation. As last point, the particular derived

methodology is tested with real world small watersheds, these

conceived as first order streams with two symmetrical planes.

5.2 Conelus ions

The conclusions obtained throughout the present study, following

the order in which it was developed, are summarized in the following

1. The GIUH is appears to be inadequate to describe watershed

response when the overland flow is considered to be an

important timing component.

Another concern is the ability of the geomorphological ratios

to describe the watershed shape and arrangement. In small

watersheds, sample variations on those parameters are larger

than in medium or large watersheds, and such variations are

not included in the GIUH.



The effective-rainfall runoff model developed follows
closely Eagleson's work (1972) in the determination of

characteristic times for the catchment area. However, in
Eagleson's work the following features were not included:
first, the runoff cases considered depend on his decision
tree, which was reduced upon the basis of particular values

for rainfall intensity and discharge coefficients, and
second, the development does not cover all possible

effective-rainfall runoff events.

In the etudy reported herein the shortcomlnge found in

Eagleson's work are solved. The calibration of the model,
performed on dlmenslonless variables, as well as the obtained
axpressions, account for all variables representing the
process under consideration.

A  shortcoming of the effective rainfall-runoff model results

since regression analysis was employed. However, this makes
the model more flexible, since the same technique may be
applied to other configurations, actual or hypothetical.

The use of the model for forecasting peak discharge and time
to peak is recommended. Also, the employment of kinematic

approximate routing is recommended for small watersheds,
where the plane holding time dominates within the watershed,
when the hydrograph shape is a important. The above

recommendations are based on the agreement found via detailed



kinematic simulation. The physical basis given to the

derivation supports this recommendation.

The effective rainfall-runoff model was developed with

emphasis on its applicability to small watersheds, where

overland flow phase is supposed to be an important component.

However, nothing inhibits its application to small watersheds

with a small contributing rainfall area, since a parametric

variation can be given to the catchment width, even when

considered jointly with the flood frequency derivation

technique, although no statistical distribution was

considered for the plane width.

Through sensitivity analysis, the general flood frequency

derivation technique has proved its ability to account for

the influence of parameters describing watershed geometry,

watershed dynamics and rainfall-infiltration process,

providing explanation on the physical process of flood

discharges.

In regard to applicability of the flood frequency derivation

technique to some particular problems, it encompasses, due to

the algorithm design, the inclusion of other joint pdf for

the effective rainfall intensity and duration.

10. The following shortcomings are inherent to the proposed

methodology: symmetrical planes, first order stream,

limitations in the kinematic wave approach, low sensitivity



to slope variations and average parameters describing the

infiltration process. The modeler must be aware of these

shortcomings for actual applications of the methodology.

11. The application of the flood frequency derivation technique
to ungaged watersheds is recommended, followed by a careful

analysis of the required and available data (from the same

watershed or from others with similar hydrological behavior).
As much as possible, a comparison with a catchment area with

available records is encouraged.

12. The fitting of the derived distribution to the historical one

can be made by considering different values of the parameters

according to the discharge stage. This shows that flood

events are not governed by the same type of rainfall

distribution.

5.3 Recommendations for Future Investigations

Many could be the investigation guidelines arising from this
study. Those considered as most important are listed bellow.

In regard to the GIUH, the inclusion of an extra state, given

by the holding time in the planes as suggested by Gupta et
al. (1980), could make this approach applicable to overland

flow component.



2. Further analytical investigation is necessary in regard to
the watershed dynamics as well as in understanding the
physics of the process.

3. A wider calibration of effective rainfall-runoff model could
open the posaibility of a better fitting of the derived

distribution to historical data.

4. Consideration, within the framework of the flood frequency
derivation technique, of more realistic rainfall

distributions and other ponding time infiltration models.

5. Analysis of flood frequency curves coming from different or

similar populations, with different parameters.
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Appendix A

HYDRAULIC ROUTING MODEL

A.l Introduction

This appendix presents a description of the hydraulic model used

for the simulation of the rainfall-direct runoff process in a given

watershed.

The model is traced back to Simons, Li and Eggert (1976). Spronk

(1978) enhanced it substantially and it was modified later by

Garbrecht (1984). Furthermore, Koch (1985) did some fine-tuning as

did the author of the present study.

In order to achieve that objective, a general description of the

model is given, followed by its analytical basis, i.e., the kinematic

wave approach. At that point, the main hypothesis, assumptions and

limitations of the model are pointed out.

As one of the shortcomings of the model is the large amount of

data required, even for small watersheds, the reader is addressed to

Garbrecht (1984), where a complete procedure for obtaining a

simplified representation of the watershed is given.

For the sake of simplicity, not all analytical derivations are

presented. An excellent guide for this purpose can be found in

Garbrecht (1984). Also, Eagleson (1970) presents a complete study of

cases where physical interpretations of analytical solutions are

available.



Any person ineterested in the User Manual for the corresponding

computer program can get it from the Hydrology and Water Resouces

Program, Colorado State University.

A.2 General Description of the Model

The purpose of the hydraulic routing model is the simulation of

the rainfall-direct runoff process for a given watershed. The

simulation is performed under the basis of a kinematic wave approach.

The first step in the simulation process is the representation of

the watershed and its respective channel network as a set of modular

units. Each unit is composed by a channel link and two adjacent

planes. This kind of geometry is known in the literature as Wooding

planes or open book representation.

Upon the basis of the type of intermediate result obtained, there

are two kinds of modular units: the first type corresponds to all

planes drainaging directly into first order streams, and, since there

are no upstream tributaries to the link, an analytical solution to the

kinematic wave equations can be obtained. The second type of modular

units is given by those links with order greater or equal than two,

composed of two upstream tributaries, two lateral planes and one

channel link. The presence of upstream tributaries forces the use of

a numerical scheme for the solution in the second type of modular

units. Figure A.l depicts the map and model representation for a

given watershed. It must be noted that since the planes do not

present upstream boundary condition, the overland plane hydrograph is

obtained by means of the analytical solution.

Once the model representation for the watershed has been

obtained, the planes are described by their width, slope and





roughness, and the channels by their length, slope, roughness and an
enplrlcal or analytical relationship between the flow area and the
hydraulic radius. This description has two Inherent hypotheses; 1)
the flow in the planes is considered to be turbulent and to take place
in a wide rectangular channel, 2) the flow in the channels are
considered to be turbulent.

The operation of the model proceeds in the same way as the paths
followed by the water to get the catchment outlet. Beginning with the
first order streams in the upper paths, a rainfall Intensity pattern
is imposed to the plane. This pattern is uniform across the plane,
but can be changed from plane to plane.

At this point, depending on the problem requirements, one of
three possibilities for infiltration purposes must be specified: 1)
describe the infiltration as an exponential decay law using Morton's
Aquation. 2) consider constant infiltration along time, and 3)
define no infiltration, i.e., the original rainfall intensity pattern
is in fact effective rainfall. The two first choices imply that an
instantaneous ponding takes place in the whole watershed, and, as a
characteristic inherent to the model, the infiltration continues after
the rainfall ends. The third choice enables the user to make an
external to the model treatment of the infiltration, considering for
example ponding type Infiltration formulas, like Philip's equation or
Green-Ampt equation (Morel-Seytoux, 1981). Similar to the rainfall
intensity, the infiltration parameters are considered constant across
a given plane, but can change from plane to plane. As the last
feature, the user can specify for each plane the percentage of the
area where infiltration takes place.



The definition of infiltration along time allows the computation

of the effective rainfall intensity pattern for a given plane. This

intensity pattern is routed, using the analytical solution, to the

plane outlet. The basic result at this stage of the simulation is

given by the overland plane hydrograph, whose dimensions correspond to

discharge per unit width.

Once the overland plane hydrographs for two adjacent planes

draining into the same first order channel have been computed, they

are added and the resultant hydrograph is translated into a histogram

of discharge per unit width. The translation from hydrograph to

histogram is performed in such a way that quantity and distribution of

water along time are preserved, and it is required in order to obtain

the analytical solution for the first order streams. Notice that at

this point the solution for the first order streams is identical to

the solution for the planes, since in both cases there is a uniform

distributed input along length, either plane width or channel length

and no upstream boundary condition. It is important to mention that

no infiltration is considered along channels.

When two first order streams joining and forming a second order

stream have been completely solved, the next step is given by the

solution of the latter. The two lateral planes are solved as

explained above and the result is given by the discharge per unit

width histogram uniformly distributed along the channel length. The

hydrographs for the two upstream tributaries are then added and

translated into a histogram giving the upstream boundary condition.

The two inputs, upstream and lateral histograms, are collected and

routed along the second order channel using a numerical scheme for the

solution of the kinematic wave equations. The result is given by the



discharge hydrograph ac Che downstream end of the second order
channel.

The simulation continues with the same procedure, taking into
account that the solution for any channel link must be preceded by the
solution of all links and planes located upstream of the new link.

The final result is given by the discharge hydrograph for the
whole watershed at the catchment outlet.

The numbers In the model representation In Figure A.l describe
the sequence or order of simulation.

AS can be concluded from the general description of the model.
this has three main parts: the hydrologlc component, the geomorphic
component and the hydraulic component. These are described in the

following paragraphs.

A.3 The Hydrologic Component

The hydrologlc component of the model comprises the total
rainfall, the infiltration and the effective rainfall. It is
basically operated as a water mass balance. Although no explicit
treatment of other abstractions, like evaporation, interception or
depression storage are considered within the model, they can be
included, when considered important enough, as part of the
infiltration.

The rainfall duration, intensity, and pattern, are boundary
conditions and are assigned arbitrary values.

Infiltration is the flow of water into the soil through the
ground surface. Tl,e rate at which it occurs is influenced by such
factors as the type and extent of vegetative cover, the condition of
the ground, rainfall intensity, and physical properties of the soil.



The infiltration process was studied by Horton in the early
1930s, and an outgrowth of his work was the following exponential
relationship determining infiltration capacity

(A.l)

where f ia the infiltration capacity at some time t, k is the
recession constant for infiltration, f^ is the final or equilibrium
capacity, and f^ is the initial infiltration rate. Equation (A,l)
indicates that if rainfall supply exceeds infiltration capacity,
Infiltration tends to decrease in a exponential manner. For short
duration and high intensity storms, one can generally expect the
rainfall intensity to exceed the infiltration capacity and Equation
(A.l) applies.

After the storm ends, there is still surface runoff on the ground
and the infiltration process continues as long as surface runoff
exists. Since, for post rainfall conditions, rainfall water rapidly
concentrates into many small rills, an additional parameter, defining
the percent area over which the post rainfall infiltration is
effective, is incorporated into the runoff analysis.

By accounting for the abstractions, the total rainfall intensity
and duration is reduced to an effective rainfall intensity and its
duration.

A.4 The Geomorphic Component

The drainage basin receives the rainfall, collects It in a system
of catchments and channels, and transforms it into a flow hydrograph
as the water flows through the channel network. This section defines



channel network, channel network composition and channel ordering
scheme.

Catchment areas, which receive effective rainfall, produce

overland flow which in turn is collected by the channel network. The

different runoff characteristics and the sequential coupling of

overland flow and channel flow suggest two separte entities, the

overland flow and the channel flow phase. The overland flow phase

corresponds to the catchment areas of the drainage basin. A catchment

area is defined as an area receiving effective rainfall and draining

it into a specific channel reach defined as a link. The dashed lines

in Figure A.l define the boundaries of catchment areas, and the

bordering channel links receive all overland flow from these

catchments. Because the geometry of the catchments depends on the

spatial arrangement of the channel network, the determination of the

catchment geometry is addressed after the channel network description
which follows.

The channel network is an arrangement of channel links and

connecting points. If the channels are displayed as single lines the

resulting diagram is the channel network.

Referring to Figure A.l, sources are the points farthest upstream

in a channel network, and the outlet is the point farthest downstream.

The point at which two channels combine to form one is called a

junction. It is assumed that multiple junctions do not occur. An

exterior link is a segment of channel network between a source and the

first junction downstream; an interior link is a segment of stream

network between two successive junctions or between the outlet and the

first junction upstream. A channel network with n sources has n

exterior links, n-1 interior links, and n-1 junctions (Smart, 1972).



With these definitions, a channel network ordering scheme, which

quantitatively defines channel lengths, slopes, number and spatial
arrangement, can be defined. This channel ordering scheme must

reproduce hydrologically significant basin features.

Strahler's channel ordering scheme is selected (Strahler, 1957)
because it is simple, meets the proposed requirements and leads to

concise channel network composition laws. Strahler's (1957) ordering
scheme can be summarized as follows (Figure A.l): channels that

originate at a source are called first order channels; when two

channels of order w join, a channel or order oH-l is created, and
when two channels of different orders join, the channel immediately
downstream of the junction retains the higher of the orders of the two
joining channels. The highest channel order (fl) in a channel network
is also the network order.

To complete the description of the channel network, channel cross

section must be defined. Since the model is not limited to a specific
set data for a given channel, a power relation between hydraulic

radius and flow area is selected to define the cross-sectional shape

R = a a"
(A.2)

where R is hydraulic radius, A is flow area perpendicular to the

flow direction, and a and b are empirically defined coefficients.

Three stable channel design methods were used by Garbrecht (1984) to

determine values of the coefficients a and b, ranging from 0.23 to

0.30 and 0.35 to 0.50 respectively. The hydraulic radius is thus

approximately proportional to the square root of the flow area.



Nevertheless, whenever possible, field data for the specific
region under consideration should be used to determine cross-sectional

relationships.

In view of the numerical simulation of the rainfall runoff

process, the catchment shape is approximated by a rectangle. The
length of the rectangle corresponds to the length of the adjacent
channel link into which the catchments drains, and the width of the

catchment is obtained by dividing the catchment area by its length.
As for the definition of catchment slope, Horton's (Horton, 1947)
relation between catchment slope S and channel gradient S is

^  c
used.

slope ratio = —
S
P

(A.3)

Steap catchment slopes thus correspond to steep channel gradients and
vice versa. Strahler (1950) confirmed this relationship by arguing
that high sediment yield from steep catchment slopes demand a steep
channel gradient for continuity of sediment transport. Strahler's
quantitative relation for nine maturely dissected regions is

S  = 4 S '
P  c (A.4)

where S and S are in degrees.



A.5 The Hydraulic Component

The differential equations of motion for one - dimensional,
incompressible, free surface flow In a moderately wide channel can be
written as:

^ ̂ dQ
dt dx ^ (A.5)

3t + ax <A ) + = gA (S^-S^) (A.6)

where Q represents the discharge through the cross-sectional area A
in a given time t, q represents the lateral inflow per unit length in
X  direction, y la the average depth of flow in the section, stands
for the channel slope, for the friction slope and g denls the
gravity constant. The above equations represent a gradually varied
unsteady flow and other assumptions Inherent to them are: uniform
distribution of velocities through the section, hydrostatic pressure
distribution along the vertical, small channel slope and no momentum
exchange due to lateral Inflow, The solution for these two equations
must yield the flow properties Q and A as a function of position
X  and time t.

The kinematic wave approximation considers the Inertia and
pressure terms in the equations of motion negligible compared to the

gravity and friction terms, so that the following set of equations Is

3A , ̂
;?v ^ "5 (A.7)



s  = S-
o  f

Equation (A.8) can ba expressed as a uniform flow resistance formula.
For the model, Manning's equation according to the English system of
units is selected, and was given by:

idA86 ̂ 9/3, 1/2
(A.9)

where n is Manning's roughness coefficient and R is the hydraulic
radius. By definition. R - a/P, in which P stands for the wetted

perimeter and can be expressed as a function of the area. Thus, the
cross-sectional shape is described by means of Equation (A.2).

Plugging Equation (A.2) into Equation (A.9) yields the following
result

Q = aA
(A.10)

i-AM 2/3 1/2
n  f (A.11)

(A.12)

Notice that Equation (A. 10) enables the consideration of other flow

resistance formulas different from Manning's equation.

The kinematic wave equation is obtained by multiplying Equation
(A.7) by aq/dA, yielding

3t dA ^dx ' = 0



The term 3Q/3A is known as kinematic wave celerity (also referred to

as the Kleitz-Seddon celerity) and represents the local travel

velocity for the incremental unit width discharge dQ/dx - q:

(A.14)

where V stands for the mean velocity of flow.

The equations of motion considering kinematic wave approximation

for the overland flow are obtained by analogy with Equations (A.7) and

(A.8), taking into account that such a flow is similar to that in a

wide channel. Therefore, the flow properties are expressed per unit

width:

^ ̂  = i-f
at ax ^ (A.15)

(A.16)

where y represents the flow depth, q the discharge per unit width, i

the total precipitation intensity and f the instantaneous rate of

infiltration.

A. 6 Solution to Kinematic Flow Equations for Overland Flow by the
Method of Characteristics

In the following paragraphs. Equations (A.15) and (A.16) are

solved by the method of characteristics. The resulting solution is

applied to the case of overland flow with temporally variable rainfall

and infiltration rates.



The essanoa of the method of cheracterfsties, when applied to the
quations of motion, is to find a space-time locus (x - x(t)) along

Which a discontinuity of the partial derivatives of the flow
properties, unit width discharge and depth flow, exists. This locus
hofines the path of wave propagation along which an ohserver moving
ith It can describe the process in terms of an ordinary differential

equation.

considering the definition of a total differential, the following
two equations can be written

dx -t

(A.17)

dx + g dt = dy
(A.18)

Equations (A. 15) to (A. 18) comprise a system of equations where the
partial derivatives are considered as unknowns. If this system is
expressed in matrix notation, the discontinuity is given, first, by
vanishing the determinant of the coefficient matrix, and secondly, by
applying the same condition to four determinants, obtained replacing
the columns in the matrix coefficient by the independent term vector.
The first condition, after some term manipulations, gives rise to the
equation

dt ==
(A.19)

The second condition implies the
equations



do

t

^ - (I-f)
(A.22)

Equation (A.19) definea tha characterlatlea lln.a In apace tl.a
coordlnatea and it al„ply atataa that tha dlaeontInulty or
perturbation travala along thoae llnea with a velocity equal to the
previous defined celerity.

Equatlona (A.20) through (A.22) are only valid along the
llnea. An important phyalcal obaervatlon obtained from

those equatlona la that the dlacharge, the depth, the mean flow
velocity and the celerity remain conatant along the characterlatlc
linea, under the abaence of effective rainfall Intenalty.

Calling « the width of the plane and 1^ the effective
tarnfall intenalty, In the more general caae varying with time, and
poaing the following initial and boundary conditiona, reapectively.

y = 0, for 0 < X < W, t = 0
(A.23)

y = 0, for X = 0, t > 0.
(A.24)

integration of Equation (A.20) gives the

along a characteristic line crossingine crossing thro

time variation of the depth

ugh the point (t x )•
o' o

i_(t) dt + y



Now, plugging this equation into (A. 19) and integrating again, the

characteristic lines are described by:

X - X = aB
o  ̂ r f f ■'

O  O

ig(r)dr + y dt^ (A.26)

where r represents a dununy variable of integration and y stands
o

for the depth at location x at time t
o  o ■

Expression (A. 26) is only integrable in a closed equation under

very particular conditions.

At this point it is important to point out that the initial and

upstream boundary condition have the inherent assumption of dryness of
the plane at the beginning of the rainfall.

However, one question remains unanswered. Why does the

integration of Equations (A.25) and (A.26) enable the solution of the

problem herein considered?

The main magnitude in which the engineer is interested in is

given by the discharge hydrograph at the plane outlet. This means

that once a time t^ at the plane outlet has been specified, the

discharge should be computed straightforwardly. Now, it is assumed

that the starting point for the characteristic generating this
discharge is such that t^^O, x^=0 and y^^O, where t^ is unknown and
y^ is known. Besides x=W and if Equation (A. 26) is integrated, just
one unknown remains; t^. Once t^ has been found, the integrability
of Equation (A.25) between t^ and t^ allows the computation of the

depth at the plane outlet. Finally Equation (A.16) gives the desired

discharge.



The notation chosen enables a differentiation between the

starting and arrival times t^ and t^ for a given characteristic

line. They are measured in the same scale with the same origin, but

their physical meanings are different.

When in the Equation (A.26), describing the characteristic lines,

ig(r) is given as a histogram, a piecewise integration must be

performed.

Following the notation shown in Figure A.2, from any point

(x^,t^) on characteristic C, the value of for time t^^^ may
be calculated as

^i+1
'i+l - { Sl+lf-'i) + yi

■1

(A.27)

Besides, for the same interval

^itl = ^i ^ei+1 (^+1 - ^i> (A.28)

and integration of Equation (A.27) yields

(A.29)

For a given plane of width W, values of calculated until

(x. ,t ) represents the last point for which x.<W, the
-J -J J

arrival time of characteristic C at the downstream boundary may be
obtained from Equation (A.29) as
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|Xj . tjl

'^i + l ' * i+i

IXi.!,!

characteristic lines arising



Hence, the discharge at the plane outlet is computed via

° yj ^ej+l^^w " ■ (A. 31)

A  -
The foregoing procedure is also valid for any characteristic

arising from the x axis. Due to the fact that for this

characteristic lines y^-0 for t^ - 0. the solution is straight
forward. However, as shown in Figure A.3, the solution becomes more

difficult when characteristic lines arise from the t (or t ) axis.

Making x=W and x^=0. Equation (A.26) becomes

A, • J,
O ^ /-V

(A.32)

In Figure A.3 the interval is defined as that containing the
time of arrival t^ of the characteristic C to the plane outlet,

while [tj,tj^^] contains the starting time t^. With this notation in
mind, the piecewise integration of (A.19) may be written as:

5!L _ A J ]b-i a
' it, ' it " I, )drl^'^dti

. M r i (0.t>-at.
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The inner Integral in the last equation can be expressed as

i^(r)dr = y(tM-yg (A.34)

where y(t^) stands for depth accreation evaluated between zero and

t^. With this result, Equation (A.33) becomes

k

k  rt. ( _ 1
2 ^ >i .(t^-t. ^)+y(t. T)-y(t.)-i •.i(t -t.) " dt^

i=i+2 ̂ t J ° JJ  i-1 J

\ ̂  ■ i . (t^-t ) dtiJt ej+1^ o' (A.35)

When some operations are performed and calling

C. = - i . t. T + y(t. ,) - y(t.)+i - ^ t.
1  ei 1-1 i-l' ej+1 j

Equation (A.35) becomes:

(A.36)

u, .

"/9 ° Jt " ^i . T t^ + C, - - i . . t -^'^dti
ek+1 k+1 ej+1 o

1k  r 1
S  [ j i .ti + C. - i

i=j+2 ̂ t. ,1 ^
i  t -^'^dti
ej+1 o

.  ,t^ - i . -t K dt^ij+1 ej+1 o[ (A.37)



Performing the integrations, the following equation is obtained

^  ̂ek+1 {^^ek+l^w ^k+1 " ̂ ej+l"*''^o^ ' ̂̂ek+l\ ^k+l" ^ej+l^o^^}

^  I f2  -z—:— -j (i . t. +C. -
i=i+2 ^ ^ ^ 'eJ+do>^ ■ <lel h-1 •=! - ^ej+l 'o)1

lej+1 b+1 ' 'eJ+1 " (A.38)

If is specified in the above equation, only one unknown remains,

^o' solution of Equation (A.38) can be accomplished by using some

numerical scheme. In particular, for the model a second order Newton-

Raphson method is used.

Once t^ has been obtained numerically, the discharge at the

plane outlet is computed using the following equations:

" ̂ej+l*^^j+l' ^o^ , ?^o^ei^^i'^i-l^ ^ek+l
i=j+2

(A.39)

q (t ) = afyCt ) 1'
^w w w ■■

A.7 Solution of the Kinematic Flow Equations for Channel Flow with no
Upstream Tributaries (First Order Streams)

The equations governing the flow routing in the channel are

3A ^

Q = aA^ (A.41)



where q represents the total lateral inflow entering the channel

from both planes.

If ^ first order stream, i.e., no upstream tributaries, is now

considered, the initial and boundary conditions are given as:

A = 0, for 0 < X < L and t - 0 (A.42)

A = 0, for X = 0 and t > 0 (A.43)

The value of q is obtained by following the procedure described in

Section A.6. This means that for both planes, left and right, q^ and

q^ are obtained and added point by point. The hydrograph q is then

formed by a collection of ordered pairs of time and discharge. If,

following some procedures, q is translated into a histogram of

discharge, the methodology presented for the plane can also be applied

for the first order channel. The accuracy of the treatment given to

the channel stands on the translation of a continuous function to a

discrete function. Therefore, the more accurate the results the more

similar the histogram and the hydrograph are in terms of shape and

volume.

A. 8 Solution of the Flow Equations for Channel Flow with Upstream
Tributaries (Second or Higher Order Channels)

For channels with order higher than one, the presence of an

upstream boundary condition, given by the entering hydrograph, makes

impossible the solution by procedures similar to those presented in

Sections A.6 and A.7. Therefore, a finite difference scheme is used.



applied to the equations governing the flow in the channel, but not to
the characteristic equations.

Equations (A.40) and (A.41) represent the system to be solved,
with Q and A the unknown variables. In order to obtain a finite

difference scheme the network presented in Figure A. 4 is used. The
finite difference form of Equation (A.40) using the values of Q and
A  at the four points shown in Figure A.4 is

q" -o"
(1-5) + ^ s +

Ax " -r At (1-^) +
a"

1  1

(1-$) q"" + $ q"+l
(A.44)

where S etande for the weighting factor In time direction and 4.
does in X direction. For the present case q does not change along
the X direction.

At this point, a selection about the dependent variable must be

made. Equation (A. 44) presents two unknowns, and , since
these quantities are supposed to be known at the other three points of
the grid. Besides, Equation (A.41) relates area and discharge, and
also their relative errors as;

^  o dA
Q = ̂  A (A.45)

Assuming that this relationship stands for the numerical scheme, if
one computes the discharge incorrectly, and since ^1, the relative

error in the flow area would be smaller than the relative error in the

discharge. On the other hand, the error in the discharge is magnified
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Figure A.4. Rectangular network in the x-t pU



if the numerical computations are performed on the flow area.

Therefore, the discharge is the better selection for the unknown in

the numerical computations. Performing the following transformations;

yS' = 1/^ . a' - (1/a)' (A.46)

the discharge-area of flow relationship becomes

A = a'A^' (A.47)

and for any point in the network

A? = a'(q")^'
1 (A.48)

Taking this last relationship to the finite difference scheme and

performing some operations, the following result is obtained

(1-5) Q- . ^,(1-5) qj-.n+1 ,,„n

+a' (1-$) -$[a' -a' ]+At[ (l-$)q^+$q"-'^] (A.49)

The right hand side in Equation (A.49) is a known quantity and will be

represented by fi. Besides, making 9 - At/Ax and r -= Q Equation

(A.49) is written as:

i9(l-5)r + a' (l-$)r^ = 0 (A.50)



As this equation is not linear on r, it is necessary to apply an

iterative technique. Again, the second order Newton-Raphson algorithm
is proposed.

The initial guess, r^, is the key to obtain a fast convergence to

the numerical solution of Equation (A.50). The best way to determine

is to use a linear scheme. In Equation (A.40), the following

replacement is performed:

M M 3Q
dt " dQ 3t (A.51)

But, from Equation (A.47)

(A.52)

Then, Equation (A.40) becomes:

(A.53)

The linear finite difference scheme is obtained from equation (A.53),

but not including the unknown in the coefficient of the partial time

derivative:

_i t+1 i-Hl ^i+1 q"
(1- t) 3- i +

.Ax ^ ^ Ax ° = (l-$)q^ + $ q'^^^ (A.54)

and solving for



^n+1 n Ifl'-l
Xi^ Si Si±l

Ax ^ At 9
Lli n+1
Ax

Av " P o

Q-l, p.-l

+ (l-«) q" + t q"+lj.

f.n+1 n

At ® At

(A.55)

The above equation provides the best initial estimate r or
o  i+l'o

for solving Equation (A.50). However, Equation (A.55) is not

applicable when
a

be used with fi'-l:
^i+1 " " this case Equation (A. 50) can

S(l-S) + a'(1-$ ) (A.56)

Although this topic will not be developed here, the stabilii

conditions for the numerical scheme are:

a < 1/2, a < Q, b < 1/2
6 + a' (q^^)P (A.57)

For a more detailed description of this topic see Garbrecht
(1984)

A.9 Summary of Assumptions and Limitations for the Model

the following, a list of the more important assumptions and

limitations encountered in the development of the model is presented.

1. The type of flow considered in the model, in planes and channels

IS one-dimensional, incompressible and turbulent. Besides it

are treated as free surface flow in a wide channel, with uniform



distribution of velocities in the depth for planes and across the

section for channels. The intertia and pressure forces are

considered negligibles and the kinematic wave model allows the

propagation of perturbations in the downstream direction, without

attenuation of the peak discharge.

The Manning's equation is considered acceptable for describing

the force balance in the flow.

Within a given plane, its properties, slope and roughness are

considered constant.

For a given channel, its properties, slope, roughness and cross-

sectional shape are considered constant.

The rainfall intensity is considered constant for a given plane,

but may change from plane to plane. No simulation can be

performed with gaps in the rainfall intensity histogram.

The infiltration is considered uniform within a given plane, but

can change from plane to plane . No ponding type equations for

infiltration are considered in the model. In the best of the

cases, the infiltration behaves like a exponential decay law by

means of Horton equation.

No infiltration takes place in the channels.

The simulation begins with a dry watershed: this means no

moisture nor flow in planes or channels prior to the beginning of

rainfall, as neither subsurface or groundwater flows along

simulation horizon.



Appendix B

FLOOD FREQUENCY DERIVATION
USER MANUAL FOR THE COMPUTER PROGRAM

B.l Introduction

This appendix contains the User Manual for the computer program

used to calculate the flood frequency curve for a given watershed.

For a complete understanding of the algorithm translated into the

program and its theoretical basis, the reader is addressed to Chapters

3 and 4 of this thesis.

B.2 Input Data File Description

In the following, a complete description of the records contained

in the input file, required to perform any program run, is presented.

Special care is recommended for the units, as specified for each

variable.

LINE COLUMN FORTRAN

NAME

I  i P(l3)

FORMAT DESCRIPTION

FIO.O Mean areal rainfall intensity,
(in/hr).



COLUMN FORTRAN

NAME
FORMAT DESCRIPTION

^  P(15) FIG.Q
natural saturation (in/hr). Hydraulic conductivity at

P(16) FIO.O Soil sorptivity (in/hr^'^^)

FIO.O Plane width (ft).

FIO.O PI ane roughness
(dimensionless).

Plane slope (dimensionless)

FIO.O Channel length (ft).

FIO.O Channel roughnes
(dimensionless).

FIO.O Channel slope (dimensionless)!

FIO.O Coefficient in the area
hydraulic radius relationship.

QP(1)

FIO.O

FIO.O

Exponent in the area
hydraulic radius relationship.

Initial discharge for the
flood frequency computation
(cfs).

FIO.O Increment for the
discharge in the flood
frequency computation (cfs).

QPMAX FIO.O Maximum discharge for the
flood frequency computation
(cfs).

15 Maximum number of iterations
allowed for integration.

P(25) E14.7 Integration tolerance.

15 Maximum number of iterations
allowed for solving equations.

NBIS Maximum number of iterations
allowed for initial
^PP i nia t i o n s to equation
roots

P(26) E14.7 Tolerance for solving
equations.



B.3 Program Capacity

The program for computing the flood frequency distribution curve

was designed to run in the CYBER205. Due to the extent and

requirement of the computations, it could be expensive to run it in

another type of machine.

In regard to memory requirements, the maximum number of discharge

values to be considered within a run shall not exceed 100. For larger

rscjuirsinents it is necessary to modify the program.

B.4 Output Description

Once the program has been run, the user gets three different

printouts. The first gives a trace of the particular execution,

informing the user about the regions and subregions covered,

intersection points, partial integration results and limits. The

second, considered a formal listing, prints the catchment geometry and

dynamic description and rainfall-infiItration parameters. It also

provides a table, in which, for each considered discharge, the values

for cumulative pdf and return period are given. The last printout

gives a list of return period and discharge, as sequence of ordered

pairs, designed as input file to plotting facilities.

B.5 Program Source Code



PROGRAM FLOOD(OUTPUT,TAPEl,TAPE2=0UTPUT,TAPE3)

THIS PROGRAM PERFORMS THE INTEGRATION OF THE JOINT PROBABILITY
DISTRIBUTION FUNCTION FOR EFFECTIVE RAINFALL INTENSITY AND DURA
TION, OVER REGIONS DEFINED BY SEVERAL EXPRESSIONS USED TO COMPU
TE THE PEAK DISCHARGE, GIVEN A RAINFALL EVENT. THE EQUATIONS
USED TO COMPUTE THE PEAK DISCHARGE ARE THOSE OBTAINED BY LUIS
CADAVID.

INPUT UNIT: TAPEl

OUTPUT UNIT: TAPE2

PLOTING: TAPE3

AUTHOR: LUIS CADAVID

COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO.
NOVEMBER, 1986

DIMENSION CDF(IOO),QP(100),P(30),TRET(100)
EXTERNAL FNUL,FBR43,FBR24,FBR12,FQ3,FQ4,FQ2,FQl,FINT4,FINT2,FIN

DATA INPUT AND CONVERSION

THE RAINFALL PARAMETERS ARE READ

READ(1,100)P(13),P(14)
FORMAT(8F10.0)
READ(1,100)AMV

P(13)=I2.*3600./P(13)
P(14)=l./3600./P(14)
READ(1,100)P(20)
P(20)=P(20)/3600./12.

THE INFILTRATION PARAMETERS ARE READ

READ(1,100)P(15),P(16)
P(15)=P(15)/3600./12.
P(16)=P(16)/60./12.

THE PLANE PARAMETERS ARE READ

READ(1,100)P(5),ANP,SP

THE STREAM PARAMETERS ARE READ

READ(1,100)P(6),ANC,SC,AC,BC

THE FLOOD PARAMETERS ARE READ



READ(1,lOO)QP(l),DQP,QPMAX

THE INTEGRATION PARAMETERS ARE READ

READ(1,200)N,P(25)
200 F0RMAT(I5,EI4.7)

READ(1,100)TEMIN

PARAMETERS CONTROLLING THE SOLUTION OF EQUATION ARE READ

READ(1,300)NIT,NBIS,P(26)
300 FORMAT(2I5,EI4.7)

GENERAL PARAMETERS COMPUTATION

P(l)"l.486*SQRT(SP)/ANP
P(2)=5./3.

P(3)=1.486*(AC**(2./3.))*SQRT(SC)/ANC
P(4)=1.+2.*BC/3.
P(7)=-129.697
P(8)=49.878
P(9)=-118.552
P(10)=47.458

P(12)=GAMMA(P(11)+1.)

P(22)=l 2185*P(13)*P(14)*EXP( - P(13)*P(15)-2.*P(ll))*pci2')
1  *(P(!!)**(-P(11)))*(P(16)**0.1558)
P(23)=1.4434*P(13)*(P(16)**0.1558)
P(27)=FL0AT(NIT)
R=20./3600./12.

P(18)-TEMAX
WRITE(2,500)

500 format(1H1,///.T5,'GENERAL PARAMETER SET' / T5 'I'
1  T20,'VALUE',/) '/• .
WRITE(2,550)(I,P(I),1=1,18)

550 FORMAT(T3,I3,T20,G12.6)
WRITE(2,600)P(20)

600 F0RMAT(T4,'20',T20,G12.6)
WRITE(2,550)(I,P(I),1-22,23)
WRITE(2,550)(I,P(I),1=25,27)
IR2=0

IR3=0

IR4=0

DEFINING THE NUMBER OF FLOOD VALUES IS COMPUTED AND
COMPARED WITH THE MAXIMUM. THE VALUE OF THE MAXIMUM FLOOD IN
THE INTEGRATION IS REDEFINED i^LUUD IN



NQ=INT((QPMAX-QP(1))/DQP)+1
IF(NQ.GT.100)THEN

WRITE(2,1000)NQ
1000 format(1H1,///,T5,'THE NUMBER OF FLOOD VALUES ',15,

1  'EXCEEDS THE ALLOWED MAXIMUM• 100')
STOP

END IF

QPMAX=FLOAT(NQ)*DQP

FLOOD FREQUENCY CURVE COMPUTATION

THE INTEGRATION BEGINS

DO 10 1=1,NQ

QP(I)=QP(1)+FL0AT(I-1)*DQP
WRITE(2,1005)1,QP(I)
F0RMAT(2X,'I- '.15,2X,'QP(I)- ',F8.1)
P(19)=QP(I)

P(24)=P(19)/2./P(6)/P(5)

THE GDF for the ACTUAL VALUE OF QP IS INITIALIZED

CDF(I)=CDF1

REGION E3

FOR THE ACTUAL VALUE OF QP, THE FIRST THIRD OF INTEGRATION (E3)

DEFINED, AS THE INTERSECTION OF R3 AND Q3.

WRITE(2,1010)
FORMAT(T2,'**** REGION E3 ****')

WEN IR3=1 THE INTEGRAL IN THIS REGION HAS REACHED A CONSTANT
VALUE AND IS NOT PERFORMED ANYMORE

IF(IR3.EQ.0)THEN

THE INTERSECTION POINT OF FBR43 AND FQ3 IS TESTED TO BE
GREATER THAN TEMIN

RE3-FQ3(P,TEMIN)
RE43=FBR43(P,TEMIN)
IF(RE3.LT.RE43)THEN

THE INTERSECTION POINT IS COMPUTED

D=(P(19)/2./P(6)/P(1))**(1./P(2))



TE43 P(5)/P(1)/(D**(P(2)-1.) )-p(2)*(P(6)/P(3)/( C2 *P('1V>

IF(TE43.LE.0.0)TE43=TEMIN/2.

TE43 IS LESS THAN TEMIN

ELSE

TE43=TEMIN/2.
END IF

WRITE(2,1015)TE43
FORMAT(T2,'INT. POINT; ',G14.7)

CHECKED TO BE GREATER THAN THE

IF(TE43.GE.TEMAX)THEN

E3 :TE AXIS TO FQ3 FOR [ TEMIN,TEMAX ]

WRITE(2,1020)
F0RMAT(T2,'E3 :TE AXIS TO FQ4 FOR [ TEMIN TEMAX 1 '

WRITE(2,1025)I,QP(I),N
FORMAT(/,T5,'ROMBERG ALGORITHM DOES '

;N0T CONVERGE. tig,'I= '.Isi/.TIO.
'QP(I)- ' ,GI2. 6,/,TIG,'NUMBER OF' ITEMTIONS : '
>  , 1 -5 )

STOP

END IF

AC2=G.G

of ™ """I" ™E iOUfGE
ELSE IF(TE43.GT.TEMIN)THEN

E3 :TE AXIS TO FQ3 FOR [ TEMIN,TE43 1
TE AXIS TO FBR43 FOR [ TE43,TEMAX ]

WRITE(2,1G3G)
F0RMAT(T2 'E3 :TE AXIS TO FQ3 FOR [ TEMIN,TE43 ]'

/, T7, TE AXIS TO FBR43 FOR f TE43 TEMAX 1 '

CALL ROMB(N,TE43,TEMAX,P(25),P,IR,ici FIN ^
FBR43,FNUL)

IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP

END IF

.FNUL)

WRITE(2,1025)1,QP(I),N
STOP

END IF

ELSE



E3 :TE AXIS TO FBR43 FOR [ TEMIN.TEMAX ]

WRITE(2,I035)
FORMAT(T2,'E3 :TE AXIS TO FBR43 FOR [ TEMIN.TEMAX ]')
CALL R0MB(N,TEMIN,TEMAX,P(25),P,IR,AC1,FIN,

1  FBR43,FNUL)
IF(IR.EQ.1)THEN

WRITE(2,1025)1,QP(I),N
STOP

END IF

AC2=0.0

IR3=1

CDF1=CDFI+AC1

END IF

THE TOTAL INTEGRAL IS UPDATED

CDF(I)=CDF(I)+AC1+AC2
WRITE(2,1040)AC1,AC2,CDF(I)
FORMAT(T2,'RESULTS FOR E3:',/,T5.'ACl- ',014.7,/,T5,

L  'AC2- ',014.7,/,T5.'CDF(I)= ',014.7,//)
END IF

REGION E4

FOR THE ACTUAL VALUE OF QP, THE FOURTH REGION OF INTEGRATION C
IS DEFINED AS THE INTERSECTION OF R4 AND Q4

WRITE(2,1045)
FORMAT(T2,'**** REGION E4 ****')

WHEN IR4=1 THE INTEGRAL IN THIS REGION HAS REACHED A CONSTANT
VALUE AND IS NOT PERFORMED ANYMORE

IF(IR4.EQ.0)THEN

THE INTERSECTION POINT FOUND IN THE PREVIOUS REGION IS CHECKED
TO BE INSIDE THE RANGE OF INTEGRATION. WHEN IT IS GREATER
THAN TEMAX REGION E4 DOES NOT EXIST.

IF(TE43.GE.TEMAX)THEN

E4 DOES NOT EXIST

WRITE(2,1050)
F0RMAT(T2,'E4 DOES NOT EXIST')
AC1=0.0

AC2=0.0

ELSE



E4 DOES EXIST AND THE INTERSECTION POINT BETWEEN BR24 AND CiL
IS TESTED TO BE GREATER THAN TEMIN ^^-iWEEN BR24 AND Q4

RE4=FQ4(P,TEMIN)
RE24=FBR24(P,TEMIN)
IF(RE4.LT.RE24)THEN

THE INTERSECTION POINT IS COMPUTED

TE1=TE43

uu ID J=1,NBIS

TE3=(TE1+TE2)/2.
IF(FINT4(P,TE1)*FINT4(P,TE3).LE.O 0)THEN
TE2=TE3

ELSE

TE1=TE3

END IF

CONTINUE

CALL FALSI(NIT,TEI,TE2,P(26),P,IT.IR,TE24,FINT4)

THE FLAG INDICATING THE TYPE OF RESULT IS ANALYZED

IF(IR.EQ.1)THEN

ITErI?!^^^ CONVERGE FOR THE GIVEN NUMBER OF
WRITE(2,1055)I,QP(I),NIT
F0RMAT(/,T5 FALSE POSITION ALGORITHM DOES '

'NOT CONVERGE FOR REGION E4.' / TIG 'T= ' IS /
TIG, QP(l)= ',G12.6,/,TIG,'MAXIMUN NUMBER OF'
,' ITERATIONS; ',15)

STOP

ELSE

THE INTERSECTION POINT HAS BEEN FOUND SUCCESSFULLY

IF(TE24.LE.G.G)TE24=TEMIN/2
END IF

ELSE

TE24=TEMIN/2.
END IF

WRITE(2,1G15)TE24

TE43 BEING WITHIN THE RANGE OF INTEGRATION IS CONSIDRED

IF(IR3.EQ.G)THEN

TE24 IS CHECKED TO BE GREATER THAN TEMAX

IF(TE24.GE.TEMAX)THEN

E4 :FBR43 TO FQ4 FOR [ TE43,TEMAX ]



WRITE(2,1060)
F0RMAT(T2,'E4 :FBR43 TO FQ4 FOR [ TE43 TEMAX 1 ")
CALL ROMB(N,TE43,TEMAX,P(25),P,IR ACl FIN

FQ4,FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP

END IF

AC2=0.0

ELSE

E4: FBR43 TO FBR24 FOR [ TE24,TEMAX ]
FBR43 TO FQ4 FOR [ TE43,TE24 ]

WRITE(2,1065)
FORMAT(T2 E4; FBR43 TO FBR24 FOR [ TE24 TEMAX 1'

/,T5,'FBR43 TO FQ4 FOR [ TE43 TE24 1')
CALL R0MB(N,TE24,TEMAX,P(25),P,IR ACI FIN

FBR24,FBR43)
IF(IR.EQ.1)THEN

WRITE(2,1025)1,QP(I),N
STOP

END IF

CALL ROME(N,TE43,TE24,P(25),P.IR,aC2,FIN
FQ4,FBR43)

IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP

END IF

END IF

ELSE IF(TE24.GE.TEMAX)THEN

E4 :FBR43 TO FQ4 FOR [ TEMIN,TEMAX ]

WRITE(2,1070)
F0RMAT(T2, ' E4 : FBR43 TO FQ4 FOR [ TEMIN TEMAX 1')
CALL R0MB(N,TE43,TE24,P(25).P,IR,ACl,FIN ^ ^

FQ4,FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),n
STOP

END IF

AC2=0.0

ELSE IF(TE24.GE.TEMIN)THEN

E4 :FBR43 TO FBR24 FOR [ TE24,TEMAX 1
FBR43 TO FQ4 FOR [ TEMIN,TE24 ]

WRITE(2,1075)
F0RMAT(T2,'E4 :FBR43 TO FBR24 FOR [ TE24,TEMAX ]'

/,T7,'FBR43 TO FQ4 FOR [ TEMIN,TE24 ]')
CALL R0MB(N,TE24,TEMAX,P(25),P,IR,ACl FIN

FBR24,FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP



END IF

CALL R0MB(N,TEMIN,TE24,P(25),P,IR,aC2,FIN
1  FQ4,FBR43)

IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP

END IF

ELSE
C

0  E4 :FBR43 TO FBR24 FOR [ TEMIN,TEMAX 1
L»

WRITE(2,1080)
R0RMAT(T2,'E4 ;FBR43 TO FBR24 FOR [ TEMIN TEMAX 1')
CALL ROMB(N,TEMIN,TEMAX,P(25).P,IR,aC1 FIN

1  FBR24,FBR43)
IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I).N
STOP

END IF

AC2=0.0

CDFl-CDFI+ACl
IR4-1

END IF

END IF
C

c  THE TOTAL INTEGRAL IS UPDATED

CDF(I)=CDF(I)+ACI+AC2
WRITE(2,1085)AC1,AC2,CDF(I)

1085 FORMAT (T2,'RESULTS FOR E4: ' , /, T5 , ' AC1= ' GI4 7 / T5

END IF '■^^'^•^'/'T5' 'CDF(I)=. ' .GU.'?,//)' ' *

REGION E2

VALUE OF QP, THE SECOND REGION OF INTEGRATION CIS DEFINED AS THE INTERSECTION OF R2 AND Q2

WRITE(2,1090)
FORMAT(T2, '**** REGION E2 ****')

integral in THIS REGION HAS REACHED A CONSTANT
VALUE AND IS NOT PERFORMED ANYMORE

IF(IR2.EQ.0)THEN

THE INTERSECTION POINT BETWEEN BR24 AND 02 IS TESTED TO
BE GREATER THAN TEMIN

IF(TE24.GT.TEMIN)THEN

THE INTERSECTION POINT IS COMPUTED



TE1=0.95*TE24

TE2=(P(5)*(P(24)**(1.-P(2)))/P(l))**(!./P(2))
DO 25 J=1,NBIS

TE3=(TEl+TE2)/2.

IF(FINT2(P,TE1)*FINT2(P,TE3).LE.O.O)THEN
TE2=TE3

ELSE

TE1=TE3

END IF

CONTINUE

CALL FALSI(NIT,TE1,TE2,P(26),P,IT,IR,TE24,FINT2)

THE FLAG INDICATING THE TYPE OF RESULT IS ANALYZED

IF(IR.EQ.1)THEN

THE SOLUTION DOES NOT CONVERGE FOR THE GIVEN NUMBER OF
ITERATIONS

WRITE(2,1095)1,QP(I),NIT
FORMAT(/,T5,'FALSE POSITION ALGORITHM DOES

'NOT CONVERGE FOR REGION E2.',/,T10,'1= ',15,/,
T10,'QP(I)- ',GI2.6,/,T10,'MAXIMUN NUMBEr'oF'
,' ITERATIONS: ',15)

STOP

ELSE

THE INTERSECTION POINT HAS BEEN FOUND SUCCESSFULLY

IF(TE24.LE.0.0)TE24=TEMIN/2.
END IF

END IF

WRITE(2,1015)TE24

THE INTERSECTION POINT FOUND IS CHECKED TO BE INSIDE THE
RANGE OF INTEGRATION. WHEN IT IS GREATER THAN TEMAX
REGION E2 DOES NOT EXIST.

IF(TE24.GE.TEMAX)THEN

E2 DOES NOT EXIST

WRITE(2,1100)
FORMAT(T2,'E2 DOES NOT EXIST')
AC1=0.0

AC2=0.0

ELSE

E2 DOES EXIST AND THE INTERSECTION POINT BETWEEN BR12 AND 02
IS COMPUTED.

RI=P(24)

TE12=(P(5)*(RI**(1.-P(2)))/P(1))**(1./P(2))+(P(6)/(P(3)*
((2.*P(5)*RI)**(P(4)-1.))))**(1./P(4))

WRITE(2,1015)TE12



TE24 BEING WITHIN THE RANGE OF INTEGRATION IS CONSIDRED

IF(IR4.EQ.0)THEN

TE12 IS CHECKED TO BE GREATER THAN TEMAX

IF(TE12.GE.TEMAX)THEN

E2 :FBR24 TO FQ2 FOR [ TE24,TEMAX ]

WRITE(2,1105)
F0RMAT(T2,'E2 :FBR24 TO FQ2 FOR [ TE24,TEMAX ]')
CALL ROMB(N,TE24,TEMAX,P(25),P,IR,AC1,FIN

FQ2,FBR24)
IFdR.EQ. 1)THEN

WRITE(2,1025)1,QP(I),N
STOP

END IF

AC2=0.0

ELSE

E2 :FBR24 TO FBR12 FOR [ TE12,TEMAX ]
FBR24 TO FQ2 FOR [ TE24,TE12 ]

WRITE(2,11I0)
F0RMAT(T2,'E2 :FBR24 TO FBR12 FOR [ TE12,TEMAX ]'

/,T5,'FBR24 TO FQ2 FOR [ TE24,TE12 1')
CALL R0MB(N,TE12,TEMAX,P(25),P,IR,AC1,FIN

FBR12,FBR24)
IFdR.EQ. DTHEN
WRITE(2,1025)1,QPd) ,N
STOP

END IF

CALL ROMB(N,TE24,TE12,P(25),P,IR,AC2,FIN
FQ2,FBR24)

IF(IR.EQ.1)THEN
WRITE(2,1025)1,QPd) ,N
STOP

END IF

END IF

ELSE IF(TE12.GE.TEMAX)THEN

E2 :FBR24 TO FQ2 FOR [ TEMIN,TEMAX ]

WRITE(2,1115)
F0RMAT(T2,'E2 :FBR24 TO FQ2 FOR [ TEMIN,TEMAX ]')
CALL ROMB(N,TEMIN,TEMAX, P(25) ,P,IR,AC1,FIN

FQ2,FBR24)
IF(IR.EQ.1)THEN
WRITE(2,1025)1,QPd) ,N
STOP

END IF

AC2=0.0

ELSE IF(TE12.CE.TEMIN)THEN



^  E2 ;FBR24 TO FBR12 FOR [ TE12,TEMAX ]
C  FBR24 TO FQ2 FOR [ TEMIN,TE12 ]

WRITE(2,1120)
F0RMAT(T2,'E2 ;FBR24 TO FBR12 FOR [ TE12,TEMAX 1'

/,T7,'FBR24 TO FQ2 FOR [ TEMIN,TEi2 ]')
CALL R0MB(N,TE12,TEMAX.P(25),P,IR,AC1,FIN

1  FBR12,FBR24)
IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP

END IF

CALL ROMB(N,TEMIN,TE12.P(25),P,IR,aC2,FIN
1  FQ2,FBR24)

IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP

END IF

ELSE
C

C  E2 :FBR24 TO FBR12 FOR [ TEMIN,TEMAX ]

WRITE(2,1125)1125 F0RMAT(T2,'E2 :FBR24 TO FBR12 FOR f TEMIN TEMAX
CALL ROMB(N,TEMIN,TEMAX,P(25),P,IR ACl FIN

1  FBR12,FBR24)
IF(IR.EQ.1)THEN
WRITE(2,1025)1,QP(I),N
STOP

END IF

AC2=0.0

CDF1=CDF1+AC1
IR2=1

END IF

END IF
C

C  THE TOTAL INTEGRAL IS UPDATED
C

CDF(I)=CDF(I)+AC1+AC2

WRITE(2,1130)AC1,AC2,CDF(I)
1130 FORMAT(T2,'RESULTS FOR E2:',/,T5,'AC1= ' G14 7 / T5

END IF ' '

REGION El

WRITE(2,1135)
FORMAT(T2,'**** REGION El ****')

FOR THE ACTUAL VALUE OF QP, THE FIRSTH REGION OF INTEGRATION
(El) IS DEFINED AS THE INTERSECTION OF R1 AND Q1



c  El :FBR12 TO FQl FOR [ TE12,TEMAX 1
C

WRITE(2,1140)
1140 F0RMAT(T2, ' El :FBR12 TO FQl FOR [ TE12,TEMAX ]')

CALL ROMB(N,TE12,TEMAX,P(25),P,IR,ACl,FIN,FQl,FBR12)
IF(IR.EQ.1)THEN

WRITE(2,1025)1,QP(I),N
STOP

END IF

C

c  THE TOTAL INTEGRAL IS UPDATED

CDF(I)=CDF(I)+AC1
WRITE(2,1145)AC1,CDF(I)

1145 FORMAT (T2,'RESULTS FOR El: ' ,/,T5 .'AC1= ' G14 7 / T5
1  'CDF(I)- ',G14.7,//) ' • '

3  A NEW FLOOD VALUE IS OBTAINED

WRITE(2,1150)CDF(I)
1150 F0RMAT(2X,'CDF(I)- ',G14 7)
10 CONTINUE

THE RETURN PERIOD IS COMPUTED FOR EACH DISCHARGE

DO 35 1=1,NQ

TRET(I)=1./AMV/(1-CDF(I))
35 CONTINUE

PRINTOUT OF RESULTS

C  THE HEADING IS PRINTED
C

WRITE(2,1300)
^1300 FORMAT(1H1,///,T5,'FLOOD FREQUENCY DISTRIBUTION',///)

Z  THE WATERSHED PARAMETERS ARE PRINTED

WRITE(2,1500)P(5),ANP,SP,P(6),ANC,SC,AC,BC
1500 FORMAT(//,T10,'WATERSHED PARAMETERS',/,

1  T20,'PLANE WIDTH: ',T50,F8.0,T65,'FT',/,
2  T20,'PLANE ROUGHNESS: ',T50,F8.5 T65 '-' /
3  T20 ,'PLANE SLOPE: ' , T50, F8 . 5 , T65
4  T20,'STREAM LENGTH: ' , T50, F8 .0 , T65 , ' FT^ /
6  T20,'STREAM ROUGHNESS: ',T50,F8.5,T65,'-''/
7  T20 ,'STREAM SLOPE: ' ,T50 , F8 . 5 , T65 i/,
8  T20,'CROSS-SECTIONAL AREA PARAMETERS:'','/,T30,'AC- '
9  T50,F8.5,/,T30,'BC: ',T50,F8.5,/)



C  THE INFILTRATION PARAMETERS ARE PRINTED
C

WRITE(2,1700)P(15),P(16)
1700 F0RMAT(//,T10,'INFILTRATION PARAMETERS',/.

1  T20,'HYDRAULIC CONDUCTIVITY: ',T50,F9.7,T65,'FT/SEC' /
2  T20,'SORPTIVITY: ',T50,F8.5,T65.'FT/(SEC**.5)',/)

C

C  THE RAINFALL PARAMETERS ARE PRINTED
C

P(13)=1./P(13)
P(14)-1./P(14)
MV=INT(AMV)

WRITE(2,1800)P(13),P(14),TEMIN,TEMAX,MV
1800 FORMAT(//,T10,'RAINFALL PARAMETERS',/,

1  T20,'MEAN INTENSITY: ',T50,F9.7,T65,'FT/SEC',/,
2  T20,'MEAN DURATION: '.T50,F9.2,T65,'SEC',/,
3  T20,'MINIMUM DURATION: ',T50,F9.2,T65,'SEC,/,
4  T20,'MAXIMUM DURATION: ',T50,F9.2,T65,'SEC',/,
5  T20,'NUMBER OF INDEPENDENT EVENTS: ',T50,I5,/)

c

C  THE FLOOD FREQUENCY DISTRIBUTION CURVE IS PRINTED
C

WRITE(2,2000)NQ,PIN
2000 FORMAT(1H1,///,T5,'VALUES OF THE CUMULATIVE DISTRIBUTION ',

1  'FUNCTION',/,T10,'NUMBER OF POINTS: ',I5,//,T20
2  'P[IE=0.0 AND T=0.0]= ',F7.5,//,T20,
3  'DISCHARGE',T50,'PROBABILITY',T70,'RETURN PERIOD',/
4  T20,'(CFS)',T55,'(-)',T70,'(YEARS)',/)
DO 20 1=1,NQ
WRITE(2,2100)QP(I),CDF(I),TRET(I)

2100 FORMAT(T20,F9.2,T50,F7.5,T70,F7.2)
20 CONTINUE

C

C  THE VALUES OF THE CUMULATIVE DISTRIBUTION FUNCTION ARE SAVED ON
C  TAPE3 IN ORDER TO BE USED (PLOTTED) LATER
C

DO 30 1=1,NQ
WRITE(3,2200)TRET(I),QP(I)

2200 FORMAT(2X,F9.2,4X,F9.2)
30 CONTINUE

STOP

END



SUBROUTINE ROMB(N,A,B,TOL,P,IR,AFP,FRO,FSUP,FINF)
c

c

C

c  SUBROUTINE ROMB
C

C  PURPOSE
C

C  APPROXIMATE A GIVEN DEFINITE INTEGRAL USING ROMBERG ALGORITHM.
THE STOPPING CRITERIA USED IS GIVEN BY THE COMPARISON OF THE

C  ABSOLUTE ERRORS FOR TWO CONSECUTIVE ROWS WITH THE TOLERANCE.
c

C  REFERENCE: DOCUMENTATION ABOUT THE ALGORITHM HERE IMPLEMENTED
C  CAN BE FOUND IN "NUMERICAL ANALYSIS" BY R. L. BURDEN AND
C  J. D. FAIRES, 3RD EDITION
C

C  AUTHOR: LUIS CADAVID, COLORADO STATE UNIVERSITY, SUMMER 1986.
c

C  COURSE: NUMERICAL ANALYSIS I, M 350.
c

C  INPUT VARIABLES:
C

C  N: MAXIMUN NUMBER OF ITERATIONS ALLOWED IN THE PROCESS
C  A: LEFT END POINT OR LOWER INTEGRATION LIMIT.
C  B: RIGHT END POINT OR UPPER INTEGRATION LIMIT.
C  P: SET OF PARAMETERS USED TO EVALUATE THE FUNCTION FRO
C  TOL: TOLERANCE.
C

C  OUTPUT VARIABLES:
C

C  I: ACTUAL NUMBER FO PERFORMED ITERATIONS.
C  IR: FLAG INDICATING THE TYPE OF RESULT.
C  IR=0: THE PROCESS CONVERGES BEFORE OR AT N ITERATIONS
C  IR=1; THE PROCESS DOES NOT CONVERGE WITHIN N ITERATIONS.
C  R: ARRAY OF SIZE I TIMES I. IT CONTAINS THE APPROXIMATION
C  TABLE. PARTICULARLY, R(I,I) CONTAINS THE BEST
C  APPROXIMATION
C  FOR THE DEFINITE INTEGRAL
C

C  LOCAL VARIABLES;
C

C  H: INTERVAL LENGTH.
C  LI; UPPER SUMMATION LIMIT FOR THE EXTENDED TRAPEZOIDAL
C  APPROXIMATION.
C  X: ANY VALUE OF THE INDEPENDENT VARIABLE.
C  EXJ: EXPONENT USED IN THE EXTRAPOLATING FORMULAE
C

C  SUBROUTINES NEEDED:

C  FRO: FUNCTION PROGRAM WRITTEN BY THE USER. IT EVALUATES THE
C  FUNCTION TO BE INTEGRATED AT ANY POINT
C

C

DIMENSION R(100,100),P(30)
EXTERNAL FSUP,FINF



THE FLAG INDICATING THE TYPE OF RESULT IS INITIALIZED.

THE LENGTH FOR THE ENTIRE INTERVAL AND THE FIRST APPROXIMATION
ARE CALCULATED.

H=B-A

CALL FR0(P,A,FSUP,FINF,RES1)
CALL FR0(P,B,FSUP,FINF,RES2)
R(1,l)=(RESl+RES2)*H/2.

WITH THE SECOND, A NEW ROW IS CALCULATED UNTIL THE
THE PROCESS CONVERGES OR FAILS.

DO 10 1-2,N

THE FIRST ELEMENT FOR THE ITH ROW IS CALCULATED.

IF(I.EQ.2)THEN
LI=1

ELSE

LI-2**(I-2)
END IF

R(I,1)=0.0
DO 20 J=1,LI

X=A+(FLOAT(J)-0.5)*H
RES1=0.0

CALL FR0(P,X,FSUP,FINF,RES1)
R(I,1)=R(I,1)+RES1

20 CONTINUE

R(I,1)=(R(I-1,1)+R(I,1)*h)/2.

THE EXTRAPOLATION IS PERFORMED.

DO 30 J=2,I

EXJ-FLOAT(J-l)

IF(I.EQ.2)C0 TO 35

WHEN MORE THAN TWO ROWS HAVE BEEN COMPUTED THE STOPPING CRITERIA
IS APLIED.

IF(ABS(R(I,I)-R(l,i-l)).LT.TOL)THEN
IF(ABS(R(I-1,I-l)-R(I-l,I-2)).LT.TOL)THEN
APP=R(I,I)
RETURN

END IF

END IF

A NEW ITERATION IS PERFORMED.

35 H-H/2.
10 CONTINUE



^ iterations. THE FLAG INDICATING THE

IR=1

RETURN

END



SUBROUTINE FALSI(NIT,YO,Y1,TOL,P,I,IR,Y,FFAL)
C

C

C

C

C  THIS SUBROUTINE FINDS AN APPROXIMATION FOR THE ZERO Y OF A
C  FUNCTION F(X)=0.0. TO PERFORM THIS TASK THE FALSE POSITION
C  ALGORITMH IS USED. THE STOPPING CRITERIA IS GIVEN BY THE
C  ABSOLUTE ERROR BETWEEN TWO CONSECUTIVE APPROXIMATIONS
C

C  AUTHOR; LUIS CADAVID, COLORADO STATE UNIVERSITY, NOVEMBER 1986
C

C  SUBROUTINES NEEDED:

C  FFAL: FUNCTION PROGRAM WRITTEN BY THE USER. IT EVALUATES THE
C  FUNCTION TO BE SOLVED AT ANY POINT.
C

C  INFORMATION ABOUT THE ALGORITHM HERE IMPLEMENTED CAN BE FOUND
C  IN "NUMERICAL ANALYSIS" BY R. L. BURDEN AND J. D. FAIRES 3RD
C  EDITION.

C

C

C

DIMENSION P(30)
C

C  THE FLAG INDICATING THE FINAL RESULT, IR, IS INITIALIZED.

THE POSSIBILITY OF THE SOLUTION BEING AT THE INITIAL END POINTS
IS INVESTIGATED.

IF(FFAL(P,YO).EQ.O.O)THEN
Y=YO

RETURN

ELSE IF(FFAL(P,Y1).EQ.O.O)THEN
Y=Y1

RETURN

END IF

THE FALSE POSITION METHOD IS APPLIED.

DO 10 1=1,NIT

A NEW ITERATE IS CALCULATED.

Y-Y0-FFAL(P,Y0)*(Y1-Y0)/(FFAL(P,Y1)-FFAL(P,Y0))

IF THE ABSOLUTE ERROR FOR THE LAST TWO BOUNDARY POINTS IS LESS
THAN THE TOLERANCE, TOL, THE PROCEDURE IS CONSIDERED SUCCESSFUL.

IF(ABS(Y-Y1).LT.TOL)RETURN

NEW ENDING POINTS FOR THE INTERVAL CONTAINING Y ARE DETERMINED.



IF(FFAL(P,Y)*FFAL(P,Y1).LT.O.O)THEN
Y0=Y1

Y1=Y

ELSE

Y1=Y

END IF

10 CONTINUE

THE ITERATIVE PROCESS FAILS AFTER N ITERATIONS.

PONDING FLAG IS UPDATED.
THE CORRES-

IR-1

RETURN

END



SUBROUTINE FIN(P,IE,FSUP,FINF,RES)
DIMENSION P(30)
R1=FINF(P,TE)
R2=FSUP(P,TE)

RES=P(22)*(EXP(-P(23)*(RI**0.8442)*(IE**(-0.0779)))
1  -EXP(-P(23)*(R2**0.8442)*(TE**(-0.0779))))*
2  EXP(-P(I4)*TE)/P(23)/0.8442
RETURN

END

FUNCTION FNUL(P,TE)
DIMENSION P(30)
FNUL=0.0

RETURN

END

FUNCTION FBR43(P,TE)
DIMENSION P(30)
EXTERNAL FUNC43

P(2I)=TE
NIT=INT(P(27))
R1=P(20)

IF(ABS(FUNC43(P,R1)).LE.P(26))THEN
FBR43=R1

RETURN

END IF

IF(FUNC43(P,R1).GT.O.O)THEN
DO 10 1=1,NIT
R2=2.*RI

IF(FUNC43(P,R1)*FUNC43(P,R2).LT.O.O)GO TO 30
RI=R2

10 CONTINUE

ELSE

DO 20 1=1,NIT
R2=Rl/2.

IF(FUNC43(P,R1)*FUNC43(P,R2).LT.O.O)GO TO 30
R1=R2

20 CONTINUE

END IF

WRITE(2,500)
500 FORMAT(/,T5,'NO INITIAL APPROXIMATION ATTAINED FOR FBR43')

STOP

30 CALL FALSI(NIT,R1,R2,P(26),P,IT,IR,RES,FUNC43)
IF(IR.EQ.1)THEN
WRITE(2,1000)

1000 FORMAT(/,T5,'FALSE POSITION ALGORITHM DOES ',
I  'NOT CONVERGE FOR REGION FBR43')

STOP

END IF

FBR43=RES

RETURN

END



FUNCTION FBR24(P,TE)
DIMENSION P(30)

FBR24=(P(1)*(TE**P(2) )/P(5) )**(! /(I -P('2')'> ')
RETURN ■ "
END

FUNCTION FBR12(P,TE)
DIMENSION P(30)
EXTERNAL FUNC12
P(21)=TE
NIT=INT(P(27))
Rl-P(20)

IF(ABS(FUNC12(P,R1)).LE.P(26))THEN
FBR12=R1

RETURN

END IF

IF(FUNC12(P,R1).GT.O.O)THEN
DO 10 I-1,NIT
R2=2.*R1

IF(FraC12(P,Rl)*FUNC12(P,R2).LT.O.O)GO TO 30
Rl'^Rz

10 CONTINUE

ELSE

DO 20 1=1,NIT
R2=R1/2.

IF(FUNC12(P,R1)*FUNC12(P,R2).LT.O.O)GO TO 30
R1=R2

20 CONTINUE

END IF

WRITE(2,500)500 FO^T(/,T5,'NO initial APPROXIMATION ATTAINED FOR FBRI2')

WRITE(2,1000)
1000 format(1H1,///,T5,'FALSE POSITION ALGORITHM DOES '

1  'NOT CONVERGE FOR FBR12')
STOP

END IF

FBR12=RES

RETURN

END

FUNCTION FQ3(P,TE)
DIMENSION P(30)

FQ3-((P(19)/2./P(6)/P(1))**(1./P(2)))/TE
RETURN / \ jjj/i-c.
END

FUNCTION FQ4(P,TE)
DIMENSION P(30)
EXTERNAL FUNC4

P(21)=TE



NIT=INT(P(27))
R1=P(20)

IF(ABS(FUNC4(P,R1)).LE.P(26))THEN
FQ4=R1

RETURN

END IF

IF(FUNC4(P,R1).LT.O.O)THEN
DO 10 1=1,NIT
R2=2.*R1

IF(FUNC4(P,R1)*FUNC4(P,R2).LT.O.O)GO TO 30
R1=R2

10 CONTINUE

ELSE

DO 20 1=1,NIT
R2=Rl/2.

IF(FUNC4(P,R1)*FUNC4(P,R2).LT.O.O)GO TO 30
R1=R2

20 CONTINUE

END IF

WRITE(2,500)
500 F0RMAT(/,T5,'NO INITIAL APPROXIMATION ATTAINED FOR F04')

STOP

30 CALL FALSI(NIT,R1,R2,P(26),P,IT,IR,RES,FUNC4)
IF(IR.EQ.1)THEN
WRITE(2,1000)

1000 FORMAT(/,T5,'FALSE POSITION ALGORITHM DOES ',
1  'NOT CONVERGE FOR FQ4')

STOP

END IF

FQ4=RES
RETURN

END

FUNCTION FQ2(P,TE)
DIMENSION P(30)
EXTERNAL FUNC2

P(21)-TE
NIT=INT(P(27))
R1=P(20)

IF(ABS(FUNC2(P,R1)).LE.P(26))THEN
FQ2=R1
RETURN

END IF

IF(FUNC2(P,R1).LT.O.O)THEN
DO 10 I-1,NIT
R2=2.*R1

IF(FUNC2(P,R1)*FUNC2(P,R2).LT.O.O)CO TO 30
R1=R2

10 CONTINUE

ELSE

DO 20 1=1,NIT
R2=Rl/2.

IF(FUNC2(P,R1)*FUNC2(P,R2).LT.O.O)CO TO 30
R1=R2

20 CONTINUE



END IF

WRITE(2,500)
500 format(/,T5,'NO INITIAL APPROXIMATION ATTAINED FOR FQ2 ' )

STOP

30 CALL FALSI(NIT,R1,R2,P(26),P,IT,IR,RES,FUNC2)
IF(IR.EQ.1)THEN
WRITE(2,1000)

.000 format(1H1,///,T5,'FALSE POSITION ALGORITHM DOES '
1  'NOT CONVERGE FOR FQ2')

STOP

END IF

FQ2=RES
RETURN

END

FUNCTION FQ1(P,TE)
DIMENSION P(30)
FQ1-P(24)
RETURN

END

FUNCTION FINT4(P,TE)
DIMENSION P(30)

RI=(P(1)*(TE**P(2))/P(5))**(!./(I.-P(2)))
TP=(P(2)-1.)*TE/P(2)+P(5)/P(1)/P(2)*((RI*TE)**(1 -P(2)))
TS=(P(6)/P(3)*( (2. *P(1)*((RI*tE)**P(2) ))**(! -P(4))))**(l /?(/,))

RETURN

END

FUNCTION FINT2(P,TE)
DIMENSION P(30)

RI-(P(l)*(TE**P(2))/P(5))**(l./(l..p(2)))
TS-(P(6)/(P(3)*((2.*P(5)*RI)**(P(4)-1.))))**(l /P(4))

^FINT2=0.02*(P(7)+P(8)*ALOG(100.*TE/(TE+TS)))*P(6)*P(5)*RI
RETURN

END

FUNCTION FUNC43(P,R)
DIMENSION P(30)

FUNC43=P(5)/(P(1)*P(2)*((R*P(21))**(P(2)-1.)))-P(21)/P(2)-(P(6)
1  /F(3)/((2.*P(1)*((R*P(21))**P(2)))**(P(4)-1 )))
2  **(1./P(4))
RETURN

END

FUNCTION FUNC4(P,R)
DIMENSION P(30)

TP=(P(2)-1.)*P(21)/P(2)+P(5)/P(1)/P(2)*((R*P(21))**(I.-P(2)))



TS=(P(6)/P(3)*((2.*P(1)*((R*P(21))**P(2)))**(!.-P(4))))**(!./P(4))
FUNC4=0.02*(P(9)+P(10)*ALOG(100.*TP/(P(21)+TS)))*P(6)*P(1)*
1  ((R*P(21))**P(2))-P(19)
RETURN

END

FUNCTION FUNC2(P,R)
DIMENSION P(30)

TC=(P(5)*(R**(1.-P(2)))/P(1))**(!./P(2))+(P(6)/P(3)/((2.*P(5)*R)
1  **(P(4)-1.)))**(!./P(4))

FUNC2-0.02*(P(7)+P(8)*ALOG(100.*P(21)/TC))*P(6)*P(5)*R-P(19)
RETURN

END

FUNCTION FUNC12(P,R)
DIMENSION P(30)

FUNC12-(P(5)*(R**(1.-P(2)))/P(1))**(1./P(2))+(P(6)/P(3)/
1  ((2.*P(5)*R)**(P(4)-1.)))**(!./P(4))-P(21)
RETURN

END
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