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ABSTRACT 

STUDY OF PLANE COUETTE FLOW IN STRATIFIED FLUID 

The mechanism of turbulent plane Couette flow with a negative 

temperature gradient was examined theoretically. First, the instability 

of fluid under various conditions was examined by utilizing linear and 

nonlinear numerical models. From the results, it was confirmed that 

constant shear has a stabilizing effect on the perturbations . It is 

shown that the neutral Rayleigh numbers, found from linear and nonlinear 

models, are almost identical for non-longitudinal rolls, but quite 

different for longitudinal rolls. 

The heat and momentum flux for the flow in a certain range of 

Reynolds numbers (Re$ 500) and Rayleigh numbers (Ra~ 500,000) were 

determined by integrating the Boussinesq equations numerically. In 

this range of Reynolds and Rayleigh numbers, the convection character-

istic dominates the flow motion; hence the following occurs: a) Heat 

flux and momentum flux are linearly correlated; b) Both heat and 

momentum flux increase with the Rayleigh number, but decrease with an 

increasing wave angle; c) Heat flux increases as the Reynolds number 

decreases; d) Heat flux approximately follows the "one-thirds power law" 

to the Rayleigh number; and e) Heat flux attains its maximum at a= 0 

(longitudinal roll). The nonlinear numerical model also shows that 

preferred mode of perturbation is a roll-type convection (a = O); and 

the perturbation with a larger wave angle (a~ 0) can exist only at 

smaller Rayleigh numbers for certain Reynolds number. The above 

conclusion confirms Chandra's (1938) laboratory results and Kuo's (1963) 

cloud-form assumption. 
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A theoretical approach based on Malkus' upper bound hypothesis was 

also investigated. Accordingly, two inequalities were derived to 

express the upper bound on heat and momentum flux for heated plane 

Couette flow. 
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1.1 General Remarks 

Chapter I 

INTRODUCTION 

The objective of this study is to unders tand the mec ani sm of the 

turbulent plane Couette flow heated from below and to find i t s upper 

bounds on the momentum and heat flux. This problem has a wide r ange of 

geophysical application since thermal convection usually occurs in the 

presence of a mean ve l ocity in the atmosphere and oceans and because 

the heat and momentum transfer thr ough the atmospheric boundary layer 

and the upper levels of the ocean which are both i ndependent of vertical 

coordinate. 

The fluid is considered to be contained between plates of infinite 

horizontal ext ent. The lower plate, with temperature T moves with 
0 

a velocity 6U/2 while the upper plate with temperature T -6T moves with 
0 

a velocity -6U/2 (See Fig. 1). The Boussinesq equation is used to model 

the flow field. 

First, the instability of fluid is examined under various combina-

tion of shear (Reynolds number), stratification (Rayleigh number), 

and wave angle between the direction of mainflow and disturbance roll 

(we define a=O for longitudinal rolls and a:TI/ 2 for transverse ro ll s ) 

by utilizing both linear and nonlinear numerical techniques . In this 

study all numerical experiments use air (Prandtl number is equal to 0 . 7) . 

The Galerkin method which transfers a system of differential equa-

tions (including boundary conditions) to a system of algebraic equations 

is us.ed to solve the lineari zed Boussinesq equations . 
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As for the nonlinear model, a total of three numerical schemes 

(Arakawa's, Upstream difference, and Time-splitting) are used to solve 

the time dependent vorticity equation, energy equation, or momentum 

equation in the nonlinear Boussinesq model. The critical Rayleigh num-

bers, found from linear and nonlinear models, are almost identical for 

transverse rolls but are entirely different for longitudinal rolls. 

Next, the heat and momentum transport for unstable flow are found. 

Since the linearized equations are only good for modeling the flow under 

neutral or stable conditions, the nonlinear model is used for this 

purpose. 

The theoretical method which is being employed to determine the 

upper bounds of momentum and heat flux is Malkus' power-integral method 

which is a theoretical approach based on Malkus' upper bound hypothesis. 

This part is an extension of a technical report by Nickerson (1970) 

who found the upper bounds for heated plane Couette flow by power-

integral method with additional "single horizontal wave number" 

assumption. A more general derivation will be shown for the same 

purpose, and the results will be compared to Nickerson's. 



1.2 Theoretical Mathematics Model 

1.2.1 Boussinesq approximation 

3 

In general, the Boussinesq approximation to the Navier-Stokes 

equations is a good mathematical model for parallel stratified 

incompressible fluid with small lapse rate; however, it must be based 

on the following assumptions : 

a. An incompressible fluid. 

b. A constant density except in the gravity body force terms. 

c. A linearized equation of state. (Barotropiic fluid) 1 1111 1 

d. The viscous dissipation term in the energy equation is 

neglected. 

·Basically, this approximation states that the density change 

caused by temperature nonhomogeneity effects only the body force, not the 

inertia terms. The major restriction on the use of this approximation 

is the avoidance of excessively high density difference. Detailed 

discussions on the Boussinesq approximation can be found in Spiegel 

& Veronis (1960), Mihaljan (1962), Malkus (1964), and Byatt-Smith 

(1971). The governing equations .are : 

(1) 

(2) 

dT 2 dt = K'il T (3) 

p = Pm(l - E(T-T)) (4) 

or Eqs. 1-4 can be rewritten as : 



-+ dV Vn - -+ 2-+ 
- + .:.L. - eg(T-T)k = vV V 
dt Pm 

-+ 
V • V = 0 

4 

(5) 

(3) 

(2) 

Here T = f(z,t) + e and P is the pressure derivation from hydrostatic 

equilibrium. It is convenient to have the nondimensional form of 

Eqs. 1-5 with the following parameters : 

Reference Length D 

Reference Velocity t.U 

Reference Temperature tiT 

Reference Time 0/ AU 

Here D is the depth between two parallel plates of infinite horizontal 

extent, AT is temperature difference between two plates (T
0 

on lower 

plate, and T -tiT on upper plate), AU is relative velocity between 
0 

two plates. Then the nondimensional equations will be: 

av + V • "JV+ "J,r - ~2a Sk = ~ 'v2V 
at Re Pr Re 

(6) 

(7) 

(8) 
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here Re 6UD Ra e;g6TD3 
= = 

V \II( 

Pr V E = 1T = 
K p (6U) 2 

m 

Notice V and T · d" · 1 f are now 1n 1mens1on ess onn in Eqs. 6-8. 

The two systems of cartesian coordinate which can be chosen are 

(x,y,z) and (m,n,z) Here z-axis is in vertical direction, x is 

the axis along the direction of main stream velocity, and n is the 

axis parallel to the center line of disturbance rolls. If we define 

a as the angle between x-axis and n-axis, then a= 0 will be shown 

the longitudinal rolls, and a= n/2 will show transverse rolls. For 

the first system of cartesian coordinate, the vector operators can be 

defined as: 

a -t a 'T .Lit V = -1 + ay J + ax az 

v2 a2 a2 a2 
= --+ --+ 

az2 ax2 al (9) 

For the second, 

'V a -t +Li = am 1* az 

v2 = a2 a2 

am2 + --
az2 (10) 

Here we set a( )/an= 0 since we assume that there are no variations 

along the axes of disturbance rolls. This assumption transfers the 

three dimensional problem to a two dimensional one. 
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1.2.2 Boundary Conditions 

In this section, the proper boundary conditions for both main-

stream flow and its fluctuation on the upper or lower plates are 

developed. It is convenient to separate the velocity and temperature 

in the following manner: 

-+ - -t ~ - -t -t 
V = U(z,t)i + v(x,y,z,t) = (U + V )1 +VJ+ X y 

- -r - -t -+ = (Usina+ v )1* + (Ucosa + v )J* + v k m n z 

T = T(z,t) + 8(x,y,z,t) = T(z,t) + 8(m,z,t) 

and 

V = v sin(a) - v cos(a) m X y 
V = v cos(a) + v sin(a) n X y 
V = v cos(a) + v sin(a) 

X n m 
V = v sin(a) - v cos(a) y n m 

vi z 

here v and a are the fluctuating velocity and temperature. 

For this specific problem, · 

IT= llU/2, 

IT= -llU/2 

f=T 
0 

f = T - llT 
0 

And after dimensionalization 

IT=! 2 

IT=-½ 

f = T/llT 

f - T / liT - 1 
0 

at 

at 

at 

at 

D z = - 2 
D z = 2 

1 z = - 2 
1 z = 2 

(11) 

(12) 

(lla) 

(llb) 

(llc) 

(lld) 

(13) 

(14) 

(15) 

(16) 

In general, two sets of boundary conditions can be chosen for 

fluctuating velocity and temperature. Free surface means there is no 

tangential stresses and heat flux is constant on the surface. However, 

rigid surface indicates that there is no slip, and the temperature is 
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constant on the surface. In mathematical terms, these boundary 

conditions at the surfaces may be expressed as follows: 

A) 

B) 

Rigid surface 

V = V = V 
X y m 
8 = 0 

Free surface 

av av 
X _L = 
~ = az 

ae - - constant az -

= V = V = 0 n z 

av av m n 0 --= --= V = az az z 

(17) 

(18) 

Also, from the equation of continuity, these additional conditions can 

be found: 

and 

av z "az = o for rigid surface (17a) 

for free surface (18a) 

In this case, it can be assumed that both lower and upper boundaries 

are rigid. 

As for initial condition, it can be assumed that both U(z) and 

T(z) are a linear function with respect to vertical coordinate z 

i.e; 

ucz) = -z at t = 0 (19) 

'f(z) T /t::.T 
1 at t 0 (20) = - z - 2 = 

0 

The two equations above are dimens i onless in form. 
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1.2.3 Heat flux, momentum flux, and energy equations. 

In this section the energy flux and transformation which occur 

in thermal convection with vertical shear is considered. 

Nusselt number, a dimensionless form of vertical heat flux, is 

defined as the ratio of actual vertical heat flux to pure conductive 

vertical heat flux per unit horizontal area, which can be found by taking 

the horizontal average of the steady-state thermodynamic equation (Eq. 7): 

df Nu = - - + RePr (v 8) dz z (21) 

Similarily , the momentum flux can be determined by taking the horizontal 

average of the steady-state momentum equation (Eq. 6): 

Mo diJ Re(vv) = dz - X Z 
(along x-axis) (22) 

or 

Mom au . c ) Re(vv) = dz s1.n a m z (along m-axis) (23) 

Mon au Re(vv) = dz cos (a) n z (along n-axis) (24) 

The derivations of equations 21 to 24 are in Appendix III. These 

equations show that for turbulent flow as well as for laminar flow, the 

heat and momentum flux are independent of vertical coordinate: 

- If -( ) = - ( )dA 
A A 

(25) 

A is a horizontal area bounded by the two wave lengths in the horizontal 

direction. 

Herein is described the energy conversion mechanism of the 

problem. The equations for kinetic energy of perturbations and mean 

flow can be derived from Eq. 6 by taking a dot product of it with v 
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or V, and by taking the average over the volume. After several 

mathematical derivations (see Appendix III ) the following equations is 

obtained: 

~K' 
dU Ra < v e > = - < V  V dz 

> + 
2 dt X Z z 

PrRe 

1 
lvx;l

2
> --< 

Re 

and 

du> 
1/2 
(dU)2dz d - 1 

I - K = < V  V 
dt X  Z dz Re dz 

-1/2 

1 d(U
2
) i1/2 

+ --2Re dz 
-1/2 

where K' is the kinetic energy of perturbation and is 

1/2 
( v2 + 22 1 -

½J K' = ~v • V > = v + v )dz 
X y  z 

- 1/2 

1/2 

½J 
2 2 2 

= ( V + V + V z) dz m  n 

- 1/2 

And K is the kinetic energy of the mean flow which is 

1/2 

K = ½ J u2 dz . 
-1/2 

defined as 

The angular brackets < > denote an average over a volume which is 

defined as: 

< ( ) dAdz = f 112 (-)dz 
-1/2 

(26) 

(27) 

(28) 

(29) 

(30) 
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The first term of the right-hand side of Eq. 26 indicates the conversion 

between the kinetic energy of the mean flow and that of the perturbation 

and is denoted as: 

- --dU { K I , K} = <· V V -d > 
X y Z 

(31) 

The second term indicates the conversion between the potential energy 

and the kinetic energy of the perturbation. The last term expresses 

dissipation due to viscous friction. The second term of the right-

hand side of Eq. 27 is the dissipation due to shear friction between 

l ayers. Eqs. 26 and 27 clearly show that the energy is transferred 

from mean flow to the perturbation if {K', K} is negative and vise 

versa . 

Similarily, the equation for inertia energy of perturbations can 

be derived from equation (7) by multiplying 6 on it and by taking 

the average over the volume. It gives 

cl T -+ <6-> + <6V • VT> at 
0 2 = <-- V T> RePr 

Then it can be found (see Appendix III), 

where 

ell' dT + <6v - > = at z dz 

2 I ' = ½ <6 > 

- 1 I 
1
2 -- < v 0 > RePr 

(32) 

(33) 

(34) 
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1.3 Brief Review on Previous Instability Studies 

1.3.1 Laboratory experimentat i on 

Laboratory experiments involving convection and vertical shear 

flow in fluids were carried out by Terada (1928), Phillips & Walker 

(1932), Graham (1934), Dassanayake (1937), Chandra (1938), Brunt (1951), 

and Ingersoll (1965). Although the experimental apparatus and the 

fluid used in the above experiments were quite different, they gave 

almost the same physical sketch of the flow. 

In Ingersoll's experiments the liquid, with moderately larger 

Prandtl number, was conf ined between two concentric vertical cylinders 

and two horizontal plates. Hence, the fluids were effected only 

slightly by curvature and centr ifugal acceleration. For this reason, 

the results were not exactly what we had wanted for describing the 

flow phenomenon. 

In Chandra 's experi ments, t he base of the chamber consisted of 

a flat stainl ess steel plate which could be heated from below by 

passing a current through a number of coils of thin wire arranged at 

the bottom of the box. The top of the chamber consisted of a plane 

sheet of gl ass which could be drawn over the channel to produce a 

shear. The sides of the chamber were filled in by layers of belt, 

sufficient to pr event a rapid leakage of air into or out of the chamber. 

The motion within the chamber was made visible with cigarette smoke, 

injected by means of a two way pump. The results of Chandra's 

experiments are revi ewed below: 

a) When there is no shearing mot i on , t he chamber (12"Xl2") is 

filled with polygonal convection cells, also referred to as Benard 

cells. 
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b) For a very small Reynolds number (small shearing motion), 

the original convection cells are distorted into a horseshoe pattern. 

c) If the Reynolds number is increased but does NOT exceed 

another limiting value, the chamber is filled with transverse rolls. 

d) If the Reynolds number exceeds a certain value (say Re= 3.19 

for Ra= 4132.45, or Re= 8.67 for Ra= 4760.58 ), the chamber 

becomes filled with longitudinal rolls . The greater the Ra, the 

greater the shear necessary to arrange the patterns longitudinally. 

e) The edge of longitudinal rolls were wavy at Re= 61.22 and 

Ra= 42316.29 , but the waviness disappeared when the rate of shear was 

further increased. 

f) For a relatively larger Rayleigh number, the perturbation 

will skip transverse rolls and change directly from polygonal cells to 

longitudinal rolls as we increase Reynolds number. 

g) Longitudinal waves are the most probable form of unstable 

disturbance. 

However, Chandra's model is not exactly the same as the mathe-

matical model which was shown in 1.2, because the transverse direction 

is confined instead of being theoretically unbounded horizontally. The 

mathematical model for this bounded flow will be shown in 2.1 . 

Experimental data from previous reports are shown in Table 1. 
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1.3.2 Previous linear models 

To solve the problem of hydrodynamic stabi lity, one mus t follow 

the solution of a system of non-linear (quasi- linear) partial different-

ial equations. In the classic approaches t o the problem , it is assumed 

t hat for small disturbances (infinites imal di s t urbances ) the equations 

may be lineari zed; that i s, quadrat i c or higher t erms in the disturb-

ances and derivatives will be neg l ected. It is obvious that the 

linearization met hod can not be appl ied to a system in which the dis-

turbances are no longer smal l (finite disturbances). 

Recently , Deardorff (1 965) , Gal lagher & Mercer (1965), Ingersoll 

(1966a), Asai & Nakasuj i (1968 ) , and Asai (1969), analyzed t he heated 

plane Couette flow problem uti lizing t he linearized equat ions. The 

equations can be solved numer i cally by usirig either fin i t e-difference 

method (Asai & Nakasuji, and Asai), or series-expans ion met hod (others). 

The results were obtained i ndependently, using different procedures but 

are in general agr eement . Curves of neut ral stability were calculated 

by relating the f i ve physical parameters of the problem : Reynolds 

number, Rayleigh ·number, Prandtl number , hori zontal wave-numbers, and 

phase speed. In order to compare t he r esults to a nonlinear model, 

the same problem was done i ndependently . The details will be shown in 

Chapter 2. 

The resul ts of linear mode l s discussed in previous papers can 

be summari zed as fo l lows: 

1. Shear has a stabili zing i nfluence on the thermal convection 

i f we assume the dis turbance are no t pur ely longitudinal. 

2. For pure l ongitudinal ro lls , t he equat ions reduce to those 

of the Rayleigh convection pr oblem. Thus all fluids will become 
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unstable at the same value of Rayleigh number whether shear is present 

or not. 

3. The wavelength of the disturbance increases with the Reynolds 

number. 

4. The stabilizing effect of shear becomes increasingly strong 

with increasing Prandtl number for non-pure longitudinal rolls. However, 

there is no effect for pure longitudinal rolls. 

5. A stabilization of the vertical shear is more effective in 

a perturbation of shorter wave length. Hence an appearance of the most 

unstable perturbation shifts toward a longer wave length with an 

increasing shear. 

6. The suppressing effect of the vertical shear is much more 

striking on a transverse perturbation when compared with a longitudinal 

one. This gives a preference for the longitudinal convection rolls in 

an atmosphere with a vertical shear. 

The stability of both stably- and unstably-stratified plane 

Couette flow were studied theoretically by Kuo (1963). However, his 

results are not included because the effects of molecular diffusion 

were not taken into account in his paper. 
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1.3.3 Lipps' nonlinear model 

During the last few years, particular emphasis has been placed 

on studying nonlinear stability problems. These were successfully solved 

by Ogura & Yagihashi (1969) on force convection, and Crowder & Dalton 

(1971) on pipe flow. 

As for our problem, Lipps was the first to analyze with the 

nonlinear method. He discussed the instability for transverse rolls 

and determined the heat flux for longitudinal rolls. Since Lipps 

interest is restricted to two dimensional flow, a more general but 

different analysis will be shown in 2.3. The instability for various 

wave-angles (including tranvserse roll and longitudinal roll) will be 

discussed, and the results will be compared to those from the linear 

method. 
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Chapter II 

NUMERICAL EXPERIMENT 

2.1 Linear Method to Examine Flow Instability 

As previously mentioned, two systems of coordinates can be used 

for the mathematical model. Here, the governing equations for these 

two choices are derived. In addition, the governing equations for 

the one with confined boundaries in they-direction will also be shown. 

After substituting Eqs. 11 & 12 into Eqs. 6-8, two sets of 

equations can be found for different coordinates: 

and 

av av au a1r 1 X - X ,/v at + u -- + v-+ -= Re ax zaz ax X 

av av a1r 1 ·v2v _.I. + - _L u ay + - = at ay Re y 

av av Ra a 7T 1 •iv z u z 8+ --+ at az - 2 Re Pr 
az = Re z 

as - as + U- + V at ax z 

av av av 
X _.I. + z + ax ay az 

av av m IT sina m --+ 
~ at 

av av n - n 
~ + U sina 
a am 

af _l_ ,_;29 
z = RePr 

= 0 

au + V az sina z 

au +vzazcosa 

a1r + - = am 
.!_,v2v 
Re m 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 



av av z + IT sina. z 
at am 

as IT sina. as -+ -+ at am 

av m --+ am 
av z az = o 

-

V z 

17 

Ra c1r .!_,iv s + ( 42) -= 2 az Re z Re Pr 

af _1_ 1;/e ( 43) = az RePr 

(44) 

-In these, the nonlinear terms v • Vv and v • VS were neglected to 

linearize the equations and also use a relationship among U, and f 

since the mean flow satisfies the Boussinesq equation. There are now 

five equations and five unknowns in equations 35-39. After eliminating 

the nondimensional unknowns v , v, and TI , the linearlized 
X y 

equations are 

a - a (-+ u -at ax 

a - a 
Cat + u ax 

here 

v2 a2 
= --+ 

az 2 

v2 a2 
= --+ H ax2 

2 

_1_ V2)S 
RePr 

VH 

a2 

ai 

Ra V2S 
PrRe2 H 

As for boundary conditions for the fl uctuating velocity V z and 

( 45) 

(46) 

s , 

it is assumed that both upper and lower boundaries are rigid surfaces: 
av z 

v 2 = s = az = vz = o at 1 z = ± -2 
( 4 7) 
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Classically, it is assumed that the disturbance functions V , V , 
X y 

v and e, are all proportional to exp(i(k +k -at)), so that we consider 
Z X y 

a single component of a Fourier series in x and y directions to 

represent the flow. The assumption also ensures that the velocities 

are bounded at infinite. The quantities k and k are real and are 
X y 

the wave numbers appropriate to the directions x and y, which are 

related to the wave length of the disturbances by L = 2n/k , L = 2n/k 
X X y y 

Also, a= a + ia. is the wave (or plase) speed; a. represents the r 1 1 

amplification or damping of the oscillat ion with the passage of time. 

If a. is positive, the disturbance amplifies and is unstable; however, 
1 

if it is negative, the disturbance decays and is stable. The situation 

in neutral stability is governed by a. = 0 • 
1 

In mathematical terms, it can be written as: 

v (x,y,z,t) z 

e (x,y,z,t) = 0(z)exp(i(k x+k y-crt))RePr 
X y 

Then Eqs. 45-49 give: 

L1 = w1v - 2k2W11 + k 4w - Rak2e 
-ik Re [ (U ~) (W" - k2W) 

X k 
X 

U"W] = 0 

i k RePr (U- ak ) 0 = 0 
X - X 

1 1 1 
0(± 2) = W(± 2) = W' (± 2) = 0 

( 48) 

(49) 

(50) 

(51) 

(52) 

here Eqs. 51-52 are the governing equations for the 

linear method. 

Similarly, the equations for V z and e also can be found after 

eliminating unknowns vm, vn, and TI in Eqs. 40-44. 
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a 1 2 af (at + Usina. - RePr 'i/ ) e + V z az = 0 

here 

The boundary conditions are the same as for Eq. 47. With the same 

procedure, the Fourier component for v and e can be defined as z 

follows: 

v (m,z,t) = W(z)exp(i(km - crt)) z 

e (m,z,t) = 0 (z)exp(i(km - crt))RePr 

then Eqs. 52-56 give: 

- iRek sina. [ (U - ? ) (W"- k2W) - U"W] = 0 ksina. 

i k sina.RePr (U - k sf ni) 0 = 0 

here the boundary conditions will be the same as Eq. 52. 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

From our definition of coordinate, the geometric relation shows 

k = ksin (a.) (59) 
X 

k = kcos (a.) (60) y 
and k2 = k2 + k2 (61) 

X y 

If Eqs. 50-61 are substituted into Eqs. 57 and 58 and compared to Eqs. 

50 and 51, it is found that the two sets of equations are the same. 

This means that the assumption made (that is a( )/ an= 0) in 1.2.1 is 

consistent. 
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Next the governing equations for the case with confined boundaries 

in y-direction will be determined. For fixed side boundaries, an 

additional boundary condition can be used: 

V = V = V = 6 = 0 
X y Z at y = 0 and B (62) 

here B is the dimensionless width of the chamber. The side boundary 

condition allows the separation of variables by assuming that 

v (x,y,z,t) = W(z)exp(i(k x crt))sin(qy) (63) z X 

e (x,y,z,t) = 0 (z)exp(i(k x crt) )s in(qy) (64) 
X 

here q = A1T/8 >.. = 1,2,3 .... (65) 

>.. = l or 2 is used since this gives the most unstable mode. 

Substituting Eqs. 63 and 64 into Eqs. 45 and 46, results in the same 

set of equations as Eqs. 50-52, except the defini tion of k which is 

(66) 

Therefore, Eqs. 50-52 are the only equations which need to be solved 

numerically regardless of boundary conditions (infinite extent or 

confined) and no matter what kind of cartesian coordinate system that 

is chosen . 

Next, Eqs. 50-52 must be solved numerically. These non-Hermitian 

equations will be solved by the "Galerkin method" (see appendix 1 for 

detail) which transfers a system of differential equations (including 

boundary conditions) to a system of algebraic equations. Then these 

equations were solved numerically with the aid of CDC 6400 high speed 

computer at Colorado State University. Accordingly, the variables W(z) 

and 0(z) can be expanded as: 
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N N 
W(z) = l (e R) = l (AG (z) + iB H (z)) 

n=l n n n=l n n n n 
(67) 

N N 
0(z) = l (f S) = l (D L (z) + iE M (z)) 

n=l n n n=l n n n n 
(68) 

here R and S individually should satisfy the boundary conditions n n 
(Eq. 52) and also orthogonalized with respect to R 's n and T Is n , 

and the functions G , H , L , and M are real. For this n n n n 
problem, the following are defined: 

G (z) = cosh(A z)/cosh(A /2)-cos(A z)/cos(A /2) n n n n n 

H (z) = sinh(µ z)/sinh(µ /2)-sin(µ z)/sin(µ /2) n n n n n 
M (z) = sin(K z) n n 
L (z) = cos (p z) n n 

in order to satisfy the boundary conditions. 

the roots of 

tanh(A/2) + tan(A/2) = 0 

ctnh(µ/2) + ctn(µ/2) = 0 

and Pn = (2n-1) ,r n = l ,N 

K = 2nir n = 1,N n 

Here A n and 

(69) 

(70) 

(71) 

(72) 

are 

(73) 

(74) 

(75) 

(76) 

From the principle of Galerkin method, the following conditions should 

be satisfied: 

fl/2 L1 Rmdz = 0 
-1/2 

m = l,N (77) 

fl/2 L2Smdz = 0 
-1/2 

m = l ,N (78) 

After substituting Eqs. 67 and 68 into Eqs. 77 and 78, a system of 

simultaneous linear equations are obtained (see appendix 1 for detail). _ 
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C ··············c ", 
1,2 1,4N I 

C ••••••••••••• ·c 
2,2 2,4N 

' 

i 
! 
I 

C •••••••••••• ·c \ 
4N,2 4N,4~ 

\ A . 
1 I 

A I 

2 

~ 

Bl 

BN 

D1 

= 0 (79) 

here Cmn' m = 1, N, n = 1, N are the coefficients of the unknowns 

A, B, D, and E n n n n This leads to a secular equation which is the 

necessary condition for a non-trivial solution, and it reaches the 

eigen-values of the system: 

F(a,k,cr,Ra,Re,Pr) = 

c1,1················c1,4N 

C2 1 · · · · · · · · · · · · · · · .c2 4N , , 

C 4N, 1 ............... D 4N, 4N 

= 0 (80) 
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Physically, Eq. 80 specifies the states of neutral stability when 

(J. = 0 
1 

As for cr r Vest & Arpaci (1969) have proved that (J = 0 r 
if the functions are defined as in Eqs. 69-72. This is because of the 

orthogonalized property of G , H , L , n n n and M n (see Appendix 2). 

Hence cr = 0 can be set in Eqs. 50 and 51 before determing Eq. 80. 

Now Eq. 80 becomes: 

F(a ,k,Ra,Re,Pr) = 0 

It is found that the secular equation 80 approximately converges at 

N = 4 

(81) 

The computer programs have been tested, that is ; the following were 

set k = 0 (or a= ~/2) and Re= 0 y meaning there is no shear present 

and the disturbance is only a function of x . Then Eqs. 50-52 will 

become the governing equations for the Benard problem (pure thermal 

convection instability problem). The calculated critical Rayleigh 

number Ra= 1707.784 differs only slightly from the well-known result 

Ra= 1707.762 . Here N = 5 and the wave number k = 3.116 instead 

of the classic result k = 3.117 . 

Next Ra and k are set equal to zero; then Eqs. 50-52 approach y 

the well known Orr-Sommorfeld equation for plane Couette flow. When 

k = 0.41 the Reynolds number is 189894.624. This result is close to 
X 

Kuwabara's (1967), 5 Re ·t = 1.9 X 10 cr1 A contradiction was found in 

Gallagher and Mercer's (1961) paper in which they concluded that plane 

Couette flow is stable at all Reynolds numbers. A possible explanation 

for their discrepancy is that they only considered the real part, as 
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they expanded the variables in series form and also only considered 

the real growth rate as they checked the flow instability. However, 

further proof is needed to substantiate the above explanation. 

Numerical results for neutral stability are shown in Table 2-4 and 

Figs. 2 and 3 for various cases. The values of Rayleigh number at 

neutral stability under different Reynolds numbers for the transverse 

roll are shown in Table 2; also for comparison the data of Gallagher & 
Mercer (1965) are listed. This clearly shows that the results of the 

two different sources are close. Table 3 shows the critical Rayleigh 

number with its corresponding Reynolds number; Table 4 shows the 

critical Reynolds number with its corresponding Rayleigh number. 

Neutral stability curves for various Reynolds numbers in the Ra-k 

plane are shown in Fig. 2, and neutral stability curves for various 

Rayleigh number in the Re-k plane are shown in Fig. 3. 

Only the transverse rolls are considered in Tables 2-4 and Figs. 2-3 

because the non-transverse cases (a is not equal to TI/2) can be trans-

ferred to the case a= TI/2 by Squire's transformation. From Eqs. 

50 and 51 the following can be set: 

Reksin(a) = k*Re*sin(TI/2) (82) 

k = k* (83) 

or 

Re*= Resin(a) (84) 

to transfer the three dimensional disturbance to a two dimension one. 

Eq. 84 is called the Squire's transformation, where Re* and k* 

are the corresponding Reynolds number and wave number after transforma-

tion. Thus; the problem of a three dimensional disturbance is equivalent 
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to a problem of a two dimensional one with the same Rayleigh number but 

lower Reynolds numbers. Also, from Eq. 84 it is evident that the pure 

longitudinal wave (a= 0) should become critically stable at the same 

value of the Rayleigh number as for the Benard problem. 
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2.2 Nonlinear Method to Examine Flow Instability 

In the basic ideas of linearized theory. the second and higher 

powers of the disturbance amplitude and their derivatives are ignored. 

For plane Poiseuille flow, Meksyn & Stuart (1951) suggested that, even 

if the Reynolds number is less than the critical Reynolds number deter-

mined from the linear method (Thomas (1950) found Recrit = 5780), the 

nonlinear effects might provide a threshold amplitude above which 

velocity perturbations could grow and stimulate turbulence. Their 

approximate theory yielded an amplitude-dependent critical Reynolds 

number as low as 3000. 

Ellingsin & Palm (1970) discussed the nonlinear effect on pure 

plane Couette flow and found the nonlinear terms are destabilizing for 

small amplitudes. The nonlinear effect might also be important for 

heated plane Couette flow. Hence it is necessary to determine the 

contribution of the nonlinear term when considering flow instability. 

Also, if the amplitude of disturbance becomes too large, the linear 

theory is no longer applicable, and a nonlinear theory is required in 

order to follow the evolution of such perturbations for the purpose of 

finding the heat and momentum flux. 

A single-wave-number assumption is made in the nonlinear numerical 

model. 
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2.2.1 Governing equations for nonlinear analysis 

For the convenience of analysis, a cartesian coordinate system 

(m,n,z) is chosen with its n-axis parallel to central lines of disturbance 

rolls. This coordinate system can simplify the problem and can transfer 

the three dimensional problem to a two dimensional one under the assump-

tion that there is no variation along the axis of disturbance rolls. 

It has been shown in 2.1 that the results of a linear model are independ-

ent of the chosen coordinates. For equations 6-10, the governing 

equations for the nonlinear model will be: 

av av av 
2+v 2+v n 1 •iv at m am z ~ = Re n 

aT + V aT + V aT = 
at m am z az 

av av m z 0 --+ = am az 

where ·v2 = 
a2 a2 
--+ 

az2 am2 

h + Ra (T-T) 
az Re2Pr 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 
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From Eq. 89, a stream function $ can be introduced such that 

V m 
=-2-1 az 

V = 2J£. z am 

Also, the vorticity n can be defined as 

av 

(91) 

(92) 

z 
l1 = am - (93) 

The vorticity equations are established after eliminating the 

nondimensional pressure ~ from Eqs. 86 and 87: 

an -+ at 
Ra aT +---

PrRe2 am 
(94) 

As for initial conditions, the basic state consisted of a linear 

temperature gradient and linear shear flow. A random temperature 

distribution was superimposed on the linear temperature gradient in 

order to have a disturbance source for the pu:i;-pose of checking flow 

stability. The random field was obtained from a pseudo-random number 

generator and contained a random number in the range -m :tO,SxlO. 

m is a chosen integer between 2-6 . Experience shows that m has 

no affect on the problem. The velocity components and temperature 

field of upper and lower are kept constant during integration. Eqs. 

11, 12, 19, and 20 give: 

V = U(z)sin(a) + v = -zsin(a) + 0 at t=O & z = ±1/2 (95) m m 

V = U(z)cos(a) + v = -xcos(a) + 0 at t=O & z = ±1/2 (96) n n 

V = v • 0 z z at t=O & z = :tl/2 (97) 



T=T+8 
0 

e = o 
0 
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at t=0 & z 

at z = ±1/2 

Hence, all disturbances vanish at t = 0 and z = ± ½. 

= ±1/2 (98) 

(99) 

Physically speaking, no experiment is performed with an apparatus 

of infinite dimensions. But mathematically, it is possible to circum-

vent the difficulty by limiting the discussion to disturbances which 

are spatially periodic in the directions in which the fluid extends to 

infinite. The flow must be periodic at the lateral boundaries, m = 0 

and m = L = 2rr/k. In mathematical expression: 

+ + V(0,z,t) = V(L,z,t) 

T(0,z,t) = T(L,z,t) 

w(0,z,t) = w(L,z,t) 

n(0,z,t) = n(L,z,t) 

Tr.erefore all variables at the downstream boundary become the new 

boundary values at the upstream boundary durir.g the numerically 

integrat~c~. 

(101) 

(102) 

(103) 
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2.2.2 Boundary conditions for stream functiott and vorticity 

Boundary conditions for the vorticity transport equation cannot 

be given directly. However, they are closely related to interior values 

of vorticity and stream functions by means of a Taylor's series expansion. 

For rigid boundaries this relation is simple and may be derived analyti-

cally from the known boundary conditions of velocities and stream 

functions. The initial condition for vorticity n can be determined 

numerically from the definition of vorticity 
av av av z m m n=~-az=-rz at t = 0 (104) 

Vm(z+/:J.z) - Vm(z) 
n(z) = - ---..,.1:J.-z __ _ at t = 0 (105) 

The Taylor's series expansion of the stream function is the basic 

equation to determine the boundary conditions of vorticity n at 

upper and lower planes. Since 

1/l(B ± /:J.z) = ~(B) ± a:~B) 

(&z) 3 
±~ 

(1:J.z) 3 
:!: 6 

a az (n(B) 

+ .• 

_ a
2

1j,(B)) + 
am2 

2 
= 1/1(B) + V (B) /:J.z + (fl~) n (B) 

m 

2 
= ij,(B) + V (B)/:J.z + (/:J.z) n (B) 

m 2 

= ij,(B) 
2 

+ V (B)Az + ~ n(B) m 3 

3 
~~ :!: 6 az + 

3 
+ ~ (n {Btllz) -n {B)) + 6 1:J.z 

2 
+ (1:J.z) n(B + 1:J.z) + .• • 

6 
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or 
n(B) 

1 - 2 n (B ± 6z) at B = z = ±1/2 

At lower surface, 

n(-1/2) = (
6
:) 2 [l/1(-1/2 +6z) -l/1(-1/2)] 

+ Vrn(-1/2) 6z - l/2n(-l/2 + 6z) 

At upper surface, 
3 n(l/2) = --2 [l/1(1/2 - 6z) - l/1(1/2)] 

(6z) 

- V (1/2) - U.Sn(l/2 - 6z) rn 

(106) 

(107) 

(108) 

Notice that the vorticity is independent of them-axis at the boW1daries. 

The boW1dary conditions and initial conditions for the stream 

fW1ction follow from Eq. 92 and Eq. 97 

V = ~ = 0 at t = 0 & z = +_1/2 z am (109) 

This shows the stream fW1ction has no variation along them-axis 

direction on the upper and lower plates or at the initial time. This 

allows equation 91 to change to: 

or 

then 

at t = 0 & z = ±1/2 

z z 
f dl/1 = - f Vmdz 

z-6z 
at t = 0 & z = ±1/2 

z-6z 

z 
tj,(z) -~(z - 6z) = - J V dz 

Z-6Z m 

= 
V (z) + V (z -6z) _m ___ ~m ____ 6z at t = 0 & z = ±1/2 

2 

(110) 

(111) 
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or 

1/J(z) 

+ ljl(z -tiz) at t = 0 & z = ±1/2 (112) 

Equation 112 is based on the mean-value theorem for very small tiz . 

The stream function for various depths at initial time can be found 

from Eq. 112 by assigning a zero value to the horizontal plane of the 

bottom boundary. The stream ftmction for both upper and lower planes 

will remain unchanged as time increases. 
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2. 2 . 3 Instability criteria of nonlinear model 

There are two basic methods to treat instability problems. The 

first is the classic linear theory method which assumes that the 

perturbation is of the form of exp(-i(k x + k y - crt)) to check the 
X y 

flow instability by the sign of cr, as was done in section 2.1. The 

second is called the energy method since the rate change of kinetic 

energy is checked to distinguish the state of flow. A disturbance 

source is given at initial time and checked later. The flow is consider-

ed stable if the rate change of kinetic energy of the perturbation is 

negative, and called unstable if it is positive. The criteria is 

dK' < 0 
dt 

dK' = dt 0 

dK' > 0 
dt 

stable (113) 

neutral (114) 

unst able (115) 

where K' is defined in Eq. 28. The kinetic energy will be checked 

after 2000 time-steps i n a computer program, while the flow is approach-

ing a numerically steady-state. 

Figs. 4a-4c are directly drawn from a digital computer and show 

the variation of perturbation ki net ic energy as the time integration 

proceeded. Fig. 4a shows the variation of K' which is a typical 

type for unstable flow, Fig. 4b shows a neutral case, and Fig. 4c shows 

a stable case. It can be seen in those figures that the dimensionless 

time of approximately 20 is required for t he calculation settling. 
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2.2.4 Procedures of integration 

Equations 85 and 88-94 are the governing equations for a nonlinear 

model which can be integrated numerically with the following procedures: 

Step 1. From initial conditions (Eqs. 95-98, 105-112), the 

vorticity n can be determined numerically by Eq. 94. 

Step 2. Find the stream function ~ by solving Poisson's 

equation (Eq. 93) with the latest vorticity from step 1. The boundary 

conditions for ~ are shown in Eq. 112. 

Step 3. V and V are determined from Eqs. 91 and 92. m z 
Step 4. Equations 85 and 88 are integrated numerically with the 

same numerical scheme used in step 1 to determine the temperature 

field T and the velocity component in then-direction. The boundary 

conditions for T and V n are shown in Eqs. 96, 

Step 5. The vorticity function for the new time-step are found by 

solving the vorticity equation given in step 1. The variables V , m 

V , and T in the equation are all new values calculated from step z 

3 -and step 4 . Boundary conditions for vorticity during integration 

are shown in Eqs. 107 and 108. 

A set of calculations, step 2-step 5, is repeated until a pre-

specified time period has past. 

By definition (Eq. 23), the Nusselt number must be independent 

of the vertical coordinate, z , under the steady-state condition. 

Hence, all time-integrations are continued until the vertical distribu-

tion of the Nusselt number becomes independent of z within an error 

of less than 5% for the purpose of finding heat and momentum flux in 

steady-state. 
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2.2.5 Numerical schemes 

2.2.5.1 Transport equations 

Three different transport equations in the nonlinear model need to 

be integrated numerically: vorticity equat i on (Eq. 94), energy trans-

port equat ion (Eq. 88), and momentum equation (Eq. 85). These three 

equations may be summarized and integrated with the same numerical 

scheme. This i s defined as: 

ap 
-+ at V ~ + V ~ - cl 1lP + C aQ m am z az - 2am 

where 

P = n 

Q = T 

Cl = 1/Re 
2 

c2 = Ra/PrRe 

for vorticity transport equation ; and 

p = T 

Cl = 1/RePr 

CZ = 0 

for energy t r ansport equat ion; and 

p = V n 

Cl = 1/Re 

CZ = 0 

for momentum transport equation . 

(116) 

(117) 

(118) 

(119) 

Three different numerical schemes can be util ized to integrate 

the time-dependent transport equation (Eq. 116): Arakawa's finite 

difference scheme, Upstream fini te di fference scheme, and Time-splitting 
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finite difference scheme. The third is adopted more often in numerical 

calculation because of its accuracy. 

Arakawas (1966) developed his finite difference scheme for the 

vorticity transport equation in such a manner that it conserves the 

mean vorticity, the mean kinetic energy, and the mean square vorticity 

i n a closed domain. The same scheme can be applied to the other two 

transport equations. Accordingly, Eq. 116 can be put in the finite 

difference form as follows: 

p.hl 
j ,k 

( PR, PR, ) ('''Q, _,,,R- ) (PR, -PR, ) 
j,k- j,k-1 + o/j+l,k o/j,k+l j+l,k+l j,k 

(ll8) 



•• 

• 

where h = ~m = ~z ; and £ 
1/J. k J , 
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is the stream function defined in Eqs. 91 

and 92. A test program shows that Arakawa's scheme will blowup easily, 

and smaller time-step are necessary in order to overcome the numerical 

instability. Finally, this scheme was not employed due to the excess 

required computer time. 

The upstream finite difference scheme gives the difference form 

of equation 116 as follows: 
p£+1 = pt ~t 
j,k j,k+ (~m)2 

£ £ £ (P. 1 k- 2P. k+P._l k)Cl J+, J, J , 

+ 

£ £ + A2(P. 1 k-P. k)] J + , J , 

(121) 

where Al = 1, A2 = 0 for V ~ 0 m 

Al = 0, A2 = 1 for V < 0 m 

A3 = 1, A4 = 0 for V ?: 0 z 

A3 = 0, A4 = 1 for V < 0 (122) z 
The difference form for the convection terms, V 

ap 
V aP depend -+ , m am z az 

on the signs of V m and V z Backward differences are used if both 

V and V are positive; and forward differences are used if both are m z 
negative. If V and V have different signs, then convection terms m z 
are approximated according to the upstream difference; i.e. one is 

backward and another is forward depending on the signs of V and V m z 
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A larger time step, one which is within the computational stability 

crit erion , is desired in order t o save COJIJput at i on ti.me. Hence an 

accurat e s tability analysis for t he upst r eam finite scheme is an important 

requirement . It is difficul t t o derive the exact solution of stability 

criterion by Von Neuman stability analys i s i f the difference equation is 

nonl i near . Additional assumptions have been made by numerous authors to 

analyze the numerical stability. Yamada (1 971) suggested that 

20 20 
+ tim + E 

(123) 

o is t .:e number of integration. Also the well-known Courant-Friedrichs-

Levy requirements are: 

RePr tit$--------
4 ( 1 2 + 1 2) 

(tim) (tiz) 

tit ~ 1 I I IV m I max V z max 
tim + tiz 

However, from pract ical experiences, it is suggested that 

(124) 

(_125) 

(_126) 

In the computer program, tit was checked at each time step; and a new 

tit was assigned, based on Eq. 126, if the new one is smaller than the 

old one. This procedure insures the computational stability of the 

scheme for the t ransport equations. 

• 



• 
• 
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The time-splitting finite difference scheme was first derived by 

Crowley (1968, 1970) who followed Marchnk's (1964) original ideal. 

Crowley (1970), Chan (1970), and Derickson (1972) applied this scheme 

successfully to solve transport equations. They found that the trunca-

tion error caused by this scheme is smaller than by others. Accordingly, 

the finite difference form of equation 111 is: 

and 

t+½ 
P. k ] , 

i+l 
P. k ] , 

- 2l+½ 
J ,k 

A n !,: 
Llt (V ) ~+ 2 

- 2~z z J,k 
cl+½ 

j ,k+ l 
pt +½ ) 
j, k- 1 

(127) 

(128 ) 

The derivation of equations 127 and 128 ar e shown in Appendix 4. Crowley 

(1970) did the stabili t y analysis for this scheme and gave a stability 

criteria; for complete details the reader shoul d refer to hi s paper. 

Fortunately, the result of Eq. 126 is within the limitation of Cr owl ey 's 

criteria. For convenience, Eq. 126 is also used for a time-splitting 

scheme. 
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2.2.5.2 Poisson's equation 

The· stream function is obtained by solving the Poisson's equation 

with known vorticity values. There are many computer subprograms 

available to solve such an elliptic equation numerically with different 

theoretical background. Basically the S.O.R. (successive over relaxa~ 

tion) method, A.D.I. (alternation direction implicit) method, and F.F.T. 

(fast Fourier transformation) method are the most popular schemes. 

After comparing and testing several available computer subprograms, a 

most effective and economic one called "POISDP" was chosen. This sub-

routine was written by Mr. Roland Sweet on September 1971 for the NCAR 

(National Center for Atmospheric Research) computer center library. 

"POISDP" is based on a modified A.D.I. Method to solve Poisson"s 

equation with Dirichlet boundary conditions in one direction and period-

ic boundary conditions in the other direction. The theoretical back-

ground of this subroutine is from a publication "On direct methods for 

solving Poisson's equation" by Busbee, Bolub, and Nielson (1970). A new 

algorithm is introduced in this paper called CORF (cyclic odd-even reduc-

t i on and factorization) algorithm to solve the finite difference form 

of Po i sson's equation. From Eq. 93, the finite difference ap~roximation 

to Poisson's equation can be written as 

2wj,k-wj-l,k-wj+l,k + 2wj,k-wj,k-l-wj,k+l 
(tim/ (tiz) 2 

= -n j,k (129) 

with boundary conditions 
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1P. 1 = g (m.) 
J' 0 J 

l:Sj<J (130) 

2 < k < K (131) 

The equations 129 to 130 form a linear system of equations of dimension 

Jx(N-1) for the unknown lji. k. This system is solved by a modification 
J ' 

of the Buneman variant of the CORF algorithm. The primary advantage of 

this algorithm is to avoid iteration procedure process. The difficulty 

of convergence has always existed in iteration methods. Hence, 

the implicit scheme used in "POISDP" can save a significant amount of 

computer time. 
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2.2.6 Computer programming 

The program consists of one main program, "CHIEH", and six sub-

programs: "UPSTRE", "TIMESP", "P0ISDP", "QSF", "DET3", and "N0NLIN". 

All data and constants necessary for the calculations are read in by 

"CHIEH . " The purpose of subroutine "UPSTRE" is to integrate the trans-

port equation (Eq. 116) numerically by the upstream finite difference 

scheme (Eq. 121 and 130) in order to determine the new values for the 

next time step. "TIMESP" has the same purpose as "UPSTRE" except that 

the time-splitting scheme (Eqs. 127 and 128) is adopted. "POISDP" was 

supported by the NCAR computer center library; the stream function is 

obtained by solving the Poisson's equation (Eq. 93 or Eq. 129) with 

known vorticity values. Subroutines "QSF" and "DET3" were copied from 

IBM Scientific subroutine Package (1970). "QSF" determines the inte-

gration of the equidistantly tabulated function by Simpson's rule, and 

"DET3" determines the differentiation of an equidistantly tabulated 

function. All subroutines mentioned above are called from subroutine 

"N0NLIN". The Multi-purpose assigned to "NONLIN" included: 

A). Generate the functions or constants necessary for this program or 

other subroutines. 

B). Calculating the initial values of variables defined in Eqs. 95-98, 

108 and 109. If the computation is a continuation of a previous 

run, then the values of variables are read from a magnetic tape. 

C). Calling subroutines "UPSTRE" or "TIMESP" to calculate new vorti-

cities. 

D). Call "P0ISDP" to determine the stream function using the vorti-

cities obtained from the last step. The value at upper or lower 

boundaries remain unchanged during integration. 
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E). Obtain velocity components (V and V) from the finite m z 

F). 

difference definition of stream function (Eqs . 91 and 92). Central 

differences are used to evaluate interior values, and forward or 

backward differences are used to evaluate boundary values . 

Obtain the maximum values of V and V in order to find the m z 

new size of time-step; this insures the computational stability 

for the next calculation. No size will be changed if the new one 

is larger than the old one. 

G). Employ equations 111 and 112 to compute new boundary values of 

vorticity along two rigid boundaries. 

H). Call "UPSTRE" of "TIMESP" to find the new temperature field. 

I). Call "UPSTRE" of "TIMESP" to determine the velocity component i n 

then-direction which was paralleled to the central line of the 

disturbances. 

J). Calculate the kinetic energy of perturbation, based on equation 28, 

at each 20th time steps. 

K). Terminate the program at the 2000th time-step if the purpose of 

running is to check the i nstability of flow. If this is not done, 

the program will keep going until he vert ical distribution of the 

Nusselt number becomes independent of z for the purpose of 

finding heat and momentum flux. 

L). Record all final values of variables on a magnetic tape to be t he 

initial val ues of the next run if it is necessary. 

The flow chart for subrout i ne "NONLIN" is shown in Fig. 7. In 

general, the number of grid points taken are 17 in the vertical di rect ion 

and 17, 33, or 65 in the horizont al, dependent on the magnitude of the 

Reynolds number. 
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All numerical experiments were run on the CDC 7600 digit computer 

installed in the National Center for Atmospheric Research. 
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2.2.7 Numerical results of nonlinear stabi lity analysis 

After investigating approximately one hundred cases, in order t o 

survey the instability of flow, it was found that all results are 

independent of the grid size and the temperature difference set on the 

upper and lower boundaries. Usually, the number of grid point is 17 in 

the vertical direction (tz = 0.0625) and 65 in the m-direction for the 

instability analysis. The grid size in them-direction, tm, can be 

determined by the following equation: 

tm = (Wave length)/(MT - 1) (132) 

where MT is the chosen number of grid point in them-direc tion. The 

nondimensional temperature is set at 3.53 on the upper boundary and 

2.53 on the lower boundary. 

The values of the Rayleigh number for neutral stability were 

determined to distinguish the flow stat e under varying conditions. It is 

difficult to determine the neutra l Ray eigh number directly with a 

computer program. Hence the trial-and-error method is used to find two 

neighboring points with a different s ign of rate change for K' (defined 

in Eq. 28). Then the exact neutral value with zero rate change of K' 

is calculated by linear extrapolation from two reference Rayleigh 
-14 numbers. For example, the rate change of K' is -0.9157 x 10 for 

Ra= 10600 and is 0.5969 x 10- 14 for Ra= 10700 ; then the zero 

rate change of K' is Ra= 10660 for the case of Re= 160 and 

a= TT/2 . Table 5 shows the numerical results from a nonlinear model, 

a linear model, and Lipp's (1971) nonlinear mode l in different wave 

angles for Re= 160 and Re= 320 . The comparison of neutral Rayleigh 

numbers calculated from onlinear and linear numeri cal models are also 
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shown in Table 5 for Re= 160 and a= n/2 The results of the two 

nonlinear models are extremely close, although the numerical schemes 

adopted are quite different. Also as Table 5 shows, the linear and 

nonlinear models gave very close results both for various wave lengths 

and wave lengths (except the longitudinal roll). This proves the 

assumpt i on of linearization is valid for non-longitudinal roll. It 

takes almost 500 seconds of CDC 7600 computing time to get one point 

of a neutral curve for the nonlinear model as opposed to 0.3 seconds 

for the linear model. Hence the linear model is the most economical 

method to survey flow instability if the non-longitudinal roll is 

examined. 

Finally, it was concluded that both linear and nonlinear models 

give almost identical results, except for pure longitudinal rolls 

(a = 0) ; and hence the previous summary shown in 1.3.2 is accepted. 
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2.3 Finite-amplitude Rolls at Steady-state 

Laboratory studies by Chandra and others have shown that the 

amplified disturbances of unstable flow can approach the finite-amplitude 

rolls at steady-state. Thus, in this section, some characters of dis-

turbance rolls are investigated. The numerical model is the same one 

discussed in 2.2; however, the time integration is extended until the 

vertical distribution of Nusselt number becomes independent of z to 

insure that the flow is in steady-state. Fig. 5 shows the variation of 

Nusselt numbers at z = 0.125 , 0.5 , and 0.9375 as time increases and 

they approach the same value after the flow is in steady-state. 
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2.3.1 Vertical profiles of mean velocity and temperature 

Both mean velocity and temperature of heated plane Couette flow are 

linear distributed along the vertical direction, while the flow is in 

laminar. However, numerical experimentation has shown that the profiles 

of mean temperature and velocity have the shape of inclined sine curve 

as the flow becomes turbulent. The difference between the turbulent 

profile and the laminar profile is dependent on the magnitude of the 

Rayleigh number, i.e., the larger the Rayleigh number, the larger the 

difference. This difference is not sensitive to the change of wave 

length, but it is increased by enlarging the wave angle (maximum is ~/2) 

and decreasing the Reynolds number. Also it can easily be determined 

that all points, except those near or on the two boundaries, have a 

tendency to approach the same quantities of mean velocity and temperature 

as the central point. The percentage of achievement is sensitive and 

proportional to the increase of the Rayleigh number. Fig . 9 shows the 

typical variation of t urbulent profiles of mean ve l ocity and tempera-

ture where the Rayleigh number increases for Re= 160, a= O , and 

the wave length is 4 . 
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2.3.2 Heat and momentum flux 

To compute the heat and momentum flux under varying conditions 

about 80 cases were run. In general, both Nu and Mo take a maximum 

value at a certain wave length and a= 0 (longitudinal rolls) for 

each value of Rayleigh number; and the flux increases with the Rayleigh 

number under certain conditions. Fig. 6 shows the Nusselt number as 

a function of the nondimensional horizontal wave length at Re= 160 

and a= 0 It is easy to determine that both momentum and heat flux 

change with various horizontal wave lengths but within a limit. For 

convenience, however, only the wave length near the critical wave length 

(where the critical Rayleigh number occurred in the stability problem) 

for each Reynolds number was investigated. For example, 4.0 is taken 

for Re= 160, 6.0 for Re= 320 , and 9.0 for Re= 500 during the 

computation of flux. 

Table 6 shows the heat and momentum flux at various wave angles 

when Re= 160 and the wave length is 4. While there are some 

exceptions in Table 6, an obvious conclusion can be made: both heat and 

momentum flux increase with the Rayleigh number but decrease with an 

increasing wave angle. In other words, longitudinal rolls hold maximum 

heat and momentum flux. 

According to Eq. 22, momentum flux should be i ndependent of a 

vertical coordinate in steady-state. But from the numerical experimenta-

tion, the momentum flux does vary with respect to the vertical coordinate, 

although the Nusselt number shows the flow has already been in steady-

state for some cases where the wave angle is not zero (non-longitudinal 

roll). Physically speaking, the disturbance is still unsettled with 

unbalanced momentum flux. In this situation the wave angle of the 
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disturbance roll becomes smaller in order to have the momentum flux 

balanced. This confirms Kuo's (1963) conclusion that the preferred 

mode of perturbation is a roll-type convection parallel to the main flow 

for plane Couette flow heated from below. Kuo also found that it has 

the same type of roll for the flow in dry convection with the wind shear 

in atmosphere. Thus, another conclusion can be drawn from our numerical 

results; that is, the transverse roll with balanced momentum flux can 

exist only at the smaller Reynolds number and Rayleigh number. This 

conclusion coincides exactly with the results of the laboratory 

experimentation reviewed in 1.3.1 (summary D). 

Next the relationship between heat and momentum flux must be 

determined. Ingersoll (1966b) used a mixing length theory of Kraichnan 

(1962) to show that Mo and Nu should be. related, Fortunately, 

present data fit the linear relation quite well as shown in Fig. 8, 

and the regression curve is 

Mo= -q x Nu= -1.165 Nu for a= 0 (133) 

which is a universal relation and is independent of the Reynolds 

number, the Rayleigh number, and the wave number. Where q is a 

constant decreasing as a is increased, q = 0.93 for a= rr/8 and 

q = 0.6 for a= rr/4 . 

Stability theory shows that shear has a stabilization effect. 

Similarly, it is obvious from Table 7, Nu decreases as the Reynolds 

number increases. Also the decreasing rate is small for the longitudinal 

roll, but is large for the transverse roll. In other -words, the 

affection increases with wave angle. Thus it can be concluded that the 

upper bonds of heat transfer for heated plane Couette flow will be the 

heat transfer with the shear absent (Benard problem). 
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The relation between Rayleigh number and Nusselt number for Re= 160 

and a = 0 is shown in Fig. 10 on a logarithm scale . This relation 

may be expressed with accuracy by 

Nu= 0.129 Ra0·323 

It is interesting to point out that the relation 

Nu ~ Ral/ 3 

(134) 

(135) 

has been predicted on the basis of dimensional reasoning for Benard 

convection at high Rayleigh numbers and has been verified both experi-

mentally and numerically (see Herring (1963)). Ogura and Yagihashi 

(1969) also found the relation 

Nu ~ Ra0.328 (136) 

while studying the parabolic flow between horizontal parallel plates 

heated from below. Figure 12 appears to show that a similar relation 

also exists in our problem and also in the range of a rather low 

Rayleigh number (Ra .:_ 11000). 
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Chapter III 

UPPER BOUNDS ON HEAT AND MOMENTUM FLUX 

A simple variational approach to the turbulent transfer problem 

wi l l be app lied t o the analytical prediction of upper botmds on the 

vertical transport of heat and momentum flux in the heated plane 

Couette flow. Since the exact solutions to the Navier-Stokes equations 

are still beyond the current mathematical knowledge, it is reasonable 

to determine the upper botmds of some important physical quantities 

to describe the fluid field. This variational analysis is based on 

Malkus' (1954) power integral hypothesis. He states that for the 

turbulent convection problem the heat .transport which actually occurs 

for the larger Rayleigh number is not only the solution of Boussinesq 

equations, but also that it exists in larger upper botmd solutions 

which no longer satisfy the governing equations. The larger upper 

botmd solution is restricted up a) continuity equation, b) botmdary 

conditions, c) the requirements of homegeneity, and d) the power 

integral equations. Howard (1963) is the first one who applied the 

power integral method to predict the upper bound on heat flux in 

parallel plate convection tmder the additiomil hypothesis that the 

solution has a single horizontal wave number. He fotmd 

Nu :S (Ra ) 3/8 
248 (137) 

The same problem had also been solved by Halpern (1964) and Basse 

(1969). Halpern restricted his work to the infinite Prandtl number and 

the larger Rayleigh number but adopted the same single-wave-number 

assumption. His results indicate that 

Nu< c Ral/ 3 (138) 
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where c is a constant. Busse, however, claimed that Howard's single-

wave-ntunber assumption is true only for a limited range of the Rayleigh 

number. Instead he proposed a multi-wave.number assumption which 

Ra ~ 
Nu $ (1035) 

(139) 

In recent years the same variational technique with an additional 

single- or multi-wave-number assumption was widely applied to similar 

fluid dynamic problems. See Malkus (1968), Nickerson (1969, 1970), 

Busse (1969a, 1969b, 1970), Lindberg (1971). Recently, Nickerson (1973) 

developed a new variational technique to determine the upper bound on 

momenttun flux in plane Couette flow without any simpli f ying assumptions 

concerning the dependence in horizontal wave number space . This method 

avoids the extreme mathematical difficulty which Busse (1968, 1969a, 

1969b, 1970) used in his papers, and gives satisfactory results. 

Nickerson fotmd 

2/3 - Mo - 1 $ 0.63 Re (140) 

In this chapter, the upper botmds of heat and momentum flux in 

heated plane Couette flow will be determined by adopting Nickerson's 

new variational technique; thew· the results will be compared to previous 

works. 
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3.1 Power Integral Equations 

The power integrals derived from the dimensionless statistically 

steady Boussinesq equations will be the initial step of the analysis. 

The first power integral equation is the steady-state form of 

equation 26. 

where 

Ra 
PrRe 

s = 

< v 8 > + Re < vv S > = < I 'i/ 
Z X Z 

du 
- dz 

-XV (141) 

(142) 

The second power integral equation is the steady-state form of equation 

33. 

where 

< Sv z r > = 

dT r = - dz 

1 
RePr (143) 

(144) 

The momentum and heat transfer can be determined from Eqs. 21 and 22: 

and 

= S + Re (vv) 
X Z 

Nu = r + RePr (av") z 

(145) 

(146) 

By integrating equations (145) and (146) throughout the depth of 

the fluid, the following can be determined: 

and 

Mt= 1 + Re <v v > X Z 

Nu= 1 + RePr <Sv > z 

(14 7) 

(148) 
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Then equations (145) and (147) give 

B = l + Re [ <v V > - (vv-) ] 
X Z X Z 

and equations (146) and (148) gives 

r = 1 + RePr [ <6v > - (6v ) ] z z 

The dissipation term now can be expressed in terms of 

Equations (141) and (149) give: 

< IV XV 1
2 

> = 
Ra 

PrRe <6v >+Re <v v > 
Z X Z 

2 ( )2 > - Re < <v V > - V V 
X Z X Z 

Similarily, equations (143) and (150)give: 

I A 12 < V6 >::; RePr < 6v > z 

2 2 - 2 - Re Pr < ( <6v > - 6v) > z z 

Equations (151) and (152) show that both <v V > 
X Z 

<V V > 
X Z 

and <6v > z 

(149) 

(150) 

(151) 

(152) 

are positive. Also, from (147) and (148), Mt and Nu are always 

positive. Mt represents the ratio of total stress to viscous stress; 

thus, it is the equivalent of a Nusselt number in parallel plate 

convection. Hence, it is then seen that the total stress in this 

problem is always greater than or equal to the viscous stress. 

Similarily, by definition of the Nusselt number, the actual heat flux 

is always greater than or equal to the pure heat conduction in this 

problem. 

It is convenient to normalize the fluctuation temperature and 

velocity fields in the following manner: 
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" !.: -1 8 = <v V >2 <8v > 8 
X z z (153) 

~ -½ ~ 
V = <v V > V 

X z (154) 

hence, 

" " <Sv <v V > = > = 1 
X z z (155) 

Afte normalization, equation (151) becomes 
<8v > 

~ 2 Ra <IV XV I > = --RePr 
z 2 ~ 2 

-- + Re - Re < (1 - v v) > <v v > <V V > X Z X Z 
X Z 

or 

cp Ra <8v > z 1 - Re <V V > A -= 2 + Re <V V > X Z Re Pr X Z 

where 

cp = <IV X ~12 > 

A (1 7"'7 2 
= < - V V ) > X Z 

When equations (147) and (148) are substituted into (157), 

or 

where 

cp 
Re 

cp 
-= Re 

T = 

Ra (1 + ---
Re2Pr2 

T - (Mt - 1) A 

(1 + 
Ra Nu-1 

M -1) Re 2Pr2 t 

(156) 

(15 7) 

(158) 

(159) 

(160) 

(161) 

(162) 
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1 <I> T 
= A [T - Re ] s A 

Similarily, the normalized form of equation (152) is 

where 

2 <6v > 
--'-z_ f = RePr <6v > <v V > Z 

X Z 

A A 2 
n = <(l-6v ) > z 

Substituting equations (147) and (148) into equation (164) gives 

Nu - 1 = en + 
f -1 

2 ) 
RePr (Mt-1) 

(163) 

(164) 

(165) 

(166) 

(167) 

Equations (163) and (167) show that a lower bound must be obtained on 

the integral quantities A and n in order to seek the upper bounds 

on (Mt-1) and (Nu-l) 

r 



58 

3. 2 Governing Inequalities 

Some inequalities are i or tant to determine upper bounds on heat 

and momentum f l ux. First, f r om Schwarz's inequality, 

A 

dv (; / z dvx 2 z r = ( J -dz) s J c-2-) 2 dz dz 
X -½ dz _!2 dz -½ 

A dv 1 
A Jz (7 ) 2 dz A J cv•) 2dz = z = z 

0 dz 0 X 

(168) 

where the prime denotes a derivative with respect to the vertical 

coordinate; and 
A 1 z=z+ 2 

By taking the horizontal average on equation (168), 

or 

A fl A 2 A A A 2 s z (v') dz= z < (v ') > 
Q X X 

A A 2 
$ Z <(VI) > 

X 

Similarly, 

A 2 A A 2 
(8) S z <(8 ') > 

and 
A 2 A z 2 

(vz ) s z I (v') d~ 
0 z 

(169) 

(170) 

(171) 

(172) 
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Equation (17a) shows that (v 1 )
2 is zero on the rigid boundaries but, z 

by defination, it has a nonzero vertical average. Hence, A is defined 

as a distance from the lower boundary where v' is less than its z 

average value <v'> z Therefore, 

v'<<(v') 2
> z - z 

and 
A 

A 2 A 

A 

A 2 r (v') dz s r< (VI) > 
0 z 0 z 

A A 2 
= z < (v') > z 

or 
A 

A 2 (VI J2 > r A 

(v') dz $ z < 
0 z z 

Equation (172) and (174) give 

A 2 
<(V I ) > z 

z ~ A gives 

dz 

Again from Schwarz's inequality, it can be found that 

by substituting equations (168) and (175); 

(vxvz) s z312 <(v;/>½ <(v~) 2>½ 

(173) 

(174) 

(175) 

(176) 

(177) 
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where 

> -1/3 (178) 

Si;ailarily 

cev) z (179) 

and 

At this point, the lower bounds on A and n must be found. By 

definition, 

1 7"7 2 A 
Ci_) 3/2) 2 dz A = f (1 - V V ) dz ~ 2 f (1 -

0 X Z 0 z 
V 

2>- [ 1 + ¼ ·CL) 3 4 cL) 3/21 (181) = - 5 z z 
V V 

The function inside [ J of equation (181) attains its minimum at 

A -= (_
5
8) 2/3 d , an 

However, if >-/z is restricted to be less than unit, then 
V 

4 9 
A > 2 A [1 + ¼ - S J = lO A 

(182) 

(183) 
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Similarily, we have 

and 

and 

> 10 for A 1 a_ 25 >. - -> 
ze 

a 9 for A 
~ Io A -< 1 

ze 

From Eqs. (145) through (148), one can find 

V V X Z 

AA evz Nu-r 
evz = <Sv > = Nu-1 

z 

Then equations (177) and (186) give 

A M -e 
(!.,_)3/2 t 

? M -1 zv t 

Also equations (179) and (187) give 

From equation (145), 

<'3M>= <132> +Re< 13 VV > t X Z 

or 

M = <132> + Re <13 vv > t X Z 

(184) 

(185) 

(186) 

(187) 

(188) 

(189) 

(190) 

(191) 
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By substituting equations (148) and (191) into (141), 

~ < (v,) 2 + (v,) 2 > 
Z X (192) 

then 

< (v')2 > < (v')2 > ~ <(v')2> [M + Ra(Nu-1) 
z x x t Re2Pr2 

(193) 

Therefore, it can be determined that the function on the right 

hand side of Eq. (193) attains its maximum at 

2 Ra M - < 13 > + --,..----=-
t Re 2Pr2 

<{v')2> = -------------x 2 

(Nu-1) 

or M - < e2 > + Ra (Nu-1) 
2 ½ 2 ½ t Re2Pr2 

<(v') > <(v') > s 2 X Z 

Mt 
( T -

< §2 > ) <-- 2 Mt 

As for heat flux, it can be determined from equation (146) that 

<r Nu>= <r2> + RePr <r ~> z 

(194) 

(195) 

(196) 
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or 
2 Nu; <f > + RePr <f ev > z 

By substituting equation (196) into (143), 

Nu - <r 2> ; <lv el 2> ? <( 6 ')2> 

or 

Then (192) and (196) give 

2 (Nu - <f >) (M t 

(197) 

(198) 

(199) 

(200) 
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3.3 Bounding Procedure 

3.3.1 Upper bound on momentum flux 

Before starting derivation, the definition of critical boundary 

layer depth, A, discussed in 3.2 should be reviewed. Since a-prior 

knowledge of whether A is greater than or less than z 
V 

is not 

known, the two cases will be considered separately. First the case, 

A< z will be investigated. Equation C188) shows the following: 
V 

A " / A M -8 f C~)3 2 " f t dz dz ?: CM -1) 0 zv 0 t 
C201) 

or A 

AS/2 3/2 5 M A - f0 e dz t > z - M -1 V 2 t 
C202) 

Then from equations C 178) and C 19 5) , equation C202) becomes 
' 

1 A " 
A 3/2 ?: 

SCMt - X" f0e dz) 
C203) 2 

ReMtCT - <8 > ) 
Mt 

Since 
A A ,.. " t A t 

J 8 " J e'dL)'l Cf d~)'l dz ::s C 
0 0 0 

t A 2 t 
~ A '2 C f 8 dz) '2 C204) 

0 

Substitute C204) into C203) 
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A 
5 (1-

1 
( f S2dz)½ 

A3/2 > ---✓  ___ o __ _ 
2  . 

Re[T -<S >] 
Mt 

5 (1-
1  2 k: 
---<S >2) 
✓  

> -----:-2 ___ _ 

[ <S >  ] Re T  -
Mt 

In order to complete the investigation of the case 

(205) 

A < z , two 
V 

special cases must be considered: IA and IB, corresponding to 

and AM <1 
t 

For the first, the right hand side of equation (205) can 

be written as 

where 

F(a,b) 
5 (1-ab) 

= Re 2 
(T-a ) 

2 
2 <8 > 
a=~ 

1 

2MtA 

Equation (200) attains its minimum at 

and 

b = 
T + a

2 

2a 

5  1 
Fmin = Re -T 2 

+a 

(206) 

(207) 

(208) 

(209) 
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It can be shown from equat i on (192) that 

or 

a2 < T 

5 1 5 1 
F mi n = Re -T 2 ~ 2Re T 

+a 

Equations (204) and (210) give 

or 

>..3/2 > _s_ 
- 2TRe 

Substitute (212) into 183, then 

9 5213 -2/3 -2/3 
A ?: 10 2/ 3 T Re 

2 

Equations (163) and (213) give 

10 2213 5/3 2/3 
Mt - 1 s g 7IT3 T Re 

5 

s113 
25/3 Ra Nu-1 ) 5/3R 2/3 

= -9- (l + 2 2 M - 1 e 
Re Pr t 

(210) 

(211) 

(212) 

(213) 

(214) 
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In the second case with \Mt<l and 

rewritten as follows: 

\<z , equation (205) can be 
V 

where 

1 

Mt 

$ 
Re\3/2 

5 (T -

< Re A3/2T 
- 5 + 

E (\M )3/2 < -- 5 t 

E < - + G - 5 

E = Re T 
k M 2 

t 

\ 2 i 
G = (~ f 8 dz)~ 

\ 0 

2 
~) 

Mt 

1 --
15:Mt 

+ G 

Now if G < E, (216) gives 

Mt 
6 < - E - 5 

or 

Mt 
6 

$ 5 T Mt -½ Re 

and 

1 \ 
+ \Mt f 8d; 

0 

\ i 

cf e2dz)~ 
0 

Mt - 1 < M - t s; (~)2/3 T2/3 
5 

Re2/3 

(215) 

(216) 

(217) 

(218) 

(219) 

(220) 

(221) 
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If on t he ot her hand, E < G, the following inequality results: 

!.: M 2 
¾ t A 2 < --ReT 

A 2 t cf s dz)~ 
0 

However, from C145), the following can be determined 

A A 2 A AM 2 f B2d~ $ J Mt dz = 
0 0 t 

or 
;\ 2 1 1 

cf s dz)~ 5 A~ M 
0 t 

(222) and (224) give 

¾ 
M 3/2 

¾ A 2 < t A2 
ReT 

or 

M > Re2/3 T2/3 
t 

C222) 

(223) 

(224) 

(225) 

(226) 

It can be shown , that equation (226) constrains the as sumption t hat 

A< zv. Hence, t he case for MtA < 1 and E < G need not be considered. 

Now t he case A> z must be determined. From equat i ons (145), 
V 

(147) , and (159), the fol wing can be derived: 

1 
A A 2 V V 2 /1. f ( dz < (1 X Z = V V ) = - <V V ) > 

0 X Z 
X Z 

< (1 -
Mt - 8 2 <82> - 1 (227) = M - 1) > = 

(Mt -1l t 



69 

Then by substituting equations (178) and (227) into (182), 

18 
<! 25 Re2/3 

Equat i ons (195) and (228) give 

(M -1)2/3 
t 

( ')2 1/3 < V > 
X 

( , ) 2 1/ 3 < V > 
z 

(228) 

<S
2

> - 1 18 2213 2 Ra (Nu-l))2/3 2! - --- (M - <S > + --- (229) 
(M -l)8/3 25 Re2/3 t Re2Pr2 

t 

or 

(230) 

It is easy to determine that the right hand side of equation (230) 

attains its maximum at 

3Ra 3Mt + 2 2 (Nu-1) + 2 
2 Re Pr <S > = ----------5 (231) 

and equation (230) becomes 

8/3 5113 
CM -1) < -- (M -1 + t - 6 t 

1/3 
= _5_ (M -1)5/3 T5/3 Re2/3 

6 t (232) 

or 
51/3 5/3 2/3 

M -1 < -- T Re t - 6 (233) 
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3. 3 . 2 Upper bound on heat flux 

The procedures for determining the upper bounds on heat flux are 

simil iar to those in 3.3.1. Agai n ~he case for A < z8 must be f ound. 

From equat ion ( 89), the f ol lowing is obtained. 

or 

A 
f Nu-r A 

Nu-1 dz 
0 

1 A 
Nu - , f.0 r dz , 3/2 5 3/2 I\ /\ 2: 2 z 8 __ N_u ___ l __ _ 

(180) and (235) give 

1 A 
Nu - - r f d z A Jo 

2 ~ 2 ~ RePr<(S ' ) > <(v') > z 

Substit ut e (200) i nto (236) gives 

Since 

lrdz 
0 

½ l A A 

Nu - ---i; f rdz 
ANu 2 0 

2 2 ½ (MtRe Pr + Ra (Nu-1) ) (1 

k A 2 l 
S A 2 

(/ r dz )~ 
0 

(234) 

(235) 

(236) 

(237) 

(238) 
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The substitution of (238) into (237), produces the following results: 

(239) 

First the case with ANu ~ 1 is investigated. Accordingly (239) 

can be rewritten as 

.. 
1 2 ~ <f > 2 

(240) 

I t is easy to determine that the function on the right hand side of 

equation (240) attains its minimum at 

and equation (240) becomes 

2 Nu 
<f > = -2 

or 

52/ 3 Nul/3 2 2 -1/3 A~ -2- (MtRe Pr + Ra(Nu-1)) 

(185) and (243) give 

9 5213 1/3 2 2 -1/3 
fJ > Io -2- Nu (MtRe Pr + Ra (Nu- 1)) 

(241) 

(242) 

(243) 
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Substitute (244) in o 167); then 

Nu - 1 < -
2-0----,.-

9 X s213 

2 2 
MtRe Pr l/3 (---+ Ra) Nu- 1 (245) 

For the case, ANu s 1 , equat i on (239) may be written as the 

fo llowing: 

2A 3/ 2 2 2 k 2 ½ Nu~ 5 (MtRe Pr + Ra(Nu-1 )) 2 (Nu - <f >) 

where 
2 2 k 1 

E = [Ra(Nu-) + MtRe Pr ] 2 u 

In the case where G < E , equation (246) becomes 

or 

2 2 7 Mt 2 2 k ½ (Nu-1) s N :S 5 [Nu-l Re Pr + Ra]2
( u-1) 

Then the final form is 

(Nu-) 
M 

t R 2P 2 + Ra]l/3 Nu- e r 

(246) 

(247) 

(248) 

(249) 

(250) 

(251) 
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In the case where G > E , by definition 

(252) 

or 

(253) 

The equation (146) gives 

(254) 

or 

(255) 

Equations (253) and (255) give 

N 2 Mt 2 2 ½ __ u_ > (Ra + Nu-l Re Pr ) · {256) 
(Nu-1J2 

Equation (256) constrains the assumption that . A < z8 in the same way 

as equation (226). Hence the case for NuA < 1 and E < G need not 

be considered. 

The final stage of this investigation is to determine the upper 

bound for the case . A ~ z0 . From equations (146), (148) and (166), 
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f
l A A 2 A n = (1 - ev) dz 

0 z 

< (1 
evz 2 

= - --) > <6 > z 

= < ( I _ Nu-r)2> 
Nu-1 

<r2> - 1 =----
(Nu-1)2 

n en by substituting (180) and (257) into (184) 

(200) and (258) give 

(Nu-1) 8/ 3 ~ ~ (<r2> - l)(MtRe2Pr 2 + Ra(Nu-l))I/3 
18 

(257) 

(258) 

(259) 

It can easily be determined that the right-hand side of equation (259) 

at t ains its maximum at <r2> 3Nu+l =-4-

and equation (259) becomes 

(260) 
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M Re 2Pr 2 
25 t 

(Nu-1) $ -----:8;:;-;/~3 ( Nu-1 
6 • 2 

) 1/3 + Ra (262) 
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3.3.3 Absolute upper bounds 

The upper botmds on heat and momentum flux for different cases have 

been shown in equations (214), (221), (233), (244,), (251), and (262). 

Therefore it is easy to determine that (214) and (251) are the governing 

inequalities for finding absolute upper botmds on heat and momentum 

fl in t he case where the Reynol ds member is relatively small (say, 

Re< 100). On the other hand, (221) and (251) are the chosen inequalities 

for the larger Reynolds number. These implicit equations (221) and 

(251) can be solved numerically as shown in Figures (llA) throught (110) . 

Nickerson (1970) derived a set of inequilities to express the upper 

botmds on heat and momentum flux for the same problem. However, during 

the derivation, an additional "single horizontal wave number" assumption 

was made as Howard (1963) suggested. This assumption is a valid first 

approximation for a range of Rayleigh numbers; see Busse (1968). Howard 

assumed that the extreme was satisfied by a single separable eigenvalue 

or wave number; i.e., 

v = W (z) exp [i(k x + k y)] 
Z X y 

8 = 0 (z) exp [i(k x + k y)] 
X y 

Based on equations (263) and (264), Nickerson fotmd: 

M - 1 < - ~3/ 4 (3 + 8 ~/Re) t 36 

Nu _ l < ~ [~-3/8 ,-3/8 
16 

+ 45l ]-1 
Pr2~374 (12Re + 32 ~) 

(263) 

(264) 

(265) 

(266) 
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where 

~ = [ 
2 

30 
Pr (3Re + 8~) 

] 8/3 [ 135 ]11/3 
121(7~-3Re) (267) 

135Ra '¥ = --,---,..--~ 121 (7~- 3Re) (268) 

The solution of equations (265) and (266) are shown in Figures 

(12A) ~ (12C). The patterns resulting from these two methods are quite 

similar; however, the quantity of previous results were smaller (about 

one half) than the recent one. Since the experimental data are consider-

ably limi ted now, whether the equations (265) and (266) are also good 

for the larger Rayleigh number cannot be determined until more data 

becomes available. At the present time both methods satisfy the 

numerical experimental data shown in Tables (6) and (7). 

Three special cases can be derived from equations (214), (221) and 

(251). If the Reynolds number is set at zero, then the upper bound on 

heat flux for turbulent convection within two parallel plates can be 

fotmd (from equation (251)) as follows: 

Nu - 1 ~ 1.251 Ral/ 3 

Since a great quantity of laboratory experimental data are 

avail able, t he details of equat ion (269) will be discussed 

in 3.4. 

(269) 

The upper bound on momentum flux for plane Couette flow (no 

convection) can be determined by sett ing Ra= 0 in equation (221). 

M - 1 ~ 1.129 Re2/ 3 
t (270) 
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According to Nickerson (1973), the coefficient 1.129 can be cut down 

to 0.63 (see Equation (140)) if the symmetrical property of disturbance 

in the vertical direction are used during analysis. Nickerson (1973) 

claimed that the appearance of a two-thirds power law for turbulent plane 

Couette flow should not be surprised since previous analogies show that 

the Rayleigh number in the convection problem corresponds to the square 

of the Reynolds number in the plane Couette flow problem. Hence, a 

Nusselt number proportional to the one-third power of the Rayleigh 

number might be expected to correspond to a momentum number proportional 

to the two-thir?s power of the Reynolds number. 

The third case relates to the larger Reynolds and Rayleigh numbers 

(Re~ l0Ra ~ 104) which might be applied to the atmosphere in the real 

world. From Figures (llA) through (11D), it can be determined that both 

the (Nu-1) and (Mt-1) are independent of the Rayleigh number and 

proportional to the two- t hirds power of the Reynolds number for larger 

Re and Ra$ 0 .1 Re . This gives 

Mt - 1 S 1.02 Re213 
(271) 

Nu - 1 < 1.13 Re213 
(272) 
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3.4 The Upper Botmd on Heat Flux in Turbulence Convection 

The study of turbulent thermal convection has been concerned with 

the transport of heat through fluid. In these studies the heat transfer 

can usually be expressed in the form of the following power law: 

Nu = c Rap Prq = e Rap (273) 

The experimental values of the constants c  ,  p  , and q in equation 

(273), as reported by various investigators, were summarized by Lindberg 

(1970); the details are shown in Table 8. Which indicates that the 

effect of the Prandtl number is small, and also the value of p is 

close to 1/3 for all investigations. These significant conclusions 

can also be found in our upper botmd equation (Equation 269). The 

"one-third-power law" in equation (269) plays an important roll in the 

upper-botmd analysis since it follows the experimental results. If 

an upper-botmd equation does not follow the "one-third-power-law," 

it can easily be ascertained that the following two cases will occur. 

Where p is smaller than 1/3, the predicted upper bound will not 

cover the actual heat flux if the Rayleigh number is very high. On 

the other hand, the predicted value is too high to be the effective 

upper botmd for the high Rayleigh number if q is larger than 1/3 

For example, results derived by Busse (1969) and Howard (1963) show 

Nu -1 < 1 Ra~ 
-✓1  

Nu - 1 < 1 Ra3/8 

(248) 
318 

(139) 

(137) 

Thus it can easily be determined that the predicted values from equation 

(136) and (138) are much larger than the value from equation (269) for 



80 

11 Ra> 10 ; even though the coefficients in (136) and (138) are much 

smaller than in (269). Note, the heat flux for the larger Rayleigh 

number (Ra> 1010) is the preferable case to be predicted since it 

actually occurs in the atmosphere, but it is almost impossible to do 

the experimentation in the laboratory. 

Therefore, equation (269) is favorable because a) no additional 

assumption is necessary; and b) it follows the "one-third-power law." 

• 
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Chapter IV 

CONCLUSIONS 

In this paper an effort has been made to understand the mechanism 

of plane Couette flow with a negative temperature gradient. Velocity 

profile, temperature profile, momentum flux, and heat flux were 

investigated. For the stable flow, both velocity and temperature 

profiles keep linear distribution; and the momentum and the heat 

flux of the flow are unity. The instability of fluid under various 

conditions was first examined to distinguish the state of the flow 

by utilizing the linear and nonlinear numerical models. The results 

confirm that constant shear has a stabilizing effect on the 

disturbances. However, the critical Rayleigh number for longitudinal 

roll always remains constant (1707.762) no matter how large a shear 

is present. Also it was shown that the neutral Rayleigh numbers, 

found from linear and nonlinear models, are almost identical for 

non-longitudinal rolls, but quite different for longitudinal 

rolls. 

Then a nonlinear numerical model was generated to predict and 

investigate the flux and the profiles for turbulent flow within a 

certain range of Reynolds numbers (Re.::_ 500) and Rayleigh numbers 

(Ra .::_ 500,000). The variation on vertical profiles of mean velocity 

and temperature was discussed. Also the heat and momentum flux 

under various conditions were calculated. 

Since all numerical studies for turbulent flow are for 

relat ively small Reynolds numbers and large Rayleigh numbers, the 

convection characteristic dominates the flow motion. Thus the following 
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results are found: a) Heat flux and momentum flux are linearly 

correlated; b) Both heat and momentum flux increase with the Rayleigh 

number, but decrease with an increasing wave angle; c) Heat flux 

increases as the Reynolds number decreases; d) Heat flux approximately 

foll ows t he "one-thirds power law" t o the Rayleigh number and e) Heat 

f lux attains its maximum at a = 0 (longitudinal roll). The 

r esults also show the momentum flux cannot balance for non-longitudinal 

roll if the Rayleigh number is large; hence, the perturbation with a 

l arger wave angle (a F 0) can exist only at small Rayleigh numbers 

for a certain Reynolds number. The above conc l usion confirms Chandra's 

(1938) laboratory results and Kuo's (1963) cloud-form assumptions 

t hat the preferred mode of perturbation is a roll-type convection 

(a = O). 

The prediction of heat and momentum flux for larger Reynolds 

numbers and Rayleigh number s is still difficult with numerical technique; 

i t is r easonable to determine the upper bound on flux to describe 

the fluid field. Hence, a theor et ical approach based on Malkus' 

upper bound hypothesis was adopted to derive upper bounds. The upper 

bounds on eat and momentum flux for heated plane Couette flow are 

derived. Thr ee special cases can be identified from present upper 

bounds. It was found t hat the upper bound on heat fl ux is pr opor-

t ional to one-thirds power of the Ray eigh number for pure t r bul ent 

convection ; t he upper bound on momentum f l ux was proportional to the 

t wo- thirds power of the Reynolds number f or plane Couette flow (no heat). 

In addit i on these results show that both upper bound are independent 

of the Rayleigh number, but pr oport ional to t he t wo-thirds power of 
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the Reynolds number, if the Reynolds number is ten times the Rayleigh 

number and both are _larger than 10,000. 
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Appendix I 

GALERKIN METHOD 

The Galerkin method proposed by B.G. Galerkin in 191$ , is used 

t o find the approximate solution for the ordinary differential equation, 

partial differential equation, or integral equation. This method is 

especial ly convenient for boundary-value problems. If u is the 

solution of the linear equation L(u) = f with corresponding boundary 

condition, then theoretically u can be expanded as the series form 

of 
00 

u(x,y,z) = l a .Q.(x,y,z) 
i=l ii 

(Al) 

Here Q1 is chosen to satisfy the boundary conditions and also is 

l i nearly independent. The partial sum of Eq. Al can be written as 

N 
u = I 

n i =l 
a.Q . 

1 1 

In order that u be n 
necessary t hat R(u) n 
requirement, if R(u) n 

(A2) 

the exact so ution of the given equat ion , it is 

= L(u )-f be identically equal to zero . This n 
is consider ed continuous, is equivalent to the 

requirement of t he orthogonality of the expression 

function s of the system Qk, k = 1 , N; or 

R(u) n to all the 

Thus , i f Eq. A3 holds, then 

Lim R(u) = 0 
N-+-ai n 

Q*dV = 0 k = 1,N 
k (A3) 

(A4 ) 

which can be proven as follows. Now let n(x, y , z) be an arbitrary 

funct ion satisfying the continuity and homogeneous boundary condit i ons. 
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then n can be expressed as 

and 

or 

n(x,y,z) = l ckQ* 
k=l k 

fvLim R(u )n(x,y,z)dV = 
N+<x> n 

fvLim R(u) l ckQk*dV 
N-+<x> n k=l 

= Lim 
N+<x> 

VLim R(u) (x,y,z)dV = O 
N+<x> n 

for arbitrary n , so that it implies 

Lim R(u) = 0 
N+<x> n 

(AS) 

(A6) 

(A6) 

This is the basic ideal for Galerkin method. Here Qk is the complex 

conjugate of Qk . From Eqs. A2 and A3, 

N N 
fvCL( I a.Q . ) - f) Qk dV = fvLC I a.Q.)Qkdv - fvfQkdV 

i=l ii i=l ii 

= 0 k = l,N 

Since Q. is the known function, a system of simultaneous linear 
1 

(A7) 

equations for a . can be obtained. If <u v> is the inner product of 
l 

u and v, then Eq. 7 can be rewritten as: 
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or with the matrix form 

[C.k] [a.J 
1 1 

= i = 1,N k = 1,N (AB) 

; Fk 7 will be the zero vector if the operator L is homogeneous. Now 
l.. J 

the coefficients a. 's can be determined from Eq. 7 and the approximate 
1 

so lution will be 

u(x,y,z) = u = Ia.Q. n 1 1 

In general, N is less than 10. 

Before solving Eqs. 34-36, an example is given. Solve the ordinary 

differential equation. 

y" + y = X 

with the boundary conditions 

y(O) = y(l) = 0 

Solution: The exact solution for this problem is y = sin(x)/sin(l)-x 

Now this problem is solved numerically with the Galerkin 

method. Let 
n-1 +a X ) n 

which satisfies the boundary conditions 
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, ~ (. i-1 (i+l)xi) Yn = Lai ix -

L (y) _ f = y" + y _ x = ~ ( ( · 2 . ) i-1 ( . 2 • ) i-1 lai l. -l. X - l +l X + 

+ i i+l) X - X - X = 0 

then from Eq. A3 

/
1

(La. ((i2-i)xi-2-
o l 

( .2 ") i-1 i i+l l +l X + X - X ) - X)• 

k = l,N 

Take N = 2 for instance, 

l 2 2 3 2 J (a1(-2+x-x) + a2 (2-6x+x -x )-x)(x-x )dx = 0 
0 

l 2 2 3 2 3 J (a1(-2+x-x) + a2 (2-6x_x -x )-x)(x -x )dx = 0 
0 

or a1 = 71/369 and a2 = 7/41 

Hence r 2 = x(l-x)(71/369+7x/41); 

with the same procedure 

y1 = x(l-x)5/18 

The results are as follows: 

s Y1 Y2 Ye~act 
0,25 0.0521 0.0440 0.0440 

0.50 0.0693 0.0694 0.0698 

0.75 0.0520 0.0600 0.0600 
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In orde1· t.c, SC'lve Eqs. 50-52 numerically by the Galerkin method, 

the two variables W(z) and 0(z) are expanded in series form as in 

Eqs. 67 and 68 which satisfy the boundary conditions (Eq. 52). Then 

from the principle of the Galerkin method, Eqs. 77 and 78 are established. 

Substituting Eqs. 67, 68,50 and 51 into Eqs . 77 and 78 and set cr = O, 

results in 
1/2 N 

J I {(Gn 
-1/2 n=l 

IT - H U") 8 n n 
2 - Rak L D} G dz= nn m 

1/2 N 
f I {-Rek ((G 11 -k2G )IT - Gn)An -1/2 n=l x n n 

B - Rak2M E }H dz= 0 n n n m 

0 m = 1,N (A9) 

2k2H 11 k4H) + (H - + n n n 

m = 1,N (Al0) 

1/2 N 
f r {L" n -1/2 n=l 

k2L )D + RePrk UM E - T'G A} L dz= 0 n n x nn nn m 

m = 1,N (All) 

1/2 N 
J I {-T'H B -RePrk UL D +(M11 -k2M )E} M dz= 0 -l/2 n=l n n x n n n n n m 

If we define 
1/2 

= f (G 
-1/2 n 

1/2 
C = f ((k2U + U")H -H"U) G dz 2mn _112 n n m 

1/2 
c3mn = l1;2Ln Gmdz 

1/2 _ 2- _ 
C = f ((U" + k U)G -UG") H dz 4mn n n m 

-1/2 

m = 1,N (A12) 
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1/2 
csmn = f (H -2k2

H11 + k4H) H dz 
-1/2 n n n m 

c6mn = J112
M H dz -1/2 n m 

C = /
112f 1 G L dz 7mn _112 n m 

C = f112 (L" - k2L) L dz 8mn _112 n n m 

C = J112ITM L dz 9mn _112 n m 

c10mn= J112f 1H M dz 
-1/2 nm 

1/2-c = f UL M dz llmn _112 n m 

C J112 (M" -k2M ) M dz 12mn _112 n _n rn 

Hence Eqs. A9-Al2 will be 

N 2 I (C1 A -Rek c2 B -Rak C D) = o rn = l,N (Al3) n=l mn n x nm n 3nm n 

N 2 I (C4mnRek A +C5 B -Rak c6 E) = O m = l,N (A14) n=l x n mn n mn n 

N 
l (-c7 A +c9 D +RePrk c9 E) = o rn = 1,N (AlS) n=l mn n rnn n x mn n 

N 
l (-C10nmB -RePrk c11 D +c12 E) = o rn = l,N (A16) n=l n x mn n rnn n 

The matrix form of Eqs. A13-Al6 are the same as Eq. 79 in 2.1. As 

previpusly stated, the detenninant is equal to zero indicating the state 
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of neutral stability, i.e •• 

F(a,k,Ra,Re,Pr) = 

The elementral matrix 

clmn 

X = Reksin(a)C4mn mn 

-C 7mn 

\J1 \J2 

X mn is defined as: 

-Reksin(a)C 2 mn 

CSmn 

0 

= 0 

2 Rak c3 mn 

0 

(81a) 

0 

2 -Rak c6mn 

c RePrksin(a)C 8mn 9mn 

' I 

I 
I 

0 -ClOmn -RePrksin(a)Cllmn C 12mn 
A trial and error method is used to solve Eq. 81a by setting certain 

value of a, k, Ra, Re and Pr in order to adjust the determinant to 

be zero. 

, . 
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Appendix II 

(Excerpted from Vest & Arpaci (1969)) 

It will now be proven that the real part of the wave speed, crr, 

must be zero if the solutions, W and 0 are of the form (67) or 

(68) , 

The equations and boundary conditions governing a small disturbance 

with the complex wave speed cr are: 

where 

2 - a RaK a - ikxRe [ (U - k) (W" 

e11 -k2e-wf1 -ikxRePr(U - i )a= O 
X 

1 1 1 8(:t 2) = W(,! 2) = W' (:!: 2) = 0 

u(z) = -z , 
To 1 

T(z) = t:iT - z - 2 

X 
(Bl) 

(B2) 

(B3) 

(B4) 

Equations (Bl) and (B2) are multiplied respectively by W* and 

0* , the conjugates of W and e , and integrated over (-·½ , + ½) . 
Suitable integrations by parts and utilization of conditions (B3) 

and (B4) yield: 

1/2 
f clw11 12 

+ 2k2 1w 1 12 
+ k41wl.2)dz + i k Re 

=1/2 X 

1/2 
{f ((U' + k2IT) lwl 2 - UW"W*)dz 
- 1/2 
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and 
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1/2 
-{112 cla 1 12 

+ k2 1al 2)dz + i 
1/2 2 k RePr{~ f lel dz 

X X -1/2 
1/2 

-Tilal 2)dz}-f WT1 8*dz = 0 
-1/2 

1/2 
J ( (U" + k2U) I W 12 - UW"W*) dz 
-1/2 

1/2 
= i J U(t " t - t "t )dz _112 o e e o 

1/2 1/2 
f SW*dz 
-1/2 

= f (T t + T t )dz _112 o e o o 

1/2 
f T'WS*dz 
-1/2 

1/2 
= J T' (t T +t T )dz _112 e e o o 

1/2 
f ifjaj 2dz = 0 
-1/2 

(86) 

(87) 

(88) 

(89) 

(810) 

Eqs. (B7)-(810) exist since by definition Je • Te• T' are even 

with respect to z • • and ~o. T
0

, U are odd functions. Using the 

results above, equations (BS) and (B6) can be rewritten in terms 

of their explicit real and imaginary parts. The imaginary parts of 

(BS) and (B6) are respectively: 

and 
1/2 2 RePrcrr f lel dz= 0 

-1/2 

(Bll) 

(B12) 
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Since both of these integrals are definite, it is necessary that 

(J = 0 r (B13) 
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Appendix I II 

Derivation of Equations 

Before deriving the equations which were used in the previous 

chapters, the following important theorems and identities are listed: 

A. Leibniz's theorem 

d b(c) b(c)a 
def f(x,c)dx = f ac f(x,c)dx 

a(c) a(c) 

db da 
+ f(b,c) de - f(a,c)dc 

if a and b are constants; 

d b ba 
def f(x,c)dx = f ac f(x,c)dx 

a a 

B. Vector identities 

2-+ -+ VA= V(V•A) -Vx(VxA) 
-t- -+ -+ -+ -t- -;t A•(VxB) = B•(VxA) -V•(AxH) 

-+ -+ -+ V• (~A) = (V~) •A + ~ (V•A) 
-r -+ -+ 1 -;t -+ -t-A • (B•V)A = - H • V(A •A) 

Cl. Prove 

2 

fff:q ( )dx dy dz 

= ~ ff f ( )dx dy dz = 0 aq 
From Eq. C2, 

q = x,y, or z 

Jf f :q( )dx dy dz= Jf:qf ( )dx dy dz 

= f :q Jf( )dx dy dz= :q Jff( )dx dy dz 

(Cl) 

(C2) 

(C3) 

(C4) 

(CS) 

(C6) 

(C7) 
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Since fffc )dx dy dz is no variation along x, y, and z . Where 

q one of the x, y, or z Hence 

:q I ff c )dx dy dz= 0 

By the shorthand notation (Eq. 30) 

cl <- ( clq 
cl )> = -<( clq )> = 0 

Similarily 

) = 0 

C2. Derivation of equation (21) 

The steady state equation of Eq. 3 

-+ 2 V•VT = KV T 

The horizontal average of Eq. C9 is 

Since 
0 

' 
-+ -+ -+ 
V•VT = 'v•VT - T('v•V) 

,o 

q = x, y, or z 

q = x, y, or z 

a= x, or y 

cl -- cl -- cl 
= clx (VxT) + cly (VYT) + az (VzT) 

= _£_.(V T) = cl (V e+v T) clz z clz z z 
0 

= 2-_ vs + a cv f) = ~ v e az z clz z clz z 
0 

-2- 2 2- 2-v T = v (f+e) = v T + v e 

= v2r = L f 
dz 2 

(C7) 

(CS) 

(C9) 

(Cl0) 
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then from Eq. ClO 

d (V 8) 
d2 

T dz =--:-2" z dz 

or 

s = vs - ~dT 
z dz 

By def inition of Nusselt number 

actual vertical heat flux Nu = ______________ .,,..,...._ 
pure conductive vertical heat flux 

s = KflT/D 

The dimensionless form of Eq. Cl2 is 

s t.U t.T V 8 t.T dT = -K dz z D 

or 

Nu RePr V 8 dT = - dz z 

C3. Derivation of equation (22) 

From steady-state form of Eq. 6 

+ + 
V•'i/V + 'i/rr -

8 = 0 

- a -+ 'i/rr = - rr k az 

Ra 
2 Re Pr 

(Cll) 

(21) 

(Cl6) 

(Cl 7) 

(Cl8) 
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2 - a2 ·•iv = _a - v = cut + v) 
az 2 az 2 

d2 - -r d 2 - . -t = - U 1 = - (Usina 1*) 
dz2 dz 2 

a2 - -+ 
+ --:-,: (U cosa j *) 

dz 

-+-+-+ -r-+ -r-+ 7 V•W = V•VV 1 + V•VV J + V•VV K 
X y Z 

= V• (Vi)! - y:€~ + 
-+ -r 

V • (V V) J y 
,~ 

_,,1' 

- v v-v r + v • cv V) 1: _ v /?.i t y Z / "Z 

cvv r _+ vv r + v 2 k) 
X Z y Z Z 

( (-U + ) -r -- -r V 2 -+k) V V 1 + V V J + z 
X Z y Z 

d (-- -r -- -r v 2 -+k) 
= dz v v 1 + v v J + z X Z y Z 

Substitut i on of Eqs. C17-C20 gives 

v v = constant y z 

2 
dvz d -
~ + dz ,r = const ant 

d 2tf dtf -- = - Rev v dz2 dz x z 

(C19) 

(C20) 
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or 

(Along x-axis) (22) 

Similarily, for (m,n, z) system, it gives 

Mom du s· Re = dz 1na V V m z (23) 

Mon du Re = dz cosa V V n z (24) 
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C4. Derivation of equation (26) 

Taking dot on Eq. 6 with perturbation velocity and then taking 

volume average on that gives: 

Since 

-av . -
at < V >  +  < V • 

-+ -+ -+ 
(V • (V•V) V > +  < v •Vn > 

Ra 
= < V  • 2 

Re Pr 

->- 1 ~ -+ 
8 K > +  - < V •V V > 

Re 

1) 

:?I 

< ~ •Vw > = < V •(wi) >  - < '>f'f--~v > 
/ 

<  V  • 
-+ 
8k > 

av 
< V •  - > at 

= V • < VTI > = 0 

= < V 8 > 
z 

av 

= < ve > 
z 

au -t-
= < V  •  - >  + at < V •  - l. > at 

1 a 
= I at < V  •  V > 

=.!_a -2 
2at<lvl >= 

+ <V au 
X at > 

~K' at 

~ 2-+ ~ 2~ ~ 2-7 
<V • V > = <  V  • V V > + <  V •VU l. > 

= < V  • [V(V•V) -Vx(VxV)] > +  < 

= < Vx(VxV) > 

V V
2U > 

X 

=  - < (VxV) • (VxV) -V • [V (VxV)] > 

=  - < (VxV) • (VxV) > 

-+-+ - -+ -

<  V  • (V • V) V >  = <  V  • (V • V) (U i +. V) > 

(C21) 

(C22) 

(C23) 

(C24) 

(C25) 
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= < V • 
+ 

(V • V)v > + < 
+ v (V•V) U > 

X 

1 = - < 2 
(V • V) I; 12 > + < V V dU > x z dz 

--dU 
= < VV -d > X Z Z 

Substitution of Eqs. C22-C26 into C21 gives 

a CK') at > + Ra < v0 > 
PrRe2 z 

1 
- - < Re 

~ 2 Iv x vi > 

CS. Derivat ion of equation (27) 

(C26) 

(26) 

Taking dot product on Eq. 6 with velocity and then volume average 

to that equation gives 

since 

+ 
< v . av 

at 
+ + + > + < V • (V • V) V > 

= Ra 
2 Re Pr 

< V • Sk > 

+ 
+ < V•V1r > 

1 
+ -Re 

+ 2+ < V•V V > 

+ + < V•V1r > = < V•(1rV)> 

+ = V• < 1rV > = 0 

+ + < V•Sk > = < V 8 > = < V 8 > z z 
+ + av 1 a + + .!. !__ < u2 a < V•- > = < V•V > = > + -< at 2 at 2 at at 

1 a a - a 
+ -- < v•v > = at(K) + -(K') 2 at at 

(C27) 

(C28) 

(C30) 

Uv > 
X 

(C31) 
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-+ 2-+ - -t 2 -+ ~ 2 -+ < V • V V > = < U 1 • V V > + < V • V V > 

= < IT v2 (U+v ) > - <Iv x ~ I 2 > 
X 

d2-u 2 - 2 
= < IT~>+< uv v · > - < lvxvl > 

dz.:: x 

- d 2u - 2 
= < u -::--z>-< lvxvl > 

dz 

<v • cv•v)v > = < ½ v • v 1v1 2 > 

(C32) 

= 0 (C33) 

Substitution of Equations C28-C33, and 26 into Eq . C27 gives 

aK -- du 1 - d2u --<vv -d >+-<U-> at x z z Re dz2 

From the theorem of integration by parts 

d2-u - dU- , 1/ 2 f d-U 2 f IT ~ dz = U dz - (-) dz 
dz -1/2 dz 

Substitution of Eq. C34 into Eq. C35 gives 

aK -= at 
--du < V V ..,.._ > 

x z dz 
+ _l_ d(U2) ll/2 

2Re dz 112 

(C34) 

(C35) 

(27) 



C6 Derivation of equation (33) 

From Equation 7 

aT + v. VT= _1_ v2T 
at RePr 

aT + <8 -> + <8 V  • VT>= 
at 

<8 aT <~> + <8 -> = at at 

110 

e  2 
<RePr 'v T> 

ae 
-:> 
at 

= ½ ae
2 
<-> = a 1 2 - <~8 > 
at at 

al' 
= 
at 

+ + + -
<8 V •VT>= <8(V • Ve) + e(V • VT)> 

<8V2T> 

 

= <½V . 

+ ½ <'v 
/ 

0 

= /r> + 

= <8'v . 'v8> 

2 
= -<Ivel > 

'v82> 

0 
,4 2 
y ve 

<ev2e> 

= <'v 

dT 
+ <8v -> 

z dz 

0 

-Iv  . V> = 
/ 

0 
• re> -<'v8 
/ 
/ 

(7) 

(32) 

(C36) 

dT 
= <8v -> 

z dz 

dT 
<8v -> 
z dz (C37) 

. 'v8> 

(C38) 
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Substitution of Equation (C36) through (C38) into (32) gives 

ar' dT -1 2 
~ + <e v z dz > = RePr <Ive I > (33) 
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Appendix IV 

Time-splitting Method 

In this section, the finite difference form for transport equations 

are derived by the time-splitting scheme. According to this scheme, 

t he i ntegrat ion of governing eq at ions are separated by two par ts. 

First the equation is i nt egrat ed along t hem-axis which is independent 

of z ; t hen it is integrated al ong the z-axis. Equation 109 becomes 

aP aP a2P 
c 2 ~ (D1) -= -V - + C1----z + at mam am am 

and 

a2P a (aP) avm aP 2 a2e 
at 2 = 

-V ---- + Cl _a_ caP) +C -- (D2) m .am at at am am2 at 2 amat 

Substitution of Eq. Dl into Eq . D2 gives 

avm aP 
-----+ at am 

2 ... 28 
C d cE) ca 

1 am2 at + 2 amat (D3) 

According to Taylor's expansion theory, P can be expanded with respect 

t o · t 

t +1-1 
P. k J , 

aP +-at It 2 It 2 
. ~t + a ~ . ~~ + O(~t 3) 
J,k at J ,k 

(D4) 
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Equations D1, D2 and D4 give 

t+½ t V aP Ii 6t a2P Ii 6t P. k = P. k m am + Cl 7 J , J , j,k am j,k 

~,i 2 a2P Ii 6t (D3) + c2 am . k M + V 7 . k 2 J , m am J , 

+ (High order terms) (DS) 

or 
i+½ ~ i llt i i i 

P. k = P. k - 2Am (V ). k(P. 1 k-P. 1 k) J, J, o mJ, J+, J-, 

+ [ .!_ (6t (V ) ~ ) 2 C 6t ] (P~ 1 k 
2 6m m J,k + 1 (llm)2 J+, 

- 2 Pi + Pt ) + ~ C (Qt -Qt ) (125) 
j , k j -1, k 26m 2 j + 1, k j -1, k 

Similarily, it can be integrated along z=axis direction only. 

Equation (109) becomes 

and 

avz aP 
--+ at az 

avz aP 
- --+ at az 

(06) 

(D7) 



114 

as in equation D4, it gives 

t+½ 2 t+k 
pt+l = pt+½ + ~, lit + ~, 2 tit + 0(6t3) (D8) 

j ,k j,k at j,k at2 j,k 2 

Substitute D6 and D7 into D8 

or 

Pt+l t+½ = P. k j,k J J 

2 a2P + V -
z az2 

Pt+l ~ t+½ 
j,k = Pj,k 

V aP It+½ a2P j t+½ 
flt + c1 - 2 . z az j,k az J,k 

It+½ flt 2 
(high order terms) --+ 2 

j,k 

6t (V )~+½ 
2¢.z ZJ,k 

(Pt+½ _ pt+½ ) 
j,k+l j,k-1 

+ [.!_ (flt (V )~+½ ) + flt Cl] (Pt+½ 
2 flz z J ,k (flz)2 j ,k+l 

lit 

(D9) 

(126) 
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Figure 1 A vertical cross section of the 
' model for thermal convection in 
the presence of vertical shear. 
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Figure 3 Neutral stability curves for various 
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TABLES 



Run Source t.u t.T Depth Width B=W/D Re Ra Type of Rolls · 
(cm/sec) (°C) (cm) (cm) 

1 Dassanayake 0.5 40 1.0 30.48 30.48 3.19 4132 .45 Trans-Longit 

2 Brunt 10. 58 0.8 30.48 38.1 51. 02 3067.93 Longitudinal 

3 Brunt 9. 90 0.8 30.48 38.1 45.92 4760.58 Transverse 

4 Chandra 1. 7 90 0.8 30.48 38.1 8.67 4760.58 Trans-Longit 

5 Chandra 2.3 103 0.7 30.48 43.54 10.27 3649.88 Polyg-Longit 

6 Chandra 10. 29 1.6 30.48 19.05 102.04 12271. 72 Longitudinal 
I-' 
(.;l 

7 Chandra 2.3 47 1.6 30.48 19.05 23.47 19888.6 No Longitud. -...J 

8. Chandra 1. 3 13 1.6 30.48 19.05 13.27 5501.1 Longitudinal 

9 Chandra 6. 100 1.6 30.48 19.05 61. 22 42316.29 Longitudinal 

10 Chandra 6. 100 0.7 30.48 43.54 26.79 3543.57 Longitudinal 

11 Chandra 2.3 91 0.6 30.48 50.8 11. 73 2030.69 Longitudinal 

Table I Experimental data for Heated Plane Couette Flow 



Ro Sou rco 

Prosent Data 
0 

G 6 M 

20 Present Data 

so Present Data 

100 Present Data 

Present Data 
160 

G II M 

Present Data 
320 

G Ii M 

500 Presont Data 

Wave Number a 

0.4 0,8 1. 2 1.6 2.0 2 .4 2.8 3.2 

32393 8688 4324 2830 2177 1869 1735 1709 .5 

324 32 8680 4328 2832 2176 1864 1736 1712 

8786 4427 2939 2297 2002 1889 1890 

4965 3519 2940 2738 2756 2939 

34774 11139 6919 5682 5455 5818 6721 8306 

384!')2 15001 11139 10639 11772 14544 20072 

38712 15200 11336 10840 12000 14816 20432 

56865 34783 35156 43698 61892 

57704 35496 35808 44384 62744 

925917 77377 97101 140368 

Table 2 Values of Rayleigh number for neutral stability obtained 
from linear stability theory [G & M refers to the values 
of Rayleigh number obtained from the data of Gallagher 
and Mercer (1965)]. 

3.6 4,0 

17 <.,2 1879 

}7(,0 1880 

l ~176 2138 
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00 



Reynolds 
Number 0 

Critical 
Ra 1707.784 

Correspondina 
Wave Number 3.11 

20 so 100 160 320 

1877 .14 2723.02 S446.81 10589.993 3377S.69 

2.99 2.56 1.93 l.S02 

Table 3 Critical Rayleigh Number with its 
corresponding Reynolds Number for 
transverse roll (see also in Figure 
2). 

0 . 973 

S00 

76461.9 

o. 704 



Rayleigh 
Number 

Critical 
Re 

Corresponding 
Wave Number 

140 

2,000 5,000 10,000 

26.3604 93.3609 154.125 

2.91 2.00 1.53 

Table 4 Critical Reynolds Number with its 
corresponding Rayleigh Number for 
transverse roll (see also in Figure 
3). 

50,000 

397.598 

0.84 



Re 

160 

320 

141 

Nonlinear 
Wave 

Length a Linear Present Lipp's 

4.0 0 2901 1725 

'IT/8 3933 3635 

'IT/4 6563 6582 

3"IT /8 9388 9429 

'IT/2 10614 10660 10400 

3.0 'IT/2 12261 12267 

6.0 'IT/2 11990 12217 

6.0 0 5412 2200 

3"IT/8 29368 29760 

'IT/2 33933 34354 33000 

Table 5. Comparison of neutra l Rayleigh number 
from linear and nonlinear method [Lipp's 
refers the data from Lipp's (1971) paper]. 
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Heat Flux 

Wave Angle 
Ra 0 TT/8 TT/ 4 3TT/8 TT / 2 

20,000 3.310 3.203 2.684 2.658 2.768 

50,000 4,569 4,605 4.386 3.445 3.507 

100,000 5.721 5.336 5.114 4 .127 4 .910 

200,000 7.232 6.669 6.427 6.334 5. 018 

300,000 7.5106 7 .112 6.987 

Momentum Flux 

! Wave Angle 

Ra 0 TT/8 TT/4 3TT/8 TT/2 
I 

' ' I 20,000 -3.882 -3. 211 -1. 782 -1.023 -0.594 I 
I 
I 
' 50,000 -5.353 -4.680 -2.868 -0.781 U.B. ' 
i 
i 100,000 -6.704 -5.207 -2.928 U.B. U.B. 
I 
I 200,000 -8.462 
! 

-6.244 -3.661 U.B. U.B. 
i 300,000 -6.759 U.B. U.B. --- ---

(U.B. refers to unbalanced momentum flux) 

Table 6. Heat flux and momentum flux at various 
wave angles for Re= 160 and wavelenth 
= 4. 



Ct. 

I 
I 0 I 

rr/2 
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Reynolds Number 

Rayleigh 160 320 500 
Number Wave Number 

4. 6. 9. 
! 

5,000 1.765 1.0 1.0 i 
I 
I 
I 

11,000 I 2.679 2.691 1. 283i 

I I 
! 

50,000 4.569 4.290 4.215 

100,000 5. 721 5.367 4.486 

200,000 7.232 5.706 I 5.535, 

300,000 6.696 

500,000 9.975 9.406 

5,000 1.0 1.0 1.0 

10,000 1.0 1.0 1.0 

20,000 2.768 1.0 1.0 

50,000 3.507 1.0 1.0 

100,000 4.910 3.524 1.0 I 

l 
i 

200,000 5.018 4.062 3.431 

500,000 7.015 5.133 

Table 7. Nusselt number for various 
Reynolds number and Rayleigh 
number at a= 0 and a= rr/2. 



Investigator 

O'Toole & 
Silveston 

Mull & 
Reiher 

Schmidt & 
Silveston 

Globe & 
Dropkin 

Di Federico & 
Foraboschi 

Malkus 

Somerscles & 
Gasda 

Year 

1961 

1930 

1959 

1959 

1966 

1954a 

1969 
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Range of Ra 
Examined 

105 - 109 

105 - 106 

105 - 107 

105 - 108 

104 - 107 

105 - 109 

105 - 108 

C p 

.104 . 305 

.068 .333 

.10 . 310 

.069 .333 

.092 .333 

.052 . 325 

.196 .283 

Table 8 Experimental values of the constants 
in equation (273) as reported by 
various investigators. 

q 

.084 

0 

.OS 

.074 

0 

0 

0 
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