
THESIS

MOTION SEGMENTATION FOR FEATURE ASSOCIATION

Submitted by

Weston Pace

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2010

Master’s Committee:

Department Chair: Darrel Whitley

Advisor: Bruce Draper

Ross Beveridge
Stephen Hayne

ABSTRACT

MOTION SEGMENTATION FOR FEATURE ASSOCIATION

In a feature based system physical objects are represented as spatial groups of

features. Systems which hope to operate on objects must make associations between

features that belong on the same physical object. This paper segments interest points in

individual frames of an image sequence using motion models based on image transfor-

mations. Experiments evaluate the associations made by these segments against ground

truth data. We give an improved version of the existing algorithm which can lead to

easier threshold selection in some systems although the ideal threshold is shown to de-

pend on the goal of the segmentation. Lastly we show that the underlying motion of the

object is not the only factor in determining the performance of the segmentation.

ii

ACKNOWLEDGEMENTS

This thesis has been a journey of considerable learning and effort. It is certainly a

journey I would not have even begun, much less finished, were it not for the support of

numerous family, friends, teachers, and mentors.

First, I’d like to thank my wife Christie Pace, who stuck with me from the start

to the finish. I should point out that stress, exhaustion, and worry do not make me

a pleasant person to live with. I would have given up long ago were it not for her

encouragement. I want to also thank the rest of my family, especially my parents Rod

and Nina pace. They spent countless years raising me and are the foundation of who

I am today. They gracefully accepted my decision to take a break from this thesis yet

never stopped encouraging me to finish it.

While my family provided emotional and spiritual support I want to also thank those

who provided educational support. First and foremost I’d like to thank my advisor, Dr.

Bruce Draper, for encouraging me to begin research in the first place. In addition, he

showed how to do research correctly and this thesis is based on countless hours of his

guidance and advice. I’d also like to thank the rest of my committee, Dr. Ross Beveridge

and Dr. Stephen Hayne for their support of this work.

I also want to thank Elaine Regelson who has no equal when it comes to giving smart

freshmen motivation and keeping them out of trouble. My thanks goes out to the rest

of the Colorado State University teaching staff, in particular, Dr. Wim Bohm, Dr. Ross

McConnell and Dr. Sanjay Rajopadhye.

I am extremely grateful for Robert Weant and Alan Copeland who helped label the

ground truth data used in this work.

Finally, I want to thank my friends in the trenches, Nick Parrish, Stephen DiBenedetto

iii

and Douglas Moore, as well as the entire CSU robot club. Together they provided emo-

tional support through my entire time at CSU. I would also like to thank Lutheran Cam-

pus Ministries for providing spiritual support as I worked on this thesis.

iv

DEDICATION

This thesis is dedicated to my current and future family.

v

TABLE OF CONTENTS

1 Introduction 1

1.1 Feature Grouping . 1

1.2 Image Sequence Analysis . 3

1.3 Percepts from Motion . 3

2 Background 5

2.1 Feature Detection . 5

2.1.1 Feature Descriptors . 6

2.1.2 Feature Association . 7

2.2 Tracking . 8

2.3 Structure from Motion . 9

2.4 Multibody Structure from Motion . 10

2.5 Motion Segmentation for Percept Learning 11

2.6 SeeAsYou . 13

3 Methods 14

3.1 Tracking . 14

3.1.1 Feature Location Prediction . 15

3.1.2 Feature Location Confirmation . 15

3.2 Motion Segmentation . 16

3.2.1 Model interpolation . 17

3.2.2 RANSAC model selection . 18

3.2.3 Normalized projection error . 20

vi

4 Experiments 22

4.1 Overview . 22

4.2 Data . 22

4.2.1 Data Fitness . 25

4.3 Results . 32

4.3.1 Feature Association . 32

4.3.2 Motion Models . 37

4.3.3 Object Performance . 39

4.3.4 Object class performance . 41

4.3.5 Effect of fitness on performance . 41

4.3.6 Normalized projection error . 43

5 Conclusions 46

5.1 Future Work . 47

References 49

vii

LIST OF FIGURES

3.1 k values . 19

4.1 Sample images for each scene . 24

4.2 Fitness vs. average distance . 29

4.3 Normalized fitness error for each object 31

4.4 Normalized fitness by object type . 32

4.5 Fitness vs. number of IPs . 33

4.6 Example segmentations at different inlier thresholds 35

4.7 Examples scores at several inlier thresholds 36

4.8 Average scores across all scenes in the image 37

4.9 Detailed breakdown of the affine model 38

4.10 Performance by object . 41

4.11 Performance by object class . 42

4.12 Fitness vs. Performance . 43

4.13 Performance by object (normalized error) 44

4.14 Raw error vs. normalized error . 45

viii

LIST OF TABLES

4.1 A breakdown of the characteristics of individual scenes 23

4.2 Breakdown of individual objects . 26

4.3 Projection error for individual objects . 28

ix

Chapter 1

Introduction

Automatic analysis of image sequences is a complex task that quickly becomes compu-

tationally intractable. One popular approach to this problem is to locate key features[Low04]

in an image to reduce the amount of information that needs to be analyzed. Unfortu-

nately, these methods create a new challenge - piecing the image back together. This

thesis studies the use of motion information extracted from tracked image features to

create robust and meaningful associations between features.

Recent works have employed a random search for motion using models based on

image transformations. That particular approach is studied in more detail in this work.

Parameters in the algorithm are studied and a new measure is presented which leads

to a more effective threshold selection. It is shown that correct associations can be

made through motion information although most of the associations are formed between

background points. Furthermore it is demonstrated that this distinction is not because

background objects are less error prone or somehow more describable by motion. These

findings provide a base for the study of motion for feature grouping.

1.1 Feature Grouping

Discovering relationships among features is a critical component for any feature based

vision system intended to accomplish complex tasks. These relationships can be used

1

to create percepts. Percepts are a representation of associations between physical struc-

tures. Percepts provide the user with predictive information that can help other tasks

such as feature detection, anomaly detection, occlusion recognition, and location recog-

nition. Percepts can also be used as building blocks for higher level problems including

object recognition, visual information retrieval, and complex navigation. Percepts can

be formed from features through feature associations

Associations allow us to express a unique relationship amongst a group of features.

Spatial associations are associations between features in the same image while tem-

poral associations associate features in different images. A common type of temporal

association is a feature descriptor. Feature descriptors categorize features based on the

structure of the region surrounding the feature. Feature descriptors typically represent

a particular viewpoint of a physical structure and so a percept can be expressed as an

association between feature descriptors. For example, a face percept might consist of

feature descriptors for the eye, nose, and mouth.

Since an association between features could indicate an association between the

underlying feature descriptor one technique for grouping feature descriptors is to find

spatial associations. Several algorithms already exist for detecting spatial associations.

Some examples are the use of shape models to find common constellations of features[FFFP04],

color and texture based models which group features through traditional segmentation

algorithms[SWRC06], and cooccurrence models which group features that occur at the

same point in time[SZ03].

One characteristic of the previous methods is that they all operate on a snapshot

or collection of snapshots, images that need no explicit relationship to each other. In

reality, images are often given in image sequences provided from a camera or movie. In

such situations there exists a motion relationship between the images that can be used

as an additional source of information. This work examines the effectiveness of that

motion information for forming spatial feature associations.

2

1.2 Image Sequence Analysis

There is a large body of work which studies the extraction of motion-related information

from image sequences. Some typical motion tasks are tracking the movement of objects

in order to predict their future location[LK81], identifying anomalous motion patterns

for intrusion detection[CBK09], and attempting to extract three dimensional structure

from 2D representations of objects[Ull79].

These tasks work by creating some kind of model that describes the underlying mo-

tion. There are three general categories of motion models[LGF10]. Trajectory based

models attempt to describe the motion of a single point through time. Point based track-

ers with linear filters are an example of a trajectory model. Transformation based mod-

els describe the motion of all points at a single point in time. Transformations are often

used in tasks which attempt to calculate structure from motion. The third model group

is flow based models which describe the motion of all points over time. Flow models

are complex and typically nonlinear unless certain constraints are made.

With the rising popularity of feature extraction there now exist a number of tech-

niques that fit tracked features into these models. Feature based motion models are used

to extract independently moving objects, or clusters of points, from video sequences and

assign a motion model to each object. These groups can provide us with a motion based

segmentation of each frame of a video sequence. This segmentation groups features

which move similarly, independent of the camera motion.

1.3 Percepts from Motion

The purpose of this work is to study the suitability of image sequence analysis for the

task of percept formation. By tracking features, feature velocity information is obtained.

Transformation based models are then used to create feature associations by grouping

features that move together at a given instance in time. This should lead to the creation

of robust percepts unique from those created by other methods.

3

In this work an extension to Colorado State University’s SeeAsYou system is de-

scribed that extracts motion associations. The algorithms and approaches taken by the

system are examined as well as the parameters involved in the process. The extension is

then tested through a series of experiments to determine the accuracy of the associations

based on ground truth labels. Finally, the results of these experiments are presented and

discussed.

4

Chapter 2

Background

2.1 Feature Detection

Feature detection is a first step in many computer vision systems. The goal is to extract

features in such a way that these features form a more stable and more compact repre-

sentation of the information contained in the original image. Typical features have some

sort of central point, which is referred to as the interest point. In addition, features are

also represented by a region of pixels around that point, called the feature region. Many

types of features have appeared over the last few decades to fill the needs of a diverse

set of tasks.

One of the oldest and best studied features is the Harris corner[HS88]. This feature

was originally designed to be a stable feature for tracking. The Harris corner selects

interest points such that the feature region has edges in two orthogonal directions. One

of the reasons the Harris corner has become such a popular feature is that it tends to be

repeatable. That is, it will be detected despite minor changes in rotation, scale, illumi-

nation, and image noise.[SMB00] This repeatability criteria has led to the development

of more sophisticated features.

One such feature is to search for peaks in an image’s response to a difference-of-

gaussians filter. This tends to select interest points whose regions contain blob like

patterns. This feature was originally developed by Lowe[Low04] and tends to perform

near state of the art for repeatability[SMB00]. Typically the feature is used along with

an image pyramid to enhance the runtime of the algorithm.

5

An image pyramid is a series of images where each image has high frequency infor-

mation above a certain cutoff removed. This frequency cutoff point is typically referred

to as the scale of an image. The larger the scale of an image the lower the frequency

cutoff. This pyramid is typically constructed through both applications of a Gaussian

filter and subsampling of the image. The subsampling stages remove the total number

of pixels in an image. As a result such pyramids can allow for a logarithmic reduction

in the number of pixel comparisons required to detect features at different scales.

2.1.1 Feature Descriptors

Another development in feature based vision systems is that of feature descriptors. A

feature descriptor is usually a classification based on the feature region. Each feature

descriptor represents a wide range of possible feature regions that meet some set of

criteria. Ideally a descriptor should be a viewpoint dependent representation of some

physical object. One of the most well known examples of such a descriptor is the SIFT

descriptor[Low04]. The typical goal of such descriptors is to create a transformation

invariant description of a feature region.

Transformation invariant descriptors lead to descriptors which perform well under

a similar repeatability criteria. An effective feature descriptor should classify a feature

with the same descriptor despite changes in the perception of the feature itself. These

descriptors are useful because they create associations between features in different im-

ages.

The performance of a feature descriptor depends not only on the algorithm used to

classify the feature region but also on the algorithm used to detect the feature region.

This has led to a new criteria for feature extraction. New features are emerging that

are based on their tendency to produce affine covariant regions, regions that change co-

variantly with affine transformations. Such regions are shown to lead to affine invariant

descriptors. For a thorough review of these regions we refer the reader to [MTS+05]

6

2.1.2 Feature Association

Feature descriptors segment the space of all possible features. This allows for asso-

ciations to be made between features that are given the same descriptor. Associations

between features can be grouped into two broad categories, temporal associations and

spatial associations. A spatial association is an association between two features in the

same image. A temporal association is an association between a feature in two different

images.

The associations made by feature descriptors are designed to be temporal. Since a

feature represents some aspect of the physical world then every image of that physical

object should contain the feature and all of these features should be associated by a

feature descriptor. By contrast, a feature descriptor should be duplicated in an image

only if the underlying piece of the real world was also duplicated.

Feature associations are critical because many human and robot tasks operate on

physical objects. In a system that operates on features, physical objects are typically

represented by spatial groups of features. For this reason, one of the most important

tasks for a vision system that hopes to operate on objects is to form these spatial groups.

One way to create spatial associations between features is by using associations

between feature descriptors. If you know that two descriptors X and Y are associated

and you detect features x and y such that the descriptor of x is X and the descriptor of y

is Y then you can create a spatial association between x and y. An association between

feature descriptors is often referred to as a percept.

As an example consider a system that is trying to recognize trees. Let the system

have a feature descriptor which categorizes features into a set of descriptors, two of

which are leaf and bark. The spatial percept formed by the leaf descriptor will capture

the top of the tree but not the bottom. The spatial percept formed by the bark descriptor

also fails to capture the whole tree. If we know that the leaf descriptor and the bark

descriptor are associated through a tree percept then we can form the leaf or bark spatial

group and identify trees in an image.

7

Co-Occurrence is one of the most common forms of percept formation and is used

in a work by Sivic and Zisserman[SZ03] to learn about objects in a dataset. In this work

Sivic uses multiple approaches to detect affine covariant regions. Each region is then

assigned a SIFT descriptor. Sivic uses co-occurrence to associate all descriptors that

tend to occur in the same frame. Once this is done Sivic uses these percepts to support

object retrieval tasks. The goal of this thesis is to study the use of motion segmentation

as a source of spatial associations. The assumption is that if two features move in the

same way then those features should be associated. These associations could be used by

themselves but ideally they would be used in conjunction with other forms of association

such as feature descriptors. This would allow for percepts to be created more accurately

than through simple co-occurrence.

2.2 Tracking

Tracking is an old problem for which many approaches have been developed. Images

are typically 2D representations of a 3D space. As objects move through 3D space

their associated 2D projections undergo various transformations. There are numerous

factors that make tracking a difficult task. These include camera noise, nonrigid motion,

occlusions, and lighting changes.

Tracking algorithms can be categorized by the underlying model they use to repre-

sent a tracked object. Since we are dealing with features in an image we are interested

in algorithms that can track features, either by tracking interest points or by tracking

feature regions. For a review of the general tracking problem, including other types

of algorithms which track objects using more sophisticated models we refer readers to

[YJS06].

The Lucas-Kanade tracking algorithm is a well studied approach to tracking. This

algorithm is ideal for this thesis because it operates on features, is well-established, and

is capable of running in real time. The algorithm is based on a phd dissertation where

Lucas developed an algorithm for image alignment[Luc84]. Given a source image, a

8

destination image, and a parameterized motion model the algorithm will calculate the

set of parameters that best describe the transformation mapping the source to the desti-

nation.

To track points Lucas and Kanade [LK81] extended this algorithm to take a window

in a source image, along with a destination image and calculate the transformation un-

dergone by that window. Applying this transformation to the window boundaries will

give the new location of the window. Tracking can then be thought of as simply properly

registering this window through each frame of an image sequence. One drawback to the

algorithm is it becomes difficult to track motions that are much greater than the window

size. In addition, the running time of this algorithm is proportional to the window size

so there is significant motivation to keep the window size small.

To handle larger motions one can further extend this algorithm with a multiscale

image pyramid[Bou00]. This pyramid is much like the one described in the feature

detection section. The new algorithm iterates through each layer of scale to find a trans-

formation. The tracking window remains the same size at each layer while the image

size shrinks. As a result the tracking window represents a greater portion of the image as

the scale of the image increases. As an added boost to runtime we can reuse the image

pyramid computed for feature detection. Tracking forms the basis for more complex

motion tasks which rely on point correspondences.

2.3 Structure from Motion

Computing 3d structure from camera motion is a nearly 30 year old problem. The task

is to compute the 3d geometry of a physical scene or an object in the scene given a

sequence of 2d images of the actual scene. This requires that either the camera, or

the object to be measured, be in motion. In the general case there are situations that

can arise which will lead to an infinite number of correct solutions. In 1979 Ullman

proved the existence of a solution given three views of four non-coplanar points in cer-

tain scenarios[Ull79]. Ullman showed that there would always be a unique solution

9

provided the underlying scene was rigid.

Unfortunately, research has shown that this problem is ill defined when the im-

age is noisy[RA80]. Consider a large object in the distance. Noise that results in

shifts of a few pixels can correspond to large changes in scene geometry. Much work

has been done since Ullman’s result to try and establish robust solutions to this prob-

lem. In 1992 Tomasi and Kanade developed an algorithm based on the singular value

decomposition[TK92] which computes the scene shape and camera motion without

computing an intermediate representation of the depth which avoids the problem of

noisy distant objects. This approach can also use all tracked points to hopefully reduce

the effect of outliers. One drawback is the approach assumes that nothing in the scene

is moving independently of the camera.

To deal with the multiple motion scenario Torr developed an algorithm based on

RANSAC[FB81] which used local features to solve the structure from motion problem[TZ00].

RANSAC is a model selection algorithm described in more detail in chapter 3. RANSAC

searches through random subsets of the available points in order to come up with a

model that describes as much of the input as possible. This algorithm has been shown

to perform well even in the presence of independently moving objects.

2.4 Multibody Structure from Motion

One of the side effects of using RANSAC to calculate the camera motion is the pro-

duction of a set of outlier points which can be assumed to belong to one or more of

the objects moving independently of the background. In his phd work, Torr studied the

outliers detected in a structure from motion task and took advantage of this fact[Tor95].

Torr recursively ran the RANSAC algorithm on the outliers to identify the motion of the

independently moving objects in addition to the larger scene motion.

Fitzgibbon and Zisserman used this approach on the original structure from motion

task[FZ00]. They found that sequences with multiple moving objects often allowed for

a more precise computation than static-scene based reconstructions. They were even

10

able to develop structure from motion in some cases where static reconstruction was

underconstrained.

In 2005, Vidal took an algebraic approach to solve for the motion of all indepen-

dently moving objects at once[VMSS05]. Unlike the RANSAC approach Vidal’s ap-

proach is guaranteed to find the correct solution. While promising, the approach cur-

rently requires factoring a polynomial with degree equal to the number of independent

motions.

2.5 Motion Segmentation for Percept Learning

In 2004, Rothganger et al. adapted the idea of motion segmentation to create 3D object

models from a video sequence[RLSP07]. Their work first detects Harris and Hessian

interest points and affine covariant regions are defined around these interest points. The

regions are then tracked with a modified version of the Lucas-Kanade tracking algo-

rithm. This algorithm first predicts a location with standard Lucas-Kanade techniques

and then refines the prediction with non-linear least squares. These tracks are then

grouped using the process described by Torr. Each group of tracks is considered to be

an object and a corresponding 3D model for the object is created. These objects are then

used for object detection and shot matching in novel images.

A number of techniques are used to reduce the effect of noise. First, once all tracks

have been extracted from the video sequence the frame fmax containing the largest set of

stable tracks is found. Given a frame f a stable track is defined as a track that appears

in frames [f, f + ω) where ω is a parameter. This set of tracks contained in fmax is then

given as input to the previously mentioned RANSAC algorithm to find a set of stable

and connected tracks, C. The set C is then used to form an object model. Finally, This

object model is then grown by adding other tracks from anywhere in the sequence that

fit the model. If the formed object does not contain a sufficient number of tracks then

the object is abandoned.

By starting with the largest group of motion, this procedure attempts to create the

11

best possible starting model of an object. Many tracks from other scenes are then elimi-

nated from further motion segmentation by the object model fitting stage. Finally, using

only stable tracks and removing models that are not present in enough frames eliminates

noisy or weak motions.

In 2005, Sivic and Zisserman used a similar approach but worked on a slightly dif-

ferent task[SSZ05]. Their work analyzed a video sequence with the goal of indexing

the sequence for later searching. Objects were created from features in an image that

were consistently segmented together. This allowed for users to submit a query (a hand

selected object in any image of the sequence) and in realtime retrieve other images in

the sequence containing the same object. In particular, users could find different views

of the object. This includes view changes due to movement in the scene, such as the

front and back of a van that drove past the camera, and view changes due to object

deformation, such as the mouth of a talking person.

Sivic’s procedure is similar to Rothganger’s in that it also uses a combination of

Harris and Hessian points with affine covariant regions. Sivic then uses a novel tracking

method based on a simple matching combined with a track repair algorithm which at-

tempts to fix track gaps with surrounding motion. Sivic uses Torr’s RANSAC procedure

with homographies to find motion segmentations.

Again, care is taken to handle noise. Sivic’s algorithm finds a motion segmentation

for every triplet of frames. Sivic adapts the RANSAC algorithm to operate on a frame

triplet by passing it three pairs of frames for the triplet, one pair for each possible com-

bination. Once this is done a track-by-track association table is created. Two tracks are

said to be associated in a pair of frames if they are segmented together in that pair by

the RANSAC procedure. The procedure then applies standard text retrieval methods on

the association table to form object groups. Sivic describes the purpose of this step as

removing outliers and noise.

There are a number of similarities between Sivic’s method and Rothganger’s method.

Both of them use RANSAC with projective transformations to find motion based associ-

12

ations. Both methods are runtime intensive and use fairly sophisticated tracking mech-

anisms. Finally, both methods use some kind of global information or repeated trials to

filter out the noise produced by the motion segmentation algorithm.

In this thesis we analyze the motion segmentation step used by Sivic and Rothganger.

In contrast to their methods we use much simpler interest points and tracking algorithms.

In addition to projective transformations we experiment with a set of more primitive

motion models. Finally, we look at the raw associations produced by the segmentation

and evaluate their accuracy with respect to ground truth. We attempt to identify which

variables affect the performance of the segmentation and how they do so.

2.6 SeeAsYou

This work is based on a computer vision system developed at Colorado State University

named SeeAsYou. The system supports a dataflow architecture represented by modules

and buffers. Each module takes input from zero or more modules, performs some anal-

ysis on the input, and then outputs the result of that analysis to zero or more buffers. For

a detailed description of the SeeAsYou system we refer the reader to [DT10]

This thesis makes use of several existing modules of the SeeAsYou system. The eyes

module reads images from a camera or file and outputs those images in a format familiar

to the system. The salience module detects blob shaped features in the image with a

difference of Gaussians filter using a multiscale image pyramid. The salience module

outputs the interest point location and a circular region surrounding these features.

This work further extends the SeeAsYou system by adding two new modules. The

first module added is a simple tracker designed to provide point correspondences be-

tween frames. The second module is an implementation of the RANSAC based motion

segmentation algorithm previously described. The output segmentation is used to create

feature associations. These associations would then be sent to a module which creates

percepts however our evaluation happens before that step.

13

Chapter 3

Methods

In this chapter the various algorithms used in this work are introduced. In addition, any

parameters involved are discussed and the values of those parameters are presented.

3.1 Tracking

For this study a tracking module was created in the SeeAsYou system. This module

attempts to track a feature through a sequence of images. If a feature is tracked success-

fully then the module marks the feature as tracked and augments the feature with infor-

mation describing its motion. The module represents the path a feature takes through

a very simple model. Each tracked feature is given a starting position and a current

position. The motion of the feature is then a vector from the source to the destination.

The tracking module operates on two basic units of data. The first unit is a set of

features detected in the current image. Some of the features may then be given motion

information and passed on. The second piece of data is a set of targets which repre-

sent the current motion tracks in progress. Each target has a template which describes

what the feature should look like. Each target also has a first-in-first-out queue of TL

positions, {P1, P2, ..., PTL
} which gives the position of the target in the TL most recent

frames. P1 represents the most recent position and PTL
represents the source position

(although not necessarily the first detected position) of the target. The motion models

used in this work are transformations between frames and so TL = 2.

14

3.1.1 Feature Location Prediction

The first two steps of tracking predict and confirm the position of a feature in a new

frame given the position of that feature in the previous frame. In these two sections

the known old position of the feature will be referred to as the source position. The

unknown position of the feature will be referred to as the destination position.

The location prediction step attempts to find the most likely destination position of

a feature given the source position. To accomplish this we chose to use a pyramidal

implementation of the Lucas-Kanade feature tracker described in chapter 2. The code

for this algorithm was provided by OpenCV. The exact implementation was based on

work by Bougeuet.[Bou00]

The algorithm has three parameters. The first is the size of the window placed around

the feature point. Ideally this would be based on the size of the feature as given by the

salience module. For simplicity a 5x5 window was chosen for all features. The next

two parameters determine the method of convergence for the algorithm. Once again, for

simplicity, the algorithm was set to iterate twenty times and then finish.

The performance of the prediction algorithm was verified subjectively through a

series of tests validating known input. Since this algorithm was not a primary concern of

this work we did not perform any extensive testing on the performance or accuracy of the

algorithm. The parameters described above were found to give adequate performance

and were never modified in any of the experiments described in this paper.

3.1.2 Feature Location Confirmation

In order for a feature to be tracked between two frames the tracking module requires that

the feature be detected in both the source frame and the destination frame. This is not

strictly necessary since it is possible the feature might not be detected in the destination

image but still tracked. However, features that were ”lost” by the salience system were

more likely to be noise and so they were discarded. The module also requires that the

features move as predicted by the Lucas-Kanade algorithm.

15

These requirements are enforced by the location confirmation step of our procedure.

Once a feature has been given a predicted location the module searches through all

features within a given search radius of the predicted location. To optimize this search

slightly a spatial grid of all extrema detected in the destination image is created before

any searching is done.

This step has two parameters. The first is the search radius which determines the

distance (in pixels) that a feature can deviate from its predicted position. A search radius

of 20 pixels was chosen for this work. The second parameter determines how close a

feature has to match the template of a target to be considered a match. The features are

compared through correlation and this work requires a correlation of 0.75 for a match.

3.2 Motion Segmentation

The final step of the system as far as this work is concerned is motion segmentation. The

goal at this step is to group point correspondences that move together. This provides

later parts of the system with an association between the features that contribute to these

point correspondences. Once we have these feature associations we can use techniques

similar to those used in Sivic et al[SZ03] in future modules in the SeeAsYou system to

form object percepts.

In the following sections methods used to generate this motion segmentation are

described. First, the interpolation process which actually generates motion models from

points is described. In addition we explain how point correspondences are matched

to models. Next, the RANSAC (Random sampling and consensus) model selection and

evaluation process is presented. Finally an alternate error measure motivated by patterns

observed in our experiments is presented. In the following sections we will refer to the

input set of tracked points as P . Each point p ∈ P represents the movement from a

source point ps = (x, y) to a destination point pd = (u, v).

16

3.2.1 Model interpolation

The RANSAC algorithm repeatedly generates sets of tracked points R ⊂ P = {p1, ..., pk}.

For each set R a motion model A is generated describing R. The process to generate A

depends on the motion model desired.

Magnitude: R contains a single tracked point p. This model is the only model

which is not strictly a transformation. The model generated represents motion in any

direction such that the magnitude of motion is equal to d = |pd − ps|.

Translation: R contains a single tracked point p. The transformation generated is:

1 0 u− x
0 1 v − y
0 0 1

Affine: R contains three tracked points. The general affine transformation can be

represented by 6 parameters:

a b c
d e f
0 0 1


To find the parameters one must solve for A such that A is of the form just described

and Aps = pd for each of the tracked points. Given this criteria a system of 6 linear

equations is generated:


x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
x3 y3 1 0 0 0
0 0 0 x3 y3 1




a
b
c
d
e
f

 =


u1

v1
u2

v2
u3

v3


Solving this system gives the values of each of the affine parameters.

Projective: R contains four tracked points. The general projective transformation

is:

a b c
d e f
g h 1


17

Similar to the affine case one can construct 8 linear equations from the 4 tracked

points:



x1 y1 1 0 0 0 −x1u1 −y1u1

0 0 0 x1 y1 1 −x1v1 −y1v1
x2 y2 1 0 0 0 −x2u2 −y2u2

0 0 0 x2 y2 1 −x2v2 −y2v2
x3 y3 1 0 0 0 −x3u3 −y3u3

0 0 0 x3 y3 1 −x3v3 −y3v3
x4 y4 1 0 0 0 −x4u4 −y4u4

0 0 0 x4 y4 1 −x4v4 −y4v4





a
b
c
d
e
f
g
h


=



u1

v1
u2

v2
u3

v3
u4

v4


3.2.2 RANSAC model selection

RANSAC[FB81] is a statistically motivated algorithm used to search for a model de-

scribing the input. The process has been shown in a number of situations to robustly

select the correct model despite significant outliers in the input. RANSAC can be bro-

ken down into two stages. The first stage is to randomly sample the input in order to

create a model. The second stage evaluates the generated model by measuring consensus

amongst the input.

The RANSAC algorithm has four main parameters. The first parameter, k, is model

dependent and represents the number of input items required to generate a model. The

second parameter, w, represents the percentage of inliers in the input set. Given w, p

is defined as the probability that the algorithm will select k inlier points at least once

during the selection process. Finally, t is a threshold used for determining consensus.

The parameter t is often referred to as the inlier threshold.

In our experiment w was fixed at 0.3. This number was selected because the exper-

iments will look for up to 3 independently moving objects. In the worst case each of

these objects would be of equal size and after the background is removed the true value

of w would be 1
3
. By selecting 0.3 we err on the side of caution. In reality the true

number of objects is not known and this system would not perform well on more than 3

objects given the fixed w value. The system also fixes p at 0.95 as this is a typical value.

18

Motion model k

Magnitude 1
Translation 1
Affine 3
Projective 4

Figure 3.1: k values

The experiment used recursive iterations of RANSAC to

segment the input. In each stage of the recursive algorithm the

goal is to randomly select tracked points from the input set of

tracked points P = {p1, ..., pr} to generate motion models. The

number of tracked points required (k) depends on the motion

model. Table 3.1 gives the number of points required to gener-

ate each of the motion models used in this paper. The algorithm

should generate enough models, n, that it can satisfy the requirements imposed by p.

Provided the input points are selected independently then n̂ = n can be calculated from

p by:

n̂ = n =
log(1− p)

log(1− wk)

After calculating n̂ the system would then randomly select n̂ combinations of k

points from P . In this work these combinations must be chosen without replacement

and so the points are not selected independently. This means that n̂ cannot be used for

this work. In reality the true value of n is not largely different than n̂ and this work sets

n = min(n̂,
(|P |

k

)
). For each of the n combinations the system interpolates a motion

model A using the previously described methods resulting in the set A = {A1, ..., An}.

Once a model has been generated the algorithm must measure the quality of the

model. To do this RANSAC associates an error measure, ep|A for a point p given a model

A. If A is a transformation then ep|A is the projection error of the transformation. Given

that a tracked point p represents a movement from a source point ps to a destination

point pd the projection error is:

ep|A = |Aps − pd|

The magnitude motion model used in this experiment is not a transformation and

ep|A must be calculated differently. Given that a magnitude motion model representing

motions with magnitude equal to d:

19

ep|A = |d− |pd − ps||

For all models, if ep|A < t then our point is considered to be an inlier with respect to

A. The consensus score for A referred to as SA is the total number of inliers:

SA = |{p ∈ P |ep|A < t}|

When the selection process is finished RANSAC will have generated a set of models,

{A1, ..., An} and consensus scores {SA1 , ..., SAn}. RANSAC then finds the model:

Amax = A|∀A′ ∈ A : SA′ < SA

Amax is the model with the highest consensus score SAmax . If SAmax < w|P | then Amax

cannot be the true model since it doesn’t describe all the inliers in the scene. In this

case the only remaining points must be noise and the recursive process terminates. If

SAmax >= w|P | then a transformation describing the motion of an independently moving

object has been found. A segment S containing the points {p|ep|A < t} is created and

these points are removed from the input set. Provided |P | − |S| > k the algorithm

recurses on the remaining points to try and find more segments.

When the algorithm works correctly each stage of the procedure should find the

largest remaining independently moving object in the scene. Each resulting segment

should contain points from a different object and the algorithm will have segmented the

input by object.

3.2.3 Normalized projection error

In addition to the standard measure of projection error, a normalized projection error

was used. This normalized error is based on a study of the ground truth data given in

Chapter 4. The normalized error is based on v̂ the distance moved by a tracked point:

v̂ =

∑
|pd − ps|
|R|

20

Given v̂ the normalized error for a transformation A is given as:

êp|A =
|Aps − pd|

v̂ + 1

For a magnitude model representing motions with magnitude d the normalized error

is:

êp|A =
|d− |pd − ps||

v̂ + 1

21

Chapter 4

Experiments

4.1 Overview

To evaluate the applicability of motion segmentation towards the domain of feature

grouping we used our system to create feature associations. Each association was then

evaluated against ground truth. This gave us a general overview as to how well motion

segmentation performs with standard methods under non-ideal conditions. We describe

the parameters involved in the process and where applicable, we examine the effects

those parameters have on performance.

4.2 Data

Our dataset was created in order to accurately reflect real life scenarios where motion

segmentation might be applicable. The data was comprised of eight image sequences

from three different sources. We chose to work with finished, production quality films

to reduce noise effects such as motion blur, focal blur, etc. as much as possible. In

addition, every sequence used in our experiment was devoid of special effects and scene

cuts. The three source films were Much Ado About Nothing[Bra93] (ado), Valkaama

[Bau09] (val), and Route 66 (r66) [Klu04]. The films varied in image size, frame rate,

and production quality.

22

Name Source # Frames Size # IPs Camera Motion # Objects

None 1 Route66 33 400x300 149 none 1
None 2 Valkaama 23 720x405 279.5 none 2
None 3 Valkaama 48 720x405 242.333 none 3
Pan 1 MuchAdo 119 720x480 341.333 pan 1
Pan 2 Valkaama 18 720x405 360.474 pan 2
Pan 3 MuchAdo 73 720x480 280.417 pan 3
Zoom 1 Route66 10 400x300 160.182 zoom 1
Zoom 3 MuchAdo 23 720x480 339.542 zoom 3

Table 4.1: A breakdown of the characteristics of individual scenes. Each scene has
been given a unique name based on the last two columns. These last two columns list
the underlying camera motion and the number of objects moving independently of the
camera. The video which the scene came from is reported in the scene column. Finally,
the number of frames in each scene is given here as well as the average number of
interest points detected in each frame.

We chose scenes that represented some of the most common motion scenarios that

a human or robot might encounter. Table 4.1 describes each of the scenes we chose.

The scenes feature three types of camera motion. No camera motion (standing still),

panning motion (looking around), and zooming motion (walking forward). The scenes

also contained between one and three independently moving objects. The scenes were

between 22 and 242 frames long and the average number of interest points per frame

varied from 149 to 360.

Figure 4.1 lists a sample labeled image for each of the scenes. Each image was

selected from partway into the scene so that tracked points would be available. The

arrows represent these tracked interest points. The arrow head falls on the position of

the interest point in the current image while the arrow tail originates from the position

of the interest point in the previous image. The color of the arrow indicates the ground

truth label given to that interest point. The background is always red and each object

moving independently of the background is given a unique color.

By looking at figure 4.1 it is possible to get an understanding of the motion occurring

in the scene. The train in none 3 and the background in zoom 1 are perhaps the easiest

to understand. There are several large motions in pan 1, none 1, none 3, and zoom 1

23

which are obviously noise. These labels are based on output from the tracker and interest

point detector. These systems had difficulty with solid patches of dark color present in

these images. It should also be noted that the woman in pan 2 remained mostly still

throughout the scene and was thus labeled as background.

Figure 4.1: Sample images for each of the scenes. The arrows represent tracked interest
points. The head of the arrow represents the location of the interest point in the image
given. The tail of the arrow represents the position of the interest point in the image
immediately preceding the given image. The color of the arrow indicates the ground
truth label of the interest point. There should be one color for each object moving
independently of the background. The background itself is represented by the color red.

Throughout all the scenes there were a total of 16 independently moving objects and

8 background objects. Of the 16 independently moving objects, 12 of them were adult

24

humans, 2 were human faces, 1 was a human child, and 1 was a train. The objects varied

in average size, magnitude of motion and rigidity of motion.

All of the scenes were hand labeled with ground truth data. First, features were ex-

tracted from every frame by the previously described salience module of the SeeAsYou

system. These features were tracked between frames by the tracking module. The re-

sulting feature correspondences were assigned to either the background or one of the

independently moving objects by hand labeling. Point correspondences which appeared

to be erroneously tracked were left in place in order to test the performance of the system

under noisy conditions. The number of interest points detected for each object depended

on the objects size and interest to the salience system.

Detailed descriptions of each of the objects is given in table 4.2. The table gives a

name for each object based on the name of the scene the object was present in as well as

the label assigned to that object. Labels are represented by colors and the label for each

object is also given in the table. These colors match the color of the object in the image

given in figure 4.1. The average number of interest points detected on the object per

frame as well as the average distance moved by the object per frame is given. Finally,

the object is classified into one of five classes.

4.2.1 Data Fitness

In order to predict system performance we also determined the ground truth motion

complexity and noise for our data. To determine the degree to which an object’s motion

could be explained by a simple motion model a selection process was used to find the

best ground truth affine transformation for the object at each frame. We then scored

the object based on the accuracy of this transformation. Objects with a low score had

motion that could be accurately predicted by an affine transformation. Objects with a

high score either underwent a complex non-affine motion, were poorly tracked between

frames, or failed to be reliably detected by the feature detection system.

25

Table 4.2: Breakdown of individual objects. This table lists the interesting parameters
for each object. The name of the object is based on the scene the object originated from
and the label given to the object. More detail on the scene the object originated from
can be found in table 4.1. The label describes a color assigned to the object. Colors are
unique for a given scene. The color red is always given to background objects. This
table also lists the average number of interest points detected per frame as well as the
average distance the object moved per frame. Finally the objects are grouped into one
of five classes.

Object Name Scene # IPs Motion Distance Label Type

N1B None 1 17.75 6.77 Blue Adult Human
N1R None 1 131.25 0.65 Red Background
N2B None 2 110.75 1.87 Blue Adult Face
N2G None 2 76.375 5.38 Green Adult Face
N2R None 2 92.375 0.21 Red Background
N3B None 3 40.625 5.51 Blue Adult Human
N3C None 3 115.417 27.43 Cyan Train
N3G None 3 35.25 5.20 Green Adult Human
N3R None 3 51.0417 1.23 Red Background
P1B Pan 1 61.6667 22.68 Blue Adult Human
P1R Pan 1 279.667 7.00 Red Background
P2B Pan 2 8.10526 9.58 Blue Child Human
P2G Pan 2 18.6316 6.92 Green Adult Human
P2R Pan 2 333.737 6.31 Red Background
P3B Pan 3 29.875 2.57 Blue Adult Human
P3C Pan 3 22 1.80 Cyan Adult Human
P3G Pan 3 25.3333 2.26 Green Adult Human
P3R Pan 3 203.208 1.63 Red Background
Z1B Zoom 1 26 5.01 Blue Adult Human
Z1R Zoom 1 134.182 13.01 Red Background
Z3B Zoom 3 95.25 11.98 Blue Adult Human
Z3C Zoom 3 59.6667 10.46 Cyan Adult Human
Z3G Zoom 3 38.7917 8.96 Green Adult Human
Z3R Zoom 3 145.833 5.09 Red Background

26

To select a ground truth transformation for an object we evaluated a large number

of possible affine transformations seeded by ground truth points on the object. We ex-

tracted a set of 50 tracked points from the object to evaluate. If the object had less than

50 tracked points then we used all of the available tracked points. From this set we

looked at every possible combination of 3 points. Each combination was analyzed to

yield a single affine transformation, A.

To score a transformation we measured the accuracy with which the transformation

predicted the underlying motion by measuring the projection error of each point under

A. Let p be a tracked point which moved from ps = (xs, ys) to pd = (xd, yd). The

projection error for p under A, ep|A, can then be calculated by ep|A = |Aps − pd|. The

projection error for the transformation eA is then simply the average ep|A across all

tracked points in the ground truth set. The transformation with the smallest projection

error, Â, was chosen as the most accurate representation of the underlying motion and

the projection error, eÂ is the minimal projection error for an object in the given frame.

The average minimal projection error for an object across all frames will be referred

to as the fitness score for that object and is a representation of how well an affine motion

model can fit the raw point correspondences. The identity transformation, I|Ix = x,

which represents no motion will always yield a projection error equal to the average

distance moved. This means that an upper bound on the projection error is equal to the

average distance the object moved.

The fitness score for all objects is given in table 4.3. In this table the average distance

moved by the object per frame is given. As well, the fitness score, eÂ, is averaged

across all frames and listed for each object. The normalized fitness score represents an

alternative scoring measure discussed in more detail below. From this table it can be

seen that the fitness score appears to be related to the distance the object moved.

The relationship between fitness score and motion is shown in more detail in figure

4.2. The horizontal axis on this figure represents the average distance per frame an object

27

Object Name Motion Distance Fitness Score Normalized Fitness Score

N1B 6.77 4.13 0.49
N1R 0.65 0.45 0.25
N2B 1.87 1.41 0.40
N2G 5.38 2.98 0.45
N2R 0.22 0.21 0.17
N3B 5.51 4.82 0.63
N3C 27.44 17.83 0.63
N3G 5.21 4.01 0.60
N3R 1.24 1.08 0.36
P1B 22.68 21.46 0.62
P1R 7.01 4.08 0.36
P2B 9.58 2.27 0.02
P2G 6.93 2.17 0.26
P2R 6.32 1.96 0.19
P3B 2.58 1.19 0.32
P3C 1.80 0.66 0.24
P3G 2.26 0.88 0.26
P3R 1.63 0.65 0.26
Z1B 5.02 1.54 0.24
Z1R 13.02 8.02 0.52
Z3B 11.99 5.71 0.45
Z3C 10.46 3.96 0.36
Z3G 8.96 2.73 0.30
Z3R 5.09 1.96 0.26

Table 4.3: Projection error for individual objects. This table shows the projection error,
eÂ, for each object averaged across all frames. In addition we list the average distance
moved per frame for each object similar to Table 4.2. The final column gives the nor-
malized projection error, êÂ, for each object averaged across all frames. These error
measures are described in more detail in the surrounding text.

28

moved while the vertical access represents the fitness score, eÂ, for that object averaged

across all frames. A regression line was fitted based on the model that the fitness score

could be linearly calculated from the average motion. This line is also given in figure

4.2. This graph appears to show a strong linear relationship between the two properties.

Objects which didn’t move much scored well while objects that moved a large distance

scored poorly. In order to measure this relationship, the correlation between distance

moved and the projection error was calculated and it was found to be 0.9275.

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

0 5 10 15 20 25

0
5

10
15

20

Average Distance

F
itn

es
s

Figure 4.2: Fitness vs. average distance. This figure shows the linear relationship be-
tween projection error and average distance. The x axis represents the average distance
per frame an object moved. The vertical axis represents the projection error, eÂ, aver-
aged across all frames. Each of the points represents one of the objects. In addition, a
regression line predicting projection error from motion is laid on top of the plot. The
slope of the regression line is 0.73.

The slope of the regression line shown in figure 4.2 is 0.73. Were this slope 1 it

would suggest that the ground truth objects were completely impossible to model with

an affine transformation since the projection error was equal to the upper bound. A

possible reason for such a strong finding is that the tracker seems to be less accurate at

larger distances. In order to account for this correlation we also calculated a normalized

projection error. Given the average distance an object moved, v, we calculated the

normalized projection error for a transformation A and a point p as êp|A = |Aps−pd|
v+1

. The

29

normalized projection error has a lower bound of 0 and an upper bound of 1.

Figure 4.3 lists the normalized fitness error for each of the objects. The distribution

of normalized fitness errors are given as box and whisker plots. Each plot is labeled on

the horizontal axis with the object represented by the plot. The vertical axis represents

the normalized fitness error which have already stated ranges between 0 and 1. The

plots are color coded based on the class of the object. The figure shows that there is

considerable variation between the objects. Furthermore, a significant number of objects

fall into the 0 to 0.6 range which is far enough below 1 that we can assume the objects

can be accurately represented by affine motion models. There doesn’t appear to be any

pattern based on the class of the object.

The inter-class variation is studied in more detail in figure 4.4. This figure shows

the average boxplot for each of the object classes similar to figure 4.3. The human

child, train, and human face have been grouped into a class labeled other for simplicity.

Surprisingly, there is little variation between the classes. It would make sense for the

background to perform significantly better since the background is more rigid than the

other objects but this doesn’t seem to be the case. A two sided t-test was run and it

was found that the background and adult human distribution are different (p = .057)

however the difference appears to be quite small.

Tests were also run looking for an effect between the number of interest points on

an object and performance. Objects that are smaller have fewer points and so it could be

possible that it is easier to find a model fitting all the points. However, the correlation

was -0.10 suggesting the two are unrelated. A graph of the comparison can be found in

the figure 4.5. This horizontal axis shows the average number of interest points detected

per frame where the vertical axis shows the normalized fitness score, êÂ, averaged across

all frames. As expected by the low correlation, there appears to be no strong relation

between the two.

30

Figure 4.3: Normalized fitness for each object. This figure shows the distribution of the
normalized fitness error, êÂ, for each of the objects. Each object is represented by a box
and whisker plot. The object names are listed across the horizontal axis. The vertical
axis represents the normalized fitness error. In addition, each plot is color coded based
on the class of the object represented.

31

Adult Human Background Other

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Object Class

N
or

m
al

iz
ed

 F
itn

es
s

E
rr

or

Figure 4.4: Normalized fitness by object type. This figure shows the distribution of
the normalized fitness error, êÂ, for each object class as a box and whisker plot. The
horizontal axis lists the object class names. The human face, human child, and train
classes have all been grouped into a single other class. The vertical axis represents the
normalized fitness error.

4.3 Results

A series of experiments were performed to parameterize the effectiveness of motion

segmentation and identify the most important variables in the problem. In the first set

of experiments the performance is evaluated as it relates to the eventual problem of

forming feature associations. From this one can identify the best motion model and look

at possible values for the inlier threshold. Next, the performance of individual objects is

measured and that performance is compared with the fitness of the objects. Finally, the

normalized error measure is examined and shown to have an effect on threshold setting.

4.3.1 Feature Association

In order to measure the effectiveness of motion segmentation for the task of making fea-

ture associations two scoring measures were developed. Given an image I , containing

a set of n tracked interest points P = p1, ..., pn, our system groups the feature points

into k segments S = (S1, ...Sn) and one noise segment N . Let C(p) = Label(p) and

32

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Average number of IPs

F
itn

es
s

Figure 4.5: Fitness vs. number of IPs. This figure shows the relationship between the
projection error and the average number of interest points detected on an object per
frame. The horizontal axis gives the average number of features that landed on a given
object in each frame. The vertical axis gives the normalized fitness error, êÂ, discussed
in section 4.1 averaged across all frames. There is not a strong linear relationship and
so no regression line was fit to the data.

S(p) = S|S ∈ {S, N}, p ∈ S be the segment containing p. The first scoring measure

is the likelihood that two points have the same label given that they are contained in the

same segment:

L(C=|S=) =
p(C=|S=)

p(C=)

=
p(C(p1) = C(p2)|S(p1) = S(p2)! = N)

p(C(p1) = C(p2))

If S is empty then p(C=|S=) is defined to be p(C=) and L(C=|S=) = 1. This

likelihood explains the purity of our segments. If every segment only contain points

belonging to a single object then the likelihood will be equal to the maximum, 1
p(C=)

.

The measure favors low inlier thresholds. Low thresholds only segment points which

have a high probability of belonging together.

Unfortunately, low thresholds tend to oversegment the image. If there are multiple

segments describing a single object we can still score the maximum likelihood, but this

33

is not an ideal segmentation. The oversegmentation issue motivates our second scoring

measure. The second scoring measure is the difference, p(C=|S=) − p(C=|S6=). We

define p(C=|S6=) as:

p(C=|S6=) = p(C(p1) = C(p2)|S(p1) 6= S(p2))

This probability represents the probability that two different segments contain points

belonging to the same object. When the threshold is low and the image is oversegmented

p(C=|S6=) will be high and the difference measure will be low. When the segmentation

is ideal, p(C=|S6=) will be 0 and p(C=|S=) will be 1 giving us a difference of 1. The

difference measure could be thought of as an information gain. When the difference is

0, that means that S= fails to predict C= as C= is just as likely to happen if S= is not

true. When the difference is 1 then points belong in the same label if and only if they

are segmented together, which is exactly what we want.

Figure 4.6 shows several sample segmentations for an example image from the pan 3

scene at different inlier thresholds given an affine motion model. Each image is marked

with the tracked points that were successfully segmented. Point correspondences that

ended up in the noise segment are not shown on the image. The arrows represent the

previous and current location of the interest point as they did in Figure 4.1 The color of

the arrow represents the segment that the error was placed in. If the colors are the same

then the tracked points were placed in the same segment.

From this figure the effect of the inlier threshold can be seen. When the threshold is

0 no motion model is found which explains enough points and all points are placed in the

noise segment. As the threshold increases more points are included in actual segments

until there are no points left in the noise segment.

An interesting observation is that when the inlier threshold is 1 pixel we have an

almost perfect separation of background from foreground, although the foreground is

placed in the noise segment. At inlier thresholds of 2 and 3 pixels we have some seg-

mentation of the foreground while maintaining the integrity of the background segment.

34

Figure 4.6: Example segmentations at different inlier thresholds. This figure shows the
segmentation produced by the system at different inlier thresholds using an affine motion
model. All of the images come from the pan 3 scene. Segmented point correspondences
are represented as arrows where the head of the arrow is the current position of the point
and the tail is the previous position. The color of the arrow represents the segment that
the underlying point was placed in. If two points have the same color then they were
put in the same segment. Points that were not segmented and classified as noise are not
shown.

Once the inlier threshold hits 4 pixels the system begins to severely undersegment.

When the inlier threshold is 5 pixels the system placed almost all of the points into

a single segment.

Figure 4.7 shows several statistics for the entire pan 3 scene. The left graph shows

how the two conditional probabilities described earlier perform. The horizontal axis

gives the inlier threshold while the vertical axis gives probabilities from 0 to 1. The flat

green line shows the probability that two random points have the same label.

The upper line gives the probability that two points have the same label given they

are placed in the same segment. The higher this line is above the flat line the more accu-

rate the segments produced by our system. This line behaves as would be expected. It

35

●

●

●

●
●

●

Inlier Threshold

P
ro

ba
bi

lit
y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

●

●
●

●

●

●

● ● ● ● ● ●

p(C=)
p(C=|S=)
p(C=|S!=)

●

●

●
● ● ●

Inlier Threshold

P
ro

ba
bi

lit
y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.7: Example scores at several inlier thresholds. This figure shows how the
scoring measures used in this paper vary with the inlier threshold. The horizontal axis
in both graphs shows the inlier threshold. The vertical axis represents probabilities from
0 to 1. The left graph shows the probability that two random points belong in the same
label given a)no extra information, b)that the two points were in the same segment, and
c)that the two points were in different segments. The right graph shows the percentage
of points that were actually segmented and not placed in the noise segment.

peaks at the lowest inlier threshold when the system creates the almost pure background

segment and slowly falls back down towards random as the system throws everything

into a single segment.

The lower line shows the probability that two points have the same label given they

are put in different segments. The higher this line the more likely there are multiple

segments for the same label. This line should fall initially as the system oversegments

less and less. Then, as the threshold increases the line should head back towards random

as the only points not placed in the master segment are so wildly different they are

probably tracker errors which are assumed to be randomly distributed throughout the

labels.

The right graph of Figure 4.7 shows the number of points which were actually seg-

mented and not placed in the noise segment. The horizontal axis represents the same

inlier thresholds as before. The vertical axis gives the percentage of points which were

36

not placed in the noise segment. At a threshold of 0 all points are placed in the noise seg-

ment so this measure is 0. As the threshold increases more points are actually segmented

until we reach the point at 4 pixels where no points are placed in the noise segment.

4.3.2 Motion Models

Given these scoring measures it is now possible to compare each of the motion models.

For this comparison the system was tested on the entire dataset. The scores were aver-

aged across every frame and every scene. Figure 4.8 gives the performance of each of

the motion models in terms of our two scoring measures. In both graphs the horizontal

axis represents the inlier threshold. In the left graph the vertical axis shows the likeli-

hood score, L(C=|S=). In the right graph the vertical axis shows the difference score,

p(C=|S=) − p(C=|S 6=). Each line in the graphs represents one of the motion models

described earlier.

●

●

●

●

●

●

●
●

●
●

●
● ●

● ● ●
● ● ● ●

Inlier Threshold

L(
C

=
|S

=
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

1.00

1.25

1.50

1.75

●

●
●

●

●
●

●
●

●

●

●

● ●
● ● ●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

● ●

Magnitude
Translation
Affine
Projective

Motion Model Summary

●

●

●
●

●

●

●

●
●

● ● ● ● ● ●
●

● ● ● ●

Inlier Threshold

P
ro

ba
bi

lit
y

D
iff

er
en

ce

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

●

●

●

●

● ●
● ● ●

●

●

●
● ●

●
● ●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
● ●

●

●

●

●

● ●
●

●
●

●

●
●

●
●

●
● ●

● ● ●

Magnitude
Translation
Affine
Projective

Motion Model Summary

Figure 4.8: Average scores across all scenes in the image. This figure compares the dif-
ferent motion models studied in this paper. The horizontal axis in both graphs represents
the inlier threshold in pixels. In the left graph the vertical axis represents the likelihood
score. In the right graph the vertical axis represents the difference score. Each line rep-
resents a particular motion model. The scores are averaged across every frame of every
scene in our dataset.

In both graphs, affine outperforms all other models, including the projective model

37

used by Sivic and Zisserman. However, the difference isn’t very large. From the earlier

fitness study we saw that most of the objects could be accurately described by an affine

motion. This means that the extra variables in the projective model are not needed. It is

likely that these extra variables allowed for models which explained more of noise and

that is why projective performed slightly worse.

Another point worth noting is that the peaks in the two graphs are different. The

likelihood peaks at about a half a pixel where the difference peaks between 1 and 1.5

pixels. As discussed earlier this is because the likelihood score ignores the oversegmen-

tation that happens at the lower thresholds. To confirm this, the individual components

of the score can be plotted individually, which is shown in figure 4.9. Similar to figure

4.7, figure 4.9 shows the three probabilities we measured and the effects of the inlier

threshold. However, where figure 4.7 only showed results for pan 3, figure 4.9 shows

results averaged across all scenes. Figure 4.9 only shows results for the affine motion

model.

Inlier Threshold

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

●

● ●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

p(C=)
p(C=|S=)
p(C=|S!=)

Figure 4.9: Detailed breakdown of the affine model. This graph shows how the proba-
bilities which make up our scores vary with the inlier threshold. The probabilities are
for the affine motion model and are averaged across every frame and every scene in our
dataset. The horizontal axis represents the inlier threshold in pixels. The vertical graph
shows the probability that two random points belong in the same label given a)No extra
information, b)That the two points were in the same segment, and c)That the two points
were in different segments.

38

Again, p(C=|S=) and p(C=|S 6=) behave exactly as expected. The lower thresholds

yield highly accurate segments but oversegment the image. Once the threshold hits 1

pixel the oversegmentation stops. The point where the oversegmentation stops is right at

the peak difference score shown in figure 4.8. Beyond 1 pixel the purity of the segments

drops but the oversegmentation isn’t being reduced.

The fact that the two scores have different thresholds shows that the ideal threshold

is task dependent. If the goal is simply to reduce the number of false associations made

then a very low threshold is ideal. However, if it is important to associate as much of

the object as possible then a slightly higher threshold is better.

4.3.3 Object Performance

Previous experiments have shown the performance of the system overall. In order to un-

derstand how performance varies new scores must be developed which give the perfor-

mance of individual objects. Each object represents a specific label. In an ideal system

when points have the same label, x, those points should belong in the same segment.

This leads to a likelihood score:

L(S=|Cx) =
p(S=|Cx)

p(S=)

=
p(S(p1) = S(p2) 6= N |C(p1) = C(p2) = x)

p(S(p1) = S(p2))

This score represents the percentage of correct associations found for a given label.

When the score is 1 the system has made every possible correct association for the

object. Unfortunately, a system could easily get a perfect score by simply segmenting

every point into a single segment. However, as before, there is a negative score that can

be considered. There are two ways this negative score could be defined. Sticking with a

strict conditional probability definition C¬x is defined as:

p(S=|C¬x) = p(S(p1) = S(p2)|C(p1) 6= x ∨ C(p2) 6= x)

39

This score ideally would represent the percentage of incorrect associations made.

The problem with this score is that points could satisfy the criteria even though they are

valid associations. Any two points that both have label y|y 6= x should be in the same

segment. If p(S=|Cx)− p(S=|C 6=x) was used to score an ideal system then there would

be a bias towards larger objects. A fairer measure, which only considers points that truly

should not be associated, is:

p(S=|Cx̂) = p(S(p1) = S(p2)|C(p1) = x ∧ C(p2) 6= x)

This score again represents the percentage of incorrect associations made but re-

quires one side of the association to involve the object we are measuring. To study the

effectiveness of this new difference score we again average scores across every frame of

every scene. When this score is 1 the system has made every possible incorrect associa-

tion with this figure which is exactly what would happen if we grouped every point into

the same segment. It’s possible the system could actually form more incorrect associa-

tions than correct associations and the difference score would be negative. Figure 4.10

shows the average p(S=|Cx)− p(S=|Cx̂) for each object.

The horizontal axis of the figure represents the inlier threshold in pixels. The vertical

axis represents the difference score. Each line represents a different object in the scene.

The color of the line represents the class of the object. This graph shows that background

objects outperform all other objects by a considerable amount. This finding reinforces

an earlier finding where it was shown in an example image that at low thresholds we

could obtain an almost pure representation of the background.

Another effect to notice in figure 4.10 is that the ideal inlier threshold varies between

the objects. Intuitively this makes sense since the inlier threshold is in raw pixels and

the objects moved at different speeds. The backgrounds all perform well at a very low

inlier threshold where the other objects seem to prefer higher inlier thresholds. This is

discussed in more detail in a Section 4.3.6.

40

Threshold

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Background
Adult Human
Human Face
Train
Child

Figure 4.10: Performance by object. This figure shows the performance scores at various
inlier thresholds for each object. The horizontal axis represents the inlier threshold. The
vertical axis gives the performance score, p(S=|Cx) − p(S=|Cx̂). Each line represents
a different object. The color of the line signifies the class of the object.

4.3.4 Object class performance

Performance appears to be strongly affected by class. To study class variation in more

detail the highest possible score for each object is chosen. Figure 4.11 groups max object

performance by class. Box and whisker plots are given which show the distribution of

performance for each class. The horizontal axis gives the label of the class. Again,

the adult face, train, and child classes have been grouped into a single other class. The

vertical axis represents the difference score. Background objects outperform all other

classes. It is worth noting that the degree to which background objects perform better

than foreground objects is significantly higher than it was when we looked at data fitness.

4.3.5 Effect of fitness on performance

It seems reasonable to expect that data fitness should have a large influence on perfor-

mance. Objects that fit poorly to affine motion models should also segment poorly. To

study this the maximum performance for each object was compared to the normalized

fitness error for that object. Figure 4.12 shows the actual effect fitness has on perfor-

41

●

Adult Human Background Other

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

D
iff

er
en

ce
 s

co
re

Figure 4.11: Performance by object class. This figure shows the distribution of the
maximum performance scores for each object class. The vertical axis represents the
performance score, p(S=|Cx) − p(S=|Cx̂). Box and whisker plots are given for each
class. They represent the distribution of the maximum possible performance score for
each object in the class. The human face, human child, and train classes are grouped
into a class labeled other.

mance. The horizontal axis represents the normalized fitness error for the object. The

vertical axis represents the maximum performance for the object. Each point represents

an object.

If there is a strong relationship between fitness and performance then we should see

the performance fall as the fitness error increases. By looking at the figure it can be seen

that this is definitely not the case. The correlation between the two was measured and

found to be -0.27. This isn’t strong evidence of a relationship (p=.20).

This finding implies that something other than the fitness is influencing performance.

There is something special about the background beside its ability to be easily explained

by an affine model that is influencing performance. This is discussed further in our

conclusions and something we hope to investigate in future work.

42

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Performance Score

N
or

m
al

iz
ed

 F
itn

es
s

E
rr

or

Figure 4.12: Fitness vs. Performance. This figure shows the relationship between nor-
malized fitness error and object performance. The horizontal axis represents the nor-
malized fitness error. The vertical axis represents the maximum possible performance
score for the object. Each point represents an object.

4.3.6 Normalized projection error

In addition to the standard projection error the system can calculate a normalized projec-

tion error. The most interesting effect caused by the normalized projection error is that

it allows for a better selection of inlier threshold. Figure 4.13 demonstrates this effect.

Similar to figure 4.10, figure 4.13 shows the performance scores for each object given

an inlier threshold. The horizontal axis now goes between 0 and 1 since the threshold is

now based on the normalized projection error. It seems that more objects peak around

the same point in figure 4.13 than did in figure 4.10.

To measure this effect quantitatively a scoring method was devised which measured

the effectiveness of an inlier threshold across all objects. To give each object equal

weight the performance scores were normalized. Given inlier threshold t ∈ T where T

is the set of all measured thresholds, let f(t, x) be p(S=|Cx) − p(S=|Cx̂) given object

x and inlier threshold t. In other words, f is the difference score for a given threshold

and object. Also, let tx,max = t|∀t′ ∈ {T − t} : f(t, x) > f(t′, x) and tx,min = t|∀t′ ∈

{T − t} : f(t, x) < f(t′, x). We can then look at:

43

Threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Background
Adult Human
Human Face
Train
Child

Figure 4.13: Performance by object (normalized error). This figure shows the perfor-
mance scores at various inlier thresholds for each object when using the normalized
projection error. The horizontal axis represents the inlier threshold. The vertical axis
gives the performance score, p(S=|Cx) − p(S=|Cx̂). Each line represents a different
object. The color of the line signifies the class of the object.

g(t, x) =
f(t, x)− tx,min

tx,max − tx,min

The advantage of g(t, x) is that given a fixed object x′ the range of g(t, x′) = [0, 1].

This gives all objects equal weight when looking for an ideal threshold. If we let X be

the set of all our labels {x1, ..., x24} we can look at G(t), a measure of how ideal the

threshold t is across all objects. G(t) is defined as:

G(t) =
24∑
i=1

g(t, xi)

Figure 4.14 uses G(t) to compare the standard projection error and the normalized

projection error for threshold selection. The vertical axis represents G(t), the scoring

metric for our threshold. The lower horizontal axis belongs to the blue line and shows

the inlier threshold for the standard projection error which ranged from 0 to 5 in this

work. The upper horizontal axis belongs to the red line and shows the inlier threshold

for the normalized projection error, which ranged from 0 to 1.

44

●

●

●

●

●
●

●

●
● ●

●
●

●
● ●

●
●

●
● ●

Inlier Threshold

G
(t

)

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Raw Error
Normalized Error

Figure 4.14: Raw error vs. normalized error. This figure shows how threshold selec-
tion changes depending on the projection error used. The vertical axis represents the
threshold score, G(t), which ranges from 0 to 24. The blue horizontal axis and blue line
represents the threshold values and performance for the standard projection error. The
red horizontal axis and red line represent the threshold values and performance for the
normalized projection error.

It can be seen that the normalized error curve peaks higher than the standard error

curve. This shows that by using the normalized projection error it is possible to pick a

threshold that fits more objects. In addition the normalized error curve forms a much

sharper bell curve than the standard projection error which may not represent a bell

curve at all. The standard projection error uses an inlier threshold in pixels and so it

tends to be different for each object depending on the distance moved by the object. The

normalized projection error threshold is fixed between 0 and 1 for all objects and it’s

effect is constant across all objects.

45

Chapter 5

Conclusions

The goal of this research was to evaluate the applicability of motion segmentation to-

wards forming object percepts. The experiments performed have shown that there are

feature associations to be made from motion information. These associations can be

accurately detected by a system such as the one described in this paper. Most of the

associations made will simply be segmenting background from foreground but there are

some associations made on foreground objects as well.

Both affine and projective motion models have been shown to perform about the

same. In this work the affine motion model performed slightly better. This is likely

due to the fact that most of the objects were shown to be well described by an affine

model and so a projective model was unnecessary. Both of the models had near identical

behavior when it came to a selection of threshold.

The system was shown to oversegment at lower thresholds and undersegment at

higher thresholds as expected. It was shown that at the lowest thresholds, segments

tended to be very pure. The higher the thresholds the more the segments explained

the entire object they were covering but they tended to become less pure. This leads

to a tradeoff that systems hoping to use this information must make when it comes

to selecting a threshold. One method for resolving the tradeoff was presented with

the difference score which gave a slightly higher threshold than the pure likelihood

threshold.

In addition we presented an alternative error measure which can lead to an easier

46

selection of ideal threshold. It was demonstrated that the projection error of the best

fit model tends to be influenced by the distance the object moved. This means that a

threshold which is based on raw pixels will give a different ideal for models moving

at different speeds. Normalizing the error by the distance the object moved created a

threshold that is independent of the motion of the object.

Finally this paper has shown the existence of some unmeasured phenomenon that

affects the quality of performance. It was shown that the data fitness alone could not

account for the variations in performance amongst objects. This implies that an object

whose motion is well described by an affine motion model will not necessarily segment

well. This has implications for anyone trying to develop a better segmentation sys-

tem. It isn’t guaranteed that simply improving the input by finding a more descriptive

transformation, reducing the tracker error, or selecting only rigid objects would have a

significant beneficial effect on the system.

5.1 Future Work

In the course of this work several opportunities arose for experiments that were out of

the scope of this thesis which could improve this work. The most prominent is to in-

vestigate the discrepancy between data fitness and performance. This would entail iden-

tifying some property or collection of properties of the ground truth data that explains

the performance. One hypothesis we propose is that the highest performing motions are

also the most distinct from the surrounding motions.

Another weakness is that all of the motion models studied were transformation based

models. It would be interesting to compare performance between models based on

transformations with models based on trajectories or flow. It would also be interesting

to study the accuracy of algebraic models for calculating the motion directly instead of

random sampling through RANSAC.

This paper studied the effect of motion without any prior knowledge. In reality,

there are a number of other methods for forming spatial associations. Each of these

47

methods presents a set of associations unique to that particular algorithm. In addition,

existing associations between temporal features provide prior knowledge. One could

study how motion segmentation could be improved by prior segmentations given from

other methods.

The evaluation presented here used a simple measure to examine the quality of the

output as a prediction towards performance in a larger system. It would be useful to take

the segmentation algorithm used in this work and compare the effectiveness of percept

formation systems with and without motion segmentation. One could also examine the

percepts that were formed by motion segmentation that would not have been formed

otherwise. This would provide a higher level evaluation which may be more accurate

for percept based tasks.

48

REFERENCES

[Bau09] Tim Baumann, editor. Valkaama. www.valkaama.com, 2009.

[Bou00] J.Y. Bouguet. Pyramidal implementation of the lucas kanade feature tracker
: description of the algorithm. Technical report, Intel, Microprocessor Re-
search Labs, 2000.

[Bra93] Kenneth Branagh, editor. Much Ado About Nothing. BBC Films, 1993.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. CSUR, 41(3), 2009.

[DT10] Bruce Draper and Lucy Troup. Seeasyou: Modeling object and scene
recognition. The Journal of Vision, 2010. Paper under review.

[FB81] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Communications of the ACM, 24(6):381–395, 1981.

[FFFP04] Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models
from few training examples: An incremental bayesian approach tested on
101 object categories. In CVPR, page 178, 2004.

[FZ00] Andrew W. Fitzgibbon and Andrew Zisserman. Multibody structure and
motion: 3-d reconstruction of independently moving objects. LNCS,
1842:891–906, 2000.

[HS88] Chris Harris and Mike Stephens. A combined corner and edge detector. In
The Fourth Alvey Vision Conference, 1988.

[Klu04] Stefan Kluge, editor. Route 66. route66.vebfilm.net, 2004.

[LGF10] Dahua Lin, Eric Grimson, and John Fisher. Modeling and estimating per-
sistent motion with geometric flows. In CVPR, 2010.

[LK81] Bruce Lucas and Takeo Kanade. An iterative image registration technique
with an application to stereo vision. In DARPA IU Workshop, pages 121 –
130, 1981.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, 2004.

49

[Luc84] Bruce Lucas. Generalized Image Matching by the Method of Differences.
PhD thesis, Carnegie-Mellon University, 1984.

[MTS+05] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaf-
falitzky, T. Kadir, and L. Van Gool. A comparison of affine region detec-
tors. IJCV, 65(1–2):43–72, 2005.

[RA80] J. W. Roach and J. K. Aggarwal. Determining the movement of objects
from a sequence of images. PAMI, 2:554–562, 1980.

[RLSP07] Fred Rothganger, Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce.
Segmenting, modeling, and matching video clips containing multiple mov-
ing objects. PAMI, 29(3):477–491, 2007.

[SMB00] Cordelia Schmid, Roger Mohr, and Christian Bauckhage. Evaluation of
interest point detectors. IJCV, 37(2):151–172, 2000.

[SSZ05] Josef Sivic, Frederik Schaffalitzky, and Andrew Zisserman. Object level
grouping for video shots. IJCV, 67(2):189–210, 2005.

[SWRC06] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Texton-
boost: Joint appearance, shape and context modeling for multi-class object
recognition and segmentation. LNCS, 3951:1–15, 2006.

[SZ03] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach
to object matching in videos. In ICCV, volume 2, page 1470, 2003.

[TK92] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams
under orthography: a factorization method. IJCV, 9(2):137–154, 1992.

[Tor95] Philip H. S. Torr. Motion Segmentation and Outlier Detection. PhD thesis,
University of Oxford, 1995.

[TZ00] P. H. S. Torr and A. Zisserman. Feature based methods for structure and
motion estimation. LNCS, 1883:278–294, 2000.

[Ull79] S. Ullman. The interpretation of structure from motion. Proceedings of the
Royal Society Biological Sciences, 203(1153):405–426, 1979.

[VMSS05] Ren Vidal, Yi Ma, Stefano Soatto, and Shankar Sastry. Two-view multi-
body structure from motion. IJCV, 68(1):7–25, 2005.

[YJS06] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey.
CSUR, 38(4), 2006.

50

