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ABSTRACT 

UNIFICATION OF LARGE-SCALE LABORATORY RAINFALL EROSION TESTING 

 

Water pollution degrades surface waters making them unsafe for drinking, fishing, 

swimming, and other activities.  The movement of sediment and pollutants carried by sediment 

over land surfaces and into water bodies is of increasing concern with regards to clean waters, 

pollution control, and environmental protection.  Due to increasing environmental concerns 

about sediment in water bodies derived from construction sites, along with increasingly stringent 

United States Environmental Protection Agency (USEPA) regulations, it is imperative to be able 

to have a uniform means to compute soil loss determined at large-scale laboratory rainfall-

induced erosion facilities that can eventually be applied to construction sites. 

This dissertation utilized bare-soil data from the most commonly-utilized large-scale 

rainfall testing laboratories in the erosion-control industry to develop a unifying prediction 

equation that can be utilized to provide a proper foundation for determining design parameters to 

meet USEPA stabilization requirements.  The developed equation was determined to be a 

function of the following key parameters: rainfall intensity, plot area, duration, slope gradient, 

median raindrop size, raindrop kinetic energy, percentage of clay in the soil, and compacted soil 

percentage.  The developed equation for the prediction of rainfall-induced soil loss, developed 

from sixty-eight data points collected for this study, had a coefficient of determination (R
2
) of 

0.88.  The prediction equation unifies large-scale laboratory rainfall erosion testing and provides 

a means to determine the appropriate design parameters for USEPA stabilization requirements. 
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1 INTRODUCTION 

1.1 General Background 

Water pollution from sediment degrades surface waters making them unsafe for drinking, 

fishing, swimming, and other activities.  The movement of sediment and pollutants carried by 

sediment over land surfaces and into water bodies is of increasing concern with regards to clean 

water, pollution control, and environmental protection.  Sedimentation impairs more than 85,000 

river and stream miles (United States Environmental Protection Agency (USEPA), 2005).  

Sources of sedimentation include agriculture, urban runoff, construction, and forestry.  

Sediment-runoff rates from construction sites, however, are typically 10 to 20 times greater than 

agricultural lands and 1,000 to 2,000 times greater than forest lands (USEPA, 2005).  Figure 1.1 

shows an example of construction site erosion and sediment issues.  Figure 1.2 shows an 

example of where the sediment from construction sites often ends up, leading to polluted water 

bodies.   

Environmental concern over construction site erosion is especially evident with continued 

advancement of rules and regulations originated by the Clean Water Act by the USEPA.  As 

authorized by the Clean Water Act, the National Pollutant Discharge Elimination System 

(NPDES) permit program controls water pollution by regulating point sources (construction 

sites) that discharge pollutants into waters of the United States (U. S.). 

Stormwater discharges from construction activities (such as clearing, grading, excavating, 

and stockpiling) that disturb one or more acres, or smaller sites that are part of a larger common 

plan of development or sale, are regulated under the NPDES stormwater program. Prior to 

discharging stormwater, construction operators must obtain coverage under an NPDES permit, 
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which is administered by either the State or the USEPA, depending on where the construction 

site is located.  

 

Figure 1.1 – Example of construction site erosion and sediment issues   

 

Figure 1.2 – Example of sediment pollution into a water body 
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Where the USEPA is the permitting authority, construction stormwater discharges are 

almost all permitted under the Construction General Permit (CGP).  The newest CGP was 

published in February 2012 and is in effect until February 2017 (USEPA, 2012) and requires 

compliance with effluent limits and other permit requirements, such as the development of a 

Stormwater Pollution Prevention Plan (SWPPP).  Construction operators intending to seek 

coverage under USEPA’s CGP must submit a Notice of Intent (NOI), certifying that they have 

met the permit’s eligibility conditions and that they will comply with the permit’s effluent limits 

and other requirements. 

Included within the 2012 CGP are a number of modifications, many of which are 

necessary to implement the new Effluent Limitations Guidelines (ELGs) and new source 

performance standards for construction and development (C&D) point sources, known as the 

“C&D rule.”  C&D rules require construction site operators to meet restrictions on erosion and 

sediment control, pollution prevention, and stabilization. The C&D rule also includes a numeric 

turbidity limit of 280 nephelometric turbidity units (NTUs) for certain larger construction sites; 

but effective January 4, 2011, the USEPA has stayed the numeric limitation of 280 NTUs that 

was published in the December 1, 2009 rule.  The USEPA will propose a revised limit in a future 

rulemaking. 

Within the proposed CGP, there exist new requirements for soil stabilization.  According 

to the new CGP, permitees are required to stabilize exposed portions of a site with erosion- and 

sediment-control measures such as rolled erosion-control products, hydraulic erosion-control 

products, and sediment retention fiber rolls.  However, the USEPA leaves an important question 

unanswered, which is how to determine selection of product or type of product for the 

construction site, but the USEPA does suggest the use of the Revised Universal Soil Loss 
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Equation (RUSLE; U. S. Department of Agriculture (USDA), 1997) for site analysis and 

determination of erosion-control products.  With the use of the RUSLE equation, the USEPA has 

connected the construction site to a laboratory test used to determine erosion-control treatment 

performance, which ultimately has an impact on the amount of soil loss that occurs in the field. 

 

1.2 Research Objectives and Scope 

There are hundreds of erosion- and sediment-control treatments specifically designed to 

protect soil slopes from rainfall-induced erosion on construction sites.  One of the most common 

methods to evaluate performance of erosion-control treatments during rainfall events is to utilize 

a large-scale rainfall simulation testing facility and then apply the results to construction sites.  

However, nearly all of the large-scale rainfall testing facilities within the U. S. operate under 

different rainfall testing protocols which utilize varying slopes, lengths, widths, rainfall amounts 

and intensities, rainfall drop sizes, drop heights, test duration, soil types, and environmental 

conditions.  Therefore, it is difficult to distinguish or compare treatment performance due to 

variability in laboratory setups.  Further, the cover factor values determined from each laboratory 

that are then utilized in the RUSLE to meet USEPA soil-stabilization requirements are not 

comparable from laboratory to laboratory, due to the varied amount of rainfall and time. 

Due to the large variability in laboratory setups and the direct link to USEPA-

recommended RUSLE usage of the cover factors generated from the laboratories, it is imperative 

to be able to have a uniform means to compute soil loss determined at large-scale laboratory 

rainfall-induced erosion facilities that can eventually be applied to construction sites.  This 

dissertation utilized bare-soil data for development of a unifying prediction equation that can be 

utilized to provide a proper foundation for determining cover factors to meet USEPA and other 
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national and state stabilization requirements across multiple laboratories.  Five bare-soil rainfall 

erosion data sets were obtained from five commonly utilized large-scale laboratory testing 

facilities.  Testing facilities were: 1) ErosionLab
®
 in Wisconsin; 2) San Diego State University in 

California; 3) Texas Research International/Environmental (TRI) in South Carolina; 4) Texas 

Transportation Institute (TTI) in Texas; and 5) Utah State University in Utah.  The objectives 

and scope of this research were to: 

 Conduct a literature review including a review of: the existing predictive model 

(RUSLE) and related parameter, and the physical processes that occur during large-

scale laboratory rainfall testing to develop the foundation for defining rainfall erosion 

testing. 

 Compile the multiple sets of bare-soil testing data produced from the five testing 

facilities to provide the foundation for development of a relationship to predict soil 

loss. 

 Identify the most appropriate physical parameters and variables to predict soil loss. 

 Perform a statistical analysis and develop a unifying bare-soil loss predictive 

relationship. 

 Compare the predictive relationship to the current standard of practice. 
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2 LITERATURE REVIEW 

2.1 Introduction 

Rainfall erosion has been studied for many years and is a very broad topic.  The key 

questions to answer for this literature review are: Why large-scale laboratories are utilized for 

rainfall simulation and erosion prediction? What are the key rainfall testing? Which erosion 

models are used to link laboratory data to field implementation that impact construction site 

design and USEPA requirements? Subsequent sections provide discussion of large-scale 

laboratory testing, key rainfall testing parameters, and a review of the RUSLE. 

 

2.2 Large-scale Laboratory Rainfall Testing 

Rainfall simulators are research tools designed to apply water in a form similar to natural 

rainstorms (Meyer, 1994).  Simulators can be very useful for many types of soil erosion and 

hydrologic experiments. However, rainstorm characteristics must be simulated properly, 

runoff/erosion data must be analyzed carefully, and results interpreted judiciously to obtain 

reliable information for the conditions to which the simulated rainstorms are applied (Meyer, 

1994).   

One of the major decisions to be determined when setting up a rainfall simulation is to 

determine how big of an area to be examined.  According to Mutchler et al. (1994), there are two 

types of plot sizes reported as: 1) small plots and 2) Universal Soil Loss Equation (USLE) plots 

(Wischmeier and Smith, 1978).  Small plots provide information about infiltration, detachment 

of particles, and other factors influencing interrill erosion; but small plots do not give complete 

information about the erosion process.  The standard size of small plots is often typified by 18-in. 

wide by 18-in. long, but can vary.  USLE plots are classified as plots that are large enough to 
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represent the combined processes of rill and interrill erosion.  The standard size of USLE plots is 

72.6-ft long by 13.3-ft wide. 

Over the years, many large-scale laboratories began simulating rainfall under controlled 

conditions to simulate rill and interrill erosion.  These laboratories created plot sizes that made 

sense for their particular setups ranging in length from 20- to 40-ft long and ranging in width 

from 4- to 8-ft wide.  According to Mutchler (1963), all of these size ranges fall within what is 

classified as sufficient length to develop rill and interrill erosion. 

Due to the presence and convenience of many large-scale laboratories, companies, and 

agencies, organizations began to use the large-scale facilities to examine erosion-control 

treatments.  One particular agency that has suggested the use of large-scale testing facilities to 

determine erosion performance is the USEPA.  The USEPA suggests using the large-scale 

laboratories to determine a cover factor which then gets applied and used in the RUSLE 

equation. 

During that last 50 yrs, a wide range of equipment and techniques have been utilized to 

simulate rainfall.  These techniques and equipment have ranged from walking up and down the 

slope with watering cans to elaborate electronically-controlled hydraulic machines (Bubenzer, 

1980; Hall, 1970; Meyer, 1958; USDA, 1979).  The major methods used to produce simulated 

raindrops for erosion research can be grouped into three broad categories: 

1. Sprinkler irrigation equipment that distributes water droplets into the air which fall on 

the plot.  These types of simulators have been found to be less successful in achieving 

natural rainfall characteristics, especially drop-size distribution and uniformity of 

application (Lal, 1994).  In addition, Holland (1969) concluded that sprinkler heads 
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positioned 3 m above the plot surface only approximated 50% of the kinetic energy 

developed by natural rainfall. 

2. Nozzles from which water is forced at a significant velocity by pressure downward 

toward the plot.  Nozzles produce a wide range of drop sizes, but the large orifices 

necessary to obtain large drops usually require that the nozzle spray intermittently to 

reduce application rates to simulate typical rain intensities. 

3. Drop emitters where drops form and fall from a tip starting at essentially zero 

velocity.  Drop emitters produce a limited range of drop sizes and require higher 

starting heights to obtain proper impact velocities. 

During the last 30 yrs in the erosion-control industry, many rainfall performance tests 

have been performed.  These tests have ranged from simple garden hose and sprinkler setups to 

full-scale documented field studies.  In the middle of the test range are large-scale testing 

facilities.  In the erosion-control industry, there are only a handful of large-scale facilities that are 

commonly used to regularly evaluate stabilization measures:  San Diego State University, Utah 

State University, Texas Transportation Institute, ErosionLab
®
, and Texas Research 

International/Environmental.  Figures 2.1 and 2.2 show photographs of typical outdoor and 

indoor large-scale laboratory setups, respectively. 
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Figure 2.1 – Photograph of typical large-scale outdoor facility 

 

Figure 2.2 – Photograph of typical large-scale indoor facility 

 



                    10 

2.3 Rainfall Characteristics and Parameters 

In order to setup a large-scale testing laboratory, many decisions about setup including 

slope gradient, plot length, plot width, rainfall quantity and intensity, rainfall drop size, drop 

height, test duration, soil type, and other environmental and physical conditions need to be 

determined. According to many researchers, such as Lal (1994) and Meyer (1994), the most 

important rainfall parameters to be simulated for erosion-control research are: 1) raindrop-size 

distribution, 2) raindrop-impact velocity, and 3) appropriate rainstorm intensities.  These three 

characteristics can be considered key factors in soil detachment, soil surface sealing, and 

resulting runoff:   

 Drop-size distribution near that of natural rainstorms.  Natural rainfall consists of a 

wide distribution of drop sizes that range from near 0 to about 7 mm in diameter.  The 

median diameter is between 2 and 3 mm for erosive rainstorms and increases with 

rainfall intensity (Laws and Parsons, 1943). 

 Drop-impact velocities near those of natural raindrops.  Raindrop fall velocities vary 

from near zero for mist-sized drops to more than 29.5 ft/s for the largest sizes.  For 

example, a common-sized raindrop of 2 mm falls at a velocity of 19.7 to 23 ft/s in 

natural conditions (Gunn and Kinzer, 1949). 

 Intensities in the range of storms for which results are of interest, which will vary 

depending on where the erosion is taking place.  Intensities of natural rainfall vary 

from near zero to as high as 15 in./hr.  Generally, very low intensities are not of major 

interest for erosion.  Intensities between 1 and 7 in./hr are usually of greatest 

importance (Lal, 1994). 
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By examining raindrop size and velocity, many researchers (Lal, Morgan and Nearing, 

Abd Elbasit, Van Dijk, Laws and Parson, and others) have determined that raindrop kinetic 

energy can be considered the most significant parameter for predicting rainfall-induced erosion.  

Kinetic energy of a raindrop is a measure of the amount of mechanical work that each raindrop 

can perform on the soil.  Kinetic energy of a raindrop can be defined as: 

2

2

1
mvKE   Eq. (2.1) 

where 

KE = kinetic energy; 

m = mass of raindrop = density of water times volume of sphere with median diameter 

of the raindrop size of interest; and 

v = velocity of raindrop determined from Laws (1941) velocity raindrop curve. 

Other desirable characteristics for rainfall simulators include (from Lal (1994) and 

Morgan and Nearing (2011)): 

 Based on the fact that raindrop size, velocity, and intensity are critical for rainfall 

simulation, a widely-used and logical physical parameter for rain simulation is kinetic 

energy, which represents mass (size surrogate) and velocity.  However, kinetic energy 

does not account for intensity, therefore, a relationship between raindrop size and 

intensity was developed.  A review of the literature to determine the range of natural 

rainfall data from a large variety of sources and years is presented in Figure 2.3. 
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Figure 2.3 – Plot of natural rainfall data:  raindrop diameter / rainfall intensity 

plot 

By examining Figure 2.3, it is clear that there is a wide range of raindrop 

diameters associated with varying rainfall intensity.  For example, at 4 in./hr, the 

reported raindrop size could be anywhere from 1.5 to 4.5 mm.  From a conservative 

design perspective, one could argue that the Abd Elbasit Envelope (Abd Elbasit et al., 

2010) should be used for testing of stabliization measures to ensure that the worst-

case scenario is represented during testing.  However, the more practical and likely 

more-common raindrop diameter / rainfall intensity relationship that is suggested is 
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that of Van Dijk et al. (2002), which represents the average of the possible ranges.  

Van Dijk’s equation is presented for reference as Eq. (2.2): 

211.0

50 *28.2 IRD   Eq. (2.2) 

where 

RD50 = median raindrop diameter (mm); and 

I = rainfall intensity (in./hr). 

 Plot area of sufficient size to represent the treatment and conditions being evaluated.  

Rainfall simulators should be capable of applying rainfall to plots that are large 

enough for a realistic test of treatment characteristics.  Square-meter plots and smaller 

plots may be sufficient for studying raindrop impact (interrill) erosion, but longer 

plots are necessary for evaluating scour and transport by runoff.  Experience has 

shown that 5 m is the minimum slope length that will adequately represent a rill and 

interrill erosion system (Lal, 1994; Mutchler, 1963). 

 Drop characteristics and intensity of application need to be uniform over the study 

area. 

 Raindrop application needs to be continuous throughout the study area. 

 Angle of impact not greatly different from near vertical for most drops. 

 Simulators must have the capability of applying the same simulated rainstorm(s) 

repeatedly. 

 Rainstorm conditions must be repeatable when used during common field conditions 

such as high and low temperatures and winds. 
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2.3.1 Key Parameters 

Based on the information presented in Section 2.3, one arrives at the key function and 

parameters, which is the ability to simulate rainfall events under controlled and documented 

conditions and to record the following key parameters shown in Table 2.1 based on input from 

Lal (1994), Morgan and Nearing (2011), Meyer (1994), and the author’s personal research 

experience. 

Table 2.1 – List of key parameters for rainfall simulation (Lal (1994), Morgan and Nearing 

(2011), Meyer (1994), and the author’s personal research experience) 

Number Parameter 

1 Soil loss over time 
2 Rainfall intensity 

3 Plot area (length times width) 

4 Duration of test 

5 Slope gradient 

6 Median raindrop size 

7 Raindrop kinetic energy 

8 Percentage of sand in the soil 

9 Percentage of silt in the soil 

10 Percentage of clay in the soil 

11 Organic content of the soil 

12 Compaction percentage of the finished soil surface 

13 Compaction percentage of the underlying soil surface 

14 Soil plastic limit 

15 Soil plasticity index 

16 Soil liquid limit 

17 Soil permeability 

18 Water runoff volumes over time 

19 Turbidity measurements over time 

 

 

2.4 Rainfall Erosion-prediction Model 

Now that we have a better understanding of why large-scale testing facilities are utilized 

and we also have a good understanding of the key testing parameters, the only question that 

remains is:  How do these data get implemented for use in the field on construction sites?  In 

order to determine the appropriate C factor for USEPA criteria, a rainfall erosion-prediction 
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model is necessary.  The USEPA has chosen to support the use of the RUSLE and as such, this 

dissertation will focus on this erosion-prediction model for development and comparison.  In 

addition, RUSLE is widely accepted as the industry standard for roadway construction sites as 

the Federal Highway Administration (FHWA) in their Standard Specifications for Construction 

of Roads and Bridges on Federal Highway Projects (FHWA, 2009) requires a design parameter 

that is only obtained from RUSLE calculations. 

2.4.1 RUSLE 

In 1954, the USDA developed the USLE (Wischmeier and Smith, 1978) primarily for use 

on croplands with slopes less than 9%.  The USLE was utilized from 1954 until 1987, at which 

time it was decided that the USLE should be revised to incorporate additional research and 

technology developed since 1954.  The new equation became known as the RUSLE (USDA, 

1997), a regression formula which computes the average annual erosion from an acre of land, 

and computes as follows: 

PCSLKRSL *****  Eq. (2.3) 

where 

 SL = soil loss (tons/acre/yr); 

 R = rainfall-runoff erosivity factor; 

 K = soil-erodibility factor; 

 L = slope-length factor; 

 S = slope-steepness factor; 

 C = cover-management factor; and 

 P = supporting-practices factor. 
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The RUSLE was then applied to range lands and forest lands and eventually to 

construction sites, pushing the use of the equation way beyond the initial intent.  For example, of 

the nineteen key parameters listed in Table 2.1, RUSLE accounts for about eight of the key 

parameters, namely:  soil loss; rainfall intensity; slope gradient; percentages of sand, silt, clay, 

and organic content; and a yearly time frame.  RUSLE is relatively simple to use and implement 

and, therefore, does have a useful practical value, but also a set of limitations that are often 

ignored or overlooked (Mathews, 2008).  These limitations are: 

 the RUSLE only predicts sediment entrained in the erosion process and does not 

predict sediment yield; 

 the RUSLE was intended to predict average annual soil loss and was not intended to 

be used to predict soil loss for an individual storm event; 

 the RUSLE was developed to be effective for erosion by sheet and rill flow on slopes 

less than 300 m and not for concentrated flow or for longer slopes; and 

 the RUSLE does not adequately take into account soil dispersibility when 

determining the soil-erodibility K factor. 

2.4.2 R Factor 

R factor is intended to be a measure of rainfall-runoff erosivity.  R factor represents the 

input that drives sheet and rill erosion processes (Renard et al., 1994).  Differences in R factor 

values represent differences in erosivity.  R factors can be determined from isoerodent maps, 

allowing users to interpolate the corresponding R factor value for a specific location.  The values 

presented in these maps are produced from decades of observed rainfall data across a given area 

and are calculated as the product of storm energy times the maximum 30-min storm depth.  An 
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isoerodent map of the U. S. is presented in Figure 2.4 for reference, noting that the R factor 

values for the U. S. range from 7 to greater than 800. 

 

Figure 2.4 – Isoerodent map of the U. S. showing the range of R factor values  

In addition to the isoerodent maps, R factors can be determined from an equation.  The 

following equations obtained from Agriculture Handbook Number 703 (USDA, 1997) are 

typically utilized to compute R factors for large-scale laboratory testing: 
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where 

 R factor = average annual rainfall erosivity; 

 n = number of years used to obtain average R; 

 j = index of number of years used to produce average; 

 m = number of storms in each year;  

 k = index of number of storms in each year; 

 E  = total storm energy; and 

 I30 = maximum 30-min rainfall intensity. 

30
1

30 IVeEIEI rr

m

k












 Eq. (2.5) 

where 

 er = rainfall energy per unit depth of rainfall per unit area (ft-tonf-acre
-1

-in.
-1

); 

 ΔVr = depth of rainfall for the r
th

 increment of the storm hyetograph which is divided 

into m parts, each with essentially constant rainfall intensity (in.); and 

 all other variables are defined previously. 

Unit energy (e) is a function of rainfall intensity and is computed as: 

  rr ie 27.1exp72.011099   Eq. (2.6) 

and 
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  Eq. (2.7) 
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where 

 ir = rainfall intensity (in./hr); 

 Δtr = duration of the increment over which rainfall intensity is considered to be 

constant (hrs); and 

 the other variable was defined previously. 

The EI for a specified time period (such as the annual value) is the sum of the computed 

value for all rain periods within that time.  Thus, 

   2

30 10EIR  Eq. (2.8) 

where 

 R = average annual rainfall erosivity in 
yr-hr-acre

in.-tonf-ft of hundreds
. 

The division by 100 is made for the convenience of expressing the units. 

2.4.3 K Factor 

K factor is the soil-erodibility value and can be defined as the rate of soil loss per rainfall 

erosion index unit as measured on a unit RUSLE plot.  In practical terms, the K factor is the 

average long-term soil and soil profile response to the erosive powers of rainstorms (USDA, 

1997).  K factor represents an integrated average annual value of the total soil and soil profile 

reaction to a large number of erosion and hydrologic processes, consisting of soil detachment 

and transport by raindrop impact and surface flow, localized deposition due to topography, and 

tillage-induced roughness as well as rainwater infiltration into the soil profile.  Values for K 

factor typically range from about 0.05 to 0.45 with high-sand and high-clay content soils having 

the lower values and high-silt content soils having the higher values.  K factors can be 
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determined from direct measurements on natural runoff plots, with empirical equations, a USDA 

soil nomograph, or from general soil-type classifications such as produced by the Soil 

Conservation Service (SCS, 1993).  K factors used in this study were determined from direct 

measurements, reported from each laboratory or when these data were not provided, the general 

soil chart presented in Table 2.2 was utilized based on quantity of organic matter. 

Table 2.2 – Textural class K factor table (from the SCS (1993)) 

Textural class Average Less than 2% More than 2% 

clay 0.22 0.24 0.21 
clay loam 0.30 0.33 0.28 

coarse sandy loam 0.07 – 0.07 

fine sand 0.08 0.09 0.06 

fine sandy loam 0.18 0.22 0.17 

heavy clay 0.17 0.19 0.15 

loam 0.30 0.34 0.26 

loamy fine sand 0.11 0.15 0.09 

loamy sand 0.04 0.05 0.04 

loamy very fine sand 0.39 0.44 0.25 

sand 0.02 0.03 0.01 

sandy clay loam 0.20 – 0.20 

sandy loam 0.13 0.14 0.12 

silt loam 0.38 0.41 0.37 

silty clay 0.26 0.27 0.26 

silty clay loam 0.32 0.35 0.30 

very fine sand 0.43 0.46 0.37 

very fine sandy loam 0.35 0.41 0.33 

 

2.4.4 L and S Factors 

L factor is the slope-length factor, which is the ratio of soil loss from the slope length 

measured in the field to that from a 72.6-ft length on the same soil type and gradient.  S factor is 

the slope-steepness factor, which is the ratio of soil loss from the slope found to that from a 9% 

slope under the same conditions and is the distance from the start of overland flow to the point 

where concentrated flow or deposition occurs.  L and S factors can be computed from empirical 

equations as: 
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m

L 









6.72
factor 


 Eq. (2.9) 

where 

  = horizontal slope length (ft); 

 72.6 = RUSLE unit plot length (ft); and 

 m = variable slope-length exponent. 

The slope-length exponent (m) is related to the ratio (β of rill erosion caused by flow to 

interrill erosion caused by raindrop impact with the following equation: 

)1( 




m  Eq. (2.10) 

Values for the ratio β of rill to interrill erosion for conditions when the soil is moderately 

susceptible to both rill and interrill erosion were computed from McCool et al. (1989): 

  56.0sin0.3

)0896.0/(sin

8.0



  Eq. (2.11) 

where 

 Θ = slope angle. 

Slope-steepness factor (S) is evaluated from McCool et al. (1987) for non-thawing soils 

as: 

S factor = 10.8 sin Θ + 0.03 for slopes less than 5 degrees Eq. (2.12) 

S factor = 16.8 sin Θ – 0.50 for slopes equal to or greater than 5 degrees Eq. (2.13) 
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And for thawing soils: 

S factor = 10.8 sin Θ + 0.03 for slopes less than 5 degrees Eq. (2.14) 

S factor =  

0.6

0896.0

sin







 
for slopes equal to or greater than 5 degrees 

Eq. (2.15) 

2.4.5 C Factor 

Cover management is examined by the RUSLE via the C factor.  C factor represents the 

effect of surface cover and roughness on soil erosion.  C factor is the most common factor used 

to assess the impact of best management practices (BMPs) on reducing erosion due to the fact 

that the C factor represents the effect of land use on soil erosion (Renard et al., 1997).  Values 

for C factor range from zero imply non-erodibly to values that can be greater than 1.0.  Values 

greater than 1.0 imply conditions more erodible than those normally experienced under unit plot 

conditions.  For example, a smooth compact soil surface would be considered to have a C factor 

of approximately 1.2, whereas, grass sod would be considered to have a C factor of 

approximately 0.01.  C factor can be determined from prior land use subfactors as described in 

Agriculture Handbook Number 703 (USDA, 1997) or by large-scale laboratory testing.  The C 

factor for this study was assumed to be 1.0 for all analyses, since the data were for bare-soil 

conditions only. 

2.4.6 P Factor 

P factor represents how surface conditions affect flow paths and flow hydraulics (Renard 

et al., 1994).  For example, with contouring present, runoff flows around the slope in channels 

formed by tillage.  Other examples of conditions for P factors are stripcropping and terracing.  

The P factor for this study was assumed to be 1.0 for all analyses, since there were no additional 

surface conditions present during the testing. 
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2.5 Summary 

This chapter has presented information on why large-scale rainfall testing laboratories are 

needed, what the necessary key rainfall testing parameters are for proper modeling, and a 

discussion on the most widely-utilized prediction model used to link laboratory data to field 

implementation that impacts construction site design and USEPA requirements.  In particular, 

the RUSLE is applied at laboratory scale using some of the key rainfall testing parameters to 

determine key erosion parameters that are used on construction sites to meet USEPA 

requirements.  On the surface, the application of the RUSLE at the laboratory scale appears to 

make good sense due to the simplicity of use and ease of determining the necessary parameters.  

However, based on the limitation that the RUSLE was not intended to predict individual storm 

events and the fact that it only accounts for eight of the key paramaters, the question of proper 

application for the RUSLE at the laboratory scale becomes the basis for this dissertation.  

Therefore, the RUSLE equation will be checked against a broad set of data from various 

laboratories as well as compared against a new erosion-prediction equation to examine the 

validity of application on construction sites using laboratory-generated C factor data. 



                    24 

3 DATABASE  

3.1 Introduction 

Bare-soil rainfall erosion data were obtained from five commonly-utilized large-scale 

testing facilities.  Data were obtained from these facilities: 1) ErosionLab
®

 in Wisconsin 

(Clopper et al., 2001; Kelsey, 2002; Early et al., 2003); 2) San Diego State University in 

California (Beighley, 2011, pers. comm.); 3) Texas Research International/Environmental in 

South Carolina (Profile
®

 Products LLC, 2007-2011); 4) Texas Transportation Institute in Texas 

(Foster and McFalls, 2011, pers. comm.); and 5) Utah State University in Utah (Profile
®

 

Products LLC, 1999-2011).  Twenty-five sets of bare-soil testing data were obtained, with a total 

of sixty-eight unique data points and fourteen common variables that were obtained from each 

facility.  Table 3.1 displays the common variables obtained from each laboratory, a brief 

description, an overview of the range, and the units.  Table 3.2 presents a complete listing of the 

sixty-eight data points obtained from the various laboratories. 

Table 3.1 – List of common variables available from each laboratory 

Parameter Description Range Units 

SL soil loss 0 – 846 tons/acre 
I rainfall intensity 1.7 – 7.4 in./hr 

A plot area 0.0018 – 0.0074 acres 

T test duration 0.33 – 1.5 hrs 

S slope gradient 0.25 – 0.5 decimal % 

RD50 median raindrop size 2 – 4 mm 

KE raindrop kinetic energy 1.7 – 21.2 ft-poundal*1,000 

% sand percent sand 0.01 – 0.84 decimal % 

% silt percent silt 0.03 – 0.62 decimal % 

% clay percent clay 0.01 – 0.38 decimal % 

% compacted surface compaction percentage 0.71 – 0.89 decimal % 

PL plastic limit 0 – 0.28 decimal % 

PI plasticity index 0 – 0.19 decimal % 

LL liquid limit 0 – 0.32 decimal % 
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Table 3.2 – Complete listing of data obtained from each laboratory 

Event 

 

Cumulative 

soil loss 

(tons/acre) 

Rainfall 

intensity 

(in./hr) 

Plot 

area  

(acres) 

Test 

duration 

(hrs) 

Slope 

gradient 

(ft/ft) 

Median 

raindrop 

size  

(mm) 

Raindrop 

kinetic 

energy 

(ft-poundal 

*1,000) 

% sand 

 

% silt 

 

% clay 

 

% compacted 

 

Plastic 

limit 

 

Plasticity 

index 

 

Liquid 

limit 

 

1 10.7 1.9 0.0040 0.33 0.45 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 
2 82.1 3.7 0.0040 0.33 0.45 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

Final 273.1 6.3 0.0040 0.33 0.45 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

1 0.1 2.3 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

2 8.0 4.3 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

Final 24.7 5.5 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

1 1.8 2.0 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

2 44.6 5.6 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

Final 118.2 7.4 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

1 30.0 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.72 0.05 0.185 0.234 

Final 110.9 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.72 0.05 0.185 0.234 

1 19.4 3.5 0.0041 0.50 0.33 3.5 13.4 0.44 0.16 0.38 0.89 0.05 0.185 0.234 

2 38.8 3.5 0.0041 0.50 0.33 3.5 13.4 0.44 0.16 0.38 0.89 0.05 0.185 0.234 

Final 58.2 3.5 0.0041 0.50 0.33 3.5 13.4 0.44 0.16 0.38 0.89 0.05 0.185 0.234 

1 0.0 1.8 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

2 4.7 2.9 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

Final 16.6 4.6 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

1 1.5 2.3 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

2 43.6 4.4 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

Final 97.1 5.6 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

1 9.6 1.9 0.0040 0.33 0.33 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

2 78.3 3.7 0.0040 0.33 0.33 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

Final 239.0 6.3 0.0040 0.33 0.33 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

1 37.6 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.72 0.05 0.185 0.234 

Final 89.3 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.72 0.05 0.185 0.234 

1 12.7 1.9 0.0040 0.33 0.25 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

2 69.2 3.7 0.0040 0.33 0.25 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

Final 192.5 6.3 0.0040 0.33 0.25 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

1 21.6 3.5 0.0041 0.50 0.50 3.5 13.4 0.44 0.16 0.38 0.89 0.05 0.185 0.234 

2 43.1 3.5 0.0041 0.50 0.50 3.5 13.4 0.44 0.16 0.38 0.89 0.05 0.185 0.234 

Final 64.7 3.5 0.0041 0.50 0.50 3.5 13.4 0.44 0.16 0.38 0.89 0.05 0.185 0.234 

1 3.3 2.1 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

2 73.9 4.3 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

Final 126.6 5.4 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

1 33.5 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.72 0.05 0.185 0.234 

Final 179.5 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.72 0.05 0.185 0.234 
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Event 

 

Cumulative 

soil loss 

(tons/acre) 

Rainfall 

intensity 

(in./hr) 

Plot 

area  

(acres) 

Test 

duration 

(hrs) 

Slope 

gradient 

(ft/ft) 

Median 

raindrop 

size  

(mm) 

Raindrop 

kinetic 

energy 

(ft-poundal 

*1,000) 

% sand 

 

% silt 

 

% clay 

 

% compacted 

 

Plastic 

limit 

 

Plasticity 

index 

 

Liquid 

limit 

 

1 88.2 7.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.72 0.05 0.185 0.234 

Final 313.2 7.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.72 0.05 0.185 0.234 

1 124.1 3.5 0.0041 0.50 0.33 3.5 13.4 0.84 0.04 0.12 0.71 0.02 0.16 0.18 

2 248.3 3.5 0.0041 0.50 0.33 3.5 13.4 0.84 0.04 0.12 0.71 0.02 0.16 0.18 

Final 372.4 3.5 0.0041 0.50 0.33 3.5 13.4 0.84 0.04 0.12 0.71 0.02 0.16 0.18 

1 6.4 2.0 0.0040 0.33 0.33 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

2 57.2 3.5 0.0040 0.33 0.33 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

Final 170.4 6.3 0.0040 0.33 0.33 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

1 20.0 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.88 0.05 0.185 0.234 

Final 45.7 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.88 0.05 0.185 0.234 

1 2.2 1.8 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

2 54.1 4.9 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

Final 114.0 6.9 0.0073 0.33 0.33 2.3 2.6 0.44 0.30 0.11 0.75 0.20 0.05 0.24 

1 0.0 2.4 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

2 11.1 4.6 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

Final 25.0 6.3 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

1 22.6 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.88 0.05 0.185 0.234 

Final 46.1 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.88 0.05 0.185 0.234 

1 11.7 2.0 0.0040 0.33 0.33 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

2 72.5 3.5 0.0040 0.33 0.33 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

Final 187.5 6.3 0.0040 0.33 0.33 2.3 3.5 0.82 0.18 0.01 0.75 0.18 0.04 0.22 

1 282.1 3.5 0.0041 0.50 0.50 3.5 13.4 0.84 0.04 0.12 0.71 0.02 0.16 0.18 

2 564.1 3.5 0.0041 0.50 0.50 3.5 13.4 0.84 0.04 0.12 0.71 0.02 0.16 0.18 

Final 846.2 3.5 0.0041 0.50 0.50 3.5 13.4 0.84 0.04 0.12 0.71 0.02 0.16 0.18 

1 0.0 2.9 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

2 9.5 5.3 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

Final 21.7 5.9 0.0073 0.33 0.33 2.0 1.7 0.65 0.24 0.11 0.77 0.28 0.04 0.32 

1 1.2 1.7 0.0073 0.33 0.33 2.3 2.6 0.01 0.62 0.37 0.75 0.21 0.10 0.31 

2 14.7 4.5 0.0073 0.33 0.33 2.3 2.6 0.01 0.62 0.37 0.75 0.21 0.10 0.31 

Final 43.9 6.5 0.0073 0.33 0.33 2.3 2.6 0.01 0.62 0.37 0.75 0.21 0.10 0.31 

1 16.4 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.88 0.05 0.185 0.234 

Final 35.4 5.0 0.0018 0.50 0.40 4.0 21.2 0.6 0.28 0.12 0.88 0.05 0.185 0.234 
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3.2 Laboratory Testing Procedures 

Testing procedures at each laboratory were similar.  Each laboratory had a defined soil 

type that was installed according to typical soil placement techniques; which included placing 

soil in lifts of 4 to 6 in. and compacting to varying levels, and producing a finished surface.  Each 

plot was separated by metal flashing.  Each facility had rainfall calibration data for intensity on 

file that was used for rainfall setup.  All of the testing data obtained were for bare-soil testing 

conditions, so once the soil surfaces were prepared, each of the facilities then applied rainfall 

according to how their rainfall simulators were setup (i.e., nozzle, sprinkler, or drip).  Each 

facility performed the rainfall event for a minimum of 60 min, some were performed with two or 

three 30-min events back-to-back and others were performed with three 20-min events back-to-

back to achieve the desired time.  At each interval (either 20 or 30 min), the total amount of soil 

and water from each plot was collected and the total amount of soil loss was reported. 

 

3.3 Discussion of Database 

Based on the information presented in the literature review on key rainfall parameters, it 

appears that the common information that was obtained from each of the laboratories provides a 

significant portion of the key parameters.  In particular, of the nineteen key parameters that 

should be measured and reported, fourteen of the variables were obtained from the laboratories.  

The variables that were not available from all laboratories were:  organic content of the soil, 

underlying compaction percentage, soil permeability, water volumes over time, and turbidity.  

With the major objective of this study to develop a unifying soil-loss predictive relationship, an 

adequate amount of the key testing parameters are available for a comprehensive analysis, with 

nearly 75% of the key data parameters being available. 
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4 DATA ANALYSIS 

4.1 Introduction 

A detailed analysis of the database obtained from the various laboratories was needed to 

determine how to best proceed.  An examination of how the data compared when examined with 

the use of the RUSLE was perfomed.  Following the RUSLE application, a discussion of how the 

database should be analysed was performed, along with a method for determination of which 

variables from the database to use for developing a new predictive relationship.  Next, a 

thorough review of the statistics that were needed to develop the new predictive relationship 

were presented followed by development of a new predictive relationship. 

  

4.2 RUSLE Examination  

The existing prediction equation commonly utilized to determine cover factors as 

recommended by the USEPA and for analysis in the large-scale testing facilities is the RUSLE 

equation as presented in Section 2.4.1.  An examination of how effective the RUSLE equation 

predicts the bare-soil loss compared to the sixty-eight reported bare-soil loss values was 

presented.  The individual values for the RUSLE are presented in Table 4.1. 

Table 4.1 – RUSLE data 

Observed cumulative 

soil loss 

(tons/acre) 

Factors Predicted 

soil loss 

(tons/acre) Cumulative R
a
 K

b
 LS C P 

10.7 12.4 0.10 2.98515 1 1 3.7 
82.1 62.2 0.10 2.98515 1 1 18.6 

273.1 207.6 0.10 2.98515 1 1 62.0 

0.1 17.8 0.24 3.12017 1 1 13.3 

8.0 85.3 0.24 3.12017 1 1 63.9 

24.7 194.0 0.24 3.12017 1 1 145.3 

1.8 14.2 0.30 3.12017 1 1 13.3 

44.6 129.5 0.30 3.12017 1 1 121.2 

118.2 329.1 0.30 3.12017 1 1 308.0 
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Observed cumulative 

soil loss 

(tons/acre) 

Factors Predicted 

soil loss 

(tons/acre) Cumulative R
a
 K

b
 LS C P 

30.0 137.2 0.24 2.221 1 1 73.1 

110.9 274.4 0.24 2.221 1 1 146.3 

19.4 66.7 0.25 2.57467 1 1 43.0 

38.8 133.5 0.25 2.57467 1 1 85.9 

58.2 200.2 0.25 2.57467 1 1 128.9 

0.0 11.0 0.24 3.12017 1 1 8.2 

4.7 41.3 0.24 3.12017 1 1 30.9 

16.6 116.9 0.24 3.12017 1 1 87.6 

1.5 18.3 0.30 3.12017 1 1 17.2 

43.6 89.1 0.30 3.12017 1 1 83.4 

97.1 204.3 0.30 3.12017 1 1 191.2 

9.6 12.4 0.10 2.35477 1 1 2.9 

78.3 62.2 0.10 2.35477 1 1 14.6 

239.0 207.6 0.10 2.35477 1 1 48.9 

37.6 137.2 0.24 2.221 1 1 73.1 

89.3 274.4 0.24 2.221 1 1 146.3 

12.7 12.4 0.10 1.8291 1 1 2.3 

69.2 62.2 0.10 1.8291 1 1 11.4 

192.5 207.6 0.10 1.8291 1 1 38.0 

21.6 66.7 0.25 3.49294 1 1 58.3 

43.1 133.5 0.25 3.49294 1 1 116.6 

64.7 200.2 0.25 3.49294 1 1 174.9 

3.3 15.3 0.30 3.12017 1 1 14.4 

73.9 83.2 0.30 3.12017 1 1 77.9 

126.6 188.2 0.30 3.12017 1 1 176.1 

33.5 137.2 0.24 2.221 1 1 73.1 

179.5 274.4 0.24 2.221 1 1 146.3 

88.2 269.2 0.24 2.221 1 1 143.5 

313.2 538.5 0.24 2.221 1 1 287.0 

124.1 66.7 0.08 2.57467 1 1 13.7 

248.3 133.5 0.08 2.57467 1 1 27.5 

372.4 200.2 0.08 2.57467 1 1 41.2 

6.4 13.8 0.10 2.35477 1 1 3.3 

57.2 58.3 0.10 2.35477 1 1 13.7 

170.4 203.7 0.10 2.35477 1 1 48.0 

20.0 137.2 0.24 2.221 1 1 73.1 

45.7 274.4 0.24 2.221 1 1 146.3 

2.2 10.6 0.30 3.12017 1 1 9.9 

54.1 97.4 0.30 3.12017 1 1 91.1 

114.0 272.3 0.30 3.12017 1 1 254.8 

0.0 19.5 0.24 3.12017 1 1 14.6 

11.1 96.8 0.24 3.12017 1 1 72.5 

25.0 239.9 0.24 3.12017 1 1 179.7 

22.6 137.2 0.24 2.221 1 1 73.1 

46.1 274.4 0.24 2.221 1 1 146.3 

11.7 13.8 0.10 2.35477 1 1 3.3 
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Observed cumulative 

soil loss 

(tons/acre) 

Factors Predicted 

soil loss 

(tons/acre) Cumulative R
a
 K

b
 LS C P 

72.5 58.3 0.10 2.35477 1 1 13.7 

187.5 203.7 0.10 2.35477 1 1 48.0 

282.1 66.7 0.08 3.49294 1 1 18.7 

564.1 133.5 0.08 3.49294 1 1 37.3 

846.2 200.2 0.08 3.49294 1 1 56.0 

0.0 29.2 0.24 3.12017 1 1 21.9 

9.5 130.1 0.24 3.12017 1 1 97.4 

21.7 257.5 0.24 3.12017 1 1 192.8 

1.2 9.7 0.32 3.12017 1 1 9.7 

14.7 82.9 0.32 3.12017 1 1 82.8 

43.9 235.3 0.32 3.12017 1 1 234.9 

16.4 137.2 0.24 2.221 1 1 73.1 

35.4 274.4 0.24 2.221 1 1 146.3 
a
As computed from equations in Section 2.4.1  

b
From textural table (Table 2.1) or as reported from each laboratory 

Figure 4.1 presents the data in graphic form of observed cumulative soil loss versus 

RUSLE predicted soil loss.  In order to compare these data to information presented later in the 

document, the soil-loss values were presented as the log of the soil loss.  As can be observed in 

Figure 4.1, the RUSLE utilized for large-scale laboratory analysis for American Society for 

Testing and Materials (ASTM, 2007) D6459 does not adequately predict the observed bare-soil 

loss across multiple laboratories. The line of equal fit is shown in Figure 4.1 and if the RUSLE 

adequately predicted the bare-soil loss across multiple large-scale laboratories, most of the points 

would fall near the equal fit line.  The RUSLE, when applied to the bare-soil data sets from all of 

the various laboratories, overpredicts by as much as 1,045% and underpredicts by as much as 

93%.  Any equation that has a prediction spread ranging from underprediction of 55% and 

overprediction of over 1,000% should not be utilized.  Further, as can be seen in Figure 4.1, for 

the observed value of 1, the predicted value was anywhere from 0.5 to 2.0, which is an error as 

much as 100%.  Therefore, a better prediction equation is needed.   
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Figure 4.1 – Plot of RUSLE predicted soil loss versus observed soil loss 

To examine some of the differences and contributions between each laboratory, Figure 

4.1 was reproduced using different symbols for each of the five laboratories, as is shown in 

Figure 4.2. 

As can be observed in Figure 4.2, when the RUSLE is applied to laboratory data, the 

result for Labs B, C, D, and E1 is an overprediction of soil-loss values by anywhere from 16 

(Lab D) to 50% (Lab B).  Whereas, RUSLE results for Labs A and E2 are underpredicted 

anywhere from 30 (Lab A) to 70% (Lab E2).  In the end, it appears that the use of the RUSLE at 

the laboratory scale at any laboratory will lead to rather significant errors, with the use of 

RUSLE at Lab D being the closest to the observed values with an average overprediction of 

16%. 
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Figure 4.2 – Plot of RUSLE predicted soil loss versus observed soil loss for each laboratory 

  

4.3  Database Examination 

Based on the previous discussion, it has become clear that the application of the RUSLE 

at the laboratory scale does not produce reliable results, therefore, the database will be used to 

develop a new predictive equation.  Data analysis for developing a multiple large-scale 

laboratory soil-loss prediction equation can be accomplished by performing a statistical variable 

selection in conjunction with an understanding of the physical processes to determine the 

variables that are most significant for developing a predictive relationship.  Once the appropriate 

variables have been selected, statistical analysis with applied regression techniques can be 

implemented to develop relationships between soil loss and the chosen independent variables.  
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Subsequent sections discuss the variable selection and statistical analyses performed under the 

scope of this study. 

 

4.4 Variable Selection 

In order to determine which variables to use for the development of the soil-loss 

prediction equation, a statistical analysis tool called standardized coefficients was utilized as 

determined after consultation with a Statistics professor, Jim zumBrunnen, at Colorado State 

University.  Standardized coefficients are the estimates resulting from an analysis carried-out on 

variables that have been standardized so that their variances are 1. Therefore, standardized 

coefficients refer to how many standard deviations a dependent variable will change, per 

standard deviation increase in the predictor variable (Nisbet et al., 2009). Standardization of the 

coefficient anaylsis can be performed to answer the question:  Which of the independent 

variables have a greater effect on the dependent variable in a multiple-regression analysis?  The 

results of the standarized coefficient analysis which employed best subsets, forward stepwise, 

backward stepwise, forward entry, and backward removal discriminate techniques.  Prior to the 

analysis, it was determined after consultation with Jim zumBrunnen, that the dependent variable 

(soil loss) required a log plus 1 transformation to normalize the data due to the fact that several 

of the observed soil-loss values were either at zero or approximately zero.  After the log 

transformation of the dependent variable (cumulative soil loss), the standardized coefficients 

analysis was performed using Statistica 10 (StatSoft
®
, 2011).  The standardized coefficient 

analysis resulted in the information plotted in Figure 4.3. 

http://en.wikipedia.org/wiki/Variable_(mathematics)
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Multiple_regression
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Figure 4.3 – Plot of standardized coefficient analysis 

Figure 4.3 shows the eight significant variables out of the thirteen independent variables 

available from the database, noting that soil loss was chosen as the independent variable.  In 

addition, Figure 4.3 shows relative significance of each of the significant variables.  In particular, 

the analysis and resulting data shown in Figure 4.3, show that kinetic energy, median drop size, 

and duration are the three strongest predictor variables followed by rainfall intensity and plot 

area, percentage of clay, percent compacted, and then slope gradient.  The other five independent 

variables from the initial database had standardized coefficients that were considered not 

significant.  Further, from a physics perspective, the eight variables presented above represent 

the major key parameters as presented in Section 2.3 that are typically associated with soil-loss 

prediction.  In particular, this analysis confirms that kinetic energy is the most significant 

parameter for predicting rainfall-induced erosion.  Of the variables that were selected, the 

RUSLE does not account for the raindrop kinetic energy, raindrop size, event duration, 
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percentage of surface compaction, or the plot width; which could explain why RUSLE does not 

do an adequate job of predicting soil loss for individual rainfall events  at the laboratory scale. 

 

4.5 Statistical Analysis 

Statistical analysis employed in this data analysis incorporated the principle of least 

squares and multivariate linear regression.  The principle of least squares can be applied to one 

dependent variable and one independent variable, or to one dependent and several independent 

variables.  When more than one independent variable has been introduced, then a multivariate 

linear-regression analysis becomes necessary.  Subsequent sections discuss the statistical theory 

and assumptions used for analysis in this study. 

4.5.1 Statistical Theory 

Regression analysis involves an area of statistics that provides methods to investigate the 

existence of associations and, if present, the nature of the associations, among various observable 

quantities (Graybill and Iyer, 1994).  A commonly-used method for obtaining a prediction 

function for predicting the values of a response variable Y using predictor variables X1,…..,Xk, 

utilizes the principle of least squares. 

A definition of the principle of least squares was first introduced by the German 

mathematician Gauss who stated that a line provides a good fit to a series of data if the vertical 

distances (deviations) from the observed point to the line are small (Devore, 1995).  Devore 

(1995) further stated that a measure of the goodness-of-fit can be expressed as the sum of the 

squares of individual deviations.  Therefore, the line having the smallest possible sum of squared 

deviations would be the best-fit line.  Eq. (4.1) mathematically expresses the principle of least 

squares: 
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 Eq. (4.1) 

where 

 β0 = y-intercept of the linear relationship; 

 βk = slope of the regression line for the k
th

 independent variable; 

 Yi = value of a measured data point;  

 kiki XX   ...110  = equation of the regression line; and 

 all other variables are defined previously. 

Least squares estimates for the y-intercept and slope of the regression lines are found by 

minimizing f(0,k).  Values 0 through k are minimized by taking partial derivatives of 

f(0,k) with respect to all s and then setting them equal to zero.  All equations can then be 

solved for the least squares estimates of the coefficients (0,k) for the estimated regression 

line. 

Statistical analysis of the data in these experiments incorporated techniques of 

multivariate linear regression.  A general additive multivariate regression model equation can be 

expressed as: 

  kk XXXY ......22110  Eq. (4.2) 

where 

 Y = dependent variable; 

 Xk = k
th

 independent variable;  

  = random deviation or random error; and 

 all other variables are defined previously. 
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Random deviation or random error () can be assumed to be normally distributed with 

E() = 0 and V() = 2
.  Values of E() and V() are the mean and variance of the random 

deviation or random error, respectively. As E() and V() become small, any observations of the 

dependent variables approach the true regression line.  When the value of  exceeds zero, the 

actual data point falls above the regression line and will be higher than the predicted value.  

Similarly, when  does not reach zero, the actual data point falls below the regression line and 

will be lower than the predicted value. 

Goodness-of-fit, or quality of the regression analysis, can be measured through the 

variance (2
) of the regression model or the mean squared error (MSE).  Variance (2

) can be 

computed through the error sum of squares (SSE) with the following relationship: 

 
MSE
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  Eq. (4.3) 

Values of n-k-1 in the denominator of Eq. (4.3) represent the number of degrees-of-freedom 

associated with the error sum of squares (SSE).  Another way to think about SSE would be to use 

it as a measure of how much variation in the dependent variable (Y) cannot be explained by the 

model. 

Coefficient of determination (R
2
) proves to be another measure of goodness-of-fit, or 

quality of the regression analysis model.  R
2
 can be determined using SSE and the total sum of 

squares (SSY).  SSY computes as follows: 

 2
1

YYSSY i

n

i




  Eq. (4.4) 

 Y  = mean of the dependent variable Y; and 
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all other variables are defined previously. 

Total sum of squares (SSY) measures the variability of the actual value of Yi measured 

about the mean of the dependent variable Y.  R
2
 calculates as: 

SSY

SSE
1R 2   Eq. (4.5)

 

R
2
 measures the variation in the dependent variable (Y) that can be explained by the bivariate or 

multivariate linear-regression model. 

After the completion of a multivariate linear regression, a display of the overall summary 

of a multivariate linear-regression analysis should be presented.  An overall summary can be 

presented with the analysis of variance (ANOVA) as depicted in Table 4.2.  Important terms for 

an ANOVA, the sum of squares due to regression (SSR) as well as the mean square due to 

regression (MSR), can both be computed as follows: 

SSESSYSSR   Eq. (4.6) 

k

SSR
MSR    Eq. (4.7)

 

Table 4.2 – Example of quantities often shown in an ANOVA table 

Source 

Degrees-of-freedom 

(df) 

Sum of squares 

(SS) 

Mean square 

(MS) F-statistic p-level 

regression k SSR MSR MSR/MSE p < .05 
residual error n-k-1 SSE MSE   

total n-1 SSY    

Once a fitted multivariate linear-regression model and estimates for the various 

parameters of interest are obtained, the question about the contribution of the independent 

variables to the prediction of the dependent variable (Y) must be answered.  One basic type of 
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such a test to answer this question, according to Kleinbaum et al. (1988), can be written as:  an 

overall significance test.  Taken collectively, does the entire set of independent variables (or 

equivalently, the fitted model itself) contribute significantly to the prediction of the dependent 

variable Y? 

To perform an overall significance test, use of the MSR and MSE from the ANOVA table 

are required.  Null hypothesis for this test would be stated as H0: “all k independent variables 

considered together do not explain a significant amount of the variation in the dependent 

variable Y.”  Calculate the F-statistic as F = MSR/MSE.  Then, the computed value of F can be 

compared with the critical point Fk,n-k-1,1- , with  being the preselected significance level of 

0.05.  For example, the critical F point with k = 3 and n = 183 equals 2.66.  The critical F point 

with k = 3 and n = 59 equals 2.76.  The critical F point with k = 2 and n = 53 equals 3.17.  Reject 

H0 if the computed F-statistic exceeded the critical point, meaning that the k independent 

variables do explain a significant amount of the variation in the dependent variable Y. 

The p-level determines statistical significance of the analysis, and represents a decreasing 

index of the reliability of a result.  Higher p-levels, indicate a less likely occurrence that the 

observed relation between independent variables will be true.  Additionally, p-level represents 

the probability of error involved in accepting the observed result as valid.  Specifically, the p-

level represents the probability of error associated with accepting an observed result as valid or 

representative of the population of observed results.  For purposes of this analysis, a value of 

0.05 (95% confident) or less for the p-level was treated as an acceptable error level. 

4.5.2 Statistical Assumptions 

Ensuing assumptions were obtained from Kleinbaum et al. (1988). The following 

assumptions are the typical assumptions for multivariate linear regression: 
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Assumption 1: Existence.  For each specific combination of values of the independent 

variables, the dependent variable (Y) represents a random variable with 

a certain probability distribution having finite mean and variance. 

Assumption 2: Independence.  The Y observations are statistically independent of one 

another. 

Assumption 3: Linearity.  The mean value of the dependent variable (Y) for each 

specific combination of independent variables equals a linear function 

of the independent variables. 

Assumption 4: Homoscedasticity.  Constant variance of the dependent variable (Y) for 

any fixed combination of independent variables.  Assumption 4 must be 

considered only when the data show very obvious and significant 

departures from homogeneity.  In general, mild departures will not 

have too adverse an effect on the results. 

Assumption 5: Normality.  For any fixed combination of independent variables, the 

dependent variable (Y) follows a normally (Gaussian) distribution. 

In order to assure that these assumptions are addressed, several tests are performed.  A 

listing of the types of tests and brief descriptions from Kleinbaum et al. (1988) follows: 

 Plot of predicted values versus observed values – Checks to determine which portions 

of the data do not fit particularly well with the rest of the data, suggesting another 

relationship and also shows how well the computed relationship matches the actual 

data. 

 Plot of predicted values versus the residual scores – Checks to ensure that the 

relationship chosen can be considered linear in nature.  If the relationship forms a 
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homogeneous distribution of points around the horizontal center line, the relationship 

can be considered linear.  If any patterns are present in the plot, it may indicate the 

need for data transformation or that a multivariate linear regression may not be valid. 

 Normal probability plot of residuals – Checks to ensure that all of the variables and 

their residuals are normally distributed (Gaussian).  When the plotted data closely 

approximate the straight line, the variables and their residuals are considered 

normally distributed and assures that the data can be analyzed using multivariate 

linear regression. 

 

4.6 Soil-loss Prediction Equation 

Resulting from the rainfall parameter discussion in Section 2.5 and the variable selection 

analysis presented in Section 4.4, it was concluded that log (cumulative soil loss + 1) was a 

function of the independent variables presented in Eq. (4.8):   



















compactedpercent  clay,percent 

energy, kinetic raindrop size, raindropmedian 

gradient, slope duration, area,plot  intensity, rainfall

  1)  loss soil e(cumulativ log f   Eq. (4.8) 

Table 4.3 presents the data corresponding to each of the variables presented in Eq. (4.8) and 

utilized for analysis.  

Table 4.3 – Data utilized for analysis 

Log 

(cumulative 

soil loss + 1) 

(tons/acre) 

Rainfall 

intensity 

(in./hr) 

Plot  

area 

(acre) 

Duration 

(hrs) 

Slope 

gradient 

(ft/ft) 

Median 

raindrop 

size  

(mm) 

Raindrop 

kinetic energy 

(ft-poundal 

*1,000) 

% clay 

 

% compacted 

 

1.1 1.9 0.0040 0.33 0.45 2.3 3.5 0.01 0.75 

1.9 3.7 0.0040 0.67 0.45 2.3 3.5 0.01 0.75 

2.4 6.3 0.0040 1.00 0.45 2.3 3.5 0.01 0.75 

1.0 1.9 0.0040 0.33 0.33 2.3 3.5 0.01 0.75 

1.9 3.7 0.0040 0.67 0.33 2.3 3.5 0.01 0.75 
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Log 

(cumulative 

soil loss + 1) 

(tons/acre) 

Rainfall 

intensity 

(in./hr) 

Plot  

area 

(acre) 

Duration 

(hrs) 

Slope 

gradient 

(ft/ft) 

Median 

raindrop 

size  

(mm) 

Raindrop 

kinetic energy 

(ft-poundal 

*1,000) 

% clay 

 

% compacted 

 

2.4 6.3 0.0040 1.00 0.33 2.3 3.5 0.01 0.75 

1.1 1.9 0.0040 0.33 0.25 2.3 3.5 0.01 0.75 

1.8 3.7 0.0040 0.67 0.25 2.3 3.5 0.01 0.75 

2.3 6.3 0.0040 1.00 0.25 2.3 3.5 0.01 0.75 

0.9 2.0 0.0040 0.33 0.33 2.3 3.5 0.01 0.75 

1.8 3.5 0.0040 0.67 0.33 2.3 3.5 0.01 0.75 

2.2 6.3 0.0040 1.00 0.33 2.3 3.5 0.01 0.75 

1.1 2.0 0.0040 0.33 0.33 2.3 3.5 0.01 0.75 

1.9 3.5 0.0040 0.67 0.33 2.3 3.5 0.01 0.75 

2.3 6.3 0.0040 1.00 0.33 2.3 3.5 0.01 0.75 

0.1 2.3 0.0073 0.33 0.33 2.0 1.7 0.11 0.77 

1.0 4.3 0.0073 0.67 0.33 2.0 1.7 0.11 0.77 

1.4 5.5 0.0073 1.00 0.33 2.0 1.7 0.11 0.77 

0.0 1.8 0.0073 0.33 0.33 2.0 1.7 0.11 0.77 

0.8 2.9 0.0073 0.67 0.33 2.0 1.7 0.11 0.77 

1.2 4.6 0.0073 1.00 0.33 2.0 1.7 0.11 0.77 

0.0 2.4 0.0073 0.33 0.33 2.0 1.7 0.11 0.77 

1.1 4.6 0.0073 0.67 0.33 2.0 1.7 0.11 0.77 

1.4 6.3 0.0073 1.00 0.33 2.0 1.7 0.11 0.77 

0.0 2.9 0.0073 0.33 0.33 2.0 1.7 0.11 0.77 

1.0 5.3 0.0073 0.67 0.33 2.0 1.7 0.11 0.77 

1.4 5.9 0.0073 1.00 0.33 2.0 1.7 0.11 0.77 

0.4 2.0 0.0073 0.33 0.33 2.3 2.6 0.11 0.75 

1.7 5.6 0.0073 0.67 0.33 2.3 2.6 0.11 0.75 

2.1 7.4 0.0073 1.00 0.33 2.3 2.6 0.11 0.75 

0.4 2.3 0.0073 0.33 0.33 2.3 2.6 0.11 0.75 

1.6 4.4 0.0073 0.67 0.33 2.3 2.6 0.11 0.75 

2.0 5.6 0.0073 1.00 0.33 2.3 2.6 0.11 0.75 

0.6 2.1 0.0073 0.33 0.33 2.3 2.6 0.11 0.75 

1.9 4.3 0.0073 0.67 0.33 2.3 2.6 0.11 0.75 

2.1 5.4 0.0073 1.00 0.33 2.3 2.6 0.11 0.75 

0.5 1.8 0.0073 0.33 0.33 2.3 2.6 0.11 0.75 

1.7 4.9 0.0073 0.67 0.33 2.3 2.6 0.11 0.75 

2.1 6.9 0.0073 1.00 0.33 2.3 2.6 0.11 0.75 

0.3 1.7 0.0073 0.33 0.33 2.3 2.6 0.37 0.75 

1.2 4.5 0.0073 0.67 0.33 2.3 2.6 0.37 0.75 

1.7 6.5 0.0073 1.00 0.33 2.3 2.6 0.37 0.75 

1.5 5.0 0.0018 0.50 0.40 4.0 21.2 0.12 0.72 

2.0 5.0 0.0018 1.00 0.40 4.0 21.2 0.12 0.72 

1.6 5.0 0.0018 0.50 0.40 4.0 21.2 0.12 0.72 

2.0 5.0 0.0018 1.00 0.40 4.0 21.2 0.12 0.72 

1.5 5.0 0.0018 0.50 0.40 4.0 21.2 0.12 0.72 

2.3 5.0 0.0018 1.00 0.40 4.0 21.2 0.12 0.72 

2.0 7.0 0.0018 0.50 0.40 4.0 21.2 0.12 0.72 

2.5 7.0 0.0018 1.00 0.40 4.0 21.2 0.12 0.72 

1.3 5.0 0.0018 0.50 0.40 4.0 21.2 0.12 0.88 
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Log 

(cumulative 

soil loss + 1) 

(tons/acre) 

Rainfall 

intensity 

(in./hr) 

Plot  

area 

(acre) 

Duration 

(hrs) 

Slope 

gradient 

(ft/ft) 

Median 

raindrop 

size  

(mm) 

Raindrop 

kinetic energy 

(ft-poundal 

*1,000) 

% clay 

 

% compacted 

 

1.7 5.0 0.0018 1.00 0.40 4.0 21.2 0.12 0.88 

1.2 5.0 0.0018 0.50 0.40 4.0 21.2 0.12 0.88 

1.6 5.0 0.0018 1.00 0.40 4.0 21.2 0.12 0.88 

1.4 5.0 0.0018 0.50 0.40 4.0 21.2 0.12 0.88 

1.7 5.0 0.0018 1.00 0.40 4.0 21.2 0.12 0.88 

1.3 3.5 0.0041 0.50 0.33 3.5 13.4 0.38 0.89 

1.6 3.5 0.0041 1.00 0.33 3.5 13.4 0.38 0.89 

1.8 3.5 0.0041 1.50 0.33 3.5 13.4 0.38 0.89 

1.4 3.5 0.0041 0.50 0.50 3.5 13.4 0.38 0.89 

1.6 3.5 0.0041 1.00 0.50 3.5 13.4 0.38 0.89 

1.8 3.5 0.0041 1.50 0.50 3.5 13.4 0.38 0.89 

2.1 3.5 0.0041 0.50 0.33 3.5 13.4 0.12 0.71 

2.4 3.5 0.0041 1.00 0.33 3.5 13.4 0.12 0.71 

2.6 3.5 0.0041 1.50 0.33 3.5 13.4 0.12 0.71 

2.5 3.5 0.0041 0.50 0.50 3.5 13.4 0.12 0.71 

2.8 3.5 0.0041 1.00 0.50 3.5 13.4 0.12 0.71 

2.9 3.5 0.0041 1.50 0.50 3.5 13.4 0.12 0.71 

Based on the linear fit for each of the independent variables plotted against the dependent 

variable shown in Figure 4.4, it was determined that a multivariate linear relationship was valid 

for describing the data. Figure 4.4 shows that each of the independent variables can be 

considered a linear function of the dependent variable and since each of the slopes of the 

individual regression lines were approximately equal, a multivariate linear relationship was 

considered valid to pursue (Graybill and Iyer, 1994). 
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Figure 4.4 – Plot of raw data for log (cumulative soil loss + 1) data 

From the statistical analysis presented in Section 4.5 and the software program Statistica 

(StatSoft
®
, 2011), the soil-loss prediction equation follows as:  
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 Eq. (4.9) 

where 

 CSL = cumulative soil loss (tons/acre); 

 I = rainfall intensity (in./hr); 

 A = area of the plot size (acres); 

 D = duration of the event (hrs); 
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 S = slope gradient of the plot (ft/ft); 

 RD50 = median raindrop size (in.); 

 KE = kinetic energy of the median raindrop size (ft-poundal*1,000); 

 % clay = percentage of clay contained within soil (decimal %); and 

 % compacted = compaction percentage of the surface soil (decimal %). 

During the statistical analysis, sixty-eight data points were utilized with no outliers.  

Table 4.4 presents the multivariate linear-regression summary associated with Eq. (4.9).  Table 

4.5 displays an ANOVA table corresponding to Eq. (4.9). 

Table 4.4 – Multivariate linear-regression summary statistics corresponding to Eq. (4.9) 

Number of measurements: 68           

Dependent variable: log (cumulative soil loss + 1) 

 

  

  

     

  

Independent variables 

Standardized  

regression  

coefficient 

β 

Standard 

error  

of β 

Regression  

coefficient 

B 

Standard  

error of B t-statistic(20) p-level 

intercept   -5.040 0.95418 -5.2824 0.000002 

rainfall intensity 0.68931 0.046193 0.309 0.02071 14.9223 0.000000 

plot area -0.55155 0.101065 -174.607 31.99495 -5.4573 0.000001 

duration 0.91436 0.219804 7.722 1.85618 4.1599 0.000105 

slope gradient 0.06971 0.053360 0.816 0.62460 1.3064 0.196485 

median raindrop size 3.24026 0.460333 72.307 10.27240 7.0389 0.000000 

raindrop kinetic energy -4.24570 0.355587 -0.379 0.03178 -11.9400 0.000000 

percent clay -0.25029 0.072474 -1.596 0.46209 -3.4535 0.001030 

percent compacted -0.19842 0.054178 -2.411 0.65821 -3.6625 0.000536 

correlation coefficient, R =     0.945 

    

  

coefficient of determination, R
2
 =     0.893 

    

  

adjusted R
2
 =    0.879 

    

  

F-statistic  =    61.78 

    

  

p <     0.000 

    

  

standard error of estimate    0.240           

 

Table 4.5 – ANOVA table associated with Eq. (4.9) 

Source 

Degrees-of-

freedom  

(df) 

Sum of squares  

(SS) 

Mean square 

(MS) F-statistic p-level 

regression 8 28.42 3.55 61.78 0.00 

residual 59 3.39 0.57 
  

total 
 

31.81 
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Listed in Table 4.4, the adjusted R
2
 from the analysis for Eq. (4.9) was 0.88 (rounded up 

from 0.879), indicating that 88% of the variability in the data was explained by the relationship.  

An overall significance test indicated that the critical F value for k = 8 and n = 59 was 2.10.  

Since the F-statistic reported in Table 4.5 of 61.78 was greater than 2.10, the eight independent 

variables explained a significant amount of the variation in the dependent variable log 

(cumulative soil loss + 1).  Additionally, the p-level of all independent variables except slope 

gradient and the overall p-level were all less than or equal to the selected value of 0.05, therefore, 

the analysis was determined to be statistically significant.  Slope gradient was left in the analysis 

due to the physical importance of this parameter to the erosion process, even though the p-value 

for the regression analysis was higher than 0.05.   

Figure 4.5 presents a plot of observed values versus predicted values for the log data.  

Figure 4.5 indicates that Eq. (4.9) can be considered a reliable prediction equation, having points 

both above and below the line of equal prediction, with a variability in predicted values of plus 

or minus 20% for an observed value. 
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Figure 4.5 – Observed versus predicted values for Eq. (4.9)  

Figure 4.6 displays a plot of predicted values versus the residual scores for the dependent 

variable.  Data points plotted in Figure 4.6 form a homogeneous distribution of points around the 

horizontal centerline verifying that the relationship was linear.   
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Figure 4.6 – Predicted values versus residual scores for Eq. (4.9) 

Figure 4.7 presents the normal probability plot of residuals for the data.  Figure 4.7 

indicates that the residuals very closely approximated a normal distribution since the plotted 

points follow the straight line, assuring that the data could be analyzed using multivariate linear 

regression. 

Data collected were developed into independent variables that were used in a multivariate 

linear-regression analysis to develop Eq. (4.9).  Eq. (4.9) had a R
2
 of 0.88, indicating that 88% of 

the variability in the data was explained by the relationship.  Additionally, the data satisfied the 

overall significance test and the individual tests for checking multivariate linear-regression 

validity. 
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Figure 4.7 – Normal probability plot of residuals for Eq. (4.9) 
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5 RESULTS  

5.1 Introduction 

Now that a predictive equation has been developed via Eq. (4.9) which is presented 

again, without the log transformation, as Eq. (5.1); it makes sense to compare and discuss 

differences to the standard of practice (RUSLE), and to discuss boundary conditions and 

equation applicability.  Eqs. (4.9) and (5.1) have a variability in predicted values of plus or minus 

approximately 20%: 
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CSL – 1 Eq. (5.1) 

 

5.2 Comparison to the RUSLE 

Eq. (4.9) was compared to the RUSLE.  Figure 5.1 presents the predicted versus observed 

plot for Eq. (4.9) and the RUSLE using a log transformation to compare the same data as 

originally presented. 

Figure 5.1 presents the data in graphic form of observed cumulative soil loss versus 

predicted cumulative soil loss for both the RUSLE and Eq. (4.9).  As can be observed in Figure 

5.1, Eq. (4.9) more-accurately predicts the observed bare-soil loss across multiple laboratories 

than the RUSLE, significantly tightening up the data around the line of equal fit.  As an example, 

the absolute average predicted variance for any observed value with Eq. (4.9) is about 20% or 

less, whereas the absolute average predicted variance for any observed value with the RUSLE is 

about 65%.   On average, Eq. (4.9), when applied to the bare-soil data sets from all of the various 

laboratories, does not overpredict or underpredict, with an equation that has an R
2
 of 0.88, 

explaining 88% of the variability in the data.  In stark contrast, the RUSLE that is the standard of 
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practice for field application of large-scale laboratory testing for ASTM D6459 does not 

adequately predict the observed bare-soil loss across multiple laboratories, as the data are too 

scattered to indicate a consistent trend with an R
2
 of only about 0.14, explaining only 14% of the 

variability in the data.  As can be seen in Figure 5.1, for the observed value of 1, the RUSLE 

predicted value was anywhere from 0.5 to 2.0, which is a maximum error as much as 100%.  

Whereas, for the observed value of 1, Eq. (4.9) predicted value was from 0.86 to 1.2, which is a 

maximum error of 20%.  A summary table of the comparison between Eq. (4.9) and RUSLE is 

provided in Table 5.1. 

 

Figure 5.1 – Predicted versus observed comparison 
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Table 5.1 – RUSLE Compared to Eq. (4.9) Based on Figure 5.1 

Comparison Parameter RUSLE Eq. (4.9) 

R
2
 0.14 0.88 

Absolute Average Predicted Variance for an Observed Value 65 % 20 % 

Error associated with Observed value of 1.00 100 % 20 % 

For further comparison, plots of how each individual laboratory contributed to Eq. (4.9) 

and for RUSLE are presented in Figures 5.2 and 5.3, respectively.  As can be observed in Figures 

5.2 and 5.3, Eq. (4.9) collapses all of the individual laboratory variability around the line of equal 

fit and instead of laboratory deviations from the line of equal fit of 16 to 70% with Figure 5.3, 

Eq. (4.9) takes the deviation from the line of equal fit to a range of 0 to 4%. 

 

Figure 5.2 – Predicted versus observed laboratory comparison for Eq. (4.9) 
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Figure 5.3 – Predicted versus observed laboratory comparison for RUSLE 

The current standard of practice using the RUSLE and applying it at large-scale 

laboratories, and then using the cover factor value to apply results to the field has been leading to 

significant errors in soil-loss related calculations that are used by practicing engineers to specify 

erosion-control products.  Depending on the conditions that are tested at each laboratory, the 

RUSLE would lead practicing engineers to believe that as much as 1.4 tons/acre of soil loss 

would occur when the actual value was zero.  On the other extreme, the RUSLE predicts 1.3 

tons/acre when the actual value was 2.5 tons/acre.  The variability that the RUSLE allows in 

overprediction and underprediction has been misleading practicing engineers. Eq. (4.9) does a 

much better job of distributing the variability around the line of equal fit and reducing overall 

variability, which will lead practicing engineers to more consistent and reliable soil-loss 

calculations that are based on large-scale laboratory testing.  Some of the reasons that the 

RUSLE may not accurately predict soil loss in a large-scale laboratory setting are: 
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 the RUSLE was not developed to be used on individual storm events, but is being 

misapplied for individual events to determine cover factors; 

 the RUSLE does not adequately account for the effects of kinetic energy of raindrops; 

and 

 the RUSLE does not adequately account for the effects of soil compaction and the 

interaction of clay particles. 

Eq. (4.9) accounts for the above-listed deficiencies of the RUSLE as well as accounting 

for other key physical processes that occur during soil loss.  Therefore, Eq. (4.9) should replace 

the RUSLE as the standard of practice for large-scale laboratory soil-loss calculations that 

subsequently get applied to the field. 

  

 

5.3 Boundary Conditions 

During the development of any predictive relationship performed in controlled laboratory 

settings, the boundary conditions or limitations imposed during testing should be considered 

when attempting to apply the relationship outside of the laboratory.  The developed predictive 

relationship for this study should be applied within the bounds of the following ranges of testing 

parameters: 

 rainfall intensity:  1.7 to 7.4 in./hr; 

 plot area:  0.0018 to 0.0073 acres (78 to 320 ft
2
); 

 slope gradient:  0.25 to 0.50 ft/ft (4H:1V to 2H:1V, Horizontal:Vertical); 

 median raindrop size:  2.0 to 4.0 mm; 

 duration of event:  0.5 to 1.5 hrs; 

 raindrop kinetic energy (times 1,000):  1.7 to 21.2 ft-poundal*1,000; 
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 clay percentage in soil:  0.01 to 0.38 (1 to 38%); and 

 soil compaction percentage:  0.71 to 0.89 (71 to 89%). 

The above conditions represent a wide range of conditions that can typically be found at a 

construction site where erosion-control products are often used.  The above conditions do not 

emcompass all of the possible conditions that could be encountered at a construction site, but as 

indicated, do provide a decent range of conditions which currently are being applied to 

construction sites. 

 

5.4 Equation Applicability 

During examination of Eq. (4.9), it was determined that the area term was negatively 

proportional to resulting soil-loss values.  From a purely physical analysis of terms, as area 

increases, so should soil loss, meaning that the area term should be positively proportional to the 

resulting soil loss.  Within the bounds of the data developed and applied to the ranges of the 

laboratories, Eq. (4.9) predicts values as outlined, however, applicability of Eq. (4.9) outside of 

the boundary conditions of the areas provided by each laboratory will likely lead to prediction 

issues.  The area term was left as negatively proportional to the soil loss in order to demonstrate 

that when a more appropriate set of parameters was selected to determine soil loss, a much better 

prediction equation would be possible.  In order to correct the sign of the area term, additional 

data with much larger areas would be needed. 
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6 CONCLUSIONS, EXAMPLE CALCULATION, AND RECOMMENDATIONS 

Based on research presented in this dissertation, a better understanding of the processes at 

work during large-scale rainfall erosion has been presented and a prediction equation for soil loss 

that unifies the large-scale testing laboratory data now exists for the erosion-control community.  

This new equation should be utilized by practicing engineers using large-scale testing facilites to 

predict erosion that can be applied to field applications.  Data from five different laboratory 

setups were examined and included in the developed predictive relationship.  A summary of the 

conclusions from this dissertation follows:  

 The existing and most-commonly used prediction equation (RUSLE) that is currently 

employed for large-scale laboratory analysis and subsequent field application is 

inadequate as summarized below in Table 6.1 and further explained in Section 5.2. 

Table 6.1 – RUSLE Compared to Eq. (4.9) Based on Figures 5.1, 5.2,  

and 5.3 

Comparison Parameter RUSLE Eq. (4.9) 

R
2
 0.14 0.88 

Absolute Average Predicted Variance for an Observed Value 65% 20% 

Error associated with Observed value of 1.00 100% 20% 

Range of Laboratory Deviation from line of Equal Fit 16 – 70% 0 – 4% 

 

 A large-scale rainfall soil-loss prediction equation was developed and determined to 

be a function of the following key parameters, in order of significance: 

o raindrop kinetic energy (KE); 

o median raindrop size (RD50); 

o duration (D); 

o rainfall intensity (I); 
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o plot area (A); 

o percentage of clay in the soil (% clay); 

o compacted soil percentage (% compacted); and 

o slope gradient (S). 

 Eq. (4.9), for prediction of rainfall-induced soil loss, developed from sixty-eight data 

points collected for this study, was presented.  Eq. (4.9) had a R
2
 of 0.88 and is 

presented below: 
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A more practical version of Eq. (4.9) for field application was presented as Eq. (5.1): 
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CSL – 1 Eq. (5.1) 

 The new prediction equation accounts for several deficiencies of the RUSLE 

including the use as an event-based equation, kinetic energy, and soil compaction. 

 

6.1 Example Calculation 

In order to demonstrate how Eq. (5.1) (Eq. (4.9) without a log transformation) would be 

used at a construction site, an example will be provided with the following conditions: 

 Construction site located in Little Rock, Arkansas, with a reported rainfall factor of 

about 350, which corresponds well to Figure 2.4. 

 The construction site slope of interest has a length of 25 ft and a width of 10 ft with a 

slope gradient of 3H:1V. 
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 The slope was constructed with fill material consisting of a sandy clay loam as 

classified by the USDA textural soil triangle and compacted to 85% of standard 

proctor. If a compaction percentage was not provided, on-site testing with a nuclear 

density gage along with a soil analyis can be used to determine soil compaction.  The 

USDA soil textural triangle, as presented in Figure 6.1, can be used to determine soil 

percentages. The percentage of clay is estimated to be 38%, the percentage of silt to 

be 16%, and the percentage of sand to be 44% for the clay loam in this example. 

 

 

Figure 6.1 – USDA soil textural triangle 

 The design storm that was selected is the 50-yr, 30-min event, which corresponds to a 

rainfall intensity of about 2.6 in./hr.  This information can be found at: 

http://dipper.nws.noaa.gov/hdsc/pfds/.  Select the state of interest and then download 

the appropriate document for the selected design storm. 

http://dipper.nws.noaa.gov/hdsc/pfds/
http://lobaughsdahlias.com/articles/lets-talk-soil/grass-clippings-sg
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 In order to perform a calculation using Eq. (5.1), the following pieces of information 

are needed: 

o Rainfall intensity – obtained from the design storm and the National Oceanic and 

Atmospheric Administration (NOAA) = 2.6 in./hr. 

o Plot area – obtained from measuring the plot of interest = 0.0057 acres (25 ft x 10 

ft converted to acres). 

o Duration – obtained from the design storm that was selected = 0.5 hrs. 

o Slope – surveyed on site = 0.333 ft/ft. 

o Percentage of clay – determined from soil analysis or textural triangle = 0.30. 

o Percentage of surface compaction – determined from nuclear density gage and 

soil analysis = 0.85. 

o Median raindrop diameter – determined from the Laws and Parson curve on 

Figure 2.3 = 2.6 mm = 0.1024 in. (from 2.6 in./hr rainfall intensity). 

o Raindrop kinetic energy – determined from Eq. (2.1) times 1,000, and the 

following supplemental equations and Figure 6.2 for determining velocity of a 

raindrop: 

 Mass of raindrop = density of water * volume of the raindrop (assume a 

sphere for calculations); 

 Density of water = 62.4 lbs/ft
3
 = 0.0361 lb/in.

3
; 

 Volume of a sphere with a diameter of 0.1024 in. = 4/3 * Pi * radius
3
 = 0.0006 

in.
3
; and 

 Mass of drop = 0.0361 * 0.0006 = 0.0000202 lb. 
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Figure 6.2 – Velocity-fall Height-median Raindrop Curves (Laws, 1941) 

 Velocity of raindrop – use Figure 6.2 with a fall height of 20 m (natural rainfall), a 

raindrop size of 2.6 mm = about 7.5 m/s = 24.6 ft/s. 

 Kinetic energy of the median raindrop from Eq. (2.1) = 0.5 * 0.0000202 * (24.6)
2
 = 

0.0061 * 1,000 = 6.1 ft-poundal*1,000. 

 Plugging all of the known values into Eq. (5.1), yields: 22 tons/acre. 

 Using the RUSLE with R = 350, K = 0.25 (from a soil type provided by one of the 

laboratories), L and S calculated from Section 2.4.4, and C and P equal to 1, yields:  

64 tons/acre. 

 RUSLE predicts a soil loss that is 2.9 times higher than Eq. (5.1). 
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6.2 Recommendations for Further Research 

 Research presented herein was based on data collected from large-scale laboratories.  

Field data used to expand and confirm Eq. (4.9) would be critical for verifying the 

predictive relationship. 

 The database consisted of bare-soil testing conditions and it would be logical to 

develop a prediction equation that accounts for the application of an erosion-control 

product. 

 Allowing for more variation in the key prediction parameters would allow the 

equation to be more broadly applied. 

 There is a need to develop a correlation between Eq. (4.9) and the RUSLE so that 

practitioners currently using the RUSLE have the ability to integrate their previous 

work. 
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