MODEL STUDY OF LIQUIFIED NATURAL GAS VAPOR CLOUD DISPERSION WITH WATER SPRAY CURTAINS

Final Report (March 1982 - March 1983)

Prepared by

R. N. MeroneyK. M. KothariD. E. NeffG. Andreiev

Fluid Mechanics and Wind Engineering Program Department of Civil Engineering Colorado State University Fort Collins, Colorado 80523

CER82-83RNM-KMK-DEN-GA41

Engineering Sciences

JUL 1 1983

for

Branch Library

Factory Mutual Research Corporation

Contract # 58837

March 1983

DISCLAIMER

LEGAL NOTICE This report was prepared by Colorado State University as an account of work sponsored by the Factory Mutual Research Institute (FMRC). Neither FMRC, members of FMRC, not any person acting on behalf of either:

- a. Makes any warranty or representation, expressed or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method or process disclosed in this report may not infringe privately owned rights; or
- b. Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Research Summary

- Title Model Study of Liquified Natural Gas Vapor Cloud Dispersion With Water Spray Curtains
- Contractor Civil Engineering Department Colorado State University Ft. Collins, CO 80523
- Principle R. N. Meroney, K. M. Kothari Investigators
- Report Period March 1982 March 1983
 - Objective To determine, through utilization of wind tunnel experiments, the effects of water spray curtains on the dilution of Liquified Natural Gas plumes.
 - Technical A Liquified Natural Gas (LNG) spill would result in a Perspective cold LNG vapor plume. This negatively buoyant plume could be diluted utilizing water spray curtains at or near the spill location. There is a need for determining how these spray curtains interact with an LNG plume, the optimal configurations, and the resultant dilution factors achievable under various wind speeds and LNG boiloff rates.
 - Results A large data base on the interaction of LNG plumes with water spray curtains was obtained. The wind tunnel experiments included variations of wind speeds, boiloff rates, spray configurations, dike heights, and spray nozzle pressures. The effects of the variation of these parameters on LNG plume dispersion were obtained. A comparison between wind tunnel and field tests was also made.
 - Technical Wind tunnel tests were performed at a scale of 1:100 and 1:5 to determine the accelerated dispersion of any LNG Approach plume as a result of interactions with water spray curtains. An LNG plume is heavier than air at boiloff conditions and is anticipated to remain negatively buoyant for most conditions until it is adequately dispersed. The negatively buoyant plume can be simulated in the wind tunnel by using an isothermal heavy gas of specific gravity equal to that of LNG at boiloff. The measured results should be modified to account for the difference in moles of cold gas vs. the moles of isothermal gas. The water spray curtains were situated around the source spraying either upwards or downwards and heavy gases were introduced into the wind tunnel via a constant area

source mounted flush with the wind tunnel floor. Gas concentration samples were collected downwind of the area source under various conditions. These samples were analyzed using a gas chromatograph and from this data, the plume structure was determined.

	GRI I	DISC	LAIN	ER.	٠	•	÷	•	٠	٠	•	•	•	• •	•	•	*	•	•	•	•	•	i
	RESEA	ARCH	SUM	IMARY	•	•	•		•		•	•	•		•		•	•	•	•	•	•	ii
	LIST	0F	TABL	ES.	÷	•	•	•••	•	•	•	•	•		•	•	•	•	•	•	•	٠	vi
	LIST	OF	FIGU	RES	•	•	•	• •		•	•	•	•	• •	•	•	•	•	•	•	•		vii
	LIST	0F	SYME	BOLS		•	•	• •	•	•	•	•	•	• •	·	•	•	•	•	•	•	•	ix
1.0	INTRO	DUUC	TION	ι	•	•	•	•••	•	•	•	•	•	• •	٠	•		٠	•	•	•	•	1
2.0	MODEL 2.1	LING PHY	OF	PLUM L MO	E I DEI	DIS LIN	PE G (RSI DF	ON THI	Е А	• TM	05	• PH)	 ERI	c.	•	•	•	•		•	•	3
		BOU 2.1	NDAF	RY LA Part	YEI ial	R LS	im	 ula	tio	on	of	t	he	 At	mo:	spł	101	cic	•	•	•	•	4
				Boun	da	rv	La	ver															5
	2 2	DHY	STC	T MO	DEI	TN	G)F	TN	1 2	л п	MR	M	TT	ON		•				-		7
	4.4	1 II I	JI CE					. 1 .	1.1.1			T		n1	011			•		•			6
		4.4	• L	Part	18.	1 9	IM		110	on	10	L	UVG	PI	um		101	10)n		•	•	0
	2.3	MOD	EL IN	G OF	' Pl	LUM a 1	E I Mo	DIS del	PEI in			At:	OR	PR sph	ESI	EN] ic	r s	5TU 1 T f	IDY Fac	(18		•	14
		2.0		Iave	-						-				-								14
		0 0	2	Dayo	1	. 1	· Ma	 		•			•					D1	•	•	•	*	15
		2.3	. 4	Pnys	101		MO		111	go	JI	τη	eı	LNG	5	p1 1	L	P1	un	10	٠	٠	12
		2.3	.3	Mode	1 1	Sca	1e	Fa	ct	ors	5	•	•	•••	•	•			•	•	•	•	17
3.0	DATA	ACQ	UISI	TION	A	D	AN.	ALY	SI	S													19
	3.1	WTN	D-TT	INNEL	F	ACT	I.T	TTF	S				2										19
	2 2	MOD	FI							•			•	• •	•	•	•	•	•			•	10
	3.4	ETOD				• • • •	•	•••		•	•		•	• •		•	•	•	•	•	•	•	1.7
	3.3	FLU	W VI	SUAL		ALL	UN	11	CHI	NTO	LUE	5	•	• •		•	•	•	•	٠	•	٠	21
	3.4	WIN	D PH	ROFIL	E	AND	T	URE	UL	EN	Œ	ME.	AS	URE	ME	NTS	5				•		23
	3.5	CON	CEN	RATI	ON	ME	AS	URE	ME	T	5		•										25
		3.5	.1	Gas	Ch	rom	at	ogi	apl	h													25
		3 5	2	Samt	1 1 1	nσ	Sv	ste	m														2.8
		2.5	. 2	Teet	D.	-6	09			•	•	•	•	• •	•	•	•	•	•		•	•	20
		3.3	. 3	lest	P:	roc	ea	ure	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	29
4.0	TEST	PRO	GRAM	1		•	•		•		•	•	•		•	•	•	•	•	•	•	•	31
	4.1	PRE	ERTI) POS	T	" S	MA	LL-	SC	ALI	<u>.</u>	F	IE										31
	4.2	HEA	LTH	AND	SAI	FET	Y	EXE	CU	riv	/E	FI	EL	DI	'ES'	г				•			
		SIM	IULA	TION	•								•			•							32
	4.3	WAT	ER S	SPRAY	C	URT	AI	NE	DES	IGN	I I	'ES'	T	SER	IE	S	•	•		•	•	•	33
5.0	DISCI	USSI	ON C)F RF	SU	LTS																	34
and and and	5.1	PRE	SM/	ALL-S	CAJ	LE	FI	ELI) E	XPI	ERI	ME	NT	WI	ND	π	JNI	NEI		-01	915		
		RUN	IS .									÷											34
	5.2	HSE	FI	ELD I	RI	ALS																	35
	5.3	SPR	AY C	PTIM	IZ	ATI	ON	AN	ID I	BUI	LD	IN	G	INT	'ER	ACT	ГІС	DN					
		SER	IES																				43

S	e	C	t	i.	0	n
~	<u> </u>	-	-	-	~	_

REFERENCES .				• x		٠	44
APPENDIX A -	WIND TUNN 41 AND 46	EL DATA OF	HSE RUNS NS	• •			46
APPENDIX B -	WIND TUNN	IEL DATA OF	SPRAY CUR	FAIN	RUNS		58

Table		Page
1	Selected Small-Scale Spill Test Performed by LLNL and FMRC on the Basis of Runs 1-58	32
A-1	Specifications for HSE Runs Numbers 41 and 46	53
A-2	Sampling Locations for HSE Run Number 41	54
A-3	Concentration Data for HSE Run Number 41	55
A-4	Sampling Locations for HSE Run Number 46	56
A-5	Concentration Data for HSE Run Number 46	57
B-1	Run Specifications	68

LIST OF FIGURES

Fig	ure
-----	-----

Page

1	Specific Gravity of LNG Vapor - Humid Atmosphere
	Mixtures
2	Variation of Isothermal Plume Behavior From
-	Equivalent Cold Methane Plume Behavior
3	Environmental Wind Tunnel
4	Source Plenum and Gas Supply Detail
5	Sampling Grid for Concentration Measurements All
5	Dimensions in cm (Model) or m (Full Scale for
	rate rate rate rate rate rate rate rate
	L.5 100/
6	Velocity Probes and Velocity Standard
7	Velocity Data Reduction Flowchart
Q	Distographs of (a) the Cas Sampling System and
0	(b) the HD Integrator and Chromatograph 27
	(b) the hr integrator and chromatograph
0	Concentrations at x = 00 m with Various Spray
7a	Configurations at $x = 90$ m with various spray
9b	Field Centerline Concentrations at $x = 4.5 m \dots 36$
10	Wind Direction and Wind Velocity Field Data for
10	HSE Run Number 46
11	Logarithmic Scatter Diagram Comparing HSE Field and
	Model Concentrations
12	HSE Number 46: No Spray Vertical Concentration
	Profiles
13	HSE Number 46: With Spray Vertical Concentration
	Profiles
14	Wind Direction and Wind Velocity Field Data for HSE
	Run Number 41
A-1	Plan View of HSE Run Number 41
A-2	HSE Source for Wind Tunnel Studies
A-3	Plan view of HSE Run Number 46
	American Wind Water the Description of the Des
A-4	Average wind velocity Frotile Comparison Between
	HEE FIELD AND USU WIND IUNNEL DATA

Figure

.

B-1	Spray Configuration Designations	60
B-2	Specifications of Tanks Used During Spray Simulations .	63
B-3	Wind Velocity and Local Turbulence Intensities for \overline{u} at 5 cm = 22 cm/s	64
B-4	Wind Velocity and Local Turbulence Intensities for \overline{u} at 5 cm = 30 cm/s	65
B-5	Wind Velocity and Local Turbulence Intensities for \overline{u} at 5 cm = 45 cm/s	66
В-б	Wind Velocity and Local Turbulence Intensities for \overline{u} at 5 cm = 60 cm/s	67

Page

LIST OF SYMBOLS

Dimens: (n), an	ions are given in terms of mass (m), length (L), ti nd temperature (T).	me (t), moles
Symbol	Definition	
A	Area	[L ²]
α	Velocity power law exponent	
С	Concentration	[-]
C p	Specific heat capacity at constant pressure	$[L^{2}t^{-2}T^{-1}]$
с _р *	Molar specific heat capacity at constant pressure	$[L^{2}mt^{-2}T^{-1}n^{-1}]$
g	Gravitational acceleration	[Lt ⁻²]
ħ	Local plume depth	[L]
k	Thermal conductivity	$[mLT^{-1}t^{-3}]$
L	Length	[L]
М	Molecular weight	[mn ⁻¹]
Ma	Mach number	
n	Mole	[n]
Q	Volumetric rate of gas flow	$[L^{3}t^{-1}]$
r	Correlation coefficient	
Т	Temperature	[T]
ΔT	Temperature difference across some reference layer	[T]
t	Time	[t]
u.,	Friction velocity	[Lt ⁻¹]
U	Velocity	[Lt ⁻¹]
v	Volume	[L ³]
W	Plume vertical velocity	[Lt ⁻¹]
x	General downwind coordinate	[L]
У	General lateral coordinate	[L]

LIST OF SYMBOLS (Con't)

<u>Symbol</u>	Definition	
Z	General vertical coordinate	[L]
z _o	Surface roughness parameter	[L]
δ	Boundary layer thickness	[L]
٨	Integral length scale of turbulence	[L]
Δρ	Density difference between source gas and air	[mL ⁻³]
ρ	Density	[mL ⁻³]
Х	Mole fraction of gas component	
Ω	Angular velocity of earth = 0.726×10^{-4} (radians/sec)	[t ⁻¹]
λp	Peak wavelength	[L]
ν	Kinematic viscosity	$[L^{2}t^{-1}]$
Supersc	ripts and Abbreviations	
a	Air	
b.o.	Boiloff	
FMRC	Factory Mutual Research Corporation	
g	Gas	
H _s	Height of spray nozzle	
iso	isothermal	
i	Cartesian index	
LLNL	Lawrence Livermore National Laboratory	
LNG	Liquified Natural Gas	
Ln	Spacing between nozzles	
1.s.	Length Scale	
Ls	Normal distance from the spray curtains to the dike wall	
m	Mode1	

LIST OF SYMBOLS (Con't)

Superscripts and Abbreviations (Con't)

NG Natural gas

o Reference conditions

p Prototype

s Source gas

S.G. Specific gravity

1.0 Introduction

Water spray curtains could provide an effective rapid dilution mechanism for low lying dense gas clouds. Natural gas is commonly liquified and stored at cryogenic temperatures. A dense gas dispersion situation occurs upon rupture of a storage tank or a spill in a process area. Since for most atmosphere conditions the cold liquified natural gas (LNG) cloud will remain negatively buoyant for significant time intervals, a ground level hazard may exist due to the gas flammability. Physical simulation of scaled situations where water spray curtains and dense gas clouds interact provides design information for possible curtain installations and calibration data to be used to validate or develop numerical or analytical models.

The Gas Research Intitute (GRI) has sponsored an effort to determine how well water curtains can mitigate actual spill conditions and has contracted Factory Mutual Research Corporation (FMRC) to oversee implementation of this effort. Colorado State University (CSU) was selected by FMRC to do the spill simulation in the Environmental Wind Tunnel of the Fluid Dynamic and Diffusion Laboratory. FMRC provided the test programs to be performed at CSU pending discussion between CSU and FMRC regarding implementation feasibility, parameter variations, etc.

The purpose of this report is to present the data taken in CSU's Environmental Wind Tunnel. The data is provided for subsequent analysis to determine how well water spray curtains act as LNG cloud dilution mechanisms. This report is structured as follows: Section 2 is a theoretical discussion of plume dispersion modeling at the wind tunnel scale. Section 3 describes data acquisition and analysis techniques. Section 4 outlines the test program undertaken and Section 5 is a brief discussion of results obtained. The data is presented in Appendices A and B. Appendix A contains the results of two simulations of field size water curtain/cold CO_2 cloud trials conducted by the (British) Health and Safety Executive (HSE). Appendix B contains concentration data for different spray geometries, source and water flow rates and other spill parameters.

2.0 MODELING OF PLUME DISPERSION

To obtain a predictive model for a specific plume dispersion problem one must quantify the pertinent physical variables and parameters into a logical expression that determines their interrelationships. This task is achieved implicitly for processes occurring in the atmospheric boundary layer by the formulation of the equations of conservation of mass, momentum, and energy. These equations with site and source conditions and associated constituitive relations are highly descriptive of the actual physical interrelationship of the various independent variables (spill size or spill rate, space and time) and dependent variables (velocity, temperature, pressure, density, etc.).

These generalized conservation statements subjected to the typical boundary conditions of atmospheric flow are too complex to be solved by present analytical or numerical techniques. It is also unlikely that one could create a physical model for which exact similarity exists for all the dependent variables over all the scales of motion present in the atmosphere. Thus, one must resort to various degrees of approximation to obtain a predictive model. At present, purely analytical or numerical solutions of plume dispersion are unavailable because of the classical problem of turbulent closure (Hinze, J. O. (1975)). Such techniques which rely heavily upon empirical-analytical-numerical solutions have been combined into several different predictive approaches by Pasquill (1974) and others. The estimates of dispersion by these approaches are often crude; hence, they should only be used when the approach and site terrain are uniform and without obstacles such as fences, buildings or vortex generators. Boundary layer wind tunnels are capable of physically modeling plume processes in the atmosphere under certain restrictions. These restrictions are discussed in the next few sections.

2.1 PHYSICAL MODELING OF THE ATMOSPHERIC BOUNDARY LAYER

The atmospheric boundary layer is that portion of the atmosphere extending from ground level to a height of approximately 100 meters within which the major exchanges of mass, momentum, and heat occur. This region of the atmosphere is described mathematically by statements of conservation of mass, momentum, and energy (Cermak, J. E. (1981)). The general requirements for laboratory-atmospheric-flow similarity may be obtained by fractional analysis of these governing equations (Kline, S. J. (1965)). This methodology is accomplished by scaling the pertinent dependent and independent variables and then casting the equations into dimensionless form by dividing by one of the coefficients (the inertial terms in this case). Performing these operations on such dimensional equations yields dimensionless parameters commonly known as:

Reynolds number	$Re = U_{O}L_{O}/v_{O}$	$= \frac{\text{Inertial Force}}{\text{Viscous Force}}$
Bulk Richardson number	$Ri = [(\Delta T)_{o}/T_{o}] (L_{o}/U_{o}^{2})g_{o}$	<u>Gravitational Force</u> Inertial Force
Rossby number	$Ro = U_o / L_o \Omega_o$	= <u>Inertial Force</u> Coriolis Force
Prandtl number	$P_{\mathbf{r}} = v_{o} / (k_{o} / \rho_{o} C_{p_{o}})$	= <u>Viscous Diffusivity</u> Thermal Diffusivity
	2 -	

Eckert number $Ec = U_o^2 / C_p (\Delta \overline{T})_o$

For exact similarity between different flows which are described by the same set of equations, each of these dimensionless parameters must be equal for both flow systems. In addition to this requirement, there must be similarity between the surface-boundary conditions.

Surface-boundary condition similarity requires equivalence of the following features:

- a. Surface-roughness distributions,
- b. topographic relief, and
- c. surface-temperature distribution.

If all the foregoing requirements are met simultaneously, all atmospheric scales of motion ranging from micro to mesoscale could be simulated within the same flow field for a given set of boundary conditions (Cermak, J. E. (1975)). However, all of the requirements cannot be satisfied simultaneously by existing laboratory facilities; thus, a partial or approximate simulation must be used. This limitation requires that atmospheric simulation for a particular application must be designed to simulate most accurately those scales of motion which are of greatest significance for the given application.

2.1.1 Partial Simulation of the Atmospheric Boundary Layer

A partial simulation is practically realizable only because the kinematics and dynamics of flow systems above a certain minimum Reynolds number are independent of its magnitude (Schlichting, H. (1968); Zoric, D. and Sandborn V. A. (1972)). The magnitude of the minimum Reynolds number will depend upon the geometry of the flow system being studied. Halitsky (1969) reported that for concentration measurements on a cube placed in a near uniform flow field the Reynolds number required for invariance of the concentration distribution over the cube surface and downwind must exceed 11,000. Because of this invariance, exact similarity of Reynolds parameter is neglected when physically modeling the atmosphere.

When the flow scale being modeled is small enough such that the turning of the mean wind directions with height is unimportant, similar-

ity of the Rossby number may be relaxed. For the case of dispersion of LNG plume near the ground level the Coriolis effect on the plume motion would be extremely small.

The Eckert number for air is equivalent to 0.4 Ma² $(\frac{T_o}{\Delta T_o})$ where Ma is the Mach number (Hinze, J.O (1975)). For the wind velocities and temperature differences which occur in either the atmosphere or the laboratory flow the Eckert number is very small; thus, the effects of energy dissipation with respect to the convection of energy is negligible for both model and prototype. Eckert number equality is relaxed.

Prandtl number equality is easily obtained since it is dependent on the molecular properties of the working fluid which is air for both model and prototype.

Bulk Richardson number equality may be obtained in special laboratory facilities such as the Meteorological Wind Tunnel at Colorado State University (Plate, E. J. and Cermak, J. E. (1963)).

Quite often during the modeling of a specific flow phenomenon it is sufficient to model only a portion of a boundary layer or a portion of the spectral energy distribution. This relaxation allows more flexibility in the choice of the length scale that is to be used in a model study. When this technique is employed it is common to scale the flow by any combination of the following length scales, δ , the portion of the boundary layer to be simulated; z_0 , the aerodynamic roughness; Λ_i , the integral length scale of the velocity fluctuations, or λ_p , the wavelength at which the peak spectral energy is observed.

Unfortunately many of the scaling parameters and characteristic profiles are difficult to obtain in the atmosphere. They are infrequently known for many of the sites to which a model study is to be per-

formed. To help alleviate this problem Counihan (1975) has summarized measured values of some of these different parametric descriptions for the atmospheric flow at many different sites and flow conditions.

2.2 PHYSICAL MODELING OF LNG PLUME MOTION

In addition to modeling the turbulent structure of the atmosphere in the vicinity of a test site it is necessary to scale the LNG plume source conditions properly. One approach would be to follow the methodolgy used in Section 2.1, i.e., writing the conservation statements for the combined flow system followed by fractional analysis to find the governing parameters. An alternative approach, the one which will be used here, is that of similitude (Kline, S. J. (1965)). The method of similitude obtains scaling parameters by reasoning that the mass ratios, force ratios, energy ratios, and property ratios should be equal for both model and prototype. When one considers the dynamics of gaseous LNG plume behavior the following nondimensional parameters of importance are identified (Halitsky, J. (1969); Plate, E. J. and Cermak, J. E. (1963); Hoot, T. G. et al. (1974); Skinner, G. T. and Ludwig, G. R. (1978); Snyder, W. H. (1972)).

Mass Ratio $= \frac{\max s \ flow \ of \ LNG \ plume}{effective \ mass \ flow \ of \ air}$ $= \frac{\rho_s W_S A_s}{\rho_a U_a A_a} = \frac{\rho_s Q}{\rho_a U_a L^2}$

It has been assumed that the dominant transfer mechanism is that of turbulent entrainment. Thus the transfer processes of heat conduction, convection, and radiation are negligible.

^{**} The scaling of plume Reynolds number is also a significant parameter. Its effects are fortunately invariant over a large range. This makes it possible to scale the distribution of mean and turbulent velocities and relax exact parameter equality.

Momentum Ratio

= <u>inertia of LNG plume</u> effective inertia of air

$$=\frac{\rho_{s}W^{2}A_{s}}{\rho_{a}U^{2}A_{a}}=\frac{\rho_{s}Q^{2}}{\rho_{a}U^{2}L^{4}}$$

Densimetric Froude No. (Fr)

$$= \frac{\rho_{a} U_{a}^{2} A_{a}}{g(\rho_{g} - \rho_{a}) V_{s}} = \frac{U_{a}^{2}}{g\left(\frac{\rho_{s} - \rho_{a}}{\rho_{a}}\right) L}$$

Volume Flux Ratio

To obtain simultaneous simulation of these four parameters at a reduced geometric scale it is necessary to maintain equality of the LNG plume specific gravity $\rho_{\rm s}/\rho_{\rm a}$.

2.2.1 Partial Simulation of LNG Plume Motion

The restriction to an exact variation of the density ratio for the entire life of a plume is difficult to meet for LNG plumes which simultaneously vary in molecular weight and temperature. To emphasize this point more clearly, consider the mixing of two volumes of gas, one being the source gas, V_s , and other being ambient air, V_a . Consideration of the conservation of mass and energy for this system yields:

The pertinent assumption in this derivation is that the gases are ideal and properties are constant.

$$\frac{\frac{\rho_{g}}{\rho_{a}}}{\left(\frac{T_{a}}{T_{s}} v_{s} + v_{a}\right)\left(\frac{C_{p}M_{s}}{C_{p}M_{a}} v_{s} + v_{a}\right)\left(\frac{C_{p}M_{s}}{C_{p}M_{a}} v_{s} + v_{a}\right)\left(\frac{C_{p}M_{s}}{C_{p}M_{a}} \frac{T_{a}}{T_{s}} v_{s} + v_{a}\right)^{-1}}$$

If the temperature of the air, T_a , equals the temperature of the source gases, T_s , or if the product, C_p M, is equal for both source gas and air then the equation reduces to:

$$\frac{\rho_{g}}{\rho_{a}} = \frac{\frac{\rho_{s}}{\rho_{a}} V_{s} + V_{a}}{V_{s} + V_{s}}$$

Thus for two prototype cases: 1) an isothermal plume and 2) a thermal plume which is mostly composed of air, it does not matter how one models the density ratio as long as the initial density ratio value is equal for both model and prototype.

For a plume whose temperature, molecular weight, and specific heat are all different from that of the ambient air, i.e., a cold natural gas plume, equality in the variation of the density ratio upon mixing must be relaxed slightly if one is to model utilizing a gas different from that of the prototype. In most situations this deviation from exact similarity is small (see discussion Section 2.3.2).

Scaling of the effects of heat transfer by conduction, convection, or radiation cannot be reproduced when the model source gas and environment are isothermal. Fortunately in a large majority of industrial plumes the effects of heat transfer by conduction, convection, and radiation from the environment are small enough that the plume buoyancy remains essentially unchanged. In the specific case of a cryogenic

If one were to use a gas whose temperature is different from that of the ambient air then consideration of similarity in the scaling of the energy ratios must be considered.

liquid spill the influence of heat transfer on cold dense gas dispersion can be divided into two phases. First, the temperature (and hence specific gravity) of the plume at exit from a containment tank and surrounding dike area is dependent on the thermal diffusivity of the tankdike-spill surface materials, the volume of the tank-dike structure, the actual boiloff rate, and details of the spill surface geometry. A second plume phase involves the heat transfer from the ground surface beyond the spill area into the plume which lowers plume density.

It would be desirable to simulate the entire transient spill phenomenon in the laboratory including spill of cryogenic fluid into the dike, heat transfer from the tank and dike materials to the cryogenic fluid, phase change of the liquid and subsequent downwind dispersal of cold gas. Unfortunately, the different scaling laws for the conduction and convection require markedly different time scales for the various processes as the length scale changes. Since the volume of dike material storing sensible heat scales as the cube of length whereas the pertinent surface area scales as the square of length, heat is transferred to a model cold plume much too rapidly within the model containment structures. This effect is apparently unavoidable since a material having a thermal diffusivity low enough to compensate for this effect does not appear to exist. Calculations for the full-scale situation suggest minimal heating of a cold gas plume by the tank-dike structure; thus it may suffice to cool the model tank-dike walls to reduce the heat transfer to a cold model vapor and study the resultant cold plume.

Boyle and Kneebone (1973) released room temperature propane and LNG onto a water surface under equivalent conditions. The density of propane at ambient temperatures and methane at -161° C are the same. Using

the modified Froude number as a model law they concluded dispersion characteristics were equivalent within experimental error.

A mixture of 50% helium and 50% nitrogen pre-cooled to 115° K was released from model tank-dike systems by Meroney et al. (1977) to simulate equivalent LNG spill behavior. It was expected the gross influences of different heat transfer conditions could be determined; however, there was no guarantee that these experiments reproduced quantitatively similar situations in the field. Since the turbulence characteristics of the flow are dominated by roughness, upstream wind profile shape, and stratification one expects the Stanton number in the field will equal that in the model, and heat transfer rates in the two cases should be in proper relation to plume entrainment rates. On the other hand, if temperature differences are such that free convection heat transfer conditions dominate, scaling inequalities may exist; nonetheless, model dispersion rates would be conservative.

Visualization experiments performed with equivalent dense isothermal and dense cold plumes revealed no apparent change in plume geometry. Concentration data followed similar trends in both situations. No significant differentiation appeared between insulated versus heat conducting ground surfaces or neutral versus stratified approach flows (Meroney et al. (1977)).

The influence of latent heat release by moisture upon the buoyancy of a plume is a function of the quantity of water vapor present in the plume and the humidity of the ambient atmosphere. Such phase change effects on plume buoyancy can be very pronounced in some prototype situations. Figure 1 displays the variation of specific gravity from a spill of liquefied natural gas in atmospheres of different humidities. For a LNG vapor plume, humidity effects are shown to reduce the extent

Figure 1. Specific Gravity of LNG Vapor - Humid Atmosphere Mixtures

in space and time of plume buoyancy dominance on plume motion. Hence a dry adiabatic model condition is conservative.

A reasonably complete simulation may be obtained in some situations even when a modified density ratio ρ_s/ρ_a is stipulated. The advantage of such a procedure is demonstrated most clearly by the statement of equality of Froude Numbers.

$$\left(\frac{U_{a}^{2}}{(\frac{\rho_{s}}{\rho_{a}}-1)Lg}\right)_{m} = \left(\frac{U_{a}^{2}}{(\frac{\rho_{s}}{\rho_{a}}-1)Lg}\right)_{p}$$

Solving this equation to find the relationship between model velocity and prototype velocity yields:

$$(\mathbf{U}_{a})_{m} = \left(\frac{\mathbf{S}.\mathbf{G}._{m} - 1}{\mathbf{S}.\mathbf{G}._{p} - 1}\right)^{1/2} \left(\frac{1}{\mathbf{L}.\mathbf{S}.}\right)^{1/2} (\mathbf{U}_{a})_{p}$$

where S. G. is the specific gravity, (ρ_s/ρ_a) , and L.S. is the length scale, (L_p/L_m) . By increasing the specific gravity of the model gas compared to that of the prototype gas, for a given length scale, one increases the reference velocity used in the model. It is difficult to generate a flow which is similar to that of the atmospheric boundary layer in a wind tunnel run at very low wind speeds. Thus the effect of modifying the model specific gravity extends the range of flow situations which can be modeled accurately. But unfortunately, during such adjustment of the model gases specific gravity, at least two of the four similarity parameters must be neglected. The options as to which two of these parameters to retain, if any, depends upon the physical situation being modeled. Two of the three possible options are listed below.

- Froude No. Equality Momentum Ratio Equality Mass Ratio Inequality Velocity Ratio Inequality
- (2) Froude No. Equality Momentum Ratio Inequality Mass Ratio Inequality Velocity Ratio Equality

Both of these schemes have been used to model plume dispersion downwind of an electric power plant complex by Skinner (1978), Kothari et al. (1979) and Meroney (1974) respectively.

The modeling of the plume Reynolds number is relaxed in all physical model studies. This parameter is thought to be of small importance since the plume character will be dominated by background atmospheric turbulence soon after its emission. But, if one was interested in plume behavior near the source, then steps should be taken to assure that the model plume is fully turbulent.

2.3 MODELING OF PLUME DISPERSION FOR PRESENT STUDY

In the sections above a review of the extent to which wind tunnels can model LNG plume dispersion in the atmospheric boundary layer has been presented. In this section these arguments will be applied to the case of an LNG spill for the present study.

2.3.1 Physical Modeling of the Atmospheric Surface Layer

A neutral boundary layer was generated in the Environmental Wind Tunnel using spires and a trip at the entrance of the tunnel. The wind speeds were referenced to a 5 m (prototype) height. The aerodynamic roughness, z_{n} , and power law exponent, a, were specified such that the

When this techniques is employed, distortion in velocity scales or similarly volume flow rates requires that a correction be applied to the measured concentration field.

boundary layer profile was similar to that expected for a flat suburban terrain area.

2.3.2 Physical Modeling of the LNG Spill Plume

The buoyancy of a plume resulting from an LNG spill is a function of both the mole fraction of methane and temperature. If the plume entrains air adiabatically, then the plume would remain negatively buoyant for its entire lifetime. If the humidity of the atmosphere were high then the buoyancy of the plume will vary from negative to weakly positive. These conclusions are born out in Figure 1, which illustrates the specific gravity of a mixture of methane at boiloff temperature with ambient air and water vapor.

Since the adiabatic plume assumption will yield the most conservative downwind dispersion estimates this situation was simulated. Several investigators have confirmed that the Froude number is the parameter which governs plume spread rate, trajectory, plume size, and entrainment during initial dense plume dilution (Kothari, K. M., Meroney, R. N. and Neff, D. E. (1981); Hoot, T. G. et al. (1974); Boyle, G. J. and Kneebone, A. (1973); Bodurtha, F. T., Jr. (1961); van Ulden, A. P. (1974)). The modeling of momentum is not of critical importance for a ground source released over a fairly large area.

The use of an isothermal dense model gas such as a mixture of ethane and carbon dioxide in place of a cold methane vapor also results in a slight distortion of the local dynamic forces acting on equivalent plume volumes as the gas mixes. Unfortunately this distortion is not conservative, i.e., the thermal capacitance properties of methane result in plumes which behave more dense than the model equivalent plume. Analytical approximations based on the integral entrainment box model of Fay (1980) suggest that buoyancy forces are greater at equivalent time and space positions during adiabatic mixing of methane. Let $Fr = \frac{U(h)^2}{g \frac{\Delta \rho}{\rho_a} h}$

be a local Froude number, where h is local plume depth, U(h) is wind speed at plume depth, h, and $\Delta \rho / \rho_a$ is a local density difference ratio. Then given a power law wind profile U(h) ~ h^{α} one finds

$$\frac{Fr}{Fr}_{isothermal gas} = \frac{(1+\chi S)(\beta+(1-\beta)\Theta)}{(\beta(1+\chi S)+(1+S)(1-\beta)\Theta)} \left[\frac{1+\chi S-\chi(1+S)\Theta}{(1-\chi\Theta)(1+\chi S)}\right]^{2\alpha} \left[\frac{R}{R}_{iso}\right]^{2-4\alpha}$$

where X = mole fraction methane vapor

R = local plume spread

$$\beta = 1 - M_a/M_s \simeq -0.81$$

$$\Theta = 1 - T_s/T_a \simeq 0.6$$

$$S = (Cp_s^*/Cp_a^* - 1) \simeq 0.22$$

$$\alpha = velocity power law exponent \simeq 0.2.$$

The variation of this Froude number ratio with equivalent mole fraction methane is plotted in Figure 2. Nonetheless, over most of the concentration range where buoyancy forces are dominant the variation of Froude number is adequately simulated by the isothermal model gas. Indeed, volume integrated or box model calculations when corrected for equal molar source strengths predict equal or slightly higher concentration values at equivalent times.

2.3.3 Model Scale Factors

As discussed previously the dominant scaling criteria for the simulation of LNG vapor cloud physics are the Froude number and the volume flux ratio. By setting these parameters equal for model and prototype one obtains the following relationships.

$$(\mathbb{U}_{a})_{m} = \left(\frac{S.G._{m}-1}{S.G._{p}-1}\right)^{1/2} \left(\frac{1}{L.S.}\right)^{1/2} (\mathbb{U}_{a})_{p}$$
$$Q_{m} = \left(\frac{S.G._{m}-1}{S.G._{p}-1}\right)^{1/2} \left(\frac{1}{L.S.}\right)^{5/2} Q_{p}$$
$$L_{m} = \frac{1}{L.S.} L_{p}$$

In addition to these scaling parameters which govern the flow physics, one must also scale the mole fractions (concentrations) measured in the model to those that would occur in the prototype. This scaling is required, since the number of moles being released in a thermal plume are different from the number of moles being released in an isothermal plume. To be more precise the relationship between the molar flow rate of source gas in the model and the prototype is

$$n_{p} = (T_{m}/T_{p})_{@b.o.m} = (2.70)n_{m}$$

By definition the concentration of LNG vapor is expressed as:

$$\chi_{\mathbf{p}} = \mathbf{n}_{\mathbf{s}} / (\mathbf{n}_{\mathbf{s}} + \mathbf{n}_{\mathbf{a}})$$

Substituting model equivalents in the above expression yields

$$\chi_{\mathbf{p}} = \frac{(T_{\mathbf{m}}/T_{\mathbf{p}}) \cdot \mathbf{b} \cdot \mathbf{o} \cdot \mathbf{n}_{\mathbf{s}}}{(T_{\mathbf{m}}/T_{\mathbf{p}})_{@ \mathbf{b} \cdot \mathbf{o} \cdot \mathbf{n}_{\mathbf{s}} + \mathbf{n}_{\mathbf{a}}} = \frac{\mathbf{n}_{\mathbf{s}}}{\mathbf{n}_{\mathbf{s}} + \mathbf{n}_{\mathbf{a}}(T_{\mathbf{p}}/T_{\mathbf{m}})_{@ \mathbf{b} \cdot \mathbf{o} \cdot \mathbf{n}_{\mathbf{s}}}}$$

OT

$$\chi_{p} = \frac{\chi_{m}}{\chi_{m} + (1 - \chi_{m})(0.37)}$$

This equation was used to correct the modeled measurements to those that would be observed in the field.

3.0 DATA ACQUISITION AND ANALYSIS

Laboratory measurement techniques are discussed in this section, along with conversion methods which provide a basis for interpretation of model data in terms of field equivalent quantities. Some of the methods used are conventional and need little elaboration.

3.1 WIND-TUNNEL FACILITIES

The Environmental Wind Tunnel (EWT) shown in Figure 3 was used for all tests performed. This wind tunnel, specially designed to study atmospheric flow phenomena, incorporates special features such as adjustable ceiling, rotating turntables, transparent boundary walls, and a long test section to permit reproduction of micrometeorological behavior at larger scales. Mean wind speeds of 0.10 to 12 m/s can be obtained in the EWT. A boundary layer depth of 1 m thickness at 6 m downstream of the test entrance can be obtained with the use of the vortex generators and trip at the test section entrance and surface roughness on the floor. The flexible test section roof on the EWT is adjustable in height to permit the longitudinal pressure gradient to be set to zero. The vortex generators and trip at the tunnel entrance were followed by 9.2 m of smooth floor for the 1:100 scaled area-source model.

3.2 MODEL

It was decided that the best reproduction of the surface wind characteristics would be at a model scale of 1:100. The area model was built into a special insert made to fit in the floor of the wind tunnel. The insert incorporated an aluminum turntable on which was mounted a 0.60 m square model dike enclosing a plenum discharging LNG-vapor simulant. The dike heights used were 4, 8, and 16 cm. The insert also incorporated a drain for collecting water discharged by the model nozzles. The turntable was designed to accept the two nozzle manifolds

Figure 3. Environmental Wind Tunnel

-

fabricated at FMRC. One manifold was mounted underneath the turntable with upward-pointing nozzles inserted through clearance holes in the turntable (discharge face flush with top of turntable), and the other manifold with downward-pointing nozzles was mounted above the turntable on stands attached to the turntable.

Six different nozzles were used throughout the test program and are designated as A, D, E, G, H, and I. Nozzles A, H, and I manufactured by Spraco, Inc. were model numbers 19577604, 19437604, and 18171804 respectively. Nozzles D, E, and G made by Spraying Systems Company were model numbers 1/4TTD1-31, 1/4TTD1-33, and 1/4TT1101.

The plenum from which the source gas was discharged was divided into nine separate but contiguous chambers (Figure 4), and the gas was fed into all nine chambers at equal rates. Each of the chambers contained a thin layer of glass beads so that the discharge would be uniform over the entire surface.

Carbon dioxide, with a small amount of ethane (~ 1%) for detection, was used as LNG-vapor simulant. Concentrations were measured at 42 sample points around and downstream of the gas discharge (Figure 5): samples drawn into syringes were analyzed with a gas chromatograph.

3.3 FLOW VISUALIZATION TECHNIQUES

Smoke was used to define plume behavior. The smoke was produced by passing the LNG-vapor simulant through an oil smoke generator (Fog/Smoke Machine manufactured by Roscolab Ltd.). A visible record was obtained from pictures taken with a Speed Graphic camera using Polaroid film for immediate examination. In addition, color slides were taken with a 35 mm camera and several runs were recorded on video cassettes.

Figure 4. Source Plenum and Gas Supply Detail

• "Ground Level" (0.5 above Ground)

• "Ground Level" Plus Elevations 3.5, 7.5, 15, 30

Figure 5. Sampling Grid for Concentration Measurements. All Dimensions in cm (Model) or m (Full Scale for L.S. = 100).

3.4 WIND PROFILE AND TURBULENCE MEASUREMENTS

The velocity profile, reference wind speed conditions, and turbulence were measured with a Thermo-Systems Inc. (TSI) 1050 anemometer and a TSI model 1210 hot-film probe. Since the voltage response of these anemometers is nonlinear with respect to velocity, a multipoint calibration of system response versus velocity was utilized for data reduction.

The velocity standard was that depicted in Figure 6. This consisted of a Matheson Model 8116-0154 mass flowmeter, a Yellow Springs

Figure 6. Velocity Probes and Velocity Standard
thermistor, and a profile conditioning section constructed by the CSU Engineering Research Center shop. The mass flowmeter measures mass flow rate independent of temperature and pressure, the thermistor measures the temperature at the exit conditions. The profile conditioning section forms a flat velocity profile of very low turbulence at the position where the probe is to be located. Incorporating a measurement of the ambient atmospheric pressure and a profile correction factor permits the calibration of velocity at the measurement station from 0.1-2.0 m/s.

During calibration of the single film anemometer, the anemometer voltage response values over the velocity range of interest were fit to an expression similar to that of King's law (Sandborn, V. A. (1972)) but with a variable exponent. The accuracy of this technique is approximately \pm 2 percent of the actual longitudinal velocity.

The velocity sensors were mounted on a vertical traverse and positioned over the measurement location on the model. The anemometer responses were fed to a Preston analog-to-digital converter and then directly to a HP-1000 minicomputer for immediate interpretation. The HP-1000 computer also controls probe position. A flow chart depicting the control sequence for this process is presented in Figure 7.

3.5 CONCENTRATION MEASUREMENTS

The experimental measurements of concentration were performed using gas-chromatograph and sampling systems (Figure 8) designed by Fluid Dynamics and Diffusion Laboratory staff.

3.5.1 Gas Chromatograph

The (Hewlett-Packard Model 5710A) gas chromatograph with Flame Ionization Detector (FID) operates on the principle that the electrical conductivity of a gas is directly proportional to the concentration of

Figure 7. Velocity Data Reduction Flowchart

Figure 8. Photographs of (a) the Gas Sampling System, and (b) the HP Integrator and Chromatograph

(b)

(a)

charge particles within the gas. The ions in this case are formed by the effluent gas being mixed in the FID with hydrogen and then burned in air. The ions and electrons formed enter an electrode gap and decrease the gap resistance. The resulting voltage drop is amplified by an electrometer and fed to the HP 3380 or HP 3390A integrator. When no effluent gas is flowing, a carrier gas (nitrogen) flows through the FID. Due to certain impurities in the carrier, some ions and electrons are formed creating a background voltage or zero shift. When the effluent gas enters the FID, the voltage increase above this zero shift is proportional to the degree of ionization or correspondingly the amount of tracer gas present. Since the chromatograph used in this study features a temperature control on the flame and electrometer, there is very low drift of the zero shift. In case of any zero drift, the HP 3380 or 3390A, which integrates the effluent peak, also subtracts out the zero drift.

The lower limit of measurement is imposed by the instrument sensitivity and the background concentration of tracer within the air in the wind tunnel. Background concentrations were measured and subtracted from all data quoted herein.

3.5.2 Sampling System

The tracer gas sampling system consists of a series of fifty 30 cc syringes mounted between two circular aluminum plates. A variable-speed motor raises a third plate, which in turn raises all 50 syringes simultaneously. A set of check valves and tubing are connected such that airflow from each tunnel sampling point passes over the top of each designated syringe. When the syringe plunger is raised, a sample from the tunnel is drawn into the syringe container. The sampling procedure consists of flushing (taking and expending a sample) the syringe three

times after which the test sample is taken. The draw rate is variable and generally set to be approximately 6 cc/min.

The sampler was periodically calibrated to insure proper function of each of the check valve and tubing assemblies. The sampler intake was connected to short sections of Tygon tubing which led to a sampling manifold. The manifold, in turn, was connected to a gas cylinder having a known concentration of tracer gas. The gas was turned on and a valve on the manifold opened to release the pressure produced in the manifold. The manifold was allowed to flush for about 1 min. Normal sampling procedures were carried out to insure exactly the same procedure as when taking a sample from the tunnel. Each sample was then analyzed for tracer gas concentration. Any sample having an error of greater than ± 2 percent indicated a failure in the check valve assembly and the check valve was replaced or the bad syringe was not used for sampling from the tunnel.

3.5.3 Test Procedure

The test procedure consisted of: 1) setting the proper tunnel wind speed, 2) releasing a metered mixture of source gas (specific gravity of 1.5) from the release area source, 3) activating the spray curtains at the proper pressure, 4) withdrawing samples of air from the tunnel at the locations designated, and 5) analyzing the samples with a Flame Ionization Gas Chromatograph (FIGC). Photographs of the sampling system and gas chromatograph are shown in Figure 8. The samples were drawn into each syringe over a 300 s (approximate) time period and consecutively injected into the FIGC.

The procedure for analyzing air samples from the tunnel is as follows: 1) a 2 cc sample volume which was drawn from the wind tunnel and collected in a syringe is introduced into the Flame Ionization Detector

(FID), 2) the output from the electrometer (in microvolts) is sent to the Hewlett-Packard 3390 or 3390A Integrator, 3) the output signal is analyzed by the integrator to obtain the proportional amount of hydrocarbons present in the sample, 4) the record is integrated, and the ethane concentration is determined by multiplying the integrated signal (μ v-s) by calibration factor (ppm/ μ v-s), 5) a summary of the integrator analysis (gas retention time and integrated area (μ v-s)) is printed out on the integrator at the wind tunnel, 6) the integrated values and associated run information were tabulated on a specially designed form, 7) the integrated values for each tracer are entered into a computer along with pertinent run parameters, and 8) the computer program converts the raw data into mean concentration. The calibration factor was obtained by introducing a known quantity, χ_s , of tracer into the FIGC and recording the integrated value, I, in μ v-s.

The calibration factor is $\frac{\chi_s(ppm)}{I(\mu v-s)}$

Calibrations were obtained at the beginning and end of each measurement period.

4.0 TEST_PROGRAM

The goal of the test was to determine the effects of water spray curtains near the source on the dispersion of a modeled Liquified Natural Gas (LNG) plume.

4.1 PRE AND POST "SMALL-SCALE" FIELD EXPERIMENTS

The first series of tests (Runs 1-58) were performed to model a hypothetical spill at a scale of 1:100 from a 60 m x 60 m area surrounded by a 4 m dike. These tests also served as a qualitative pretest series for subsequent small-scale experiments performed by Factory Mutual Research Corporation (FMRC) and Lawrence Livermore National Laboratory (LLNL) at the Gas Training Facility of the Massachusetts Fire Fighting Academy, (Table 1). (In this table, a "scale ratio" of 20 means that the associated test was designed as a reduced scale model of spill into a 60 m x 60 m dike - the actual spill area was 3 m x 3 m. The parameter, n, refers to the number of sprays per side of the diked area. The quantity U_w is the mean wind speed.) Tests 1-58, then, were designed to cover a wide range of wind speed and spill configurations (see Table B-1).

Once the FMRC/LLNL field experiments were completed, a short postfield series of tests (Runs 59-61) were performed to reproduce the exact conditions which existed during Test 13 of the Field Test Sequence. These tests were run at a linear scale ratio of 1:5.

The wind tunnel simulation of field Test 13 indicated no-spray ground level concentrations near 70% and concentrations with spray of 20%. These values are considerably higher than the values of approximately 8% and 4% respectively, that were measured in the field. These low field test values may have been caused by highly unstable atmos-

Test Number	Spray (Up,Down)	Scale Ratio	Nozzle Config.	n	Approx.* U _w (m/s)
9	Up	20	<u>السار</u> ا	7	4.5
10	Up	1	لاستعمارا	7	-
12	Down	1	1	7	2.5
13	Down	1		4	0.5
18	Up	20		7	4.5
19	Up	20		7	3.0
23	Up	1		7	1.8
24	Up	1		7	2.7
33	Up	1		7	1.8
37	Up	1	4	4	1.4
41	Up	1		4+3	1.6

			Т	able	e 1					
Selected	Sma	11-Sc	cale	Sp	i11	Tes	ts	Perfo	rmed	Ъy
LLNL	and	FMRC	on	the	Bas	sis	of	Runs	1 - 58	

Referred to full scale in case of Scale Ratio = 20

pheric conditions existing during the field tests that were not reproduced in the tunnel. Alternatively, the differences may have been caused by unsimulated vertical velocities reached at the field area source due to accelerated boiloff over the evaporation pad.

4.2 HEALTH AND SAFETY EXECUTIVE FIELD TEST SIMULATION

Additional full scale dispersion experiments with water curtains made elsewhere were sought which could be simulated in the wind tunnel to check the modeling method. A field series test was performed by the (British) Health and Safety Executive (HSE) in 1981 using cold CO_2 vapor (-78°) at an estimated spill rate of 1.1 kg/s from a point source. Two of these tests were selected for simulation in the wind tunnel (at a scale ratio of 1:28.9) to verify the wind tunnel method for studying spray dispersion. The two tests, HSE 41 and HSE 46, were selected because of availibility of model nozzles, practicality of scaling ratios, and apparent quality of the data. Test results and plan views of the test arrangement showing relative wind direction, gas source, spray nozzles and sampling points are given in Appendix A.

4.3 WATER SPRAY CURTAIN DESIGN TEST SERIES

Since HSE Run 46 was satisfactorily replicated in the wind tunnel (see Section 5.2), a test series (Runs 62-107) was designed by FMRC to examine downwind concentration profiles resulting from variations in source strength, mean flow velocities spray configurations and separation geometries. These tests were performed to determine the maximum mitigation expectations assuming a large quantity of water at high pressures was available.

Since previous tests were performed using unobstructed area sources and with a constant dike height of 4 cm (4 m full scale), a test series (Runs 108-153) was investigated to examine the performance of the more favorable spray configurations in the presence of different sized tanks with correspondingly scaled dikes. Wind tunnel results are summarized in Appendix B.

5.0 DISCUSSION OF RESULTS

The primary purpose of this report is to summarize data and test methodologies resulting from wind tunnel simulations of full scale LNG spills. Although an extensive discussion of the data will be prepared by the FMRC staff, an overview of the more significant results follows.

5.1 PRE SMALL-SCALE FIELD EXPERIMENT WIND TUNNEL RUNS

A test series (Runs 1-58) was specified by FMRC and CSU personnel to establish downwind concentration profiles due to changes in spray configurations, spray directions and flowrates, and wind velocities. These tests served as a precursor to small-scale tests conducted by the Massachusetts Firefighting Academy and LLNL.

The data resulting from the no-spray condition gave expected plume behavior. The plume was broad, flat and symmetric about the center line which ran downwind from the source. Figure 9a shows the comparison between lateral concentration measurements at a scaled distance of 90 meters downwind from the source both with and without sprays. The plume maintained a symmetric character about the centerline although concentrations reduction factors (FD)^{*} of 1.35 in the case of upward sprays, 2.80 for downward sprays and 4.67 in the case of mixed downward and upward sprays were measured, indicating that spray curtains can significantly reduce downwind LNG concentrations.

Reduction Factor (FD) defined by Moore and Rees (1981) as ratio of concentrations without the spray to with the spray active.

Small scale field results conducted by FMRC and LLNL (Figure 9b) indicated equivalent concentration reduction factors of typically 2.0 when the spray curtain was activated. Surprisingly concentrations did not exceed 20% even when the spray was inactive. Further wind-tunnel tests (Runs 59-61) were conducted which replicated field Run 13 at a scale of 1:5. The laboratory results for equivalent wind speed, source strength and water spray conditions still produced concentration magnitudes and reductions commensurate with previous wind tunnel data.

Re-examination of prior field and model studies rescaled to field Run 13 conditions suggest that the concentrations measured in the laboratory are consistent with prior field and model results. Reduction of weather data by LLNL indicates a highly unstable stratification existed during Run 13 which could not be replicated in the wind tunnel and perhaps accounted for the disparity in the data sets. Alternatively, accelerated boiloff over the evaporation pad may have generated unsimulated vertical velocities which may have lofted the plume (see FMRC 1st Quarterly Report, July 1982, Contract No. 5080-352-0386).

Analytical calculation as specified by Moore and Rees (1981) for the effect of downward directed sprays on the gases emitted by a line source equivalent to the wind tunnel source flowing over a 4 cm dike predicted dilution factors of about 2.05 which are consistent with those measured in the laboratory.

5.2 HSE FIELD TRIALS

HSE Runs 46 and 41 were simulated in the wind tunnel at a scale ratio of 1:28.9. In the field, the wind speeds at 1.25 m (Figure 10) for HSE 46 were reported to average 2.9 m/s during an initial no-spray interval (0-3 min), and 1.7 m/sec during the subsequent (3-5 min) spray interval. Using an equivalent scaled velocity corresponding to 2.9 m/s

Figure 9b. Field Centerline Concentrations at x = 4.5 m

Figure 10. Wind Direction and Wind Velocity Field Data for HSE Run Number 46

(Run 6, Table A-1), the wind tunnel results did not reproduce the field conditions, the lateral spread of the field vapor plume being greater. When the wind speed was reduced to the equivalent of 1.7 m/s (Run 10) the model reproduced the no spray conditions quite well. Linear and logarithmic scatter diagrams of concentrations measured at equivalent scaled points produce correlations, r, of 0.87 and 0.97 respectively (Figure 11). Figure 12 shows the comparisons between vertical concentration profiles recorded in the field and at equivalent locations in the laboratory. Reduction of the effective field wind speed was justified by subsequent HSE tests which employed simultaneous wind measurements at two locations. These measurements showed significant unexplained differences in velocity readings between otherwise similar locations of the order used here.

Laboratory vapor concentrations measured during spray operation (Run 11) agreed quite well with field data as shown in Figure 13.

The average wind speed recorded for HSE 41 was about 3.2 m/s for the no-spray and spray intervals (Figure 14). The wind field appeared very turbulent, and the wind speed varied by $\pm 0.5 \text{ m/s}$ during test intervals. In addition wind direction shifted up to 20° during the no spray measurement period and 40° during the active spray period. The no-spray case was not reproduced well in the laboratory (Run 1), the resulting model plume being too narrow. Hence, the model data for HSE 41 (Runs 1-5) is inconclusive. It should be noted, however, that a simple mass balance performed over field measurement stations for HSE 41 fails to agree with the estimated source strength provided for the run. Earlier model experiments performed by Neff and Meroney (1982) suggest that HSE 41 source and wind field conditions should indeed result in a narrow plume geometry.

Figure 11. Logarithmic Scatter Diagram Comparing HSE Field and Model Concentrations

Figure 12. HSE Number 46: No Spray Vertical Concentration Profiles

Figure 13. HSE Number 46: With Spray Vertical Concentration Profiles

Figure 14. Wind Direction and Wind Velocity Field Data for HSE Run Number 41

5.3 SPRAY OPTIMIZATION AND BUILDING INTERACTION SERIES

A final test series (Runs 108-153) was specified after examining all previous runs in order to ascertain the optimal spray configurations, directions and pressures.

Included in this test series were model LNG storage vessels of varying sizes placed at the center of the area source. Dike heights were adjusted to maintain an entrapped vapor volume between the vessels and vapor barriers equal to 1 1/2 times the stored volumes. Plume bifurcation was noted with these conditions in agreement with similar tests performed by Kothari, Meroney, and Neff (1981). Interaction of the spray curtains with the bifurcated plumes essentially mixed the plume cross-section to the same low levels.

REFERENCES

- Bodurtha, F. T., Jr. (1961), The Behavior of Dense Stack Gases, <u>J.</u> of <u>APCA</u>, Vol. 11, No. 9, pp. 431-437.
- Boyle, G. J. and Kneebone, A. (1973), Laboratory Investigation into the Characteristics of LNG Spills on Water, Evaporation, Spreading and Vapor Dispersion, Shell Research, Ltd., Report to API, March.
- Cermak, J. E. (1971), Laboratory Simulation of the Atmospheric Boundary Layer, <u>AIAA J1.</u>, Vol. 9, No. 9, pp. 1746-1754, September.
- Cermak, J. E. (1975), Applications of Fluid Mechanics to Wind Engineering, A Freeman Scholar Lecture, <u>J. of Fluid Engineering</u>, Vol. 97, Ser. 1, No. 1, pp. 9-38.
- Counihan, J. (1975), Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972, <u>Atmospheric</u> <u>Environment</u>, Vol. 9, pp. 871-905.
- Fay, J. A. (1980), Gravitational Spread and Dilution of Heavy Vapor Clouds, Second International Symposium on Stratified Flows, The Norwegian Institute of Technology, Tondheim, Norway, 24-27 June.
- Halitsky, J. (1969), Validation of Scaling Procedures for Wind Tunnel Model Testing of Diffusion Near Buildings, Geophysical Sciences Laboratory, Report No. TR-69-8, New York University, New York
- Hinze, J. O. (1975), Turbulence, McGraw-Hill, 790 p.
- Hoot, T. G., Meroney, R. N., and Peterka, J. A. (1974), Wind Tunnel Tests of Negatively Buoyant Plumes, Fluid Dynamics and Diffusion Laboratory Report CER73-74TGH-RNM-JAP-13, Colorado State University, Fort Collins, Colorado, October.
- Kline, S. J. (1965), <u>Similitude and Approximation</u> <u>Theory</u>, McGraw-Hill, 229 p.
- Kothari, K. M., Meroney, R. N., and Neff, D. E. (1981), LNG Plume Interaction with Surface Obstacles, Gas Research Institute Report GRI 80/0095.
- Kothari, K. M. and Meroney, R. N. (1979), Building Effects on National Transonic Facility Exhaust Plume, A Technical Report prepared for NASA, Hampton, Virginia, also, Colorado State University Report CER79-80KMK-RNM35.
- Meroney, R. N., Neff, D. E., Cermak, J. E., and Megahed, M. (1977), Dispersion of Vapor from LNG Spills - Simulation in a Meteorological Wind Tunnel, Report prepared for R and D Associates, California, Fluid Dynamics and Diffusion Laboratory Report CER76-77RNM-JEC-DEN-MM57, Colorado State University, Fort Collins, Colorado, 151 p.

- Meroney, R. N., Cermak, J. E., Garrison, J. A., Yang, B. T., and Nayak, S. K. (1974), Wind Tunnel Study of Stack Gas Dispersal at the Avon Lake Power Plant, Fluid Dynamics and Diffusion Laboratory Report CER73-74RNM-JEC-BTY-SKN35, Colorado State University, Fort Collins, Colorado, April.
- Moore, P. A. C. and Rees, W. D, (1981), Forced Dispersion of Gases by Water and Steam, North Western Branch Papers, No. 5, Institution of Thermal Engineers, U. K., pp. 4.1-4.14.
- Neff, D. E. and Meroney, R. N. (1982), The Behavior of LNG Vapor Clouds: Wind-Tunnel Tests on the Modeling of Heavy Plume Dispersion, GRI Report 80/0145.
- Pasquill, F. (1974), Atmospheric Diffusion, D. von Nostrand Co., 429 p.
- Plate, E. J. and Cermak, J. E. (1963), Micro-Meteorological Wind-Tunnel Facility: Description and Characteristics, Fluid Dynamics and Diffusion Laboratory Report CER63-ELP-JEC9, Colorado State University, Fort Collins, Colorado.
- Schlichting, H. (1968), Boundary Layer Theory, McGraw-Hill, New York.
- Skinner, G. T. and Ludwig, G. R. (1978), Physical Modeling of Dispersion in the Atmospheric Boundary Layer, Calspan Advanced Technology Center, Calspan Report No. 201, May.
- Snyder, W. H. (1972), Similarity Criteria for the Application of Fluid Models to the Study of Air Pollution Meteorology, Boundary Layer Meteorology, Vol. 3, No. 1, September.
- van Ulden, A. P. (1974), On the Spreading of a Heavy Gas Released Near the Ground, Loss Prevention and Safety Promotion Seminar, Delft, Netherlands, 6 p.
- Zoric, D. and Sandborn, V. A. (1972), Similarity of Large Reynolds Number Boundary Layers, <u>Boundary-Layer Meteorology</u>, Vol. 2, No. 3, March pp. 326-333.

APPENDIX A WIND TUNNEL DATA OF HSE RUNS 41 AND 46 SIMULATIONS

APPENDIX A - Wind Tunnel Results of HSE Runs 41 and 46

The field trials performed by the (British) Health and Safety Executive and designated by HSE 41 and HSE 46 were modeled at the scale ratio of 1:28.9 at the Environmental Wind Tunnel facility of Colorado State University. Source gas flow rates, downwind water curtain placement, wind speeds and water pressure were varied as shown in Table A-1. Runs 1-5 simulated HSE 41 conditions while 6-13 simulated HSE 46. The source gas used in all runs to simulate the cold CO_2 plume was comprised of 68% CO_2 , 31% Freon-11, and 1% Ethane (used as a tracer), thus having the proper specific gravity value (i.e. 2.35) of cold CO_2 field plume. A.1.0 HSE 41

A plan view of HSE 41 is shown in Figure A-1. Wind directions relative to the source, spray curtain orientation, and sampling locations are shown. Locations of the sampling points and corresponding field transducer designations are detailed in Table A-2. Run 1 had the wind approaching at 45° to the normal of the model spray curtain line which contained four nozzles 10.4 cm above the floor spaced 11.75 cm apart and pointed 45° forward of vertical downward. Upon noting the narrow nature of the plume, the wind direction was moved 7° counter clockwise as shown in Figure A-1. Locations A to 0 indicate points where concentrations were measured only in the wind tunnel, primarily to determine the lateral extent of the plume.

The source used during all thirteen simulations is shown in Figure A-2.

Table A-3 summarizes the data obtained from Runs 1-5 along with a comparison with the values obtained in the field.

Figure A-1. Plan View of HSE Run Number 41

Figure A-2. HSE Source for Wind Tunnel Studies

A.2.0 HSE 46

A plan view of Runs 6-13 is shown in Figure A-3. For Run 6, the wind approached 21° to the normal of the model spray line curtain. The model spray curtain was comprised of 20 nozzles pointed vertically down and spaced 5.66 cm apart. As in HSE 41, the nozzle height (discharge face) was adjusted to 10.4 cm above the tunnel floor. Runs 7-13 were performed with the wind direction changed by 7° as shown in Figure A-3. Details of the sampling point locations and corresponding field transducer designations are given in Table A-4.

Concentration results obtained in the wind tunnel for Runs 6-13 along with the corresponding field values are summarized in Table A-5.

Figure A-4 shows the wind field correlations between averaged field data and wind tunnel data.

Figure A-3. Plan View of HSE Run Number 46

Figure A-4. Average Wind Velocity Profile Comparison Between HSE Field and CSU Wind Tunnel Data

Run Source Gas Number Flow Rate (cc/s)		Set-up Configuration	Wind Speed (cm/s)	Wind Direction (°)	Water Pressure (psig)	
1	87	Figure A-1	63	352	0.00	
2	87	Figure A-1	63	345	0.00	
3	142	Figure A-1	63	345	0.00	
4	142	Figure A-1	63	345	4.50	
5	87	Figure A-1	63	345	4.50	
6	87	Figure A-2	55	323	0.00	
7	130	Figure A-2	55	316	0.00	
8	108	Figure A-2	55	316	0.00	
9	108	Figure A-2	32	316	6.64	
10	87	Figure A-2	32	316	0.00	
11	87	Figure A-2	32	316	6.64	
12	261	Figure A-2	55	316	0.00	
13	261	Figure A-2	32	316	6.64	

Table A-1 Specifications for HSE Runs Numbers 41 and 46

*At 4.33 cm height

Map Location		Мо	de1	Fi	θ	
	Transducer (Field Designation)	R(cm)	Z(cm)	R(m)	Z(m)	(°)
A		114.7	0.00	32.8	0.0	144.3
B		111.4	0.00	31.8	0.0	147.8
C		108.5	0.00	31.0	0.0	151.4
D		106.1	0.00	30.3	0.0	155.3
E		104.1	0.00	29.8	0.0	159.3
F		102.7	0.00	29.4	0.0	163.5
G		101.9	0.00	29.1	0.0	167.7
н		101.6	0.00	29.0	0.0	172.0
I		101.9	0.00	29.1	0.0	176.3
J		102.7	0.00	29.4	0.0	180.5
K		104.1	0.00	29.8	0.0	184.7
L		106.1	0.00	30.3	0.0	188.7
М		108.5	0.00	31.0	0.0	192.6
N		111.4	0.00	31.8	0.0	196.2
0		114.7	0.00	32.8	0.0	199.7
P1	T15	49.6	0.35	14.2	0.1	101.6
P2	T31	49.6	1.73	14.2	0.5	
Q1	T32	94.7	0.35	27.1	0.1	91.5
Q2	T37	94.7	1.73	27.1	0.5	
R1	T34	67.7	0.35	19.3	0.1	
R2	T28	67.7	0.69	19.3	0.2	
R3	125	67.7	1.04	19.3	0.3	100 7
K4	117	67.7	1.73	19.3	0.5	130.7
RS	123	67.7	3.40	19.3	1.0	
KO D7	119	01.1	5.19	19.3	1.5	
R7 R8	T21	67.7	10.38	19.3	3.0	
S 1	T06	62 1	0 69	17.7	0.2	151.4
S2	T08	62.1	1.38	17.7	0.4	10111
T1	T2 9	93.8	0.35	26.8	0.1	
T2	T10	93.8	1.73	26.8	0.5	118.1
T3	T04	93.8	3.46	26.8	1.0	
U1	T18	103.5	0.35	29.6	0.1	115.1
U2	T11	103.5	1.73	29.6	0.5	
V1	T3 3	83.1	0.35	23.7	0.1	131.5
V2	T3 5	83.1	1.73	23.7	0.5	
W	T01	92.1	1.04	26.3	0.3	146.3

Table A-2 Sampling Locations for HSE Run Number 41

NOTE: R is radial distance of sampler from source location.

Z is vertical distance of sampler from ground.

 $\boldsymbol{\theta}$ is angle from source to sampler location measured from north.

Table A-3						
Concentration	Data	for	HSE	Run	Number	41

Map Location		R	un Numbe	Field Transducer Data			
	1	2	3	4	5	W/O Spray	W/Spray
A	0.00	0.00	0.02	0.00	0.00		
в	0.00	0.06	0.15	0.00	0.00		
С	0.05	0.39	0.92	0.02	0.00		
D	0.00	0.98	1.34	0.06	0.00		
E	0.35	2.70	2.85	0.12	0.00		
F	3.61	2.52	3.62	0.51	0.51		
G	2.55	3.90	4.99	0.24	0.33		
H	1.49	3.68	4.23	0.23	0.00		
I	3.37	0.86	1.82	0.54	0.59		
J	1.69	0.11	0.24	0.59	0.68		
K	0.86	0.00	0.03	0.70	0.77		
L	0.33	0.00	0.00	0.77	0.74		
M	0.11	0.00	0.00	0.67	0.51		
N	0.08	0.00	0.00	0.36	0.00		
0	0.00	0.00	0.00	0.05	0.00		
P1	0.00	0.00	0.00	0.00	0.00	2.7	0.22
P2							
Q1	0.00	0.00	0.00	0.00	0.00	0.0	0.30
Q2							
R1	0.00	0.00	0.00	0.00	0.00	3.3	
R2	0.00	0.00	0.00	0.00	0.00	3.7	0.60
R3	0.00	0.00	0.00	0.00	0.00	2.1	0.80
R4	0.00	0.00	0.00	0.00	0.00	0.8	0.00
R5	0.00	0.00	0.00	0.00	0.00	0.5	0.60
R6	0.00	0.00	0.00	0.00	0.00	0.0	0.00
R7	0.00	0.00	0.00	0.00	0.00	0.0	0.00
R8	0.00	0.00	0.00	0.00	0.00	0.0	0.30
S1	0.06	1.73	2.11	0.05	0.00	1.6	0.50
S2	0.11	1.16	1.64	0.09	0.00	1.0	0.50
T1	0.00	0.00	0.00	0.00	0.00	1.7	
T2	0.00	0.00	0.00	0.00	0.00	0.9	0.20
U1	0.00	0.00	0.00	0.00	0.00	1.3	0.60
U2							
V1	0.00	0.00	0.00	0.00	0.00	3.0	0.90
V2							
W	0.00	0.00	0.00	0.00	0.00	1.2	1.70

NOTE: Concentration data recorded as mole percent.

Map Location		Mo	del	Fi	θ	
	Transducer (Field Designation)	R(cm)	Z(cm)	R(m)	Z(m)	(°)
A		114.7	0.0	32.8	0.0	115.3
В		111.4	0.0	31.8	0.0	118.8
С		108.5	0.0	31.0	0.0	122.4
D		106.1	0.0	30.3	0.0	126.3
Е		104.1	0.0	29.8	0.0	130.3
F		102.7	0.0	29.4	0.0	134.5
G		101.9	0.0	29.1	0.0	138.7
H		101.6	0.0	29.0	0.0	143.0
I		101.9	0.0	29.1	0.0	147.3
J		102.7	0.0	29.4	0.0	151.5
K		104.1	0.0	29.8	0.0	155.7
L		106.1	0.0	30.3	0.0	159.7
М		108.5	0.0	31.0	0.0	163.6
N		111.4	0.0	31.8	0.0	167.2
0		114.7	0.0	32.8	0.0	170.7
P'	T29	13.3	3.5	3.8	1.0	59.6
Q'	T10	7.6	1.7	2.2	0.5	106.2
R′	T19	13.7	0.3	3.9	0.1	185.0
S1 ′	T05	36.3	0.3	10.4	0.1	86.7
S2 ′	T3 5	36.3	1.7	10.4	0.5	
T1 ′	T08	40.7	0.3	11.6	0.1	117.4
T2 '	T11	40.7	1.7	11.6	0.5	
T3 '	T33	40.7	3.5	11.6	1.0	
T4 '	T44	40.7	4.2	11.6	1.2	
υ'	T17	53.6	0.3	15.3	0.1	137.1
V1 '	T04	64.0	0.3	18.3	0.1	
V2 ′	T06	64.0	0.7	18.3	0.2	
V3 ′	Т03	64.0	1.0	18.3	0.3	
V4 ′	T21	64.0	1.7	18.3	0.5	116.8
V5 '	T18	64.0	2.4	18.3	0.7	
V6 '	T27	64.0	3.5	18.3	1.0	
V7 '	T23	64.0	10.4	18.3	3.0	
W1 '	T37	86.7	0.7	24.8	0.2	
W2 '	T28	86.7	1.7	24.8	0.5	116.7
W3 '	T3 2	86.7	4.2	24.8	1.2	
W4 '	T31	86.7	6.9	24.8	2.0	

Table A-4 Sampling Locations for HSE Run Number 46

NOTE: R is radial distance of sampler from source location. Z is vertical distance of sampler from ground.

 θ is angle from source to sampler location measured from north.

Мар		Run Number							Field Transducer Data		
Location	6	7	8	9	10	11	12	13	W/O Spray	\/Spray	
A	0.00	0.74	0.21	0.77	2.73	0.44					
В	0.00	2.09	1.28	0.77	2.55	0.57					
С	0.00	2.85	2.12	0.78	2.17	0.56					
D	0.00	3.12	3.06	1.12	2.61	0.85					
E	0.17	3.00	2.66	1.09	2.90	0.92					
F	1.33	3.59	3.18	1.09	3.58	1.01					
G	2.51	3.00	2.66	0.97	3.86	0.97					
H	3.38	2.88	2.66	0.67	4.33	0.76					
I	3.92	2.49	2.09	0.67	4.29	0.57					
J	3.56	1.42	0.48	0.62	4.03	0.54					
ĸ	2,91	0.09	0.00	0.59	3.68	0.47					
L	2 46	0.06	0.00	0 48	-	0.53					
M	1.87	0.00	0.00	0.10	3 00	0.41					
N	0.26	0.00	0.00	0.14	1 07	0.79					
0	0.00	0.00	0.00	0.14	1 15	0.30					
0 D'	0.00	0.00	0.00	0.14	1.15	0.50					
0'											
υ Γ.	0.26	0.02	0.00	_	0 60	6 91	1 76	5 16	11 7	12 0	
к	0.30	0.03	0.00	-	9.00	0.01	1.70	3.40	11.7	13.8	
S1 '	0.00	0.00	0.00	1.00	7.80	0.63	0.08	2.24	4.8	1.9	
S2 '											
T1 '	0.05	5.91	6.52	1.70	6.27	0.92	4.40	3.04	5.5	1.2	
T2 '	0.00	4.05	4.54	1.07	2.78	0.70	3.13	2.58	1.0	0.8	
T3 '	0.00	4.36	4.21	0.77	0.53	0.48	1.85	2.15	0.6	1.4	
T4 '	0.00	4.02	3.41	0.79	0.27	0.41	1.57	1.75	0.2	0.5	
U'	4.71	5.56	5.56	1.36	6.32	1.22	4.24	2.48	4.7	1.6	
W1 /	0.00	4 00	5 3 2	0 70	5 08	0.74	3 40	2.36	2.5	0.0	
V2 '	0.00	4.70	A 83	1 24	A 37	0.74	3 04	2.30	3.9	1 2	
V2 /	0.00	4.76	4.05	1 10	3 78	0.50	2 76	2.27	2.3	0.7	
VJ VA I	0.00	2 71	3 06	0.80	1 01	0.50	2.10	1 01	1.6	0.6	
VEI	0.00	3.71	3.00	0.05	0.01	0.50	2.43	1 75	0.5	0.5	
VS VCI	0.00	3.20	2.21	0.79	0.91	0 40	2.42	1.15	0.5	0.3	
VO ·	0.00	2.45	1.30	0.59	0.29	0.42	2.34	1.40	0.2	0.2	
VI.	0.00	0.05	0.00	0.08	0.00	0.14	0.17	0.30	0.0	0.2	
W1'	0.00	3.70	3.01	1.00	3.71	0.67	2.61	1.90	2.9	1.3	
W2 '	0.00	2.46	1.75	0.77	1.76	0.54	2.43	1.72	1.1	0.6	
W3 '	0.00	0.59	0.14	0.47	0.23	0.39	2.20	1.36	0.3	0.6	
W4 '	0.00	0.14	0.00	0.30	0.15	0.32	1.45	0.94	0.2	0.6	

Table A-5 Concentration Data for HSE Run Number 46

NOTE: Concentration data recorded as mole percent.

APPENDIX B WIND TUNNEL DATA OF SPRAY CURTAIN RUNS Appendix B - Wind Tunnel Results of Water Spray Curtain Simulations

The following is a compilation of the plume concentration at the locations shown on the grid map (Figure 5) specific to runs 1-153. The concentrations measured in the wind tunnel are also converted to field equivalent concentrations. Table B-1 is a summary of the parameters corresponding to each run. The information provided in the table includes the run number, the dike height, presence of a tank on the area source (none, small, medium or large), the spray configuration as referenced to Figure B-1, the direction of the sprays, the spacing between nozzles (L_n), the normal distance from the spray curtains to the dike wall (L_s), the height of the spray nozzle (H_s), the spray nozzle type, wind velocity used in the tunnel as well as the field equivalent velocity, the model and field source gas flow rates, and the water pressure used during the simulations.

The tanks that were used during the latter runs are described by Figure B-2. Typical average wind velocity and local turbulence intensities are summarized in Figures B-3 thru B-6.

As previously noted, the runs summarized in this section involved plume releases with variations in spray geometries, spray pressures, source flow rate, wind velocities, and with or without a tank present on the area source.

Figure B-1. Spray Configuration Designations

Figure B-1 (Con't). Spray Configuration Designations

Figure B-1 (Con't). Spray Configuration Designations

Figure B-2. Specifications of Tanks Used During Spray Simulations

Figure B-3. Wind Velocity and Local Turbulence Intensities for \overline{u} at 5 cm = 22 cm/s

Figure B-4. Wind Velocity and Local Turbulence Intensities for \overline{u} at 5 cm = 30 cm/s

Figure B-5. Wind Velocity and Local Turbulence Intensities for \overline{u} at 5 cm = 45 cm/s

Figure B-6. Wind Velocity and Local Turbulence Intensities for \overline{u} at 5 cm = 60 cm/s

	Table B-1	
Run	Specifications	

									Fie	1d		Mode1	
	Dike								Wind		Wind		
Run	Height		Spray	Spray	L_	L	H	Nozzle	Velocity	Q	Velocity	Q_	ΔP
Number	(cm)	Tank	Configuration	Direction	n (-=)	(am)	(am)	Type	(= (=)	(-3^{P})	(am/a)		(nois)
					(Cm)	(Cm)	(cm)		(<u>m/s</u> /	(ш/ѕ/	(CH/S)	(00/5/	(bark)
1	4	No								101 6	22	1016	_
1	4	NO		-	_			-	2.2	101.5	50	1015	
2	4	NO N-		-	-	-	_	_	5.0	101.5	30	1015	_
3	4	NO	1	-		1. 7	14.0		8.0	101.5	20	1015	6 20
4	4	NO	A	Down	29.8	14.7	14.2	A	2.2	101.5	22	1015	5.20
2	4	NO	A	Down	29.8	14.7	14.2	A	5.0	181.5	30	1015	5.20
6	4	NO	A	Down	29.8	14.7	14.2	A	8.0	181.5	80	1812	5.20
1	4	No	-	_	-			-	2.2	89.8	22	898	- -
8	4	No	A	Down	29.8	14.7	14.2	A	2.2	89.8	22	898	5.20
9	4	No		_			-		2.2	357.4	22	3574	-
10	4	No	A	Down	29.8	14.7	14.2	A	2.2	357.4	22	3574	5.20
11	4	No	В	Down	14.9	14.7	14.2	A	2.2	181.5	22	1815	5.20
12	4	No	С	Down	7.5	14.7	14.2	A	2.2	181.5	22	1815	5.20
13	4	No	С	Down	7.5	14.7	14.2	Α	2.2	357.4	22	3574	5.20
14	4	No	D	Down	14.9	14.7	14.2	A	2.2	181.5	22	1815	5.20
15	4	No	D	Down	14.9	14.7	14.2	A	5.0	181.5	50	1815	5.20
16	4	No	D	Down	14.9	14.7	14.2	Α	8.0	181.5	80	1815	5.20
17	4	No	E	Down	14.9	14.7	14.2	A	2.2	181.5	22	1815	5.20
18	4	No	E	Down	14.9	14.7	14.2	A	5.0	181.5	50	1815	5.20
19	4	No	E	Down	14.9	14.7	14.2	A	8.0	181.5	80	1815	5.20
20	4	No	F	Down	14.9	14.7	14.2	A	2.2	181.5	22	1815	5.20
21	4	No	F	Down	14.9	14.7	14.2	A	5.0	181.5	50	1815	5.20
22	4	No	F	Down	14.9	14.7	14.2	A	8.0	181.5	80	1815	5.20
23	4	No	G	Down	14.9	14.7	14.2	A	2.2	181.5	22	1815	5.20
24	4	No	G	Down	14 9	14.7	14.2	A	5.0	181.5	50	1815	5.20
25	4	No	G	Down	14 9	14 7	14 2	A	8.0	181.5	80	1815	5.20
26	4	No	4	Πn	20.8	14 7	0.0	A	2.2	181 5	2.2	1815	5.00
20	4	No	A .	Up	20.9	14 7	0.0	Å	5.0	191 5	50	1815	5 00
21	7	No	A .	Up Tr	29.0	14.7	0.0	A .	2.0	101.5	80	1815	5.00
20	4	No	A	Up Tr	27.0	14.7	0.0	A .	2.0	20 8	22	808	5.00
29	4	NO N-	A	Up We	29.0	14.7	0.0	A	2.2	257 4	22	2574	5.00
30	4	NO	A	Up	29.0	14.7	0.0	A	2.2	JJ/.4	22	1016	5.00
31	4	NO	в	Up	14.9	14.7	0.0	A	2.2	101.5	22	1015	5.00
32	4	No	C	Up	1.5	14.7	0.0	A	2.2	181.5	22	1813	5.00
33	4	No	С	Up	7.5	14.7	0.0	A	2.2	357.4	22	35/4	5.00
34	4	No	D	Up	14.9	14.7	0.0	A	2.2	181.5	22	1815	5.00
35	4	No	D	Up	14.9	14.7	0.0	A	5.0	181.5	50	1815	5.00
36	4	No	D	Up	14.9	14.7	0.0	A	8.0	181.5	80	1815	5.00
37	4	No	E	Up	14.9	14.7	0.0	A	2.2	181.5	22	1815	5.00
38	4	No	E	Up	14.9	14.7	0.0	A	5.0	181.5	50	1815	5.00
39	4	No	E	Up	14.9	14.7	0.0	A	8.0	181.5	80	1815	5.00
40	4	No	F	Up	14.9	14.7	0.0	A	2.2	181.5	22	1815	5.00

									Fie	1d		Mode1	
	Dike								Wind		Wind		
Run	Height		Spray	Spray	L	L	H	Nozzle	Velocity	Q	Velocity	Q	ΔP
Number	(cm)	Tank	Configuration	Direction	(cm)	(cm)	(cm)	Туре	(m/s)	(m ³ /s)	(cm/s)	(cc/s)	(psig)
			_	_						101 E	50	1015	5 00
41	4	No	F	Up	14.9	14.7	0.0	A	5.0	181.5	50	1815	5.00
42	4	No	F	Up	14.9	14.7	0.0	A	8.0	181.5	80	1015	5.00
43	4	No	G	Up	14.9	14.7	0.0	A	2.2	181.5	22	1015	5.00
44	4	No	G	Up	14.9	14.7	0.0	A	5.0	101 5	30	1015	5.00
45	4	No	G	Up	14.9	14.7	0.0	A	8.0	101.5	30	1015	5.00
46	4	No	В	Up/Down	14.9	14.7	14.2	A	2.2	101.5	22	1015	5.00
47	4	NO	-	-	14.0	14 7	14.0		2.2	101.5	22	1915	5 00
48	4	NO	В	Down	14.9	14./	14.2	A	2.2	101.5	22	1915	5.00
49	0	NO	-	_			2		2.2	101.5	22	1915	-
50	0	NO	-	-	14.0	14 7	14.0		2.2	101.5	22	1915	0 00
51	4	NO	В	Down	14.9	14.7	14.2	A	2.2	101.5	22	1915	10 30
52	4	NO	В	DOWI	14.9	14.7	14.2	A	2.2	101.5	22	1915	10 10
54	4	NO	В	Up	14.9	14.7	10.0	A	5 6 25-	129 1	22	6217	21 50
59	4	No	A	Down	29.8	14.7	12.1	D	.5 @ .25m	120.1	22	6217	21.50
60	4	No	A	Down	29.8	14.7	24.4	Е	.5 @ .25m	130.1	22	6217	21.50
61	4	No	-	-		-		77		100.0	20	1000	_
62	4	NO	-	-	14.0	14 7	14.0		3.0	100.0	30	1000	4 72
63	4	NO	1	Down	14.9	14.7	14.2	A	3.0	100.0	30	1000	18 90
64	4	NO	J	Down	14.9	14.7	14.2	A .	3.0	100.0	30	1000	4 72
65	4	NO	J	Down	14.9	4.9	14.2	A .	3.0	100.0	30	1000	18 90
00	4	NO	Ţ	Down	14.9	4.9	14.2	A .	3.0	100.0	30	1000	4 72
67	4	NO	J	Down	14.9	21.0	14.2	Å	3.0	100.0	30	1000	18.90
08	4	NO	J	Down	22 4	14 7	22 0	G	3.0	100.0	30	1000	5.00
09	4	NO	J	Down	22.4	A 0	22.0	G	3.0	100.0	30	1000	5.00
70	4	NO	J	$D_{0} = \pi (45^{\circ})$	22.4	21 0	22.0	G	3.0	100.0	30	1000	5.00
71	4	NO	J	DOWI (45)	14 0	14 7	0.0	۵ ۵	3.0	100.0	30	1000	4.72
72	4	No	J	Up Up	14.9	14 7	0.0	Å	3.0	100.0	30	1000	18.90
75	4	No	т	Πn	14.9	4 9	0.0	A	3.0	100.0	30	1000	4.72
74	4	No	т	Πp	14.9	4.9	0.0	A	3.0	100.0	30	1000	18.90
75	4	No	т	Πp	22 4	14.7	0.0	G	3.0	100.0	30	1000	5.00
70	4	No	J	Up.	22.4	4.9	0.0	G	3.0	100.0	30	1000	5.00
79	4	No	Ţ	Down (45°)	14.9	21.0	14.2	Ă	3.0	100.0	30	1000	10.00
70	4	No	-	-		-	-	-	3.0	100.0	30	1000	-
0U 91	4	No	_	_	-	-	-	_	2.2	100.0	22	1000	-
82	4	No	P	Down	14 9	14 7	14.2	A	2.2	100.0	22	1000	4.70
92	4	No	B	Down	14.9	14.7	14.2	Ă	3.0	100.0	30	1000	4.70
84	7	No	R R	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	9.80
04	4	No	R R	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	18.90
63	4	No	ц	Down (45°)	14 0	21.0	14.2	A	3.0	100.0	30	1000	18.90
87	4	No	K	Down (45°)	14.9	21.0	14.2	A	2.2	100.0	22	1000	9.80
07	4	NO	<u>R</u>	DOTA (75 /								**	

Table B-1 Run Specifications (Con't)

									Fie	1d		Mode1	
	Dike								Wind		Wind		
Run	Height		Spray	Spray	L	L	H	Nozzle	Velocity	Q	Velocity	Q	ΔP
Number	(cm)	Tank	Configuration	Direction	(cm)	(cm)	(cm)	Type	(m/s)	(m^3/s)	(cm/s)	(cc/s)	(psig)
88	4	No	K	Down (45°)	14.9	21.0	14.2	A	2.2	100.0	22	1000	18.90
89	4	No	В	Up	14.9	14.7	0.0	A	2.2	100.0	22	1000	18.90
90	4	No	В	Up	14.9	14.7	0.0	A	3.0	100.0	30	1000	18.90
91	4	No	-	100	-	—	—	-	2.2	216.6	22	2166	-
92	4	No	K	Down (45°)	14.9	21.0	14.2	A	4.5	100.0	45	1000	
93	4	No	K	Down (45°)	14.9	21.0	14.2	A	4.5	100.0	45	1000	9.80
94	4	No	K	Down (45°)	14.9	21.0	14.2	A	4.5	100.0	45	1000	18.90
95	4	No		-	-	-	-	-	6.0	100.0	60	1000	-
96	4	No	K	Down (45°)	14.9	21.0	14.2	A	6.0	100.0	60	1000	9.80
97	4	No	K	Down (45°)	14.9	21.0	14.2	Α	6.0	100.0	60	1000	18.90
98	4	No	-	-	17.5	-	-	-	8.0	100.0	80	1000	-
99	4	No	K	Down (45°)	14.9	21.0	14.2	Α	8.0	100.0	80	1000	2.80
100	4	No	K	Down (45°)	14.9	21.0	14.2	Α	8.0	100.0	80	1000	18.90
101	4	No	В	Up	14.9	14.7	0.0	A	4.5	100.0	45	1000	18.90
102	4	No	В	Up	14.9	14.7	0.0	A	6.0	100.0	60	1000	18.90
103	4	No	В	Up	14.9	14.7	0.0	Α	8.0	100.0	80	1000	18.90
104	4	No	-	-	-		-	-	2.2	181.5	22	1815	_
106	4	No	H	Down	14.9	21.0	14.2	Α	3.0	100.0	30	1000	9.80
107	4	No	L	Down	7.5	13.2	14.2	Α	3.0	100.0	30	1000	4.70
108	4	No	В	Up	14.9	14.7	0.0	Α	3.0	100.0	30	1000	δ.70
109	4	No	В	Up	14.9	14.7	0.0	A	3.0	100.0	30	1000	9.70
110	4	No	В	Up	14.9	14.7	0.0	A	3.0	100.0	30	1000	13.60
111	4	No	В	Up	14.9	14.7	0.0	A	3.0	100.0	30	1000	19.10
112	4	No	В	Up	14.9	14.7	0.0	A	3.0	100.0	30	1000	26.90
113	4	S	-	_	-	-	-		3.0	100.0	30	1000	
114	4	S	В	Up	14.9	14.7	0.0	A	3.0	100.0	30	1000	19.10
115	4	No	_	_	-	-			3.0	50.0	30	500	-
116	4	No	В	Ūp	14.9	14.7	0.0	A	3.0	50.0	30	500	19.10
117	4	No	-	_	-	-	-		3.0	70.7	30	707	_
118	4	No	В	Up	14.9	14.7	0.0	A	3.0	70.7	30	707	19.10
119	4	No	-	_	-	-	-	-	3.0	141.4	30	1414	-
120	4	No	В	Up	14.9	14.7	0.0	A	3.0	141.4	30	1414	19.10
121	4	No	-	-	-	-	-	-	3.0	200.0	30	2000	-
122	4	No	В	Up	14.9	14.7	0.0	A	3.0	200.0	30	2000	19.10
123	8	М	-	-	-	-	_	_	3.0	100.0	30	1000	_
124	8	М	В	Un	14.9	14.7	0.0	A	3.0	100.0	30	1000	19.10
125	16	L	_	-	_	-	_	_	3.0	100.0	30	1000	_
126	16	L	В	Πp	14.9	14.7	0.0	A	3.0	100.0	30	1000	19.10
127	4	No	B	Un	14.9	14.7	0.0	I	3.0	100.0	30	1000	7.40
128	4	No	B	Un	14.9	14.7	0.0	I	3.0	100.0	30	1000	10.30
129	4	No	B	Un	14.9	14.7	0.0	ī	3.0	100.0	30	1000	14.50
	-		20	0 P	~ /	~		-					

Table B-1 Run Specifications (Con't)

									Fie	14		Model	
	Dike								Wind		Wind		
Run	Height		Spray	Spray	L	L	H	Nozzle	Velocity	Q	Velocity	Q_	ΔP
Number	(cm)	Tank	Configuration	Direction	(cm)	(cm)	(cm)	Туре	(m/s)	(m ³ /s)	(cm/s)	(cc/s)	(psig)
130	4	No	в	Up	14.9	14.7	0.0	I	3.0	100.0	30	1000	20.50
131	4	No	A	Up	29.8	14.7	0.0	I	3.0	100.0	30	1000	28.90
132	4	No	A	Up	29.8	14.7	0.0	I	3.0	100.0	30	1000	40.8u
133	4	No	Α	Up	29.8	14.7	0.0	I	3.0	100.0	30	1000	57.50
134	4	No	K	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	6.90
135	4	No	K	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	9.70
136	4	No	K	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	13.40
137	4	No	K	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	18.90
138	4	No	K	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	26.70
139	4	S	K	Down (45°)	14.9	21.0	14.2	Α	3.0	100.0	30	1000	18.90
140	4	No	K	Down (45°)	14.9	21.0	14.2	A	3.0	50.0	30	500	18.9u
141	4	No	K	Down (45°)	14.9	21.0	14.2	Α	3.0	70.7	30	707	18.90
142	4	No	K	Down (45°)	14.9	21.0	14.2	A	3.0	141.4	30	1414	18.90
143	4	No	K	Down (45°)	14.9	21.0	14.2	A	3.0	200.0	30	2000	18.90
144	8	M	K	Down (45°)	14.9	21.0	14.2	Α	3.0	100.0	30	1000	18.90
145	16	L	K	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	18.9u
146	4	No	K	Down (45°)	14.9	18.2	10.2	I	3.0	100.0	30	1000	7.20
147	4	No	K	Down (45°)	14.9	18.2	10.2	I	3.0	100.0	30	1000	10.10
148	4	No	K	Down (45°)	14.9	18.2	10.2	I	3.0	100.0	30	1000	14.30
149	4	No	K	Down (45°)	14.9	18.2	10.2	I	3.0	100.0	30	1000	20.30
150	4	No	I	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	18.90
151	4	No	I	Down (45°)	14.9	18.2	10.2	I	3.0	100.0	30	1000	10.10
152	4	No	H	Down (45°)	14.9	21.0	14.2	A	3.0	100.0	30	1000	18.90
153	4	No	н	Down (45°)	22.4	34.0	24.0	Н	3.0	100.0	30	1000	29.60

Table B-1 Run Specifications (Con't)

Rl	JN	1	NI	JM	4 F	BE	R	i e	-			1							C	: C	N	F	I	GI	LH	R	A 1	1)N			4	_				
		WETET					S W	FCV	RRLIE	AADTL	YTWYO	E	RI	A2T	T2Y	18 E	81 0	5	- (-) - 2	0 1/ 2.	90 S 2		C 8	/	S A	EGTE		/ (5 /	EM	0	; (M)	(M))
		S	A !			Ī			С	0	NP (MCEM	EERD	ANCD	NTEE	RNL	A 1 T	r 1		10	i	9		P	NPR		ENC		IT P	1	'I :)	o	N				
					*557370123+557390123+557390123+5								18103620155 07092527203 000656217 01		000497215916839100256831717400099462403004											34223456666 765432144 4333221 2	382394435992 00434278318 001525757 05										

RUN NUMBER	- 2	CONFI	GURATION	• -
NO WATER SP MODEL FLOW PROTOTYPE F MODEL VELOC PROTOTYPE V	RAY RATE = 1 LOW RATE ITY =50. FLOCITY	815.0 CC 90. 0 CM/SEC 5.0 M	/SEC 8 GM/(SE AT 5 CM /SEC AT	C(M)(M)) 5 M
SAMPLE POINT	MEAN CONCENTR PERCEN (MODEL	ATION C T) (MEAN ONCENTRA PERCENT PROTOTYP	TION E)
45678901234567890123456789012345678901234	0000007000882330400405333004783020647621310 1111111111111111111111111111111111		000000800274755810030657108578150154985820 232323333 1 60941 194 1 858325 0	

RUN	NUM	8	E	R	8		* 3	J					ł	CC)N	F	T	G	U	R	۲ ۵	1	0	N			-	-			
NO MODI PRO MODI PRO	WATE EL F Toty EL V Toty	RLPUP	DELE		RRLIE	AAOTL	YTWYD	E		10.	8	15		0	91 7 S	C D E	C8CY	1	S A S	EGTE		γ (5 Α	SCT	EM	C 5	(M)	(M	1))
:	SAMP POI	N	ET		С	0	NP(MCEM		RNL	A T)	Ť	I	01	ł		C (D	NPR	MCED	ERC		PNY	ATP	TE	I)	01	N			
	456789012345678901234567890123456789012345								466643 651 0443200043333210002													0000175691201577950036397054630004841822005									

RUN	NUM	BER	=	4			CO	INF	I	GL	JR	۸.	ΓI	ON			A-	-D01	٧N	
DOWI WINI PRO PRO PRO	NWAR D DI EL F TOTY EL V TOTY	D W REC LOW PE ELO PE	ATE RA FLO CIT VEL		18 E	S F 15	RA .0 .0 .0	9(9(2	NC CM		ZEGTE		E S / (5 A	SECT	EF C	R (M M	S :	[De (m))	•
ļ	SAMP POI	LENT	CO		RA NT	TI	ON.		с (M C E O	E FI		R A NT YP	T) E	I C)	N			
	456789012345678901234567890123456789012345											838226156785904 6492919073 087744840 4	010641007412994410114705246481096794842007	第二百一百百百百百百二, 医甲基苯基 化二乙基 化合合物 化合合物 化合合物 医白垩石 化乙基基苯基						

Ň

RI	UN	N	U	M	ß	E	R		-			5					ļ	C	01	NF	I	G	U	R	A 1	r :	1 ()N			į	A-	·D	01	٧N		
			D D T	RIFYVY	DRLPEP	EOELE	WCW	AT FCV	TIRLIE	EOAOTL	RNTWYO	E	R		81 0	S 15	P · C	R 0 5	A '	9 9 5 5 0	NCOCM	n/8	ZSAS	ZEGTE		5		PEM	E C 5	R	M	s :)	[]) E)	4	
		SA	M	PI	LN	E			С	0	NP(MCEM	EERO		A A A A A A A A A A A A A A A A A A A	Т	I	01	N		с (D	NPP	MCEO	EERT			A	T	T)	0	N					
			111111111112222222222222222222222222222	456789012345678901234567890123456789012345								1111111	2003273 3162 6731 76666553 5												5449779 9565 6682 74552382 3		1111754336949201630637443369563017387332404										

RUN	NUM	BEI	R		6					С	0	NF	I	G	U	RA	T	I	DN	1		A	-DC	W	١	
DOWN WINI PROT MODI PROT	NWAR DDI EL F TOTY EL V TOTY			TE ID RA LO IT EL	R N TE W Y OC	SI R/	R O T B O	AY 18 E	SF 15	R C M		Y 90 SE	NC SC M		Z I SI		E /5	S (P SE C M	El C	C M	S)	ID (M	E))	-	4
9	SAMP POI	L E N T		CO	NCEM	EIRO		R A NT	T	[0	IN		с (O P	NOP		ANCO	NTFT	R A NT YP	T: E	10	N				
	456789012345678901234567890123456789012345					5m64m m4 m4m2 mmmmmN1 2	000111111250548470784111165536094880032409											100233222635061890410422222095188776691015								

RUN	NUM	BE	R				7					3	CO	N	= 1	G	U	R	A '	1	1	'N	h	8	-	-			
NO PRO MODE PRO	ATE L F IOTY L V IOTY				AADTL	Y TI V Y	R	A2T	TE 2 G	8	9	8 C	.0 M / 2 .	4		9	SAS	EGTE	C M	/ (5 /		SE	C 5	(M) M		M))
9	POI	LĮ	Ē	С	0	NP		ANCD		AT)	T	I	DN	l	0	: D	NPR	MCED	FERT			NTP	T F	I (10	4			
	456789012345678901234567890123456789012345								000024608799218000476436713100081309700008									12 1233444 443211 22 121211 1	0 95940051332 031499377550000419144700004										

RUN NUMBER	= 8	CONFIGURATION	= A-DOWN
DOWNWARD W WIND DIREC Model Flow Prototype Model Velo Prototype	ATER SPRAY TION = 0, SP RATE = 898 FLOW RATE = CITY =22.0 C VELOCITY =	RAY NOZZLES P 0 CC/SEC 44.9 GM/(SE M/SEC AT 5 CM 2.2 M/SEC AT	ER SIDE = 4 C(M)(M)) 5 M
SAMPLE POINT	MEAN CONCENTRATI PERCENT (MODEL)	MEAN CONCENTRA PERCENT (PROTOTYP	TION F)
4567890123456789012345678901234567890123456789012345	2113 4938885076310377605400920091604576105 3233777700.00000000000000000000000000000	5348 8854775592511720634239676061067652437102 1002	

RUN	NUM	RE	R	8		9						CC	IN	F	0	:1)	R	A 1	I	01	1			_			
NO PRO MOD PRO	WATE EL F TDTY EL V TOTY		S F			E	PA 2 I T	T 2 Y	35 E	57 •	4 . C	0 17 M/ 2	852	.7 .7	./	SAS	FGTE		, (,	SEC		5	M)	(M))
	SAMP POI	LENI		CI	P (MICEM		NTEE	R / N 1 L 1	A T	I	01	I	0		NPR	M CEO	EERT	NTET	PINT		TI E)	D	N			
	456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345					33134422334556 5543322331 3323221 2		1979050545865241003060039376400666609299001									65356645567778 7765554662 5555442 4	158498735009916 096794141091 094233285 1	494875403943902200886296570921094061161119								

RUN NUMBER	= 10	CONFIGURATION	A-DOWN
DOWNWARD W WIND DIREC MODEL FLOW PROTOTYPE MODEL VELO PROTOTYPE	ATER SPRAY FION = 0, SP RATE = 3574. FLOW RATE = CITY =22.0 C VELOCITY =	RAY NOZZLES PI O CC/SEC 178.7 GM/(SEC M/SEC AT 5 CM 2.2 M/SEC AT 5	ER SIDE = 4 C(M)(M)) 5 M
SAMPLE POINT	MEAN CONCENTRATI PERCENT (MODEL)	MEAN ON CONCENTRA PERCENT (PROTOTYP)	TION F)
4567890123455678901234556789012345567890123455678901234556789001234556789001234556789001234556789001234556789001234556789001234556789001234556789001234556789001234556789001234556789001234556789000000000000000000000000000000000000	19.699723601225592200066213675000086688689104 3211222234 322221860.55000086688689104 13.67.5000086688689104	727101964776886400007998941961116601878205 92655543335555551 062041741162 066670927 9 955544334422 43333227 9	

	= 11	CONFIGURATION	B-DOWN
DEL FLOW OTOTYPE DEL VELO OTOTYPE	RATE = 1815. FLOW RATE = CITY =22.0 C VELOCITY =	CC/SEC 90.8 GM/(SEC M/SEC AT 5 CM 2.2 M/SEC AT	C(M)(M)) 5 M
SAMPLE	MEAN CONCENTRATI PERCENT (MODEL)	MEAN ON CONCENTRA PERCENT (PROTOTYP	TION E)
4 5 6 7 8	3 • 4 3 2 2 • 1 3 • • 1 4 • • 5	8.0 6.2 6.1 7.9 10.6	
10 11 12 13 14 15	3.4 3.0 2.8 11.2 10.3 9.6	8 • • 8 7 • • 8 7 • • 8 25 • • 1 22 • • •	
16 17 18 19 20	11.7 11.7 6.1 1.4 .1	26.4 26.4 15.0 3.8 .2	
234567	15.7 14.4 10.9 3.0 4.7	33.5 31.3 24.9 11.7	
2290	5.7 10.1 9.7 4.1 .1	14.0 23.2 22.5 10.4 1.0	
33567 3397 399	0 9 • 4 8 • 8 8 • 5 9 • 0 7 • 1	•1 21•0 20•7 20•1 21•2 17•1	
40 41 42 43 44	6.5 4.6 1.9 .3 .0 6.3	15.9 11.6 4.9 •7 •0 15.3	

RUN	N	JM	B	E	R		1	2					CC	JN	IF	I	G	U	RA	T	I	ON		8	C)-0	OW	N		
DOW WIN PRO MOD PRO			DRLPWP	EOELE		F	RNTWYD	E	RO T2Y	A) 18 E	S S I	Р 5. С	R /		COE	NC.CM		ZSAS		E / 5	S (A	P SECM T	E C 5	R (M	S 1) 1	;I) ()	DE M)	;	1:	3
	SAI	4 P 1 C	N	Ę		(P (NTEE		T	I	01	4		c (D	NIP		ANCO	NTET	R A N T Y P	T)	JN	ł				
		456789012345678901232222234567890123455678901234556789							02234342290686294206333369389641099627618101												584115623526020150377919079212098343182201									

RU	N N	IU	M	B	E	R		*		1	3							()N	F	I	G	U	R	۸	т	I	01	I			C)	D	OW	N		
DO WI PRO PRO		D D D T T	VALLA	DRLPEP	EOELE	WCW	AT FCV	TIRLIE	EDAOTL	RNTWYD	E	S = P = I	P A 2 T	R T Z Y	A) 35 E (r 57 57	S 1 74			752	C 8 E	NC,CE		ZSAS	ZEGTE	LCM	E /5	S (A	F S E C T		: R	M	5	I (D	E)	=	1	13
	SA	M	PI	L	E			¢	0	NPI	MCEM	EERO	A N C D	NTEF			T	[(7	Ē		с (n P	ZPP	MCED	EEPT	NC	NTET	R A NT		I]	a	IN	ĺ					
		111111111112222222222222333333333333344444444	456789012345678901234567890123456789012345									9969288875580 92 09424567545 43331082 1		9332192342622 0200884368405631073182905702											22122211123334 2 4321111331 3223221 2	2151719972370 15 00270367213 198054961 5		8755105696357 17100079857358911772925916803											

RI	UN	ŀ	۱U	M	B	E	R				1	4							(CC	16	N F	I	G	U	R	A	T	I	10	1	-	ł.	D	-	DO	W	N			
DWHEP				RIHFYVY	DROLPEP		W	ATS FCV	TIHRLIE	EOAAOTL	RNPTWYO	EEC	S R I	PINE AZT	T2Y				E .	R 4 0 M /			NFCOCM		ZGSAS	ZUEGTE	LRCMC	EA /5	ST (M	S)	I (M	E))		anti	4 -	+3
		SI		PII	LN	E			С	0	NP (MCEM	EERO	NCD	NTEE	RNL	A . T	T 1	I	91	1		с (D P	NPR	MCED	EERT	ANCO	NTET	R / N1		[] []	0	N							
			1111111111222222222223333333333444444	456789012345678901234567890123456789012345								21	0676786442460742 086536786630 6656443 04		6405991985650976009602991871000307085380002												1474704226150816 006286896680 54442182 00		260808920568098700905179253001046170442106												

(i)

RUN NUMBER	= 15 CON	FTGUPATION = D-DOWN	
DOWNWARD W WIND DIREC HORSESHDE MODEL FLOW PROTOTYPE MODEL VELD PROTOTYPE	ATER SPRAY TION = 0, SPRAY SHAPE NOZZLE COU RATE = 1815.0 FLOW RATE = CITY =50.0 CM/S ¹ VELOCITY = 5.0	NOZ7LES PER SIDE = NFIGURATION CC/SEC 90.8 GM/(SEC(M)(M)) EC AT 5 CM M/SEC AT 5 M	4+3
SAMPLE	MEAN CONCENTRATION PERCENT (MODEL)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
456789012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678800000000000000000000000000000000000	5748777367606176000745452202051036819887106 315443 10067612 66552 065556442 04	1	

RUI	N N	UM	B	ER	ł		1	16						(CO	NI	FI	G	;U	R	A '	T 1	ן ר)N		Ľ	D	-[201	٨N	
DON WIN HOI PRU PRU PRU		AR DI SH TY	DROLPHP		ATS FCV	TIHRLIE			S R I	PI NI A		Y Z 8	S I L I 15		R A C O M / 8	9 9 9			ZGS	ZUEGTE				P	EFN CI	r M	s)	I	DE)	4+3
	SAP	MP	LN	Ē		C			EERO				T	II	ON	I	0	: C	IN PR	MCEO	EPPT			ATP	T) E)	. 0	N				
		4547850123456765012222222222222224544444557850123456765012345578501234554567850123455							34442 42 4432 4433333321 43		11111111111415919404331111134635000994363409										1712071 15 00961 00098863100										

RUN	NU	48	ER	1	1	7						С	0	NI	F 1	U	R	A 1	r 1	0	V	-	6	E-	-D(JWN	I			
DOW WIN HOR PROD PROD PROD	NWA D D SESI EL TOT			ATS FCV	RNPTWYO		SP N A2T	R10 T2Y	A 5218	Z 31		P	R C	SI SI	Y NFC DO FC	I GS AS	ZUEGTE	ZLRCM		SI			R M M)	SI (M	DE	-	ţ	4+3	ł
	SAMI	PLIN	E	(P (MICEM	ANCO	NTHE	RNL	A T)	TI	1 0	IN		0	PR	MCFD	EERC		RNY		TT E)	0	N						
		4567890123456789012345678901234567890123456789012345					4333. 43	527697274278698100556217584650023080207109									443443222111221 11111111111 1111211 1	6505853432160845 0778378888711 77761524 4												

	RUN	NUM	18 E	R		1	8				C	;0	NF	I	GL	JR	A	TI	0	N		ł	E	-C	OW	'N		
8	DOW WINC HOR PRO MODI PRO	NWAR D DI Sesh EL F Toty EL V Toty				R		PR NO AT 50 TY	5, 7,7 18 E	315			A Y DN 0 9(5 F 0	FC.UM			ZRCM		SISCI			M)	s 1 (M	(D)	E)	•	4+3
	9	SAMP POJ	NT		CC)N P (RA N1	T	IC	N		с (NCED	ELERT		RNY	A	T] F)	0	N					
		4547890122454789012222222222222866666667444444					1 562244421 0545 4442 54444421 4	1111391100897945000400100582500054800090201									6 245721263 0212 1206 21110072 0											

		DOI HOI PRI PRI	RUI
	S		V
	AP	W ELOLO	N
45678901234567890123456789012333333333334444445	M P O I	AR DI SFY TY	U۲
	L N	DRULPEP	8
	ET	m n n n n n n	E
		W C W	R
		ATS FCV	
	С	TIHRLIE	
	0	EOAAOTL	
	NPI	RNPTWYD	1
	MCEM	E	9
	EEPO	S R I	
		PI A 8	
	24	.8	
	T	1.5 1.5	
	I	SE	
	0	P 0	С
	IN	R C	0
		A 0 9 50	N
	(Y NOOE	F
	C	FC CM	I
	P		GI
	NPR	ID GS AS	UI
1	MCFO	ZUEGTE	R
4691096 961 99751 898777631 6	EERT	ZRCM	Δ.
	ANCO	LA /5	T
- 662554234038321340270232292734001799626219	NTFT	ET (A	T
	PNY	SUS	n
	A	E	N
	T	PN C	1
3	10	E F () 	
	יכ	۲ 1	I
	N	5	E-
		5 I (M	-D
		11	0
))	WN
		1	ſ
		4+:	
		3	

	RUN NUMBER	- 20	CONFIGURATION . F	NWOC
е. Э	DOWNWARD W WIND DIREC L - SHAPE MODEL FLOW PROTOTYPE MODEL VELO PROTOTYPE	ATER SPRAY TION = 45, 3 NOZZLE CONF RATE = 1815 FLOW RATE = CITY = 22.0 (VELOCITY =	SPRAY NOZZLES PER ST IGURATION .0 CC/SEC 90.8 GM/(SEC(M)() CM/SEC AT 5 CM 2.2 M/SEC AT 5 M	[DE = 4+3 1))
	SAMPLE POINT	MEAN CONCENTRATI PERCENT (MODEL)	MEAN ION CONCENTRATION PERCENT (PROTOTYPE)	
	456789012345678901234567890123456789012345	724468106838860200669312957070081258542101 269459777875551 007867887554 0555554431 04		

RUI	4 1	٩U	ME	E	R			2	1						С	0	NI	FŢ	G	U	R	A T	I	ON	ł			F٠	D	OWN	l			
D D I W I I M D I P R I P R I P R I			RIAFYVY					RNZTWYD	L E C	S=F R=I		A508E •	Y , N 1 15 0	F I	P G S	R U I	A 90 90 50	Y TCC	NI/8	nns AS	ZNEGTE	7L	F	S S E C M	P	E	R M M	s) (M	DE		E	4+3	
	S	A M P O	PL	iŦ		C	:0	NP(MCEM	EERO		RNL	4 [°]	TI	0	N		с (: П Р	NPR			F	R A NT YP	F	I ;)	0	N						
		111111111112222222222222222222222222222	456789012345678901234567890123456789012345						1	33420321 03344 452 05345332 03	221222112801366100535610053581078703938209												563546233716615000954041121512007856902408											

t

RU	Ν	NU	M	8	EF	2			2	2					С	0	NF	FI	G	U	R	A 1			N	1		F	-C	00	WN			
DD WI MD PR PR	WND DETECT		RIAFYVY	DRPLPWP				EOZAOTL	RNZTWYO		R4C TOY	A 50 18 E	Y NI 1	5	P G 0 M 8	R U /	A \ R / 9(S 0		NT/8	ODS AS	ZNEGTE		. E	S	EM	PE C. (R)	S]	1))E	-	4	+3
	S	AM	PII	N	E		С	0	NP (NTEE	RNL	A . T)	נז	0	N		с (P	NPR				RNY	ATP	T1 E)	0	N						
			456789012345678901234567890123456789012345								110110000192664710992800047874041225590404											0 57759319 09784 89741 878866521 6												

RUN	I NUM	BE	R	=	23	3				1	CO	N	FI	G	UI	RA	T	I		1	8	G-	-DC)WN			
DOW WIN PRC PRC	NWAR D DI SHA DEL F DTDTY DEL V DTDTY		WA CTN WFCV	TE IOZA II II II II	R Z L T F V Y	SHE PHI	PR1 CAT22TY	A 5 18 E	1F 315	S I C	PR GU 0 M/2	90 90		N 5 / 8	SI		11	E (A	SECT	PI C	ER (M	s) (5 I I	DE))	•	4+3	I
	SAMP POI	LENT		co	PE (M	EERO		R/ NT	T	I	DN	I	0	P	NPR		ANCO	NTET	P A N T Y P	T: E	r 0)	N					
	4567890123456789012345678901234567890123456789012345					44167444314503720058637893 09788775 07	88589973070130010009100094446000051900349003											111393782327708500261823839870050200543105									

RUN NUMBER	= 24 CON	FIGURATION = G-DOWN	
DOWNWARD WAND DIRECT L = SHAPE W Model Flow Prototype M Model Velo Prototype	ATER SPRAY FION = 15, SPRA NOZZLE CONFIGUR RATE = 1815.0 FLOW RATE = 9 CITY = 50.0 CM/S VELOCITY = 5.0	Y NOZZLES PER SIDE = ATION CC/SEC 0.8 GM/(SEC(M)(M)) EC AT 5 CM M/SEC AT 5 M	4+3
SAMPLE POINT	MEAN CONCENTRATION PERCENT (MODEL)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
456789012345678901234567890123456789012345	442322110715031000633922228791096948077109 32387931 09315 663 6556452 4	$ \begin{array}{c} 1 & 0 \\ 1 & 0 \\ 0 & 8 \\ 0 & 8 \\ 0 & 8 \\ 0 & 3 \\ 7 & 1 \\ 7 & 9 \\ 1 & 8 \\ 0 & 1 $	

RUN	NU	ME	E	R		2	25	;					C	:0	NI	FI	ج	U	P /	T	I	0N	Į		(<u>-</u>	DO	WN			
DWN DDDDD	NWA D D SH EL TOT EL		ENOUT		TIORLIE	EOZAOTL		SEE REI	P		N 8	F] 1.5			A' R 90 S1		N I / 3	C C C C C C C C C C C C C C C C C C C	7NEGTE	1/5	E	S S E C T	P C 5	E F (M	۲ ۱	S (IC M)) E	-	4+3	
	SAM		Ē		С	0		EERO	A N C D			TI	נ כ)N		с (П Р	NPR		ANC I	NTET	R A N T Y F	T	1 ()) N	ł					
		456789012345678901234567890123456789012345								221111111580173110928211185983094399811304											543433223934674420926523272489047544259803										
	RUN NUMBI	R = 26	CONFIGURATI	ION = A-UP																											
---	--	---	--	---																											
,	UPWARD W/ WIND DIR MODEL FLU PROTOTYPU MODEL VE PROTOTYPU	ATER SPRAY ECTION = 0, DW RATE = E FLOW RATI OCITY =22 VELOCITY	SPRAY NOZZLES 1815.0 CC/SEC 90.8 GM/(0 CM/SEC AT 5 2.2 M/SEC	S PER SIDE = (SEC(M)(M)) CM AT 5 M																											
	SAMPL PDIN	MEAN CONCENT PERCEI (MODEI	MEAN RATION CONCENT NT PERCE L) (PROTOT	N TRATION NT TYPE)																											
	456789012345678901234567890123456789012345	702760539598029322367215056364151301734104 53 49945625943 0520976871 7545321 3 3222 3222 3222 3	14. 7 11 221 13 16 33 40 465 2 54 8 440 218 465 2 54 8 440 218 465 2 54 8 46 54 8 11 8 11 8 11 11 11 11 11 11 11 11 11																												

UN NUMBER	• 27	CONFIGURATION =	A-UP
WARD WAT ND DIREC DEL FLOW DTOTYPE DEL VELD DTOTYPE	ER SPRAY TION = 0, SI RATE = 1815 FLOW RATE = CITY =50.0 (VELOCITY =	PRAY NOZZLES PEP 0 CC/SEC 90.8 GM/(SEC() CM/SEC AT 5 CM 5.0 M/SEC AT 5 CM	SIDE = 4 M)(M)) M
SAMPLE POINT	MEAN CONCENTRAT PERCENT (MODEL)	MEAN ION CONCENTRATI PERCENT (PROTOTYPE)	חם
45678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345	00000004651211710222950029651070236366205 8103241 045100 981 8767441 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0	

RUN NUMBER	= 28	CONFIGURATION	A-UP
UPWARD WAT WIND DIREC MODEL FLOW PROTOTYPE MODEL VELO PROTOTYPE	ER SPRAY TION = 0, SP RATE = 1815. FLOW RATE = CITY =80.0 C VELOCITY =	RAY NOZZLES PE O CC/SEC 90.8 GM/(SEC M/SEC AT 5 CM 8.0 M/SEC AT 5	R SIDE = 4 (m)(m)) M
SAMPLE POINT	MEAN CONCENTRATI PERCENT (MODEL)	MEAN ON CONCENTRAT PERCENT (PROTOTYPE	ION)
4567890123456789012345678901234567890123456789012345	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	

UN	1	NL	M	8	E	R		-		2	9							С	0	N	F	I	GI	U	R/	AT	ľ	η	N'	9			A	-/	UF	C		
	DETET		IFYVY	WR LO. UP	AEOELE		FCV	RIRLIE		SNTWYD	P E C	RER	A = A2T	Y O T Z Y	8 8 8	9	8 P	R O M 2	A /	Y S2		70 08	9	ZSAS	ZEGTE		S	SCT	PEM	EI C	P (!	M	s 1) E)	-	4
	S	A M P C		LN	ET			С	0	NP(MCEM	EERO	ANCD				I I	0	N			(P	NPR			NTFT	RNY	ATP	T	I)	0	N					
			456789012345678901234567890123456789012345								2111	11 66345135991 1852554661 6444221 2		516908034880111211298903181332143032223105													007364895714099644177752349496358198728205											

RU	N	Nt	JM	8	E	R				3	0						C		NF	I	G	U	R	Α'	r)N	1			A	-L	IP		
				WALP WO	AEDELE	TCW	ET FCV	RIRLIE	DAOTL	SNTWYO	PI E C	R	3	5	S 74	P C	R/0 M/2	1	7 C 5 E	NC CM	0/7	ZSAS	ZEGTE	LCM	E / 5		PEM	E C 5	R (1	4 (M	S 1) (L D	E))	-	4
	S	Al	1 P] I	LN	ET			С	0	NP(MCEM	E	RNL	A T)	Т	I	01	N		c (D P	NPR	M CEO	EERT			ATP	T	I()	01	N				
			45678901123456789012222222223456789012334567890123445								321122111 3444 433311111 1	3629863440102221 69128962111 19789751 07											542454333 5666 765533322 2211211 1	89702801204466521 035689476431 62791833 07		072028291093463843428061385718142042931103									

			RI
			JN
	S	ADETET	
	A ! P (NI
	1 F		JN
			18
	Ē	AECELE	E
			R
		FICV	
	С	RIRLIE	8
	0		
	NP(SNTWYD	3
1 12222 3221	MCEM	P E C	1
68267537697111018487769811 08545332 004	EEPO	R = R = I	
	ANCD	A = A2T	
3021546291362976608866767507827084840813007	NTEE	YO T2Y	
	RNL) 1 E	
	A T)	8: 0	
	T	S 15	
	I	P 5. C	
	0	R 0 M 2	C
	N	A /	
		90 90 82	N
		CO	F
	C (N C & C M	T
	D P		G
	NPR	7 S A S	U
122111 3455 554311122 2111 1	E CHO	ZEGTE	R
50767476921444052688851043100323795 001	EERT	C W C	A
	A N C	E /5	T
915007134905723310829424716829064046749008	NTET	S (A	I
	RNY	S	ח
	ATP	PEM	N
	T	EI	1
	I()	R (1	
	וכ	4	
	N	S)	B
		I (-
		D E	UF
		-)
		=	
		7	
		,	

RUN NUMBER	= 32 C	ONFIGURATION -	C-UP
UPWARD WATE WIND DIRECT MODEL FLOW PROTOTYPE MODEL VELOC PROTOTYPE	ER SPRAY FION = O, SPR RATE = 1815.0 FLOW RATE = CITY = 22.0 CM Velocity = 2	AY NOZZLES PER CC/SEC 90.8 GM/(SEC(M SEC AT 5 CM 2.2 M/SEC AT 5 M	SIDE = 13)(M))
SAMPLE POINT	MEAN CONCENTRATIO PERCENT (MODEL)	MEAN CONCENTRATIO PERCENT (PROTOTYPE)	N
456789012345678901234567890123456789012345	008077530843784990780289440101069595318102 09774581376621 010858445521 0553333332 03	5.373044220841132030852683055473089000460203 21813949665556603055473089000460203 4477208683055473089000460203 1990088852088520883055473089000460203	

RUN	ľ	IU	M	B	EI	R	-		3	3						С	0	NI	=]	[(31	JF	S V	T	J	n	N			1	C-	·UI	D			
UPW WIN PRO PRO PRO		D D D T	IFYVY	WRLPEP			RIRLIE	DADTL	SNTWYD	P E C	R	Y DI	35 E	S7	4 4	R M 2	A) 1/	Y 78 51		7				5	S (SICT	EI	E F C (۶ ۲ ۲	S 1)	I (M	E))	-	1:	3
	S A F	M	PI	L	E		С	0	NP(MCEM	EERO			T	I	0	N		(ANCO	NTET	P N Y	A	T 1 E 1	r ()	1	4					
		111111111112222222222223000000000000000	456789012345678901234567890123456789012345								83214833640633332 5404221093 122221081 0	034483190285878930981174815281002252979107													226427951769087571218226634222103394969214											

-

RUN	N	U	MB	E	R		•		3	4					С	0	NI	F]	(SU	R	A	T	I	01	١	1	E.	I	D-	UF)				
UPW WIN HOR MOD PRO PRO	AR D S E L T D E L T D					ETS FCV	RIHRLIE	DAADTL	SNPTWYD	PIEE			SLI I	PE5 C	R M 2	AC) / •	Y S S S				ZUEGTE	LR CM	EA /5	ST (I			M	S)	I (DE)	-	4	4 +	3
	S A P	M		Ē			C	0	NP(MCEM				Ī	0	N		0				EERT	ANCO	NTET	P N YI	A T	T]	0	N							
		1111111111122222222222333333333333334444444	456789012345678901234567890123456789012345							111	62668767712234 455411811 022232221 02	33048177884858763344526088889510346229821206										0639256884679111 13306504421 056687753 06		739228335633199587035620776523093716270606												

	R = 35	CONFIGURATION	N ■ D-UP
IND DIR OR SESHO ODEL FL ROTOTYP ODEL VE ROTOTYP	CTION = 0, S SHAPE NOZZL W RATE = 181 FLOW PATE = DCITY =50.0 VELOCITY =	PRAY NO7ZLES E CONFIGURATIO 5.0 CC/SEC 90.8 GM/(SE CM/SEC AT 5 CP 5.0 M/SEC AT	PER SIDE = 4+3 SN EC(M)(M)) 5 M
SAMPL	MEAN CONCENTRAT PERCENT (MODEL)	TION CONCENTRA PERCENT (PROTOTY)	TION (E)
456789012345678901234567890123456789012345	43711866676750935203936443859150893166699303 92405111 06532 8711 08657431 4	640001578734197910748831960193087015394908 33233211128133333 052961 0852100637015394908 21111942 0 10	

 γ_{ij}

RUN	NUM	BER	•	36			CON	FIG	URA	TI	ON		D	-UP		
UPW WIN HOR PRC PRC	APD D DI SESH EL F DTOTY EL V DTOTY	WAEC REC LDE VPELO PELO	ER TIO SHA FLO CIT VEL	SPF NPE TE WPE	AY NO AT 80	S Z Z L 1815 E • 0	PRAY E CD .0 9(CM/S 8.0	NFI CC/ EC M/	Z Z L GUR SEC AT SEC	ES 41 5	P IO SE CM	ER N C () 5	S I 1) (1	DE M)	=	4+3
	SAMP POI	LENT	ca	ME PER		RAT NT L)	ION	C C (P	NCE PER RDT		RA NT YP	TI(E)	NC			
	456789012345678901234567890123456789012345						22									

RUN NUMBE	R = 37 (CONFIGURATION = E-UP	
UPWARD WA WIND DIRE HORSESHOE MODEL FLC PROTOTYPE MODEL VEL PROTOTYPE	TER SPRAY CTION = 15, SI SHAPE NOZZLE W RATE = 1815.0 FLOW PATE = DCITY =22.0 CP VELOCITY = 2	PRAY NOZZLES PER SIDE CONFIGURATION 0 CC/SEC 90.8 GM/(SEC(M)(M)) M/SEC AT 5 CM 2.2 M/SEC AT 5 M	• 4+3
SAMPLE	MEAN CONCENTRATIO PERCENT (MODEL)	ON CONCENTRATION PERCENT (PROTOTYPE)	
456789012345678901234567890123333333333444445	542150230770815008062146102393084440724001 221122 105936015008062146102393084440724001 1122 1053169984441 033222211 2211 22	754462560168350061454083215648071232531106 54235422 12234 0222755541290032 0966665431 5	

RUN NUMBER	= 38 CONF	IGURATION = E	-UP
UPWARD WAT WIND DIREC HORSESHOE MODEL FLOW PROTOTYPE MODEL VELO PROTOTYPE	ER SPRAY TION = 15, SPRAY SHAPE NOZZLE CON RATE = 1815.0 C FLOW RATE = 90 CITY =50.0 CM/SE VELOCITY = 5.0	NOZZLES PER S NFIGURATION CC/SEC 0.8 GM/(SEC(M) EC AT 5 CM M/SEC AT 5 M	SIDE = 4+3 (M))
SAMPLE POINT	MEAN CONCENTRATION PERCENT (MODEL)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
456789012345678901234567890123456789012345	33222271233348974260363611110304059826508302 1 7888890111 03066 6621 74446332 1 11 011666 6621 74446332 4	874564446786057250425023297070003112830805 4 79903433109456 2211 112222 11 11259852 10	

RUN NUMBE	R = 39 CO	INFIGURATION = E-UP	
UPWARD WA WIND DIRE HORSESHOE MODEL FLO PROTOTYPE MODEL VEL PROTOTYPE	TER SPRAY CTION = 15, SPR SHAPE NOZZLE C W RATE = 1815.0 FLOW RATE = DCITY = 80.0 CM/ VELOCITY = 8.	AY NOZZLES PER SIDE ONFIGURATION CC/SFC 90.8 GM/(SEC(M)(M)) SEC AT 5 CM O M/SEC AT 5 M	= 4+3
SAMPLE POINT	MEAN CONCENTRATION PERCENT (MODEL)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345	00000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	

RUN	I	NL	IM	B	ER	1		4	0					۲	C	JN	F	I	GL	JR	A1	[]	0	4			F	-U	Р			
UPW WIN PRO PRO PRO	AD ETET			WRPLPHP		FCV		SNZTWYO	PLEC			5 0 1 E	N F 81	5 5	PF Gl	9 9 9 2	Y ACO			ZNEGTE	ZI C M	. E / (5	S	P	۲E	R M 1 M	s) (M	DE))	•	4	+3
	S	A M P C		LN	Ē	1	CC)N P (MCEM		NTEE	RNL	A 1 T	II	01	ł	1	C (M CHO	EIRC		R	PE	I ;)	01	4					
			456789012345678901234567890123456789012345							554061925800731 8999630552 5444432 03	012824894268337751259118331196043150414004					4.0					22044228371169421 790940332521 3001085 08											

RUN	NU	JM	BE	R			4	1					C	:0	N	F :	1 (SU	R	A 1	I	01	1	-		F-	-Uł	C			
UPW WIN MOD PRO MOD PRO			WRPLPEP		ETN FCV			PLE	REREI	50 8	N 8	F]	FC .		90 90	Y A'CO	8		ZNEGTE		. E	S		PE	R M M	s) (M	DE))	*	4+3	3
	SAI	1P]]	L ! N	Ē		C		M CEM	Emeo	RNL	A T)	TI	[(NC			C (PR	MCFO	EFRI		R N YI		r I ;)	0	N					
		456789012345788901234578890123457889012345788901234578890123457889012345788901234578890123457889010000000000000000000000000000000000						1	8858905698008711 0998653331 03222211 1			2							11122211212221 222111	99301326193408431 31196298831 08667542 4	2940214517487950612948458864990487199862005										

R	UN	1	٩U	M	B	Ēļ	2			4	2						(:0	IN	F	I	GI	U	R J	A T	1	0	N		•		UF	þ				
UWLMPMP				IAFYVY	WRPLPEP					SNZTWYO	PLEC	R=E R=I	A 1 4 0 = 1 8 0 T 1	5 0 E	,N1 0.	F			A R 99	YACOLE			S	ZNEGTE		. E	SCT	E	P 8 C (R)	SI (M	(D 1)	E)	•	n 4+3	3
		S	A M	PII	LN	E		C	: C)N P (MCEM	EERO		RNL	A T)	T	I	NC	ł	1	C	P					RNY	ATP	T I E I	0	N						
			1111111111122222222222233333333333444444	456789012345678901234567890123456789012345								0 0 1223433102222 2221 0222222111 01											:														

JN NUMBER = 43 CONFIGURATION = G-UP PWARD WATER SPRAY IND DIRECTION = 15, SPRAY NOZZLFS PFR SIDE = 4 - SHAPE NOZZLE CONFIGUPATION DEL FLOW RATE = 185.0 OCC/FC OTOTYPE FLOW RATE = 0.85.0 CC/FC OTOTYPE FLOW RATE = 0.85.0 CC/FC OTOTYPE VELOCITY = 2.2 M/SEC AT 5 M SAMPLE CONCENTRATION CONCENTRATION POINT PERCENT 2.2 M/SEC AT 5 M SAMPLE CONCENTRATION CONCENTRATION POINT PERCENT CONCENTRATION POINT PERCENT CONCENTRATION FOR 0 10 7 24.4 10 5.2 12.0 10 5.2 12.0 10 5.2 12.0 11 5.7 33.5 16 21.7 42.8 17 21.9 42.8 16 21.7 42.8 17 21.9 42.8 17 21.9 43.2 18 16.7 20.6 21 1.0 2.5 20 1.0 2.6 21 1.0 2.5 20 1.0 2.6 22 2.7 4.5 23 27.4 20 0.0 2.6 23 27.4 20 0.0 2.6 24 20.6 25 2.8 26 10.0 3.6 27 15.1 3.6 27 15.1 3.6 28 12.2 2.7 28 12.2 2.7 29 5.2 1.1 30 5.1 1.2 28 7.6 30 5.1 1.2 28 7.7 39 5.2 1.1 30 5.1 1.2 28 7.7 39 5.2 31 1.1 30 0.5 31 1.1 30 0.5 31 1.5 32 6 1.7 42 8 7.7 33 0.0 34 0.0 44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	+3
--	----

RU	N	NU	M	B	EF	2	8		4	4					CI	DN	F	I	GI	UI	R/	A 1	1	0	N			G	;-L	IP		
UP WI PR MO PR			IAFYVY	WRPLPEP			RICRLIE		SNZTWYD		Y1C TOY	5, 18 E	15 15	SI D. C	PGO M5	90 90	YAC).E	TC8CM	NI//	SI			. E	S	l E (PE C (R M M)	S I (M	DE))	-	4+3
	S	AM	PI	N	E		С	0	NI PI		NTEE	R/N1	T	Ί	01	N		C (P	NOPP				PNY		FI E)	0	N				
			456789012345678901234567890123456789012345								110015005367760060070100082994046002108305												2211114116325437760031211161150089665332809									

RUN	NU	MŖ	E	R		4	45						CC) N	FI	G	U	PI	A T	I	ΠN			G	;-l	JP				
UPW WIN PRO PRO PRO	ARD D D SH EL TOT EL		AFROFILE		RIORLIE			R . R . I		51 18 E	NF 31	5 5	PR GL 0 8	90 90		8	nos As	ZNFGTF	ZL 1/5	E (S S E T	P C 5	ER (M)	S I (M	(D)	F)	•	4+	3
	SAM	PL	Ē		C			ELERO	AN NT DE	RINI	а Т Г)	I	01	ł	0	P	NPR		A NC	NTFT	P A NT Y P	Ť	10)	N						
	11111111111222222222222222222222222222	4567890123456789012345678901234567890123456789012345						0 1344 12 223 0 3221 12212211 1	0312231220949 s150898530228366097692161506											0746673456923 5541147490613937000608439213										

RU	1 1	١U	M	B	ER	ł		46						С	0	NF	=1	G	U	R /	T	Ï	0	N	-		B	- U	Ρ/	D(JWN	I		
ST/ WII PRI PRI PRI			RIFYVY	HRLPHP		WT FCV	AIRLIE		R	SP 0 AT 22 TY	R . 18 E		S P 5	FRO M2	R A	9 9 2		B0/8			1015	U S (A	P	P I	AN ER C (D M M	s 1) (D	WN E))	-	N C) Z Z	LE	S
	S	AM	PI	LN	Ē		С	N CEM	EERO	AN NT CE	RNL	A 1 T)	I	0	N		с (D	NPR		ANCI	NTET	RNY	A T P	TI E)	0	N							
		11111111111222222222222222222222222222	456789012345678901234567890123456789012345					1	861413322 4566332 66432224321 333332221 02	567460466811612590408311309700066541854307												115216878047102050681346918960011889368800												

RUN	NU	MB	ER	2		4	7							CI	01	NF	I	G	U	R /	AT	Ι	Π	N			•	-			
NO PRO PRO PRO	WAT EL TOT EL TOT	EFPEP		FCV	RALIE		E	R	A2T	TI	18 E	1	5. c	0 M 2	/	99 58 2	COCM	/ .8 /	S	EGITE		(SCT	EM	с 5	(M)	(M)
	SAM		Ę		C		MCEM	EERO		NTEE		T	I	0	N		0	n P	NPR				RNY	ATP	T E	I)	0	N			
		456789012345678901234567890123456789012345					111	00000000 13901494 281 0088874 867644432 3		000000000140176092272000019254816594707999												000000000000000000000000000000000000000									

)

RUN NUMBER	= 48	CONFIGURATION = B-DOWN	
DOWNWARD W WIND DIREC MODEL FLOW PROTOTYPE MODEL VELO PROTOTYPE	ATER SPRAY TION = 0, SP RATE = 1815. FLOW RATE = CITY =22.0 C VELOCITY =	RAY NOZZLES PER SIDE = 0 CC/SEC 90.8 GM/(SEC(M)(M)) M/SEC AT 5 CM 2.2 M/SEC AT 5 M	7
SAMPLE POINT	MEAN CONCENTRATI PERCENT (MODEL)	MEAN DN CONCENTRATION PERCENT (PROTOTYPE)	
4567890123456789012345678901234567890123456789012345	00000003698046359657400030960044123 75313	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

RUN	NU	M	9 E	R	1		4	9						CC	IN	F	IG	; †	R	Α'	1	ר	IN	1	R	_	•		
NO PRO PRO PRO	WAT EL TOT EL TOT	EFY VY		S W	FICVI		Y T W Y	Ē	PIZI		1 E	0 81 0	С С	E 0 M/	952	C I	8	SAS	EGTE	C M	/(5	SCT	EM	C. (۲ N ۱۹	1) 1	()	•))
	SAM	PII	LENT		(00)N P (M CEM		NTEE	RNL	A 1 T	I	40	ł		C (NPR	MCED	EFRI			A	T I E I		N			
		456789012345678901234567890123456789012345								00000000967411371682000032581084485088702										00000000 24070077 403 057540061316777655									

· P	UN	N	JM	B	ER	1	•	5()					CC	INF	=1	Gl	J	RA	T	I	ON	I					
				RLPEP		FCV	RA RA LO IT	Y T W Y		NI A2T		D 1 81 0	СК 5	E .0 2	90 90 5		/:	A	EC GM T EC	15	(A	S E CH T		5	M)	(M))
		S A I P (4P DI	LN	E	1	CO	N P				A 1 T	11	01	ł	с (PI	PR		ANCO	NTET	R/NT YF		I I =)	0	N		
			456789012345678901234567890123456789012345								36002119778617103099377948575027646868686962		5						32 44233156661 6655332331 3333221 2		840075128990403760233145894307676367353456			1				

e

RJN	NU	MB	ER		=	5	1					CI	3	NF	I	G	U	R A	T	I		N	8		B	-D	OW	/N	
DUWN WIND PROT MODE PROT	WA D L D T D T	RDR FF V F V F V F V F		FCV	TIRLIE		E	S= R=I	A 1 E	Y 8] 0	SP L5 C	R O M 2	A /	Y 90 SE 2	NC. CM		SI		E 1/5	5 (A	SI		R (M	s :)	[D (M	E)	=	7
S	S A M P U	PLIN	Ē		С	0 N 4 (MCEM	EERO	スメレ	A T)	τı	ŋ	N		с (D P	PR		A N C	NTET	RNY	A 1 T P E	[] [)	0	N				
	11111111114422222222223333333333334444444	456789012345678901234567890123456789012345					1	5334987756898053 0 6533333663 066565541 06												1575899289 88799260298933477413036395350609									

RU	N	N	U	MI	B	EF	2	1	R	5	5	2						(CI	וכ	١F	I	G	U	R	A	T	I		N	1		B	-	DC	W	N		
DO WI PR MO PR			A D T T	RIFYVY	DRLPEP								P A Z T	RO T2Y	A,1E.	Y 8: 0	S F 15 •		R / 0 2		Y C 00 S E 2	NC SC M	1	ZSAS	ZEGTE	LCMC	E / 5	S (A	S	PI E(EF C (2 [M M	S 1)	51	M	E)	•	•	7
	S	P	M		N	E		(NTEE	RNL	A T)	T	E (01	ł		с (O P	NPR	MCEO	EERT	ANCO	NTET	RNY	A T P I	T I	, ,	16	ł					
			1111111111111222222222223333333333333344444444	456789012345678901234567890123456789012345								222323333333355441044311114431 044443332 03		346083042581046230779545855810033148741909												566778788990231030119333341192 000019985209		938815882073646730779968824581079506565509											

		UP WI PR PR	RU
		SCOODZ&	N
	S	ADETET	ļ
	P		N
11111111111222222222233333333333444444	M	D D T T	U
456789012345678901234567890123456789012345	ρ I	IFYVY	Μ
	LN	WR LPEP	B
	ET	AEDELE	E
			R
		ET FCV	
	С	RIRLIE	R
	0		
	NP(SNTWYD	5
11 11 12 22 11 11	MOEM	ه E C	4
66482268017132 7629654882 009777553 005	EERO	R= R=I	
	ANCD	A = A2T	
865936351598008325169043294510024046753009	NTEE	Y 0] T 2 Y	
	RNL	.8 E	
	A T)	1 0 =	
	T	S 5 =	
	I	р _(С	
	0	R D M 2	С
	N	A /	Ū
		Y 90 51 2	NI
		COE	F
	C (NI C M	I
	0 P		G
	NPR	ZS	U
111222212223444 332211121 211111 1	MCEO	ZEGTE	R
661078503672432 15581530096 001767339 004	EEKT	LCM	A
	ANCO	E 15	T
613850402119632773806051699530058878909004	NTET	S ()	I
	RNY	SCI	וכ
	A	PI	N
	T	E C 5	3
	I ()	R (1	
	ם	M M	
	N	S)	B
		I (-1
		D I M	JP
		=)	0
)	
		7	

RU	N	N	U	Me	5 E	ER		2	5	9							C	10	١F	I	G	U	RA	T	I	01	V	a		A	-	DO	WN	
			A D T T				FCV			E	S R I	P = A2T	RA 6 TE 2 Y	2.	S 17	Р С	R O M	6	9 9 5 5	NCICM	NO/	OZS AS			ES (A	S S I C I T	PI E(M	S () (5	[() 7 7)	4
	S	P	M		N T	Ī		CI	אכ P (MCEM	EERO	ANCD			T	I	0	N		с (D P	NPR		ANCO	NTET	RINY	A T P	T I E I	[())	N				
			11111111111122222222222233333333333334444444	456789012345678901234567890123456789012345							443376442336671 098644565531 5444551 3		544988227292931720342846199181028872097103												306074670181659850602909955084090080599304									

.

Ru]	V	N	U	ME	3 6	E٩				5	り						С	Ū	N	F	I	G	U	R	A T	I	0	N			P	۱-	D	Oh	//\	l		
				A D T T				T FCV	IRLIE	EDAUTL	RNTWYU	E C	S= R=I	RC 6TI	21	S_7	P C	к О М	E A 6/.	Y 955	C E	NCLOM					ES (S	PEM	E C O	R (1	1 1	5)E)	-	4	
		S	A P	M		N	Ē		С	0	NP(MCEM	EERU	V TEE		T	I	0	N			C (9	NIPIRI		ANCO	NTET	RNY	A T P	T E	I ()	10	1						
				111111111112222222222223333333333333333	4567890123456789012345678001234567800123456789012345								4222464434897967 085 3345886100887877521 6	995712928054089220248745279040021604046612													254(79)1176228077360592573842780059207958232												

RUN NU	MBER = 6	1	CONFIGUR	ATION = -
ND WAT MODEL I PROTOT MODEL I PROTOT	ER SPRAY FLOW RAT YPE FLOW VELOCITY YPE VELO	E = 6217. RATE = = 22.0 C CITY =	0 CC/SEC 69.1 GM M/SEC AT 5 M/SEC	5 CM AT 0.25 M
S A M P D	PLE CON INT P (MEAN ICENTRATI ERCENT MODEL)	DN CONCE PEP (PRO1	AN ENTRATION RCENT FOTYPE)
	456789012345678901234567890123456789012345	22130 4380845927961783007408085112700003046638100 543222222 22111233444 543222222 2211112 1		.8 .6 .7 .1 .0 .1 .2 .1 .2 .1 .1 .2 .1 .2 .1 .2 .3

RUN	NUM	BE	R				6	2						C	ON	IF	IG	UF	۹ (T	10	N	1
MOD Len	EL EL GTH	FL VE	O¥ Lû Ca		A T T Y = 1	E = 0 0	•	130	¢ 0	0	. 0	н () С : М /	09	/9									
SA	MPL DIN	E		co	M C P E M	E A E N C C C	NTEE	RNL	AT T	ĩ	ON	I		C 0 (P		EERT	AN NT CE OT	R F N I Y F	E T	1	0 M	1	
	4670901278557222222222222225555555555555555555				1 111222 211 1	2 0360211 0416 991 0778552	0000M000N00000000000000000000000000000	00000072611801600706700439160305806297								A NANAA NUMAA NA MANAA	5 N738102 8044 003 2778336	000000143390094003103000276210021110971					
	44 45					5 .	ŝ	1								1	2	75	2				

-

RUN NUMBER	63	CONFIGURATION	J-DOWN
NODEL FLO Nodel Veli Length Sci	U RATE= 1000.0 GCITY= 30.0 °C ALE=100.0	CC/S M/S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
45	. 00 . 00	00 00	
6789¢1234	2.10 14.90 4.41 9.70 13.00 15.45 12.16	5.00 30.09 10.10 20.90 26.87 31.01 25.39	
15 16 17 19 20	6.20 3.32 2.58 1.01 .18	13.99 7.79 6.11 2.45 .44	
123 456 7	3.17 8.47 15.39 15.67 9.80 6.14	7.45 18.54 30.90 31.36 21.10 13.86	
28 29 30 31 32 33 34	. 02 3.31 3.33 1.49 .20 .03 .00	7.77 7.81 3.59 .49 .06	
3367 837 839 41	3.16 2.69 2.85 2.86 2.37 1.96 1.26	7.44 6.37 6.74 6.76 5.64 5.69 3.05	
42 43 45	. 27 . 12 . 00 2 . 17	.65 .30 .00 5.17	

R	UN	N	UM	BE	R						64							C	; 0	N	F	IC	it	IR	A	T	[() N	!	J-	-D(DWI	N
	M O M O L E	D E D E N G	L L T H	FL VE S	08 LC CA	C	Ri I E=	A T T Y = 1	E = 0	= 0	130	0	01	¢	0	MZ	C (S	/9	5														
	s	A M P O	PLIN	E		C	01		IEER IO	AHCD	NREL	A T)	T	I	DN			C () ()	N P R	MCE0	EERT	AN N1 CE			T E	I ()	0 1	4					
			45								0 ¢ 0 ¢	:										•) () () ()									
			0709012345070901234507001234					1 1 1	566193111111 13613941		077418198555330311624829720										33122	134317443333 3734701221	A CRAICHOO CLAVE OCIVIO MAN A LA LA A A A A A A A A A	075296361134360236655721800									

RUNI	NUMBER	65	CONFIGURATION:	J-DOWN
MODE Mode Leni	EL FLOW El Velo Sth Sca	RATE= 100 CITY= 30. LE=100.0	O.O CC/S C CM/S	
SAI	1PLE JINT	MEAN Concentrat Percent (Model)	MEAN ION CONCENTRATION PERCENT (PROTOTYPE)	
		511367778 4432778 100000000000000000000000000000000000	1237550 237550 111996 575 62	
	4234567801234	42.85982 166.5981 166.59851 166.5981 166.5981 166.5981 166.5981 166.5981 166.5981 10	10.34 283 32.74 323.74 14.75 234.75 7.18 3.64 .25 .01	

RUN	NUMBI	ER	66	CONFIGU	RATION	J-DOWN
M OI M Oi L Ei	DEL FI DEL VI NGTH S	LOW RATE= ELOCITY= Scale=100	1000.0 CC/ 30.0 CM/S .0	'S		
S	AMPLE Point	MEA Concen Perc (Mod	N TRATION C ENT EL > C	MEAN Oncentr Percen Prototy	ATION IT 'PE >	
	0123 410 070001234507001234 11111111111122234507001234		7639857777340984618839506	1225563444431 175495522 12221 12221	099915203705013011878006	
RUN NUMBER	67	CONFIGURATION:	J-DOWN			
---	---	--	--------			
MODEL FLO Model Vel Length Sc	N RATE= 1000.0 DCITY= 30.0 C ALE=100.0	/CC/S M/S				
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)				
012345678901234567801234 111111111112223358 111111111112223358 11111111111222335 111111111111222335 1111111111	7.307 11.5.7035 3.467 7.355 3.4639 3355 3355 1.1000 5376 1.10000 5376 1.10000 5376 1.10000 5376 1.100000 5376 53	14222 1779301 142229 1779301 1027002 1027002 1027002 119011 10230 1190435 119045 119045 119045 119045 119045 119045 119045 119045 119045 11905 119				

RUN NUMBER	68	CONFIGURATION	J-DOWN
MODEL FLO Model yel Length sc	W RATE= 1000. OCITY= 30.0 ALE=100.0	O CC/S CM/S	
SAMPLE Point	MEAN Concentratio Percent (Model)	MEAN Concentration Percent (Prototype)	
02345678901234567801234 111111111222222222222233	384951174089779990430693 003406442914796855512100 87211 14896	987000871912810927 5555400877212810927 155321111111111111111111111111111111111	

RUN NUMBER	69	CONFIGURATION:	J-DOWN
MODEL FLO Model Velo Length Sci	8 RATE= 1000.0 DCITY= 30.0 ALE=100.0	UCC/S M/S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (Prototype)	
10 11 12 13 14	8.10 13.81 14.38 5.71 1.23	17.82 28.27 29.24 12.96 2.96	
15 167 890 1223 4567 890 1233 833 833 833 833 833 833 833 833 833	46883449854070165112	1.57 1.127 1.170 1.704 1.933 1.935 1.9555 1.95555 1.95555 1.95555 1.95555 1.95555 1.95555 1.955555 1.955555 1.9555555 1.955555555 1.95555555555	

RUN NUMBE	R 70	CONFIGURATION:	J-DOWN
MODEL FL Model ve Length s	0W RATE= 1000.00 LOCITY= 30.00CM CALE=100.0	2007S 173	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (Prototype)	
010040	6.33 12.56 12.37 3.16 1.16	14.25 26.11 25.77 7.43 2.80	
1067 178 199 21	- 51 - 60 - 44 - 20 - 18 - 00	1.23 1.46 1.07 48 .45 .00	
2234567801234 222222333333	486 3.195 11.058 1.058 1.064 .622 .033	1.17 2.150 2.3.50 2.4.5 2.55 2.55 1.55 2.5 2.5 2.5 2.5 2.5 5.5 2.5 2.5 2.5	

RUN NUMBER	71	CONFIGURATION	J-DOWN (45°)
NODEL FLOG Model Velo Length Scr	U RATE= 1000 0 30ITY= 30.0 CM 3LE=100.0	CC/S 1/S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
9012345678901234 56780123 4	9.74 9.78 8.79 8.79 8.79 8.79 8.79 8.79 8.99 8.85 7.70 8.85 7.70 8.85 7.70 8.85 7.70 8.85 7.70 8.85 7.70 8.85 7.88 8.55 7.70 8.55 7.70 8.55 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.70 8.55 7.00 7.88 8.55 7.00 7.88 8.55 7.00 8	2099 2199 2099 2199 2199 2099 2199 2099 2199 2099 20	

5	۲U s	N		H	U	M	B	E	R								7	2								1	C	01	łF	1	(G	iL	R	A	T	Ī	C) H	ł	J۰	-U	Ρ
	MML	0 D E	DDN	EEG	L L T	Н	F	LES	D L C	61 0 A	CL	RIE	AT =	T Y 1	E I O	= 0		130	¢	¢	¢ ¢		n C I	C 17/	: C S	1	5															
		\$	AP	11	PI	L	E				C	Q	NPC	N C E M	5020	ANCO	NTEE	RHL	AT)	T	I	0	N			CI	P	NO PS RC			ITE	RNY	AIT	T	1	0	H	ł				
				11111111111222202202000000000000000000	012345678901234567621234									111111 2211	48268536 019484 4		284870385420042509246430	875102562810751911919810											1477777977 747211 1	998799711 806971 011		939213422150119562716170	012030988720971846097850									

RUN NUMBER	73	CONFIGURATION:	J-UP
MODEL FLO Model Vel Length Sc	U RATE= 1000.0 BCITY= 30.0 CM ALE=100.0	CC/S /S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (prototype)	
10 11 12 14 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10	55966522971 78535979343 68842	15.12 19.27 10.70 2.31 1.75 2.95 1.15 .76	
123450700123333	97867 97867 97867 97897 98983 6661 9980 1	2735 399 13794 13796 196 3208 22 22 22 22 22 22 22 22 22 22 22 22 22	

RUN NUMBER	74	CONFIGURATION	J-UP
MODEL FLO Model yel Length sc	U RATE= 1000.0. Ocity= 30.0 CM Ale=100.0	CC/S 1/S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
4567012345678901234567801234 11111111111222890128345678012334	000035545450596583259122384780 600088570596588570536383833 600088570536383833 600088570536383833 600088570536383833 600088570536383833 600088570536383833 600088570596583259 11588775521 11588570596583259 1258857053638385 12588570536383 12588570536383 12588570536583 12588570559 125885705585 1258857055 1258857055 1258857055 1258855 1258855 1258855 1258855 1258855 125885 125885 125885 125885 125885 1258	0007805925659500116550048284 142155539432 03165500482295 142155539432 031671 655032197	

R	U		1	h	1	1 1	1 E	8E	F	?							7	5									C	C	N	F	I	G	U	RI	A	T	I	ŋ	H	;	J	-(JP	
	MML		0 D 0 D 0 D 0 N	E		F	F	LES) (J . () . ()		5] E	4	T Y 1	E=O	= 0		130	¢	•	0		0 C	- I M.	C 0 / 9		'S																	
			SA P			L	. E				C	: (H C E M	EERO	ANCD	NTEE	RNL	A T)	т	I	0	휘			с (0 P	NPR	MCEO	EERT	ANCO	NTET	RINY	AT	T	11	0	М						
				111111111111VQQQQQQQQQQQQQQQQQQQQQQQQQ	010745070901074507001034												967411219889222416231063	375044195298412125519056													NGABNANANANANNUM BNAI		231377983913999405618458	719766371968924058078377										

ATE= 1000.0 CC (TY= 30.0 CM/S	/S	
E=100.0		
MEAN DNCENTRATION PERCENT (MODEL)	MEAN Concentration Percent (Prototype)	
3.82 7.68 15.01 15.01 10.88 15.01 1.23 247 1.23 247 1.23 247 1.3 247 1.3 247 1.3 247 25 1.5 .5 4 1.23 287 1.5 .5 5 .5 5 .5 5 .5 5 .5 5 .5 5 .5 5	0520961060597825993898 870001393233681750 123321 123321 1223221 1223221 1223221 1223221 1223221 1223221 12321 12321 122321 122321 122321 122321 122321 122321 122321 122321 122321 122321 122321 12321	
	TY= 30.0 GM/S = 100.0 MEAN NCENTRATION PERCENT (MODEL) 3.82 7.71 9.66 15.38 15.02 10.11 5.88 4.23 1.48 1.20 1.35 1.28 7.47 13.82 16.01 13.56 7.04 4.69 14 90 78 57 .35	TY= 30.0 GM/S 100.0 MEAN MEAN NCENTRATION CONCENTRATION PERCENT PERCENT (MODEL) (PROTOTYPE) 3.82 8.90 7.71 17.05 9.66 20.82 15.32 30.90 15.02 30.29 10.11 21.66 5.88 13.31 4.23 9.80 1.48 3.56 1.28 3.09 7.47 16.57 13.82 28.28 16.01 31.92 13.56 27.85 7.04 15.69 4.69 10.79 14 .33 .90 2.18 .70 1.89 .70 1.38 .35 .86

R	U	N	NU	M	BE	R							7	7							C	01	łF	I	G	Uf	R 4	1	TI	0	N	:	J	-	JP
	M H H L	00 00 E N	EL	H	FL VE		00	C L	尺(王) 王	A ' T '	T E 1 0	- - -		130	00	0	•	0 C 1	ст (Z 3	C / S	S														
		SA	MP O I	N	E T			C	0			ANCD	NTEE	RNL	AT T	I	0	H		с (P	NO Per R			NTET	RI N'	A 1 T P E	F I	10 >	I N	ł				
			112345678901234567801234										679469553675514180029652	015934331982683509053159												405582461682864782002437									

RUN NUMBER	78	CONFIGURATION:	J-DOWN (45°)
MODEL FLO Model Vel Length Sc	U RATE= 1000.0 Ocity= 30.0 c: Ale=100.0	CC/S M/S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (prototype)	
012345670901234567001234 111111111222222202203333333333333333333	2107895364059844991935082 259211 25922 25921 116 2084 116 2084 116 2082 2082 2082 2082 2082 2082 2082 208	2020040741100010004 2020407411111100000 2020407410000000000000000000000000000000	

-			
RUN NUMBI	FK 80	CONFIGURATION -	
NODEL FI Nodel VI Length S	LOW RATE= 100 ELOCITY= 30. Scale=100.0	0.0%CC/5 0 CM/5	
SAMPLE Point	MEAN Concentrat Percent (Model)	MEAN ION CONCENTRATION PERCENT (PROTOTYPE)	
4 567890123456769012345678890123456789012345678901234567890123456789012345678901234567890123456789012345678890123456789012345678890123456788901234567889012345678890123456788901234567889012345678890123456788901234578890123456880	00000432006078002071026280580020713 10011112243 20000621026280580020710262805800 2004223 2004285 10011 10878552 5.0002 5.0000 5.0000000 5.000000 5.0000000 5.0000000 5.000000 5.000000 5.000000 5.0000000000	06 01 0093 26 929 122831 31289 122831 1300 1122831 1300 111 11228 111 11228 111 2213 1289 15246 1289 15246 1289 11228 1289 11228 1289 11228 1289 11228 111 11228 111 11228 111 11228 111 11228 111 1123 112 1168 112 1168 112 1168 112 1168 112 1168 112 1168 112 1168 112 1168 112 1168 112 1168 112 1168 112 1168 112 1168 112 1168 112	

RUN	NUMBE	R 81		CONFIGURATION:
MOD Mod Len	EL FL EL VE GTH S	OU RATE Locity= Cale=10	= 1000.0 CC 22.0 CM/S 0.0	/S
SA	MPLE Dint	CONCE PER (MD	AN NTRATION CENT DEL)	MEAN CONCENTRATION PERCENT (PROTOTYPE)
	456789012345788901234578867890123457889012345788867889010000000000000000000000000000000000	92471737091 32215522111 10985522 5	00000394019851111250979913196473033155295204803400098817250361000005	000007832020207440745562002338647386667099549997984555 2250734482002 2250734482002 168897265533 168897265533 29954999798455 168897265533 168897265533 168897265533 11009954999798455 11009954999798455 11009954999798455 11009954999798455 11009954999798455 11105 11105 11105 11105 11105 11105 11105 11105 11105 11105 11105 11115

5	2 U	N		N	UI	M 1	8E	R			ŧ	32	1										C	0	N	F	10	1	IR	A	T	I	01	{ :	B۰	-DC)WN	Į
	M	00	DDN	EEG	L L T I	H	FL					1 1 1	E	•	. 1	1023	2.	00		o C M	с с / 9	5	S															
		S	AP	NO	PI	N	E		4	C (HCEN	E Marco	ANCO	NTIE	RI	A T T >	I	0	N		с (0 P	NPR	MCEO	EEERT				T	I >	0	H					
				11111111111122222222222233333333333444444	456789012345678901234567890123456789012345								3211115885651 5542111553 54443321 2		0000218962499509900734847923021016441067309												754441893414 3206344227 100007764 7											

RUN	NUM	BER	9	3					C	ONF	TIG	URI	ATI	ON	; E	3-D0	WN
M O M O L E	IDEL IDEL INGTH	FLOW VELO SCA	RA ICIT ILE=	TE = Y= 100	130	000	0.0 0.0	.CC M/S	/8								
S	AMPL Poin	ET	C O N P (ME A Cen Er C Mo D	N EN EL	AT T	I O N		C 0 (p	ME NCE PER R01		RA NT YPI	T I O E >	Н			
	45678011234567800120345678012034 11111111111220000120345678012034			3776543 6521 52	000000863952350669320028612	10					286741071 4273 261	00000819803331819218802881044958					

RUN NUMBER	84	CONFIGURATION:	K-DOWN (45°)
NODEL FLO Hodel veli Length sci	V RATE= 1000.0 CCITY= 30.0 C ALE=100.0	CC/S M/S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (prototype)	
45670901234567090120345670901203456709012345 111111111111111121220002120901209012090	514046458780412782366454397003666306368122 1111211111111111111111111111111111	3252666663335088700213035286224092759343742 23354444444443352221 34352 35580864695682401754 34352 35580864695682401754 34352 35580864695682401754 34352 35580864695682401754 35580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 36580864695682401754 37580876682401754 37580876682401754 37580876682401754 375808766824001754 375808766824001754 375808766824001754 375808766824001754 375808766824001754 375808766824001754 375808766824001754 375808766824001754 375808766824001754 375808766824001754 375808766824001754 375808766824001754	

RUN NUMBE	ER 85	CONFIGURATION:	K-DOWN (45°)
MODEL FL Model ve Length 3	.00 RATE= 1000. Elocity= 30.0 Scale=100.0	0 ° E C / S C M / S	
SANPLE Point	MEAN CONCENTRATIO PERCENT (MODEL)	N CONCENTRATION PERCENT (PROTOTYPE)	
456709040070904000000000000000000000000000	00000000000007809499726906000079709178719207008 0000000000001153665555667640000679709178719207008 1153655556676400006767525265644310005		

R	U	H		N	U	11	B	E	R				8	6												1		11	IG	1	R	F	1	I	0	H	1	ł
	MML	0 0 E	DCIN	EEG	L	Н	F	LES	O L C	4 CA	C	RIE	AT=	T Y 1	E=O	# \$. 1	130	0	0	¢	-	¢ C	(M2		2	5											
		S	Ĥ	M 0	FI	LN	ET				С	0	HP(MCEN	EERO	ANCD	NTIEI		AT>	T	I	0	Ν		(A	E		0	N			
				11111111111111111111111111111111111111	456789012345678901234567890123456789012345											,,,为,,为,,,,,,,,,,,,,",,"",,不不不能,不不不不不不不不不不不	00000010005720023110783361000010984100099875108	0000000000000004597454860100457511045701053338																				

NUMBER RUN

H-DOWN (45°)

RI	JŅ	N	UI	M E	E	R		1	8 1	7									į	C (3 N	F	1(GI	UR	A 1	I	ON	1	K	[-]	W	N	(45	°)
	10 10 .E	DEDENG	L L T	F V H	LES	04 L(RI I E	4 7 7 7	re (=	•	1	22	0	0	. ((C1	C / ! 5	5															
	S	A M P D	PI	L E N T			C	01			ANCD	N T F E E	(A T -)	T	I	01	4		C (ELERT	AI N CI		RA NT YP	T I E I	0	N							
		**************************************	45670901234567890234567890123456789012345																				BRANDORDENDADAAAN BONN BBBBBANN												

RUN NU	INBER 8	88	CONFIGURATION: K
MODEL Model Lengt	FLOW RA Velocit H Scale=	ATE= 1000.0.CC/ TY= 22.0.CM/S =100.0	'S
SAMP Poi	LE CON NT F	MEAN NCENTRATION C Percent (Model) (MEAN CONCENTRATION PERCENT PROTOTYPE >
4567890122345678 90120345678901223333444444 11111111111222222222222222		••••••••••••••••••••••••••••••••••••	00000889447775991298849805263716225509263 122223333333333222222221 12222333333322222222

-DOWN (45°)

R	U	,	N	ļ	N	U	M	E	E	R				8	à													C	0	N	F	11	GI	JF	2 A	T	. I	0	H	1	B	-1	JP
					EEG	LLT	H	F	LES		U DA	CL	FIE	AT	TY 1	E = O	æ ¢	•	120	¢ 2	•	0		¢ C	M	C (/ 9	\$	S															
			S1	A	0	PI	L	E				C	0	NPC	NCEM	E E E E	ANCO	NTEE	RNL	AT>	T	I	0I	N			с (P	TAR	HCE0	EERT	ANCO	NTET	RINI	e T	1	0	N					
					11111111111222222222333333	012345678901234567801234										11111 111		789234436666110967685420	565359916999982161168739													100000000111100000111011		803925516666884267404152									

RUN NUMBER	90	CONFIGURATION	B-UP
NODEL FLO Nodel Vel Length So	08 RATE= 1000.0 .0CITY= 30.0 C .ALE=100.0	UCC/S M/S	
SAMPLE Point	MEAN CONCENTRATION PERCENT (MODEL)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
023456786012345678901234 11111111122222222222222222222222222	715741138025137651540564	1.254 1.254 1.254 1.257 1.255 1.255 1.255 1.292 1.	

RUN	ŀ	10	M	B	E	R				9	1													1	C	01	11	-	IC	UR	A	T	I	01	{ :
MOLE	DEN		H	F	LES	010	NO A	CL	RIE	AT=	T Y 1	E=Q	æ ¢		220	12	6	6	•	° C	Μ.	C 2 !	CS	/	S										
S	A N F (1 P) I	L	ET				Ç	0	NP()	NCEM	EES:0	ANCO	NTEE	RNL	A T >	T	I	0	N				C (0 P	NIPR		MERT	A1 N1 C1	R A N T Y P	T	1	0	N	
		4150									1	51	•	7 0	7 8													32	1.3	53	2				
		7690123									231123	914955		313525	046598													552345	029757	 4860241460					
		4567690									455	6102		764100	625406													677	8215	 36 41 46 11					
	10101	21									5	2	•	9	ī													7	3	43	ļ				
		34567890123									32211222	89294456		7282555201	0947116440													55432441	00269454	836385 836385 94508 945009 94508 945009 94500000000000000000000000000000					
		4567890127									211211	5991446		2272203831	3114842355													4333221	5769895						
		4									1	4		0 1	4												1	2	8	00	2				

MODEL FLO Model Vel Length Sc	W RATE= 1 OCITY= 4 ALE=100.0	000.0.CC/S 5.0.CM/S	
SAMPLE Point	MEAN Concentr Percen (Model	MEAN ATION CONCENT T PERCE > (PROTOT	RATION NT YPE >
45678 9 01123	00 00 00 00 00 00 00 01 01	23	00 00 00 00 00 00 00 00 00 00 00 00 00
14 15 16 19 20	10.96 12.83 12.41 2.20 .35	23. 225. 25.	257 255 285 285 000
12334 567 8	12.07 9.49 9.14 10.71 .20	25. 20. 19. 22.	25 50 83 77 49 00
9010345 27333335	6.46 5.50 1.35 .04 .00 6.70	14. 12. 3. 15.	52 53 26 75 10 00
3 78 9012 7 33334427	4.79 3.97 3.48 1.58 .31 .05	11. 9. 8. 3.	02 22 15 80 77 11
44 45	2.75	6.	07 51

RUN NUMBER 92 CONFIGURATION: K-DOWN (45°)

U	N	HI	1	4 8	38	2			9	3											C	: (N	F	I	G	UR	A	T	I	40	{:
MML	00 00 E N	EEG	r,	i				RIE	A T =	T Y 1	E 0	Ģ	14	00	Q	00	•	¢ I	C 1Z	CS	/ 9											
	SA P	NI O	PI		E		C	0	NP(MCEM	EERO	ANCD	N TR EL	A	T	I	0	N			C 0 (F		N CE	EERT	ANCQ	NTET	R F N 1 Y F	E	1	0	N	
		11111111111110000000000000000000000000	4567880123456788012345678801234567880123456788012345										00000001451863073154200066441574431109502												11246544 511 3333044933M22021 N		0000003227315818020620099537314436852319					

K-DOWN (45°)

RUI	ł	NU	1	81	EF	2			3	Ę									C	; 0	N F	1	:0	R	A'	T I	ON
MI	00 00 20	EL GT	Н	FI		0 0 2 A	CL	R/ 11 E=		TE Y= 10	•	14.0	05	i 0	00	. 0 C	- C Mz	C C S	/9	\$							
:	SAP	MP O I	L	ET			C				ANCD	NREL		T	I	ON	ļ		00 (F	N PR		A N C O		ATP	T	10 >	N
		44444400000000000000000000000000000000										0219512237175015888852221118888775877766665427											030232330674379010467533309988399995653157	0123780008660426649381044727690070029878210			

K-DOWN (45°)

RUN NUMBER	95	CONFIGURATION
MODEL FLO Model Velo Length Scr	N RATE= 1000.0 C DCITY= 60.0 CM/ ALE=100.0	C/S S
SAMPLE Point	NEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)
456789	00 01 00 00	.00 .00 .00 .00
11123456789012234567890 1111111111222222222222222222222222222	. 01 . 03 . 51 . 951 . 951 . 14 . 71 . 5. 14 . 71 . 5. 14 . 00 . 00 . 00 . 00 . 00 . 00 . 00 . 0	02 08 1.24 2.30 10.855 12.12 11.76 9.10 4.79 52 16.23 8.17 10.23 8.17 0.25 000 8.355 8.64
u u u u u u u u u u u u u u u u u u u	321 7732428 221 32028 11977 33528 208 11797 4338908 2113 211 211 211 211 211 211 211 211 21	0 5 2 5 2 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7

-

RUN	i n	UM	BE	R		9	6								C	ON	FI	GU	IR A	TI	ONI	K	C-DOV	N	(45°))
M C M C L E	DD E DD E En g	L L T H	FL VE S	0 W L D C A	CL	RA IT E=	ΤE Υ= 10	•	160	0 0 0.	0	. (0 (C M 2	C C I	/5											
9	P O	P L I N	E		C	ON P (MCER MO	AI N D	RNL	AT T	I	01	н		C 0 (P	NGERO	E A E N R C T O	H Tr En Ti	A T	10	N					
		456789010345678901034567880103456789010345					NUMNN N NOMMAN ANALAMANA		000000000033849460695502037917019489258260								1167705 4 544301544453301 S		000000000000000000000000000000000000000							

RUN	NUMBER	97			CONFI	GURATION:	K-DOWN	(45°)
M OD M OD L EN	EL FLOW EL VELO GTH SCH	RAT CITY LE=1	E= 1000 = 60.0 00.0	O CC CM/S	/\$			
SAI	MPLE DINT	CONC Pe (M	EAN Entrati Rcent Odel)	ON	MEA CONCEN Perc (Proto	N TRATION ENT TYPE>		
	4 53 60 7		. 00 . 00 . 01			. 00 . 00 . 03		
	7890123456789012456789012345678901234		00000174767302598000007283387166536415		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.000 .000 .2284051185771050000011953777881802366140 .12953618000000000000000000000000000000000000		

RUI	4	NU	M	BE	F			1	9	8										C	; (DN	F	I	GL] \$	R 8	1	r I	0	N :	-
M (M (L I	00 00 00	EL EL GT	Н	FL VE		10 A	C	RIE		T Y = 1 =	E =	>	1 8	00	0	0	. 0) 	C C 1/ S	/9	3											
4	P	MP 0 I	LN	E			С	0	NPC	MCEM	EERO			AT?	T	I	40	ł		CC (F		NCPER	EERT	ANCO			A T F F		C 0 >	H		
		4567050705050500000000000000000000000000									22322 32 22221 2121111 1		0000002023909475751115900002335549704433599699											1568651 762 45431 545443221 3								

RUN NUMBER	99	CONFIGURATION	K-DOWN (45°)
MODEL FLOG Model Velo Length Scr	¥ RATE= 1000.0 3CITY= 80.0.0 3LE=100.0	CC/S M/S	
SAMPLE Point	MEAN CONCENTRATION PERCENT (MODEL)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
45678961224567890122456789612285678961285678961285444444		00 00 00 00 00 00 00 00 00 00 00 00 00	

RUN NUMBER	R 100	CONFIGURATION:	K-DOWN (45°)
MODEL FLO Model Vei Length So	D V RATE= 1000.0 LBCITY= 80.0 CM CALE=100.0	C C / S / S	
SAMPLE Point	NEAN Concentration Percent (Model)	MEAN Concentration Percent (prototype)	
456789345	00 06 00 00 13 00 50	. 00 . 16 . 00 . 00 . 32 . 00 1. 22	
1678901 112222345901	- 78 1. 67 1. 67 1. 35 1. 35 1. 46 . 36 . 00 . 88 . 90 . 90 . 90 . 90 . 90 . 90 . 90 . 90	1.84 3.384 3.25 1.11 1.12 .87 .00 2.01 2.10 2.10	
333 333 33444444	90 93 .88 1.01 1.06 .76 .76 .77 .76 .77 .78 .82	2.18 2.02 1.70 2.15 2.45 2.58 1.85 1.85 1.85 1.85 1.85 1.73 1.73 1.99	

.

R	U	N		N	IJ	ħ	31	E	R					1	0	1														C	1	4 ((F	5	IC	1	JF	2 6	41	r 1	I	0	H	ł	B	-	JF	2
	MML	0 U E	DDH	EEG	LLT	ŀ		LILIO	010	NO A	CL		RIE	A T =	T Y 1	E=0	≖ ¢		140	Cer	5		0	•	° C	Ň	C /	CS	e	s																		
		ŝ	ĤP	M	PI	L					С	; (NP()	NCEM	EERO	ANCO	NTEE	RNL	F T	4 1 5	F 1	I	0	H				с (: 0 P							2 A 1 1 A 1 7 F	E	r I E))	0	H						
				1111111111122222222223333333333444444	456789012345678901234567890123456789012345														100000005548 03195179740083808629741968625																		400000000000000000000000000000000000000											

MODEL FLOW RATE= 1000.0 CC/S MODEL YELOCITY= 60.0 CM/S LENGTH SCALE=100.0 CONCENTRATION PERCENT SAMPLE CONCENTRATION CONCENTRATION PERCENT POINT CONCENTRATION CONCENTRATION PERCENT Year (MODEL) (PROTOTYPE) 4 .00 .00 6 .00 .00 7 .00 .00 8 .00 .00 10 .00 .00 11 .000 .00 12 .00 .00 13 .16 .38 14 .40 .98 15 .88 2.14 16 .39 .43 17 .24 .00 221 .42 .01 222 .02 .47 233 .99 .03 24 .66 1.61 223 .02 .00 241 .02 .07	RUN NUMBER	102	CONFIGURATION	B-UP
SAMPLE CONCENTRATION PERCENT (MODEL) CONCENTRATION PERCENT (PROTOTYPE) 4 .00 .00 6 .00 .00 7 .00 .00 9 .00 .00 10 .00 .00 11 .00 .00 12 .00 .00 13 .16 .38 14 .40 .98 15 .88 2.14 16 .33 .00 19 .98 2.39 20 .660 1.61 21 .42 .01 222 .02 .64 231 .99 .02 24 .00 .00 25 .000 .000 26 .00 .000 277 .033 .077 28 .00 .000 277 .033 .01 373 .99 .2.33 374 </th <th>MODEL FLO Model Velo Length Sci</th> <th>V RATE= 1000.0 DCITY= 60.0 C ALE=100.0</th> <th>CC/S M/S</th> <th></th>	MODEL FLO Model Velo Length Sci	V RATE= 1000.0 DCITY= 60.0 C ALE=100.0	CC/S M/S	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (prototype)	
41 .93 2.27	46789010345678901020000000000000000000000000000000000		000 000 000 000 000 000 000 000 000 00	

RUN NUMBER	103	CONFIGURATION:	B-UP
MODEL FLOG Model velo Length sca	8 RATE= 1000.0 CITY= 80.0 (ALE=100.0	O CCZS CMZS	
SAMPLE Point	MEAN CONCENTRATION PERCENT (MODEL)	MEAN N CONCENTRATION PERCENT (PROTOTYPE)	
4567890123456789012345678901234567890123456789012345	01 000 002 0002 0002 0002 0002 0002 000	02 000 04 000 05 06 08 02 00 00 00 00 00 00 00 00 00 00 00 00	
RUN NUMBER	104	CONFIGURATION: -	
--	---	---	
Model Flo Model Vel Length So	N RATE= 1815.0 C Ocity= 22.0 Cm/ Ale=100.0	:C/S 'S	
SAMPLE Point	NEAN Concentration Percent (Model)	MEAN Concentration Percent (Prototype)	
4567	6.76	15.14	
8 9 10 11 12 13	18,95 7,71 12,50 16,01 23,99	36.51 17.04 26.01 31.92 43.70	
14 15 16 17 19 20	36.89 43.70 40.05 1.64 .00	58.98 65.62 62.17 3.93 .00 .26	
21	45.61	67.35	
34567890107 2000003107 200000357 20000000357 2000000000000000000000000000000000000	33.15 20.10 13.13 11.85 8.72 17.85 14.44 2.70 .30	54.95 387.10 24.85 19.83 34.83 29.34 .38 .75	
345670804123 4 1 3777373744444	132 19.065 14.65 13.392 9.355 3.30 3.30 3.260	.54 36.59 297.45 228.62 220.24 7.74 .63 .63	

RUN NUMBE	R 106	CONFIGURATION:	H-DOWN
NODEL FL Model Ve Length S	09 RATE= 1000.0 Locity= 30.0 0 Cale=100.0	0 - CC/S CK/S	
SAMPLE Point	MEAN Concentratio Percent (Model)	MEAN N CONCENTRATION PERCENT (PROTOTYPE)	
4 5 6 7	. 04 . 00 . 00	. 11 . 00 . 00	
8 9 10 11 12 13	3.925 4.695 3.603 2.38	9.13 11.35 8.49 4.84 7.92	
14 15 16 17	2 . 91 2 . 67 3 . 05 2 . 20 2 . 06	6.87 6.31 7.17 5.25 4.92	
20 21 22 23	5.03	1.88	
4678901223 22228 2388 2388	9.08 9.18 4.92 3.00 2.91 3.01 1.52 .74 .16	19.72 19.91 11.30 6.869 3.65 1.79 3.39	
37878880 37878880 44	2 3.23 2.11 2 428 1 59 1 59 	. 04 7. 59 5. 04 5. 75 4. 75 3. 83 3. 83 . 13	
444	13 00 00 1.61	.33 .00 .00 3.88	

RUN NUMBE	R 107	CONFIGURATION	L-DOWN
MODEL FL Model ve Length s	ow Rate= 1000.0 LBCITY= 30.0 C CALE=100.0	CC/S M/S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (prototype)	
45670	. 03 . 00 . 14	. 07 . 00 . 00 . 33	
9 10 11 12 13	3.66 4.31 4.85 5.65 5.40	8.55 9.96 11.14 12.83 12.31	
14556789	5.43 4.12 3.58 2.97 2.66	12.30 9.55 8.37 6.99 6.29	
20 21 22	1.65 3.78	3.99 8.81	
1345678901223456789012345 12223737878787878444444	3235794 3235794 3235794 3235794 32776 327776 3277776 327776 327776 327776 327776 327776 3277776 32777777777777777777777777777777777777	751734255868978669156021 242827595469978669156021 8588766442 6554554442	

RUH	нŋ	MEI	ĒŔ		1 (96						C	0 N F	IG	10 R	ΑT	ION	ł	B-UP	
N OI N OI L EI	DEL DEL NGT	FI VI H	0% 210 306	E L E	A 7 7 7 7 7	ΓΕ /= 1 Φ	= 1 0.0	1 0 1 7 0)	0 0 0	¢ C I	00 479	/3								
SI	AMP Poi	LE NT		CŪ		NUERO	AN NTR CEI DEL	(A T)	TI	ON		00 (P	NCI Pei Ro	E AN E N 1 R C 8 F O 1	I Ra Int Int	TI E>	0 N			
	40%20900111111111111000000000000000000000						000000000000000000000000000000000000000	00230444244210000						NUNAAAANN 413	00007362216554822577105591					
	UNANGUNDADDADDADACU + 4 4 4 4 4					ومحو المحود ومحو المحو المحول ومحو المحول ومحو ومحو ومحول ومحو	400007041000000410000	151091844656803040417						1 - 440MN 0M0M0NN1 0						

RUN NUMBER	109	CONFIGURATION	B-UP
MODEL FLU Model yel Length su	DU RATE= 1000.0 .0CITY= 30.0 0 CALE=100.0) CC/S CM/S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
45670001123456700012234567000122335670123457001234567012345	000002481871039156758 111133321 111133321 111133321 111 22 111 11 11 11 11 11 11 11 11 11	.000 .000 .000 .000 .000 .000 .000 .00	

RUN NUMBER	110	CONFIGURATION:	B-UP
MODEL FLO Model Vel Length Sci	U RATE= 1000.0 GCITY= 30.0 C ALE=100.0	CC/S M/S	
SAMPLE Point	MEAN CONCENTRATION PERCENT (MODEL)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
4507060112274507080122222 111111111111222222222222222222	000 000 000 001 001 001 001 001 001 000 001 000 001 001 000 001 000 001 000 001 000 001 000 001 000 001 000 001 0000	000000 00000 00000 00000 00000 00000 0000	
7&\$\$\$\$123345&7&12345&7 2223333333333334444444	376201299220208731307	.90 .15 1.75 1.75 1.75 1.75 1.75 1.79 2.47 1.47 1.47 1.47 1.47 1.15 1.05 7.32 1.15	

RUN NUMBER	111	CONFIGURATION:
MODEL FLOG Model Velo Length Sca	J RATE= 1000.0)city= 30.0 CM }le=100.0	CC2S 25
SAMPLE Point	MEAN CONCENTRATION PERCENT (MODEL)	MEAN Concentration Percent (prototype)
45670001111111111111100001000000000000000	400485557966 821775708 5032174077899494114317	$\begin{array}{c} 10\\ 000\\ 009\\ 188589\\ 1.322\\ 1.39245\\ 1.39245\\ 1.399245\\ 1.399245\\ 1.399245\\ 1.399245\\ 1.3245868\\ 1.34355\\ 1.399245\\ 1.34355\\ 1.399245\\ 1.34355\\ 1.3251\\ 099129\\ 1.34355\\ 1.3251\\ 099129\\ 1.34355\\ 1.3251\\ 099129\\ 1.3455\\ 1.3251\\ 099129\\ 1.3455\\ 1.3251\\ 099129\\ 1.3455\\ 1.3558\\ 000\\ 000\\ 1.3558\\ 000\\ 000\\ 1.3558\\ 000\\ 000\\ 1.3558\\ 000\\ 000\\ 1.3558\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ $

B-UP

MODEL FLOW RATE= 1000.0 CC/S MODEL YELOCITY= 30.0 CM/S LENGTH SCALE=100.0 SAMPLE CONCENTRATION CONCENTRATION PDINT PERCENT PERCENT Year 11 27 6 17 42 7 35 86 8 11 24 9 45 1.09 10 31 75 11 322 79 12 333 81 13 377 90 14 388 93 15 223 57 16 41 1.01 17 40 99 18 40 99 20 37 91 21 40 99 22 37 90 23 37 90 24 58 29 25 23 57 26 24 58 27 24 58<	RUN NUMBER	112	CONFIGURATION:	B-UP
MEAN POINT MEAN FERCENT (MODEL) MEAN CONCENTRATION FERCENT (PROTOTYPE) 4 11 27 5 03 07 6 17 42 7 35 86 9 45 1.09 10 31 75 11 322 79 12 33 81 13 37 90 14 38 93 15 23 57 16 41 1.01 17 40 99 20 37 90 21 40 97 22 377 90 24 25 24 25 24 59 26 24 59 37 90 37 33 32 37 34 30 75 35 37 90 37 90 33 <t< td=""><td>MODEL FLOW Model yelo Length sca</td><td>RATE= 1000.0 C CITY= 30.0 CM/ LE=100.0</td><td>CC/S /S</td><td></td></t<>	MODEL FLOW Model yelo Length sca	RATE= 1000.0 C CITY= 30.0 CM/ LE=100.0	CC/S /S	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLE Point	MEAN Concentration Fercent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
12 172 AM	45076600111111111110000100000000000000000	1137551512378310097072 344098775077654090 2333333230444433473 2222375077654090 222237833333333333333333333333333333333	77264959103719751709 1 07789959103719751709 1 09959109751709 1 09997 1 09975 1 09997 1 09977 1 09975 1 09977 1 09975 1 09977 1 0000 1 00000 1 00000 1 00000 1 00000 1 000000	

RUN	NUM	BE	R			1	13	3										C	01	łF	I	G	UR	A	T	10	N :	-
M O D M O D L E N	EL EL GTH	FL VE	04 LC		EIE	Ĥ T =	T# Y= 14	2=	130	0	0	0	. (21	с 1/	C S	?	S										
SA P	MPL	E		C	٥	N P (MECEN		N EN EL	A T	Ţ	I	01	4			с (0 P	NI PE R		ANCO	NTET	R A N T Y P	E	1	0 N		
	45000000000000000000000000000000000000						1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		000005715799900797750098 9 00001540382983420028 3											2 1000001	0000 6572451531 022 4		000000000000000000000000000000000000000					
	197990000000000000000000000000000000000								70727310090662642005											21	WASMI CANTINII OI		87517841025561505202					

R	U	Ņ		ti	U	P	B	E	ş			1	1	4												Constant of a	C	C	Ч	F	Ţ	G	U	R	9	T	I	C	H	:	B-	-U	Ρ
	M M L	00E	0 0 H	EEG	LLT	Н	F¥	LES	010	C		1	1	O II M	=		130	0	0	0 0	•	0 C	M	C /	C S	2	S																
		S	AP	M	PI	LN	ET			C	£	F	NCEX.	EERO	ANCD	NTEE	RNL	A T >	T	I	0	H				0 (0 P	NPR	MCE0	EERT	ANCO	NTET	RNY	ATP	T	I >	0	N	ł				
				111111111111222222222233333333334444444	456789012345678901234567890123456781234567											002345373844 4444744 4433737375443833614383361003	03475598801 11100855 208889762105672309522																00591399990 00099911 09999987298897874107	079004633371 11087402 394324187675909037168									

RUN	NUM	BE	R		1	15	5								(00	F	IG	US	Ĥ	ΤI	0	N :
M 00 M 00 L E M	EL EL IGTH	FL VE I S	04 L0 CA		A T =	T8 Y= 1(E= ;)0	. 1	30	50 0.	0	. (o C M	C C 1/ S	1	6							
SF	NPL Voin	E		сс	N P C			NTIE	REN	AT T)	I	01	N		с((f		EERT	AN NT CE OT	R F N T Y F	E	10	N	
	4507080141							000001018	0000000000000									1	000000000000000000000000000000000000000				
	IN40&r@@@~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							54545N0000144610000100000	582995007398135493540077									46764 76220 870 86	754676003054231244180058				
	-0034507 -04444444					6.1		000891000										07442 4	195194404				

f	e U	M		М	U	ľ	B	E	R				ĩ	1	e									C	; (IN	F	I	G	U	Ri	Ĥ	TI	[() N	;	١	3	U	P
	MML	0 0 E	0 0 N	EEG	LLT	Н	14	ESS	010	U CA	CL	RIE	Ĥ T =	TY 1	E=0	=	. (50	¢		¢ C i	M .	0.0	/ 9	;															
		S	ĥ	M	PI	LH	ET				С	ŋ	N P (NCEN	E E E E E E E E E E E E E E E E E E E	AHCD	NTEEL	T	I	٥	H		-	C C (F		MC E	EERT	ANCO	NTET	RNY	A T P I	T	10) 	4					
				111111111111222222222233333333333344444444	456789012345678901234567890123456781234567																									0000346333333333333333333722220444331443434333320003	00308465556988643564408408520968209907856527									

RUN NUMBE	R 117	CONFIGURATION: -
MODEL FL Model Vei Length Si	DU RATE= 707 Locity= 30.0 Cale=100.0	0.0.CC/S CM/S
SAMPLE Point	MEAN Concentrati Percent (Model)	MEAN ON CONCENTRATION PERCENT (PROTOTYPE)
45%~0000+000400000000000000000000000000000	00000070087032722000067848071804053264667508 4 26702321 4710002318780159100040518831009 111111 11111 1111 2	00 000 9 80774 1171553 200 43774 127553 200 43774 1200 43774 1200 43774 1200 9 805793034 097586 200 100 2257930 100 100 100 100 100 100 100 100 100 1

RUN NUMBER	118	CONFIGURATION :	BUP
MODEL FLC MODEL VEL LENGTH SC	00 RATE= 707.0 C 10CITY= 30.0 CM/ CALE=100.0	C/S S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (Prototype)	
456786012345678601284 1111111111112228	00016800555100111333838880 001680055510011133388880 00168005551001113388880 00168005551001113388880 00168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 000168005551001113388880 0001680055510000000000000000000000000000	004899910281267654577	
122222333333333334444444	198 148 222 222 225 225 225 225 225 225 225 22	834065328072258959538 443246653280722258959538	

.

MODEL FLOW RATE= 1414.0 CC/S Model Velocity= 30.0 CM/S Length Scale=100.0		
MEAN Sample concentration conc point percent pe (model) (pro		AN NTRATION CENT DTYPE >
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A TANADA ANANA AN ATTIT	4 20297054 5999279533 4988435 3 4 20297054 5999279533 4988435 3

RUN NUMBER	120	CONFIGURATION:	B-UP
MODEL FLOW Nodel velo Length sca	RATE= 1414.0 CITY= 30.0 CH LE=100.0	CC/S 1/S	
SAMPLE Point	MEAN CONCENTRATION PERCENT (MODEL)	MEAN Concentration Percent (prototype)	
4700001003456700001003	018943213197864822	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4567690103456781234567	15799009900520052471200	1 . 259 1 . 259 1 . 888 1 . 652 1 . 652 1 . 299 1 . 209 1 . 209 1 . 551 1 . 551 1 . 554 1 . 553 1 . 5553 1 . 5555 1 . 55555 1 . 555555 1 . 555555 1 . 555555 1 . 555555 1 . 5555555 1 . 55555555 1 . 555555555555 1 . 55555555555555555555	

DU RATE= 2000 LOCITY= 30.0 CALE=100.0).0 CC/S) CM/S
MEAN	MEAN
Concentrati	CONCENTRATION
Percent	PERCENT
(Model)	(prototype)
.00	.00
.00	.00
.00	.00
13.53	27.79
18.16	35.30
5.61	12.75
10.54	22.46
22.39	41.51
29.11	59.24
37.54	59.65
35.31	57.31
2.48	5.88
.04	09
.00	00
39.46	61.59
34.60	56.54
19.75	37.70
13.14	27.11
9.30	20.14
5.00	11.46
16.64	32.92
15.50	31.09
1.32	3.19
.04	.10
.00	.00
16.73	33.07
12.17	25.41
11.19	23.65
11.94	25.00
9.31	20.16
8.48	18.56
4.27	9.89
14	.35
000	.01
7.72	.00
	WRATE = 2000 OCITY = 30.0 OCALE = 100.0 MEAN CONCENTRATI PERCEL .000

RUN NUMBER 121 CONFIGURATION: -

IJ	Ы	NU	М	Bł	Ē	R			1	2	2										8) () ƙ	F	I	G	U	RI	Ĥ '	ΓI	C	H	1	E	3-	UP
村村し	00 00 E N	EL GT	H	F1 VE) 0 2 4	CL	RIE	AT =	T Y	E ≢ Ø	=			00	0 0	•	Û C I	9 17	C S	/9	5														
	SA P	MP OI	L N	E			С	Ũ	NPC	MCEM	ELER O	ANCO		11	Υ Γ	I	0	N			CC (P			EERT	ANCO	NTET	R N Y	A T P I	T	10 >		l				
		456705070570570570507020000054567054567070105456767									111 11 12 1	化化合金 化化合金 化化合金 化化合金 化化合金 化化合金 化化合金 化化合金	00003500299908080168884999887509998874008												3232222211222222322211122222211		0000096613235169971100443199353220080100	401637322508544778505801041811909385388								

R

R	U	H		N	U	M	B	E	R	2			1	2	23	5												C	0	h	F	I	G	U	R	A	T	I	01	ł	:
	MIL	0 0 E	DON	EEG	LLT	Н	F	LES) () () () () () () () () () () () () () (C		2 A [] [=	1 		-	-	. (130	0	0	0	•	¢ C	M	212	S	/ 9	;												
		S	AF	M	PI	LN	ET				C	: (D M F					NTEE	RI	AT>	T	I	0	N				C 0 (P		MIC E	EERT	ANCO	NTET	RNY	ATP	T E	1 >	0	M		
				111111	45678901234									:				00006313280	00026694179												HAMAAH HAMAAH	C I I I I I I I I I I I I I I I I I I I		00000000000000000000000000000000000000	00061811620						
				1111122222	0678901234											3.		79320055	99708058												1	A M		(ALIONE) - CLUM	89209108						
				1222222333333	1507890123450													615344210007	336218424045												1111	1		801-101-101-101-10	525397080035						
				03344444444	0781234567										AN ANCIEN			485115005	313670604													110751		00014111100	676273613						

RU	14	Ν	U	M	B	E	R				1	2	4											C	01	{ F	1	G	IJ	R	Ĥ	ΤI	10	h	f	В	-U	P
۲ ۲	00 00 EN	EEG	L L T	H	F	L E S	0 L C	Ш О А	CL	RIE	А Т=	T ኘ 1	E=0	=) ()) .	0 0	. (C M /	S	1	S														
	SA P	M	FI	LN	ET				С	C	I P (MCEM	EERO	ANCD		2	АТ Г У	I	0!	-1			C (0 P	NPR				R N Y	A	T	10	0 1	4				
		111111	45070901234												00005633344												1		000046669890	00095093980								
		11111NONOO	567890123											たさら たき・ たい	44443344														00009900	00006337								
		NUNNNNNNNNNNNN++++++	4567890123456781234567												4433333332033333221002												1		0099999886188877764106	306130726671094041477								

R	IJ	H		N	l	1	ij	B	E	F	2			1	2	6											(; 1	01	i	C.	[(;	19	: F	1	r I	(JN		B	• (JP
	M	005	0 0 H	EEG		Ē I	-	F V	L'EO	{		CL			T 1	E=0	= ¢		130	¢	0	0		Ú C	12		/3	3															
		S	AF	M	19	2 [E				C	. () + F (MOEN	EERO	ANCD	NTEE	RNL	A T)	Т	I	£) N		1		2	NI PI RI					R F N 1 Y F		r : E	; () }	4				
				11111111112222	A REAL COMPANY A REAL COMPANY A REAL PROPERTY OF A											•		00023744444 55 54455	00887037987 02 18332																								
				NANANANANANANANA AAAAAAA														543044432043343331003	066602078557904408344													11111		218190996108998874008									

RUN NUMBER	127	CONFIGURATION:
MODEL FLO Model Vel Length So	U RATE= 1000.00C .0CITY= 30.0.CM/ .ale=100.0	C/S S
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (prototype)
456786012345678601234	.00 .00 .00 .04 .74 .74 .77 .88 1.48 1.70 2.43 1.48 1.70 2.43 21.44 1.70 2.43 1.44 1.70 .09 1.77 .80	.000 .009 14.18 21.723 4.073 4.1723 4.073 5573 2.44 1.93 4.93
15&?&\$\$\$\$1233457&123444444444	8919 9919 1.1782234444 .785416710 .51 .51 .51	2.15 2.20 2.8929 1.995 1.758 1.758 1.588 1.588 1.588 1.299 1.299 1.299 1.299 1.299 1.299 1.2000 1.2000 1.20000 1.20000 1.20000 1.20000000000

B-UP

RUN	NUMBER	128	CONFIGURATION:	B⊷UP
MOD Mod Len	EL FLOG EL VELG GTH SCA	S RATE= 1000 SCITY= 30.0 SLE=100.0	O CC/S CM/S	
SA P	MPLE DINT	MEAN Concentratio Percent (Model)	MEAN IN CONCENTRATION PERCENT (PROTOTYPE)	
	456789012345678901234	0002002347228027525878	.00 .00 .00 1.223 .884 .91 1.07 1.121 1.227 1.335 1.220 1.335 1.220 1.42	
	1222222333333333344444444	6135585 55585 55585 44414 31481117 688000 55555 55555 5555 5555 5555 5555	1.48 1.30 1.34 1.41 1.10 1.13 1.08 1.01 .89 1.01 1.01 .89 .85	

RUN NUMBEI	R 129	CONFIGURATION:
MODEL FLI Model Vei Length Si	DU RATE= 1000.0 LOCITY= 30.0 CM CALE=100.0	CC/S 1/S
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (prototype)
4567-07610134567-0701010000000000000000000000000000000	48413324891361 0987090321786416844420799339	5703238934616355 1.5578934616355 1.55789346110 1.012 1.011 1.0203630002846033333297366292 8887493838297366292 888297366292 888297366292 888297366292 888297366292

B--UP

RUN NUMBE	R 130	CONFIGURATION:	B⊡UP
MODEL FL Model Ve Length S	0% RATE= 1000. LOCITY= 30.0 CALE=100.0	O CC/S CM/S	
SAMPLE Point	MEAN Concentratio Percent (Model)	MEAN N CONCENTRATION PERCENT (PROTOTYPE)	
456789012124567890	592052123700007265	.11 .454 .544 	
01274567680012174587 422222222223755555555555	7200743194320 3733333330194320	1.13 1.14 .76 .74 .73 .91 .80 .77 .71 .34 .80 .78 .74	
38 1 2 3 4 5 5 6 7 3 4 4 4 4 4 4 4 4 4 4 4	28 29 225 222 17 12 27.14	. 69 . 71 . 62 . 55 . 43 . 30 47. 81	

RUN NUMBER	131	CONFIGURATION:	A∵UP
MODEL FLO Model Vel Length Sc	& RATE= 1000.0 OCITY= 30.0 0 ALE=100.0	0 CC/S CM/S	
SAMPLE Point	MEAN Concentratio Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
456789011234567890103	38180968246553354615 112212253444444454	.34 .42 .454 .571 .9329 1.009 1.1054 .933 	
4 56789 0123456781234567 Ngnangssssssss4444444	198754179730006526174	1.01 94 92 92 935 884 77 648 181 87 74 642 59 269 27 642 59 27 642 59	

RUN	NUMBEI	8 132		CONFIGURATION:	A∙ UP
M O D M O D L E N	EL FLI EL VEI IGTH SI	DU RATE= LOCITY= Cale=100	1000.0 CC. 30.0 CM/S	/S	
SA P	MPLE DINT	MER Concen Perc (Mod	IN ITRATION ENT EL)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
	45070901234507090123		1121244455555444454	442144214223338684422333866844223338668442222222111111111111111111111111111	
	4767890123456781234567		44433332110030202020217484	1.001 9736 98822 4313105504314 6604314 55144 55144 5514308	

R	U	H	N	U	M	B	E	R				1	3	3										0	; () N	F	I	G	U	RA	T	Ι	01	4	í
	MML	00 00 E N	EEG	LLT	н	₽	LES	0 L	U 0 4	C	RIE	A T =	T Y = 1 =	E	>	130	00	•	000	- 1	0 C ł	C 1/	CS	/9	\$											
		SA P	M	PI	L N	E			1	C	0	N P (MCEM	EERD		N TR EN	AT>	T	I	01	N			C 0 (P		NCE20	EERT	ANCO	NTET	RNY	A T T P E	I ;)	0	N		
			111111111111	456789012345678												11112333444444														334368999900000	20591601724542					
			122222	20123												42 42 45 42												1111		0	3302					
			NO N	4507890123490781234507												3433332210222222221102														9999877653276665544315	672875036124215680182					

A--UP

.

RUN	NUMBE	R 1	34			CONF	IGU	RATION	K-DOWN	(45°)	÷
M 00 M 00 L E M	DEL FL DEL VE NGTH S	OU RA LOCIT CALE=	TE = Y= 100	1000.0 30.0 (.0) CC/ CM/S	'S					
Si I	AMPLE Point	C O M F	MEA ICEN Perc Mod	IN ITRATIO ENT DEL)	4 C	ME ONCE PER PROT	AN NTR CEN DTY	ATION T Pe>			
	4567.0901234567.090123 111111111111120223		192922 N	00004520042951254719			00011000178784499000	0010241105854794458			
	4567090		1	40000511171195105375602			N 45401 4444000 0	790063419390459895405			

RUN	NUMBE	R 1	35		CONFIGURATION:	K-DOWN (45°)
MOC Moc Leh	EL FL EL VE IGTH S	OU RA Locii Cale:	TE Y= 10	= 1000.0 30.0 C 0.0	CC/S M/S	
Sf F	MPLE	COI	ME	AN NTRATION Cent Del)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
	450709012345670 9012345670901234567090123456701234567			0000731120555575 11377 73004116908886665372107	.00 001 1782 000 001 100234 1.887783 3.86773 3.68778 3.788788 3.788788 3.788788 3.788788 3.788788 3.788788 3.788788 3.788788 3.788788 3.788788 3.788788 3.788778 3.788788 3.788788 3.788778 3.788778 3.788788778 3.788778 3.788788 3.788788 3.788788 3.788788 3.788778 3.788788 3.788778 3.788778 3.788788 3.79788 3.79788 3.79788 3.79788 3.79788 3.79788 3.797778 3.79778 3.797778 3.797778 3.79778 3.79778	

R	UN	N	U M	1 6	E	R			1	З	6										C	01	{ F	I	G	UI	R A	ŢĪ	01	H :]	K -	DO	WN	(45	°)	
	MOC Moc Lei) E) E I G	L L T ł	F	LES		6) 0 (A L	F I	2 A 1 T 2 =	T Y 1	E=0	•	1100	0	0 (0 .	0 C	C M/	; C S	1	S																	
	Sf	N M	P L I M	. E			C	: 0) N P (MCEM	E E E E	ANCD	N TR EN	A T ?	T :	īC	1 8 4			с (0 P					R I N Y I	AT E))	N									
		11111111111100000	456789012345678901234								11		000064404590809 9286											112 2020		00011100147174 1265												
		VNNNNNNNNNNNNNNH++++++	+507890123450781234507										893060472646792675608 893060472646792675608													040001085328895640306												

RUN NUMBER	1 37	CONFIGURATION: K-DOWN (45°)
MODEL FLOG Model velo Length scr	RATE= 1000.0.0 CITY= 30.0.0 LE=100.0	C/S S
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN Concentration Percent (Prototype)
4567890103456789010234567890103456781034567 111111111111110000010208010385858781234567	000075 000075 0000000000000000000000000	. 00 . 00 . 17 . 11 . 03 . 00 . 02 . 04 . 64 . 755 . 87 1. 05 1. 38 1. 27 1. 268 1. 65 1. 53 . 89 . 000 1. 555 1. 41 1. 268 1. 65 1. 55 1. 37 1. 268 1. 65 1. 35 1. 35 1. 37 1. 268 1. 53 . 000 1. 555 1. 37 1. 268 1. 41 1. 268 . 000 1. 555 1. 37 1. 19

RUN	NUMI	BER	1	38					C	0 N	FI	GUR	ATI	0N :	K-DOW	N	(45°)
M OI M DI L EI	DEL I DEL I NGTH	FLOW VELO SCA	RA CIT LE=	TE = Y= 100	10	000 0.0	. 0 C I	CC. M/S	/ S									
SI	AMPLI Poin	Ē	CON P (MEA Cen Erc Mod	N EN EL	ATI T	ΟN	ł	C 0 (P	MC NC RO RO	E AN E R C I C	N TRA ENT TYP	TIO E>	Ν				
	456789012345678901234567890123456781234567 11111111122245678901234567890123456781234567				000094113585155.4 95 050009507695540941608							0000291287960111 9 19 7700021177501079621502						

RUN NU	MBER	139		CONFIG	URATION:	K-DOWN	(45°)
MODEL Model Lengt	FLOW R Veloci H scale	ATE= 100 TY= 30. E=100.0	0.0 CC/ 0 CM/S	5			
Samp Poi	LE CO NT	MEAN Incentrat Percent (Model)	ION C	MEAN ONCENT Perce Protot	RATION NT YPE >		
4567890112345678901222		00 000 111 04 000 002 002 002 002 002 002 002 002		1	000 000 210 01 001 001 001 005 000 001 005 000 001 005 000 001 001		
~45&7@\$~0143745&17@745&7@7 ~2222222233333333333334444444		5110089367290213407105	÷.		2500168572477100310715		

RUN	NUMBER	140	CONFIGURATION	K-DOWN	(45°)
M OI M OI L EI	DEL FLOG DEL VELG NGTH SCA	W RATE= 500.0 DCITY= 30 0 0 ALE=100.0	0 CC/S CN/S		
SI	AMPLE Point	MEAN Concentratio Percent (Model)	MEAN N CONCENTRATION PERCENT (PROTOTYPE)		
	45678901234567890123	011 012 004 004 004 005 012 222 222 222 222 222 222 222 222 222	223061112902633330598		
	4567090123456781234567 2222223333333333345444444	20011576538755541197010	5122215317560092171430		
RUN NUMBER	141	CONFIGURATION:	K-DOWN (45°)		
---------------------------------------	---	--	--------------		
MODEL FLO Model Veli Length Sci	W RATE= 707.0. DCITY= 30.0 CM ALE=100.0	CC/S /S			
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)			
45678901234567890123456789012	000000000000000000000000000000000000000	. 00 . 00 . 00 . 24 . 15 . 06 . 01 . 02 . 04 . 35 . 49 . 65 . 96 . 93 . 90 1. 00 1. 38 1. 10 1. 01 . 79 . 19 . 00 1. 14 1. 14 1. 09 1. 04			
345&707012345&7 33333334444444	38 165 41 441 35 35 31 28 40 35 31 40 35 31 40 5 35 31 40 5 35 31 40 5 35 31 40 5 35 31 40 5 35 31 40 5 35 31 40 5 35 35 35 35 40 5 35 35 35 35 35 35 35 35 35 35 35 35 3	93 38 1.11 1.01 1.01 97 .87 .85 .76 .56 .21 .01 .83			

RUN	NUMBER	142	CONFIGURATION:	K-DOWN (45°)
M OC M OC L E H	EL FLOW EL VELO IGTH SCA	8 RATE= 1414.0 C 0 CITY= 30 0 CM/ 0 LE=100.0	C/S (S	
SA P	MPLE VOINT	MEAN Concentratiún Percent (Model)	MEAN CONCENTRATION FERCENT (PROTOTYPE)	
	450709012345070901234	0000002758812076		
	19999999999999999999444444 199999999999	220075683984152098980 675683984152098980 7508887759888775590066	1.52 .701 .0049907 2.09907 2.09907 2.10987 1.22.109887 1	

RUN NUMBER	143	CONFIGURATION:
MODEL FLO Model yel Length sc	W RATE= 2000.0 C DCITY= 30.0 CM/ ALE=100.0	C/S S
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)
45676901111945676	000 001 107 014 107 034 3320 8834 1.332 8834 1.391 2.05	.000 .002 .036 .122 .3778 .7783 .7783
19 20 20 20 20 20 20 20 20 20 20 20 20 20	1.81 1.74 1.95 1.92 1.89	4.35 4.17 4.67 4.59 4.52
45%709010N945%7010345%7 200000010N5555507010345454	1.58 927 .007 1.60	3.868 8368 4.92 4.92 761 002 55 761 002 5 761 002 5 761 002 5 761 002 5 761 002 5 761 002 7 1 1 0 007 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

.

RUN	NUMBE	2 144		CONFIGURATION:	K-DOWN (45°)
M O I M O I L E P	EL FLI EL VEI IGTH SI	DU RATE LOCITY= CALE=10	= 1000.0 CH 30.0 CM/9 0.0	C / S S	
sf f	MPLE Point	CONCE PER (MD	AN NTRATION CENT DEL)	MEAN CONSENTRATION PERCENT (PROTOTYPE)	
	4567890123456789		0000844011783530 80839 9300012079525663637328 56753 20000666654165556636373204	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	

RUN	NUMBER	145	CONFIGURATION :	K-DOWN (45°)
MOI Moi Lei)EL FLOW)EL VELO NGTH SCA	RATE= 1000.0 CITY= 30.0 CM LE=100.0	CC/S 1/5	
Si	MPLE Point	MEAN CONCENTRATION PERCENT (MODEL)	MEAN Concentration Percent (prototype)	
	456789012345678901234567890123456781234567 11111111222345678901233456781234567	0001938044451855 57594 360000171520066720303314 000008567766555 555544 3000055544420054444444431104	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	

.

RUN NUMBER 146	CONFIGURATION:	K-DOWN (45°)
MODEL FLOW RATE= 1000.000 Model Velocity= 30.000N/ Length Scale=100.0	C / S 5	
NFOR SAMPLE CONCENTRATION POINT PERCENT (MODEL)	MEAN CONCENTRATION PERCENT (PECTOTYPE)	
4 .00 5 .000 6 .000 7 .066 9 .011 111 .012 123 .146 141 .014 155 1411 166 198 170 .01 180	000057222459803203561 00010000335647083561 0003470835616 0003470835615 5	
24 2.25 200 1.78 200 1.73 200 1.73 200 1.73 311 1.266 332 .789 3334 .009 355 1.558 370 1.455 371 .009 372 .243 373 .245 378 1.455 41 1.259 423 .724 433 .243 445 .000 47 1.21	542 4431 3333332 44431 3333332 1 2 2 2	ĸ

RUN NUMBER	: 147	CONFIGURATION ;	K-DOWN (45°)
MODEL FLO Model Vel Length So	W RATE= 1000.0 .DCITY= 30.0 C :ALE=100.0	CC/S M/S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
450789011111111111111100001007600010345070103454 1111111111111111000010076000103855070103454	000 000 000 000 000 000 000 000 000 00	.00 000 14 05 01 03 04 15 12708837 98650 12 298650 24 2976324 12 298650 24 48024 48024 10 20 20 20 20 20 20 20 20 20 20 20 20 20	

RUN	NUM	BER		1	48						C	ON	FI	G	lir A	710	N I	K-DOW	N	(45°)
M O D M O D L E H	EL EL IGIH	FLDI VELI SCI	N F D C 1 A L F	R L I E=	TE 7= 10	= 0.0	1 0 0 3 0 2	0	. ¢ (-)	C C M / S	25									
SA P	MFL OIN	F	C	DN P (ME Ce Ro	A N N T I C E I D E I	(A) (1)	7 [111		C:0 (P	NC Pe Ro	E A E N R C T Q	NITE	RAT Nt Ype	10.H 2				
	45678501274567850127456785012785578501274567												INCOMPANY IN NUL NUNNI NUNNIII 1		00005045622797464 63 0200125740373968338602					

RU	H	NU	M	BE	R		1	4	9							С	01	N F	1(; U	Rf	A T I	01	1:	K	-D	OWN	(4	5°)
HML	00 00 E N	EL EL GT	н	FL	01 LC CF		RA IT E=	T (Y= 1 (=	130	00 0.	0	. đ	M	C C / S	/\$													
	sa P	MP 01	L N	E		C	ON P (MEEN	ANCO	N TR EN	AT T)	I	01	ł		С о (р	NI PI RI	ERT	Al N CI O	N R F N F N F Y	A T	F 1 6 2 >	И						
		456789012784567890127745678901278456781211111222228458000128345678123456								000041012206110 6110 841030095554414444430200									INTER THE THEFT		000141W047W449 1007 010010001000000000000000000000000								

RUN NUMBER	150	CONFIGURATION	I-DOWN (45°)
MODEL FLOG Model Velo Length Sof	U RATE= 1000.0 001TY= 30.0 CI 11E=100 0	2075 4,75	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
45070000100745070000100450 11111111111111100000000000000	000 0034200 000 000 000 000 000 000 000 000 000	000 007 005 000 000 000 000 000 000 000	
97.0000	2000210.68576507607704		

2			
RUN NUMBER	151	CONFIGURATION:	I-DOWN (45°)
MODEL FLOU Model Velo Length Sco	V RATE= 1000.0 DCITY= 30.0 CM ALE=100.0	CC/S /S	
SAMPLE Point	MEAN CONCENTRATION PERCENT (MODEL)	MEAN CONCENTRATION PERCENT (PROTOTYFE)	
456 200010040002000000000000000000000000000	000060400672416884 10672416884 11.6899 8399 8309 38820861300156195571205 1.6846653240555542282006 1.655240555542282006 1.655240555542282006 1.655240555542282006 1.655240555542282006 1.655240555542282006 1.6552405555542282006 1.6552405555542282006 1.6552405555542282006 1.6552405555542282006 1.6552405555542282006 1.6552405555542282006 1.65524055555542282006 1.65524055555542282006 1.65524055555542282006 1.65524055555542282006 1.6552405555542282006 1.65524055555542282006 1.6552405555542282006 1.655240555554220555542282006 1.655240555540555542282006 1.655240555540555542055554200555542000 1.65524055554055554005555400555540055554000000	00000 14155332206025 46855 2534444 43 4 32 4552048469246592321 2534444 43 4 32 4552048469246592321 3355765500115000 3355765500115000 3355765500115000 3355765500115000 33557655000 4550000 4550000 4550000 4550000 4550000 4550000 4550000000000	

R	U	hi	М	UI	41	3 E	R				1	52											C	0	N	F	I(30	r f	Т	II	ЭN	;	H	-D	OW	N	(
	M 19 L	00 00 E N	EEG	L L T I	H	F L F E S		U O A	C. L	E Lul	ĤT	TE Y= 1 ((= 00		120	00) (())	0 C	M	C C 7 S		S															
		SA	M O	FI		EF			С	0	N P {			NTEE	R.N.L	91 T)	r I	[[) M			0	:0 P	NPR	MICEO	EERT	AIN CI	N R N E N I Y	A T P E	: I : >	១	M						
			111111111122	4007000122450700001								1111		000000000000000000000000000000000000000	00003311876791 938												133 321	00020000268614 174	00108723078201 031									
			NNNNNNNNNNNNNNNNHAAAAAAA	234567890123456781234567								1		3 420090875008897765207	5 \$55085955756914670626												3 1 22211 222211111 1	N 1010851084511N706N606	5 221083624850719523444									

(45°)

RUN NUMBER	153	CONFIGURATION:	H-DOWN (45°)
MODEL FLO Model Vel Length So	00 RATE= 1000.0 1001TY= 30.0°CM 3ALE=100.0	CC/S / S	
SAMPLE Point	MEAN Concentration Percent (Model)	MEAN CONCENTRATION PERCENT (PROTOTYPE)	
4507000100345670001003456700001003456701013	000 000 000 000 000 000 000 000 000 00	0001875514340600 6799 10001773747 6256 5100021861461928106 1000887444 33112 5100021861461928106 10008874448	