
DISSERTATION

ENHANCING SPACE AND TIME EFFICIENCY OF GENOMICS IN PRACTICE THROUGH

SOPHISTICATED APPLICATIONS OF THE FM-INDEX

Submitted by

Martin D. Muggli

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2018

Doctoral Committee:

Advisor: Ross McConnell

Charles Anderson

Hamid Chitsaz

Paul S Morley

Copyright by Martin D. Muggli 2018

All Rights Reserved

ABSTRACT

ENHANCING SPACE AND TIME EFFICIENCY OF GENOMICS IN PRACTICE THROUGH

SOPHISTICATED APPLICATIONS OF THE FM-INDEX

Genomic sequence data has become so easy to get that the computation to process it has become

a bottleneck in the advancement of biological science. A data structure known as the FM-Index

both compresses data and allows efficient querying, thus can be used to implement more efficient

processing methods. In this work we apply advanced formulations of the FM-Index to existing

problems and show our methods exceed the performance of competing tools.

ii

ACKNOWLEDGEMENTS

I would like to thank Christina Boucher who filled the roll of advisor for all of this work for

her patience, guidance, and insight in my training. I would also like to thank my committee, Ross

McConnell, Charles Anderson, Hamid Chitsaz, and Paul S Morley, for their continued help and

support. I would like to thank the many people who have supported me emotionally throughout

this work, specifically: Alex Bowe, Lindsay Burchfield, Aaron Ciuffo, Katie Davidson, Teri Dil-

lion, Thomas Harrison, Amber Johnson, Anne Mangiardi, Piper Murray, Simon Puglisi, Susan

Rainey, Sanjay Rajopadhye, Sara Rector, Stacey Reynolds, Basir Shariat, Mike Storlie, Michelle

Strout, John Wagner, Jason Walp, Adrienne Watral and others who I may have forgotten. I would

also like to thank the various people and organizations whose outstanding science work provided

inspiration: Richard P Feynman, ESA, CERN, LIGO, GHC. In addition, I would like to thank

my co-authors for their contribution to our work. And last but not least I would like to thank my

family, Jaynie Muggli, Jim Muggli, and Karen Muggli for their support as well.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

Chapter 1 Introduction . 1

1.1 Background . 2

1.1.1 FM-Index . 4

Chapter 2 Reducing Runtime by Indexing . 9

2.1 TWIN: Efficient Indexed Alignment of Contigs to Optical Maps 9

2.1.1 Introduction . 9

2.1.2 Background . 13

2.1.3 Methods . 14

2.1.4 Results . 17

2.1.5 Discussion and Conclusions . 22

2.2 Kohdista: A Succinct Solution to Raw Optical Map Alignment 23

2.2.1 Introduction . 24

2.2.2 Background . 26

2.2.3 The Pairwise Rmap Alignment Problem 27

2.2.4 Methods . 27

2.2.5 Results and Discussion . 33

2.2.6 Conclusion . 37

2.2.7 Practical Indexing Considerations . 38

Chapter 3 Reducing memory by compression . 43

3.1 VARI: Succinct Colored de Bruijn Graphs 43

3.1.1 Introduction . 43

3.1.2 Methods . 47

3.1.3 Results . 54

3.1.4 Concluding Remarks . 62

3.2 VARIMERGE: Succinct De Bruijn Graph Construction for Massive Pop-

ulations Through Space-Efficient Merging 62

3.2.1 Introduction . 62

3.2.2 Related Work . 65

3.2.3 Preliminaries . 66

3.2.4 Method . 67

3.2.5 Discussion . 75

3.2.6 Conclusions . 84

Chapter 4 Conclusion . 86

Bibliography . 89

iv

Chapter 1

Introduction

With the advent of high throughput sequencing, biologists have gained access to massive

amounts of data sampled from their specimens. While this is a boon for biologists, all this data

must be processed to yield useful information and many times, state of the art computing hardware

and software are a limiting factors for biological inquiry. For example, a set of samples from 3,765

E. coli would require over 3 TB of memory to represent in a state of the art tool, far exceeding

even the 1 TB of RAM in machines some labs are fortunate to have access to.

There are however opportunities for improvement. Existing methods store their data, which

usually has some inherent redundancy, in a direct, one-to-one representation. Thus enhancing

these methods with compression techniques can reduce their memory footprint. Additionally, data

often contain erroneous values which existing methods accomodate with some form of exhaustive

search techniques. Instead, sufficiently powerful indexing techniques can provide error tolerant

lookup mechanisms instead and reduce the runtime.

A data structure known as the FM-Index can provide both indexing and compression simulta-

neously. In fact, the basic string search and compression capabilities of the FM-Index are fairly

well known and applied. The search capabilities are used within the nearly ubiquitous BWA [1]

software in bioinformatics. And the compression capabilities underlying the FM-Index are even

more widespread in tools such as the BZIP2.

The FM-Index, however, is not a drop in replacement for existing techniques. Various problems

need more than simple string indexing over small alphabets, but require indexing graphs and large

alphabets. Fortunately, there are more advanced developments that make the FM-Index applicable

to graphs and queries based on ordinal elements.

We explore extending the reach of the available tool set with new tools which apply sophis-

ticated forms of the FM-Index. This enhances the efficiency on each of the runtime and space

1

requirements over state of the art tools on existing genomics problems. Specifically to illustrate

this, we enable detection of variants among a dataset of approximately 16,000 Salmonella samples

taken from food production facilities. Additionally, we demonstrate the usefulness of tools which

reduce runtime by means of sophisticated indexing on a more recent form of genomic data in the

form of optically derived restriction maps.

1.1 Background

Within the scope of genomics, there are two overarching tasks we’ll focus on improving: The

acquisition of complete genome sequences for organisms and detection of variations of genomes

among a population.

Though scientists have been advancing the lab methods for sequencing genomes for almost

four decades, no method today can sequence entire chromosomes. Genomic DNA still must be

sheared into fragments small enough for available technology to sequence (currently approx 100-

10,000 base pairs), and then an assembly process used to reconstruct the original genome sequence

by joining related fragments’ strings (called reads) based on their similar substrings [2, 3].

The question naturally arises for how we can find these similar regions between reads, espe-

cially in the presence of noise such as read errors. An alignment is a relationship between two

strings which may not exactly match each other. As such, alignments are an effective measure

of similarity [4]. While alignments have many applications, we will first focus our discussion on

alignments as relationships between strings (e.g., genomic data such as reads, the genome itself,

or other sequence data derived from the genome). An alignment can be expressed as a sequence

of edits (insertions, deletions, and substitutions) to convert one string into another. When we align

genomic data, these edits appear either in the presence of read errors when the two strings origi-

nated as reads of a single genome, or in the presence of variation between two genomes otherwise.

Scores are often associated with alignments based on the sum of scores of the edit operations which

compose alignments. A good scoring alignment between two strings can serve as an indicator that

they may share a common genomic origin.

2

Often the scoring scheme allows penalty free runs of insertions or deletions at one or more ends

of a sequence, allowing for the fact that two strings may both cover a shared region of a genome

but each string also covering a portion the other did not. If opposing ends of the two sequences

are allowed not to match in a penalty free manner, it is called semi-global alignment and is the

expected case for two reads that overlap the same locus but have different start and end positions.

Dynamic programming based algorithms can be used to find the optimal alignment between

two strings under some scoring scheme; however, this is typically formulated as an O(mn) prob-

lem where m and n are the lengths of the strings. While this running time is not necessarily a

problem between a single pair of strings, we’re often interested in all high scoring alignments be-

tween all pairs of strings. Computing this would entail running dynamic programming O(|R|2)

times where R is the set of all reads, making the composition of these running times far too time

consuming for all but the smallest genomes. Thus other methods we’ll explore later often replace

dynamic programming based alignment techniques.

When the objective is to recover a complete genome sequence given a set of reads, it is neces-

sary to find similar regions between reads such that we can reconstruct the genomic regions where

the reads originate. There are two paradigms in active use for this: overlap-layout-consensus based

and de Bruijn graph based.

Overlap layout consensus assembly works by finding alignments between pairs of reads, repre-

senting those alignments in a graph where reads form nodes and alignments form edges, and then

finding Hamiltonian tours [5].

De Bruijn graph based assemblers chop reads up into a series of overlapping substrings of

length k called k-mers [6]. k-mers are subdivided into a (k− 1)-mer prefix and (k− 1)-mer suffix.

Each (k − 1)-mer becomes a node in a graph, with the original k-mer becoming a directed edge

connecting them. All vertices with the same (k − 1)-mer label are then glued together. When

vertices with the same (k − 1)-mer label originate from different reads, the glued node is how a

similar region between those reads is represented. Thus gluing (k − 1)-mers takes the place of

finding alignments between reads. This graph is then traversed, finding Eularian tours.

3

In the ideal case, either method could reconstruct a genome from reads given enough resources.

However, this task is complicated in practice by the fact that genomes contain repeated regions.

This means that two reads that appear to share a similar substring may actually have been read

from different loci (or locations) in the genome. Thus for either assembly approach, repeats in the

genome cause read data originating from disparate loci to have a spurious relation in an assembly

graph (either glued together, becoming one node in the de Bruijn graph, or having an alignment

edge in the overlap-layout-consensus graph). These coincidental alignment relations introduce

cycles in the graph. Such cycles can make it impossible to unambiguously determine how to

reconstruct the original genome - while the original genome sequence can be found as one specific

walk through either graph, it’s typically not possible to determine which of many possible walks

in an assembly graph represents the true genome path, so assembly tools emit those non-branching

paths which can be inferred with high confidence to be contiguous regions of the genome. These

paths spell strings known as contigs.

1.1.1 FM-Index

As mentioned previously, finding alignments by means of pairwise dynamic programming can

be too computationally expensive for all but the smallest genomes. However, with relatively error-

free strings (either because an error correction procedure has been run, or the strings are small

enough to often avoid errors, or the sequencing technology is highly accurate) another alternative

to dynamic programming based alignment is to use a data structure called a suffix array for finding

predominantly identical common substrings. Conceptually, this is an array consisting of all the

suffixes of a string in sorted order [7]. Associated with each element in the array is the index in the

original string where that element’s suffix begins. This can be efficiently implemented in practice.

For example, in the C programming language, the suffix array can be represented as an array of

either pointers or offsets into the original string, avoiding the redundancy of storing each suffix

separately. Any string that matches the prefix of some suffix of the original string of length n can

then be found by binary search in time O(log n).

4

Formally, we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of |X| = n symbols drawn from

the alphabet Σ = [0..σ − 1]. For i = 1, . . . , n we write X[i..n] to denote the suffix of X of length

n− i+ 1, that is X[i..n] = X[i]X[i+ 1] . . .X[n]. Similarly, we write X[1..i] to denote the prefix of

X of length i. X[i..j] is the substring X[i]X[i+1] . . .X[j] of X that starts at position i and ends at j.

Suffix arrays and suffix array intervals.

The suffix array [8] SAX (we drop subscripts when they are clear from the context) of a string

X is an array SA[1..n] which contains a permutation of the integers [1..n] such that X[SA[1]..n] ≺

X[SA[2]..n] ≺ · · · ≺ X[SA[n]..n]. In other words, SA[j] = i if and only if X[i..n] is the j th suffix

of X in lexicographical order. Here, ≺ denotes lexicographic precedence.

A clever data structure known as an FM-index is often used as a memory efficient alternative

to a suffix array. To explain this structure, we will start with a conceptual model. The source

string has a special out-of-alphabet symbol (e.g., ‘$’) appended to it. Then all possible rotations of

this string are created and stacked vertically as rows in a matrix. The rows of this matrix are then

sorted, yielding a matrix similar to the suffix array. The string comprising the last column of this

matrix is known as the Burrows-Wheeler transform (BWT) [9] of the source string.

Formally, for a string X, let F be the list of X’s characters sorted lexicographically by the

suffixes starting at those characters, and L be the list of X’s characters sorted lexicographically by

the suffixes starting immediately after those characters. (The names F and L are standard for these

lists.) If Y[i] is in position p in F then Y[i − 1] is in position p in L. Moreover, if Y[i] = Y[j]

then Y[i] and Y[j] have the same relative order in both lists; otherwise, their relative order in F is

the same as their lexicographic order. This means that if Y[i] is in position p in L then (assuming

arrays are indexed from 0) in F it is in position

|{h : Y[h] ≺ Y[i]}|+ |{h : L[h] = Y[i], h ≤ p}| − 1 .

5

Finally, notice that the last character in X always appears first in L. It follows that we can recover

X from L, and thus L is the famous Burrows-Wheeler Transform (BWT) [10] of X. For an example

string “catgcat$”, the Burrows-Wheeler transform is “tccg$taa”.

More succinctly, the Burrows-Wheeler Transform [10] BWT[1..n] is a permutation of X such

that BWT[i] = X[SA[i]− 1] if SA[i] > 1 and $ otherwise.

The BWT has a number of useful properties. If the source string has repeats, then the sorted

rotations will naturally position all the repeated suffixes sharing the same prefix in a contiguous

run of rows. All of those same suffixes without their first character will also be in a contiguous

run of rows, and since each row is a rotation, all the first characters we considered initially will

be found in the last column as a run of the repeated character. Runs of repeated characters can be

compressed by various means, such as run length encoding where the repeated character and the

length of the run are stored instead of the repeated instances of that character. Thus, the BWT of a

string containing repeats can be represented in less memory than the original string.

Note that in practice, the conceptual BWT matrix outlined above does not need to be con-

structed to get the BWT of the text; one can simply sort all the suffixes and take the character

that precedes each suffix. This sequence of characters is then equivalent to the last column of our

conceptual model since they are rotations in the matrix.

Additionally, by adding two auxiliary data structures (Occ: a rank() capable dictionary for the

last matrix column L and S1: a trivial select() capable data structure for the equivalent of the first

matrix column F) to the BWT, an extended data structure known as the aformentioned FM-index

can be constructed. It can allow the BWT to act as a self index into the original string which

allows exact matches to a query string to be found in time linear in the length of the query [11].

This works by finding a succession of intervals in the suffix array (whose elements correspond to

those of the BWT as seen from the Burrows Wheeler matrix) which match progressively longer

suffixes of a query string.

1This is traditionally represented as C

6

Formally, for a string Y, the Y-interval in the suffix array SAX is the interval SA[s..e] that

contains all suffixes having Y as a prefix. The Y-interval is a representation of the occurrences of

Y in X. For a character c and a string Y, the computation of cY-interval from Y-interval is called a

left extension.

Ferragina and Manzini [12] first realized BWT can be used for indexing in addition to compres-

sion. Hence, if we know the range BWT(X)[i..j] is occupied by characters immediately preceding

occurrences of a pattern Y in X, then we can compute the range BWT(X)[i′..j′] occupied by char-

acters immediately preceding occurrences of cY in X, for any character c, since

s′ = |{h : X[h] ≺ c}|+ |{h : X[h] = c, h < s}|

e′ = |{h : X[h] ≺ c}|+ |{h : X[h] = c, h ≤ e}| − 1 .

Notice e′ − s′ + 1 is the number of occurrences of cY in S. The essential components of an FM-

index for X are: (1) an array S storing |{h : X[h] ≺ c}| for each character c and, (2) a rank data

structure Occ for BWT(X) that quickly tells us how often any given character occurs up to any

given position. To be able to locate the occurrences of a pattern Y in X (in addition to just counting

them), we can use a sampled suffix array of X and a bitvector indicating the positions in BWT(X)

of the characters preceding the sampled suffixes.

Hence, we define the function rankc(X, i), for string X, symbol c, and integer i, as the number

of occurrences of c in X[1..i]. Rank is used in backward search [12] in order to compute left

extension of a given string, i.e., the previous character.

To support rank queries in backward search, a data structure called a wavelet tree [13] can

be used. It occupies n log σ + o(n log σ) bits of space and supports rank queries in O(log σ)

time. Wavelet trees also support a variety of more complex queries on the underlying string effi-

ciently [13]. One such query we will use in this paper is to return the set Z of distinct symbols

occurring in X[i, j], which takes O(|Z| log σ) time.

7

In the remainder of this text we will look at two broad problems in genomics. In Chapter 2,

we will examine approaches that are useful for validating draft genome assemblies. In Chapter

3, we will examine methods for comparing genomes in large populations. Finally, we’ll conclude

by considering the relationship between the graph based representation of genomic data that were

presented.

8

Chapter 2

Reducing Runtime by Indexing

In this section, we look at applications of the FM-Index which reduce alignment runtime over

competing tools by using the indexing capabilities of sophisticated variations of the FM-Index. In

particular, we consider how an emerging form of genomic data, optically derived restriction maps,

present special challenges but can still be aligned with the FM-Index.

2.1 TWIN: Efficient Indexed Alignment of Contigs to Optical

Maps2

In this section, we look at applying the FM-Index to aligning a consensus form of data, where

the principle challenge to application is that we are dealing with sequences over a large alphabet

and the symbols rarely match exactly. Later, we will build upon the solution explored here to solve

alignment on raw, non-consensus data, which has additional complexities.

2.1.1 Introduction

In this section, we begin our more in depth investigation of succinct data structures. Specifi-

cally, we examine how the FM-Index and wavelet tree can be used to store a compressed index of

a string of integral valued symbols which can be efficiently queried.

Our motivation for this application is as follows. Despite considerable research, de novo

genome assembly, the process of reconstructing long contiguous sequences (contigs) from short

sequence reads, still produces a substantial number of errors [14,15] and is easily misled by repet-

itive regions [16].

2M. Muggli et al. Efficient indexed alignment of contigs to optical maps. In Proceedings WABI, pages 68-81,

2014.

9

One way to improve the quality of assembly is to use secondary information (independent of

the short sequence reads themselves) about the order and orientation of contigs. Optical map-

ping, which constructs ordered genome-wide high-resolution restriction maps, can provide such

information. Optical mapping is a system that works as follows [17, 18]. An ensemble of DNA

molecules adhered to a charged glass plate are elongated by fluid flow. An enzyme is then used

to cleave them into fragments at loci where the enzyme’s recognition sequence occurs. Next, the

remaining fragments are highlighted with fluorescent dye and digitally photographed under a mi-

croscope. Finally, these images are analyzed to estimate the fragment sizes, producing a molecular

map. Since the fragments stay relatively stationary during the aforementioned process, the images

capture their relative order and size [19]. Multiple copies of the genome undergo this process,

and a consensus map is formed that consists of an ordered sequence of fragment sizes, each indi-

cating the approximate number of bases between occurrences of the recognition sequence in the

genome [20].

The raw optical mapping data identified by the image processing is an ordered sequence of

fragment lengths. Hence, an optical map with m fragments can be denoted as ℓ = {ℓ1, ℓ2, . . . , ℓm},

where ℓi is the length of the ith fragment in base pairs. This data can then be converted into a

sequence of locations, each of which determines where a restriction site occurs. We denote the

converted data as follows: L(x) = {L0 < L1 < · · · < Ln}, where ℓi = Li−Li−1 for i = 1, . . . , n,

and L0 and Ln are defined by the original molecule as a segment of the whole genome by shearing.

This latter representation is convenient for algorithmic descriptions. The approximate mean and

standard deviation of the fragment size error rate for current consensus data [21] are zero and 150

bp, respectively. See Figure 2.1 for an illustration of the data produced by this technique. Each

restriction enzyme recognizes a specific nucleotide sequence so a unique optical map results from

each enzyme.Optical maps have recently become commercially available for mammalian-sized

genomes3, allowing them to be used in a variety of applications.

3OpGen (http://www.opgen.com) and BioNano (http://www.bionanogenomics.com) are commercial producers of

optical mapping data.

10

GCTCTTGTCGTCAATGTACTAGCTA

AGTCGTCTTAAGCATATGCTAGGTC

GCTTAAGATGCTGATCTTAAGGAGT

GCTAGCATCTGATGCTACCTAAGTT

GCTCTTGTCGTCAATCTTAAGGCTA

AGTCGTTGCTTAAGTATGCTAGGTC

GCGAGCTATGCTGCTTAAGTCGAGT

GCTTAAGTCTGATGCTAGTCTGAATT

Figure 2.1: An illustration of the data produced by optical mapping. Optical mapping locates and measures

the distance between restriction sites. Analogous to sequence data, optical mapping data is produced for

multiple copies of the same genome, and overlapping single molecular maps are analyzed to produce a map

for each chromosome.

Although optical mapping data has been used for structural variation detection [22], scaffolding

and validating contigs for several large sequencing projects — including those for various prokary-

ote species [23–25], Oryza sativa (rice) [26], maize [27], mouse [28], goat [29], Melopsittacus

Undulatus (budgerigar) [30], and Amborella trichopoda [31] — there exist few non-proprietary

tools for analyzing this data. Furthermore, the currently available tools are extremely slow because

most of them were specifically designed for smaller, prokaryote genomes.

Our Contribution. We present the first index-based method for aligning contigs to an optical

map. We call our tool TWIN to illustrate the association between the assembly and optical map as

two representations of the genome sequence. The first step of our procedure is to in silico digest

the contigs with the set of restriction enzymes, computationally mimicking how each restriction

enzyme would cleave the short segment of DNA defined by the contig. Thus, in silico digested

contigs are miniature optical maps that can be aligned to the much longer (sometimes genome-

wide) optical maps. The objective is to search and align the in silico digested contigs to the correct

location in the optical map. By using a suitably-constructed FM-Index data structure [12] built on

11

the optical map, we show that alignments between contigs and optical maps can be computed in

time that is faster than competing methods by more than two orders of magnitude.

TWIN takes as input a set of contigs and an optical map, and produces a set of alignments.

The alignments are output in Pattern Space Layout (PSL) format, allowing them to be visualized

using any PSL visualization software, such as IGV [32]. TWIN is specifically designed to work

on a wide range of genomes, anything from relatively small genomes, to large eukaryote genomes.

Thus, we demonstrate the effectiveness of TWIN on Yersinia kristensenii, rice, and budgerigar

genomes. Rice and budgerigar have genomes of total sizes 430 Mb and 1.2 Gb, respectively.

Yersinia kristensenii, a bacteria with genome size of 4.6 Mb, is the smallest genome we considered.

Short read sequence data was assembled for these genomes, and the resulting contigs were aligned

to the respective optical map. We compared the performance of our tool with available competing

methods; specifically, the method of Valouev et al. [33] and SOMA [34]. TWIN has superior

performance on all datasets, and is demonstrated to be the only current method that is capable

of completing the alignment for the budgerigar genome in a reasonable amount of CPU time;

SOMA [34] required over 77 days of machine time to solve this problem, whereas, TWIN required

just 35 minutes. Lastly, we verify our approach on simulated E. coli data by showing our alignment

method found correct placements for the in silico digested contigs on a simulated optical map.

TWIN is available for download at http://www.cs.colostate.edu/twin.

Roadmap. We review related tools for the problem in the remainder of this section. Sec-

tion 2.1.2 then sets notation and formally lays the data structural tools we make use of. Sec-

tion 2.1.3 gives details of our approach. We report our experimental results in Section 2.1.4. Fi-

nally, Section 2.1.5 offers reflections and some potentially fruitful avenues future work may take.

Related Work. The most recent tools to make use of optical mapping data in the context

of assembly are AGORA [35] and SOMA [34]. AGORA [35] uses the optical map informa-

tion to constrain de Bruijn graph construction with the aim of improving the resulting assem-

bly. SOMA [34] is a scaffolding method that uses an optical map and is specifically designed for

12

short-read assemblies. SOMA requires an alignment method for scaffolding and implements an

O(n2m2)-time dynamic programming algorithm. Gentig [20], and software developed by Valouev

et al. [33] also use dynamic programming to address the closely related task of finding alignments

between optical maps. Gentig is not available for download. BACop [27] also uses a dynamic

programming algorithm and corresponding scoring scheme that gives more weight to contigs with

higher fragment density. Antoniotti et al. [36] consider the unique problem of validating an optical

map by using assembled contigs. This method assumes the contigs are error-free. Optical mapping

data was produced for Assemblathon 2 [37].

2.1.2 Background

Optical Mapping. From a computational point of view, restriction mapping (by optical or

other means) is a process that takes two strings: a genome A[1, n] and a restriction sequence B[1, b],

and produces an array (string) of integers M[1,m], such that M[i] = j if and only if A[j..j+ b] = B

is the ith occurrence of B in A.

For example, if we let B = act and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A = a t a c t t a c t g g a c t a c t a a a c t

then we would have

M = 3, 7, 12, 15, 20.

It will also be convenient to view M slightly differently, as an array of fragment sizes, or

distances between occurrences of B in A (equivalently differences between adjacent values in M).

We denote this fragment size domain of M, as the array R[1,m], defined such that R[i] = (M[i] −

M[i − 1]), with R[1] = M[1] − 1. In words, R contains the distance between occurrences of B in

A. Continuing with the example above, we have

R = 2, 4, 5, 3, 5.

13

Or if we let B be act and A = atacttactggactactaaact then we would have M =

3, 7, 12, 15, 20 and R = 2, 4, 5, 3, 5.

2.1.3 Methods

We find alignments in four steps. First, we convert contigs from the sequence domain to the

optical map domain through the process of in silico digestion. Second, an FM-index is built from

the sequence of optical map fragment sizes. Third, we execute a modified version of the FM-index

backward search algorithm discussed in Subsection 1.1.1 that allows inexact matches. As a result

of allowing inexact matches, there may be multiple fragments in an optical map that could each

be a reasonable match for an in silico digested fragment, and in order to include all of these as

candidate matches, backtracking becomes necessary in the backward search. For every backward

search path that maintains a non-empty interval for the entire query contig, we emit the alignments

denoted by the final interval.

Converting Contigs to the Optical Map Domain

In order to find alignments for contigs relative to the optical map, we must first convert the

strings of bases into the domain of optical maps, that is, strings of fragment sizes. We do this by

performing an in silico digest of each contig, which is performing a linear search over its bases,

searching for occurrences of the enzyme recognition sequence and then computing the distances

between adjacent restriction sites. These distances are taken to be equivalent to the fragment sizes

that would result if the contig’s genomic region underwent digestion in a lab. Additionally, the end

fragments of the in silico digested contig are removed, as the outside ends are most likely not a

result of the optical map restriction enzyme digestion, but rather an artifact of the sequencing and

assembly process.

14

Building an FM-index from Optical Mapping Data

We construct the FM-index for ℓ, the string of fragment sizes. The particular FM-index im-

plementation we use is the SDSL-Lite4 [38] library’s compressed suffix array with integer wavelet

tree data structure5.

In preparation for finding alignments, we also keep two auxiliary data structures. The first is

the suffix array, SAF , corresponding to our FM-index, which we use to report the positions in ℓ

where alignments of a contig occur. While we could decode the relevant entries of SA on demand

with the FM-index in O(p) time, where p is the so-called sample period of the FM-index, storing

SA explicitly significantly improves runtime at the cost of a modest increase in memory usage.

The second data structure we store is M, which allows us to map from positions in ℓ to positions in

the original genome in constant time.

Alignment of Contigs Using the FM-index

After constructing the FM-index of the optical map, we find alignments between the optical

map and the in silico digested contigs.

Specifically, we try to find substrings of the optical map fragment sequence ℓ that are similar to

the string of each in silico digested contig’s non-end fragments F satisfying an alignment goodness

metric suggested by Nagarajan et al. [34] 6:

∣

∣

∣

t
∑

i=s

Fi −
v

∑

j=u

ℓj

∣

∣

∣
≤ Fσ

√

√

√

√

v
∑

j=u

σ2
j ,

where a parameter Fσ will affect the precision/recall tradeoff.

This computation is carried out using a modified FM-index backward search. A simplified,

recursive version of our algorithm for finding alignments is shown in Figure 2.2. The original

4https://github.com/simongog/sdsl-lite.

5The exact revision we used was commit ae42592099707bc59cd1e74997e635324b210115.

6N.B. Alternative goodness metrics could be substituted. They must satisfy the property that pairs of strings

considered to align well are composed of substrings that are also considered to align well would also work.

15

FM-index backward search proceeds by finding a succession of intervals in the suffix array of

the original text that progressively match longer and longer suffixes of the query string, starting

from the rightmost symbol of the query. Each additional symbol in the query string is matched

in a process taking two arguments: 1) a suffix array interval, the Y-interval, corresponding to

the suffixes in the text, ℓ, whose prefix matches a suffix of the query string, and 2) an extension

symbol c. The process returns a new interval, the cY-interval, where a prefix of each text suffix

corresponding to the new interval is a left extension of the previous query suffix. This process is

preserved in TWIN, and is represented by the function BackwardSearchOneSymbol in the TWIN

algorithm, displayed in Figure 2.2.

Since the optical map fragments include error from the measurement process, it cannot be

assumed an in silico fragment size will exactly match the optical map fragment size from the same

locus in the genome. To accommodate these differences, we determine a set of distinct candidate

match fragment sizes, D, each similar in size to the next fragment to be matched in our query.

These candidates are drawn from the interval of the BWT currently active in our backward search.

We do this by a wavelet tree traversal function provided by SDSL-Lite, which implements the

algorithm described in [13] and takes O(|D| log(f/∆)) time. This is represented by the function

RestrictedUniqueRangeValues in Figure 2.2. We emphasise that, due to the large alphabet of ℓ,

the wavelet tree’s ability to list unique values in a range efficiently is vital to overall performance.

Unlike in other applications where the FM-index is used for approximate pattern matching (e.g.

read alignment), we cannot afford a bruteforce enumeration of the alphabet at each step in the

backward search.

These candidates are chosen to be within a reasonable noise tolerance, t, based on assumptions

about the distribution of optical measurement error around the true fragment length. Since there

may be multiple match candidates in the BWT interval of the optical map for a query fragment, we

extend the backward search with backtracking so each candidate size computed from the wavelet

tree is evaluated. That is, for a given in silico fragment size (i.e. symbol) c, every possible candidate

fragment size, c′, that can be found in the optical map in the range c− t . . . c+ t and in the interval

16

s . . . e (of the BWT) for some tolerance t is used as a substitute in the backward search. Each

of these candidates is then checked to ensure that a left extension would still satify the goodness

metric, and then used as the extension symbol in the backward search. So it is actually a set of

c′Y-intervals that is computed as the left extension in TWIN. Additionally, small DNA fragments

may not adhere sufficiently to the glass surface and can be lost in the optical mapping process,

so we also branch the backtracking search both with and without small in silico fragments to

accommodate the uncertainty.

Each time the backward search algorithm successfully progresses throughout the entire query

(i.e. it finds some approximate match in the optical map for each fragment in the contig query), we

take the contents of the resulting interval in the SA as representing a set of likely alignments.

Output of Alignments in PSL format

For each in silico digested contig that has an approximate match in the optical map, we emit

the alignment, converting positions in the fragment string ℓ to positions in the genome using the M

table. We provide a script to convert the human readable output into PSL format.

2.1.4 Results

We evaluated the performance of TWIN against the best competing methods on Yersinia kris-

tensenii, rice and budgerigar. These three genomes were chosen because they have available se-

quence and optical mapping data and are diverse in size. For each dataset, we compared the

runtime, peak memory usage, and the number of contigs for which at least one alignment was

found for TWIN, SOMA [34], and the software of Valouev et al. [33]. Peak memory was measured

as the maximum resident set size as reported by the operating system. Runtime is the user process

time, also reported by the operating system. SOMA [34] v2.0 was run with example parameters

provided with the tool and the software of Valouev et al. [33] was run with its scoring parameters

object constructed with arguments (0.2, 2, 1, 5, 17.43, 0.579, 0.005, 0.999, 3, 1). TWIN was run

with Dσ = 4, t = 1000, and [250 . . . 1000] for the range of small fragments. Gentig [20] and

BACop [27] were not available for download so we did not test the data using these approaches.

17

procedure MATCH(s,e,q,h)

if h = −1 then

⊲ Recursion base case. Suffix array indexes s..e denote original query matches.

Emit(s, e)
else

⊲ The next symbol to match, c, is the last symbol in the query string.

c← q[h]
⊲ Find the approximately matching values in BWT[s . . . e], within tolerance t.
D ← RestrictedUniqueRangeValues(s, e, c+ t, c− t)
⊲ Let c′ be one possible substitute for c drawn from D
for all c′ ∈ D do

⊲ If Equation 1 is still satisified with c′ and c, ...

if

∣

∣

∣

∑|q|−h

i=0 SA[s]i + c′ −
∑|q|−1

j=h qj − c
∣

∣

∣
≤ Fσ

√

∑|q|−h

j=0 σ2
j then

⊲ ... determine the suffix array range of the left extension of c′.
s′, e′ ← BackwardSearchOneSymbol(s, e, c′)
⊲ Recurse to attempt to match the currently unmatched prefix.

MATCH(s′, e′, q, h− 1)

Figure 2.2: MATCH(s, e, q, h) Provided a suffix array start index s and end index e, query string q, and

rightmost unmatched query string index h (initially s = 1, e = m, h = |q| − 1), emit alignments of an in

silico digested contig to an optical map.

The sequence data was assembled for Yersinia kristensenii, rice and budgerigar by using vari-

ous assemblers. The relevant assembly statistics are given in Table 2.1. An important statistic in

this table is the number of contigs that have at least two restriction sites, since contigs with fewer

than two are unable to be aligned meaningfully by any method, including TWIN. This statistic

was computed to reveal cases of ambiguity in placement from lack of information. Indeed, As-

semblathon 2 required there to be nine restriction sites present in a contig to align it to the optical

mapping data [37]. All experiments were performed on Intel x86-64 workstations with sufficient

RAM to avoid paging, running 64-bit Linux.

Table 2.1: Assembly and genome statistics for Yersinia kristensenii, rice and budgerigar. The assembly

statistics were obtained from Quast. [39].

Genome N50 Genome Size No. of Contigs with ≥ 2 restriction sites

Y. kristensenii 30,719 4.6 Mb 92

Rice 5,299 430 Mb 3,103

Budgerigar 77,556 1.2 Gb 10,019

18

The experiments for Yersinia kristensenii, rice and budgerigar illustrate how each of the pro-

grams’ running time scale as the size of the genome increases. However, due to the possibility

of mis-assemblies in these draft genomes, comparing the actual alignments could possibly lead to

erroneous conclusions. Therefore, we will verify the alignments using simulated E. coli data. See

Subsection 2.1.4 for this experiment.

Performance on Yersinia kristensenii

The sequence and optical map data for Yersinia kristensenii are described by Nagarajan et

al. [34]. The Yersinia kristensenii ATCC 33638 reads were generated using 454 GS 20 sequenc-

ing and assembled using SPAdes version 3.0.0 [40] using default parameters. Contigs from this

assembly were aligned against an optical map of the bacterial strain generated by OpGen using

the AfIII restriction enzyme. There are approximately 1.4 million single-end reads for this dataset,

and they were obtained from the NCBI Short Read Archive (accession SRX013205). Of the 92

contigs that could be aligned to the optical map, the software of Valouev et al. aligned 91 contigs,

SOMA aligned 54 contigs, and TWIN aligned 61 contigs. Thus, TWIN found more alignments than

SOMA, and did so faster. It should be noted that, for this dataset, all three tools had reasonable

runtimes. However, while the software of Valouev et al. found more alignments, our validation ex-

periments (below) suggest these results may favor recall over precision, and many of the additional

alignments may not be credibled.

Performance on Rice Genome

The second dataset consists of approximately 134 million 76 bp paired-end reads from Oryza

sativa Japonica rice, generated by Illumina, Inc. on the Genome Analayzer (GA) IIx platform, as

described by Kawahara et al. [41]. These reads were obtained from the NCBI Short Read Archive

(accession SRX032913) and assembled using SPAdes version 3.0.0 [40] using default parameters.

The optical map for rice was constructed by Zhou et al. [26] using SwaI as the restriction enzyme.

This optical map was assembled from single molecule restriction maps into 14 optical map contigs,

19

labeled as 12 chromosomes, with chromosome labels 6 and 11 both containing two optical map

contigs.

Again, TWIN found alignments for more contigs than SOMA on the rice genome. SOMA

and TWIN found alignments for 2,434, and 3,098 contigs, respectively, out of 3,103 contigs that

could be aligned to the optical map. However, while SOMA required over 29 minutes to run, TWIN

required less than one minute. The software of Valouev executed faster than SOMA (taking around

3 minutes), though still several times slower than TWIN on this modest sized genome.

Performance on Budgerigar Genome

The sequence and optical map data for the budgerigar genome were generated for the Assem-

blathon 2 project of Bradnam et al. [37]. Sequence data consists of a combination of Roche 454,

Illumina, and Pacific Biosciences reads, providing 16x, 285x, and 10x coverage (respectively)

of the genome. All sequence reads are available at the NCBI Short Read Archive (accession

ERP002324). For our analysis we consider the assembly generated using Celera [42], which was

completed by the CBCB team (Koren and Phillippy) as part of Assemblathon 2 [37]. The opti-

cal mapping data was created by Zhou, Goldstein, Place, Schwartz, and Bechner using the SwaI

restriction enzyme and consists of 92 separate pieces. As with the two previous data sets, TWIN

found alignments for more contigs than SOMA on the budgerigar genome. SOMA and TWIN

found alignments for 9,668, and 9,826 contigs, respectively, out of 10,019 contigs that could be

aligned to the optical map. However, SOMA required over 77 days of CPU time and TWIN re-

quired 35 minutes. The software of Valouev et al. returned 9,814 alignments and required over an

order of magnitude (6.5 hours) of CPU time. Hence, TWIN was the only method that efficiently

aligned the in silico digested budgerigar genome contigs to the optical map. It should be kept in

mind that the competing methods were developed for prokaryote genomes and so we are repurpos-

ing them at a scale for which they were not designed. Lastly, the amount of memory used by all

the methods on all experiments was low enough for them to run on a standard workstation.

We were forced to parallelize SOMA due to the enormous amount of CPU time SOMA required

for this dataset. To accomplish this task, the FASTA file containing the contigs was split into 300

20

different files, and then IPython Parallel library was used to invoke up to two instances of SOMA

on each machine from a set of 150 machines. Thus, when using a cluster with up to 300 jobs

concurrently, the alignment for the budgerigar genome took about a day of wall clock time. In

contrast, we ran the software of Valouev et al. and TWIN with a single thread running on a single

core. However, it should be noted that the same parallelization could have been accomplished for

both these software methods too. Also, even with parallelization of SOMA, TWIN is still an order

of magnitude faster than it.

Table 2.2: Comparsion of the alignment results for TWIN and competing method. The performance

of TWIN was compared against SOMA [34] and the method of Valouev et al. [33] using the assembly

and optical mapping data for Yersinia Kristensenii, rice, and budgerigar. Various assemblers were used to

assemble the data for these species. The relevant statistics and information concerning these assemblies and

genomes can be found in Table 2.1. The peak memory is given in megabytes (mb). The running time is

reported in seconds (s), minutes (m), hours (h), and days.

Genome Program Memory Time Aligned Contigs

Y. Kristensenii

Valouev et al. 1.81 .17 s 91

SOMA 1.71 7.32 s 54

TWIN 18 .06 s 65

Rice

Valouev et al. 11.25 2 m 57 s 2,676

SOMA 7.94 29 m 38 s 2,434

TWIN 18.25 50 s 3,098

Budgerigar

Valouev et al. 390 6.5 h 9,814

SOMA 380.95 77.2 d 9,668

TWIN 127.112 35 m 9,826

Alignment Verification

We compared the alignments given by TWIN against the alignments of the contigs of an E.

coli assembly to the E. Coli (str. K-12 substr. MG1655) reference genome. Our prior experi-

ments involved species for which the reference genome may have regions that are mis-asssembled

and therefore, contig alignments to the reference genome may be inaccurate and cannot be used

for comparison and verification of the in silico digested contig alignment. The E. coli reference

21

genome is likely to contain the fewest errors and thus, is the one we used for assembly verification.

The sequence data consists of approximately 27 million paired-end 100 bp reads from E. coli (str.

K-12 substr. MG1655) generated by Illumina, Inc. on the Genome Analayzer (GA) IIx platform,

and was obtained from the NCBI Short Read Archive (accession ERA000206), and was assembled

using SPAdes version 3.0.0 [40] using default parameters. This assembly consists of 160 contigs;

50 of which contain two restriction sites, the minimum required for any possible optical alignment,

and complete alignments with minimal (<800 bp) total in/dels relative to the reference genome.

We simulated an optical map using the reference genome for E. coli (str. K-12 substr. MG1655)

since there is no publicly available one for this genome.

The 50 contigs that contained more than two restriction sites were aligned to the reference

genome using BLAT [43]. These same contigs were then in silico digested and aligned to the

optical map using TWIN. The resulting PSL files were then compared. TWIN found alignment

positions within 10% of those found by BLAT for all 50 contigs, justifying that our method is

finding correct alignments. We repeated this verification approach with both SOMA and the soft-

ware from Valouev. All of SOMA’s reported alignments had matching BLAT alignments, while of

the 49 alignments the software from Valuoev reported, only 18 could be matched with alignments

from BLAT.

2.1.5 Discussion and Conclusions

We demonstrated that TWIN, an index-based algorithm for aligning in silico digested contigs

to an optical map, gave over an order of magnitude improvement to runtime without sacrific-

ing alignment quality. Our results show that we are able to handle genomes at least as large as

the budgerigar genome directly, whereas SOMA cannot feasibly complete the alignment for this

genome in a reasonable amount of time without significant parallelization, and even then is orders

of magnitude slower than TWIN. Indeed, given its performance on the budgerigar genome, and its

O(m2n2) time complexity, larger genomes seem beyond SOMA. For example, the loblolly pine

22

tree genome, which is approximately 20 Gb [44], would take SOMA approximately 84 machine

years, which, even with parallelization, is prohibitively long.

Optical mapping is a relatively new technology, and thus, with so few algorithms available

for working with this data, we feel there remains good opportunities for developing more efficient

and flexible methods. Dynamic programming optical map alignment approaches are still important

today, as the assembly of the consensus optical maps from the individually imaged molecules often

has to deal with missing or spurious restriction sites in the single molecule maps when enzymes fail

to digest a recognition sequence or the molecule breaks. Though coverage is high (e.g. about 1,241

Gb of optical data was collected for the 2.66 Gb goat genome), there may be cases where missing

restriction site errors are not resolved by the assembly process. In these rare cases (only 1% of

alignments reported by SOMA on parrot contain such errors) they will inhibit TWIN’s ability to

find correct alignments. In essence, TWIN is trading a small degree of sensitivity for a huge speed

increase, just as other index based aligners have done for sequence data. Sirén et al. [45] recently

extended the Burrows-Wheeler transform (BWT) from strings to acyclic directed labeled graphs

and to support path queries. In Section 2.2 we’ll examine an adaptation of this method for optical

map alignment that allows for the efficient handling of missing or spurious restriction sites.

In later work [46] we showed an ensemble of optical map alignments produced by TWIN and

alignments of reads to contigs could produce superior statistical performance on misassembly de-

tection.

2.2 Kohdista: A Succinct Solution to Raw Optical Map Align-

ment7

In this section, we build on the work from TWIN to solve a noisier form of optical map-

ping data. In practice, the method developed here could aid approaches like misSEQuel because

7Martin D. Muggli, Simon J. Puglisi, and Christina Boucher. A Succinct Solution to Rmap Alignment. In Laxmi

Parida and Esko Ukkonen, editors, 18th International Workshop on Al- gorithms in Bioinformatics (WABI 2018),

volume 113 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1âĂŞ12:16, Dagstuhl, Germany,

2018. Schloss DagstuhlâĂŞ Leibniz-Zentrum fuer Informatik.

23

misSEQuel takes a whole genome optical map as input, but these themselves must be assembled

by an overlap-layout-consensus process from the data described in this section.

2.2.1 Introduction

Genome-wide optical maps are ordered high-resolution restriction maps that give the position

of occurrence of restriction cut sites corresponding to one or more restriction enzymes. These

genome-wide optical maps are assembled using an overlap-layout-consensus approach using raw

optical map data, which are referred to as Rmaps. Hence, Rmaps are akin to reads in genome

sequencing. To date, however, there is no efficient, non-proprietary method for finding pairwise

alignments between Rmaps, which is the first step in assembling genome-wide maps.

Several existing methods are superficially applicable to Rmap pairwise alignments but all pro-

grams either struggle to scale to even moderate size genomes or require significant further adap-

tation to the problem. Several methods exhaustively evaluate all pairs of Rmaps using dynamic

programming. One of these is the method of Valouev et al. [33], which is capable of solving the

problem exactly but requires over 100,000 CPU hours to compute the alignments for rice [47]. The

others are SOMA [34] and MalignerDP [48] which are designed only for semi-global alignments

instead of overlap alignments, which are required for assembly.

Other methods reduce the number of map pairs to be individually considered by initially finding

seed matches and then extending them through more intensive work. These include OMBlast [49],

OPTIMA [50], and MalignerIX [48]. These, along with MalignerDP, were designed for a related

alignment problem of aligning consensus data but cannot consistently find high quality Rmap

pairwise alignments in reasonable time as we show later. This is unsurprising since these methods

were designed for either already assembled optical maps or in silico digested sequence data for

one of their inputs, both having a lower error rate than Rmap data.

Our contributions. In this paper, we present a fast, error-tolerant method for performing

pairwise Rmap alignment that makes use of a novel FM-index based data structure. Although

the FM-index can naturally be applied to short read alignment [1, 51], it is nontrivial to apply it

24

to Rmap alignment. The difficulty arises from: (1) the abundance of missing or false cut sites,

(2) the fragment sizes require inexact fragment-fragment matches (e.g. 1,547 bp and 1,503 bp

represent the same fragment), (3) the Rmap sequence alphabet consists of all unique fragment

sizes and is so extremely large (e.g., over 16,000 symbols for the goat genome). The second

two challenges render inefficient the standard FM-index backward search algorithm, which excels

at exact matching over small alphabets. The first (and most-notable) challenge requires a more

complex index-based data structure be used to create an aligner that is robust for insertion and

deletion of cut sites. To overcome the mismatch cut site challenge while still accommodating the

other two, we develop KOHDISTA, an index-based Rmap alignment program that is capable of

finding all pairwise alignments in large eukaryote organisms.

We first abstract the problem to that of approximate-path matching in a directed acyclic graph

(DAG). The KOHDISTA method then indexes a set of Rmaps represented as a DAG, using a modi-

fied form of the generalized compressed suffix array (GCSA), which is a derivative of the FM-index

developed by Sirén et al. [45]. The principle insight of our work is that while GCSA is able to effi-

ciently match all similar paths concurrently, it was designed for indexing variations observed in a

collection of sequences. In contrast, our work indexes variations that are instead speculative, based

on the Rmap error profile. Lastly, we demonstrate that challenges posed by the inexact fragment

sizes and alphabet size can be overcome, specifically in the context of the GCSA, via careful use

of a wavelet tree [13, 52].

We verify our approach on simulated E. coli Rmap data by showing that KOHDISTA achieves

similar sensitivity and specificity to Valouev et al., and with more permissive alignment acceptance

criteria 90% of Rmap pairs simulated from overlapping genomic regions. We also show the utility

of our approach on larger eukaryote genomes by demonstrating that existing published methods

require more than 151 hours of CPU time to find all pairwise alignments in the plum Rmap data;

whereas, KOHDISTA requires 31 hours. Thus, we present the first fully-indexed method capable of

finding all match patterns in the pairwise Rmap alignment problem.

25

2.2.2 Background

More Details of Optical Mapping.

A detail omitted in TWIN is that the whole genome restriction map R is actually a consensus

sequence formed from millions of erroneous Rmap sequences. The optical mapping system pro-

duces millions of Rmaps for a single genome. It is performed on many cells of an organism and

for each cell there are thousands of Rmaps (each at least 250 Kbp in length in publicly available

data). These Rmaps must then be assembled to produce a genome-wide optical map which can

then be used in downstream tools such as TWIN. Like the final R sequence, each Rmap is an array

of lengths — or fragment sizes — between occurrences of B in A.

There are three types of errors that an Rmap (and hence with lower magnitude and frequency,

also the consensus map) can contain: (1) missing and false cuts, which are caused by an enzyme

not cleaving at a specific site, or by random breaks in the DNA molecule, respectively; (2) missing

fragments that are caused by desorption, where small (< 1 Kbp) fragments are lost and so not

detected by the imaging system; and (3) inaccuracy in the fragment size due to varying fluorescent

dye adhesion to the DNA and other limitations of the imaging process. Continuing again with the

example above where R = 2, 4, 5, 3, 5 is the error-free Rmap: an example of an Rmap with the

first type of error could be R′ = 6, 5, 3, 5 (the first cut site is missing so the fragment sizes 2, and

4 are summed to become 6 in R′); an example of a Rmap with the second type of error would be

R′′ = 2, 4, 3, 5 (the third fragment is missing); and lastly, the third type of error could be illustrated

by R′′′ = 2, 4, 7, 3, 5 (the size of the third fragment is inaccurately given).

Frequency of Errors. In the optical mapping system, there is a 20% probability that a cut site is

missed and a 0.15% probability of a false break per Kbp, i.e., error type (1) occurs in a fragment.

Popular restiction enzymes in optical mapping experiments recognize a 6 bp sequence giving an

expected cutting density of 1 per 4096 bp. At this cutting density, false breaks are less common

than missing restriction sites (approx. 0.25 ∗ .2 = .05 for missing sites vs. 0.0015 for false sites

per bp). The inaccuracy of the fragment sizes, i.e, error type (3), follows a normal distribution with

mean and variance assumed to be 0 bp and ℓσ2 (σ = .58 kbp), respectively [33].

26

2.2.3 The Pairwise Rmap Alignment Problem

Given a genome A[1, n] and a restriction enzyme’s recognition sequence B[1, b], the optical

mapping system produces Rmaps, which are arrays of lengths—or fragment sizes—between oc-

currences of B in A. The background section provides details on the optical mapping process.

Producing Rmap data is an error prone process. Thus, three types of errors can occur: (1) missing

and false cuts that delimit fragments; (2) missing fragments; and (3) inaccuracy in the fragment

sizes. For example, let R = 2, 4, 5, 3, 5 be an error-free Rmap, then an example of an Rmap with

the first type of error could be R′ = 6, 5, 3, 5 (the first cut site is missing so the fragment sizes

2, and 4 are summed to become 6 in R′); an example of a Rmap with the second type of error

would be R′′ = 2, 4, 3, 5 (the third fragment is missing); and lastly, the third type of error could be

illustrated by R′′′ = 2, 4, 7, 3, 5 (the size of the third fragment is inaccurately given)

The pairwise Rmap alignment problem aims to align one Rmap (the query) Rq against the

set of all other Rmaps in the dataset (the target). We denote the target database as R1 . . .Rn,

where each Ri is a sequence of mi fragment sizes, i.e, Ri = [fi1, .., fimi
]. An alignment be-

tween two Rmaps is a relation between them comprising groups of zero or more consecutive

fragment sizes in one Rmap associated with groups of zero or more consecutive fragments in

the other. For example, given Ri = [4, 5, 10, 9, 3] and Rj = [10, 9, 11] one possible alignment is

{[4, 5], [10]}, {[10], [9]}, {[9], [11]}, {[3], []}. A group may contain more than one fragment (e.g.

[4, 5]) when the restriction site delimiting the fragments is absent in the corresponding group of

the other Rmap (e.g [10]). This can occur if there is a false restriction site in one Rmap, or there

is a missing restriction site in the other. Since we cannot tell from only two Rmaps which of these

scenarios occurred, for the purpose of our remaining discussion it will be sufficient to consider

only the scenario of missed (undigested) restriction sites.

2.2.4 Methods

We now describe the algorithm behind KOHDISTA. Three main insights enable our index-based

aligner for Rmap data: 1) abstraction of the alignment problem to a finite automaton; 2) use of the

27

GCSA for storing and querying the automaton; and 3) modification of backward search to use a

wavelet tree in specific ways to account for the Rmap error profile.

Finite Automaton

Continuing with the example in the background section, we want to align R′ = 6, 5, 3, 5 to

R′′′ = 2, 4, 7, 3, 5 and vice versa. To accomplish this we cast the Rmap alignment problem to that

of matching paths in a finite automaton. A finite automaton is a directed, labeled graph that defines

a language, or a specific set of sequences composed of vertex labels. A sequence is recognized by

an automaton if it contains a matching path: a consecutive sequence of vertex labels equal to the

sequence. We represent the target Rmaps as an automaton and the query as a path in this context.

The automaton for our target Rmaps can be constructed as follows. First concatenate the

R1 . . .Rn together into a single sequence with each Rmap separated by a special symbol which

will not match any query symbol. Let R∗ denote this concatenated sequence. Hence, R∗ =

[f11, .., f1m1
, . . . , fn1, .., fnmn

]. Then, construct an initial finite automaton A = (V,E) for R∗ by

creating a set of vertices vi1..v
i
m, one vertex labeled with each fragment length and edges connecting

them. Also, introduce to A a starting vertex v1 labeled with # and a final vertex vf labeled with the

character $. All other vertices in A are labeled with integral values. This initial set of vertices and

edges is called the backbone. The backbone by itself is only sufficient for finding alignments with

no missing cut sites in the query. The backbone of an automaton constructed for a set containing

R′ and R′′ would be #, 6, 5, 3, 5, 999, 2, 4, 3, 5$, using 999 as an unmatchable value. Next, extra

vertices (“skip vertices”) and extra edges are added to A to allow for the automaton to accept all

valid queries. Figure 2.3(a) illustrates the construction of A for a single Rmap with fragment sizes

2, 3, 4, 5, 6.

Skip Vertices and Skip Edges

We introduce extra vertices labeled with compound fragments to allow missing cut sites (first

type of error) to be taken into account in querying the target Rmaps. We refer to these as skip

vertices as they provide alternative path segments which skip past two or more backbone vertices.

28

Thus, we add a skip vertex to A for every o+ 1 length run of consecutive vertices in the backbone

where 1 < o < order and order is the maximum number of consecutive missed cut sites to

be accommodated. First order skip vertices are each labeled with the sum of two consecutive

backbone vertices. Second order skip vertices are each labeled with the sum of three consecutive

backbone vertices. The vertex labeled with 7 connecting 2 and 5 in 2.3(a) is an example of a skip

vertex. Likewise, 5, 9, 11 are other skip vertices.

5,6,$

5

4

4

3

3

2

2

#

#

6,$

6

$

$

7

7
11,$

11

5

5

9,6,#

9

5,6,$

5

4

4

3

3

2

2

#

#

6,$

6

$

$

7

7
11,$

11

5,4

5

9,6,#

9

5,9,6,$

5

(a)

(b)

Figure 2.3: An example automaton for an Rmap with fragment size sequence 2, 3, 4, 5, 6. The memory

representation is shown in Table 2.3. The top half of vertices contains the label, which models a fragment

size in Kbp. The common prefixes of all suffixes spellable from a vertex is written in the bottom half. Note

that there is no ordering of vertices such that all their corresponding suffixes are in lexicographic order; the

leftmost vertex labelled with “5” spells suffixes beginning “5,4,...” as well as the suffix “5,9,6,$” while the

rightmost 5 spells the suffix “5,6,$”. (b) shows the prefix sorted automaton corresponding to the one in (a).

The leftmost vertex 5 has been duplicated and the outgoing edges of the previous version have been divided

between the new replacement instances. This also divides the suffixes spellable from the prior version. Now

the three 5 vertices can be ordered based on their common prefixes as [“5,4,...”,“5,6,$”, “5,9,6, $”].

29

Table 2.3: Table listing the three arrays storing the automaton shown in Figure 2.3 in memory: BWT, M,

and F.

$ 2 3 4 5,4 5,6,$ 5,9,6,$ 6,$ 7 9,6,$ 11,$ #

BWT 6,11 # 2 3,5 # 4,7 # 5,9 2 3,5 4,7 $

M 1 10 10 10 1 1 1 1 10 1 1 100

F 10 1 1 10 1 10 1 10 1 10 10 1

Finally, we add skip edges which provide paths around vertices with small labels in the back-

bone. These allow a query with a missing fragment to still match.8 Hence, the addition of skip

edges allow for desorption (the second type of error) to be taken into account in querying the target

Rmaps.

Generalized Compressed Suffix Array

We index the automaton with the GCSA [45] for efficient storage and path querying. The

GCSA is a generalization of the FM-index for automata and we will explain the GCSA by drawing

on the definition of the (more widely known) FM-index.

To generalize the FM-index to automata (from strings), we need to efficiently store the vertices

and edges in a manner such that the FM-index properties still hold, allowing the GCSA to support

queries efficiently. An FM-index’s compressed suffix array for a string X encodes a relationship

between each suffix Y and its left extension. Hence, this suffix array can be generalized to edges

in a graph that represent a relationship between vertices. The compressed suffix array for a string

is a special case where the vertices are labeled with the string’s symbols in a non-branching path.

Prefix-sorted Automata

Just as backward search for strings is linked to suffix sorting, backward searching in the BWT

of the automaton requires us to be able to sort the vertices (and a special set of the paths) of the

automaton in a particular way. In [45] this property is called prefix-sortedness. Let A = (V,E)

be a finite automaton, let v|V | denote its terminal vertex, and let v ∈ V be a vertex. We say v is

8Different smallness thresholds for query and target bias toward this scenario, avoiding backtracking in the search.

30

prefix-sorted by prefix p(v) if the labels of all paths from v to v|V | share a common prefix p(v),

and no path from any other vertex u 6= v to v|V | has p(v) as a prefix of its label. If all vertices

V are prefix-sorted then Automaton A is prefix-sorted. See Figure 2.3 for an example of a non-

prefix sorted automaton and a prefix sorted automaton. A non-prefix sorted automaton can be made

prefix sorted through a process of duplicating vertices and their incoming edges but dividing their

outgoing edges between the new instances (see [45]).

Clearly the prefixes p(v) allow us to sort the vertices of a prefix-sorted automaton into lex-

icographical order. Moreover, if we consider the list of outgoing edges (u, v), sorted by pairs

(p(u), p(v)), they are also sorted by the sequences ℓ(u)p(v), where ℓ(u) denotes the label of vertex

u. This (dual sortedness) property allows backward searching to work over the list of vertex labels

(sorted by p(v)) in the same way that is does for the symbols of a string ordered by their following

suffixes in normal backward search for strings.

Each vertex has a set of one or more preceding vertices and therefore, a set of predecessor la-

bels in the automaton. These predecessor label sets are concatenated to form the automaton analog

of the BWT, or ABWT. The sets are concatenated in the order defined by the above mentioned

lexicographic ordering of the vertices. Each element in ABWT then denotes an edge in the automa-

ton. An array of bits, I9, marks a ‘1’ for the first element of ABWT corresponding to a vertex and

a ‘0’ for all subsequent elements in that set. Thus, the predecessor labels, and hence the associated

edges, for a vertex with rank r are ABWT[select(r)..select(r+1)]. Another array, O10, stores the

out degree of each vertex and allows the set of vertex ranks associated with a ABWT interval to be

found using rank() queries.

Exact Matching: GCSA Backward Search

Exact matching with the GCSA is similar to the standard FM-index backward search algo-

rithm. As outlined in the background section, FM-index backward search proceeds by finding

9I was denoted F in the original GCSA paper.

10O was denoted M in the original GCSA paper

31

a succession of lexicographic ranges that progressively match longer and longer suffixes of the

query string, starting from the rightmost symbol of the query. The search maintains two items —

a lexicographic range and an index into the query string — and the property that the path prefix

associated with the lexicographic range is equal to the suffix of the query marked by the query

index. Initially, the query index is at the rightmost symbol and the range is [1..n] since every path

prefix matches the empty suffix. The search continues using GCSA’s backward search step func-

tion, which takes as parameters the next symbol (to the left) in the query (i.e. fragment size in

Rq) and the current range, and returns a new range. The query index is advanced leftward after

each backward search step. In theory, since the current range corresponds to a consecutive range

in the ABWT, the backward search could use select() queries on a bit vector I to determine all the

edges adjacent to a given vertex and then two FM-index LF() queries are applied to the limits of

the current range to obtain the new one. GCSA’s implementation uses one succinct bit vector per

alphabet symbol to encode which symbols precede a given vertex instead of I. Finally, this new

range, which corresponds to a set of edges, is mapped back to a set of vertices using rank() on the

M bit vector.

Inexact Matching: GCSA Backward Search Using a Wavelet Tree

We modified GCSA backward search in the following ways: (1) we used a wavelet tree to

allow efficient retrieval of substitution candidates; (2) we modified the search process to combine

consecutive query fragments into compound fragments so as to match fragments in R∗ missing the

interposing restriction site; and (3) we introduced backtracking, in order to both try size substitu-

tion candidates as well as various combinations of compound fragments. These modifications are

further detailed below.

First, in order to accommodate possible errors in fragment size, we determine a set, Z, of can-

didate fragment sizes that are similar to the next fragment of Rq to be matched in the query. These

candidates are determined by enumerating the distinct symbols in the currently active backward

32

search range of the ABWT11 using the wavelet tree algorithm of Gagie et al. [13]. This method

was proposed by Muggli et al. [52] for use with an FM-index but was not directly applicable to

the originally proposed implementation of GCSA. This is because some of GCSA’s theoretical

constructs (i.e. I) were substituted in implementation for efficiency reasons. In order to apply the

aforementioned wavelet tree method, we thus resurrect the previously theoretical only bit array I

(which we encode succinctly) as well as symbol array ABWT (which we encoded with a wavelet

tree) into KOHDISTA using the SDSL-Lite library by Gog et al. [38].

To accommodate possible restriction sites that are present in the query Rmap but absent in

target Rmaps, we generate compound fragments (i.e. new symbols) by summing pairs and triples

of consecutive query fragment size and then querying the wavelet tree for substitutions of these

compound fragments. This summing of multiple consecutive fragments is complementary to the

skip vertices in the target automaton and accommodates missed restriction sites in the target, just

as the skip vertices accommodate missed sites in the query.

Lastly, since there may be multiple match candidates in the ABWT interval of R∗ for a com-

pound fragment generated from Rq and multiple compound fragments generated at a given position

in Rq, we employ the common practice of adding backtracking to backward search (as is done, for

example in the works of Li et al. and Langmead et al.). This is so that each candidate size returned

to the search algorithm from the wavelet tree is evaluated; i.e., for a given compound fragment size

f generated from Rq, every possible candidate fragment size, f ′, that can be found in R∗ in the

range f − t . . . f + t and in the interval s . . . e (of the ABWT of R∗) for some tolerance t is used as

a substitute in the backward search.

2.2.5 Results and Discussion

We evaluated KOHDISTA against the other available optical map alignment software. Our ex-

periments measured runtime, peak memory, and alignment quality on simulated E. coli Rmaps and

11Recall that this active range, when applied to a lexicographic range, represents the suffixes whose prefixes are

the matched portion of the query, while the same range of the ABWT contains possible extension symbols.

33

experimentally generated plum Rmaps. All experiments were performed on Intel Xeon computers

with ≥ 16 GB RAM running 64-bit Linux.

Performance on Simulated E.coli Rmap Data

To verify the correctness of our method, we simulated a read set from a 4.6 Mbp E. coli ref-

erence genome as follows: we started with 1,400 copies of the genome, and then generated 40

random loci within each. These loci form the ends of molecules that would undergo digestion.

Molecules smaller than 250 Kbp were discarded leaving 272 molecules with a combined length

equating to 35x coverage depth. The cleavage sites for the XhoI enzyme were then identified

within each of these simulated molecules. We removed 20% of these at random from each simu-

lated molecule to model partial digestion. Finally, normally distributed noise was added to each

fragment with a standard deviation of .58 kb per 1 kb of the fragment. Simulated molecule pairs

having 16 common conserved digestion sites become the “ground truth”12 data for testing our

method with the others. Although a molecule would align to itself, these are not included in the

ground truth set. This method of simulation was based on the E. coli statistics given by Valouev

et al. [47] and resulting in a molecule length distribution as observed in publicly available Rmap

data from OpGen, Inc.

Most of the tools were designed for less noisy data but in theory could address all the data error

types required. For tools with tunable parameters, we tried aligning the E. coli Rmaps with com-

binations of parameters for each method related to its alignment score thresholds and error model

parameters. We used parameterization giving results similar to those for the default parameters of

Valouev et al.’s method to the extent such parameters did not significantly increasing each tool’s

runtime. These same parameterization were used in the next section on plum data.

Even with tuning, we were unable to obtain pairwise alignments on E. coli for two methods.

We found OPTIMA only produced self alignments with its recommended overlap protocol and

report its resource use in Table 2.4. For MalignerIX, even when we relaxed the parameters to

12Due to repeats in the restriction map, and apparent repeats at the resolution attainable through optical measure-

ment, some alignments beyond these are expected.

34

account for the greater sizing error and mismatch cut site frequency, it was also only able to find

self alignments. This is expected as by design it only allows missing sites in one sequence in order

to run faster. Thus no further testing was performed with MalignerIX or OPTIMA. We did not test

SOMA [34] as earlier investigation indicate it would not scale to larger genomes [52]. We omit

TWIN [52] as it needs all cut sites to match.

Results on E. coli are presented in Table 2.4. KOHDISTA uses χ2 and binomial CDF thresholds

to prune the backtracking search when deciding whether to extend alignments to progressively

longer alignments. More permissive match criteria, using higher thresholds, allows more Rmaps

to be reached in the search and thus to be considered aligned, but it also results in less aggressive

pruning in the search, thus lengthening runtime. As an example, note that when KOHDISTA was

configured with a much relaxed CDF threshold of .5 and a binomial CDF threshold of .7, it found

3,925 of the 4,305 (91%) ground truth alignments, but slowed down considerably. This illustrates

the index and algorithm’s capability in handling all error types.

Table 2.4: Performance on simulated E. coli dataset. KOHDISTA (lax) demonstrates that our indexing and

search method is capable of finding the majority of ground truth alignments when the search is pruned to

the more relaxed thresholds of χ2 < .02, Binom. < .5.

Method Time Memory Aligns Recall Precision

KOHDISTA 20 s. 19.0 MB 907 702 / 4,305 (16%) 702 / 907 (77%)

KOHDISTA (lax) 373 s. 18.3 MB 8,545 3,925 / 4,305 (91%) 3,925 / 8,545 (46%)

Valouev et al. 148 s. 4.0 MB 742 699 / 4,305 (16%) 699 / 742 (94%)

MalignerDP 47 s. 6.0 MB 1,959 1,296 / 4,305 (30%) 1,296 / 1959 (66%)

OMBlast 116 s. 2,078 MB 1,008 806 / 4,305 (19%) 806 / 1008 (80%)

RefAligner 31 s. 81.2 MB 992 958 / 4,305 (22%) 948 / 992 (97%)

MalignerIX 4 s. 6.0 MB 0 0 / 4,305 (0%) 0 / 0 (N/A)

OPTIMA 455 s. 10,756.5 MB 0 0 / 4,305 (0%) 0 / 0 (N/A)

Performance on Plum Rmap Data

The Beijing Forestry University and other institutes assembled the first plum (Prunus mume)

genome using short reads and optical mapping data from OpGen Inc. We test the various available

alignment methods on the 139,281 plum Rmaps from June 2011 available in the GigaScience

35

repository. These Rmaps were created with the BamHI enzyme and have a coverage depth of

135x of the 280 Mbp genome. For the plum dataset, we ran all the methods which approach the

statistical performance of the Valouev et al. method when measured on E. coli. Thus, we omitted

MalignerIX and OPTIMA because they had 0% recall and precision on E. coli. Our results on this

plum dataset are summarized in Table 2.5.

Table 2.5: Performance on Plum.

Method Time Memory Alignments

KOHDISTA 31 hours 7.4 GB 16,109,151

Valouev et al. 678 hours 60 MB 6,387

MalignerDP 214 hours 784 MB 568,744

OMBlast 151 hours 12.3 GB 424,730

RefAligner 90 hours 374 MB 10,039

KOHDISTA was the fastest and obtained more alignments than the competing methods. When

configured with a χ2 CDF threshold of .02, it took 31 hours of CPU time to test all Rmaps for

pairwise alignments in the plum Rmap data. This represents a 21x speed-up over the 678 hours

taken by the exhaustive Valouev et al. method. The other non-proprietary methods, MalignerDP

and OMBlast, took 214 hours and 151 hours, respectively. These results represent a 6.9x and 4.8x

speed-up over MalignerDP and OMBlast. All methods used less than 13 GB of RAM and thus,

were considered practical from a memory perspective.

To measure the quality of the alignments, we scored each pairwise alignment using the scoring

scheme of Valouev et al. and present histograms of these alignment scores in Figure 2.4. For

comparison, we also scored and present the histogram for random pairs of Rmaps. The Valouev et

al. method produces very few but high-scoring alignments and although it could theoretically be

altered to produce a larger number of alignments, the running time makes this prospect impractical

(678 hours). Although KOHDISTA and RefAligner produce high-quality alignments, RefAligner

produced very few alignments (10,039) and required almost 5x more time to do so. OMBlast and

Maligner required significantly more time and produced significantly lower quality alignments.

36

0 5 10 15 20 25 30
S-score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Random pair S-score histogram

0 5 10 15 20 25 30
S-score

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

Valouev S-score Histogram

0 5 10 15 20 25 30
S-score

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

Kohdista S-score histogram

0 5 10 15 20 25 30
S-score

0

20000

40000

60000

80000

100000

120000

140000

Fr
eq

ue
nc

y

MaligerDP S-score histogram

0 5 10 15 20 25 30
S-score

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y

OMBlast S-score Histogram

0 5 10 15 20 25 30
S-score

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

RefAligner S-score histogram

Figure 2.4: All alignments found on plum were realigned using Valouev et al.’s dynamic programming

method. Their method finds the optimal alignment using a function balancing size agreement and cut site

agreement known as an s-score. (a) The s-score distribution for random pairs. (b) The Valouev et al.

software considers any pair with an s-score > 25 to be aligned. (c) KOHDISTA alignments tend to have

significantly higher s-scores than random. (d) MalignerDP alignments tend to have slightly higher s-scores

than random. (e) OMBlast alignments tend to have higher s-scores than random. (f) BioNano’s commercial

RefAligner method alignments tends to have a significantly higher s-scores than random.

2.2.6 Conclusion

In this section, we demonstrate how finding pairwise alignments in Rmap data can be modelled

as approximate-path matching in a directed acyclic graph, and combining the GCSA with the

wavelet tree results in an index-based data structure for solving this problem. We implement this

37

method and present results comparing KOHDISTA with competing methods. By demonstrating

results on both simulated E. coli Rmap data and real plum Rmaps, we show that KOHDISTA is

capable of detecting high scoring alignments in efficient time. In particular, KOHDISTA detected

the largest number of alignments in 31 hours. RefAligner, a proprietary method, produced very

few high scoring alignments (10,039) and requires almost 5x more time to do so. OMBlast and

Maligner required significantly more time and produced significantly lower quality alignments.

The Valouev et al. method produced high scoring alignments but required more than 21x time to

do.

2.2.7 Practical Indexing Considerations

Pruning the Search

Alignments are found by incrementally extending candidate partial alignments (paths in the

automaton) to longer partial alignments by choosing one of several compatible extension matches

(adjacent vertices to the end of a path in the automaton). To perform this search efficiently, we

prune the search by computing the χ2 and binomial CDF statistics of the partial matches and

use thresholds to ensure reasonable size agreement of the matched compound fragments, and the

frequency of putative missing cut sites. These values alter the precision and recall as well as

runtime. The statistical performance tradeoff of KOHDISTA and competing methods is shown in

Figure 2.5.

Size Agreement

We use the Chi-square CDF statistic to assess size agreement. This assumes the fragment size

errors are independent, normally distributed events. For each pair of matched compound fragments

in a partial alignment, we take the mean between of the two as the assumed true length and compute

the expected standard deviation using this mean. Each compound fragment deviates from the

assumed true value by half the distance between them. These two deviation values contribute two

degrees of freedom to the Chi-square calculation. Thus each deviation is normalized by dividing

by the expected standard deviation, these are squared, and summed across all compound fragments

38

0.0 0.2 0.4 0.6 0.8 1.0
Recall (TP/4,305)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
 (T

P/
(T

P+
FP

))
Precision-Recall Plot

Valouev
MalignerDP
RefAligner
OMBlast
Kohdista
Valouev default

Figure 2.5: Precision-Recall plot of successful methods on simulated E. coli

to generate the χ2 statistic. We use the standard χ2 CDF function to compute the area under the

curve of the probability mass function up to this χ2 statistic, which gives the probability two Rmap

segments from common genomic origin would have a χ2 statistic no more extreme than observed.

This probability is compared to KOHDISTA’s chi-squared-cdf-thresh and if smaller, the candidate

compound fragment is assumed to be a reasonable match and the search continues.

Cut Site Error Frequency.

We use the Binomial CDF statistic to assess the probability of the number of cut site errors

in a partial alignment. This assumes missing cut site errors are independent, Bernoulli processes

events. We account for all the putatively conserved cut sites on the boundaries and those delimiting

compound fragments in both partially aligned Rmaps plus twice the number of missed sites as

the number of Bernoulli trials. We use the standard binomial CDF function to compute the sum

of the probability density function up to the number of non-conserved cut sites in a candidate

match. Like the size agreement calculation above, this gives the probability two Rmaps of common

39

genomic origin would have the number of non-conserved sites seen or fewer in the candidate partial

alignment under consideration. This is compared to the binom-cdf-thresh to decide whether to

consider extensions to the given candidate partial alignment. Thus, given a set of Rmaps and input

parameters ρL and ρU , we produce the set of all Rmap alignments that have a chi-square CDF

statistic less than ρU and a binomial CDF statistic less than ρL. Both of these are subject to the

additional constraint of a maximum consecutive missed restriction site run between aligned sites

of δ and a minimum aligned site set cardinality of 16.

Pruning Queries.

One side effect of summing consecutive fragments in both the search algorithm and the target

data structure is that several successive search steps with agreeing fragment sizes will also have

agreeing sums of those successive fragments. In this scenario, proceeding deeper in the search

space will result in wasted effort. To reduce this risk, we maintain a table of scores obtained when

reaching a particular lexicographic range and query cursor pair. We only proceed with the search

past this point when either the point has never been reached before, or has only been reached before

with inferior scores.

Wavelet Tree Cutoff.

The wavelet tree allows efficiently finding the set of vertex labels that are predecessors of

the vertices in the current match interval intersected with the set of vertex labels that would be

compatible with the next compound fragment to be matched in the query. However, when the

match interval is sufficiently small (< 750) it is faster to scan the vertices in ABWT directly.

Quantization.

The alphabet of fragment sizes can be large considering all the measured fragments from mul-

tiple copies of the genome. This can cause an extremely large branching factor for the initial

symbol and first few extensions in the search. To improve the efficiency of the search, the frag-

ment sizes are initially quantized, thus reducing the size of the effective alphabet and the number of

40

substitution candidates under consideration at each point in the search. Quantization also increases

the number of identical path segments across the indexed graph which allows a greater amount of

candidate matches to be evaluated in parallel because they all fall into the same ABWT interval

during the search. This does, however, introduce some quantization error into the fragment sizes,

but the bin size is chosen to keep this small in comparison to the sizing error.

Example Traversal

A partial search for a query Rmap [3 kb, 7 kb, 6 kb] in Figure 2.3 and Table 2.3 given an error

model with a constant 1 kb sizing error would proceed with steps: 1. Start with the semi-open

interval matching the empty string [0..12). 2. A wavelet tree query on ABWT would indicate the

set of symbols {5, 6, 7} is the intersection of two sets: 1.) The set of symbols that would all be valid

left extensions of the (currently empty) match string and 2.) The set of size appropriate symbols

that match our next query symbol (i.e. 6 kb, working from the right end of our query) in light of the

expected sizing error (i.e. 6kb +/- 1 kb). 3. We would then do a GCSA backward search step on the

first value in the set (5) which would yield the new interval [4..7). This new interval denotes only

nodes where each node’s common prefix is compatible with the spelling of our current backward

traversal path through the automaton (i.e. our short path of just [5] does not contradict any path

spellable from any of the three nodes denoted in the match interval). 4. A wavelet tree query on

the ABWT for this interval for values 7 kb +/- 1 kb would return the set of symbols 7. 5. Another

backward search step would yield the new interval [8..9). At this point our traversal path would be

[7, 5] (denoted as a left extension of a forward path that we are building by traversing the graph

backward). The common prefix of each node (only one node here) in our match interval (i.e. [7

kb]) is compatible with the path [7, 5]. This process would continue until backward search returns

no match interval or our scoring model indicates our repeatedly left extended path has grown too

divergent from our query. At this point backtracking would occur to find other matches (e.g. at

some point we would backward search using the value 6 kb instead of the 5 kb obtained in step 2.)

41

Parameters Used

We tried OPTIMA with both “p-value” and “score” scoring and the allMaps option and re-

port the higher sensitivity “score” setting. We followed the OPTIMA-Overlap protocol of splitting

Rmaps into k-mers, each containing 12 fragments as suggested in [50]. For OMBlast, we adjusted

parameters maxclusteritem, match, fpp, fnp, meas, minclusterscore, and minconf. For Malign-

erDP, we adjusted parameters max-misses, miss-penalty, sd-rate, min-sd, and max-miss-rate and

additionally filtered the results by alignment score. Though unpublished, for comparison we also

include the proprietary RefAligner software from BioNano. For RefAligner we adjusted param-

eters FP, FN, sd, sf, A, and S. For KOHDISTA, we adjusted parameters chi-squared-cdf-thresh

and binom-cdf-thresh. For Valouev, we adjusted score_thresh and t_score_thresh variables in the

source. In Table 2.4 we report statistical and computational performance for each method.

OMBlast was configured with parameters meas=3000, minconf=0.09, minmatch=15 and the

rest left at defaults. RefAligner was run with parameters FP=0.15, sd=0.6, sf=0.2, sr=0.0, se=0.0,

A=15, S=22 and the rest left at deafults. MalignerDP was configured with parameters ref-max-

misses=2, query-miss-penalty=3, query-max-miss-rate=0.5, min-sd=1500, and the rest left at de-

faults.

The software of Valouev et al. was run with default parameters except we reduced the max-

imum compound fragment length (their δ parameter) from 6 fragments to 3. We observed the

software of Valouev et al. rarely included alignments containing more than two missed restriction

sites in a compound fragment.

42

Chapter 3

Reducing memory by compression

In this section, we examine the compression aspect of the FM-Index. In these applications, the

FM-Index is used in place of existing index structures for its space saving advantage.

3.1 VARI: Succinct Colored de Bruijn Graphs13

3.1.1 Introduction

In the 20 years since it was introduced to bioinformatics by Idury et al. [53], the de Bruijn

graph has become a mainstay of modern genomics, essential to genome assembly [14,54,55]. The

near ubiquity of de Bruijn graphs has led to a number of succinct representations, which aim to

implement the graph in small space, while still supporting fast navigation operations. Formally,

a de Bruijn graph constructed for a set of strings (e.g., sequence reads) has a distinct vertex v for

every unique (k − 1)-mer (substring of length k − 1) present in the strings, and a directed edge

(u, v) for every observed k-mer in the strings with (k − 1)-mer prefix u and (k − 1)-mer suffix v.

A contig corresponds to a non-branching path through this graph. See [54] for a more thorough

explanation of de Bruijn graphs and their use in assembly.

In 2012, Iqbal et al. [56] introduced the colored de Bruijn graph, a variant of the classical

structure, which is aimed at “detecting and genotyping simple and complex genetic variants in an

individual or population.” The edge structure of the colored de Bruijn graph is the same as the

classic structure, but now to each vertex ((k − 1)-mer) and edge (k-mer) is associated a list of

colors corresponding to the samples in which the vertex or edge label exists. More specifically,

given a set of n samples, there exists a set C of n colors c1, c2, .., cn where ci corresponds to sample

i and all k-mers and (k − 1)-mers that are contained in sample i are colored with ci. A bubble in

13 Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul S Morley, Keith E Belk, Robert Raymond, Travis

Gagie, Simon J Puglisi, and Christina Boucher. Succinct colored de bruijn graphs. Bioinformatics, 2017.

43

this graph corresponds to an undirected cycle, and is shown to be indicative of biological variation

by [56]. CORTEX, the implementation of [56], uses the colored de Bruijn graph to develop a

method of assembling multiple genomes simultaneously, without losing track of the individuals

from which (k − 1)-mers (and k-mers) originated. This graph is derived from either multiple

reference genomes, multiple samples, or a combination of both.

Variant information of an individual or population can be deduced from structure present in the

colored de Bruijn graph and the colors of each k-mer. As implied by [56], the ultimate intended

use of colored de Bruijn graphs is to apply it to massive, population-level sequence data that is

now abundant due to next generation sequencing technology (NGS) and multiplexing. These tech-

nologies have enabled production of sequence data for large populations, which has led to ambi-

tious sequencing initiatives that aim to study genetic variation for agriculturally and bio-medically

important species. These initiatives include the Genome 10K project that aims to sequence the

genomes of 10,000 vertebrate species [57], the iK5 project [58], the 150 Tomato Genome ReSe-

quencing project [59, 60], and the 1001 Arabidopsis project, a worldwide initiative to sequence

cultivars of Arabidopsis [61]. Hence, the succinct colored de Bruijn graph is applicable in the

context of these projects, in that it can assist in variation discovery within a species by analyzing

all the data in these projects at once.

In addition to species-specific initiatives, scientific and regulatory agencies are showing in-

creased interest in shotgun metagenomic sequences for public health purposes [62,63], specifically

monitoring for antimicrobial resistance (AMR) [64, 65]. AMR is considered one of the top public

health threats, with fears that the spread of AMR will lead to increased morbitiy and mortality for

many bacterial illnesses [66, 67]. AMR occurs when bacteria express genetic elements that ren-

der them impervious to antibiotic treatments. Importantly, these genetic resistance elements can

be exchanged between distantly-related bacteria via multiple genetic mechanisms, which makes

AMR an inherently population-level phenomenon [68]. Shotgun metagenomic sequencing allows

access to the entire microbial population in a sample (the "metagenome"), which is of immense

value for tracking and understanding the evolution of resistance elements within and across diverse

44

bacteria [69]. This metagenomics approach to AMR surveillance has been applied in both human

and agricultural settings [70, 71], generating hundreds of samples with terabytes of sequence data

for relatively small studies. Given the large number of samples and large size of sequence data

involved in these whole-genome and metagenomic projects, it is imperative that the colored de

Bruijn graph can be stored and traversed in a space- and time-efficient manner.

Our Contribution

We develop an efficient data structure for storage and use of the colored de Bruijn graph.

Compared to CORTEX, the implementation of [56], our new data structure dramatically reduces

the amount of memory required to store and use the colored de Bruijn graph, with some penalty

to runtime. We demonstrate this reduction in memory through a comprehensive set of experiments

across the following three datasets: (1) four plant genomes, (2) 3,765 Escherichia coli assemblies,

and (3) 87 sequenced metagenomic samples from commercial beef production facilities. We show

our method, which we refer to as VARIMERGE (Finnish for color), has better peak memory usage

on all these datasets. Our plant reference genomes dataset required 101 GB of RAM for CORTEX

to represent while VARIMERGE required only 4 GB. And our largest two datasets contain too many

k-mers and colors for CORTEX’s data structure to represent in the 512 GB of RAM available on

our bioinformatics servers. VARIMERGE is a novel generalization of the succinct data structure

for classical de Bruijn graphs due to [72], which is based on the Burrows-Wheeler transform of the

sequence reads, and thus, has independent theoretical importance.

In addition to demonstrating the memory and runtime of VARIMERGE, we validate its output

using the E.coli reference genome and a simulated variant.

Related Work

As noted above, maintenance and navigation of the de Bruijn graph is a space and time bot-

tleneck in genome assembly. Space-efficient representations of de Bruijn graphs have thus been

heavily researched in recent years. One of the first approaches was introduced by [73] as part of

the development of the ABySS assembler. Their method stores the graph as a distributed hash table

45

and thus requires 336 GB to store the graph corresponding to a set of reads from a human genome

(>38x depth paired-end reads from Illumina Genome Analyzer II, HapMap: NA1850714).

[74] reduced space requirements by using a sparse bitvector (by [75]) to represent the k-mers

(the edges), and used rank and select operations (to be described later) to traverse it. As a result,

their representation took 32 GB for the same data set. Minia, by [76], uses a Bloom filter to store

edges. They traverse the graph by generating all possible outgoing edges at each node and testing

their membership in the Bloom filter. Using this approach, the graph was reduced to 5.7 GB on

the same dataset. Contemporaneously, [72] developed a different succinct data structure based on

the Burrows-Wheeler transform [77] that requires 2.5 GB. The data structure of [72] is combined

with ideas from IDBA-UD [78] in a metagenomics assembler called MEGAHIT [79]. In practice

MEGAHIT requires more memory than competing methods but produces significantly better as-

semblies. [80] implemented the de Bruijn graph using an FM-index and minimizers. Their method

uses 1.5 GB on the same NA18507 data. [81] released the Bloom Filter Trie, which is another

succinct data structure for the colored de Bruiin graph; however, we were unable to compare our

method against it since it only supports the building and loading of a colored de Bruijn graph and

does not contain operations to support our experiments. SplitMEM [82] is a related algorithm to

create a colored de Bruijn graph from a set of suffix trees representing the other genomes. Lastly,

Lin et al. [83] point out the similarity between the breakpoint graph, which is traditionally viewed

as a data structure to detect breakpoints between genome rearrangements, and the colored de Bruijn

graph.

Roadmap

In the next section, we describe our succinct colored de Bruijn graph data structure, general-

izing the stucture for classic de Bruijn graphs presented by [72]. Section 3.1.3 then elucidates

the practical performance of the new data structure, comparing it to CORTEX. Section 3.1.4 offers

some concluding remarks.

14https://www.ncbi.nlm.nih.gov/sra/?term=SRA010896

46

3.1.2 Methods

Our data structure for colored de Bruijn graphs is based on the succinct representation of indi-

vidual de Bruijn graphs introduced by [72]—which we refer to as the BOSS representation from

the authors’ initials—so we start by describing that representation. We note that BOSS is itself a

generalization of FM-indexes [12] obtained by extending the Burrows-Wheeler transform (BWT)

from strings to the multisets of edge-labels of de Bruijn graphs. We then give a general explanation

of how we add colors, and finally give details of our implementation.

BOSS Representation

Consider the de Bruijn graph G = (V,E) for a set of k-mers, with each k-mer a0 · · · ak−1

representing a directed edge from the node labelled a0 · · · ak−2 to the node labelled a1 · · · ak−1,

with the edge itself labelled ak−1. Define the nodes’ co-lexicographic order to be the lexicographic

order of their reversed labels. Let F be the list of G’s edges sorted co-lexicographically by their

ending nodes, with ties broken co-lexicographically by their starting nodes (or, equivalently, by

their k-mers’ first characters). Let L be the list of G’s edges sorted co-lexicographically by their

starting nodes, with ties broken co-lexicographically by their ending nodes (or, equivalently, by

their own labels). We refer to the ordering of L as Vari-sorted. If two edges e and e′ have the

same label, then they have the same relative order in both lists; otherwise, their relative order in F

is the same as their labels’ lexicographic order. Defining the edge-BWT (EBWT) of G to be the

sequence of edge labels sorted according to the edges’ order in L, so label(L[h]) = EBWT(G)[h]

for all h, this means that if e is in position p in L, then in F it is in position

|{d : d ∈ E, label(d) ≺ label(e)}|+ EBWT(G).ranklabel(e)(p)− 1 ,

where EBWT(G).ranklabel(e)(p) is the number of times label(e) appears in EBWT(G)[1, p]. It

follows that if we have, first, an array S storing |{d : d ∈ E, label(d) ≺ c}| for each character c

and, second, a fast rank data structure on EBWT(G) then, given an edge’s position in L, we can

quickly compute its position in F .

47

Let BF be the bitvector with a 1 marking the position in F of the last incoming edge of each

node, and let BL be the bitvector with a 1 marking the position in L of the last outgoing edge

of each node. Given a character c and the co-lexicographic rank of a node v, we can use BL to

find the interval in L containing v’s outgoing edges, then we can search in EBWT(G) to find the

position of the one e labelled c. We can then find e’s position in F , as described above. Finally,

we can use BF to find the co-lexicographic rank of e’s ending node15. Similarly, we can make

similar queries about the incoming edges of a node v in an efficient manner using BF . With the

appropriate implementations of the data structures, we can store G in (1 + o(1))|E|(lg σ + 2) bits,

where σ is the size of the alphabet (i.e., 4 for DNA), such that when given a character c and the

co-lexicographic rank of a node v, in O(log log σ) time we can find the node reached from v by

following the directed edge labelled c, if such an edge exists.

If we know the range L[s..e] of k-mers whose starting nodes end with a pattern Y of length

less than (k− 1), then we can compute the range F [s′..e′] of k-mers whose ending nodes end with

Y c, for any character c, since

s′ = |{d : d ∈ E, label(d) ≺ c}|+ EBWT(G).rankc(s− 1)

e′ = |{d : d ∈ E, label(d) ≺ c}|+ EBWT(G).rankc(e)− 1 .

It follows that, given a node v’s label, we can find the interval in L containing v’s outgoing edges

in O(k log log σ) time, provided there is a directed path to v (not necessarily simple) of length at

least k − 1. In general there is no way, however, to use EBWT(G), BF and BL alone to recover

the labels of nodes with no incoming edges.

To prevent information being lost and to be able to support searching for any node given its

label, Bowe et al. add extra nodes and edges to the graph, such that there is a directed path of

length at least k − 1 to each original node. Each new node’s label is a (k − 1)-mer that is prefixed

15In practice, we incorporate the bits of BF as flags on EBWT(G) and use them to obtain the colex order of v but

omit the discussion here for simplicity. We refer the reader to Bowe et al. [72] for a full discussion of this aspect and

the supplement for our handling here.

48

by one or more copies of a special symbol $ not in the alphabet and lexicographically strictly less

than all others. Notice that, when new nodes are added, the node labelled $k−1 is always first in

co-lexicographic order and has no incoming edges. Bowe et al. also attach an extra outgoing edge

labelled $, that leads nowhere, to each node with no original outgoing edge. The edge-BWT and

bitvectors for this augmented graph are, together, the BOSS representation of G.

Adding Color

We cannot represent the colored de Bruijn graph for a multiset G = {G1, . . . , Gt} of individ-

ual de Bruijn graphs satisfactorily by simply representing each individual graph separately, for two

reasons: first, the memory requirements would quickly become impractical and, second, we should

be able to answer efficiently queries such as “which individual graphs contain this edge?” There-

fore, we set G to be the union of the individual graphs and build the BOSS representation only

for G. As long as most of the k-mers are common to most of the individual graphs, the memory

needed to store G is comparable to that need to store an individual graph.

To indicate which edges of G are in which individual graphs, we build and store a two-

dimensional binary array C in which C[i, j] indicates whether the ith edge in G is present in the

jth individual de Bruijn graph (i.e., whether that edge has the jth color). (Recall from the descrip-

tion above of BOSS that we consider the edges in G to be sorted lexicographically by the reversed

labels of their starting nodes, with ties broken lexicographically by their own single-character la-

bels.) If the individual graphs are sufficiently similar, then we can compress C effectively and

store it in such a way that we can still access its individual bits quickly and support fast rank and

select queries on the rows. (A select query on the ith row takes an argument r and returns the

index j of the rth individual graph that contains the ith edge in G.) In the next subsection we give

details of some relatively simple compression strategies that support fast access, rank and select.

With these data structures, we can navigate efficiently in any of the individual graphs and switch

between them. For example, we can efficiently check whether an edge has a particular color (with

an access), count the number of colors it has (with a rank query) or list them (with repeated select

queries). We have not yet considered more sophisticated compression schemes that could still offer

49

fast queries while taking advantage of, e.g., correlations among the variations or grouping of the

individual graphs by subpopulation.

Figure 3.1 shows an example of how we represent a colored de Bruijn graph consisting of

two individual de Bruijn graphs. Suppose we are at node ACG in the graph, which is the co-

lexicographically eighth node. Since the eighth 1 in BL is BL[10] and it is preceded by two 0s,

we see that ACG’s outgoing edges’ labels are in EBWT[8..10], so they are A, C and T. Suppose we

want to follow the outgoing edge e labelled C. We see from C[9, 0..1] (i.e., the tenth column in CT)

that e appears in the second individual graph but not the first one (i.e., it is blue but not red). There

are four edges labelled A in the graph and three Cs in EBWT(G)[0..9], so e is F [6]. (Since edges

labelled $ have only one end, they are not included in L or F .) From counting the 1s in BF [0..6],

we see that e arrives at the fifth node in co-lexicographic order that has incoming edges. Since the

first node, $$$, has no incoming edges, that means e arrives at the sixth node in co-lexicographic

order, CGC.

G G

A

ACG

CGC

GAC
T

T

A

C $

$$T

$TA CGA

ACT

$$$

TAC

GCG

G A

G
GTC TCG

CGT

C

C
T

A

C

$$$

CGA

$TA

GAC

TAC

0

3

1

1

1

T

C

C

G

T

G

CGC

GTC

TCG

ACG

GCG

G

G

A

A

T
C

A

1

1

1

2

1

CGT

$$T

ACT

1

1

1

C

A

$

EBWT(G) = TCCGTGGGACTAAA$C

BF = 001111110111111

BL = 1110111100111111

CT = 0000001001010000

0000000110101001

Figure 3.1: Left: A colored de Bruijn graph consisting of two individual graphs, whose edges are shown in

red and blue. (We can consider all nodes to be present in both graphs, so they are shown in purple.) Center:

The nodes sorted into co-lexicographic order, with each node’s number of incoming edges shown on its left

and the labels of its outgoing edges shown on its right. The edge labels are shown in red or blue if the edges

occur only in the respective graph, or purple if they occur in both. Right: Our representation of the colored

de Bruijn graph: the edge-BWT and bitvectors for the BOSS representation for the union of the individual

graphs, and the binary array C (shown transposed) whose bits indicate which edges are present in which

individual graphs.

50

Data Structure

The arsenal of component tools available to succinct data structures designers has grown con-

siderably in recent years [84], with many methods now implemented in libraries. We chose to

make heavy use of the succinct data structures library (SDSL)16 in our implementation.

EBWT(G), the sequence of edge labels, is encoded in a wavelet tree, which allows us to per-

form fast rank queries, essential to all our graph navigations. The bitvectors of the wavelet tree

and the B bitvector are stored in the Raman-Raman-Rao (RRR) encoding [85]. The rows of the

color matrix, C, are concatenated (i.e. C is stored in row-major order) and this single long bit

string is then compressed. It is either stored with RRR encoding, or alternately Elias-Fano encod-

ing [75, 86, 87] which supports online construction. Online construction is important for datasets

where C is too large to fit in memory in uncompressed form, such as our metagenomic sample

dataset. These encodings reduce the size of C considerably because we expect rows to be very

sparse and both encodings exploit this sparseness.

Construction

In order to convert the input data to the format required by BOSS (that is, in correct sorted

order, including dummy edges and bit vectors), we use the following process. We take care to

ensure only subsets of data are needed in RAM at any one time during construction.

Our construction algorithm takes as input the set of (k-mer, color-set) pairs present in the input

sets of reads, or alternately, k-mer counts for each color which we convert to the former ourselves.

Here, color-set is a bit set indicating which samples the k-mer occurs in. We provide the option

to use the CORTEX frontend to generate the (k-mer, color-set). Unfortunately, this also limits the

datasets to those that would run through CORTEX. To overcome this, we provide the option to use

a list of KMC2 [88] sorted k-mer counts as input. With this option, the k-mers from each k-mer

count file in native KMC2 binary format are streamed through a priority queue to produce the union

of all k-mer sets; initially one k-mer from each file is tagged with which file it originated from, and

16https://github.com/simongog/sdsl-lite

51

the (k-mer, file ID) pair is added to the queue. The priority queue ensures the lexicographically

smallest k-mer instances across all files can be popped off the queue consecutively. All of the

k-mer count files contributing a particular k-mer value have their corresponding color recorded as

‘1’ bits in the bit set for that k-mer. Both the k-mer and the bit set are then appended to vectors

which optionally are allocated in external memory using the STXXL17 library. As each k-mer is

popped off the queue, another k-mer is added to the queue to take the old k-mer’s place (i.e. using

the file identified by the popped k-mer’s tag). This process continues until all files are read in their

entirety. By both streaming data from the source files and streaming it to the external vectors, only

a small amount of the data need exist in memory at a time; the priority queue will only contain the

number of samples and only one row of the color matrix needs to exist in memory before being

written out to disk.

After constructing the initial union set of k-mers and their corresponding color rows, BOSS

construction mostly continues as originally described by Bowe et al.. The changes from the orig-

inal construction algorithm are that most of the data optionally resides in external memory and

the rows of the color matrix are permuted with their corresponding k-mers as they are sorted. For

each of the k-mers we generate the reverse complement (giving it the same color-set as its twin).

Then, for each k-mer (including the reverse complements), we sort the (k-mer, color-set) pairs by

the first k − 1 symbols (the source node of the edge) to give the F table (from here, the colors are

moved around with rows of F , but otherwise ignored until the final stage). Independently, we sort

the k-mers (without the color-sets) by the last k − 1 symbols (the destination node of the edge) to

give the L table.

With F and L tables computed, we calculate the set difference F − L (comparing only the

(k − 1)-length prefixes and suffixes respectively), which tells us which nodes require incoming

dummy edges. Each such node is then shifted and prepended with $ signs to create the required

incoming dummy edges (k − 1 each). These incoming dummy edges are then sorted by the first

k− 1 symbols. Let this table of sorted dummy edges be D. Note that the set difference L−F will

17http://http://stxxl.sourceforge.net/

52

give the nodes requiring outgoing dummy edges, but these do not require sorting, and so we can

calculate it as is needed in the final stage.

Finally, we perform a three-way merge (by first k−1 symbols) D with F , and L−F (calculated

on the fly). For each resulting edge, we keep track of runs of equal k − 1 length prefixes, and

k − 2 length suffixes of the source node, which allows us to calculate the BF and BL bit vectors,

respectively. Next, we write the bit vectors, symbols from last column, and count of the second to

last column to a packed file on disk, and the colors to a separate file. The color file is then either

buffered in RAM and RRR encoded or optionally streamed from disk and then Elias-Fano encoded

online (i.e. only the compressed version is ever resident). The time bottleneck in the above process

is clearly in sorting the D and F tables, which are of the same size, and are made up of elements

of size O(k). Thus, overall, construction of the data structure takes O(k(|F | log |F |)) time.

Traversal

We implemented two traversal methods based on those of CORTEX with a modification in light

of our intention to apply VARIMERGE to metagenomic reads looking for AMR gene presence.

The first, bubble calling, is a simple algorithm to detect sequence variation in genomic data. It

consists of iterating over a set of k-mers in order to find places where bubbles start and terminate.

When combined with the k-mer color (in a colored de Bruijn graph), this enables identification

of places where genomic sequences diverge from one another. The differing region of the two

sequences will form the two arms of a bubble, each colored with only one of the two sequence’s

colors. A bubble is identified when a vertex has two outgoing edges. Each edge is followed in

turn to navigate a non-branching path until reaching a vertex with two incoming edges. If the

terminating vertex is the same for both paths, we call this a bubble. Colors for the bubbles are

determined by looking at the color assignment of the corresponding (k)-mers. Our implementation

in VARIMERGE closely follows the pseudocode given by [56].

CORTEX’s traversal algorithms were designed for single isolates. For the beef safety experi-

ments, which use metagenomic samples, we implemented a traversal inspired by CORTEX’s path

divergence algorithm. In the original CORTEX path divergence algorithm, bubbles are identified

53

where a user-supplied reference sequence prescribes a walk through a (possibly tangled) sections

of the graph in one arm of a bubble while the alternative arm must be branch free. This branch free

requirement on the second arm could be a problem for metagenomic data. Due to the presence of

tangle inducing homologous genomes and risk of inferring erroneous, chimeric sequences (which

comprise reads from a mix of genomes in the sample), variant detection in metagenomic data is

more complex. In the absence of a simple metagenomic-aware traversal algorithm, we imple-

mented a variation of the path divergence algorithm which addresses a simpler problem, primarily

for the purpose of measuring performance. This algorithm uses a reference guided approach and

allows us to measure the memory footprint at traversal time as well as the time savings of not

traversing the entire dataset. For this purpose, we focus specifically on the presence of AMR genes

(our reference sequence) rather than variants of those genes; in our derived algorithm we ignore

sample path segments leading away from and returning to the AMR gene path. This avoids some

of the problems with tangles, incomplete coverage, or read errors. Thus as we traverse the gene

path, we simply count the number of samples in each sample group that color the current edge.

We note that keeping C in row major order allows us to compute this count in constant time as the

difference between two rank queries.

3.1.3 Results

We evaluated VARIMERGE performance on three different datasets, described below. For this

evaluation, we compare peak memory, which was measured as the maximum resident set size, and

CPU core time, measured as the user+system process time as our metrics. In addition to evaluating

performance, we also validated VARIMERGE by the ability to correctly call bubbles known to be

present in a simulated dataset.

Our software supports a variety of options. It can consume k-mer counts from either Cortex’s

binary files or KMC2. For all experiments, we use the KMC2 flow because using Cortex as a front

end limits designs to only those that would fit in memory with Cortex. Next, our software can com-

press the color matrix using either RRR or Elias-Fano encodings. The SDSL-light implementation

54

allows the color matrix to be compressed in an on-line fashion only using the Elias-Fano encod-

ing. This allows us to process larger designs, as the uncompressed matrix need never fit in RAM,

and thus we use this option for all experiments. Finally, STXXL (which holds temporary vectors

during data structure construction) allows using internal or external memory. Again, we used the

more scalable external memory option for all experiments. All experiments were performed on a

machine with AMD Opteron model 6378 processors, having 512 GB of RAM and 64 cores.

Datasets

The three different datasets were chosen in order to test and evaluate the performance of

VARIMERGE on a variety of diverse yet realistic data types that are likely to be used as input

into VARIMERGE. For the first two datasets which comprise single isolates, we use preassem-

bled genomes. Assembly serves to try correct sequencing errors which could otherwise falsely

be detected as variants. To this end, CORTEX includes its own optional data cleaning operations.

However, by using instead the output of third party assembly software we can compare the colored

de Bruijn graph performance on identical graphs. Characteristics about these datasets are provided

in Table 3.1.

Table 3.1: Characteristics of our datasets. The E. coli dataset represents 3,765 strains and hence only

summary statistics for size and GC content are given. Accession numbers for this dataset as well as download

procedure can be found in assembly_summary.txt as discussed in the main text.

.
Name Accession Numbers Aprox. Size GC Content

Plant Species

Rice (NC_008394 to NC_008405) 430 Mbp 43.42%

Tomato (NC_015438 to NC_015449) 950 Mbp 43.42%

Corn (NC_024459 to NC_024468) 2.07 Gbp 35.70%

Arabidopsis (NC_003070 to NC_003076) 135 Mbp 47.4%

E. coli strains N/A

avg=5.1 Mbp

min=2.9 Mbp

max= 7.7 Mbp

50.5%

Beef safety PRJNA292471 N/A 44.3%

55

Table 3.2: Data structure construction performance measurements. CPU time is user plus system time as reported by ‘/bin/time’. (Internal) memory

is reported in megabytes and is the maximum resident set size. KMC2 includes both counting and sorting k-mers. VARIMERGE-dBG forms the

k-mer union and builds the succinct de Bruijn graph. VARIMERGE-C compresses the color matrix.

CORTEX KMC2 VARIMERGE-dBG VARIMERGE-C

Dataset CPU time Mem. CPU time Mem. CPU time Int. Mem. Ext. Mem. CPU time Mem.

Plants 2h 25m 27s 109,579 19m 50s 4,335 1h 34m 37s 5,388 156,504 3m 09s 3,528

E. coli (k=32) N/A N/A 3h 15m 40s 104 9h 30m 11s 126,777 319,328 53m 54s 42,043

E. coli (k=48) N/A N/A 4h 35m 29s 149 10h 47m 46s 128,077 427,460 1h 02m 07s 42,100

E. coli (k=64) N/A N/A 5h 05m 27s 189 11h 21m 08s 127,523 522,576 1h 09m 07s 42,134

Beef safety N/A N/A 34h 04m 46s 11,688 82h 42m 48s 109,091 4,378,840 6h 44m 12s 217,705

56

Our first performance dataset comprises reference genomes for four different plant species:

Oryza sativa Japonica (rice)18 [89], Solanum lycopersicum (tomato)19 [59, 60], Zea mays (corn)20

[90], and Arabidopsis thaliana (Arabidopsis)21 [91]. This represents a sufficiently large dataset for

comparing the performance of VARIMERGE with CORTEX.

Our second performance dataset consists of the set of all 3,765 NCBI GenBank assemblies2223

having the organism_name field equal to “Escherichia coli” as of March 22, 2016. To evaluate the

effects of varying k-mer size, we ran this dataset with k = 32, 48, 64. The union of all assemblies

contains 158,501,209 k-mers for k=32, 205,938,139 k-mers for k=48, and 251,764,413 k-mers for

k=64. The minimum, maximum, and average assembly lengths are 2,911,360 bp, 7,687,202 bp,

and 5,156,744 bp, respectively.

Our third performance dataset consists of 87 metagenomic samples24 taken at various time-

points during the beef production process from eight pens of cattle in two beef production facil-

ities by [70]. Sequentially, these timepoints were feedlot arrival, feedlot exit, slaughter transport

truck, slaughter holding, and slaughter trimmings and sponges. Sample reads were preprocessed

using trimmomatic v0.36 by Bolger et al. [92]. Although further assembly or error correction

would have been possible, it would reduce the biological variation which may be useful for some

queries. Furthermore, building the data structure on uncorrected data better stresses our representa-

tion method. Samples were then arranged into groups based on the sample timepoints. The original

study used these samples to demonstrate the advantages of shotgun metagenomic sequencing in

tracking the evolution of antimicrobial resistance longitudinally within a complex environment

18http://rice.plantbiology.msu.edu/annotation_pseudo_current.shtml

19ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz

20ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_

000005005.1_B73_RefGen_v3_genomic.fna.gz

21ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/

22ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt

23https://www.ncbi.nlm.nih.gov/genome/doc/ftpfaq/

24https://www.ncbi.nlm.nih.gov/bioproject/292471

57

such as beef production; the results suggested that selective pressures occurred within the feedlot,

but that slaughter safety measures drastically reduced both bacterial and AMR levels. In addition

to the metagenomic samples, we included 4,062 AMR genes from the previously mentioned gene

databases25. 23 genes in the databases containing IUPAC codes other than the four bases were fil-

tered out as KMC2 and the succinct de Bruijn graph were configured with a four symbol alphabet.

Because we have the reference to guide the traversal, all AMR genes were combined into a single

color. By combining AMR genes, the uncompressed color matrix that exists on disk during sorting

and as intermediate file is much smaller (still occupying 1.2 TB), thus accelerating the permutation

during construction and reducing the external memory and disk space requirements. The union

of all samples and genes contains 40,995,794,366 32-mers and the GC content is 44.3%. While

our server has enough RAM to represent a dataset with twice the memory footprint, this dataset

nearly exhuasted the approximately 10 TB of disk space available when intermediate files were

preserved. Thus this dataset is on the order of the upper limit for VARIMERGE in practice.

Finally, for validation purposes, we generated a dataset26 comprising two genomes: (1) E. coli

K-12 substraing MG 1655 reference genome, and (2) a copy of the reference genome to which we

applied various simulated mutations. We simulated mutations by choosing 100 random loci and

either inserting, deleting, or replacing a region of random length ranging from 200-500 bp. For

each mutation locus, we record the flanking regions and the two variants (original reference and

simulated) as a ground truth bubble.

Time and Memory Usage

To measure VARIMERGE’s resource use and compare with CORTEX by Iqbal et al. [56] where

possible, we constructed the colored de Bruijn graph for the plant dataset, the E. coli assembly

dataset and the beef safety dataset. Construction time and memory is detailed in Table 3.2. We

performed bubble calling on the first two and recorded peak memory usage and runtime. Direct

25https://meg.colostate.edu/MEGaRes/

26https://github.com/cosmo-team/cosmo/tree/VARI/experiments/ecoli_validation

58

resource comparison with CORTEX was only possible on the smallest dataset, as the largest two

have too many k-mers and colors to fit in memory on our machine with CORTEX. Based on the

data structure defined in CORTEX’s source as well as the supplementry information provided by

Iqbal et al., it would have required more than 3 TB of RAM and more than 18 TB of RAM for its

hash table entries alone, respectively.

In order to test query performance characteristics, various experiments were performed on all

three performance datasets described in the previous subsection. Datasets varied in the number of

k-mers in the graph from 158 million to over 40 billion, the number of colors, from 4 to 3,765,

and degree of homology from disperate plants to the single E. coli species. This diversity shows

the space savings achievable when the population is largely homologous, as is the case with the E.

coli dataset, where the graph component is relatively small, in contrast to the plant dataset, where

the graph component is relatively large. As can be seen in Table 3.3, where directly comparable,

VARIMERGE used an order of magnitude less than the peak memory that CORTEX required but

required greater running time. This memory and time trade-off is important in larger population

level data. This is highlighted by our largest two datasets which could not be run with CORTEX.

Hence, lowering the memory usage in exchange for higher running time deserves merit in contexts

where there is data from large populations.

59

Table 3.3: Comparison between the peak memory and time usage required to store all the k-mers and run bubble calling on the data in CORTEX

and VARIMERGE. The peak memory is given in megabytes (MB) or gigabytes (GB). The running time is reported in seconds (s), minutes (m), and

hours (h). The succinct de Bruijn graph and compressed color matrix components of the memory footprint are listed in parenthesis as sdBG and sC,

respectively.

CORTEX VARIMERGE

Dataset No. of k-mers Colors Memory Time Memory Time

Plants (k=32) 1,709,427,823 4 100.93 GB 2h 18m 3.53 GB (sdBG=0.89 GB, sC=1.95 GB) 32h 39m

E. coli (k=32) 158,501,209 3,765 N/A N/A 42.17 GB (sdBG=0.09 GB, sC=38.35 GB) 3h 57m

E. coli (k=48) 205,938,139 3,765 N/A N/A 42.26 GB (sdBG=0.11 GB, sC=38.42 GB) 4h 38m

E. coli (k=64) 251,764,413 3,765 N/A N/A 42.32 GB (sdBG=0.13 GB, sC=38.45 GB) 5h 28m

Beef safety (k=32) 40,995,794,366 88 N/A N/A 245.54 GB (sdBG=27.08 GB, sC=200.34 GB) N/A

60

Validation on Simulated E. coli

We ran the implementations of bubble calling from both VARIMERGE and CORTEX, using

k=32 on the simulated E. coli dataset. Both tools reported the same set of 223 bubbles, 55 of

which were in the ground truth set. This ensures our software faithfully implements the original

data handling capabilities of CORTEX. For biological implications of colored de Bruijn graph

variant calls and in particular with parameter choices such as k see Iqbal et al. [56].

Observations on Beef Safety Dataset

While the beef safety dataset was primarily used for measuring the scalability of VARIMERGE

and to determine if representing a dataset of this type and size was possible, we used VARIMERGE

to additionally make observations about the presence of AMR genes in the beef production dataset.

As previously described, during our path divergence derived algorithm, we compute a count of

how many k-mers in each AMR gene are found across all samples within a sample group. This

algorithm need only traverse the AMR genes, so despite the size of the overall dataset, it only took

20 minutes to load and access the necessary parts of the data structure. In contrast, if bubble calling

were to run at the same rate for this dataset as for the E. coli assembly dataset, it would take 3,001

hours to complete, thus suggesting value in a targeted inquiry approach on datasets of this size.

Since longer genes have more k-mers, the counts are likely to be larger, as are those from

larger sample groups. To make these counts comparable, we normalize by both gene length and

sample group size. We can then examine the number of genes having a disproportionately large

(> 3 std. dev. above mean) shared k-mer count for each gene and sample group combination.

The number of such genes with disproportionately large normalized counts in each sample group

were: feedlot arrival - 304, feedlot exit - 93, transport truck - 230, slaughter holding - 16, and

slaughter trimmings and sponges - 0. This observation supports the conclusion of [70], namely,

that antimicrobial interventions during slaughter were effective in reducing AMR gene presence in

the trimmings and sponge samples, which represent the finished beef products just before they are

shipped to retail outlets for human consumption.

61

3.1.4 Concluding Remarks

We presented VARIMERGE, which is an implementation of a succinct colored de Bruijn graph

that significantly reduces the amount of memory required to store and use the colored de Bruijn

graph. In addition to the memory savings, we validated our approach using E coli. Moreover, we

introduced the use of colored de Bruijn graph for accurately identifying the presence of AMR genes

within metagenomic samples, which is an important advance as public health officials increas-

ingly move towards a metagenomic sequence-based approach for surveillance and identification

of resistant bacteria [64, 65, 67]. Possible nontrivial extensions to our work include (1) (1) using

multi-threading to speed up the bubble calling, (2) compressing the color array C more effectively

by taking advantage of correlations among the variations, and (3) applying more sophisticated

approaches to metagenomic data.

3.2 VARIMERGE: Succinct De Bruijn Graph Construction for

Massive Populations Through Space-Efficient Merging

In this section, we explore how the compressed nature of the VARI data structure can be used as

its own intermediate representation in the construction of much larger succinct colored de Bruijn

graphs.

3.2.1 Introduction

In recent years, there has been an initiative to move toward using whole genome sequencing

to accurately identify and track foodborne pathogens (e.g. antibiotic resistant bacteria) [93]. This

led to the existence of GenomeTrakr, which is a large public effort to use genome sequencing

for surveillance and detection of outbreaks of foodborne illnesses. Currently, the GenomeTrakr

effort includes over 50,000 samples, spanning several species available through this initiative—a

number that continues to rise as datasets are continually added [94]. Unfortunately, methods to

analyze this and other datasets are limited due to their size. Existing methods for using this WGS

data frequently focus on a method known as Multi Locus Sequence Typing (MLST) [95], which

62

aligns reads to genes from a reference genome. These alignments identify sets of alleles and thus,

are limited to capturing genetic variations that are both shorter than the length of reads and only

those variations that align to a reference genome or gene set [96]. Thus, variations that are longer

than read length or that exist in the population but not the reference genome go undetected.

Given the limitations of existing methods, we would like to apply advanced methods for iden-

tifying variants—such as Cortex [56] and VARI [97]—which are able to detect complex variants

without a reference. These methods use a modification of the de Bruijn graph that is referred to as

the colored de Bruijn graph. We define the de Bruijn graph constructively as follows: a directed

edge is created for every unique k-length subsequence (k-mer) in the data and an origin and des-

tination vertex are labeled with the prefix and suffix of that k-mer, and after all edges have been

created and labeled, the vertices that have the same label are glued into a single vertex. We create a

colored de Bruijn graph by adding a set of colors (or labels) to each edge (and/or vertex) indicating

which sample(s) contain the respective k-mer (and/or (k − 1)-mer). Iqbal et al. [56] were the first

to present the concept of the colored de Bruijn graph and demonstrate how it can be traversed to

identify genetic variation between samples.

A bottleneck in applying Cortex to large datasets is the amount of memory required to build

and store the colored de Bruijn graph. VARI [97] and Rainbowfish [98] sought to overcome this

limitation by improving the storage efficiency of the graph. However, even though these methods

store the colored de Bruijn graph in a memory-efficient manner, they are still unable to scale in a

manner that is necessary for massive datasets such as GenomeTrakr. The limiting factor for these

methods lies in their construction; Both VARI [97] and Rainbowfish [98] must manipulate the

(uncompressed) data in external memory in order to build the graph in a memory-efficient manner;

making external memory use the bottleneck. Moreover, this increases the construction time of

the graph as external memory use is slower than that of RAM. Thus, one way to improve the

scalability and enable researchers to construct the colored de Bruijn graph on massive datasets is

to use a divide-and-conquer approach: divide the data into smaller partitions, construct the colored

de Bruijn graph for each partition, and merge the (smaller) colored de Bruijn graphs until a single

63

graph remains. While partitioning the data and building small graphs is possible, there exists no

method to succinctly merge (colored) de Bruijn graphs.

Our contributions.

Thus, we present VARIMERGE that enables construction of massive colored de Bruijn graph

through a process of partitioning the data into smaller sets, building the colored de Bruijn graph in

a memory-efficient manner for each parition, and merging colored de Bruijn graphs. Each of the

colored de Bruijn graphs is stored using the FM-index in the same manner as VARI [97]. We review

this representation in Section 3 of the paper [72]. Thus, the algorithmic challenge that we tackle is

merging the graphs in a manner that keeps them in their compressed format throughout the merging

process—rather than decompressing, merging and compressing which would be impractical with

respect to disk and memory usage.

By using VARIMERGE, we build a colored de Bruijn graph for 16,000 strains of Salmonella

that were collected and housed at NCBI as part of the GenomeTrakr database. This represents the

first and only large-scale assembly based analysis of the GenomeTrakr data [95] and to the best of

our knowledge, the largest dataset for which the (colored) de Bruijn graph has been constructed.

The most recent unrelated large-scale construction is due to Holley et al. [99], which presents a de

Bruijn graph construction for 473 clinical isolates of Pseudomonas aeruginosa (NCBI BioProject

PRJEB5438). Our GenomeTrakr dataset is over 30 times this size of this latter one. The construc-

tion of this colored de Bruijn graph required a total of 254 G of RAM, 2.34 TB of external memory,

and less than 72 hours of CPU time. VARI and Rainbowfish could–at least, in theory–construct the

graph for this large of a dataset but would require over 10 TB of disk space and more computing

time. Moreover, our results that compare VARIMERGE with Bloom Filter Trie demonstrate that it

would require significantly more memory to construct and store and the colored de Bruijn graph

on this dataset.

Therefore, VARIMERGE is superior with respect to the memory and disk usage. It is more

memory-efficient that Bloom Filter Trie. Thus, it has the memory-efficiency of competing succinct

64

representations (e.g., VARI and Rainbowfish) but it removes the extensive disk constraints these

method have, making VARIMERGE practical for massive datasets.

3.2.2 Related Work

Space-efficient representations of de Bruijn graphs have been heavily researched in recent

years. One of the first approaches was introduced with the creation of the ABySS assembler, which

stores the graph as a distributed hash table [73]. In 2011, Conway and Bromage [74] reduced these

space requirements by using a sparse bitvector (by Okanohara and Sadakane [75]) to represent the

k-mers, and used rank and select operations (to be described shortly) to traverse it. Minia [76] uses

a Bloom filter to store edges, which requires the graph to be traversed by generating all possible

outgoing edges at each node and testing their membership in the Bloom filter. Bowe, Onodera,

Sadakane and Shibuya [72] developed a succinct data structure based on the Burrows-Wheeler

transform (BWT) [10]. This data structure is discussed in more detail in the next section. This

data structure of Bowe et al. [72] is combined with ideas from IDBA-UD [78] in a metagenomics

assembler called MEGAHIT [79]. Chikhi et al. [80] implemented the de Bruijn graph using an

FM-index and minimizers.

More recently, methods have been developed to store de Bruijn graphs for a population which

entails an additional space burden in tracking which samples contribute to graph elements. Holley

et. al. [99] introduced the Bloom Filter Trie, which is another succinct data structure for the colored

de Bruijn graph. SplitMEM [82] is a related algorithm that creates a colored de Bruijn graph from

a set of suffix trees representing the other genomes. Lastly, VARI [97] and Rainbowfish [98] are

both memory-efficient data structures for storing the colored de Bruijn graph. Both are discussed

later in this paper.

The closest related work to that proposed here concerns other reduced-memory colored de

Bruijn graphs with efficient construction. SplitMEM [82] uses suffix trees to directly construct

the compacted de Bruijn graph, where non-branching paths become single nodes. Here, we use

the term compacted to distinguish this approach from data compression techniques underlying

65

succinct data structures. Baier et al. [100] improved on this method with two alternative construc-

tion methods, using the compressed suffix tree and using BWT. TwoPaCo [101] uses a bloom filter

to represent the ordinary de Bruijn graph and then constructs the compacted de Bruijn graph from

the bloom filter encoded one. Bloom filter tries, proposed by Holley et al. [99] encode frequently

occurring sets of colors separate from the graph and stores a reference to the set if the reference

takes fewer bits than the set itself. This data structure allows incremental updates of the underlying

graph. Rainbowfish [98] also stores distinct sets of colors in a table and uses Huffman-like vari-

able length bit patterns to reference color sets from each edge in the succinct de Bruijn graph. Both

the Bloom filter trie method and Rainbowfish are able to collapse redundant color sets across the

entire graph to a single instance instead of just along non-branching paths in the compacted graph

methods.

Although Rainbowfish can store the colored de Bruijn graph in less memory than VARI, it

uses VARI as a preprocessing step in its construction, so it is still limited to VARI’s construction

capacity.

Lastly, two other approaches are worthy of note because they merge the BWT of a set of strings.

BWT-Merge by Sirén [102] is related to our work since the data structure we construct and store

is similar to BWT. BWT-Merge merges two strings stored using BWT by using a reverse trie of

one BWT to generate queries that are then located in the other BWT using FM-Index backward

search. The reverse trie allows the common suffixes across multiple merge elements to share the

results of a single backward search step. Thus, BWT-Merge finds the final rank of each full suffix

completely, one suffix at a time. Finally, Holt and McMillan developed MSBWT [103] which

merges the BWTs of multiple strings in a method similar to our own except applied to strings

instead of graphs.

3.2.3 Preliminaries

As previously mentioned, in 2017 Muggli et al. [97] presented VARI, which is a representation

of the colored de Bruijn graph using BWT. Our proposed method, VARIMERGE, efficiently merges

66

de Bruijn graphs that are represented in this manner. Therefore, we first define some basic notation

and definitions concerning BWT, then we show how the de Bruijn graph can be stored using BWT,

and finally, we show how the colored de Bruijn graph can be stored succinctly. We refer the reader

to the full paper by Muggli et al. [97] for a more detailed discussion of the representation.

Storage of the Colored de Bruijn Graph

We use the same representation as in VARI. Given this representation we can traverse the graph

and recover incoming and outgoing edges. Next, we demonstrate how the labels (k-mers) can be

recovered using this data structure.

Label recovery.

We note that an important aspect of this succinct representation of the graph is that the (k− 1)-

mers (nodes) and k-mers (edges) of the de Bruijn graph G are not explicitly stored in the above

representation—rather they than can be computed (or recovered) from this representation. As pre-

viously mentioned, we can traverse the graph in a forward or reverse manner and recover incoming

and outgoing edges of a given node v. Given this efficient traversal, we can recover the label of v

by traversing the graph in a backward direction starting from v; given the label of v is a (k−1)-mer

we traverse backward k − 1 times. Therefore, we must add extra nodes and edges to the graph to

ensure there is a directed path of length at least k − 1 to each original node. More formally, we

augment the graph so that each new node’s label is a (k − 1)-mer that is prefixed by one or more

copies of a special symbol $ not in the alphabet and lexicographically strictly less than all others.

When new nodes are added, we are assured that the node labeled $k−1 is always first in colex order

and has no incoming edges. Lastly, we augment the graph in a similar manner by adding an extra

outgoing edge, labeled $, to each node with no outgoing edge.

3.2.4 Method

In this section, we give an overview of our approach for merging colored de Bruijn graphs

that are stored using the VARI data structure, and in the next section, give the merge algorithm

67

G

A

ACG GAC
T

T

A

C $

$$T

$TA CGA

ACT

$$$

TAC

C

CGG GGA

G C

A

$$$

CGA

$TA

GAC

TAC

0

1

1

2

1

T

C

C

T

G

ACG

CGG

A

G

A

1

1

$$T

ACT

1

1

A

$

GGA1 C

EBWT(G) = TCCCTGAGAA$

BF = 1110111111

BL = 11111101111

CT = 11011110011

10111101111

Figure 3.2: Left and center: A colored de Bruijn graph consisting of two individual graphs, whose edges

are shown in yellow and green. All nodes to be present in both graphs are shown in lime. Right: The VARI

representation of the colored de Bruijn graph: the edge-BWT and bitvectors for the union of the individual

graphs, and the binary array C (shown transposed) whose bits indicate which edges are present in which

individual graphs.

in explicit detail. In both sections, we describe how to merge two colored de Bruijn graphs but

note that it generalizes to an arbitrary number of graphs. Hence, we assume that we have two de

Bruijn graphs G1 = (V1, E1) and G2 = (V2, E2) as input, which are stored as EBWT(G)1, BL1,

BF1 and C1 and EBWT(G)2, BL2, BF2 and C2, respectively. We will output the merged graph

GM = (VM , EM) stored in the same format as the input, more descriptively: a set of abbreviated

edge labels EBWT(G)M , a bit vector that delimits their common origins BLM , the array BFM , and

the color matrix CM .

A Naive Merge Algorithm

We begin by describing a naive merge procedure to motivate the use of the succinct merge

algorithm. We recall from Section 3.2.3 that VARI does not store the edge labels (k-mers) of G–

rather, they have to be computed from the succinct representation. We denote the edge labels for

G1, G2, and GM as L1, L2, and LM , respectively. For example, if we want to reconstruct the k-mer

AGAGAGTTA contained in G1 which is stored as A in EBWT(G)1, we need to backward navigate

in G1 from the edge labeled A through k − 1 predecessor edges (T, T, G,...). We concatenate the

abbreviated edge labels encountered during this backward navigation in reverse order to construct

the label AGAGAGTTA. Thus, we could naively merge G1 and G2 by reconstructing L1 and L2,

merging them into LM and computing the succinct representation of LM , i.e., EBWT(G)M . We

68

note that this algorithm requires explicitly building L1, L2 and LM and thus, has a significant

memory footprint. See Figure 3.4 for pseudocode of this algorithm.

The Succinct Merge Algorithm

We are now ready to describe the merge algorithm used as a component of VARIMERGE. The

trick of the merge algorithm is to build the succinct data structure for GM without constructing L1

and L2, which will in turn reduce memory costs enormously.

Intuitive Explanation of Succinct Merging.

Before we give a detailed explanation of our algorithm we take a step back–abstract away the

complexities of the succinct de Bruijn graph–and consider the simpler problem of merging two

sorted lists of strings with the constraint that we can only examine a single character from each

string at a time. We can solve this problem with a divide and conquer approach. First, we group all

the strings in each list by their first character. This partially solves the problem, as we know all the

strings in the first group from each list must occur in the output before all the strings in the second

group in each list and so on. Thus, the problem is now reduced to merging the strings in the first

group, followed by merging the strings in the second group and so on. Each of these merges can

be addressed by again grouping the elements (i.e. subgroups of the initial groups) by examining

the second character of each string. We can apply this step recursively until all characters of each

string have been examined.

We draw the reader’s attention to the fact our succinct colored de Bruijn graph representation is

a space-efficient representation of the list of sorted k-mers (and (k− 1)-mers). Thus, we can apply

this general algorithm but alter it in in the following ways: 1) the nested grouping of the strings

is rather a flat partitioning of the two lists into intervals, which is updated each time a character is

processed, and 2) the actual merging is reserved for the end once all characters have been processed

and their needed information accumulated into set of partitions of each list.

69

Overview of the Algorithm.

Now we return to the problem of merging succinct colored de Bruijn graphs. We refer to

EBWT(G)M and CM as the primary components of the data structure and BFM and BLM as sec-

ondary components. We describe how to merge the primary components, and leave the details

of how to merge the secondary components to the supplement. The algorithm consists of two

steps: (1) a planning step which plans the merge, and (2) a final execution step which executes the

planned merge. In the planning step, we output a list of non-overlapping intervals for L1 and one

for L2. We refer to these lists as a merge plan, which is then used to execute the merge. There are

k iterations of the planning algorithm (where k corresponds to the k-mer value). At each iteration

of the algorithm a single character of the edge labels (k-mers) is processed, and the merge plan is

revised. After k iterations, we execute the merge plan.

The Planning Step.

We denote the merge plan as P1 = {[0, p
1
1], ..., [p

1
i , |L1|]} where each p11, .., p

1
i is an index in L1,

and P2 = {[0, p
2
1], ..., [p

2
i , |L2|]}, where each p21, .., p

2
i is an index in L2. We first initialize P1 and P2

to be single intervals covering L1 and L2, respectively (e.g. P1 = {[0, |L1|]} and P2 = {[0, |L2|]}).

Next, we revise P1 and P2 in an iterative manner. In particular, we perform k consecutive revisions

of P1 and P2, where k is the k-mer value used to construct G1 and G2—each revision of P1 and P2

is based on the next character27 of each edge label in L1 and L2. An overview of the The Planning

Step is given in Figure 3.5. Thus, in order to fully describe the planning stage, we define (1) how

the characters of the edge labels are computed (e.g. GetCol(i, G1) in Figure 3.8), and (2) how P1

and P2 are revised based on these characters (e.g. RefinePlan(P1, P2, Col1, Col2, i) in Figure 3.8).

Computing the next character of L1 and L2.

We let i denote the current iteration of our revision of P1 and P2, where 1 ≤ i < k. We

compute the next characters of L1 and L2 using two temporary character vectors Coli1 and Coli2,

27We recall that FM-index stores the last character of each edge label and we do not have access to L1 and L2.

Therefore, we are processing the characters of L1 and L2 from right to left. Thus, the “next” character is the preceding

character of an edge label.

70

which are of length |L1| and |L2|, respectively. Conceptually, we define these vectors as follows:

Coli1[j] = L1[j][k − i] if j < k and otherwise Coli1[j] = L1[j][k], and Coli2[j] = L2[j][k − i] if

j < k; and otherwise Coli2[j] = L2[j][k]. Since we do not explicitly build or store L1 and L2,

we must compute Coli1 and Coli2. We leave the details of computing Coli1 and Coli2 based on the

succinct de Bruijn graph to the supplement (see Subsection 1).

Revising P1 and P2.

We revise P1 and P2 based on Coli1 and Coli2 at iteration i by considering each pair of intervals

in P1 and P2, i.e., P1[n] and P2[n] for n = 1, .., |P1|, and partitioning each interval into at most five

sub-intervals. We store the list of sub-intervals of P1 and P2 as SubP1 and SubP2. Intuitively, we

create SubP1 and SubP2 in order to divide P1[n] and P2[n] based on the runs of covered characters

in Coli1 and Coli2—e.g., for each run of A, C, G, T or $ (See Figure 3.6). Next, we formally define

this computation.

Thus, we partition P1 by first computing the subvector of Coli1 that is covered by P1[n], which

we denote as Coli1(P1[n]), and computing the subvector of Coli2 that is covered by P2[n], which

we denote as Coli2(P2[n]). Next, given a character c in {$, A, C, G, T}, we populate SubP1[c] and

SubP2[c] based on Coli1(P1[n]) and Coli2(P2[n]) as follows: (1) we check whether c exists in either

Coli1(P1[n]) or Coli2(P1[n]); (2) if so, we add an interval to SubP1[c] covering the contiguous range

of c in Coli1(P1[n]) (or add an empty interval if Coli1(P1[n]) lacks any instances of c), and add an

interval to SubP2[c] covering the contiguous range of c in Coli2(P1[n]) (or, likewise, add an empty

interval if Coli2(P1[n]) lacks any instances of c)28. Finally, we concatenate all the lists in SubP1

and SubP2 to form the revised plan P ′
1 and P ′

2. This revised plan P ′
1 and P ′

2 becomes the input

P1 and P2 for the next refinement step. We refer the reader to Figure 3.9 in the supplement for

the pseudocode. We crafted the method above to maintain the property described in the following

observation.

28We are guaranteed by the definition of our data structure that any instances of c in Coli
1
(P1[n]) will be in a

contiguous range, and likewise, any instances of c in Coli
2
(P1[n]) will also be in a contiguous range

71

Observation 1. Let P1 be a (partial) merge plan, and P ′
1 its refinement by our merge algorithm,

where ℓ1, .., ℓn are the elements in L1 that are covered by interval pi ∈ P1 and m1, ...,mo are the

elements of L2 covered by interval qj ∈ P2. The following conditions hold: (1) |P1| = |P2| and

|P ′
1| = |P

′
2|; (2) given any pair of elements where ℓa ∈ pi, ℓb ∈ pj and pi ∩ pj = ∅ there exists

intervals p′i and p′j in P ′
1 such that p′i∩p

′
j = ∅ and ℓa ∈ p′i, ℓb ∈ p′j; and lastly, (3) given an interval

pi in P1 and the subsets of the alphabet used σ1 ∈ ℓ1, .., ℓn and σ2 ∈ m1, ...,mo, then pi will be

partitioned into |SubP1| = |σ1 ∪ σ2| subintervals in P ′
1.

We defined this observation for P1 but note that an analogous observation exists for P2.

The Execution Step.

We execute the merge plan by combining the elements of EBWT(G)1 that are covered by an

interval in P1 with the elements of EBWT(G)2 that are covered by the equal position interval in P2

into a single element in EBWT(G)M . We note that when all characters of each label in L1 and L2

have been computed and accounted for, each interval in P1 and P2 will cover either 0 or 1 element

of L1 and L2 and the number of intervals in P1 (equivalently P2) will be equal to |EBWT(G)M |.

Thus, we consider and merge each pair of intervals of P1 and P2 in an iterative manner. We let

(p1i , p
2
i) as the i-th pair of intervals. We concatenate the next character of EBWT(G)1 onto the end

of EBWT(G)M if |p1i | = 1. If |p2i | = 1 then we dismiss the next character of EBWT(G)2 since

it is an abbreviated form of an identical edge to that just added. Next, if |p1i | = 0 and |p2i | = 1,

we copy the next character from EBWT(G)2 onto the end of EBWT(G)M . We refer the reader to

Figure 3.9 for the pseudocode in the supplement.

We merge the color matrices in an identical manner by copying elements of C1 and C2 to CM .

Again, we iterate through the plan by considering each pair of intervals. If |p1i | = 1 and |p2i | = 1

then we concatenate the corresponding rows of C1 and C2 to form a new row that is added to CM .

If only one of p1i or p2i is non-zero then the corresponding row of C1 or C2 is copied to CM with

the other elements of the new row set to 0.

72

Computational Complexity

The following theorem demonstrates the efficiency of our approach.

Theorem 1. Given two de Bruijn graphs G1 = (V1, E2) and G2 = (V2, E2) constructed with inte-

gral value k such that, without loss of generality, |E1| ≥ |E2|, it follows that our merge algorithm

constructs the merged de Bruijn graph GM in O(m · max(k, t))-time, where t is the number of

colors (columns) in CM and m = |E1|.

Proof. In our merge algorithm, we will perform k refinements of P1 and P2 after they are initial-

ized. We know by definition and Observation 1 that |P1| ≤ |L1|, P2 ≤ |L2|, Coli1 ≤ |L1| and

Coli2 ≤ |L2| at each iteration i of the algorithm. Further, it follows from Observation 1 that a

constant number of operations are performed to P1, P2, Coli1 and Coli2. We populate CM in the

last step of merging the primary components of the data structure. Since the CM is a bit matrix

of size k by t, it follows that this step will take time O(mmax(k, t))-time. Hence, if k ≤ t the

merge algorithm will take O(mk)-time; otherwise it will take O(mt)-time (since populating CM

will dominate in this case).

Details of Merge Plan

We recall a couple artifacts about the VARI data structure prior to describing how we compute

Coli1 (and Coli2). We first note that Coli−1
1 contains the (q+1)-th position of every edge label, and

after computation, Coli1 will contain the q-th position of every edge label. Hence, we consider the

characters in the label from right to left (i.e. decreasing sort precedence). Fortunately, we have the

final character of each edge label stored in EBWT(G)1 to begin—and thus, we start by computing

the second to final character ((k−1)-th position) and consider the characters in the decremented po-

sition at each iteration. Second, we note that given any edge epred = (spred, tpred) in G1 and the (q+

1)-th character c of the label of epred, all outgoing edges of tpred, say e1succ, .., e
n
succ, have c in the q-th

position of their edge labels. This follows from the fact that G1 is an de Bruijn graph. Thus, we can

compute e1succ, .., e
n
succ by first performing a query of rank of epred (r = rank(epred,EBWT(G)1))

in order to identify tpred, and then determining the appropriate range in EBWT(G)1 in order to

73

find all outgoing edges of tpred. Given that the edges are in colex order of their k − 1 prefix, we

know all outgoing edges of tpred will be in a contiguous range in EBWT(G)1 and in the same rel-

ative order as their immediate predecessor edges. We find this range in EBWT(G)1 by computing

select(rank(D1[epred)] + 1,BL1
) + r − 1,BL1

), select(rank(D1[epred)] + 1,BL1
) + r,BL1

)]. We

use both these facts in our computation of Coli1 (See Figure 3.7).

We define the computation of Coli1 by describing the following three cases. When 1 < i < k,

we compute Coli1 by traversing G1 in a forward direction from the first incoming edge of every

node and copying the character found at the (q+1)-th position of that incoming edge (again, stored

in Coli−1
1) into q-th position of all outgoing edges of that node. When i = 1, the (q+1)-th position

corresponds to EBWT(G)1, so EBWT(G)1 is used in place of Coli−1
1 but is otherwise identical to

the previous case. Lastly, when i = k, we let Coli1 equal EBWT(G)1.

Here, we present our method for generating the secondary components of the succinct data

structure for GM .

Delimiting common origin with BLM .

We prepare to produce BLM in the planning step by preserving a copy of the merge plan after

k − 1 refinement iterations as Sk−1. After k − 1 refinement steps, our plan will demarcate a pair

of edge sets where their labels have identical k − 1 prefixes. Thus, whichever merged elements in

EBWT(G)M result from those demarcated edges will also share the same k − 1 prefix. Therefore,

while executing the primary merge plan, we also consider the elements covered by Sk−1 concur-

rently, advancing a pointer into EBWT(G)1 or EBWT(G)2 every time we merge elements from

them. We form BLM by appending a delimiting 1 to BLM (again, indicating the final edge origi-

nating at a node) whenever both pointers reach the end of an equal rank pair of intervals in Sk−1’s

lists.

Delimiting common destination with flagsM .

We produce flags in a similar fashion to BLM but create a temporary copy of Sk−2 in the

planning stage after k−2 refinement iterations instead of k−1. In this cases, the demarcated edges

74

are not strictly those that share the same destination; only those edges that are demarcated and share

the same final symbol. Thus, in addition to keeping pointers into EBWT(G)1 or EBWT(G)2, we

also maintain a vector of counters which contain the number of characters for each (final) symbol

that have been emitted in the output. We reset all counters to 0 when a pair of delimiters in Sk−2

is encountered. Then, when we append a symbol onto EBWT(G)M , we consult the counters to

determine if it is the first edge in the demarcated range to end in that symbol. If so, we will not

output a flag for the output symbol; otherwise, we will.

Enabling navigation with DM .

We produce DM using the merge plan after the first refinement iteration. The intervals at this

point are identical to that encoded in D1 and D2 so we use the latter rather than consume more

space with another copy of an intermediate merge plan. Then, like for BL we increment a variable

tracking position within the intervals in parallel with consuming elements from EBWT(G)1 or

EBWT(G)2. We count the number of emitted characters while consuming elements from each of

the ≤ σ intervals and emit a prefix sum of these counts as DM .

3.2.5 Discussion

In this section, we present our experimental results on E. coli and GenomeTrakr data. We show

the scalability of VARIMERGE by demonstrating the time and computational resources needed to

build the colored de Bruijn graph for 16,000 strains of salmonella. Next, in order to validate the

correctness of our approach, we generated two succinct colored de Bruijn graphs with sets of three

E. coli assemblies each, merged them, and verified its equivalence to a six color graph built from

scratch. This experiment demonstrates that the merged colored de Bruijn graph is equivalent to

that produced by building the graph without merging. We ran all performance experiments on a

machine with two Xeon E5-2640 v4 chips, each having 10 2.4 GHz cores. The system contains

755 GB of RAM and two ZFS RAID pools of 9 disk each for storage. We report wall clock time

and maximum resident set size from Linux. We use the SDSL-Lite library [38] to store all succinct

vectors.

75

G G

A

ACG

CGC

GAC
T

T

A

C $

$$T

$TA CGA

ACT

$$$

TAC

GCG

G A

G
GTC TCG

CGT

C

C
T

A

C

(a) A colored de Bruijn graph G1.

G

A

ACG GAC
T

T

A

C $

$$T

$TA CGA

ACT

$$$

TAC

C

CGG GGA

G C

A

(b) A second colored de Bruijn graph G2.

G G

A

ACG

CGC

GAC
T

T

A

C $

$$T

$TA CGA

ACT

$$$

TAC

GCG

G A

G
GTC TCG

CGT

C

C
T

A

C

CGG GGA

G

A

C

(c) The merged colored de Bruijn graph GM .

$$$

CGA

$TA

GAC

TAC

0

3

1

1

1

T

C

C

G

T

G

CGC

GTC

TCG

ACG

GCG

G

G

A

A

T
C

A

1

1

1

2

1

CGT

$$T

ACT

1

1

1

C

A

$

$$$

CGA

$TA

GAC

TAC

0

1

1

2

1

T

C

C

T

G

ACG

CGG

A
G

A

1

1

$$T

ACT

1

1

A

$

GGA1 C

$$$

CGA

0

3

T

C

GGA1 C

$TA1 C

GAC2
G

T

TAC1 G

CGC

GTC G

G

1

1

ACG
A

T

C2
G

GCG A1

TCG A1

CGG A1

$$T

ACT

1

1

A

$

CGT1 C

(d) The representation of the merged colored de

Bruijn graph.

Figure 3.3: (a): A colored de Bruijn graph consisting of two individual graphs, whose edges

are shown in red and blue. (We can consider all nodes to be present in both graphs, so they are

shown in purple.) (b): A second colored de Bruijn graph, whose edges are green and yellow and

lime represents presence in both graphs. (c) : A colored de Bruijn graph merged from the two

colored de Bruijn graphs. (d): The nodes for all three graphs arranged in columns (red and blue,

merged, green and yellow). Each column is sorted into co-lexicographic order, with each node’s

number of incoming edges shown on its left and the labels of its outgoing edges shown on its

right. Vertical alignment illustrates how the merged components (center) are copied from either

the left, the right, or both.

76

L1 ← ∅
L2 ← ∅
Populate L1 and L2 (See “Label Recovery” of Subsection 3.2.3)

Merge L1 and L2 into LM .

Create EBWT(G)M , BLM , BFM from LM

Create CM from C1 and C2

Figure 3.4: Naive Merge Algorithm. Because L1 and L2 are explicitly constructed a large amount of

memory is needed.

⊲ Initialize plan to single intervals covering entire EBWT (G)s.

P1 ← ([1, |EBWT (G)1|])
P2 ← ([1, |EBWT (G)2|])
for all i ∈ {1..k} do

Col1 ← GetCol(i, G1)
Col2 ← GetCol(i, G2)
⊲ “RefinePlan” is given in the later in the text.

(P ′
1, P

′
2)← RefinePlan(P1, P2, Col1, Col2, i)

(P1, P2)← (P ′
1, P

′
2)

Figure 3.5: The planning step to merge G1 and G2.

C A A C G T

A A C G T-T

A A C G T

A A C G T

A A C G T

A

C

T

AACGT

CAACGT

TA
AC

GT

AA
CG

TA

AACGTC

AACGTT

1. Labels correspond to edges.

2. Successor edges have almost
the same label but shifted by one
position. In this case 'C' moves
from position 4 to position 3.

3. Position 3 of each successor
edge labels is filled with the 'C'
from position 4 of predecessor
edge labels.

L1

Coli−1

Coli

EBWT (G1)

Figure 3.6: Method for populating Coli based on Coli−1 and graph navigation. Black nucleotides

represent data that is in memory and valid. Grey represents data that is stored in external memory in VARI

but is computed as needed and only exists ephemerally in VARIMERGE. Thus, only three columns are ever

present in memory, which is a significant memory savings relative to the full set of edge labels. The three

resident vectors are 1.) EBWT (G1) (which is always present and used for navigation), 2.) Coli−1 which

is already completely populated when a new column to the left, 3.) (Coli) is being generated.

77

A A A T

C A A A

G C A A

T G C A

A T G C

A A T G

G C A T

A T A T

T G C A

A T G C

C A T A

T A T G

AAA AAT

ATG

TATATACAT

CAA

GCA

TGC

L1 L2

Col. 3Col. 2Col. 1 Col. 4 Col. 3Col. 2Col. 1 Col. 4

Edge Label 1

Edge Label 6

Plan 1 Intervals

Plan 2 Intervals

Figure 3.7: Two lists of (conceptual) edge labels and the corresponding de Bruijn graph. Dotted and

dashed lines denote edges exclusive to one graph. Solid lines are common to both. The merged graph will

contain all components. Plans are refined in decreasing sort precedence order: (Col. 3, Col. 2,. Col. 1, Col.

4). Plan 1 partitions the full range of edges into four intervals. These intervals are further partition in Plan 2.

The number of subintervals an interval is partitioned into depends on the size of the alphabet in use in both

sub columns from L1 and L2 (e.g. The first interval in the L1 half of Plan 1 is further partitioned into three

sub intervals in Plan 2 (for ‘A’, ‘C’, and an empty one for ‘T’) because the first interval in the L2 half of Plan

1 has a ‘T’). This may introduce empty intervals, denoting that the corresponding edge labels for one graph

are absent in the other. Identical edge labels between graphs will always be in equal ranked intervals. For

example, TCGA is in the second interval for both graphs in Plan 1, while it is in the fourth interval in Plan

2.

78

procedure PARTITION(W1,W2)

Σ′ ← AlphabetUsed(W1,W2)
SubP1 ← ()
SubP2 ← ()
for all c ∈ Σ′ do

SubP1.Append(IntervalOccupied(c,W1))
SubP2.Append(IntervalOccupied(c,W2))

return (SubP1, SubP2)

procedure REFINEPLAN(P1, P2, Col1, Col2, i)
P ′
1 ← ()

P ′
2 ← ()

⊲ For each interval in the (equal length) plans...

for all j ∈ {1..|P1|} do

⊲ ...extract a window from each column covered by the interval...

W1 ← CoveredSymbols(Col1, P1[j])
W2 ← CoveredSymbols(Col2, P2[j])
⊲ ...and partitioning that window on its character runs, forming sub-intervals.

(SubP1, SubP2)← Partition(W1,W2)
P ′
1.Concatenate(SubP1)

P ′
2.Concatenate(SubP2)

⊲ Capture snapshots of important intermediate plan states.

if i ∈ {1, k − 1, k − 2} then

Si ← (P ′
1, P

′
2)

return (P ′
1, P

′
2)

procedure VARIMERGEPLAN(G1, G2)

⊲ Initialize plan to single intervals covering entire EBWT (G)s.

P1 ← ([1, |EBWT (G)1|])
P2 ← ([1, |EBWT (G)2|])
⊲ Iterate through “edge label matrix” columns in sort precedence order

for all i ∈ {1..k} do

Col1 ← GetCol(i, G1)
Col2 ← GetCol(i, G2)
(P ′

1, P
′
2)← RefinePlan(P1, P2, Col1, Col2, i)

(P1, P2)← (P ′
1, P

′
2)

Figure 3.8: Algorithm to generate a plan. AlphabetUsed() returns the set of symbols used in its arguments.

IntervalOccupied() returns the c run interval found in its second window argument. Assume window objects

(W1 and W2) retain their origin such that IntervalOccupied() returns intervals with respect to the source po-

sitions in Col1 and Col2. CoveredSymbols() returns the substring (with the aforementioned source interval)

which is covered by an argument interval. IntervalLast() returns true if the given position is the last in the

given interval. For completeness we give all the pseudocode, including that given in the main paper.

79

procedure VARIMERGEEXECUTE(G1, G2)

⊲ Phase 2: Execute plan

⊲ For each interval in the (equal length) plans...

for all j ∈ {1..|P1|} do

NTcounts← [0, 0, 0, 0, 0]
flagcounts← [0, 0, 0, 0, 0]
EBWT (G)M ← (), BLM ← (), f lagsM ← ()
G1ptr ← 1, G2ptr ← 1
if |P1[j]| = 1 then

EBWT (G)M .Append(EBWT (G)1[G1ptr])
BLM .Append(IntervalLast(G1ptr, Sk−1[1]))
flagsM .Append(flagcounts[EBWT (G)1[G1ptr]] 6= 0)
flagcounts[EBWT (G)1[G1ptr]]← +1
G1ptr ← +1
if |P2[j]| = 1 then

G2ptr ← +1

else

EBWT (G)M .Append(EBWT (G)2[G2ptr])
BLM .Append(IntervalLast(G2ptr, Sk−1[2]))
flagsM .Append(flagcounts[EBWT (G)2[G2ptr]] 6= 0)
flagcounts[EBWT (G)2[G1ptr]]← +1
G2ptr ← +1

⊲ When the last symbol(s) are consumed from equal an rank interval pair in Sk−2, reset

the flag counter.

if IntervalLast(G1ptr, Sk−2[1])andIntervalLast(G2ptr,Sk−2[2]) then

flagcounts← [0, 0, 0, 0, 0]

DM ← PrefixSum(NTcounts)

Figure 3.9: Algorithm to execute the merge plan.

80

Table 3.4: Comparison between building a succinct colored de Bruijn for the same 8,000 Salmonella strains using VARI versus VARIMERGE.

Input Stats de Bruijn Graph Color Matrix Combined Requirements

Program and Dataset k-mers Colors RAM Time Size RAM Time Size RAM Ext. Mem. Time Size

VARI(8k-1) 2.4 B 8,000 271 GB 30 h 49 m 0.63 GB 117 GB 6 h 28 m 114 GB 271 GB 4.6 TB 37 h 27 m 114 GB

VARIMERGE(8k-1) 2.4 B 8,000 137 GB 21 h 27 m 0.63 GB 117 GB 5 h 3 m 114 GB 137 GB 1.5 TB 26 h 30 m 114 GB

Table 3.5: Breakdown of the components of VARIMERGE which was listed in the table above.

Input Stats de Bruijn Graph Color Matrix Combined Requirements

Program and Dataset k-mers Colors RAM Time Size RAM Time Size RAM Ext. Mem. Time Size

VARI(4k-1) 1.1 B 4,000 136 GB 8 h 46 m 0.31 GB 52 GB 1 h 39 m 51.2 GB 136 GB 1 TB 10 h 25 m 51 GB

VARI(4k-2) 1.5 B 4,000 137 GB 10 h 40 m 0.52 GB 54 GB 2 h 22 m 52.5 GB 137 GB 1.5 TB 13 h 2 m 53 GB

MERGE(4k-1, 4k-2) 2.4 B 8,000 10 GB 2 h 1 m 0.63 GB 117 GB 1 h 2 m 106 GB 117 GB N/A 3 h 3 m 106 GB

VARIMERGE(8k-1) 2.4 8,000 137 GB 21 h 27 m 0.63 GB 117 GB 5 h 3 m 117 GB 137 GB 1.5 TB 26 h 30 m 106 GB

Table 3.6: Additional statistics for building a Salmonella 16,000 strain succinct colored de Bruijn graph.

Input Stats de Bruijn Graph Color Matrix Combined Requirements

Program and Dataset k-mers Colors RAM Time Size RAM Time Size RAM Ext. Mem. Time Size

VARI(4k-3) 1.7 B 4,000 135 GB 10 h 53 m 0.46 GB 53 GB 2 h 34 m 51.8 GB 135 GB 1.6 TB 13 h 27 m 52 GB

VARI(4k-4) 2.4 B 4,000 137 GB 14 h 35 m 0.67 GB 59 GB 3 h 37 m 57.9 GB 137 GB 2.34 TB 18 h 12 m 59 GB

MERGE(4k-3, 4k-4) 3.8 B 8,000 17 GB 2 h 59 m 1.00 GB 118 GB 57 m 107 GB 118 GB N/A 3 h 56 m 108 GB

MERGE(8k-1, 8k-2) 5.8 B 16,000 25 GB 4 h 53 m 1.60 GB 254 GB 2 h 10 m 232 GB 254 GB N/A 7 h 3 m 233 GB

VARIMERGE(16k) 5.8 B 16,000 137 GB 54 h 47 m 1.60 GB 254 GB 14 h 21 m 232 GB 254 GB 2.34 TB 69 h 8 m 233 GB

81

Large-scale Construction using GenomeTrakr

We demonstrate the scalability of VARIMERGE by constructing the succinct de Bruijn graph for

16,000 Salmonella strains from NCBI BioProject PRJNA183844. We downloaded the sequence

data from NCBI and preprocessed the data by assembling each individual sample with IDBA-

UD and counting k-mers (k=32) using KMC. We used these k-mers as input to VARIMERGE.

We modified IDBA by setting kMaxShortSequence to 1,024 per public advice from the author to

accommodate the longer paired end reads that modern sequencers produce. We sorted the full set

of samples by the size of their k-mer counts and selected 16,000 samples about the median. This

avoids exceptionally short assemblies, which may be due to low read coverage, and exceptionally

long assemblies which may be due to contamination. We divide these 16,000 samples into four

sets of 4,000 which we label 4k-1, 4k-2, 4k-3, and 4k-4. The exact accessions for each dataset is

available in our repository. Merged graphs are numbered in the order of their constituents (e.g. the

merged 8k-1 comprises the graphs from 4k-1 and 4k-2.) We summarize our results in Table 1.

In order to measure the effectiveness of VARIMERGE for incremental additions to a graph that

holds a growing population of genomes, we constructed the colored de Bruijn graph using VARI for

a set of 4,000 salmonella assemblies (4k-1) as well as for a set of just one assembly. Next, we ran

our proposed merge algorithm on these two graphs. VARI took 8 hours 46 minutes, 1 TB of external

memory, and 136 GB of RAM to build the graph for 4,000 strains. To build a single colored de

Bruijn graph for an additional strain, VARI took 27 seconds, 10 GB of external memory, and 3

GB of RAM. Our proposed algorithm took 49 minutes, no external memory, and 5 GB of RAM to

merge the 4,000 color graph with the 1 color graph. This is considerably faster than it would take

to build a 4,001 color graph from scratch. In order to measure the effectiveness of VARIMERGE for

the proposed divide-and-conquer method of building large graphs, we built a graph for a second

set of 4,000 assemblies (4k-2) using 10 hours 40 minutes, 1.5 TB of external memory, and 137

GB of RAM. We merged these two 4,000 sample graphs (i.e. 8k-1) using our proposed algorithm

in 2 hours 1 minutes, no external memory, and 10 GB of RAM. Thus the VARIMERGE method

required a combined 137 GB of RAM, 26 hours 30 minutes of runtime to produce the 8k-1 graph.

82

In contrast, running VARI on the same 8,000 strains (8k-1) required 37 hours 27 minutes, 4.6 TB of

external memory and 271 GB of RAM. Thus VARIMERGE reduced runtime by 11 hours, reducing

RAM requirements to 134 GB, and reducing external memory requirements by 3.1 TB.

We further used this facility to merge two more 4,000 color graphs (i.e. 4k-3 + 4k-4 = 8k-2) and

then merged this 8,000 sample graph with the aforementioned 8,000 graph to produce a succinct

colored de Bruijn graph of 16,000 samples (i.e. 8k-1 + 8k-2 = 16k-1).

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Colors

0

20000

40000

60000

80000

100000

Co
lo
re
d
de

 B
ru

ijn
 G

ra
ph

 S
ize

 (M
B)

Figure 3.10: Comparison between Bloom Filter Trie (blue dots) and VARIMERGE (red pluses) on isolates

from GenomeTrakr. We ran Bloom Filter Trie on 4,000 isolates and plot VARIMERGE results up through

16,000 isolates.

Comparison to Bloom Filter Trie

In addition to demonstrating scalability, we used the Samonella strains from GenomeTrakr to

directly compare the data structure space and construction memory of VARIMERGE with Bloom

Filter Trie [99] (BFT). We observe both tools have a small memory overhead in construction above

83

the final data structure. We found super-linear growth in BFT construction memory and that BFT

produced a graph 105 GB in size after 4,000 samples were inserted. This is only slightly less space

than the 106 GB the VARI data structure requires to represent twice as many samples. Holley et

al. [99] report sub-linear growth up through 471 samples; however, we posit these differing ob-

servations may be a result of both differing dataset and preprocessing methods; More specifically,

these isolates were extracted from a single species (humans) in contrast to GenomeTrakr, and thus

may result in data that is more more homogeneous and has slower growth in the diversity with

population size; GenomeTrakr Salmonella samples are culled from diverse food production envi-

ronments. Furthermore, they filter k-mers that have low multiplicity as a means to clean the data.

This may reduce the growth as parts of the so called core genome may be missing in some samples,

and the set of population k-mers could converge asymptotically toward the core genome. Though

Holley et al. compared to Sequence Bloom Trees by Solomon et al. [104], we do not because the

Sequence Bloom Tree software is designed for transcript querying rather than variant detection.

Validation using E. coli

We validate VARIMERGE by generating two succinct colored de Bruijn graphs with three E.

coli assemblies each, merge them, and verify correctness of the merged graph: First, we generated

all k-mers for each reference genome, counted all unique k-mers with KMC2 [105], constructed

two de Bruijn graphs of three assemblies each using VARI, and merged them into a six color

graph using VARIMERGE. Independently, we constructed a second colored de Bruijn graph using

VARI on all six assemblies in one run, and compared these two graphs. We found VARIMERGE

produced files on disk that were bit-for-bit identical to those generated by VARI, demonstrating

they construct equivalent graphs and data structures.

3.2.6 Conclusions

In this section, we propose to further increase the scalability of succinct colored de Bruijn

graphs by developing a method to merging smaller graphs in a resource-efficient manner. This

allows the colored de Bruijn graph to be constructed for massive size datasets. In addition, our

84

algorithm provides an efficient means to update a succinct colored de Bruijn graph with additional

data as it becomes available. This is useful for example, in the GenomeTrakr database, which is

continually being updated with more data on a monthly (or even weekily basis) and the search for

a foodborne outbreak requires the analysis of the complete dataset. Thus, rather than rebuilding

the colored de Bruijn graph on the new (complete) version of the GenomeTrakr data, dynamically

updating the existing one would ensure ideal use of time and resources.

Lastly, our merge algorithm may be applicable to to other prefix-only compressed suffix ar-

rays such as GCSA by Sirén et al. [106] and XBW by Ferragina et al. [107]. This merits future

investigation as these data structures are of both theoretical and practical interest.

85

Chapter 4

Conclusion

In this work we’ve seen that the FM-Index can be usefully applied to various genomics prob-

lems. Both TWIN and KOHDISTA exploit the FM-Index’s ability to find all matches in the target

data concurrently as opposed to exhaustively searching all regions of the target data serially. Both

VARI and VARIMERGE exploit the compressed nature of the FM-Index to reduce memory con-

sumption.

As both KOHDISTA and VARI represent graphs of many sequences (Rmaps and samples, re-

spectively) it is useful to consider how they differ, and if each data structure would have a useful

application in the domain where we’ve seen the other used. First, we should consider the several

notable differences between these structures the impact their application. In the succinct colored

de Bruijn graph, common substrings between two samples give rise to (k − 1) −mers glued to-

gether and any differing regions give rise to bubbles in the graph. Thus the glued (k − 1)−mers

are effectively seed matches in an alignment and traversal of the graph reveals the mismatching re-

gions containing insertions, deletions, or substitutions. These alignments are found entirely within

the data structure after construction and can thus take the form of many-to-many alignments. In

contrast, in the GCSA we find alignments between a single query sequence which is not part of

the data structure and all compatible matches within the data structure are found concurrently, thus

representing a one-to-many alignment.

We might also consider how repeats in the underlying data are handled differently by the two

structures. As previously discussed, an important construction step of GCSA is inducing the prefix

sortedness property, such that vertices form a totally ordered set based on the lexicographic rank

of their corresponding suffix set. Repeats introduce suffixes that may have identical prefixes in-

terfering with total ordering. Thus, the more repeats that are present in a dataset, the more work

must occur during construction of a GCSA structure (i.e. prefix doubling enough for unambiguous

86

lexicographic order) and the resulting structure may consequently be larger. We can also consider

each vertex in a de Bruijn graph as representing a suffix in a set of spellable strings, but always

just the k length prefix of those strings. As such, in contrast, in the succinct colored de Bruijn

graph, all repeated regions longer than k in length result in a collection of single vertices, each

with a unique label. So since all vertices are unique, they always have a total order. In essence, the

succinct colored de Bruijn graph deals with repeats by collapsing all instances to a single k-length

string and keeping track of their origin in the color matrix. In contrast, GCSA deals with repeats

by keeping separate vertices for each copy of a repeat, at the expense of expanding the size of the

graph to induce a total order.

Given this, we might consider scenarios where we allow gluing of similar fixed length segments

of the KOHDISTA graph and keeping track of the origin Rmaps in a color matrix. Under such

a scenario, we would also have to consider the sizing error problem. However, the notion of

speculating error could be extended to quantization, where additional vertices are introduced to

capture the possibility a given Rmap fragment’s true size would yield an adjacent quantization

bin. The complementary application, finding sequence alignments to sets of finished genomes is

already embodied in the original GCSA work.

Future work could include further compressing the color matrix by marking which color matrix

rows are identical to their predecessor in compressible runs in the graph, thus obviating the need

to store any ‘1’ bits for those rows. This would be akin to colored compact de Bruijn graphs

which need only associate one set of colors with a compacted node instead of with each of the

non-compacted nodes it comprises.

As well, the colored de Bruijn graph could be made variable order (in concert with the work

of Boucher et al. [108] by orienting the color matrix in column major order. If the suggested radix

merge method is further developed, it could potentially be used to generate the required LCP array

in a variable order succinct colored de Bruijn Graph.

Additionally, one of the key features that made the FM-Index techniques work for optical

mapping is that the errors in the data were constrained about the given data – sizing error was

87

always distributed about the true size and missing sites could be speculated about. This suggests

this same technique could be applied to other data sources, such as sequencing platforms that are

error prone in the length homopolymer runs, which could be indexed as run lengths stored in a

wavelet tree.

88

Bibliography

[1] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows–Wheeler trans-

form. Bioinformatics, 25(14):1754–1760, 2009.

[2] Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature Reviews Ge-

netics, 14(3):157–167, 2013.

[3] R Staden. A new computer method for the storage and manipulation of dna gel reading data.

Nucleic Acids Research, 8(16):3673–3694, 1980.

[4] Saul B Needleman and Christian D Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of molecular biology,

48(3):443–453, 1970.

[5] Eugene W Myers. Toward simplifying and accurately formulating fragment assembly. Jour-

nal of Computational Biology, 2(2):275–290, 1995.

[6] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path approach to dna

fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753,

2001.

[7] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. siam

Journal on Computing, 22(5):935–948, 1993.

[8] U. Manber and G. W. Myers. Suffix arrays: A new method for on-line string searches. SIAM

J. Sci. Comput., 22(5), 1993.

[9] Michael Burrows and David J Wheeler. A block-sorting lossless data compression algo-

rithm. Technical Reports, 1994.

[10] M. Burrows and D.J. Wheeler. A block sorting lossless data compression algorithm. Tech-

nical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

89

[11] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages

390–398. IEEE, 2000.

[12] P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552–581, 2005.

[13] T. Gagie, G. Navarro, and S. J. Puglisi. New algorithms on wavelet trees and applications

to information retrieval. Theor. Comput Sci, 426-427, 2012.

[14] R. Ronen, C. Boucher, H. Chitsaz, and P. Pevzner. Sequel: Improving the accuracy of

genome assemblies. Bioinformatics, 28(12):i188–i196, 2012.

[15] C. Alkan, S. Sajjadian, and E.E. Eichler. Limitations of next-generation genome sequence

assembly. Nat. Methods, 8(1):61–65, 2010.

[16] S.L. Salzberg. Beware of mis-assembled genomes. Bioinformatics, 21(24):4320–4321,

2005.

[17] C. Aston and D.C. Schwartz. Optical mapping in genomic analysis, pages 1–17. John Wiley

and Sons, Ltd, 2006.

[18] Dimalanta et al. A microfluidic system for large dna molecule arrays. Anal. Chem.,

76(18):5293–5301, 2004.

[19] R. K. Neely, J. Deen, and J. Hofkens. Optical mapping of DNA: single-molecule-based

methods for mapping genome. Biopolymers, 95(5):298–311, 2011.

[20] T. Anantharaman and B. Mishra. A probabilistic analysis of false positives in optical map

alignment and validation. In Proc. of WABI, pages 27–40, 2001.

[21] Harper VanSteenHouse, 2013.

[22] B. Teague et al. High-resolution human genome structure by single-molecule analysis. Proc.

Natl. Acad. Sci., 107(24):10848–10853, 2010.

90

[23] S. Reslewic et al. Whole-genome shotgun optical mapping of rhodospirillum rubrum. Appl.

Environ. Microbiol., 71(9):5511–5522, 2005.

[24] S. Zhou et al. A whole-genome shotgun optical map of yersinia pestis strain KIM. Appl.

Environ. Microbiol., 68(12):6321–6331, 2002.

[25] S. Zhou et al. Shotgun optical mapping of the entire leishmania major Friedlin genome.

Mol. Biochem. Parasitol., 138(1):97–106, 2004.

[26] Shiguo Zhou et al. Validation of rice genome sequence by optical mapping. BMC Genomics,

8(1):278, 2007.

[27] S. Zhou et al. A single molecule scaffold for the maize genome. PLoS Genet.,

5(11):e1000711, 11 2009.

[28] D. M. Church et al. Lineage-specific biology revealed by a finished genome assembly of

the mouse. PLoS Biology, 7(5):e1000112+, 2009.

[29] Y. Dong et al. Sequencing and automated whole-genome optical mapping of the genome of

a domestic goat (capra hircus). Nat. Biotechnol., 31(2):136–141, 2013.

[30] J. T. Howard et al. De Novo high-coverage sequencing and annotated assemblies of the

budgerigar genome, 2013.

[31] S. Chamala et al. Assembly and validation of the genome of the nonmodel basal angiosperm

amborella. Science, 342(6165):1516–1517, 2013.

[32] Helga Thorvaldsdòttir, James T. Robinson, and Jill P. Mesirov. Integrative genomics viewer

(igv): High-performance genomics data visualization and exploration. Brief. Bioinform.,

14(2):178–92, 2013.

[33] Anton Valouev et al. Alignment of optical maps. J. Comp. Biol., 13(2):442–462, 2006.

91

[34] N. Nagarajan, T. D Read, and M. Pop. Scaffolding and validation of bacterial genome

assemblies using optical restriction maps. Bioinformatics, 24(10):1229–1235, 2008.

[35] H.C Lin et al. Agora: Assembly guided by optical restriction alignment. BMC Bioinformat-

ics, 12, 2012.

[36] M. Antoniotti, T. Anantharaman, S. Paxia, and B. Mishra. Genomics via optical mapping

iv: sequence validation via optical map matching. Technical report, New York University,

2001.

[37] Keith R Bradnam et al. Assemblathon 2: evaluating de novo methods of genome assembly

in three vertebrate species. GigaScience, 2(1):1–31, 2013.

[38] Simon Gog and Matthias Petri. Optimized succinct data structures for massive data. Soft-

ware Pract. Expr., to appear.

[39] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler. Quast: quality assessment tool for

genome assemblies. Bioinformatics, 29(8):1072–1075, 2013.

[40] A. Bankevich and others. Spades: a new genome assembly algorithm and its applications to

single-cell sequencing. J. Comp. Biol., 19(5):455–477, 2012.

[41] Y. Kawahara et al. Improvement of the oryza sativa nipponbare reference genome using

next generation sequence and optical map data. Rice, 6(4):1–10, 2013.

[42] J. R. Miller et al. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics,

24:2818–2824, 2008.

[43] J.W. Kent. Blat–the blast-like alignment tool. Genome Res., 12(4):656–664, 2002.

[44] A Zimin and others. Sequencing and assembly of the 22-gb loblolly pine genome. Genetics,

196(3):875–890, 2014.

92

[45] J. Sirén, N. Välimäki, and V. Mäkinen. Indexing graphs for path queries with applications

in genome research. IEEE/ACM Trans Comput Biol Bioinform, To appear, 2014.

[46] Martin D Muggli, Simon J Puglisi, Roy Ronen, and Christina Boucher. Misassembly detec-

tion using paired-end sequence reads and optical mapping data. Bioinformatics, 31(12):i80–

i88, 2015.

[47] A. Valouev, D.C. Schwartz, S. Zhou, and M.S. Waterman. An algorithm for assembly of

ordered restriction maps from single DNA molecules. Proc Natl Acad Sci, 103(43):15770–

15775, 2006.

[48] L. M. Mendelowitz et al. Maligner: a fast ordered restriction map aligner. Bioinformatics,

32(7):1016–1022, 2016.

[49] Alden King-Yung Leung et al. Omblast: alignment tool for optical mapping using a seed-

and-extend approach. Bioinformatics, page btw620, 2016.

[50] Davide Verzotto et al. Optima: Sensitive and accurate whole-genome alignment of error-

prone genomic maps by combinatorial indexing and technology-agnostic statistical analysis.

GigaScience, 5(1):2, 2016.

[51] B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg. Ultrafast and memory-efficient

alignment of short dna sequences to the human genome. Genome Biology, 10(3):R25–10,

2009.

[52] M. Muggli et al. Efficient indexed alignment of contigs to optical maps. In Proceedings

WABI, pages 68–81, 2014.

[53] R.M Idury and M.S. Waterman. A new algorithm for dna sequence assembly. J. Comp.

Biol., 2(2):291–306, 1995.

[54] P. E. Compeau, P. A. Pevzner, and G. Tesler. How to apply de bruijn graphs to genome

assembly. Nature Biotechnology, 29:987–991, 2011.

93

[55] M. Muggli, S.J. Puglisi, R. Ronen, and C. Boucher. Misassembly detection using paired-end

sequence reads and optical mapping data. Bioinformatics, 31(12):i80–i88, 2015.

[56] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo assembly and geno-

typing of variants using colored de Bruijn graphs. Nature Genetics, 44:226–232, 2012.

[57] Genome 10K Community of Scientists. Genome 10k: A proposal to obtain whole-genome

sequence for 10,000 vertebrate species. Journal of Heredity, 100(6):659–674, 2009.

[58] Robinson et al. Creating a buzz about insect genomes. Science, 331(6023), 2011.

[59] M. Causse et al. Whole genome resequencing in tomato reveals variation associated with

introgression and breeding events. BMC Genomics, 14:791, 2013.

[60] M. Kobayashi et al. Genome-wide analysis of intraspecific DNA polymorphism in

“micro-tom”, a model cultivar of tomato (solanum lycopersicum). Plant Cell Physiology,

55(2):445–454, 2014.

[61] D. Weigel and R. Mott. The 1001 genomes project for Arabidopsis thaliana. Genome

Biology, 10(5):107, 2009.

[62] EMBL-EBI Metagenomics. Local surveillance of infectious diseases and antimicrobial re-

sistance from sewage, 2016.

[63] Ruth R Miller, Vincent Montoya, Jennifer L Gardy, David M Patrick, and Patrick Tang.

Metagenomics for pathogen detection in public health. Genome Medicine, 5(9):1, 2013.

[64] F. Baquero et al. Metagenomic epidemiology: a public health need for the control of an-

timicrobial resistance. Clinical Microbiology and Infection, 18(4):67–73, 2012.

[65] Jesse A. Port, Alison C. Cullen, James C. Wallace, Marissa N. Smith, and Elaine M. Faust-

man. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environ-

ments. Environmental. Health Perspectives, 122(3), 2014.

94

[66] The White House. National action plan for combating antibiotic-resistant bacteria. Wash-

ington, DC, 2015.

[67] Food and Agricultural Organization of the United Nations. The FAO action plan on antimi-

crobial resistance 2016-2020, 2016.

[68] Fernando Baquero, Ana-Sofia P Tedim, and Teresa M Coque. Antibiotic resistance shaping

multi-level population biology of bacteria. Frontiers in Microbiology, 4:15, 2013.

[69] R Craig MacLean, Alex R Hall, Gabriel G Perron, and Angus Buckling. The population

genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts.

Nature Reviews Genetics, 11(6):405–414, 2010.

[70] Noelle R Noyes, Xiang Yang, Lyndsey M Linke, Roberta J Magnuson, Adam Dettenwanger,

Shaun Cook, Ifigenia Geornaras, Dale E Woerner, Sheryl P Gow, Tim A McAllister, et al.

Resistome diversity in cattle and the environment decreases during beef production. eLife,

5:e13195, 2016.

[71] Paula King, Long K Pham, Shannon Waltz, Dan Sphar, Robert T Yamamoto, Douglas Con-

rad, Randy Taplitz, Francesca Torriani, and R Allyn Forsyth. Longitudinal metagenomic

analysis of hospital air identifies clinically relevant microbes. PLoS ONE, 11(8):e0160124,

2016.

[72] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya. Succinct de Bruijn graphs. In Proc.

WABI, pages 225–235, 2012.

[73] J.T. Simpson et al. Abyss: A parallel assembler for short read sequence data. Genome Res.,

19(6):1117–1123, 2009.

[74] T.C. Conway and A. Bromage. Succinct data structures for assembling large genomes.

Bioinformatics, 27(4):479–486, 2011.

95

[75] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. In

Proc. ALENEX, pages 60–70. SIAM, 2007.

[76] R. Chikhi and G. Rizk. Space-efficient and exact de Bruijn graph representation based on a

Bloom filter. Algorithms for Molecular Biology, 8(1), 2013.

[77] M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm. Tech-

nical Report 124, Digital Equipment Corporation, 1994.

[78] Y. Peng et al. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing

data with highly uneven depth. Bioinformatics, 28(11), 2012.

[79] D. Li, C.-M. Liu, R. Luo, K. Sadakane, and T.-W. Lam. MEGAHIT: An ultra-fast single-

node solution for large and complex metagenomics assembly via succinct de Bruijn graph.

Bioinformatics, 31(10):1674–1676, 2015.

[80] R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson, and P. Medvedev. On the representation

of de Bruijn graphs. In Proc. RECOMB, pages 35–55, 2014.

[81] Guillaume Holley, Roland Wittler, and Jens Stoye. Bloom filter trie–a data structure for

pan-genome storage. Algorithms in Bioinformatics, pages 217–230, 2015.

[82] Shoshana Marcus, Hayan Lee, and Michael C Schatz. Splitmem: A graphical algorithm for

pan-genome analysis with suffix skips. Bioinformatics, 30(24):3476–3483, 2014.

[83] Y. Lin, S. Nurk, and P. Pevzner. What is the difference between the breakpoint graph and

the de bruijn graph? BMC Genomics, 15(Suppl 6):S6, 2014.

[84] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University

Press, 2016.

[85] R. Raman, V. Raman, and S. Rao Satti. Succinct indexable dictionaries with applications to

encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms, 3:43, 2007.

96

[86] Peter Elias. Efficient storage and retrieval by content and address of static files. Journal of

the ACM, 21(2):246–260, 1974.

[87] Robert Mario Fano. On the number of bits required to implement an associative memory.

Massachusetts Institute of Technology, Project MAC, 1971.

[88] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz.

KMC 2: Fast and resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, 2015.

[89] T. Tanaka et al. The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids

Research, 36:D1028–33, 2008.

[90] P. Schnable et al. The B73 maize genome: Complexity, diversity, and dynamics. Science,

326:1112–1115, 2009.

[91] D. Swarbreck et al. The Arabidopsis information resource (TAIR): gene structure and func-

tion annotation. Nucleic Acids Research., 36:D1009–14, 2008.

[92] Anthony M Bolger, Marc Lohse, and Bjoern Usadel. Trimmomatic: a flexible trimmer for

Illumina sequence data. Bioinformatics, 30(15):2114–2120, 2014.

[93] Heather A Carleton and Peter Gerner-Smidt. Whole-genome sequencing is taking over

foodborne disease surveillance. Microbe, 11:311–317, 2016.

[94] E.L. Stevens, R. Timme, E.W. Brown, M.W. Allard, E. Strain, K. Bunning, and S. Musser.

The public health impact of a publically available, environmental database of microbial

genomes. Frontiers in Microbiology, 8:808, 2017.

[95] James B Pettengill, Arthur W Pightling, Joseph D Baugher, Hugh Rand, and Errol Strain.

Real-time pathogen detection in the era of whole-genome sequencing and big data: Com-

parison of k-mer and site-based methods for inferring the genetic distances among tens of

thousands of salmonella samples. PloS one, 11(11):e0166162, 2016.

97

[96] Martin CJ Maiden, Melissa J Jansen Van Rensburg, James E Bray, Sarah G Earle, Suzanne A

Ford, Keith A Jolley, and Noel D McCarthy. Mlst revisited: the gene-by-gene approach to

bacterial genomics. Nature Reviews. Microbiology, 11(10):728, 2013.

[97] Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul S Morley, Keith E Belk, Robert

Raymond, Travis Gagie, Simon J Puglisi, and Christina Boucher. Succinct colored de bruijn

graphs. Bioinformatics, 2017.

[98] F. Almodaresi, P. Pandey, and R. Patro. Rainbowfish: A succinct colored de Bruijn graph

representation. In Proc. of WABI, pages 251–265, 2017.

[99] Guillaume Holley, Roland Wittler, and Jens Stoye. Bloom filter trie–a data structure for

pan-genome storage. In International Workshop on Algorithms in Bioinformatics, pages

217–230. Springer, 2015.

[100] Uwe Baier, Timo Beller, and Enno Ohlebusch. Graphical pan-genome analysis with com-

pressed suffix trees and the burrows–wheeler transform. Bioinformatics, 32(4):497–504,

2015.

[101] Ilia Minkin, Son Pham, and Paul Medvedev. Twopaco: An efficient algorithm to build the

compacted de bruijn graph from many complete genomes. Bioinformatics, page btw609,

2016.

[102] Jouni Sirén. Burrows-wheeler transform for terabases. In Data Compression Conference

(DCC), 2016, pages 211–220. IEEE, 2016.

[103] J. Holt and L. McMillan. Merging of multi-string BWTs with applications. Bioinformatics,

30(24):3524–3531, 2014.

[104] Brad Solomon and Carleton Kingsford. Large-scale search of transcriptomic read sets with

sequence bloom trees. bioRxiv, page 017087, 2015.

98

[105] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz.

Kmc 2: Fast and resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, 2015.

[106] Jouni Sirén, Niko Valimaki, and Veli Makinen. Indexing graphs for path queries with appli-

cations in genome research. Computational Biology and Bioinformatics, IEEE/ACM Trans-

actions on, 11(2):375–388, 2014.

[107] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and indexing

labeled trees, with applications. JACM, 57(1):4, 2009.

[108] Christina Boucher, Alex Bowe, Travis Gagie, Simon J Puglisi, and Kunihiko Sadakane.

Variable-order de bruijn graphs. In Data Compression Conference (DCC), 2015, pages

383–392. IEEE, 2015.

99

	Abstract
	Acknowledgements
	Introduction
	Background
	FM-Index

	Reducing Runtime by Indexing
	TWIN: Efficient Indexed Alignment of Contigs to Optical Maps
	Introduction
	Background
	Methods
	Results
	Discussion and Conclusions

	Kohdista: A Succinct Solution to Raw Optical Map Alignment
	Introduction
	Background
	The Pairwise Rmap Alignment Problem
	Methods
	Results and Discussion
	Conclusion
	Practical Indexing Considerations

	Reducing memory by compression
	VARI: Succinct Colored de Bruijn Graphs
	Introduction
	Methods
	Results
	Concluding Remarks

	VARIMERGE: Succinct De Bruijn Graph Construction for Massive Populations Through Space-Efficient Merging
	Introduction
	Related Work
	Preliminaries
	Method
	Discussion
	Conclusions

	Conclusion
	Bibliography

